• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54 
55 #include "workqueue_internal.h"
56 
57 #include <trace/hooks/wqlockup.h>
58 /* events/workqueue.h uses default TRACE_INCLUDE_PATH */
59 #undef TRACE_INCLUDE_PATH
60 
61 enum {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 */
78 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
79 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
80 
81 	/* worker flags */
82 	WORKER_DIE		= 1 << 1,	/* die die die */
83 	WORKER_IDLE		= 1 << 2,	/* is idle */
84 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
85 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
86 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
87 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
88 
89 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
90 				  WORKER_UNBOUND | WORKER_REBOUND,
91 
92 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
93 
94 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
95 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
96 
97 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
98 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
99 
100 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
101 						/* call for help after 10ms
102 						   (min two ticks) */
103 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
104 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
105 
106 	/*
107 	 * Rescue workers are used only on emergencies and shared by
108 	 * all cpus.  Give MIN_NICE.
109 	 */
110 	RESCUER_NICE_LEVEL	= MIN_NICE,
111 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
112 
113 	WQ_NAME_LEN		= 24,
114 };
115 
116 /*
117  * Structure fields follow one of the following exclusion rules.
118  *
119  * I: Modifiable by initialization/destruction paths and read-only for
120  *    everyone else.
121  *
122  * P: Preemption protected.  Disabling preemption is enough and should
123  *    only be modified and accessed from the local cpu.
124  *
125  * L: pool->lock protected.  Access with pool->lock held.
126  *
127  * X: During normal operation, modification requires pool->lock and should
128  *    be done only from local cpu.  Either disabling preemption on local
129  *    cpu or grabbing pool->lock is enough for read access.  If
130  *    POOL_DISASSOCIATED is set, it's identical to L.
131  *
132  * A: wq_pool_attach_mutex protected.
133  *
134  * PL: wq_pool_mutex protected.
135  *
136  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
137  *
138  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
139  *
140  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
141  *      RCU for reads.
142  *
143  * WQ: wq->mutex protected.
144  *
145  * WR: wq->mutex protected for writes.  RCU protected for reads.
146  *
147  * MD: wq_mayday_lock protected.
148  */
149 
150 /* struct worker is defined in workqueue_internal.h */
151 
152 struct worker_pool {
153 	raw_spinlock_t		lock;		/* the pool lock */
154 	int			cpu;		/* I: the associated cpu */
155 	int			node;		/* I: the associated node ID */
156 	int			id;		/* I: pool ID */
157 	unsigned int		flags;		/* X: flags */
158 
159 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
160 
161 	/*
162 	 * The counter is incremented in a process context on the associated CPU
163 	 * w/ preemption disabled, and decremented or reset in the same context
164 	 * but w/ pool->lock held. The readers grab pool->lock and are
165 	 * guaranteed to see if the counter reached zero.
166 	 */
167 	int			nr_running;
168 
169 	struct list_head	worklist;	/* L: list of pending works */
170 
171 	int			nr_workers;	/* L: total number of workers */
172 	int			nr_idle;	/* L: currently idle workers */
173 
174 	struct list_head	idle_list;	/* L: list of idle workers */
175 	struct timer_list	idle_timer;	/* L: worker idle timeout */
176 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
177 
178 	/* a workers is either on busy_hash or idle_list, or the manager */
179 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
180 						/* L: hash of busy workers */
181 
182 	struct worker		*manager;	/* L: purely informational */
183 	struct list_head	workers;	/* A: attached workers */
184 	struct completion	*detach_completion; /* all workers detached */
185 
186 	struct ida		worker_ida;	/* worker IDs for task name */
187 
188 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
189 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
190 	int			refcnt;		/* PL: refcnt for unbound pools */
191 
192 	/*
193 	 * Destruction of pool is RCU protected to allow dereferences
194 	 * from get_work_pool().
195 	 */
196 	struct rcu_head		rcu;
197 };
198 
199 /*
200  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
201  * of work_struct->data are used for flags and the remaining high bits
202  * point to the pwq; thus, pwqs need to be aligned at two's power of the
203  * number of flag bits.
204  */
205 struct pool_workqueue {
206 	struct worker_pool	*pool;		/* I: the associated pool */
207 	struct workqueue_struct *wq;		/* I: the owning workqueue */
208 	int			work_color;	/* L: current color */
209 	int			flush_color;	/* L: flushing color */
210 	int			refcnt;		/* L: reference count */
211 	int			nr_in_flight[WORK_NR_COLORS];
212 						/* L: nr of in_flight works */
213 
214 	/*
215 	 * nr_active management and WORK_STRUCT_INACTIVE:
216 	 *
217 	 * When pwq->nr_active >= max_active, new work item is queued to
218 	 * pwq->inactive_works instead of pool->worklist and marked with
219 	 * WORK_STRUCT_INACTIVE.
220 	 *
221 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
222 	 * in pwq->nr_active and all work items in pwq->inactive_works are
223 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
224 	 * work items are in pwq->inactive_works.  Some of them are ready to
225 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
226 	 * only struct wq_barrier which is used for flush_work() and should
227 	 * not participate in pwq->nr_active.  For non-barrier work item, it
228 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
229 	 */
230 	int			nr_active;	/* L: nr of active works */
231 	int			max_active;	/* L: max active works */
232 	struct list_head	inactive_works;	/* L: inactive works */
233 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
234 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
235 
236 	/*
237 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
238 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
239 	 * itself is also RCU protected so that the first pwq can be
240 	 * determined without grabbing wq->mutex.
241 	 */
242 	struct work_struct	unbound_release_work;
243 	struct rcu_head		rcu;
244 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
245 
246 /*
247  * Structure used to wait for workqueue flush.
248  */
249 struct wq_flusher {
250 	struct list_head	list;		/* WQ: list of flushers */
251 	int			flush_color;	/* WQ: flush color waiting for */
252 	struct completion	done;		/* flush completion */
253 };
254 
255 struct wq_device;
256 
257 /*
258  * The externally visible workqueue.  It relays the issued work items to
259  * the appropriate worker_pool through its pool_workqueues.
260  */
261 struct workqueue_struct {
262 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
263 	struct list_head	list;		/* PR: list of all workqueues */
264 
265 	struct mutex		mutex;		/* protects this wq */
266 	int			work_color;	/* WQ: current work color */
267 	int			flush_color;	/* WQ: current flush color */
268 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
269 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
270 	struct list_head	flusher_queue;	/* WQ: flush waiters */
271 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
272 
273 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
274 	struct worker		*rescuer;	/* MD: rescue worker */
275 
276 	int			nr_drainers;	/* WQ: drain in progress */
277 	int			saved_max_active; /* WQ: saved pwq max_active */
278 
279 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
280 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
281 
282 #ifdef CONFIG_SYSFS
283 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
284 #endif
285 #ifdef CONFIG_LOCKDEP
286 	char			*lock_name;
287 	struct lock_class_key	key;
288 	struct lockdep_map	lockdep_map;
289 #endif
290 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
291 
292 	/*
293 	 * Destruction of workqueue_struct is RCU protected to allow walking
294 	 * the workqueues list without grabbing wq_pool_mutex.
295 	 * This is used to dump all workqueues from sysrq.
296 	 */
297 	struct rcu_head		rcu;
298 
299 	/* hot fields used during command issue, aligned to cacheline */
300 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
301 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
302 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
303 };
304 
305 static struct kmem_cache *pwq_cache;
306 
307 static cpumask_var_t *wq_numa_possible_cpumask;
308 					/* possible CPUs of each node */
309 
310 static bool wq_disable_numa;
311 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
312 
313 /* see the comment above the definition of WQ_POWER_EFFICIENT */
314 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
315 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
316 
317 static bool wq_online;			/* can kworkers be created yet? */
318 
319 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
320 
321 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
322 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
323 
324 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
325 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
326 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
327 /* wait for manager to go away */
328 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
329 
330 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
331 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
332 
333 /* PL&A: allowable cpus for unbound wqs and work items */
334 static cpumask_var_t wq_unbound_cpumask;
335 
336 /* CPU where unbound work was last round robin scheduled from this CPU */
337 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
338 
339 /*
340  * Local execution of unbound work items is no longer guaranteed.  The
341  * following always forces round-robin CPU selection on unbound work items
342  * to uncover usages which depend on it.
343  */
344 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
345 static bool wq_debug_force_rr_cpu = true;
346 #else
347 static bool wq_debug_force_rr_cpu = false;
348 #endif
349 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
350 
351 /* the per-cpu worker pools */
352 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
353 
354 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
355 
356 /* PL: hash of all unbound pools keyed by pool->attrs */
357 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
358 
359 /* I: attributes used when instantiating standard unbound pools on demand */
360 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
361 
362 /* I: attributes used when instantiating ordered pools on demand */
363 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
364 
365 struct workqueue_struct *system_wq __read_mostly;
366 EXPORT_SYMBOL(system_wq);
367 struct workqueue_struct *system_highpri_wq __read_mostly;
368 EXPORT_SYMBOL_GPL(system_highpri_wq);
369 struct workqueue_struct *system_long_wq __read_mostly;
370 EXPORT_SYMBOL_GPL(system_long_wq);
371 struct workqueue_struct *system_unbound_wq __read_mostly;
372 EXPORT_SYMBOL_GPL(system_unbound_wq);
373 struct workqueue_struct *system_freezable_wq __read_mostly;
374 EXPORT_SYMBOL_GPL(system_freezable_wq);
375 struct workqueue_struct *system_power_efficient_wq __read_mostly;
376 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
377 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
378 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
379 
380 static int worker_thread(void *__worker);
381 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
382 static void show_pwq(struct pool_workqueue *pwq);
383 static void show_one_worker_pool(struct worker_pool *pool);
384 
385 #define CREATE_TRACE_POINTS
386 #include <trace/events/workqueue.h>
387 
388 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_start);
389 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_end);
390 
391 #define assert_rcu_or_pool_mutex()					\
392 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
393 			 !lockdep_is_held(&wq_pool_mutex),		\
394 			 "RCU or wq_pool_mutex should be held")
395 
396 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
397 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
398 			 !lockdep_is_held(&wq->mutex) &&		\
399 			 !lockdep_is_held(&wq_pool_mutex),		\
400 			 "RCU, wq->mutex or wq_pool_mutex should be held")
401 
402 #define for_each_cpu_worker_pool(pool, cpu)				\
403 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
404 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
405 	     (pool)++)
406 
407 /**
408  * for_each_pool - iterate through all worker_pools in the system
409  * @pool: iteration cursor
410  * @pi: integer used for iteration
411  *
412  * This must be called either with wq_pool_mutex held or RCU read
413  * locked.  If the pool needs to be used beyond the locking in effect, the
414  * caller is responsible for guaranteeing that the pool stays online.
415  *
416  * The if/else clause exists only for the lockdep assertion and can be
417  * ignored.
418  */
419 #define for_each_pool(pool, pi)						\
420 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
421 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
422 		else
423 
424 /**
425  * for_each_pool_worker - iterate through all workers of a worker_pool
426  * @worker: iteration cursor
427  * @pool: worker_pool to iterate workers of
428  *
429  * This must be called with wq_pool_attach_mutex.
430  *
431  * The if/else clause exists only for the lockdep assertion and can be
432  * ignored.
433  */
434 #define for_each_pool_worker(worker, pool)				\
435 	list_for_each_entry((worker), &(pool)->workers, node)		\
436 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
437 		else
438 
439 /**
440  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
441  * @pwq: iteration cursor
442  * @wq: the target workqueue
443  *
444  * This must be called either with wq->mutex held or RCU read locked.
445  * If the pwq needs to be used beyond the locking in effect, the caller is
446  * responsible for guaranteeing that the pwq stays online.
447  *
448  * The if/else clause exists only for the lockdep assertion and can be
449  * ignored.
450  */
451 #define for_each_pwq(pwq, wq)						\
452 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
453 				 lockdep_is_held(&(wq->mutex)))
454 
455 #ifdef CONFIG_DEBUG_OBJECTS_WORK
456 
457 static const struct debug_obj_descr work_debug_descr;
458 
work_debug_hint(void * addr)459 static void *work_debug_hint(void *addr)
460 {
461 	return ((struct work_struct *) addr)->func;
462 }
463 
work_is_static_object(void * addr)464 static bool work_is_static_object(void *addr)
465 {
466 	struct work_struct *work = addr;
467 
468 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
469 }
470 
471 /*
472  * fixup_init is called when:
473  * - an active object is initialized
474  */
work_fixup_init(void * addr,enum debug_obj_state state)475 static bool work_fixup_init(void *addr, enum debug_obj_state state)
476 {
477 	struct work_struct *work = addr;
478 
479 	switch (state) {
480 	case ODEBUG_STATE_ACTIVE:
481 		cancel_work_sync(work);
482 		debug_object_init(work, &work_debug_descr);
483 		return true;
484 	default:
485 		return false;
486 	}
487 }
488 
489 /*
490  * fixup_free is called when:
491  * - an active object is freed
492  */
work_fixup_free(void * addr,enum debug_obj_state state)493 static bool work_fixup_free(void *addr, enum debug_obj_state state)
494 {
495 	struct work_struct *work = addr;
496 
497 	switch (state) {
498 	case ODEBUG_STATE_ACTIVE:
499 		cancel_work_sync(work);
500 		debug_object_free(work, &work_debug_descr);
501 		return true;
502 	default:
503 		return false;
504 	}
505 }
506 
507 static const struct debug_obj_descr work_debug_descr = {
508 	.name		= "work_struct",
509 	.debug_hint	= work_debug_hint,
510 	.is_static_object = work_is_static_object,
511 	.fixup_init	= work_fixup_init,
512 	.fixup_free	= work_fixup_free,
513 };
514 
debug_work_activate(struct work_struct * work)515 static inline void debug_work_activate(struct work_struct *work)
516 {
517 	debug_object_activate(work, &work_debug_descr);
518 }
519 
debug_work_deactivate(struct work_struct * work)520 static inline void debug_work_deactivate(struct work_struct *work)
521 {
522 	debug_object_deactivate(work, &work_debug_descr);
523 }
524 
__init_work(struct work_struct * work,int onstack)525 void __init_work(struct work_struct *work, int onstack)
526 {
527 	if (onstack)
528 		debug_object_init_on_stack(work, &work_debug_descr);
529 	else
530 		debug_object_init(work, &work_debug_descr);
531 }
532 EXPORT_SYMBOL_GPL(__init_work);
533 
destroy_work_on_stack(struct work_struct * work)534 void destroy_work_on_stack(struct work_struct *work)
535 {
536 	debug_object_free(work, &work_debug_descr);
537 }
538 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
539 
destroy_delayed_work_on_stack(struct delayed_work * work)540 void destroy_delayed_work_on_stack(struct delayed_work *work)
541 {
542 	destroy_timer_on_stack(&work->timer);
543 	debug_object_free(&work->work, &work_debug_descr);
544 }
545 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
546 
547 #else
debug_work_activate(struct work_struct * work)548 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)549 static inline void debug_work_deactivate(struct work_struct *work) { }
550 #endif
551 
552 /**
553  * worker_pool_assign_id - allocate ID and assign it to @pool
554  * @pool: the pool pointer of interest
555  *
556  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
557  * successfully, -errno on failure.
558  */
worker_pool_assign_id(struct worker_pool * pool)559 static int worker_pool_assign_id(struct worker_pool *pool)
560 {
561 	int ret;
562 
563 	lockdep_assert_held(&wq_pool_mutex);
564 
565 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
566 			GFP_KERNEL);
567 	if (ret >= 0) {
568 		pool->id = ret;
569 		return 0;
570 	}
571 	return ret;
572 }
573 
574 /**
575  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
576  * @wq: the target workqueue
577  * @node: the node ID
578  *
579  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
580  * read locked.
581  * If the pwq needs to be used beyond the locking in effect, the caller is
582  * responsible for guaranteeing that the pwq stays online.
583  *
584  * Return: The unbound pool_workqueue for @node.
585  */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)586 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
587 						  int node)
588 {
589 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
590 
591 	/*
592 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
593 	 * delayed item is pending.  The plan is to keep CPU -> NODE
594 	 * mapping valid and stable across CPU on/offlines.  Once that
595 	 * happens, this workaround can be removed.
596 	 */
597 	if (unlikely(node == NUMA_NO_NODE))
598 		return wq->dfl_pwq;
599 
600 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
601 }
602 
work_color_to_flags(int color)603 static unsigned int work_color_to_flags(int color)
604 {
605 	return color << WORK_STRUCT_COLOR_SHIFT;
606 }
607 
get_work_color(unsigned long work_data)608 static int get_work_color(unsigned long work_data)
609 {
610 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
611 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
612 }
613 
work_next_color(int color)614 static int work_next_color(int color)
615 {
616 	return (color + 1) % WORK_NR_COLORS;
617 }
618 
619 /*
620  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
621  * contain the pointer to the queued pwq.  Once execution starts, the flag
622  * is cleared and the high bits contain OFFQ flags and pool ID.
623  *
624  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
625  * and clear_work_data() can be used to set the pwq, pool or clear
626  * work->data.  These functions should only be called while the work is
627  * owned - ie. while the PENDING bit is set.
628  *
629  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
630  * corresponding to a work.  Pool is available once the work has been
631  * queued anywhere after initialization until it is sync canceled.  pwq is
632  * available only while the work item is queued.
633  *
634  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
635  * canceled.  While being canceled, a work item may have its PENDING set
636  * but stay off timer and worklist for arbitrarily long and nobody should
637  * try to steal the PENDING bit.
638  */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)639 static inline void set_work_data(struct work_struct *work, unsigned long data,
640 				 unsigned long flags)
641 {
642 	WARN_ON_ONCE(!work_pending(work));
643 	atomic_long_set(&work->data, data | flags | work_static(work));
644 }
645 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)646 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
647 			 unsigned long extra_flags)
648 {
649 	set_work_data(work, (unsigned long)pwq,
650 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
651 }
652 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)653 static void set_work_pool_and_keep_pending(struct work_struct *work,
654 					   int pool_id)
655 {
656 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
657 		      WORK_STRUCT_PENDING);
658 }
659 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)660 static void set_work_pool_and_clear_pending(struct work_struct *work,
661 					    int pool_id)
662 {
663 	/*
664 	 * The following wmb is paired with the implied mb in
665 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
666 	 * here are visible to and precede any updates by the next PENDING
667 	 * owner.
668 	 */
669 	smp_wmb();
670 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
671 	/*
672 	 * The following mb guarantees that previous clear of a PENDING bit
673 	 * will not be reordered with any speculative LOADS or STORES from
674 	 * work->current_func, which is executed afterwards.  This possible
675 	 * reordering can lead to a missed execution on attempt to queue
676 	 * the same @work.  E.g. consider this case:
677 	 *
678 	 *   CPU#0                         CPU#1
679 	 *   ----------------------------  --------------------------------
680 	 *
681 	 * 1  STORE event_indicated
682 	 * 2  queue_work_on() {
683 	 * 3    test_and_set_bit(PENDING)
684 	 * 4 }                             set_..._and_clear_pending() {
685 	 * 5                                 set_work_data() # clear bit
686 	 * 6                                 smp_mb()
687 	 * 7                               work->current_func() {
688 	 * 8				      LOAD event_indicated
689 	 *				   }
690 	 *
691 	 * Without an explicit full barrier speculative LOAD on line 8 can
692 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
693 	 * CPU#0 observes the PENDING bit is still set and new execution of
694 	 * a @work is not queued in a hope, that CPU#1 will eventually
695 	 * finish the queued @work.  Meanwhile CPU#1 does not see
696 	 * event_indicated is set, because speculative LOAD was executed
697 	 * before actual STORE.
698 	 */
699 	smp_mb();
700 }
701 
clear_work_data(struct work_struct * work)702 static void clear_work_data(struct work_struct *work)
703 {
704 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
705 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
706 }
707 
work_struct_pwq(unsigned long data)708 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
709 {
710 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
711 }
712 
get_work_pwq(struct work_struct * work)713 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
714 {
715 	unsigned long data = atomic_long_read(&work->data);
716 
717 	if (data & WORK_STRUCT_PWQ)
718 		return work_struct_pwq(data);
719 	else
720 		return NULL;
721 }
722 
723 /**
724  * get_work_pool - return the worker_pool a given work was associated with
725  * @work: the work item of interest
726  *
727  * Pools are created and destroyed under wq_pool_mutex, and allows read
728  * access under RCU read lock.  As such, this function should be
729  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
730  *
731  * All fields of the returned pool are accessible as long as the above
732  * mentioned locking is in effect.  If the returned pool needs to be used
733  * beyond the critical section, the caller is responsible for ensuring the
734  * returned pool is and stays online.
735  *
736  * Return: The worker_pool @work was last associated with.  %NULL if none.
737  */
get_work_pool(struct work_struct * work)738 static struct worker_pool *get_work_pool(struct work_struct *work)
739 {
740 	unsigned long data = atomic_long_read(&work->data);
741 	int pool_id;
742 
743 	assert_rcu_or_pool_mutex();
744 
745 	if (data & WORK_STRUCT_PWQ)
746 		return work_struct_pwq(data)->pool;
747 
748 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
749 	if (pool_id == WORK_OFFQ_POOL_NONE)
750 		return NULL;
751 
752 	return idr_find(&worker_pool_idr, pool_id);
753 }
754 
755 /**
756  * get_work_pool_id - return the worker pool ID a given work is associated with
757  * @work: the work item of interest
758  *
759  * Return: The worker_pool ID @work was last associated with.
760  * %WORK_OFFQ_POOL_NONE if none.
761  */
get_work_pool_id(struct work_struct * work)762 static int get_work_pool_id(struct work_struct *work)
763 {
764 	unsigned long data = atomic_long_read(&work->data);
765 
766 	if (data & WORK_STRUCT_PWQ)
767 		return work_struct_pwq(data)->pool->id;
768 
769 	return data >> WORK_OFFQ_POOL_SHIFT;
770 }
771 
mark_work_canceling(struct work_struct * work)772 static void mark_work_canceling(struct work_struct *work)
773 {
774 	unsigned long pool_id = get_work_pool_id(work);
775 
776 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
777 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
778 }
779 
work_is_canceling(struct work_struct * work)780 static bool work_is_canceling(struct work_struct *work)
781 {
782 	unsigned long data = atomic_long_read(&work->data);
783 
784 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
785 }
786 
787 /*
788  * Policy functions.  These define the policies on how the global worker
789  * pools are managed.  Unless noted otherwise, these functions assume that
790  * they're being called with pool->lock held.
791  */
792 
__need_more_worker(struct worker_pool * pool)793 static bool __need_more_worker(struct worker_pool *pool)
794 {
795 	return !pool->nr_running;
796 }
797 
798 /*
799  * Need to wake up a worker?  Called from anything but currently
800  * running workers.
801  *
802  * Note that, because unbound workers never contribute to nr_running, this
803  * function will always return %true for unbound pools as long as the
804  * worklist isn't empty.
805  */
need_more_worker(struct worker_pool * pool)806 static bool need_more_worker(struct worker_pool *pool)
807 {
808 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
809 }
810 
811 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)812 static bool may_start_working(struct worker_pool *pool)
813 {
814 	return pool->nr_idle;
815 }
816 
817 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)818 static bool keep_working(struct worker_pool *pool)
819 {
820 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
821 }
822 
823 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)824 static bool need_to_create_worker(struct worker_pool *pool)
825 {
826 	return need_more_worker(pool) && !may_start_working(pool);
827 }
828 
829 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)830 static bool too_many_workers(struct worker_pool *pool)
831 {
832 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
833 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
834 	int nr_busy = pool->nr_workers - nr_idle;
835 
836 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
837 }
838 
839 /*
840  * Wake up functions.
841  */
842 
843 /* Return the first idle worker.  Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)844 static struct worker *first_idle_worker(struct worker_pool *pool)
845 {
846 	if (unlikely(list_empty(&pool->idle_list)))
847 		return NULL;
848 
849 	return list_first_entry(&pool->idle_list, struct worker, entry);
850 }
851 
852 /**
853  * wake_up_worker - wake up an idle worker
854  * @pool: worker pool to wake worker from
855  *
856  * Wake up the first idle worker of @pool.
857  *
858  * CONTEXT:
859  * raw_spin_lock_irq(pool->lock).
860  */
wake_up_worker(struct worker_pool * pool)861 static void wake_up_worker(struct worker_pool *pool)
862 {
863 	struct worker *worker = first_idle_worker(pool);
864 
865 	if (likely(worker))
866 		wake_up_process(worker->task);
867 }
868 
869 /**
870  * wq_worker_running - a worker is running again
871  * @task: task waking up
872  *
873  * This function is called when a worker returns from schedule()
874  */
wq_worker_running(struct task_struct * task)875 void wq_worker_running(struct task_struct *task)
876 {
877 	struct worker *worker = kthread_data(task);
878 
879 	if (!worker->sleeping)
880 		return;
881 
882 	/*
883 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
884 	 * and the nr_running increment below, we may ruin the nr_running reset
885 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
886 	 * pool. Protect against such race.
887 	 */
888 	preempt_disable();
889 	if (!(worker->flags & WORKER_NOT_RUNNING))
890 		worker->pool->nr_running++;
891 	preempt_enable();
892 	worker->sleeping = 0;
893 }
894 
895 /**
896  * wq_worker_sleeping - a worker is going to sleep
897  * @task: task going to sleep
898  *
899  * This function is called from schedule() when a busy worker is
900  * going to sleep.
901  */
wq_worker_sleeping(struct task_struct * task)902 void wq_worker_sleeping(struct task_struct *task)
903 {
904 	struct worker *worker = kthread_data(task);
905 	struct worker_pool *pool;
906 
907 	/*
908 	 * Rescuers, which may not have all the fields set up like normal
909 	 * workers, also reach here, let's not access anything before
910 	 * checking NOT_RUNNING.
911 	 */
912 	if (worker->flags & WORKER_NOT_RUNNING)
913 		return;
914 
915 	pool = worker->pool;
916 
917 	/* Return if preempted before wq_worker_running() was reached */
918 	if (worker->sleeping)
919 		return;
920 
921 	worker->sleeping = 1;
922 	raw_spin_lock_irq(&pool->lock);
923 
924 	/*
925 	 * Recheck in case unbind_workers() preempted us. We don't
926 	 * want to decrement nr_running after the worker is unbound
927 	 * and nr_running has been reset.
928 	 */
929 	if (worker->flags & WORKER_NOT_RUNNING) {
930 		raw_spin_unlock_irq(&pool->lock);
931 		return;
932 	}
933 
934 	pool->nr_running--;
935 	if (need_more_worker(pool))
936 		wake_up_worker(pool);
937 	raw_spin_unlock_irq(&pool->lock);
938 }
939 
940 /**
941  * wq_worker_last_func - retrieve worker's last work function
942  * @task: Task to retrieve last work function of.
943  *
944  * Determine the last function a worker executed. This is called from
945  * the scheduler to get a worker's last known identity.
946  *
947  * CONTEXT:
948  * raw_spin_lock_irq(rq->lock)
949  *
950  * This function is called during schedule() when a kworker is going
951  * to sleep. It's used by psi to identify aggregation workers during
952  * dequeuing, to allow periodic aggregation to shut-off when that
953  * worker is the last task in the system or cgroup to go to sleep.
954  *
955  * As this function doesn't involve any workqueue-related locking, it
956  * only returns stable values when called from inside the scheduler's
957  * queuing and dequeuing paths, when @task, which must be a kworker,
958  * is guaranteed to not be processing any works.
959  *
960  * Return:
961  * The last work function %current executed as a worker, NULL if it
962  * hasn't executed any work yet.
963  */
wq_worker_last_func(struct task_struct * task)964 work_func_t wq_worker_last_func(struct task_struct *task)
965 {
966 	struct worker *worker = kthread_data(task);
967 
968 	return worker->last_func;
969 }
970 
971 /**
972  * worker_set_flags - set worker flags and adjust nr_running accordingly
973  * @worker: self
974  * @flags: flags to set
975  *
976  * Set @flags in @worker->flags and adjust nr_running accordingly.
977  *
978  * CONTEXT:
979  * raw_spin_lock_irq(pool->lock)
980  */
worker_set_flags(struct worker * worker,unsigned int flags)981 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
982 {
983 	struct worker_pool *pool = worker->pool;
984 
985 	WARN_ON_ONCE(worker->task != current);
986 
987 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
988 	if ((flags & WORKER_NOT_RUNNING) &&
989 	    !(worker->flags & WORKER_NOT_RUNNING)) {
990 		pool->nr_running--;
991 	}
992 
993 	worker->flags |= flags;
994 }
995 
996 /**
997  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
998  * @worker: self
999  * @flags: flags to clear
1000  *
1001  * Clear @flags in @worker->flags and adjust nr_running accordingly.
1002  *
1003  * CONTEXT:
1004  * raw_spin_lock_irq(pool->lock)
1005  */
worker_clr_flags(struct worker * worker,unsigned int flags)1006 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1007 {
1008 	struct worker_pool *pool = worker->pool;
1009 	unsigned int oflags = worker->flags;
1010 
1011 	WARN_ON_ONCE(worker->task != current);
1012 
1013 	worker->flags &= ~flags;
1014 
1015 	/*
1016 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1017 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1018 	 * of multiple flags, not a single flag.
1019 	 */
1020 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1021 		if (!(worker->flags & WORKER_NOT_RUNNING))
1022 			pool->nr_running++;
1023 }
1024 
1025 /**
1026  * find_worker_executing_work - find worker which is executing a work
1027  * @pool: pool of interest
1028  * @work: work to find worker for
1029  *
1030  * Find a worker which is executing @work on @pool by searching
1031  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1032  * to match, its current execution should match the address of @work and
1033  * its work function.  This is to avoid unwanted dependency between
1034  * unrelated work executions through a work item being recycled while still
1035  * being executed.
1036  *
1037  * This is a bit tricky.  A work item may be freed once its execution
1038  * starts and nothing prevents the freed area from being recycled for
1039  * another work item.  If the same work item address ends up being reused
1040  * before the original execution finishes, workqueue will identify the
1041  * recycled work item as currently executing and make it wait until the
1042  * current execution finishes, introducing an unwanted dependency.
1043  *
1044  * This function checks the work item address and work function to avoid
1045  * false positives.  Note that this isn't complete as one may construct a
1046  * work function which can introduce dependency onto itself through a
1047  * recycled work item.  Well, if somebody wants to shoot oneself in the
1048  * foot that badly, there's only so much we can do, and if such deadlock
1049  * actually occurs, it should be easy to locate the culprit work function.
1050  *
1051  * CONTEXT:
1052  * raw_spin_lock_irq(pool->lock).
1053  *
1054  * Return:
1055  * Pointer to worker which is executing @work if found, %NULL
1056  * otherwise.
1057  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1058 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1059 						 struct work_struct *work)
1060 {
1061 	struct worker *worker;
1062 
1063 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1064 			       (unsigned long)work)
1065 		if (worker->current_work == work &&
1066 		    worker->current_func == work->func)
1067 			return worker;
1068 
1069 	return NULL;
1070 }
1071 
1072 /**
1073  * move_linked_works - move linked works to a list
1074  * @work: start of series of works to be scheduled
1075  * @head: target list to append @work to
1076  * @nextp: out parameter for nested worklist walking
1077  *
1078  * Schedule linked works starting from @work to @head.  Work series to
1079  * be scheduled starts at @work and includes any consecutive work with
1080  * WORK_STRUCT_LINKED set in its predecessor.
1081  *
1082  * If @nextp is not NULL, it's updated to point to the next work of
1083  * the last scheduled work.  This allows move_linked_works() to be
1084  * nested inside outer list_for_each_entry_safe().
1085  *
1086  * CONTEXT:
1087  * raw_spin_lock_irq(pool->lock).
1088  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1089 static void move_linked_works(struct work_struct *work, struct list_head *head,
1090 			      struct work_struct **nextp)
1091 {
1092 	struct work_struct *n;
1093 
1094 	/*
1095 	 * Linked worklist will always end before the end of the list,
1096 	 * use NULL for list head.
1097 	 */
1098 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1099 		list_move_tail(&work->entry, head);
1100 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1101 			break;
1102 	}
1103 
1104 	/*
1105 	 * If we're already inside safe list traversal and have moved
1106 	 * multiple works to the scheduled queue, the next position
1107 	 * needs to be updated.
1108 	 */
1109 	if (nextp)
1110 		*nextp = n;
1111 }
1112 
1113 /**
1114  * get_pwq - get an extra reference on the specified pool_workqueue
1115  * @pwq: pool_workqueue to get
1116  *
1117  * Obtain an extra reference on @pwq.  The caller should guarantee that
1118  * @pwq has positive refcnt and be holding the matching pool->lock.
1119  */
get_pwq(struct pool_workqueue * pwq)1120 static void get_pwq(struct pool_workqueue *pwq)
1121 {
1122 	lockdep_assert_held(&pwq->pool->lock);
1123 	WARN_ON_ONCE(pwq->refcnt <= 0);
1124 	pwq->refcnt++;
1125 }
1126 
1127 /**
1128  * put_pwq - put a pool_workqueue reference
1129  * @pwq: pool_workqueue to put
1130  *
1131  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1132  * destruction.  The caller should be holding the matching pool->lock.
1133  */
put_pwq(struct pool_workqueue * pwq)1134 static void put_pwq(struct pool_workqueue *pwq)
1135 {
1136 	lockdep_assert_held(&pwq->pool->lock);
1137 	if (likely(--pwq->refcnt))
1138 		return;
1139 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1140 		return;
1141 	/*
1142 	 * @pwq can't be released under pool->lock, bounce to
1143 	 * pwq_unbound_release_workfn().  This never recurses on the same
1144 	 * pool->lock as this path is taken only for unbound workqueues and
1145 	 * the release work item is scheduled on a per-cpu workqueue.  To
1146 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1147 	 * subclass of 1 in get_unbound_pool().
1148 	 */
1149 	schedule_work(&pwq->unbound_release_work);
1150 }
1151 
1152 /**
1153  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1154  * @pwq: pool_workqueue to put (can be %NULL)
1155  *
1156  * put_pwq() with locking.  This function also allows %NULL @pwq.
1157  */
put_pwq_unlocked(struct pool_workqueue * pwq)1158 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1159 {
1160 	if (pwq) {
1161 		/*
1162 		 * As both pwqs and pools are RCU protected, the
1163 		 * following lock operations are safe.
1164 		 */
1165 		raw_spin_lock_irq(&pwq->pool->lock);
1166 		put_pwq(pwq);
1167 		raw_spin_unlock_irq(&pwq->pool->lock);
1168 	}
1169 }
1170 
pwq_activate_inactive_work(struct work_struct * work)1171 static void pwq_activate_inactive_work(struct work_struct *work)
1172 {
1173 	struct pool_workqueue *pwq = get_work_pwq(work);
1174 
1175 	trace_workqueue_activate_work(work);
1176 	if (list_empty(&pwq->pool->worklist))
1177 		pwq->pool->watchdog_ts = jiffies;
1178 	move_linked_works(work, &pwq->pool->worklist, NULL);
1179 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1180 	pwq->nr_active++;
1181 }
1182 
pwq_activate_first_inactive(struct pool_workqueue * pwq)1183 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1184 {
1185 	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1186 						    struct work_struct, entry);
1187 
1188 	pwq_activate_inactive_work(work);
1189 }
1190 
1191 /**
1192  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1193  * @pwq: pwq of interest
1194  * @work_data: work_data of work which left the queue
1195  *
1196  * A work either has completed or is removed from pending queue,
1197  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1198  *
1199  * CONTEXT:
1200  * raw_spin_lock_irq(pool->lock).
1201  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1202 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1203 {
1204 	int color = get_work_color(work_data);
1205 
1206 	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1207 		pwq->nr_active--;
1208 		if (!list_empty(&pwq->inactive_works)) {
1209 			/* one down, submit an inactive one */
1210 			if (pwq->nr_active < pwq->max_active)
1211 				pwq_activate_first_inactive(pwq);
1212 		}
1213 	}
1214 
1215 	pwq->nr_in_flight[color]--;
1216 
1217 	/* is flush in progress and are we at the flushing tip? */
1218 	if (likely(pwq->flush_color != color))
1219 		goto out_put;
1220 
1221 	/* are there still in-flight works? */
1222 	if (pwq->nr_in_flight[color])
1223 		goto out_put;
1224 
1225 	/* this pwq is done, clear flush_color */
1226 	pwq->flush_color = -1;
1227 
1228 	/*
1229 	 * If this was the last pwq, wake up the first flusher.  It
1230 	 * will handle the rest.
1231 	 */
1232 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1233 		complete(&pwq->wq->first_flusher->done);
1234 out_put:
1235 	put_pwq(pwq);
1236 }
1237 
1238 /**
1239  * try_to_grab_pending - steal work item from worklist and disable irq
1240  * @work: work item to steal
1241  * @is_dwork: @work is a delayed_work
1242  * @flags: place to store irq state
1243  *
1244  * Try to grab PENDING bit of @work.  This function can handle @work in any
1245  * stable state - idle, on timer or on worklist.
1246  *
1247  * Return:
1248  *
1249  *  ========	================================================================
1250  *  1		if @work was pending and we successfully stole PENDING
1251  *  0		if @work was idle and we claimed PENDING
1252  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1253  *  -ENOENT	if someone else is canceling @work, this state may persist
1254  *		for arbitrarily long
1255  *  ========	================================================================
1256  *
1257  * Note:
1258  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1259  * interrupted while holding PENDING and @work off queue, irq must be
1260  * disabled on entry.  This, combined with delayed_work->timer being
1261  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1262  *
1263  * On successful return, >= 0, irq is disabled and the caller is
1264  * responsible for releasing it using local_irq_restore(*@flags).
1265  *
1266  * This function is safe to call from any context including IRQ handler.
1267  */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1268 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1269 			       unsigned long *flags)
1270 {
1271 	struct worker_pool *pool;
1272 	struct pool_workqueue *pwq;
1273 
1274 	local_irq_save(*flags);
1275 
1276 	/* try to steal the timer if it exists */
1277 	if (is_dwork) {
1278 		struct delayed_work *dwork = to_delayed_work(work);
1279 
1280 		/*
1281 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1282 		 * guaranteed that the timer is not queued anywhere and not
1283 		 * running on the local CPU.
1284 		 */
1285 		if (likely(del_timer(&dwork->timer)))
1286 			return 1;
1287 	}
1288 
1289 	/* try to claim PENDING the normal way */
1290 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1291 		return 0;
1292 
1293 	rcu_read_lock();
1294 	/*
1295 	 * The queueing is in progress, or it is already queued. Try to
1296 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1297 	 */
1298 	pool = get_work_pool(work);
1299 	if (!pool)
1300 		goto fail;
1301 
1302 	raw_spin_lock(&pool->lock);
1303 	/*
1304 	 * work->data is guaranteed to point to pwq only while the work
1305 	 * item is queued on pwq->wq, and both updating work->data to point
1306 	 * to pwq on queueing and to pool on dequeueing are done under
1307 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1308 	 * points to pwq which is associated with a locked pool, the work
1309 	 * item is currently queued on that pool.
1310 	 */
1311 	pwq = get_work_pwq(work);
1312 	if (pwq && pwq->pool == pool) {
1313 		debug_work_deactivate(work);
1314 
1315 		/*
1316 		 * A cancelable inactive work item must be in the
1317 		 * pwq->inactive_works since a queued barrier can't be
1318 		 * canceled (see the comments in insert_wq_barrier()).
1319 		 *
1320 		 * An inactive work item cannot be grabbed directly because
1321 		 * it might have linked barrier work items which, if left
1322 		 * on the inactive_works list, will confuse pwq->nr_active
1323 		 * management later on and cause stall.  Make sure the work
1324 		 * item is activated before grabbing.
1325 		 */
1326 		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1327 			pwq_activate_inactive_work(work);
1328 
1329 		list_del_init(&work->entry);
1330 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1331 
1332 		/* work->data points to pwq iff queued, point to pool */
1333 		set_work_pool_and_keep_pending(work, pool->id);
1334 
1335 		raw_spin_unlock(&pool->lock);
1336 		rcu_read_unlock();
1337 		return 1;
1338 	}
1339 	raw_spin_unlock(&pool->lock);
1340 fail:
1341 	rcu_read_unlock();
1342 	local_irq_restore(*flags);
1343 	if (work_is_canceling(work))
1344 		return -ENOENT;
1345 	cpu_relax();
1346 	return -EAGAIN;
1347 }
1348 
1349 /**
1350  * insert_work - insert a work into a pool
1351  * @pwq: pwq @work belongs to
1352  * @work: work to insert
1353  * @head: insertion point
1354  * @extra_flags: extra WORK_STRUCT_* flags to set
1355  *
1356  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1357  * work_struct flags.
1358  *
1359  * CONTEXT:
1360  * raw_spin_lock_irq(pool->lock).
1361  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1362 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1363 			struct list_head *head, unsigned int extra_flags)
1364 {
1365 	struct worker_pool *pool = pwq->pool;
1366 
1367 	/* record the work call stack in order to print it in KASAN reports */
1368 	kasan_record_aux_stack_noalloc(work);
1369 
1370 	/* we own @work, set data and link */
1371 	set_work_pwq(work, pwq, extra_flags);
1372 	list_add_tail(&work->entry, head);
1373 	get_pwq(pwq);
1374 
1375 	if (__need_more_worker(pool))
1376 		wake_up_worker(pool);
1377 }
1378 
1379 /*
1380  * Test whether @work is being queued from another work executing on the
1381  * same workqueue.
1382  */
is_chained_work(struct workqueue_struct * wq)1383 static bool is_chained_work(struct workqueue_struct *wq)
1384 {
1385 	struct worker *worker;
1386 
1387 	worker = current_wq_worker();
1388 	/*
1389 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1390 	 * I'm @worker, it's safe to dereference it without locking.
1391 	 */
1392 	return worker && worker->current_pwq->wq == wq;
1393 }
1394 
1395 /*
1396  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1397  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1398  * avoid perturbing sensitive tasks.
1399  */
wq_select_unbound_cpu(int cpu)1400 static int wq_select_unbound_cpu(int cpu)
1401 {
1402 	static bool printed_dbg_warning;
1403 	int new_cpu;
1404 
1405 	if (likely(!wq_debug_force_rr_cpu)) {
1406 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1407 			return cpu;
1408 	} else if (!printed_dbg_warning) {
1409 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1410 		printed_dbg_warning = true;
1411 	}
1412 
1413 	if (cpumask_empty(wq_unbound_cpumask))
1414 		return cpu;
1415 
1416 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1417 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1418 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1419 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1420 		if (unlikely(new_cpu >= nr_cpu_ids))
1421 			return cpu;
1422 	}
1423 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1424 
1425 	return new_cpu;
1426 }
1427 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1428 static void __queue_work(int cpu, struct workqueue_struct *wq,
1429 			 struct work_struct *work)
1430 {
1431 	struct pool_workqueue *pwq;
1432 	struct worker_pool *last_pool;
1433 	struct list_head *worklist;
1434 	unsigned int work_flags;
1435 	unsigned int req_cpu = cpu;
1436 
1437 	/*
1438 	 * While a work item is PENDING && off queue, a task trying to
1439 	 * steal the PENDING will busy-loop waiting for it to either get
1440 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1441 	 * happen with IRQ disabled.
1442 	 */
1443 	lockdep_assert_irqs_disabled();
1444 
1445 
1446 	/* if draining, only works from the same workqueue are allowed */
1447 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1448 	    WARN_ON_ONCE(!is_chained_work(wq)))
1449 		return;
1450 	rcu_read_lock();
1451 retry:
1452 	/* pwq which will be used unless @work is executing elsewhere */
1453 	if (wq->flags & WQ_UNBOUND) {
1454 		if (req_cpu == WORK_CPU_UNBOUND)
1455 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1456 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1457 	} else {
1458 		if (req_cpu == WORK_CPU_UNBOUND)
1459 			cpu = raw_smp_processor_id();
1460 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1461 	}
1462 
1463 	/*
1464 	 * If @work was previously on a different pool, it might still be
1465 	 * running there, in which case the work needs to be queued on that
1466 	 * pool to guarantee non-reentrancy.
1467 	 */
1468 	last_pool = get_work_pool(work);
1469 	if (last_pool && last_pool != pwq->pool) {
1470 		struct worker *worker;
1471 
1472 		raw_spin_lock(&last_pool->lock);
1473 
1474 		worker = find_worker_executing_work(last_pool, work);
1475 
1476 		if (worker && worker->current_pwq->wq == wq) {
1477 			pwq = worker->current_pwq;
1478 		} else {
1479 			/* meh... not running there, queue here */
1480 			raw_spin_unlock(&last_pool->lock);
1481 			raw_spin_lock(&pwq->pool->lock);
1482 		}
1483 	} else {
1484 		raw_spin_lock(&pwq->pool->lock);
1485 	}
1486 
1487 	/*
1488 	 * pwq is determined and locked.  For unbound pools, we could have
1489 	 * raced with pwq release and it could already be dead.  If its
1490 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1491 	 * without another pwq replacing it in the numa_pwq_tbl or while
1492 	 * work items are executing on it, so the retrying is guaranteed to
1493 	 * make forward-progress.
1494 	 */
1495 	if (unlikely(!pwq->refcnt)) {
1496 		if (wq->flags & WQ_UNBOUND) {
1497 			raw_spin_unlock(&pwq->pool->lock);
1498 			cpu_relax();
1499 			goto retry;
1500 		}
1501 		/* oops */
1502 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1503 			  wq->name, cpu);
1504 	}
1505 
1506 	/* pwq determined, queue */
1507 	trace_workqueue_queue_work(req_cpu, pwq, work);
1508 
1509 	if (WARN_ON(!list_empty(&work->entry)))
1510 		goto out;
1511 
1512 	pwq->nr_in_flight[pwq->work_color]++;
1513 	work_flags = work_color_to_flags(pwq->work_color);
1514 
1515 	if (likely(pwq->nr_active < pwq->max_active)) {
1516 		trace_workqueue_activate_work(work);
1517 		pwq->nr_active++;
1518 		worklist = &pwq->pool->worklist;
1519 		if (list_empty(worklist))
1520 			pwq->pool->watchdog_ts = jiffies;
1521 	} else {
1522 		work_flags |= WORK_STRUCT_INACTIVE;
1523 		worklist = &pwq->inactive_works;
1524 	}
1525 
1526 	debug_work_activate(work);
1527 	insert_work(pwq, work, worklist, work_flags);
1528 
1529 out:
1530 	raw_spin_unlock(&pwq->pool->lock);
1531 	rcu_read_unlock();
1532 }
1533 
1534 /**
1535  * queue_work_on - queue work on specific cpu
1536  * @cpu: CPU number to execute work on
1537  * @wq: workqueue to use
1538  * @work: work to queue
1539  *
1540  * We queue the work to a specific CPU, the caller must ensure it
1541  * can't go away.  Callers that fail to ensure that the specified
1542  * CPU cannot go away will execute on a randomly chosen CPU.
1543  *
1544  * Return: %false if @work was already on a queue, %true otherwise.
1545  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1546 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1547 		   struct work_struct *work)
1548 {
1549 	bool ret = false;
1550 	unsigned long flags;
1551 
1552 	local_irq_save(flags);
1553 
1554 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1555 		__queue_work(cpu, wq, work);
1556 		ret = true;
1557 	}
1558 
1559 	local_irq_restore(flags);
1560 	return ret;
1561 }
1562 EXPORT_SYMBOL(queue_work_on);
1563 
1564 /**
1565  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1566  * @node: NUMA node ID that we want to select a CPU from
1567  *
1568  * This function will attempt to find a "random" cpu available on a given
1569  * node. If there are no CPUs available on the given node it will return
1570  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1571  * available CPU if we need to schedule this work.
1572  */
workqueue_select_cpu_near(int node)1573 static int workqueue_select_cpu_near(int node)
1574 {
1575 	int cpu;
1576 
1577 	/* No point in doing this if NUMA isn't enabled for workqueues */
1578 	if (!wq_numa_enabled)
1579 		return WORK_CPU_UNBOUND;
1580 
1581 	/* Delay binding to CPU if node is not valid or online */
1582 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1583 		return WORK_CPU_UNBOUND;
1584 
1585 	/* Use local node/cpu if we are already there */
1586 	cpu = raw_smp_processor_id();
1587 	if (node == cpu_to_node(cpu))
1588 		return cpu;
1589 
1590 	/* Use "random" otherwise know as "first" online CPU of node */
1591 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1592 
1593 	/* If CPU is valid return that, otherwise just defer */
1594 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1595 }
1596 
1597 /**
1598  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1599  * @node: NUMA node that we are targeting the work for
1600  * @wq: workqueue to use
1601  * @work: work to queue
1602  *
1603  * We queue the work to a "random" CPU within a given NUMA node. The basic
1604  * idea here is to provide a way to somehow associate work with a given
1605  * NUMA node.
1606  *
1607  * This function will only make a best effort attempt at getting this onto
1608  * the right NUMA node. If no node is requested or the requested node is
1609  * offline then we just fall back to standard queue_work behavior.
1610  *
1611  * Currently the "random" CPU ends up being the first available CPU in the
1612  * intersection of cpu_online_mask and the cpumask of the node, unless we
1613  * are running on the node. In that case we just use the current CPU.
1614  *
1615  * Return: %false if @work was already on a queue, %true otherwise.
1616  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1617 bool queue_work_node(int node, struct workqueue_struct *wq,
1618 		     struct work_struct *work)
1619 {
1620 	unsigned long flags;
1621 	bool ret = false;
1622 
1623 	/*
1624 	 * This current implementation is specific to unbound workqueues.
1625 	 * Specifically we only return the first available CPU for a given
1626 	 * node instead of cycling through individual CPUs within the node.
1627 	 *
1628 	 * If this is used with a per-cpu workqueue then the logic in
1629 	 * workqueue_select_cpu_near would need to be updated to allow for
1630 	 * some round robin type logic.
1631 	 */
1632 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1633 
1634 	local_irq_save(flags);
1635 
1636 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1637 		int cpu = workqueue_select_cpu_near(node);
1638 
1639 		__queue_work(cpu, wq, work);
1640 		ret = true;
1641 	}
1642 
1643 	local_irq_restore(flags);
1644 	return ret;
1645 }
1646 EXPORT_SYMBOL_GPL(queue_work_node);
1647 
delayed_work_timer_fn(struct timer_list * t)1648 void delayed_work_timer_fn(struct timer_list *t)
1649 {
1650 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1651 
1652 	/* should have been called from irqsafe timer with irq already off */
1653 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1654 }
1655 EXPORT_SYMBOL(delayed_work_timer_fn);
1656 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1657 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1658 				struct delayed_work *dwork, unsigned long delay)
1659 {
1660 	struct timer_list *timer = &dwork->timer;
1661 	struct work_struct *work = &dwork->work;
1662 
1663 	WARN_ON_ONCE(!wq);
1664 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1665 	WARN_ON_ONCE(timer_pending(timer));
1666 	WARN_ON_ONCE(!list_empty(&work->entry));
1667 
1668 	/*
1669 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1670 	 * both optimization and correctness.  The earliest @timer can
1671 	 * expire is on the closest next tick and delayed_work users depend
1672 	 * on that there's no such delay when @delay is 0.
1673 	 */
1674 	if (!delay) {
1675 		__queue_work(cpu, wq, &dwork->work);
1676 		return;
1677 	}
1678 
1679 	dwork->wq = wq;
1680 	dwork->cpu = cpu;
1681 	timer->expires = jiffies + delay;
1682 
1683 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1684 		add_timer_on(timer, cpu);
1685 	else
1686 		add_timer(timer);
1687 }
1688 
1689 /**
1690  * queue_delayed_work_on - queue work on specific CPU after delay
1691  * @cpu: CPU number to execute work on
1692  * @wq: workqueue to use
1693  * @dwork: work to queue
1694  * @delay: number of jiffies to wait before queueing
1695  *
1696  * Return: %false if @work was already on a queue, %true otherwise.  If
1697  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1698  * execution.
1699  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1700 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1701 			   struct delayed_work *dwork, unsigned long delay)
1702 {
1703 	struct work_struct *work = &dwork->work;
1704 	bool ret = false;
1705 	unsigned long flags;
1706 
1707 	/* read the comment in __queue_work() */
1708 	local_irq_save(flags);
1709 
1710 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1711 		__queue_delayed_work(cpu, wq, dwork, delay);
1712 		ret = true;
1713 	}
1714 
1715 	local_irq_restore(flags);
1716 	return ret;
1717 }
1718 EXPORT_SYMBOL(queue_delayed_work_on);
1719 
1720 /**
1721  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1722  * @cpu: CPU number to execute work on
1723  * @wq: workqueue to use
1724  * @dwork: work to queue
1725  * @delay: number of jiffies to wait before queueing
1726  *
1727  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1728  * modify @dwork's timer so that it expires after @delay.  If @delay is
1729  * zero, @work is guaranteed to be scheduled immediately regardless of its
1730  * current state.
1731  *
1732  * Return: %false if @dwork was idle and queued, %true if @dwork was
1733  * pending and its timer was modified.
1734  *
1735  * This function is safe to call from any context including IRQ handler.
1736  * See try_to_grab_pending() for details.
1737  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1738 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1739 			 struct delayed_work *dwork, unsigned long delay)
1740 {
1741 	unsigned long flags;
1742 	int ret;
1743 
1744 	do {
1745 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1746 	} while (unlikely(ret == -EAGAIN));
1747 
1748 	if (likely(ret >= 0)) {
1749 		__queue_delayed_work(cpu, wq, dwork, delay);
1750 		local_irq_restore(flags);
1751 	}
1752 
1753 	/* -ENOENT from try_to_grab_pending() becomes %true */
1754 	return ret;
1755 }
1756 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1757 
rcu_work_rcufn(struct rcu_head * rcu)1758 static void rcu_work_rcufn(struct rcu_head *rcu)
1759 {
1760 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1761 
1762 	/* read the comment in __queue_work() */
1763 	local_irq_disable();
1764 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1765 	local_irq_enable();
1766 }
1767 
1768 /**
1769  * queue_rcu_work - queue work after a RCU grace period
1770  * @wq: workqueue to use
1771  * @rwork: work to queue
1772  *
1773  * Return: %false if @rwork was already pending, %true otherwise.  Note
1774  * that a full RCU grace period is guaranteed only after a %true return.
1775  * While @rwork is guaranteed to be executed after a %false return, the
1776  * execution may happen before a full RCU grace period has passed.
1777  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1778 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1779 {
1780 	struct work_struct *work = &rwork->work;
1781 
1782 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1783 		rwork->wq = wq;
1784 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
1785 		return true;
1786 	}
1787 
1788 	return false;
1789 }
1790 EXPORT_SYMBOL(queue_rcu_work);
1791 
1792 /**
1793  * worker_enter_idle - enter idle state
1794  * @worker: worker which is entering idle state
1795  *
1796  * @worker is entering idle state.  Update stats and idle timer if
1797  * necessary.
1798  *
1799  * LOCKING:
1800  * raw_spin_lock_irq(pool->lock).
1801  */
worker_enter_idle(struct worker * worker)1802 static void worker_enter_idle(struct worker *worker)
1803 {
1804 	struct worker_pool *pool = worker->pool;
1805 
1806 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1807 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1808 			 (worker->hentry.next || worker->hentry.pprev)))
1809 		return;
1810 
1811 	/* can't use worker_set_flags(), also called from create_worker() */
1812 	worker->flags |= WORKER_IDLE;
1813 	pool->nr_idle++;
1814 	worker->last_active = jiffies;
1815 
1816 	/* idle_list is LIFO */
1817 	list_add(&worker->entry, &pool->idle_list);
1818 
1819 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1820 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1821 
1822 	/* Sanity check nr_running. */
1823 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1824 }
1825 
1826 /**
1827  * worker_leave_idle - leave idle state
1828  * @worker: worker which is leaving idle state
1829  *
1830  * @worker is leaving idle state.  Update stats.
1831  *
1832  * LOCKING:
1833  * raw_spin_lock_irq(pool->lock).
1834  */
worker_leave_idle(struct worker * worker)1835 static void worker_leave_idle(struct worker *worker)
1836 {
1837 	struct worker_pool *pool = worker->pool;
1838 
1839 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1840 		return;
1841 	worker_clr_flags(worker, WORKER_IDLE);
1842 	pool->nr_idle--;
1843 	list_del_init(&worker->entry);
1844 }
1845 
alloc_worker(int node)1846 static struct worker *alloc_worker(int node)
1847 {
1848 	struct worker *worker;
1849 
1850 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1851 	if (worker) {
1852 		INIT_LIST_HEAD(&worker->entry);
1853 		INIT_LIST_HEAD(&worker->scheduled);
1854 		INIT_LIST_HEAD(&worker->node);
1855 		/* on creation a worker is in !idle && prep state */
1856 		worker->flags = WORKER_PREP;
1857 	}
1858 	return worker;
1859 }
1860 
1861 /**
1862  * worker_attach_to_pool() - attach a worker to a pool
1863  * @worker: worker to be attached
1864  * @pool: the target pool
1865  *
1866  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1867  * cpu-binding of @worker are kept coordinated with the pool across
1868  * cpu-[un]hotplugs.
1869  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1870 static void worker_attach_to_pool(struct worker *worker,
1871 				   struct worker_pool *pool)
1872 {
1873 	mutex_lock(&wq_pool_attach_mutex);
1874 
1875 	/*
1876 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1877 	 * stable across this function.  See the comments above the flag
1878 	 * definition for details.
1879 	 */
1880 	if (pool->flags & POOL_DISASSOCIATED)
1881 		worker->flags |= WORKER_UNBOUND;
1882 	else
1883 		kthread_set_per_cpu(worker->task, pool->cpu);
1884 
1885 	if (worker->rescue_wq)
1886 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1887 
1888 	list_add_tail(&worker->node, &pool->workers);
1889 	worker->pool = pool;
1890 
1891 	mutex_unlock(&wq_pool_attach_mutex);
1892 }
1893 
1894 /**
1895  * worker_detach_from_pool() - detach a worker from its pool
1896  * @worker: worker which is attached to its pool
1897  *
1898  * Undo the attaching which had been done in worker_attach_to_pool().  The
1899  * caller worker shouldn't access to the pool after detached except it has
1900  * other reference to the pool.
1901  */
worker_detach_from_pool(struct worker * worker)1902 static void worker_detach_from_pool(struct worker *worker)
1903 {
1904 	struct worker_pool *pool = worker->pool;
1905 	struct completion *detach_completion = NULL;
1906 
1907 	mutex_lock(&wq_pool_attach_mutex);
1908 
1909 	kthread_set_per_cpu(worker->task, -1);
1910 	list_del(&worker->node);
1911 	worker->pool = NULL;
1912 
1913 	if (list_empty(&pool->workers))
1914 		detach_completion = pool->detach_completion;
1915 	mutex_unlock(&wq_pool_attach_mutex);
1916 
1917 	/* clear leftover flags without pool->lock after it is detached */
1918 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1919 
1920 	if (detach_completion)
1921 		complete(detach_completion);
1922 }
1923 
1924 /**
1925  * create_worker - create a new workqueue worker
1926  * @pool: pool the new worker will belong to
1927  *
1928  * Create and start a new worker which is attached to @pool.
1929  *
1930  * CONTEXT:
1931  * Might sleep.  Does GFP_KERNEL allocations.
1932  *
1933  * Return:
1934  * Pointer to the newly created worker.
1935  */
create_worker(struct worker_pool * pool)1936 static struct worker *create_worker(struct worker_pool *pool)
1937 {
1938 	struct worker *worker;
1939 	int id;
1940 	char id_buf[16];
1941 
1942 	/* ID is needed to determine kthread name */
1943 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1944 	if (id < 0)
1945 		return NULL;
1946 
1947 	worker = alloc_worker(pool->node);
1948 	if (!worker)
1949 		goto fail;
1950 
1951 	worker->id = id;
1952 
1953 	if (pool->cpu >= 0)
1954 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1955 			 pool->attrs->nice < 0  ? "H" : "");
1956 	else
1957 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1958 
1959 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1960 					      "kworker/%s", id_buf);
1961 	if (IS_ERR(worker->task))
1962 		goto fail;
1963 
1964 	set_user_nice(worker->task, pool->attrs->nice);
1965 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1966 
1967 	/* successful, attach the worker to the pool */
1968 	worker_attach_to_pool(worker, pool);
1969 
1970 	/* start the newly created worker */
1971 	raw_spin_lock_irq(&pool->lock);
1972 	worker->pool->nr_workers++;
1973 	worker_enter_idle(worker);
1974 	wake_up_process(worker->task);
1975 	raw_spin_unlock_irq(&pool->lock);
1976 
1977 	return worker;
1978 
1979 fail:
1980 	ida_free(&pool->worker_ida, id);
1981 	kfree(worker);
1982 	return NULL;
1983 }
1984 
1985 /**
1986  * destroy_worker - destroy a workqueue worker
1987  * @worker: worker to be destroyed
1988  *
1989  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1990  * be idle.
1991  *
1992  * CONTEXT:
1993  * raw_spin_lock_irq(pool->lock).
1994  */
destroy_worker(struct worker * worker)1995 static void destroy_worker(struct worker *worker)
1996 {
1997 	struct worker_pool *pool = worker->pool;
1998 
1999 	lockdep_assert_held(&pool->lock);
2000 
2001 	/* sanity check frenzy */
2002 	if (WARN_ON(worker->current_work) ||
2003 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2004 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2005 		return;
2006 
2007 	pool->nr_workers--;
2008 	pool->nr_idle--;
2009 
2010 	list_del_init(&worker->entry);
2011 	worker->flags |= WORKER_DIE;
2012 	wake_up_process(worker->task);
2013 }
2014 
idle_worker_timeout(struct timer_list * t)2015 static void idle_worker_timeout(struct timer_list *t)
2016 {
2017 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2018 
2019 	raw_spin_lock_irq(&pool->lock);
2020 
2021 	while (too_many_workers(pool)) {
2022 		struct worker *worker;
2023 		unsigned long expires;
2024 
2025 		/* idle_list is kept in LIFO order, check the last one */
2026 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2027 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2028 
2029 		if (time_before(jiffies, expires)) {
2030 			mod_timer(&pool->idle_timer, expires);
2031 			break;
2032 		}
2033 
2034 		destroy_worker(worker);
2035 	}
2036 
2037 	raw_spin_unlock_irq(&pool->lock);
2038 }
2039 
send_mayday(struct work_struct * work)2040 static void send_mayday(struct work_struct *work)
2041 {
2042 	struct pool_workqueue *pwq = get_work_pwq(work);
2043 	struct workqueue_struct *wq = pwq->wq;
2044 
2045 	lockdep_assert_held(&wq_mayday_lock);
2046 
2047 	if (!wq->rescuer)
2048 		return;
2049 
2050 	/* mayday mayday mayday */
2051 	if (list_empty(&pwq->mayday_node)) {
2052 		/*
2053 		 * If @pwq is for an unbound wq, its base ref may be put at
2054 		 * any time due to an attribute change.  Pin @pwq until the
2055 		 * rescuer is done with it.
2056 		 */
2057 		get_pwq(pwq);
2058 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2059 		wake_up_process(wq->rescuer->task);
2060 	}
2061 }
2062 
pool_mayday_timeout(struct timer_list * t)2063 static void pool_mayday_timeout(struct timer_list *t)
2064 {
2065 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2066 	struct work_struct *work;
2067 
2068 	raw_spin_lock_irq(&pool->lock);
2069 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2070 
2071 	if (need_to_create_worker(pool)) {
2072 		/*
2073 		 * We've been trying to create a new worker but
2074 		 * haven't been successful.  We might be hitting an
2075 		 * allocation deadlock.  Send distress signals to
2076 		 * rescuers.
2077 		 */
2078 		list_for_each_entry(work, &pool->worklist, entry)
2079 			send_mayday(work);
2080 	}
2081 
2082 	raw_spin_unlock(&wq_mayday_lock);
2083 	raw_spin_unlock_irq(&pool->lock);
2084 
2085 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2086 }
2087 
2088 /**
2089  * maybe_create_worker - create a new worker if necessary
2090  * @pool: pool to create a new worker for
2091  *
2092  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2093  * have at least one idle worker on return from this function.  If
2094  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2095  * sent to all rescuers with works scheduled on @pool to resolve
2096  * possible allocation deadlock.
2097  *
2098  * On return, need_to_create_worker() is guaranteed to be %false and
2099  * may_start_working() %true.
2100  *
2101  * LOCKING:
2102  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2103  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2104  * manager.
2105  */
maybe_create_worker(struct worker_pool * pool)2106 static void maybe_create_worker(struct worker_pool *pool)
2107 __releases(&pool->lock)
2108 __acquires(&pool->lock)
2109 {
2110 restart:
2111 	raw_spin_unlock_irq(&pool->lock);
2112 
2113 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2114 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2115 
2116 	while (true) {
2117 		if (create_worker(pool) || !need_to_create_worker(pool))
2118 			break;
2119 
2120 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2121 
2122 		if (!need_to_create_worker(pool))
2123 			break;
2124 	}
2125 
2126 	del_timer_sync(&pool->mayday_timer);
2127 	raw_spin_lock_irq(&pool->lock);
2128 	/*
2129 	 * This is necessary even after a new worker was just successfully
2130 	 * created as @pool->lock was dropped and the new worker might have
2131 	 * already become busy.
2132 	 */
2133 	if (need_to_create_worker(pool))
2134 		goto restart;
2135 }
2136 
2137 /**
2138  * manage_workers - manage worker pool
2139  * @worker: self
2140  *
2141  * Assume the manager role and manage the worker pool @worker belongs
2142  * to.  At any given time, there can be only zero or one manager per
2143  * pool.  The exclusion is handled automatically by this function.
2144  *
2145  * The caller can safely start processing works on false return.  On
2146  * true return, it's guaranteed that need_to_create_worker() is false
2147  * and may_start_working() is true.
2148  *
2149  * CONTEXT:
2150  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2151  * multiple times.  Does GFP_KERNEL allocations.
2152  *
2153  * Return:
2154  * %false if the pool doesn't need management and the caller can safely
2155  * start processing works, %true if management function was performed and
2156  * the conditions that the caller verified before calling the function may
2157  * no longer be true.
2158  */
manage_workers(struct worker * worker)2159 static bool manage_workers(struct worker *worker)
2160 {
2161 	struct worker_pool *pool = worker->pool;
2162 
2163 	if (pool->flags & POOL_MANAGER_ACTIVE)
2164 		return false;
2165 
2166 	pool->flags |= POOL_MANAGER_ACTIVE;
2167 	pool->manager = worker;
2168 
2169 	maybe_create_worker(pool);
2170 
2171 	pool->manager = NULL;
2172 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2173 	rcuwait_wake_up(&manager_wait);
2174 	return true;
2175 }
2176 
2177 /**
2178  * process_one_work - process single work
2179  * @worker: self
2180  * @work: work to process
2181  *
2182  * Process @work.  This function contains all the logics necessary to
2183  * process a single work including synchronization against and
2184  * interaction with other workers on the same cpu, queueing and
2185  * flushing.  As long as context requirement is met, any worker can
2186  * call this function to process a work.
2187  *
2188  * CONTEXT:
2189  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2190  */
process_one_work(struct worker * worker,struct work_struct * work)2191 static void process_one_work(struct worker *worker, struct work_struct *work)
2192 __releases(&pool->lock)
2193 __acquires(&pool->lock)
2194 {
2195 	struct pool_workqueue *pwq = get_work_pwq(work);
2196 	struct worker_pool *pool = worker->pool;
2197 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2198 	unsigned long work_data;
2199 	struct worker *collision;
2200 #ifdef CONFIG_LOCKDEP
2201 	/*
2202 	 * It is permissible to free the struct work_struct from
2203 	 * inside the function that is called from it, this we need to
2204 	 * take into account for lockdep too.  To avoid bogus "held
2205 	 * lock freed" warnings as well as problems when looking into
2206 	 * work->lockdep_map, make a copy and use that here.
2207 	 */
2208 	struct lockdep_map lockdep_map;
2209 
2210 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2211 #endif
2212 	/* ensure we're on the correct CPU */
2213 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2214 		     raw_smp_processor_id() != pool->cpu);
2215 
2216 	/*
2217 	 * A single work shouldn't be executed concurrently by
2218 	 * multiple workers on a single cpu.  Check whether anyone is
2219 	 * already processing the work.  If so, defer the work to the
2220 	 * currently executing one.
2221 	 */
2222 	collision = find_worker_executing_work(pool, work);
2223 	if (unlikely(collision)) {
2224 		move_linked_works(work, &collision->scheduled, NULL);
2225 		return;
2226 	}
2227 
2228 	/* claim and dequeue */
2229 	debug_work_deactivate(work);
2230 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2231 	worker->current_work = work;
2232 	worker->current_func = work->func;
2233 	worker->current_pwq = pwq;
2234 	work_data = *work_data_bits(work);
2235 	worker->current_color = get_work_color(work_data);
2236 
2237 	/*
2238 	 * Record wq name for cmdline and debug reporting, may get
2239 	 * overridden through set_worker_desc().
2240 	 */
2241 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2242 
2243 	list_del_init(&work->entry);
2244 
2245 	/*
2246 	 * CPU intensive works don't participate in concurrency management.
2247 	 * They're the scheduler's responsibility.  This takes @worker out
2248 	 * of concurrency management and the next code block will chain
2249 	 * execution of the pending work items.
2250 	 */
2251 	if (unlikely(cpu_intensive))
2252 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2253 
2254 	/*
2255 	 * Wake up another worker if necessary.  The condition is always
2256 	 * false for normal per-cpu workers since nr_running would always
2257 	 * be >= 1 at this point.  This is used to chain execution of the
2258 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2259 	 * UNBOUND and CPU_INTENSIVE ones.
2260 	 */
2261 	if (need_more_worker(pool))
2262 		wake_up_worker(pool);
2263 
2264 	/*
2265 	 * Record the last pool and clear PENDING which should be the last
2266 	 * update to @work.  Also, do this inside @pool->lock so that
2267 	 * PENDING and queued state changes happen together while IRQ is
2268 	 * disabled.
2269 	 */
2270 	set_work_pool_and_clear_pending(work, pool->id);
2271 
2272 	raw_spin_unlock_irq(&pool->lock);
2273 
2274 	lock_map_acquire(&pwq->wq->lockdep_map);
2275 	lock_map_acquire(&lockdep_map);
2276 	/*
2277 	 * Strictly speaking we should mark the invariant state without holding
2278 	 * any locks, that is, before these two lock_map_acquire()'s.
2279 	 *
2280 	 * However, that would result in:
2281 	 *
2282 	 *   A(W1)
2283 	 *   WFC(C)
2284 	 *		A(W1)
2285 	 *		C(C)
2286 	 *
2287 	 * Which would create W1->C->W1 dependencies, even though there is no
2288 	 * actual deadlock possible. There are two solutions, using a
2289 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2290 	 * hit the lockdep limitation on recursive locks, or simply discard
2291 	 * these locks.
2292 	 *
2293 	 * AFAICT there is no possible deadlock scenario between the
2294 	 * flush_work() and complete() primitives (except for single-threaded
2295 	 * workqueues), so hiding them isn't a problem.
2296 	 */
2297 	lockdep_invariant_state(true);
2298 	trace_workqueue_execute_start(work);
2299 	worker->current_func(work);
2300 	/*
2301 	 * While we must be careful to not use "work" after this, the trace
2302 	 * point will only record its address.
2303 	 */
2304 	trace_workqueue_execute_end(work, worker->current_func);
2305 	lock_map_release(&lockdep_map);
2306 	lock_map_release(&pwq->wq->lockdep_map);
2307 
2308 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2309 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2310 		       "     last function: %ps\n",
2311 		       current->comm, preempt_count(), task_pid_nr(current),
2312 		       worker->current_func);
2313 		debug_show_held_locks(current);
2314 		dump_stack();
2315 	}
2316 
2317 	/*
2318 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2319 	 * kernels, where a requeueing work item waiting for something to
2320 	 * happen could deadlock with stop_machine as such work item could
2321 	 * indefinitely requeue itself while all other CPUs are trapped in
2322 	 * stop_machine. At the same time, report a quiescent RCU state so
2323 	 * the same condition doesn't freeze RCU.
2324 	 */
2325 	cond_resched();
2326 
2327 	raw_spin_lock_irq(&pool->lock);
2328 
2329 	/* clear cpu intensive status */
2330 	if (unlikely(cpu_intensive))
2331 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2332 
2333 	/* tag the worker for identification in schedule() */
2334 	worker->last_func = worker->current_func;
2335 
2336 	/* we're done with it, release */
2337 	hash_del(&worker->hentry);
2338 	worker->current_work = NULL;
2339 	worker->current_func = NULL;
2340 	worker->current_pwq = NULL;
2341 	worker->current_color = INT_MAX;
2342 	pwq_dec_nr_in_flight(pwq, work_data);
2343 }
2344 
2345 /**
2346  * process_scheduled_works - process scheduled works
2347  * @worker: self
2348  *
2349  * Process all scheduled works.  Please note that the scheduled list
2350  * may change while processing a work, so this function repeatedly
2351  * fetches a work from the top and executes it.
2352  *
2353  * CONTEXT:
2354  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2355  * multiple times.
2356  */
process_scheduled_works(struct worker * worker)2357 static void process_scheduled_works(struct worker *worker)
2358 {
2359 	while (!list_empty(&worker->scheduled)) {
2360 		struct work_struct *work = list_first_entry(&worker->scheduled,
2361 						struct work_struct, entry);
2362 		process_one_work(worker, work);
2363 	}
2364 }
2365 
set_pf_worker(bool val)2366 static void set_pf_worker(bool val)
2367 {
2368 	mutex_lock(&wq_pool_attach_mutex);
2369 	if (val)
2370 		current->flags |= PF_WQ_WORKER;
2371 	else
2372 		current->flags &= ~PF_WQ_WORKER;
2373 	mutex_unlock(&wq_pool_attach_mutex);
2374 }
2375 
2376 /**
2377  * worker_thread - the worker thread function
2378  * @__worker: self
2379  *
2380  * The worker thread function.  All workers belong to a worker_pool -
2381  * either a per-cpu one or dynamic unbound one.  These workers process all
2382  * work items regardless of their specific target workqueue.  The only
2383  * exception is work items which belong to workqueues with a rescuer which
2384  * will be explained in rescuer_thread().
2385  *
2386  * Return: 0
2387  */
worker_thread(void * __worker)2388 static int worker_thread(void *__worker)
2389 {
2390 	struct worker *worker = __worker;
2391 	struct worker_pool *pool = worker->pool;
2392 
2393 	/* tell the scheduler that this is a workqueue worker */
2394 	set_pf_worker(true);
2395 woke_up:
2396 	raw_spin_lock_irq(&pool->lock);
2397 
2398 	/* am I supposed to die? */
2399 	if (unlikely(worker->flags & WORKER_DIE)) {
2400 		raw_spin_unlock_irq(&pool->lock);
2401 		WARN_ON_ONCE(!list_empty(&worker->entry));
2402 		set_pf_worker(false);
2403 
2404 		set_task_comm(worker->task, "kworker/dying");
2405 		ida_free(&pool->worker_ida, worker->id);
2406 		worker_detach_from_pool(worker);
2407 		kfree(worker);
2408 		return 0;
2409 	}
2410 
2411 	worker_leave_idle(worker);
2412 recheck:
2413 	/* no more worker necessary? */
2414 	if (!need_more_worker(pool))
2415 		goto sleep;
2416 
2417 	/* do we need to manage? */
2418 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2419 		goto recheck;
2420 
2421 	/*
2422 	 * ->scheduled list can only be filled while a worker is
2423 	 * preparing to process a work or actually processing it.
2424 	 * Make sure nobody diddled with it while I was sleeping.
2425 	 */
2426 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2427 
2428 	/*
2429 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2430 	 * worker or that someone else has already assumed the manager
2431 	 * role.  This is where @worker starts participating in concurrency
2432 	 * management if applicable and concurrency management is restored
2433 	 * after being rebound.  See rebind_workers() for details.
2434 	 */
2435 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2436 
2437 	do {
2438 		struct work_struct *work =
2439 			list_first_entry(&pool->worklist,
2440 					 struct work_struct, entry);
2441 
2442 		pool->watchdog_ts = jiffies;
2443 
2444 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2445 			/* optimization path, not strictly necessary */
2446 			process_one_work(worker, work);
2447 			if (unlikely(!list_empty(&worker->scheduled)))
2448 				process_scheduled_works(worker);
2449 		} else {
2450 			move_linked_works(work, &worker->scheduled, NULL);
2451 			process_scheduled_works(worker);
2452 		}
2453 	} while (keep_working(pool));
2454 
2455 	worker_set_flags(worker, WORKER_PREP);
2456 sleep:
2457 	/*
2458 	 * pool->lock is held and there's no work to process and no need to
2459 	 * manage, sleep.  Workers are woken up only while holding
2460 	 * pool->lock or from local cpu, so setting the current state
2461 	 * before releasing pool->lock is enough to prevent losing any
2462 	 * event.
2463 	 */
2464 	worker_enter_idle(worker);
2465 	__set_current_state(TASK_IDLE);
2466 	raw_spin_unlock_irq(&pool->lock);
2467 	schedule();
2468 	goto woke_up;
2469 }
2470 
2471 /**
2472  * rescuer_thread - the rescuer thread function
2473  * @__rescuer: self
2474  *
2475  * Workqueue rescuer thread function.  There's one rescuer for each
2476  * workqueue which has WQ_MEM_RECLAIM set.
2477  *
2478  * Regular work processing on a pool may block trying to create a new
2479  * worker which uses GFP_KERNEL allocation which has slight chance of
2480  * developing into deadlock if some works currently on the same queue
2481  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2482  * the problem rescuer solves.
2483  *
2484  * When such condition is possible, the pool summons rescuers of all
2485  * workqueues which have works queued on the pool and let them process
2486  * those works so that forward progress can be guaranteed.
2487  *
2488  * This should happen rarely.
2489  *
2490  * Return: 0
2491  */
rescuer_thread(void * __rescuer)2492 static int rescuer_thread(void *__rescuer)
2493 {
2494 	struct worker *rescuer = __rescuer;
2495 	struct workqueue_struct *wq = rescuer->rescue_wq;
2496 	struct list_head *scheduled = &rescuer->scheduled;
2497 	bool should_stop;
2498 
2499 	set_user_nice(current, RESCUER_NICE_LEVEL);
2500 
2501 	/*
2502 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2503 	 * doesn't participate in concurrency management.
2504 	 */
2505 	set_pf_worker(true);
2506 repeat:
2507 	set_current_state(TASK_IDLE);
2508 
2509 	/*
2510 	 * By the time the rescuer is requested to stop, the workqueue
2511 	 * shouldn't have any work pending, but @wq->maydays may still have
2512 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2513 	 * all the work items before the rescuer got to them.  Go through
2514 	 * @wq->maydays processing before acting on should_stop so that the
2515 	 * list is always empty on exit.
2516 	 */
2517 	should_stop = kthread_should_stop();
2518 
2519 	/* see whether any pwq is asking for help */
2520 	raw_spin_lock_irq(&wq_mayday_lock);
2521 
2522 	while (!list_empty(&wq->maydays)) {
2523 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2524 					struct pool_workqueue, mayday_node);
2525 		struct worker_pool *pool = pwq->pool;
2526 		struct work_struct *work, *n;
2527 		bool first = true;
2528 
2529 		__set_current_state(TASK_RUNNING);
2530 		list_del_init(&pwq->mayday_node);
2531 
2532 		raw_spin_unlock_irq(&wq_mayday_lock);
2533 
2534 		worker_attach_to_pool(rescuer, pool);
2535 
2536 		raw_spin_lock_irq(&pool->lock);
2537 
2538 		/*
2539 		 * Slurp in all works issued via this workqueue and
2540 		 * process'em.
2541 		 */
2542 		WARN_ON_ONCE(!list_empty(scheduled));
2543 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2544 			if (get_work_pwq(work) == pwq) {
2545 				if (first)
2546 					pool->watchdog_ts = jiffies;
2547 				move_linked_works(work, scheduled, &n);
2548 			}
2549 			first = false;
2550 		}
2551 
2552 		if (!list_empty(scheduled)) {
2553 			process_scheduled_works(rescuer);
2554 
2555 			/*
2556 			 * The above execution of rescued work items could
2557 			 * have created more to rescue through
2558 			 * pwq_activate_first_inactive() or chained
2559 			 * queueing.  Let's put @pwq back on mayday list so
2560 			 * that such back-to-back work items, which may be
2561 			 * being used to relieve memory pressure, don't
2562 			 * incur MAYDAY_INTERVAL delay inbetween.
2563 			 */
2564 			if (pwq->nr_active && need_to_create_worker(pool)) {
2565 				raw_spin_lock(&wq_mayday_lock);
2566 				/*
2567 				 * Queue iff we aren't racing destruction
2568 				 * and somebody else hasn't queued it already.
2569 				 */
2570 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2571 					get_pwq(pwq);
2572 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2573 				}
2574 				raw_spin_unlock(&wq_mayday_lock);
2575 			}
2576 		}
2577 
2578 		/*
2579 		 * Put the reference grabbed by send_mayday().  @pool won't
2580 		 * go away while we're still attached to it.
2581 		 */
2582 		put_pwq(pwq);
2583 
2584 		/*
2585 		 * Leave this pool.  If need_more_worker() is %true, notify a
2586 		 * regular worker; otherwise, we end up with 0 concurrency
2587 		 * and stalling the execution.
2588 		 */
2589 		if (need_more_worker(pool))
2590 			wake_up_worker(pool);
2591 
2592 		raw_spin_unlock_irq(&pool->lock);
2593 
2594 		worker_detach_from_pool(rescuer);
2595 
2596 		raw_spin_lock_irq(&wq_mayday_lock);
2597 	}
2598 
2599 	raw_spin_unlock_irq(&wq_mayday_lock);
2600 
2601 	if (should_stop) {
2602 		__set_current_state(TASK_RUNNING);
2603 		set_pf_worker(false);
2604 		return 0;
2605 	}
2606 
2607 	/* rescuers should never participate in concurrency management */
2608 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2609 	schedule();
2610 	goto repeat;
2611 }
2612 
2613 /**
2614  * check_flush_dependency - check for flush dependency sanity
2615  * @target_wq: workqueue being flushed
2616  * @target_work: work item being flushed (NULL for workqueue flushes)
2617  *
2618  * %current is trying to flush the whole @target_wq or @target_work on it.
2619  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2620  * reclaiming memory or running on a workqueue which doesn't have
2621  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2622  * a deadlock.
2623  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2624 static void check_flush_dependency(struct workqueue_struct *target_wq,
2625 				   struct work_struct *target_work)
2626 {
2627 	work_func_t target_func = target_work ? target_work->func : NULL;
2628 	struct worker *worker;
2629 
2630 	if (target_wq->flags & WQ_MEM_RECLAIM)
2631 		return;
2632 
2633 	worker = current_wq_worker();
2634 
2635 	WARN_ONCE(current->flags & PF_MEMALLOC,
2636 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2637 		  current->pid, current->comm, target_wq->name, target_func);
2638 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2639 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2640 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2641 		  worker->current_pwq->wq->name, worker->current_func,
2642 		  target_wq->name, target_func);
2643 }
2644 
2645 struct wq_barrier {
2646 	struct work_struct	work;
2647 	struct completion	done;
2648 	struct task_struct	*task;	/* purely informational */
2649 };
2650 
wq_barrier_func(struct work_struct * work)2651 static void wq_barrier_func(struct work_struct *work)
2652 {
2653 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2654 	complete(&barr->done);
2655 }
2656 
2657 /**
2658  * insert_wq_barrier - insert a barrier work
2659  * @pwq: pwq to insert barrier into
2660  * @barr: wq_barrier to insert
2661  * @target: target work to attach @barr to
2662  * @worker: worker currently executing @target, NULL if @target is not executing
2663  *
2664  * @barr is linked to @target such that @barr is completed only after
2665  * @target finishes execution.  Please note that the ordering
2666  * guarantee is observed only with respect to @target and on the local
2667  * cpu.
2668  *
2669  * Currently, a queued barrier can't be canceled.  This is because
2670  * try_to_grab_pending() can't determine whether the work to be
2671  * grabbed is at the head of the queue and thus can't clear LINKED
2672  * flag of the previous work while there must be a valid next work
2673  * after a work with LINKED flag set.
2674  *
2675  * Note that when @worker is non-NULL, @target may be modified
2676  * underneath us, so we can't reliably determine pwq from @target.
2677  *
2678  * CONTEXT:
2679  * raw_spin_lock_irq(pool->lock).
2680  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2681 static void insert_wq_barrier(struct pool_workqueue *pwq,
2682 			      struct wq_barrier *barr,
2683 			      struct work_struct *target, struct worker *worker)
2684 {
2685 	unsigned int work_flags = 0;
2686 	unsigned int work_color;
2687 	struct list_head *head;
2688 
2689 	/*
2690 	 * debugobject calls are safe here even with pool->lock locked
2691 	 * as we know for sure that this will not trigger any of the
2692 	 * checks and call back into the fixup functions where we
2693 	 * might deadlock.
2694 	 */
2695 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2696 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2697 
2698 	init_completion_map(&barr->done, &target->lockdep_map);
2699 
2700 	barr->task = current;
2701 
2702 	/* The barrier work item does not participate in pwq->nr_active. */
2703 	work_flags |= WORK_STRUCT_INACTIVE;
2704 
2705 	/*
2706 	 * If @target is currently being executed, schedule the
2707 	 * barrier to the worker; otherwise, put it after @target.
2708 	 */
2709 	if (worker) {
2710 		head = worker->scheduled.next;
2711 		work_color = worker->current_color;
2712 	} else {
2713 		unsigned long *bits = work_data_bits(target);
2714 
2715 		head = target->entry.next;
2716 		/* there can already be other linked works, inherit and set */
2717 		work_flags |= *bits & WORK_STRUCT_LINKED;
2718 		work_color = get_work_color(*bits);
2719 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2720 	}
2721 
2722 	pwq->nr_in_flight[work_color]++;
2723 	work_flags |= work_color_to_flags(work_color);
2724 
2725 	debug_work_activate(&barr->work);
2726 	insert_work(pwq, &barr->work, head, work_flags);
2727 }
2728 
2729 /**
2730  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2731  * @wq: workqueue being flushed
2732  * @flush_color: new flush color, < 0 for no-op
2733  * @work_color: new work color, < 0 for no-op
2734  *
2735  * Prepare pwqs for workqueue flushing.
2736  *
2737  * If @flush_color is non-negative, flush_color on all pwqs should be
2738  * -1.  If no pwq has in-flight commands at the specified color, all
2739  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2740  * has in flight commands, its pwq->flush_color is set to
2741  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2742  * wakeup logic is armed and %true is returned.
2743  *
2744  * The caller should have initialized @wq->first_flusher prior to
2745  * calling this function with non-negative @flush_color.  If
2746  * @flush_color is negative, no flush color update is done and %false
2747  * is returned.
2748  *
2749  * If @work_color is non-negative, all pwqs should have the same
2750  * work_color which is previous to @work_color and all will be
2751  * advanced to @work_color.
2752  *
2753  * CONTEXT:
2754  * mutex_lock(wq->mutex).
2755  *
2756  * Return:
2757  * %true if @flush_color >= 0 and there's something to flush.  %false
2758  * otherwise.
2759  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2760 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2761 				      int flush_color, int work_color)
2762 {
2763 	bool wait = false;
2764 	struct pool_workqueue *pwq;
2765 
2766 	if (flush_color >= 0) {
2767 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2768 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2769 	}
2770 
2771 	for_each_pwq(pwq, wq) {
2772 		struct worker_pool *pool = pwq->pool;
2773 
2774 		raw_spin_lock_irq(&pool->lock);
2775 
2776 		if (flush_color >= 0) {
2777 			WARN_ON_ONCE(pwq->flush_color != -1);
2778 
2779 			if (pwq->nr_in_flight[flush_color]) {
2780 				pwq->flush_color = flush_color;
2781 				atomic_inc(&wq->nr_pwqs_to_flush);
2782 				wait = true;
2783 			}
2784 		}
2785 
2786 		if (work_color >= 0) {
2787 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2788 			pwq->work_color = work_color;
2789 		}
2790 
2791 		raw_spin_unlock_irq(&pool->lock);
2792 	}
2793 
2794 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2795 		complete(&wq->first_flusher->done);
2796 
2797 	return wait;
2798 }
2799 
2800 /**
2801  * __flush_workqueue - ensure that any scheduled work has run to completion.
2802  * @wq: workqueue to flush
2803  *
2804  * This function sleeps until all work items which were queued on entry
2805  * have finished execution, but it is not livelocked by new incoming ones.
2806  */
__flush_workqueue(struct workqueue_struct * wq)2807 void __flush_workqueue(struct workqueue_struct *wq)
2808 {
2809 	struct wq_flusher this_flusher = {
2810 		.list = LIST_HEAD_INIT(this_flusher.list),
2811 		.flush_color = -1,
2812 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2813 	};
2814 	int next_color;
2815 
2816 	if (WARN_ON(!wq_online))
2817 		return;
2818 
2819 	lock_map_acquire(&wq->lockdep_map);
2820 	lock_map_release(&wq->lockdep_map);
2821 
2822 	mutex_lock(&wq->mutex);
2823 
2824 	/*
2825 	 * Start-to-wait phase
2826 	 */
2827 	next_color = work_next_color(wq->work_color);
2828 
2829 	if (next_color != wq->flush_color) {
2830 		/*
2831 		 * Color space is not full.  The current work_color
2832 		 * becomes our flush_color and work_color is advanced
2833 		 * by one.
2834 		 */
2835 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2836 		this_flusher.flush_color = wq->work_color;
2837 		wq->work_color = next_color;
2838 
2839 		if (!wq->first_flusher) {
2840 			/* no flush in progress, become the first flusher */
2841 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2842 
2843 			wq->first_flusher = &this_flusher;
2844 
2845 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2846 						       wq->work_color)) {
2847 				/* nothing to flush, done */
2848 				wq->flush_color = next_color;
2849 				wq->first_flusher = NULL;
2850 				goto out_unlock;
2851 			}
2852 		} else {
2853 			/* wait in queue */
2854 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2855 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2856 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2857 		}
2858 	} else {
2859 		/*
2860 		 * Oops, color space is full, wait on overflow queue.
2861 		 * The next flush completion will assign us
2862 		 * flush_color and transfer to flusher_queue.
2863 		 */
2864 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2865 	}
2866 
2867 	check_flush_dependency(wq, NULL);
2868 
2869 	mutex_unlock(&wq->mutex);
2870 
2871 	wait_for_completion(&this_flusher.done);
2872 
2873 	/*
2874 	 * Wake-up-and-cascade phase
2875 	 *
2876 	 * First flushers are responsible for cascading flushes and
2877 	 * handling overflow.  Non-first flushers can simply return.
2878 	 */
2879 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2880 		return;
2881 
2882 	mutex_lock(&wq->mutex);
2883 
2884 	/* we might have raced, check again with mutex held */
2885 	if (wq->first_flusher != &this_flusher)
2886 		goto out_unlock;
2887 
2888 	WRITE_ONCE(wq->first_flusher, NULL);
2889 
2890 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2891 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2892 
2893 	while (true) {
2894 		struct wq_flusher *next, *tmp;
2895 
2896 		/* complete all the flushers sharing the current flush color */
2897 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2898 			if (next->flush_color != wq->flush_color)
2899 				break;
2900 			list_del_init(&next->list);
2901 			complete(&next->done);
2902 		}
2903 
2904 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2905 			     wq->flush_color != work_next_color(wq->work_color));
2906 
2907 		/* this flush_color is finished, advance by one */
2908 		wq->flush_color = work_next_color(wq->flush_color);
2909 
2910 		/* one color has been freed, handle overflow queue */
2911 		if (!list_empty(&wq->flusher_overflow)) {
2912 			/*
2913 			 * Assign the same color to all overflowed
2914 			 * flushers, advance work_color and append to
2915 			 * flusher_queue.  This is the start-to-wait
2916 			 * phase for these overflowed flushers.
2917 			 */
2918 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2919 				tmp->flush_color = wq->work_color;
2920 
2921 			wq->work_color = work_next_color(wq->work_color);
2922 
2923 			list_splice_tail_init(&wq->flusher_overflow,
2924 					      &wq->flusher_queue);
2925 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2926 		}
2927 
2928 		if (list_empty(&wq->flusher_queue)) {
2929 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2930 			break;
2931 		}
2932 
2933 		/*
2934 		 * Need to flush more colors.  Make the next flusher
2935 		 * the new first flusher and arm pwqs.
2936 		 */
2937 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2938 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2939 
2940 		list_del_init(&next->list);
2941 		wq->first_flusher = next;
2942 
2943 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2944 			break;
2945 
2946 		/*
2947 		 * Meh... this color is already done, clear first
2948 		 * flusher and repeat cascading.
2949 		 */
2950 		wq->first_flusher = NULL;
2951 	}
2952 
2953 out_unlock:
2954 	mutex_unlock(&wq->mutex);
2955 }
2956 EXPORT_SYMBOL(__flush_workqueue);
2957 
2958 /**
2959  * drain_workqueue - drain a workqueue
2960  * @wq: workqueue to drain
2961  *
2962  * Wait until the workqueue becomes empty.  While draining is in progress,
2963  * only chain queueing is allowed.  IOW, only currently pending or running
2964  * work items on @wq can queue further work items on it.  @wq is flushed
2965  * repeatedly until it becomes empty.  The number of flushing is determined
2966  * by the depth of chaining and should be relatively short.  Whine if it
2967  * takes too long.
2968  */
drain_workqueue(struct workqueue_struct * wq)2969 void drain_workqueue(struct workqueue_struct *wq)
2970 {
2971 	unsigned int flush_cnt = 0;
2972 	struct pool_workqueue *pwq;
2973 
2974 	/*
2975 	 * __queue_work() needs to test whether there are drainers, is much
2976 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2977 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2978 	 */
2979 	mutex_lock(&wq->mutex);
2980 	if (!wq->nr_drainers++)
2981 		wq->flags |= __WQ_DRAINING;
2982 	mutex_unlock(&wq->mutex);
2983 reflush:
2984 	__flush_workqueue(wq);
2985 
2986 	mutex_lock(&wq->mutex);
2987 
2988 	for_each_pwq(pwq, wq) {
2989 		bool drained;
2990 
2991 		raw_spin_lock_irq(&pwq->pool->lock);
2992 		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
2993 		raw_spin_unlock_irq(&pwq->pool->lock);
2994 
2995 		if (drained)
2996 			continue;
2997 
2998 		if (++flush_cnt == 10 ||
2999 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3000 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3001 				wq->name, __func__, flush_cnt);
3002 
3003 		mutex_unlock(&wq->mutex);
3004 		goto reflush;
3005 	}
3006 
3007 	if (!--wq->nr_drainers)
3008 		wq->flags &= ~__WQ_DRAINING;
3009 	mutex_unlock(&wq->mutex);
3010 }
3011 EXPORT_SYMBOL_GPL(drain_workqueue);
3012 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)3013 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3014 			     bool from_cancel)
3015 {
3016 	struct worker *worker = NULL;
3017 	struct worker_pool *pool;
3018 	struct pool_workqueue *pwq;
3019 
3020 	might_sleep();
3021 
3022 	rcu_read_lock();
3023 	pool = get_work_pool(work);
3024 	if (!pool) {
3025 		rcu_read_unlock();
3026 		return false;
3027 	}
3028 
3029 	raw_spin_lock_irq(&pool->lock);
3030 	/* see the comment in try_to_grab_pending() with the same code */
3031 	pwq = get_work_pwq(work);
3032 	if (pwq) {
3033 		if (unlikely(pwq->pool != pool))
3034 			goto already_gone;
3035 	} else {
3036 		worker = find_worker_executing_work(pool, work);
3037 		if (!worker)
3038 			goto already_gone;
3039 		pwq = worker->current_pwq;
3040 	}
3041 
3042 	check_flush_dependency(pwq->wq, work);
3043 
3044 	insert_wq_barrier(pwq, barr, work, worker);
3045 	raw_spin_unlock_irq(&pool->lock);
3046 
3047 	/*
3048 	 * Force a lock recursion deadlock when using flush_work() inside a
3049 	 * single-threaded or rescuer equipped workqueue.
3050 	 *
3051 	 * For single threaded workqueues the deadlock happens when the work
3052 	 * is after the work issuing the flush_work(). For rescuer equipped
3053 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3054 	 * forward progress.
3055 	 */
3056 	if (!from_cancel &&
3057 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3058 		lock_map_acquire(&pwq->wq->lockdep_map);
3059 		lock_map_release(&pwq->wq->lockdep_map);
3060 	}
3061 	rcu_read_unlock();
3062 	return true;
3063 already_gone:
3064 	raw_spin_unlock_irq(&pool->lock);
3065 	rcu_read_unlock();
3066 	return false;
3067 }
3068 
__flush_work(struct work_struct * work,bool from_cancel)3069 static bool __flush_work(struct work_struct *work, bool from_cancel)
3070 {
3071 	struct wq_barrier barr;
3072 
3073 	if (WARN_ON(!wq_online))
3074 		return false;
3075 
3076 	if (WARN_ON(!work->func))
3077 		return false;
3078 
3079 	lock_map_acquire(&work->lockdep_map);
3080 	lock_map_release(&work->lockdep_map);
3081 
3082 	if (start_flush_work(work, &barr, from_cancel)) {
3083 		wait_for_completion(&barr.done);
3084 		destroy_work_on_stack(&barr.work);
3085 		return true;
3086 	} else {
3087 		return false;
3088 	}
3089 }
3090 
3091 /**
3092  * flush_work - wait for a work to finish executing the last queueing instance
3093  * @work: the work to flush
3094  *
3095  * Wait until @work has finished execution.  @work is guaranteed to be idle
3096  * on return if it hasn't been requeued since flush started.
3097  *
3098  * Return:
3099  * %true if flush_work() waited for the work to finish execution,
3100  * %false if it was already idle.
3101  */
flush_work(struct work_struct * work)3102 bool flush_work(struct work_struct *work)
3103 {
3104 	return __flush_work(work, false);
3105 }
3106 EXPORT_SYMBOL_GPL(flush_work);
3107 
3108 struct cwt_wait {
3109 	wait_queue_entry_t		wait;
3110 	struct work_struct	*work;
3111 };
3112 
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3113 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3114 {
3115 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3116 
3117 	if (cwait->work != key)
3118 		return 0;
3119 	return autoremove_wake_function(wait, mode, sync, key);
3120 }
3121 
__cancel_work_timer(struct work_struct * work,bool is_dwork)3122 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3123 {
3124 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3125 	unsigned long flags;
3126 	int ret;
3127 
3128 	do {
3129 		ret = try_to_grab_pending(work, is_dwork, &flags);
3130 		/*
3131 		 * If someone else is already canceling, wait for it to
3132 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3133 		 * because we may get scheduled between @work's completion
3134 		 * and the other canceling task resuming and clearing
3135 		 * CANCELING - flush_work() will return false immediately
3136 		 * as @work is no longer busy, try_to_grab_pending() will
3137 		 * return -ENOENT as @work is still being canceled and the
3138 		 * other canceling task won't be able to clear CANCELING as
3139 		 * we're hogging the CPU.
3140 		 *
3141 		 * Let's wait for completion using a waitqueue.  As this
3142 		 * may lead to the thundering herd problem, use a custom
3143 		 * wake function which matches @work along with exclusive
3144 		 * wait and wakeup.
3145 		 */
3146 		if (unlikely(ret == -ENOENT)) {
3147 			struct cwt_wait cwait;
3148 
3149 			init_wait(&cwait.wait);
3150 			cwait.wait.func = cwt_wakefn;
3151 			cwait.work = work;
3152 
3153 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3154 						  TASK_UNINTERRUPTIBLE);
3155 			if (work_is_canceling(work))
3156 				schedule();
3157 			finish_wait(&cancel_waitq, &cwait.wait);
3158 		}
3159 	} while (unlikely(ret < 0));
3160 
3161 	/* tell other tasks trying to grab @work to back off */
3162 	mark_work_canceling(work);
3163 	local_irq_restore(flags);
3164 
3165 	/*
3166 	 * This allows canceling during early boot.  We know that @work
3167 	 * isn't executing.
3168 	 */
3169 	if (wq_online)
3170 		__flush_work(work, true);
3171 
3172 	clear_work_data(work);
3173 
3174 	/*
3175 	 * Paired with prepare_to_wait() above so that either
3176 	 * waitqueue_active() is visible here or !work_is_canceling() is
3177 	 * visible there.
3178 	 */
3179 	smp_mb();
3180 	if (waitqueue_active(&cancel_waitq))
3181 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3182 
3183 	return ret;
3184 }
3185 
3186 /**
3187  * cancel_work_sync - cancel a work and wait for it to finish
3188  * @work: the work to cancel
3189  *
3190  * Cancel @work and wait for its execution to finish.  This function
3191  * can be used even if the work re-queues itself or migrates to
3192  * another workqueue.  On return from this function, @work is
3193  * guaranteed to be not pending or executing on any CPU.
3194  *
3195  * cancel_work_sync(&delayed_work->work) must not be used for
3196  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3197  *
3198  * The caller must ensure that the workqueue on which @work was last
3199  * queued can't be destroyed before this function returns.
3200  *
3201  * Return:
3202  * %true if @work was pending, %false otherwise.
3203  */
cancel_work_sync(struct work_struct * work)3204 bool cancel_work_sync(struct work_struct *work)
3205 {
3206 	return __cancel_work_timer(work, false);
3207 }
3208 EXPORT_SYMBOL_GPL(cancel_work_sync);
3209 
3210 /**
3211  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3212  * @dwork: the delayed work to flush
3213  *
3214  * Delayed timer is cancelled and the pending work is queued for
3215  * immediate execution.  Like flush_work(), this function only
3216  * considers the last queueing instance of @dwork.
3217  *
3218  * Return:
3219  * %true if flush_work() waited for the work to finish execution,
3220  * %false if it was already idle.
3221  */
flush_delayed_work(struct delayed_work * dwork)3222 bool flush_delayed_work(struct delayed_work *dwork)
3223 {
3224 	local_irq_disable();
3225 	if (del_timer_sync(&dwork->timer))
3226 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3227 	local_irq_enable();
3228 	return flush_work(&dwork->work);
3229 }
3230 EXPORT_SYMBOL(flush_delayed_work);
3231 
3232 /**
3233  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3234  * @rwork: the rcu work to flush
3235  *
3236  * Return:
3237  * %true if flush_rcu_work() waited for the work to finish execution,
3238  * %false if it was already idle.
3239  */
flush_rcu_work(struct rcu_work * rwork)3240 bool flush_rcu_work(struct rcu_work *rwork)
3241 {
3242 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3243 		rcu_barrier();
3244 		flush_work(&rwork->work);
3245 		return true;
3246 	} else {
3247 		return flush_work(&rwork->work);
3248 	}
3249 }
3250 EXPORT_SYMBOL(flush_rcu_work);
3251 
__cancel_work(struct work_struct * work,bool is_dwork)3252 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3253 {
3254 	unsigned long flags;
3255 	int ret;
3256 
3257 	do {
3258 		ret = try_to_grab_pending(work, is_dwork, &flags);
3259 	} while (unlikely(ret == -EAGAIN));
3260 
3261 	if (unlikely(ret < 0))
3262 		return false;
3263 
3264 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3265 	local_irq_restore(flags);
3266 	return ret;
3267 }
3268 
3269 /*
3270  * See cancel_delayed_work()
3271  */
cancel_work(struct work_struct * work)3272 bool cancel_work(struct work_struct *work)
3273 {
3274 	return __cancel_work(work, false);
3275 }
3276 EXPORT_SYMBOL(cancel_work);
3277 
3278 /**
3279  * cancel_delayed_work - cancel a delayed work
3280  * @dwork: delayed_work to cancel
3281  *
3282  * Kill off a pending delayed_work.
3283  *
3284  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3285  * pending.
3286  *
3287  * Note:
3288  * The work callback function may still be running on return, unless
3289  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3290  * use cancel_delayed_work_sync() to wait on it.
3291  *
3292  * This function is safe to call from any context including IRQ handler.
3293  */
cancel_delayed_work(struct delayed_work * dwork)3294 bool cancel_delayed_work(struct delayed_work *dwork)
3295 {
3296 	return __cancel_work(&dwork->work, true);
3297 }
3298 EXPORT_SYMBOL(cancel_delayed_work);
3299 
3300 /**
3301  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3302  * @dwork: the delayed work cancel
3303  *
3304  * This is cancel_work_sync() for delayed works.
3305  *
3306  * Return:
3307  * %true if @dwork was pending, %false otherwise.
3308  */
cancel_delayed_work_sync(struct delayed_work * dwork)3309 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3310 {
3311 	return __cancel_work_timer(&dwork->work, true);
3312 }
3313 EXPORT_SYMBOL(cancel_delayed_work_sync);
3314 
3315 /**
3316  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3317  * @func: the function to call
3318  *
3319  * schedule_on_each_cpu() executes @func on each online CPU using the
3320  * system workqueue and blocks until all CPUs have completed.
3321  * schedule_on_each_cpu() is very slow.
3322  *
3323  * Return:
3324  * 0 on success, -errno on failure.
3325  */
schedule_on_each_cpu(work_func_t func)3326 int schedule_on_each_cpu(work_func_t func)
3327 {
3328 	int cpu;
3329 	struct work_struct __percpu *works;
3330 
3331 	works = alloc_percpu(struct work_struct);
3332 	if (!works)
3333 		return -ENOMEM;
3334 
3335 	cpus_read_lock();
3336 
3337 	for_each_online_cpu(cpu) {
3338 		struct work_struct *work = per_cpu_ptr(works, cpu);
3339 
3340 		INIT_WORK(work, func);
3341 		schedule_work_on(cpu, work);
3342 	}
3343 
3344 	for_each_online_cpu(cpu)
3345 		flush_work(per_cpu_ptr(works, cpu));
3346 
3347 	cpus_read_unlock();
3348 	free_percpu(works);
3349 	return 0;
3350 }
3351 
3352 /**
3353  * execute_in_process_context - reliably execute the routine with user context
3354  * @fn:		the function to execute
3355  * @ew:		guaranteed storage for the execute work structure (must
3356  *		be available when the work executes)
3357  *
3358  * Executes the function immediately if process context is available,
3359  * otherwise schedules the function for delayed execution.
3360  *
3361  * Return:	0 - function was executed
3362  *		1 - function was scheduled for execution
3363  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3364 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3365 {
3366 	if (!in_interrupt()) {
3367 		fn(&ew->work);
3368 		return 0;
3369 	}
3370 
3371 	INIT_WORK(&ew->work, fn);
3372 	schedule_work(&ew->work);
3373 
3374 	return 1;
3375 }
3376 EXPORT_SYMBOL_GPL(execute_in_process_context);
3377 
3378 /**
3379  * free_workqueue_attrs - free a workqueue_attrs
3380  * @attrs: workqueue_attrs to free
3381  *
3382  * Undo alloc_workqueue_attrs().
3383  */
free_workqueue_attrs(struct workqueue_attrs * attrs)3384 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3385 {
3386 	if (attrs) {
3387 		free_cpumask_var(attrs->cpumask);
3388 		kfree(attrs);
3389 	}
3390 }
3391 
3392 /**
3393  * alloc_workqueue_attrs - allocate a workqueue_attrs
3394  *
3395  * Allocate a new workqueue_attrs, initialize with default settings and
3396  * return it.
3397  *
3398  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3399  */
alloc_workqueue_attrs(void)3400 struct workqueue_attrs *alloc_workqueue_attrs(void)
3401 {
3402 	struct workqueue_attrs *attrs;
3403 
3404 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3405 	if (!attrs)
3406 		goto fail;
3407 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3408 		goto fail;
3409 
3410 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3411 	return attrs;
3412 fail:
3413 	free_workqueue_attrs(attrs);
3414 	return NULL;
3415 }
3416 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3417 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3418 				 const struct workqueue_attrs *from)
3419 {
3420 	to->nice = from->nice;
3421 	cpumask_copy(to->cpumask, from->cpumask);
3422 	/*
3423 	 * Unlike hash and equality test, this function doesn't ignore
3424 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3425 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3426 	 */
3427 	to->no_numa = from->no_numa;
3428 }
3429 
3430 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3431 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3432 {
3433 	u32 hash = 0;
3434 
3435 	hash = jhash_1word(attrs->nice, hash);
3436 	hash = jhash(cpumask_bits(attrs->cpumask),
3437 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3438 	return hash;
3439 }
3440 
3441 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3442 static bool wqattrs_equal(const struct workqueue_attrs *a,
3443 			  const struct workqueue_attrs *b)
3444 {
3445 	if (a->nice != b->nice)
3446 		return false;
3447 	if (!cpumask_equal(a->cpumask, b->cpumask))
3448 		return false;
3449 	return true;
3450 }
3451 
3452 /**
3453  * init_worker_pool - initialize a newly zalloc'd worker_pool
3454  * @pool: worker_pool to initialize
3455  *
3456  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3457  *
3458  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3459  * inside @pool proper are initialized and put_unbound_pool() can be called
3460  * on @pool safely to release it.
3461  */
init_worker_pool(struct worker_pool * pool)3462 static int init_worker_pool(struct worker_pool *pool)
3463 {
3464 	raw_spin_lock_init(&pool->lock);
3465 	pool->id = -1;
3466 	pool->cpu = -1;
3467 	pool->node = NUMA_NO_NODE;
3468 	pool->flags |= POOL_DISASSOCIATED;
3469 	pool->watchdog_ts = jiffies;
3470 	INIT_LIST_HEAD(&pool->worklist);
3471 	INIT_LIST_HEAD(&pool->idle_list);
3472 	hash_init(pool->busy_hash);
3473 
3474 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3475 
3476 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3477 
3478 	INIT_LIST_HEAD(&pool->workers);
3479 
3480 	ida_init(&pool->worker_ida);
3481 	INIT_HLIST_NODE(&pool->hash_node);
3482 	pool->refcnt = 1;
3483 
3484 	/* shouldn't fail above this point */
3485 	pool->attrs = alloc_workqueue_attrs();
3486 	if (!pool->attrs)
3487 		return -ENOMEM;
3488 	return 0;
3489 }
3490 
3491 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3492 static void wq_init_lockdep(struct workqueue_struct *wq)
3493 {
3494 	char *lock_name;
3495 
3496 	lockdep_register_key(&wq->key);
3497 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3498 	if (!lock_name)
3499 		lock_name = wq->name;
3500 
3501 	wq->lock_name = lock_name;
3502 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3503 }
3504 
wq_unregister_lockdep(struct workqueue_struct * wq)3505 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3506 {
3507 	lockdep_unregister_key(&wq->key);
3508 }
3509 
wq_free_lockdep(struct workqueue_struct * wq)3510 static void wq_free_lockdep(struct workqueue_struct *wq)
3511 {
3512 	if (wq->lock_name != wq->name)
3513 		kfree(wq->lock_name);
3514 }
3515 #else
wq_init_lockdep(struct workqueue_struct * wq)3516 static void wq_init_lockdep(struct workqueue_struct *wq)
3517 {
3518 }
3519 
wq_unregister_lockdep(struct workqueue_struct * wq)3520 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3521 {
3522 }
3523 
wq_free_lockdep(struct workqueue_struct * wq)3524 static void wq_free_lockdep(struct workqueue_struct *wq)
3525 {
3526 }
3527 #endif
3528 
rcu_free_wq(struct rcu_head * rcu)3529 static void rcu_free_wq(struct rcu_head *rcu)
3530 {
3531 	struct workqueue_struct *wq =
3532 		container_of(rcu, struct workqueue_struct, rcu);
3533 
3534 	wq_free_lockdep(wq);
3535 
3536 	if (!(wq->flags & WQ_UNBOUND))
3537 		free_percpu(wq->cpu_pwqs);
3538 	else
3539 		free_workqueue_attrs(wq->unbound_attrs);
3540 
3541 	kfree(wq);
3542 }
3543 
rcu_free_pool(struct rcu_head * rcu)3544 static void rcu_free_pool(struct rcu_head *rcu)
3545 {
3546 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3547 
3548 	ida_destroy(&pool->worker_ida);
3549 	free_workqueue_attrs(pool->attrs);
3550 	kfree(pool);
3551 }
3552 
3553 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3554 static bool wq_manager_inactive(struct worker_pool *pool)
3555 {
3556 	raw_spin_lock_irq(&pool->lock);
3557 
3558 	if (pool->flags & POOL_MANAGER_ACTIVE) {
3559 		raw_spin_unlock_irq(&pool->lock);
3560 		return false;
3561 	}
3562 	return true;
3563 }
3564 
3565 /**
3566  * put_unbound_pool - put a worker_pool
3567  * @pool: worker_pool to put
3568  *
3569  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3570  * safe manner.  get_unbound_pool() calls this function on its failure path
3571  * and this function should be able to release pools which went through,
3572  * successfully or not, init_worker_pool().
3573  *
3574  * Should be called with wq_pool_mutex held.
3575  */
put_unbound_pool(struct worker_pool * pool)3576 static void put_unbound_pool(struct worker_pool *pool)
3577 {
3578 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3579 	struct worker *worker;
3580 
3581 	lockdep_assert_held(&wq_pool_mutex);
3582 
3583 	if (--pool->refcnt)
3584 		return;
3585 
3586 	/* sanity checks */
3587 	if (WARN_ON(!(pool->cpu < 0)) ||
3588 	    WARN_ON(!list_empty(&pool->worklist)))
3589 		return;
3590 
3591 	/* release id and unhash */
3592 	if (pool->id >= 0)
3593 		idr_remove(&worker_pool_idr, pool->id);
3594 	hash_del(&pool->hash_node);
3595 
3596 	/*
3597 	 * Become the manager and destroy all workers.  This prevents
3598 	 * @pool's workers from blocking on attach_mutex.  We're the last
3599 	 * manager and @pool gets freed with the flag set.
3600 	 * Because of how wq_manager_inactive() works, we will hold the
3601 	 * spinlock after a successful wait.
3602 	 */
3603 	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3604 			   TASK_UNINTERRUPTIBLE);
3605 	pool->flags |= POOL_MANAGER_ACTIVE;
3606 
3607 	while ((worker = first_idle_worker(pool)))
3608 		destroy_worker(worker);
3609 	WARN_ON(pool->nr_workers || pool->nr_idle);
3610 	raw_spin_unlock_irq(&pool->lock);
3611 
3612 	mutex_lock(&wq_pool_attach_mutex);
3613 	if (!list_empty(&pool->workers))
3614 		pool->detach_completion = &detach_completion;
3615 	mutex_unlock(&wq_pool_attach_mutex);
3616 
3617 	if (pool->detach_completion)
3618 		wait_for_completion(pool->detach_completion);
3619 
3620 	/* shut down the timers */
3621 	del_timer_sync(&pool->idle_timer);
3622 	del_timer_sync(&pool->mayday_timer);
3623 
3624 	/* RCU protected to allow dereferences from get_work_pool() */
3625 	call_rcu(&pool->rcu, rcu_free_pool);
3626 }
3627 
3628 /**
3629  * get_unbound_pool - get a worker_pool with the specified attributes
3630  * @attrs: the attributes of the worker_pool to get
3631  *
3632  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3633  * reference count and return it.  If there already is a matching
3634  * worker_pool, it will be used; otherwise, this function attempts to
3635  * create a new one.
3636  *
3637  * Should be called with wq_pool_mutex held.
3638  *
3639  * Return: On success, a worker_pool with the same attributes as @attrs.
3640  * On failure, %NULL.
3641  */
get_unbound_pool(const struct workqueue_attrs * attrs)3642 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3643 {
3644 	u32 hash = wqattrs_hash(attrs);
3645 	struct worker_pool *pool;
3646 	int node;
3647 	int target_node = NUMA_NO_NODE;
3648 
3649 	lockdep_assert_held(&wq_pool_mutex);
3650 
3651 	/* do we already have a matching pool? */
3652 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3653 		if (wqattrs_equal(pool->attrs, attrs)) {
3654 			pool->refcnt++;
3655 			return pool;
3656 		}
3657 	}
3658 
3659 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3660 	if (wq_numa_enabled) {
3661 		for_each_node(node) {
3662 			if (cpumask_subset(attrs->cpumask,
3663 					   wq_numa_possible_cpumask[node])) {
3664 				target_node = node;
3665 				break;
3666 			}
3667 		}
3668 	}
3669 
3670 	/* nope, create a new one */
3671 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3672 	if (!pool || init_worker_pool(pool) < 0)
3673 		goto fail;
3674 
3675 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3676 	copy_workqueue_attrs(pool->attrs, attrs);
3677 	pool->node = target_node;
3678 
3679 	/*
3680 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3681 	 * 'struct workqueue_attrs' comments for detail.
3682 	 */
3683 	pool->attrs->no_numa = false;
3684 
3685 	if (worker_pool_assign_id(pool) < 0)
3686 		goto fail;
3687 
3688 	/* create and start the initial worker */
3689 	if (wq_online && !create_worker(pool))
3690 		goto fail;
3691 
3692 	/* install */
3693 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3694 
3695 	return pool;
3696 fail:
3697 	if (pool)
3698 		put_unbound_pool(pool);
3699 	return NULL;
3700 }
3701 
rcu_free_pwq(struct rcu_head * rcu)3702 static void rcu_free_pwq(struct rcu_head *rcu)
3703 {
3704 	kmem_cache_free(pwq_cache,
3705 			container_of(rcu, struct pool_workqueue, rcu));
3706 }
3707 
3708 /*
3709  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3710  * and needs to be destroyed.
3711  */
pwq_unbound_release_workfn(struct work_struct * work)3712 static void pwq_unbound_release_workfn(struct work_struct *work)
3713 {
3714 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3715 						  unbound_release_work);
3716 	struct workqueue_struct *wq = pwq->wq;
3717 	struct worker_pool *pool = pwq->pool;
3718 	bool is_last = false;
3719 
3720 	/*
3721 	 * when @pwq is not linked, it doesn't hold any reference to the
3722 	 * @wq, and @wq is invalid to access.
3723 	 */
3724 	if (!list_empty(&pwq->pwqs_node)) {
3725 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3726 			return;
3727 
3728 		mutex_lock(&wq->mutex);
3729 		list_del_rcu(&pwq->pwqs_node);
3730 		is_last = list_empty(&wq->pwqs);
3731 		mutex_unlock(&wq->mutex);
3732 	}
3733 
3734 	mutex_lock(&wq_pool_mutex);
3735 	put_unbound_pool(pool);
3736 	mutex_unlock(&wq_pool_mutex);
3737 
3738 	call_rcu(&pwq->rcu, rcu_free_pwq);
3739 
3740 	/*
3741 	 * If we're the last pwq going away, @wq is already dead and no one
3742 	 * is gonna access it anymore.  Schedule RCU free.
3743 	 */
3744 	if (is_last) {
3745 		wq_unregister_lockdep(wq);
3746 		call_rcu(&wq->rcu, rcu_free_wq);
3747 	}
3748 }
3749 
3750 /**
3751  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3752  * @pwq: target pool_workqueue
3753  *
3754  * If @pwq isn't freezing, set @pwq->max_active to the associated
3755  * workqueue's saved_max_active and activate inactive work items
3756  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3757  */
pwq_adjust_max_active(struct pool_workqueue * pwq)3758 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3759 {
3760 	struct workqueue_struct *wq = pwq->wq;
3761 	bool freezable = wq->flags & WQ_FREEZABLE;
3762 	unsigned long flags;
3763 
3764 	/* for @wq->saved_max_active */
3765 	lockdep_assert_held(&wq->mutex);
3766 
3767 	/* fast exit for non-freezable wqs */
3768 	if (!freezable && pwq->max_active == wq->saved_max_active)
3769 		return;
3770 
3771 	/* this function can be called during early boot w/ irq disabled */
3772 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3773 
3774 	/*
3775 	 * During [un]freezing, the caller is responsible for ensuring that
3776 	 * this function is called at least once after @workqueue_freezing
3777 	 * is updated and visible.
3778 	 */
3779 	if (!freezable || !workqueue_freezing) {
3780 		bool kick = false;
3781 
3782 		pwq->max_active = wq->saved_max_active;
3783 
3784 		while (!list_empty(&pwq->inactive_works) &&
3785 		       pwq->nr_active < pwq->max_active) {
3786 			pwq_activate_first_inactive(pwq);
3787 			kick = true;
3788 		}
3789 
3790 		/*
3791 		 * Need to kick a worker after thawed or an unbound wq's
3792 		 * max_active is bumped. In realtime scenarios, always kicking a
3793 		 * worker will cause interference on the isolated cpu cores, so
3794 		 * let's kick iff work items were activated.
3795 		 */
3796 		if (kick)
3797 			wake_up_worker(pwq->pool);
3798 	} else {
3799 		pwq->max_active = 0;
3800 	}
3801 
3802 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3803 }
3804 
3805 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3806 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3807 		     struct worker_pool *pool)
3808 {
3809 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3810 
3811 	memset(pwq, 0, sizeof(*pwq));
3812 
3813 	pwq->pool = pool;
3814 	pwq->wq = wq;
3815 	pwq->flush_color = -1;
3816 	pwq->refcnt = 1;
3817 	INIT_LIST_HEAD(&pwq->inactive_works);
3818 	INIT_LIST_HEAD(&pwq->pwqs_node);
3819 	INIT_LIST_HEAD(&pwq->mayday_node);
3820 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3821 }
3822 
3823 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3824 static void link_pwq(struct pool_workqueue *pwq)
3825 {
3826 	struct workqueue_struct *wq = pwq->wq;
3827 
3828 	lockdep_assert_held(&wq->mutex);
3829 
3830 	/* may be called multiple times, ignore if already linked */
3831 	if (!list_empty(&pwq->pwqs_node))
3832 		return;
3833 
3834 	/* set the matching work_color */
3835 	pwq->work_color = wq->work_color;
3836 
3837 	/* sync max_active to the current setting */
3838 	pwq_adjust_max_active(pwq);
3839 
3840 	/* link in @pwq */
3841 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3842 }
3843 
3844 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3845 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3846 					const struct workqueue_attrs *attrs)
3847 {
3848 	struct worker_pool *pool;
3849 	struct pool_workqueue *pwq;
3850 
3851 	lockdep_assert_held(&wq_pool_mutex);
3852 
3853 	pool = get_unbound_pool(attrs);
3854 	if (!pool)
3855 		return NULL;
3856 
3857 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3858 	if (!pwq) {
3859 		put_unbound_pool(pool);
3860 		return NULL;
3861 	}
3862 
3863 	init_pwq(pwq, wq, pool);
3864 	return pwq;
3865 }
3866 
3867 /**
3868  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3869  * @attrs: the wq_attrs of the default pwq of the target workqueue
3870  * @node: the target NUMA node
3871  * @cpu_going_down: if >= 0, the CPU to consider as offline
3872  * @cpumask: outarg, the resulting cpumask
3873  *
3874  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3875  * @cpu_going_down is >= 0, that cpu is considered offline during
3876  * calculation.  The result is stored in @cpumask.
3877  *
3878  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3879  * enabled and @node has online CPUs requested by @attrs, the returned
3880  * cpumask is the intersection of the possible CPUs of @node and
3881  * @attrs->cpumask.
3882  *
3883  * The caller is responsible for ensuring that the cpumask of @node stays
3884  * stable.
3885  *
3886  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3887  * %false if equal.
3888  */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3889 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3890 				 int cpu_going_down, cpumask_t *cpumask)
3891 {
3892 	if (!wq_numa_enabled || attrs->no_numa)
3893 		goto use_dfl;
3894 
3895 	/* does @node have any online CPUs @attrs wants? */
3896 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3897 	if (cpu_going_down >= 0)
3898 		cpumask_clear_cpu(cpu_going_down, cpumask);
3899 
3900 	if (cpumask_empty(cpumask))
3901 		goto use_dfl;
3902 
3903 	/* yeap, return possible CPUs in @node that @attrs wants */
3904 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3905 
3906 	if (cpumask_empty(cpumask)) {
3907 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3908 				"possible intersect\n");
3909 		return false;
3910 	}
3911 
3912 	return !cpumask_equal(cpumask, attrs->cpumask);
3913 
3914 use_dfl:
3915 	cpumask_copy(cpumask, attrs->cpumask);
3916 	return false;
3917 }
3918 
3919 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3920 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3921 						   int node,
3922 						   struct pool_workqueue *pwq)
3923 {
3924 	struct pool_workqueue *old_pwq;
3925 
3926 	lockdep_assert_held(&wq_pool_mutex);
3927 	lockdep_assert_held(&wq->mutex);
3928 
3929 	/* link_pwq() can handle duplicate calls */
3930 	link_pwq(pwq);
3931 
3932 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3933 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3934 	return old_pwq;
3935 }
3936 
3937 /* context to store the prepared attrs & pwqs before applying */
3938 struct apply_wqattrs_ctx {
3939 	struct workqueue_struct	*wq;		/* target workqueue */
3940 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3941 	struct list_head	list;		/* queued for batching commit */
3942 	struct pool_workqueue	*dfl_pwq;
3943 	struct pool_workqueue	*pwq_tbl[];
3944 };
3945 
3946 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3947 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3948 {
3949 	if (ctx) {
3950 		int node;
3951 
3952 		for_each_node(node)
3953 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3954 		put_pwq_unlocked(ctx->dfl_pwq);
3955 
3956 		free_workqueue_attrs(ctx->attrs);
3957 
3958 		kfree(ctx);
3959 	}
3960 }
3961 
3962 /* allocate the attrs and pwqs for later installation */
3963 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)3964 apply_wqattrs_prepare(struct workqueue_struct *wq,
3965 		      const struct workqueue_attrs *attrs,
3966 		      const cpumask_var_t unbound_cpumask)
3967 {
3968 	struct apply_wqattrs_ctx *ctx;
3969 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3970 	int node;
3971 
3972 	lockdep_assert_held(&wq_pool_mutex);
3973 
3974 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3975 
3976 	new_attrs = alloc_workqueue_attrs();
3977 	tmp_attrs = alloc_workqueue_attrs();
3978 	if (!ctx || !new_attrs || !tmp_attrs)
3979 		goto out_free;
3980 
3981 	/*
3982 	 * Calculate the attrs of the default pwq with unbound_cpumask
3983 	 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask.
3984 	 * If the user configured cpumask doesn't overlap with the
3985 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3986 	 */
3987 	copy_workqueue_attrs(new_attrs, attrs);
3988 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask);
3989 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3990 		cpumask_copy(new_attrs->cpumask, unbound_cpumask);
3991 
3992 	/*
3993 	 * We may create multiple pwqs with differing cpumasks.  Make a
3994 	 * copy of @new_attrs which will be modified and used to obtain
3995 	 * pools.
3996 	 */
3997 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3998 
3999 	/*
4000 	 * If something goes wrong during CPU up/down, we'll fall back to
4001 	 * the default pwq covering whole @attrs->cpumask.  Always create
4002 	 * it even if we don't use it immediately.
4003 	 */
4004 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4005 	if (!ctx->dfl_pwq)
4006 		goto out_free;
4007 
4008 	for_each_node(node) {
4009 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4010 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4011 			if (!ctx->pwq_tbl[node])
4012 				goto out_free;
4013 		} else {
4014 			ctx->dfl_pwq->refcnt++;
4015 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4016 		}
4017 	}
4018 
4019 	/* save the user configured attrs and sanitize it. */
4020 	copy_workqueue_attrs(new_attrs, attrs);
4021 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4022 	ctx->attrs = new_attrs;
4023 
4024 	ctx->wq = wq;
4025 	free_workqueue_attrs(tmp_attrs);
4026 	return ctx;
4027 
4028 out_free:
4029 	free_workqueue_attrs(tmp_attrs);
4030 	free_workqueue_attrs(new_attrs);
4031 	apply_wqattrs_cleanup(ctx);
4032 	return NULL;
4033 }
4034 
4035 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)4036 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4037 {
4038 	int node;
4039 
4040 	/* all pwqs have been created successfully, let's install'em */
4041 	mutex_lock(&ctx->wq->mutex);
4042 
4043 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4044 
4045 	/* save the previous pwq and install the new one */
4046 	for_each_node(node)
4047 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4048 							  ctx->pwq_tbl[node]);
4049 
4050 	/* @dfl_pwq might not have been used, ensure it's linked */
4051 	link_pwq(ctx->dfl_pwq);
4052 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4053 
4054 	mutex_unlock(&ctx->wq->mutex);
4055 }
4056 
apply_wqattrs_lock(void)4057 static void apply_wqattrs_lock(void)
4058 {
4059 	/* CPUs should stay stable across pwq creations and installations */
4060 	cpus_read_lock();
4061 	mutex_lock(&wq_pool_mutex);
4062 }
4063 
apply_wqattrs_unlock(void)4064 static void apply_wqattrs_unlock(void)
4065 {
4066 	mutex_unlock(&wq_pool_mutex);
4067 	cpus_read_unlock();
4068 }
4069 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4070 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4071 					const struct workqueue_attrs *attrs)
4072 {
4073 	struct apply_wqattrs_ctx *ctx;
4074 
4075 	/* only unbound workqueues can change attributes */
4076 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4077 		return -EINVAL;
4078 
4079 	/* creating multiple pwqs breaks ordering guarantee */
4080 	if (!list_empty(&wq->pwqs)) {
4081 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4082 			return -EINVAL;
4083 
4084 		wq->flags &= ~__WQ_ORDERED;
4085 	}
4086 
4087 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4088 	if (!ctx)
4089 		return -ENOMEM;
4090 
4091 	/* the ctx has been prepared successfully, let's commit it */
4092 	apply_wqattrs_commit(ctx);
4093 	apply_wqattrs_cleanup(ctx);
4094 
4095 	return 0;
4096 }
4097 
4098 /**
4099  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4100  * @wq: the target workqueue
4101  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4102  *
4103  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4104  * machines, this function maps a separate pwq to each NUMA node with
4105  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4106  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4107  * items finish.  Note that a work item which repeatedly requeues itself
4108  * back-to-back will stay on its current pwq.
4109  *
4110  * Performs GFP_KERNEL allocations.
4111  *
4112  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4113  *
4114  * Return: 0 on success and -errno on failure.
4115  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4116 int apply_workqueue_attrs(struct workqueue_struct *wq,
4117 			  const struct workqueue_attrs *attrs)
4118 {
4119 	int ret;
4120 
4121 	lockdep_assert_cpus_held();
4122 
4123 	mutex_lock(&wq_pool_mutex);
4124 	ret = apply_workqueue_attrs_locked(wq, attrs);
4125 	mutex_unlock(&wq_pool_mutex);
4126 
4127 	return ret;
4128 }
4129 
4130 /**
4131  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4132  * @wq: the target workqueue
4133  * @cpu: the CPU coming up or going down
4134  * @online: whether @cpu is coming up or going down
4135  *
4136  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4137  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4138  * @wq accordingly.
4139  *
4140  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4141  * falls back to @wq->dfl_pwq which may not be optimal but is always
4142  * correct.
4143  *
4144  * Note that when the last allowed CPU of a NUMA node goes offline for a
4145  * workqueue with a cpumask spanning multiple nodes, the workers which were
4146  * already executing the work items for the workqueue will lose their CPU
4147  * affinity and may execute on any CPU.  This is similar to how per-cpu
4148  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4149  * affinity, it's the user's responsibility to flush the work item from
4150  * CPU_DOWN_PREPARE.
4151  */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4152 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4153 				   bool online)
4154 {
4155 	int node = cpu_to_node(cpu);
4156 	int cpu_off = online ? -1 : cpu;
4157 	struct pool_workqueue *old_pwq = NULL, *pwq;
4158 	struct workqueue_attrs *target_attrs;
4159 	cpumask_t *cpumask;
4160 
4161 	lockdep_assert_held(&wq_pool_mutex);
4162 
4163 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4164 	    wq->unbound_attrs->no_numa)
4165 		return;
4166 
4167 	/*
4168 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4169 	 * Let's use a preallocated one.  The following buf is protected by
4170 	 * CPU hotplug exclusion.
4171 	 */
4172 	target_attrs = wq_update_unbound_numa_attrs_buf;
4173 	cpumask = target_attrs->cpumask;
4174 
4175 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4176 	pwq = unbound_pwq_by_node(wq, node);
4177 
4178 	/*
4179 	 * Let's determine what needs to be done.  If the target cpumask is
4180 	 * different from the default pwq's, we need to compare it to @pwq's
4181 	 * and create a new one if they don't match.  If the target cpumask
4182 	 * equals the default pwq's, the default pwq should be used.
4183 	 */
4184 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4185 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4186 			return;
4187 	} else {
4188 		goto use_dfl_pwq;
4189 	}
4190 
4191 	/* create a new pwq */
4192 	pwq = alloc_unbound_pwq(wq, target_attrs);
4193 	if (!pwq) {
4194 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4195 			wq->name);
4196 		goto use_dfl_pwq;
4197 	}
4198 
4199 	/* Install the new pwq. */
4200 	mutex_lock(&wq->mutex);
4201 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4202 	goto out_unlock;
4203 
4204 use_dfl_pwq:
4205 	mutex_lock(&wq->mutex);
4206 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4207 	get_pwq(wq->dfl_pwq);
4208 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4209 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4210 out_unlock:
4211 	mutex_unlock(&wq->mutex);
4212 	put_pwq_unlocked(old_pwq);
4213 }
4214 
alloc_and_link_pwqs(struct workqueue_struct * wq)4215 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4216 {
4217 	bool highpri = wq->flags & WQ_HIGHPRI;
4218 	int cpu, ret;
4219 
4220 	if (!(wq->flags & WQ_UNBOUND)) {
4221 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4222 		if (!wq->cpu_pwqs)
4223 			return -ENOMEM;
4224 
4225 		for_each_possible_cpu(cpu) {
4226 			struct pool_workqueue *pwq =
4227 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4228 			struct worker_pool *cpu_pools =
4229 				per_cpu(cpu_worker_pools, cpu);
4230 
4231 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4232 
4233 			mutex_lock(&wq->mutex);
4234 			link_pwq(pwq);
4235 			mutex_unlock(&wq->mutex);
4236 		}
4237 		return 0;
4238 	}
4239 
4240 	cpus_read_lock();
4241 	if (wq->flags & __WQ_ORDERED) {
4242 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4243 		/* there should only be single pwq for ordering guarantee */
4244 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4245 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4246 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4247 	} else {
4248 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4249 	}
4250 	cpus_read_unlock();
4251 
4252 	return ret;
4253 }
4254 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4255 static int wq_clamp_max_active(int max_active, unsigned int flags,
4256 			       const char *name)
4257 {
4258 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4259 
4260 	if (max_active < 1 || max_active > lim)
4261 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4262 			max_active, name, 1, lim);
4263 
4264 	return clamp_val(max_active, 1, lim);
4265 }
4266 
4267 /*
4268  * Workqueues which may be used during memory reclaim should have a rescuer
4269  * to guarantee forward progress.
4270  */
init_rescuer(struct workqueue_struct * wq)4271 static int init_rescuer(struct workqueue_struct *wq)
4272 {
4273 	struct worker *rescuer;
4274 	int ret;
4275 
4276 	if (!(wq->flags & WQ_MEM_RECLAIM))
4277 		return 0;
4278 
4279 	rescuer = alloc_worker(NUMA_NO_NODE);
4280 	if (!rescuer)
4281 		return -ENOMEM;
4282 
4283 	rescuer->rescue_wq = wq;
4284 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4285 	if (IS_ERR(rescuer->task)) {
4286 		ret = PTR_ERR(rescuer->task);
4287 		kfree(rescuer);
4288 		return ret;
4289 	}
4290 
4291 	wq->rescuer = rescuer;
4292 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4293 	wake_up_process(rescuer->task);
4294 
4295 	return 0;
4296 }
4297 
4298 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4299 struct workqueue_struct *alloc_workqueue(const char *fmt,
4300 					 unsigned int flags,
4301 					 int max_active, ...)
4302 {
4303 	size_t tbl_size = 0;
4304 	va_list args;
4305 	struct workqueue_struct *wq;
4306 	struct pool_workqueue *pwq;
4307 
4308 	/*
4309 	 * Unbound && max_active == 1 used to imply ordered, which is no
4310 	 * longer the case on NUMA machines due to per-node pools.  While
4311 	 * alloc_ordered_workqueue() is the right way to create an ordered
4312 	 * workqueue, keep the previous behavior to avoid subtle breakages
4313 	 * on NUMA.
4314 	 */
4315 	if ((flags & WQ_UNBOUND) && max_active == 1)
4316 		flags |= __WQ_ORDERED;
4317 
4318 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4319 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4320 		flags |= WQ_UNBOUND;
4321 
4322 	/* allocate wq and format name */
4323 	if (flags & WQ_UNBOUND)
4324 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4325 
4326 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4327 	if (!wq)
4328 		return NULL;
4329 
4330 	if (flags & WQ_UNBOUND) {
4331 		wq->unbound_attrs = alloc_workqueue_attrs();
4332 		if (!wq->unbound_attrs)
4333 			goto err_free_wq;
4334 	}
4335 
4336 	va_start(args, max_active);
4337 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4338 	va_end(args);
4339 
4340 	max_active = max_active ?: WQ_DFL_ACTIVE;
4341 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4342 
4343 	/* init wq */
4344 	wq->flags = flags;
4345 	wq->saved_max_active = max_active;
4346 	mutex_init(&wq->mutex);
4347 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4348 	INIT_LIST_HEAD(&wq->pwqs);
4349 	INIT_LIST_HEAD(&wq->flusher_queue);
4350 	INIT_LIST_HEAD(&wq->flusher_overflow);
4351 	INIT_LIST_HEAD(&wq->maydays);
4352 
4353 	wq_init_lockdep(wq);
4354 	INIT_LIST_HEAD(&wq->list);
4355 
4356 	if (alloc_and_link_pwqs(wq) < 0)
4357 		goto err_unreg_lockdep;
4358 
4359 	if (wq_online && init_rescuer(wq) < 0)
4360 		goto err_destroy;
4361 
4362 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4363 		goto err_destroy;
4364 
4365 	/*
4366 	 * wq_pool_mutex protects global freeze state and workqueues list.
4367 	 * Grab it, adjust max_active and add the new @wq to workqueues
4368 	 * list.
4369 	 */
4370 	mutex_lock(&wq_pool_mutex);
4371 
4372 	mutex_lock(&wq->mutex);
4373 	for_each_pwq(pwq, wq)
4374 		pwq_adjust_max_active(pwq);
4375 	mutex_unlock(&wq->mutex);
4376 
4377 	list_add_tail_rcu(&wq->list, &workqueues);
4378 
4379 	mutex_unlock(&wq_pool_mutex);
4380 
4381 	return wq;
4382 
4383 err_unreg_lockdep:
4384 	wq_unregister_lockdep(wq);
4385 	wq_free_lockdep(wq);
4386 err_free_wq:
4387 	free_workqueue_attrs(wq->unbound_attrs);
4388 	kfree(wq);
4389 	return NULL;
4390 err_destroy:
4391 	destroy_workqueue(wq);
4392 	return NULL;
4393 }
4394 EXPORT_SYMBOL_GPL(alloc_workqueue);
4395 
pwq_busy(struct pool_workqueue * pwq)4396 static bool pwq_busy(struct pool_workqueue *pwq)
4397 {
4398 	int i;
4399 
4400 	for (i = 0; i < WORK_NR_COLORS; i++)
4401 		if (pwq->nr_in_flight[i])
4402 			return true;
4403 
4404 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4405 		return true;
4406 	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4407 		return true;
4408 
4409 	return false;
4410 }
4411 
4412 /**
4413  * destroy_workqueue - safely terminate a workqueue
4414  * @wq: target workqueue
4415  *
4416  * Safely destroy a workqueue. All work currently pending will be done first.
4417  */
destroy_workqueue(struct workqueue_struct * wq)4418 void destroy_workqueue(struct workqueue_struct *wq)
4419 {
4420 	struct pool_workqueue *pwq;
4421 	int node;
4422 
4423 	/*
4424 	 * Remove it from sysfs first so that sanity check failure doesn't
4425 	 * lead to sysfs name conflicts.
4426 	 */
4427 	workqueue_sysfs_unregister(wq);
4428 
4429 	/* drain it before proceeding with destruction */
4430 	drain_workqueue(wq);
4431 
4432 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4433 	if (wq->rescuer) {
4434 		struct worker *rescuer = wq->rescuer;
4435 
4436 		/* this prevents new queueing */
4437 		raw_spin_lock_irq(&wq_mayday_lock);
4438 		wq->rescuer = NULL;
4439 		raw_spin_unlock_irq(&wq_mayday_lock);
4440 
4441 		/* rescuer will empty maydays list before exiting */
4442 		kthread_stop(rescuer->task);
4443 		kfree(rescuer);
4444 	}
4445 
4446 	/*
4447 	 * Sanity checks - grab all the locks so that we wait for all
4448 	 * in-flight operations which may do put_pwq().
4449 	 */
4450 	mutex_lock(&wq_pool_mutex);
4451 	mutex_lock(&wq->mutex);
4452 	for_each_pwq(pwq, wq) {
4453 		raw_spin_lock_irq(&pwq->pool->lock);
4454 		if (WARN_ON(pwq_busy(pwq))) {
4455 			pr_warn("%s: %s has the following busy pwq\n",
4456 				__func__, wq->name);
4457 			show_pwq(pwq);
4458 			raw_spin_unlock_irq(&pwq->pool->lock);
4459 			mutex_unlock(&wq->mutex);
4460 			mutex_unlock(&wq_pool_mutex);
4461 			show_one_workqueue(wq);
4462 			return;
4463 		}
4464 		raw_spin_unlock_irq(&pwq->pool->lock);
4465 	}
4466 	mutex_unlock(&wq->mutex);
4467 
4468 	/*
4469 	 * wq list is used to freeze wq, remove from list after
4470 	 * flushing is complete in case freeze races us.
4471 	 */
4472 	list_del_rcu(&wq->list);
4473 	mutex_unlock(&wq_pool_mutex);
4474 
4475 	if (!(wq->flags & WQ_UNBOUND)) {
4476 		wq_unregister_lockdep(wq);
4477 		/*
4478 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4479 		 * schedule RCU free.
4480 		 */
4481 		call_rcu(&wq->rcu, rcu_free_wq);
4482 	} else {
4483 		/*
4484 		 * We're the sole accessor of @wq at this point.  Directly
4485 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4486 		 * @wq will be freed when the last pwq is released.
4487 		 */
4488 		for_each_node(node) {
4489 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4490 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4491 			put_pwq_unlocked(pwq);
4492 		}
4493 
4494 		/*
4495 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4496 		 * put.  Don't access it afterwards.
4497 		 */
4498 		pwq = wq->dfl_pwq;
4499 		wq->dfl_pwq = NULL;
4500 		put_pwq_unlocked(pwq);
4501 	}
4502 }
4503 EXPORT_SYMBOL_GPL(destroy_workqueue);
4504 
4505 /**
4506  * workqueue_set_max_active - adjust max_active of a workqueue
4507  * @wq: target workqueue
4508  * @max_active: new max_active value.
4509  *
4510  * Set max_active of @wq to @max_active.
4511  *
4512  * CONTEXT:
4513  * Don't call from IRQ context.
4514  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4515 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4516 {
4517 	struct pool_workqueue *pwq;
4518 
4519 	/* disallow meddling with max_active for ordered workqueues */
4520 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4521 		return;
4522 
4523 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4524 
4525 	mutex_lock(&wq->mutex);
4526 
4527 	wq->flags &= ~__WQ_ORDERED;
4528 	wq->saved_max_active = max_active;
4529 
4530 	for_each_pwq(pwq, wq)
4531 		pwq_adjust_max_active(pwq);
4532 
4533 	mutex_unlock(&wq->mutex);
4534 }
4535 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4536 
4537 /**
4538  * current_work - retrieve %current task's work struct
4539  *
4540  * Determine if %current task is a workqueue worker and what it's working on.
4541  * Useful to find out the context that the %current task is running in.
4542  *
4543  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4544  */
current_work(void)4545 struct work_struct *current_work(void)
4546 {
4547 	struct worker *worker = current_wq_worker();
4548 
4549 	return worker ? worker->current_work : NULL;
4550 }
4551 EXPORT_SYMBOL(current_work);
4552 
4553 /**
4554  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4555  *
4556  * Determine whether %current is a workqueue rescuer.  Can be used from
4557  * work functions to determine whether it's being run off the rescuer task.
4558  *
4559  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4560  */
current_is_workqueue_rescuer(void)4561 bool current_is_workqueue_rescuer(void)
4562 {
4563 	struct worker *worker = current_wq_worker();
4564 
4565 	return worker && worker->rescue_wq;
4566 }
4567 
4568 /**
4569  * workqueue_congested - test whether a workqueue is congested
4570  * @cpu: CPU in question
4571  * @wq: target workqueue
4572  *
4573  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4574  * no synchronization around this function and the test result is
4575  * unreliable and only useful as advisory hints or for debugging.
4576  *
4577  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4578  * Note that both per-cpu and unbound workqueues may be associated with
4579  * multiple pool_workqueues which have separate congested states.  A
4580  * workqueue being congested on one CPU doesn't mean the workqueue is also
4581  * contested on other CPUs / NUMA nodes.
4582  *
4583  * Return:
4584  * %true if congested, %false otherwise.
4585  */
workqueue_congested(int cpu,struct workqueue_struct * wq)4586 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4587 {
4588 	struct pool_workqueue *pwq;
4589 	bool ret;
4590 
4591 	rcu_read_lock();
4592 	preempt_disable();
4593 
4594 	if (cpu == WORK_CPU_UNBOUND)
4595 		cpu = smp_processor_id();
4596 
4597 	if (!(wq->flags & WQ_UNBOUND))
4598 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4599 	else
4600 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4601 
4602 	ret = !list_empty(&pwq->inactive_works);
4603 	preempt_enable();
4604 	rcu_read_unlock();
4605 
4606 	return ret;
4607 }
4608 EXPORT_SYMBOL_GPL(workqueue_congested);
4609 
4610 /**
4611  * work_busy - test whether a work is currently pending or running
4612  * @work: the work to be tested
4613  *
4614  * Test whether @work is currently pending or running.  There is no
4615  * synchronization around this function and the test result is
4616  * unreliable and only useful as advisory hints or for debugging.
4617  *
4618  * Return:
4619  * OR'd bitmask of WORK_BUSY_* bits.
4620  */
work_busy(struct work_struct * work)4621 unsigned int work_busy(struct work_struct *work)
4622 {
4623 	struct worker_pool *pool;
4624 	unsigned long flags;
4625 	unsigned int ret = 0;
4626 
4627 	if (work_pending(work))
4628 		ret |= WORK_BUSY_PENDING;
4629 
4630 	rcu_read_lock();
4631 	pool = get_work_pool(work);
4632 	if (pool) {
4633 		raw_spin_lock_irqsave(&pool->lock, flags);
4634 		if (find_worker_executing_work(pool, work))
4635 			ret |= WORK_BUSY_RUNNING;
4636 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4637 	}
4638 	rcu_read_unlock();
4639 
4640 	return ret;
4641 }
4642 EXPORT_SYMBOL_GPL(work_busy);
4643 
4644 /**
4645  * set_worker_desc - set description for the current work item
4646  * @fmt: printf-style format string
4647  * @...: arguments for the format string
4648  *
4649  * This function can be called by a running work function to describe what
4650  * the work item is about.  If the worker task gets dumped, this
4651  * information will be printed out together to help debugging.  The
4652  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4653  */
set_worker_desc(const char * fmt,...)4654 void set_worker_desc(const char *fmt, ...)
4655 {
4656 	struct worker *worker = current_wq_worker();
4657 	va_list args;
4658 
4659 	if (worker) {
4660 		va_start(args, fmt);
4661 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4662 		va_end(args);
4663 	}
4664 }
4665 EXPORT_SYMBOL_GPL(set_worker_desc);
4666 
4667 /**
4668  * print_worker_info - print out worker information and description
4669  * @log_lvl: the log level to use when printing
4670  * @task: target task
4671  *
4672  * If @task is a worker and currently executing a work item, print out the
4673  * name of the workqueue being serviced and worker description set with
4674  * set_worker_desc() by the currently executing work item.
4675  *
4676  * This function can be safely called on any task as long as the
4677  * task_struct itself is accessible.  While safe, this function isn't
4678  * synchronized and may print out mixups or garbages of limited length.
4679  */
print_worker_info(const char * log_lvl,struct task_struct * task)4680 void print_worker_info(const char *log_lvl, struct task_struct *task)
4681 {
4682 	work_func_t *fn = NULL;
4683 	char name[WQ_NAME_LEN] = { };
4684 	char desc[WORKER_DESC_LEN] = { };
4685 	struct pool_workqueue *pwq = NULL;
4686 	struct workqueue_struct *wq = NULL;
4687 	struct worker *worker;
4688 
4689 	if (!(task->flags & PF_WQ_WORKER))
4690 		return;
4691 
4692 	/*
4693 	 * This function is called without any synchronization and @task
4694 	 * could be in any state.  Be careful with dereferences.
4695 	 */
4696 	worker = kthread_probe_data(task);
4697 
4698 	/*
4699 	 * Carefully copy the associated workqueue's workfn, name and desc.
4700 	 * Keep the original last '\0' in case the original is garbage.
4701 	 */
4702 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4703 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4704 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4705 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4706 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4707 
4708 	if (fn || name[0] || desc[0]) {
4709 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4710 		if (strcmp(name, desc))
4711 			pr_cont(" (%s)", desc);
4712 		pr_cont("\n");
4713 	}
4714 }
4715 
pr_cont_pool_info(struct worker_pool * pool)4716 static void pr_cont_pool_info(struct worker_pool *pool)
4717 {
4718 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4719 	if (pool->node != NUMA_NO_NODE)
4720 		pr_cont(" node=%d", pool->node);
4721 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4722 }
4723 
pr_cont_work(bool comma,struct work_struct * work)4724 static void pr_cont_work(bool comma, struct work_struct *work)
4725 {
4726 	if (work->func == wq_barrier_func) {
4727 		struct wq_barrier *barr;
4728 
4729 		barr = container_of(work, struct wq_barrier, work);
4730 
4731 		pr_cont("%s BAR(%d)", comma ? "," : "",
4732 			task_pid_nr(barr->task));
4733 	} else {
4734 		pr_cont("%s %ps", comma ? "," : "", work->func);
4735 	}
4736 }
4737 
show_pwq(struct pool_workqueue * pwq)4738 static void show_pwq(struct pool_workqueue *pwq)
4739 {
4740 	struct worker_pool *pool = pwq->pool;
4741 	struct work_struct *work;
4742 	struct worker *worker;
4743 	bool has_in_flight = false, has_pending = false;
4744 	int bkt;
4745 
4746 	pr_info("  pwq %d:", pool->id);
4747 	pr_cont_pool_info(pool);
4748 
4749 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4750 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4751 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4752 
4753 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4754 		if (worker->current_pwq == pwq) {
4755 			has_in_flight = true;
4756 			break;
4757 		}
4758 	}
4759 	if (has_in_flight) {
4760 		bool comma = false;
4761 
4762 		pr_info("    in-flight:");
4763 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4764 			if (worker->current_pwq != pwq)
4765 				continue;
4766 
4767 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4768 				task_pid_nr(worker->task),
4769 				worker->rescue_wq ? "(RESCUER)" : "",
4770 				worker->current_func);
4771 			list_for_each_entry(work, &worker->scheduled, entry)
4772 				pr_cont_work(false, work);
4773 			comma = true;
4774 		}
4775 		pr_cont("\n");
4776 	}
4777 
4778 	list_for_each_entry(work, &pool->worklist, entry) {
4779 		if (get_work_pwq(work) == pwq) {
4780 			has_pending = true;
4781 			break;
4782 		}
4783 	}
4784 	if (has_pending) {
4785 		bool comma = false;
4786 
4787 		pr_info("    pending:");
4788 		list_for_each_entry(work, &pool->worklist, entry) {
4789 			if (get_work_pwq(work) != pwq)
4790 				continue;
4791 
4792 			pr_cont_work(comma, work);
4793 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4794 		}
4795 		pr_cont("\n");
4796 	}
4797 
4798 	if (!list_empty(&pwq->inactive_works)) {
4799 		bool comma = false;
4800 
4801 		pr_info("    inactive:");
4802 		list_for_each_entry(work, &pwq->inactive_works, entry) {
4803 			pr_cont_work(comma, work);
4804 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4805 		}
4806 		pr_cont("\n");
4807 	}
4808 }
4809 
4810 /**
4811  * show_one_workqueue - dump state of specified workqueue
4812  * @wq: workqueue whose state will be printed
4813  */
show_one_workqueue(struct workqueue_struct * wq)4814 void show_one_workqueue(struct workqueue_struct *wq)
4815 {
4816 	struct pool_workqueue *pwq;
4817 	bool idle = true;
4818 	unsigned long flags;
4819 
4820 	for_each_pwq(pwq, wq) {
4821 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4822 			idle = false;
4823 			break;
4824 		}
4825 	}
4826 	if (idle) /* Nothing to print for idle workqueue */
4827 		return;
4828 
4829 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4830 
4831 	for_each_pwq(pwq, wq) {
4832 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4833 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4834 			/*
4835 			 * Defer printing to avoid deadlocks in console
4836 			 * drivers that queue work while holding locks
4837 			 * also taken in their write paths.
4838 			 */
4839 			printk_deferred_enter();
4840 			show_pwq(pwq);
4841 			printk_deferred_exit();
4842 		}
4843 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4844 		/*
4845 		 * We could be printing a lot from atomic context, e.g.
4846 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
4847 		 * hard lockup.
4848 		 */
4849 		touch_nmi_watchdog();
4850 	}
4851 
4852 }
4853 
4854 /**
4855  * show_one_worker_pool - dump state of specified worker pool
4856  * @pool: worker pool whose state will be printed
4857  */
show_one_worker_pool(struct worker_pool * pool)4858 static void show_one_worker_pool(struct worker_pool *pool)
4859 {
4860 	struct worker *worker;
4861 	bool first = true;
4862 	unsigned long flags;
4863 	unsigned long hung = 0;
4864 
4865 	raw_spin_lock_irqsave(&pool->lock, flags);
4866 	if (pool->nr_workers == pool->nr_idle)
4867 		goto next_pool;
4868 
4869 	/* How long the first pending work is waiting for a worker. */
4870 	if (!list_empty(&pool->worklist))
4871 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
4872 
4873 	/*
4874 	 * Defer printing to avoid deadlocks in console drivers that
4875 	 * queue work while holding locks also taken in their write
4876 	 * paths.
4877 	 */
4878 	printk_deferred_enter();
4879 	pr_info("pool %d:", pool->id);
4880 	pr_cont_pool_info(pool);
4881 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
4882 	if (pool->manager)
4883 		pr_cont(" manager: %d",
4884 			task_pid_nr(pool->manager->task));
4885 	list_for_each_entry(worker, &pool->idle_list, entry) {
4886 		pr_cont(" %s%d", first ? "idle: " : "",
4887 			task_pid_nr(worker->task));
4888 		first = false;
4889 	}
4890 	pr_cont("\n");
4891 	printk_deferred_exit();
4892 next_pool:
4893 	raw_spin_unlock_irqrestore(&pool->lock, flags);
4894 	/*
4895 	 * We could be printing a lot from atomic context, e.g.
4896 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
4897 	 * hard lockup.
4898 	 */
4899 	touch_nmi_watchdog();
4900 
4901 }
4902 
4903 /**
4904  * show_all_workqueues - dump workqueue state
4905  *
4906  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4907  * all busy workqueues and pools.
4908  */
show_all_workqueues(void)4909 void show_all_workqueues(void)
4910 {
4911 	struct workqueue_struct *wq;
4912 	struct worker_pool *pool;
4913 	int pi;
4914 
4915 	rcu_read_lock();
4916 
4917 	pr_info("Showing busy workqueues and worker pools:\n");
4918 
4919 	list_for_each_entry_rcu(wq, &workqueues, list)
4920 		show_one_workqueue(wq);
4921 
4922 	for_each_pool(pool, pi)
4923 		show_one_worker_pool(pool);
4924 
4925 	rcu_read_unlock();
4926 }
4927 
4928 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4929 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4930 {
4931 	int off;
4932 
4933 	/* always show the actual comm */
4934 	off = strscpy(buf, task->comm, size);
4935 	if (off < 0)
4936 		return;
4937 
4938 	/* stabilize PF_WQ_WORKER and worker pool association */
4939 	mutex_lock(&wq_pool_attach_mutex);
4940 
4941 	if (task->flags & PF_WQ_WORKER) {
4942 		struct worker *worker = kthread_data(task);
4943 		struct worker_pool *pool = worker->pool;
4944 
4945 		if (pool) {
4946 			raw_spin_lock_irq(&pool->lock);
4947 			/*
4948 			 * ->desc tracks information (wq name or
4949 			 * set_worker_desc()) for the latest execution.  If
4950 			 * current, prepend '+', otherwise '-'.
4951 			 */
4952 			if (worker->desc[0] != '\0') {
4953 				if (worker->current_work)
4954 					scnprintf(buf + off, size - off, "+%s",
4955 						  worker->desc);
4956 				else
4957 					scnprintf(buf + off, size - off, "-%s",
4958 						  worker->desc);
4959 			}
4960 			raw_spin_unlock_irq(&pool->lock);
4961 		}
4962 	}
4963 
4964 	mutex_unlock(&wq_pool_attach_mutex);
4965 }
4966 EXPORT_SYMBOL_GPL(wq_worker_comm);
4967 
4968 #ifdef CONFIG_SMP
4969 
4970 /*
4971  * CPU hotplug.
4972  *
4973  * There are two challenges in supporting CPU hotplug.  Firstly, there
4974  * are a lot of assumptions on strong associations among work, pwq and
4975  * pool which make migrating pending and scheduled works very
4976  * difficult to implement without impacting hot paths.  Secondly,
4977  * worker pools serve mix of short, long and very long running works making
4978  * blocked draining impractical.
4979  *
4980  * This is solved by allowing the pools to be disassociated from the CPU
4981  * running as an unbound one and allowing it to be reattached later if the
4982  * cpu comes back online.
4983  */
4984 
unbind_workers(int cpu)4985 static void unbind_workers(int cpu)
4986 {
4987 	struct worker_pool *pool;
4988 	struct worker *worker;
4989 
4990 	for_each_cpu_worker_pool(pool, cpu) {
4991 		mutex_lock(&wq_pool_attach_mutex);
4992 		raw_spin_lock_irq(&pool->lock);
4993 
4994 		/*
4995 		 * We've blocked all attach/detach operations. Make all workers
4996 		 * unbound and set DISASSOCIATED.  Before this, all workers
4997 		 * must be on the cpu.  After this, they may become diasporas.
4998 		 * And the preemption disabled section in their sched callbacks
4999 		 * are guaranteed to see WORKER_UNBOUND since the code here
5000 		 * is on the same cpu.
5001 		 */
5002 		for_each_pool_worker(worker, pool)
5003 			worker->flags |= WORKER_UNBOUND;
5004 
5005 		pool->flags |= POOL_DISASSOCIATED;
5006 
5007 		/*
5008 		 * The handling of nr_running in sched callbacks are disabled
5009 		 * now.  Zap nr_running.  After this, nr_running stays zero and
5010 		 * need_more_worker() and keep_working() are always true as
5011 		 * long as the worklist is not empty.  This pool now behaves as
5012 		 * an unbound (in terms of concurrency management) pool which
5013 		 * are served by workers tied to the pool.
5014 		 */
5015 		pool->nr_running = 0;
5016 
5017 		/*
5018 		 * With concurrency management just turned off, a busy
5019 		 * worker blocking could lead to lengthy stalls.  Kick off
5020 		 * unbound chain execution of currently pending work items.
5021 		 */
5022 		wake_up_worker(pool);
5023 
5024 		raw_spin_unlock_irq(&pool->lock);
5025 
5026 		for_each_pool_worker(worker, pool) {
5027 			kthread_set_per_cpu(worker->task, -1);
5028 			if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
5029 				WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
5030 			else
5031 				WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
5032 		}
5033 
5034 		mutex_unlock(&wq_pool_attach_mutex);
5035 	}
5036 }
5037 
5038 /**
5039  * rebind_workers - rebind all workers of a pool to the associated CPU
5040  * @pool: pool of interest
5041  *
5042  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5043  */
rebind_workers(struct worker_pool * pool)5044 static void rebind_workers(struct worker_pool *pool)
5045 {
5046 	struct worker *worker;
5047 
5048 	lockdep_assert_held(&wq_pool_attach_mutex);
5049 
5050 	/*
5051 	 * Restore CPU affinity of all workers.  As all idle workers should
5052 	 * be on the run-queue of the associated CPU before any local
5053 	 * wake-ups for concurrency management happen, restore CPU affinity
5054 	 * of all workers first and then clear UNBOUND.  As we're called
5055 	 * from CPU_ONLINE, the following shouldn't fail.
5056 	 */
5057 	for_each_pool_worker(worker, pool) {
5058 		kthread_set_per_cpu(worker->task, pool->cpu);
5059 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5060 						  pool->attrs->cpumask) < 0);
5061 	}
5062 
5063 	raw_spin_lock_irq(&pool->lock);
5064 
5065 	pool->flags &= ~POOL_DISASSOCIATED;
5066 
5067 	for_each_pool_worker(worker, pool) {
5068 		unsigned int worker_flags = worker->flags;
5069 
5070 		/*
5071 		 * We want to clear UNBOUND but can't directly call
5072 		 * worker_clr_flags() or adjust nr_running.  Atomically
5073 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5074 		 * @worker will clear REBOUND using worker_clr_flags() when
5075 		 * it initiates the next execution cycle thus restoring
5076 		 * concurrency management.  Note that when or whether
5077 		 * @worker clears REBOUND doesn't affect correctness.
5078 		 *
5079 		 * WRITE_ONCE() is necessary because @worker->flags may be
5080 		 * tested without holding any lock in
5081 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5082 		 * fail incorrectly leading to premature concurrency
5083 		 * management operations.
5084 		 */
5085 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5086 		worker_flags |= WORKER_REBOUND;
5087 		worker_flags &= ~WORKER_UNBOUND;
5088 		WRITE_ONCE(worker->flags, worker_flags);
5089 	}
5090 
5091 	raw_spin_unlock_irq(&pool->lock);
5092 }
5093 
5094 /**
5095  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5096  * @pool: unbound pool of interest
5097  * @cpu: the CPU which is coming up
5098  *
5099  * An unbound pool may end up with a cpumask which doesn't have any online
5100  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5101  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5102  * online CPU before, cpus_allowed of all its workers should be restored.
5103  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5104 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5105 {
5106 	static cpumask_t cpumask;
5107 	struct worker *worker;
5108 
5109 	lockdep_assert_held(&wq_pool_attach_mutex);
5110 
5111 	/* is @cpu allowed for @pool? */
5112 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5113 		return;
5114 
5115 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5116 
5117 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5118 	for_each_pool_worker(worker, pool)
5119 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5120 }
5121 
workqueue_prepare_cpu(unsigned int cpu)5122 int workqueue_prepare_cpu(unsigned int cpu)
5123 {
5124 	struct worker_pool *pool;
5125 
5126 	for_each_cpu_worker_pool(pool, cpu) {
5127 		if (pool->nr_workers)
5128 			continue;
5129 		if (!create_worker(pool))
5130 			return -ENOMEM;
5131 	}
5132 	return 0;
5133 }
5134 
workqueue_online_cpu(unsigned int cpu)5135 int workqueue_online_cpu(unsigned int cpu)
5136 {
5137 	struct worker_pool *pool;
5138 	struct workqueue_struct *wq;
5139 	int pi;
5140 
5141 	mutex_lock(&wq_pool_mutex);
5142 
5143 	for_each_pool(pool, pi) {
5144 		mutex_lock(&wq_pool_attach_mutex);
5145 
5146 		if (pool->cpu == cpu)
5147 			rebind_workers(pool);
5148 		else if (pool->cpu < 0)
5149 			restore_unbound_workers_cpumask(pool, cpu);
5150 
5151 		mutex_unlock(&wq_pool_attach_mutex);
5152 	}
5153 
5154 	/* update NUMA affinity of unbound workqueues */
5155 	list_for_each_entry(wq, &workqueues, list)
5156 		wq_update_unbound_numa(wq, cpu, true);
5157 
5158 	mutex_unlock(&wq_pool_mutex);
5159 	return 0;
5160 }
5161 
workqueue_offline_cpu(unsigned int cpu)5162 int workqueue_offline_cpu(unsigned int cpu)
5163 {
5164 	struct workqueue_struct *wq;
5165 
5166 	/* unbinding per-cpu workers should happen on the local CPU */
5167 	if (WARN_ON(cpu != smp_processor_id()))
5168 		return -1;
5169 
5170 	unbind_workers(cpu);
5171 
5172 	/* update NUMA affinity of unbound workqueues */
5173 	mutex_lock(&wq_pool_mutex);
5174 	list_for_each_entry(wq, &workqueues, list)
5175 		wq_update_unbound_numa(wq, cpu, false);
5176 	mutex_unlock(&wq_pool_mutex);
5177 
5178 	return 0;
5179 }
5180 
5181 struct work_for_cpu {
5182 	struct work_struct work;
5183 	long (*fn)(void *);
5184 	void *arg;
5185 	long ret;
5186 };
5187 
work_for_cpu_fn(struct work_struct * work)5188 static void work_for_cpu_fn(struct work_struct *work)
5189 {
5190 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5191 
5192 	wfc->ret = wfc->fn(wfc->arg);
5193 }
5194 
5195 /**
5196  * work_on_cpu - run a function in thread context on a particular cpu
5197  * @cpu: the cpu to run on
5198  * @fn: the function to run
5199  * @arg: the function arg
5200  *
5201  * It is up to the caller to ensure that the cpu doesn't go offline.
5202  * The caller must not hold any locks which would prevent @fn from completing.
5203  *
5204  * Return: The value @fn returns.
5205  */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5206 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5207 {
5208 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5209 
5210 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5211 	schedule_work_on(cpu, &wfc.work);
5212 	flush_work(&wfc.work);
5213 	destroy_work_on_stack(&wfc.work);
5214 	return wfc.ret;
5215 }
5216 EXPORT_SYMBOL_GPL(work_on_cpu);
5217 
5218 /**
5219  * work_on_cpu_safe - run a function in thread context on a particular cpu
5220  * @cpu: the cpu to run on
5221  * @fn:  the function to run
5222  * @arg: the function argument
5223  *
5224  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5225  * any locks which would prevent @fn from completing.
5226  *
5227  * Return: The value @fn returns.
5228  */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5229 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5230 {
5231 	long ret = -ENODEV;
5232 
5233 	cpus_read_lock();
5234 	if (cpu_online(cpu))
5235 		ret = work_on_cpu(cpu, fn, arg);
5236 	cpus_read_unlock();
5237 	return ret;
5238 }
5239 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5240 #endif /* CONFIG_SMP */
5241 
5242 #ifdef CONFIG_FREEZER
5243 
5244 /**
5245  * freeze_workqueues_begin - begin freezing workqueues
5246  *
5247  * Start freezing workqueues.  After this function returns, all freezable
5248  * workqueues will queue new works to their inactive_works list instead of
5249  * pool->worklist.
5250  *
5251  * CONTEXT:
5252  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5253  */
freeze_workqueues_begin(void)5254 void freeze_workqueues_begin(void)
5255 {
5256 	struct workqueue_struct *wq;
5257 	struct pool_workqueue *pwq;
5258 
5259 	mutex_lock(&wq_pool_mutex);
5260 
5261 	WARN_ON_ONCE(workqueue_freezing);
5262 	workqueue_freezing = true;
5263 
5264 	list_for_each_entry(wq, &workqueues, list) {
5265 		mutex_lock(&wq->mutex);
5266 		for_each_pwq(pwq, wq)
5267 			pwq_adjust_max_active(pwq);
5268 		mutex_unlock(&wq->mutex);
5269 	}
5270 
5271 	mutex_unlock(&wq_pool_mutex);
5272 }
5273 
5274 /**
5275  * freeze_workqueues_busy - are freezable workqueues still busy?
5276  *
5277  * Check whether freezing is complete.  This function must be called
5278  * between freeze_workqueues_begin() and thaw_workqueues().
5279  *
5280  * CONTEXT:
5281  * Grabs and releases wq_pool_mutex.
5282  *
5283  * Return:
5284  * %true if some freezable workqueues are still busy.  %false if freezing
5285  * is complete.
5286  */
freeze_workqueues_busy(void)5287 bool freeze_workqueues_busy(void)
5288 {
5289 	bool busy = false;
5290 	struct workqueue_struct *wq;
5291 	struct pool_workqueue *pwq;
5292 
5293 	mutex_lock(&wq_pool_mutex);
5294 
5295 	WARN_ON_ONCE(!workqueue_freezing);
5296 
5297 	list_for_each_entry(wq, &workqueues, list) {
5298 		if (!(wq->flags & WQ_FREEZABLE))
5299 			continue;
5300 		/*
5301 		 * nr_active is monotonically decreasing.  It's safe
5302 		 * to peek without lock.
5303 		 */
5304 		rcu_read_lock();
5305 		for_each_pwq(pwq, wq) {
5306 			WARN_ON_ONCE(pwq->nr_active < 0);
5307 			if (pwq->nr_active) {
5308 				busy = true;
5309 				rcu_read_unlock();
5310 				goto out_unlock;
5311 			}
5312 		}
5313 		rcu_read_unlock();
5314 	}
5315 out_unlock:
5316 	mutex_unlock(&wq_pool_mutex);
5317 	return busy;
5318 }
5319 
5320 /**
5321  * thaw_workqueues - thaw workqueues
5322  *
5323  * Thaw workqueues.  Normal queueing is restored and all collected
5324  * frozen works are transferred to their respective pool worklists.
5325  *
5326  * CONTEXT:
5327  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5328  */
thaw_workqueues(void)5329 void thaw_workqueues(void)
5330 {
5331 	struct workqueue_struct *wq;
5332 	struct pool_workqueue *pwq;
5333 
5334 	mutex_lock(&wq_pool_mutex);
5335 
5336 	if (!workqueue_freezing)
5337 		goto out_unlock;
5338 
5339 	workqueue_freezing = false;
5340 
5341 	/* restore max_active and repopulate worklist */
5342 	list_for_each_entry(wq, &workqueues, list) {
5343 		mutex_lock(&wq->mutex);
5344 		for_each_pwq(pwq, wq)
5345 			pwq_adjust_max_active(pwq);
5346 		mutex_unlock(&wq->mutex);
5347 	}
5348 
5349 out_unlock:
5350 	mutex_unlock(&wq_pool_mutex);
5351 }
5352 #endif /* CONFIG_FREEZER */
5353 
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)5354 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5355 {
5356 	LIST_HEAD(ctxs);
5357 	int ret = 0;
5358 	struct workqueue_struct *wq;
5359 	struct apply_wqattrs_ctx *ctx, *n;
5360 
5361 	lockdep_assert_held(&wq_pool_mutex);
5362 
5363 	list_for_each_entry(wq, &workqueues, list) {
5364 		if (!(wq->flags & WQ_UNBOUND))
5365 			continue;
5366 
5367 		/* creating multiple pwqs breaks ordering guarantee */
5368 		if (!list_empty(&wq->pwqs)) {
5369 			if (wq->flags & __WQ_ORDERED_EXPLICIT)
5370 				continue;
5371 			wq->flags &= ~__WQ_ORDERED;
5372 		}
5373 
5374 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5375 		if (!ctx) {
5376 			ret = -ENOMEM;
5377 			break;
5378 		}
5379 
5380 		list_add_tail(&ctx->list, &ctxs);
5381 	}
5382 
5383 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5384 		if (!ret)
5385 			apply_wqattrs_commit(ctx);
5386 		apply_wqattrs_cleanup(ctx);
5387 	}
5388 
5389 	if (!ret) {
5390 		mutex_lock(&wq_pool_attach_mutex);
5391 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5392 		mutex_unlock(&wq_pool_attach_mutex);
5393 	}
5394 	return ret;
5395 }
5396 
5397 /**
5398  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5399  *  @cpumask: the cpumask to set
5400  *
5401  *  The low-level workqueues cpumask is a global cpumask that limits
5402  *  the affinity of all unbound workqueues.  This function check the @cpumask
5403  *  and apply it to all unbound workqueues and updates all pwqs of them.
5404  *
5405  *  Return:	0	- Success
5406  *  		-EINVAL	- Invalid @cpumask
5407  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5408  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5409 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5410 {
5411 	int ret = -EINVAL;
5412 
5413 	/*
5414 	 * Not excluding isolated cpus on purpose.
5415 	 * If the user wishes to include them, we allow that.
5416 	 */
5417 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5418 	if (!cpumask_empty(cpumask)) {
5419 		apply_wqattrs_lock();
5420 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5421 			ret = 0;
5422 			goto out_unlock;
5423 		}
5424 
5425 		ret = workqueue_apply_unbound_cpumask(cpumask);
5426 
5427 out_unlock:
5428 		apply_wqattrs_unlock();
5429 	}
5430 
5431 	return ret;
5432 }
5433 
5434 #ifdef CONFIG_SYSFS
5435 /*
5436  * Workqueues with WQ_SYSFS flag set is visible to userland via
5437  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5438  * following attributes.
5439  *
5440  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5441  *  max_active	RW int	: maximum number of in-flight work items
5442  *
5443  * Unbound workqueues have the following extra attributes.
5444  *
5445  *  pool_ids	RO int	: the associated pool IDs for each node
5446  *  nice	RW int	: nice value of the workers
5447  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5448  *  numa	RW bool	: whether enable NUMA affinity
5449  */
5450 struct wq_device {
5451 	struct workqueue_struct		*wq;
5452 	struct device			dev;
5453 };
5454 
dev_to_wq(struct device * dev)5455 static struct workqueue_struct *dev_to_wq(struct device *dev)
5456 {
5457 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5458 
5459 	return wq_dev->wq;
5460 }
5461 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5462 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5463 			    char *buf)
5464 {
5465 	struct workqueue_struct *wq = dev_to_wq(dev);
5466 
5467 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5468 }
5469 static DEVICE_ATTR_RO(per_cpu);
5470 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5471 static ssize_t max_active_show(struct device *dev,
5472 			       struct device_attribute *attr, char *buf)
5473 {
5474 	struct workqueue_struct *wq = dev_to_wq(dev);
5475 
5476 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5477 }
5478 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5479 static ssize_t max_active_store(struct device *dev,
5480 				struct device_attribute *attr, const char *buf,
5481 				size_t count)
5482 {
5483 	struct workqueue_struct *wq = dev_to_wq(dev);
5484 	int val;
5485 
5486 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5487 		return -EINVAL;
5488 
5489 	workqueue_set_max_active(wq, val);
5490 	return count;
5491 }
5492 static DEVICE_ATTR_RW(max_active);
5493 
5494 static struct attribute *wq_sysfs_attrs[] = {
5495 	&dev_attr_per_cpu.attr,
5496 	&dev_attr_max_active.attr,
5497 	NULL,
5498 };
5499 ATTRIBUTE_GROUPS(wq_sysfs);
5500 
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5501 static ssize_t wq_pool_ids_show(struct device *dev,
5502 				struct device_attribute *attr, char *buf)
5503 {
5504 	struct workqueue_struct *wq = dev_to_wq(dev);
5505 	const char *delim = "";
5506 	int node, written = 0;
5507 
5508 	cpus_read_lock();
5509 	rcu_read_lock();
5510 	for_each_node(node) {
5511 		written += scnprintf(buf + written, PAGE_SIZE - written,
5512 				     "%s%d:%d", delim, node,
5513 				     unbound_pwq_by_node(wq, node)->pool->id);
5514 		delim = " ";
5515 	}
5516 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5517 	rcu_read_unlock();
5518 	cpus_read_unlock();
5519 
5520 	return written;
5521 }
5522 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5523 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5524 			    char *buf)
5525 {
5526 	struct workqueue_struct *wq = dev_to_wq(dev);
5527 	int written;
5528 
5529 	mutex_lock(&wq->mutex);
5530 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5531 	mutex_unlock(&wq->mutex);
5532 
5533 	return written;
5534 }
5535 
5536 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5537 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5538 {
5539 	struct workqueue_attrs *attrs;
5540 
5541 	lockdep_assert_held(&wq_pool_mutex);
5542 
5543 	attrs = alloc_workqueue_attrs();
5544 	if (!attrs)
5545 		return NULL;
5546 
5547 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5548 	return attrs;
5549 }
5550 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5551 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5552 			     const char *buf, size_t count)
5553 {
5554 	struct workqueue_struct *wq = dev_to_wq(dev);
5555 	struct workqueue_attrs *attrs;
5556 	int ret = -ENOMEM;
5557 
5558 	apply_wqattrs_lock();
5559 
5560 	attrs = wq_sysfs_prep_attrs(wq);
5561 	if (!attrs)
5562 		goto out_unlock;
5563 
5564 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5565 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5566 		ret = apply_workqueue_attrs_locked(wq, attrs);
5567 	else
5568 		ret = -EINVAL;
5569 
5570 out_unlock:
5571 	apply_wqattrs_unlock();
5572 	free_workqueue_attrs(attrs);
5573 	return ret ?: count;
5574 }
5575 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5576 static ssize_t wq_cpumask_show(struct device *dev,
5577 			       struct device_attribute *attr, char *buf)
5578 {
5579 	struct workqueue_struct *wq = dev_to_wq(dev);
5580 	int written;
5581 
5582 	mutex_lock(&wq->mutex);
5583 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5584 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5585 	mutex_unlock(&wq->mutex);
5586 	return written;
5587 }
5588 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5589 static ssize_t wq_cpumask_store(struct device *dev,
5590 				struct device_attribute *attr,
5591 				const char *buf, size_t count)
5592 {
5593 	struct workqueue_struct *wq = dev_to_wq(dev);
5594 	struct workqueue_attrs *attrs;
5595 	int ret = -ENOMEM;
5596 
5597 	apply_wqattrs_lock();
5598 
5599 	attrs = wq_sysfs_prep_attrs(wq);
5600 	if (!attrs)
5601 		goto out_unlock;
5602 
5603 	ret = cpumask_parse(buf, attrs->cpumask);
5604 	if (!ret)
5605 		ret = apply_workqueue_attrs_locked(wq, attrs);
5606 
5607 out_unlock:
5608 	apply_wqattrs_unlock();
5609 	free_workqueue_attrs(attrs);
5610 	return ret ?: count;
5611 }
5612 
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5613 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5614 			    char *buf)
5615 {
5616 	struct workqueue_struct *wq = dev_to_wq(dev);
5617 	int written;
5618 
5619 	mutex_lock(&wq->mutex);
5620 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5621 			    !wq->unbound_attrs->no_numa);
5622 	mutex_unlock(&wq->mutex);
5623 
5624 	return written;
5625 }
5626 
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5627 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5628 			     const char *buf, size_t count)
5629 {
5630 	struct workqueue_struct *wq = dev_to_wq(dev);
5631 	struct workqueue_attrs *attrs;
5632 	int v, ret = -ENOMEM;
5633 
5634 	apply_wqattrs_lock();
5635 
5636 	attrs = wq_sysfs_prep_attrs(wq);
5637 	if (!attrs)
5638 		goto out_unlock;
5639 
5640 	ret = -EINVAL;
5641 	if (sscanf(buf, "%d", &v) == 1) {
5642 		attrs->no_numa = !v;
5643 		ret = apply_workqueue_attrs_locked(wq, attrs);
5644 	}
5645 
5646 out_unlock:
5647 	apply_wqattrs_unlock();
5648 	free_workqueue_attrs(attrs);
5649 	return ret ?: count;
5650 }
5651 
5652 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5653 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5654 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5655 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5656 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5657 	__ATTR_NULL,
5658 };
5659 
5660 static struct bus_type wq_subsys = {
5661 	.name				= "workqueue",
5662 	.dev_groups			= wq_sysfs_groups,
5663 };
5664 
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5665 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5666 		struct device_attribute *attr, char *buf)
5667 {
5668 	int written;
5669 
5670 	mutex_lock(&wq_pool_mutex);
5671 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5672 			    cpumask_pr_args(wq_unbound_cpumask));
5673 	mutex_unlock(&wq_pool_mutex);
5674 
5675 	return written;
5676 }
5677 
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5678 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5679 		struct device_attribute *attr, const char *buf, size_t count)
5680 {
5681 	cpumask_var_t cpumask;
5682 	int ret;
5683 
5684 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5685 		return -ENOMEM;
5686 
5687 	ret = cpumask_parse(buf, cpumask);
5688 	if (!ret)
5689 		ret = workqueue_set_unbound_cpumask(cpumask);
5690 
5691 	free_cpumask_var(cpumask);
5692 	return ret ? ret : count;
5693 }
5694 
5695 static struct device_attribute wq_sysfs_cpumask_attr =
5696 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5697 	       wq_unbound_cpumask_store);
5698 
wq_sysfs_init(void)5699 static int __init wq_sysfs_init(void)
5700 {
5701 	int err;
5702 
5703 	err = subsys_virtual_register(&wq_subsys, NULL);
5704 	if (err)
5705 		return err;
5706 
5707 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5708 }
5709 core_initcall(wq_sysfs_init);
5710 
wq_device_release(struct device * dev)5711 static void wq_device_release(struct device *dev)
5712 {
5713 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5714 
5715 	kfree(wq_dev);
5716 }
5717 
5718 /**
5719  * workqueue_sysfs_register - make a workqueue visible in sysfs
5720  * @wq: the workqueue to register
5721  *
5722  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5723  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5724  * which is the preferred method.
5725  *
5726  * Workqueue user should use this function directly iff it wants to apply
5727  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5728  * apply_workqueue_attrs() may race against userland updating the
5729  * attributes.
5730  *
5731  * Return: 0 on success, -errno on failure.
5732  */
workqueue_sysfs_register(struct workqueue_struct * wq)5733 int workqueue_sysfs_register(struct workqueue_struct *wq)
5734 {
5735 	struct wq_device *wq_dev;
5736 	int ret;
5737 
5738 	/*
5739 	 * Adjusting max_active or creating new pwqs by applying
5740 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5741 	 * workqueues.
5742 	 */
5743 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5744 		return -EINVAL;
5745 
5746 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5747 	if (!wq_dev)
5748 		return -ENOMEM;
5749 
5750 	wq_dev->wq = wq;
5751 	wq_dev->dev.bus = &wq_subsys;
5752 	wq_dev->dev.release = wq_device_release;
5753 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5754 
5755 	/*
5756 	 * unbound_attrs are created separately.  Suppress uevent until
5757 	 * everything is ready.
5758 	 */
5759 	dev_set_uevent_suppress(&wq_dev->dev, true);
5760 
5761 	ret = device_register(&wq_dev->dev);
5762 	if (ret) {
5763 		put_device(&wq_dev->dev);
5764 		wq->wq_dev = NULL;
5765 		return ret;
5766 	}
5767 
5768 	if (wq->flags & WQ_UNBOUND) {
5769 		struct device_attribute *attr;
5770 
5771 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5772 			ret = device_create_file(&wq_dev->dev, attr);
5773 			if (ret) {
5774 				device_unregister(&wq_dev->dev);
5775 				wq->wq_dev = NULL;
5776 				return ret;
5777 			}
5778 		}
5779 	}
5780 
5781 	dev_set_uevent_suppress(&wq_dev->dev, false);
5782 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5783 	return 0;
5784 }
5785 
5786 /**
5787  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5788  * @wq: the workqueue to unregister
5789  *
5790  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5791  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5792 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5793 {
5794 	struct wq_device *wq_dev = wq->wq_dev;
5795 
5796 	if (!wq->wq_dev)
5797 		return;
5798 
5799 	wq->wq_dev = NULL;
5800 	device_unregister(&wq_dev->dev);
5801 }
5802 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5803 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5804 #endif	/* CONFIG_SYSFS */
5805 
5806 /*
5807  * Workqueue watchdog.
5808  *
5809  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5810  * flush dependency, a concurrency managed work item which stays RUNNING
5811  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5812  * usual warning mechanisms don't trigger and internal workqueue state is
5813  * largely opaque.
5814  *
5815  * Workqueue watchdog monitors all worker pools periodically and dumps
5816  * state if some pools failed to make forward progress for a while where
5817  * forward progress is defined as the first item on ->worklist changing.
5818  *
5819  * This mechanism is controlled through the kernel parameter
5820  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5821  * corresponding sysfs parameter file.
5822  */
5823 #ifdef CONFIG_WQ_WATCHDOG
5824 
5825 static unsigned long wq_watchdog_thresh = 30;
5826 static struct timer_list wq_watchdog_timer;
5827 
5828 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5829 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5830 
wq_watchdog_reset_touched(void)5831 static void wq_watchdog_reset_touched(void)
5832 {
5833 	int cpu;
5834 
5835 	wq_watchdog_touched = jiffies;
5836 	for_each_possible_cpu(cpu)
5837 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5838 }
5839 
wq_watchdog_timer_fn(struct timer_list * unused)5840 static void wq_watchdog_timer_fn(struct timer_list *unused)
5841 {
5842 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5843 	bool lockup_detected = false;
5844 	unsigned long now = jiffies;
5845 	struct worker_pool *pool;
5846 	int pi;
5847 
5848 	if (!thresh)
5849 		return;
5850 
5851 	rcu_read_lock();
5852 
5853 	for_each_pool(pool, pi) {
5854 		unsigned long pool_ts, touched, ts;
5855 
5856 		if (list_empty(&pool->worklist))
5857 			continue;
5858 
5859 		/*
5860 		 * If a virtual machine is stopped by the host it can look to
5861 		 * the watchdog like a stall.
5862 		 */
5863 		kvm_check_and_clear_guest_paused();
5864 
5865 		/* get the latest of pool and touched timestamps */
5866 		if (pool->cpu >= 0)
5867 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5868 		else
5869 			touched = READ_ONCE(wq_watchdog_touched);
5870 		pool_ts = READ_ONCE(pool->watchdog_ts);
5871 
5872 		if (time_after(pool_ts, touched))
5873 			ts = pool_ts;
5874 		else
5875 			ts = touched;
5876 
5877 		/* did we stall? */
5878 		if (time_after(now, ts + thresh)) {
5879 			lockup_detected = true;
5880 			pr_emerg("BUG: workqueue lockup - pool");
5881 			pr_cont_pool_info(pool);
5882 			pr_cont(" stuck for %us!\n",
5883 				jiffies_to_msecs(now - pool_ts) / 1000);
5884 			trace_android_vh_wq_lockup_pool(pool->cpu, pool_ts);
5885 		}
5886 	}
5887 
5888 	rcu_read_unlock();
5889 
5890 	if (lockup_detected)
5891 		show_all_workqueues();
5892 
5893 	wq_watchdog_reset_touched();
5894 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5895 }
5896 
wq_watchdog_touch(int cpu)5897 notrace void wq_watchdog_touch(int cpu)
5898 {
5899 	if (cpu >= 0)
5900 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5901 
5902 	wq_watchdog_touched = jiffies;
5903 }
5904 
wq_watchdog_set_thresh(unsigned long thresh)5905 static void wq_watchdog_set_thresh(unsigned long thresh)
5906 {
5907 	wq_watchdog_thresh = 0;
5908 	del_timer_sync(&wq_watchdog_timer);
5909 
5910 	if (thresh) {
5911 		wq_watchdog_thresh = thresh;
5912 		wq_watchdog_reset_touched();
5913 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5914 	}
5915 }
5916 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5917 static int wq_watchdog_param_set_thresh(const char *val,
5918 					const struct kernel_param *kp)
5919 {
5920 	unsigned long thresh;
5921 	int ret;
5922 
5923 	ret = kstrtoul(val, 0, &thresh);
5924 	if (ret)
5925 		return ret;
5926 
5927 	if (system_wq)
5928 		wq_watchdog_set_thresh(thresh);
5929 	else
5930 		wq_watchdog_thresh = thresh;
5931 
5932 	return 0;
5933 }
5934 
5935 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5936 	.set	= wq_watchdog_param_set_thresh,
5937 	.get	= param_get_ulong,
5938 };
5939 
5940 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5941 		0644);
5942 
wq_watchdog_init(void)5943 static void wq_watchdog_init(void)
5944 {
5945 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5946 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5947 }
5948 
5949 #else	/* CONFIG_WQ_WATCHDOG */
5950 
wq_watchdog_init(void)5951 static inline void wq_watchdog_init(void) { }
5952 
5953 #endif	/* CONFIG_WQ_WATCHDOG */
5954 
wq_numa_init(void)5955 static void __init wq_numa_init(void)
5956 {
5957 	cpumask_var_t *tbl;
5958 	int node, cpu;
5959 
5960 	if (num_possible_nodes() <= 1)
5961 		return;
5962 
5963 	if (wq_disable_numa) {
5964 		pr_info("workqueue: NUMA affinity support disabled\n");
5965 		return;
5966 	}
5967 
5968 	for_each_possible_cpu(cpu) {
5969 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5970 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5971 			return;
5972 		}
5973 	}
5974 
5975 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5976 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5977 
5978 	/*
5979 	 * We want masks of possible CPUs of each node which isn't readily
5980 	 * available.  Build one from cpu_to_node() which should have been
5981 	 * fully initialized by now.
5982 	 */
5983 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5984 	BUG_ON(!tbl);
5985 
5986 	for_each_node(node)
5987 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5988 				node_online(node) ? node : NUMA_NO_NODE));
5989 
5990 	for_each_possible_cpu(cpu) {
5991 		node = cpu_to_node(cpu);
5992 		cpumask_set_cpu(cpu, tbl[node]);
5993 	}
5994 
5995 	wq_numa_possible_cpumask = tbl;
5996 	wq_numa_enabled = true;
5997 }
5998 
5999 /**
6000  * workqueue_init_early - early init for workqueue subsystem
6001  *
6002  * This is the first half of two-staged workqueue subsystem initialization
6003  * and invoked as soon as the bare basics - memory allocation, cpumasks and
6004  * idr are up.  It sets up all the data structures and system workqueues
6005  * and allows early boot code to create workqueues and queue/cancel work
6006  * items.  Actual work item execution starts only after kthreads can be
6007  * created and scheduled right before early initcalls.
6008  */
workqueue_init_early(void)6009 void __init workqueue_init_early(void)
6010 {
6011 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6012 	int i, cpu;
6013 
6014 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6015 
6016 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6017 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6018 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
6019 
6020 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6021 
6022 	/* initialize CPU pools */
6023 	for_each_possible_cpu(cpu) {
6024 		struct worker_pool *pool;
6025 
6026 		i = 0;
6027 		for_each_cpu_worker_pool(pool, cpu) {
6028 			BUG_ON(init_worker_pool(pool));
6029 			pool->cpu = cpu;
6030 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6031 			pool->attrs->nice = std_nice[i++];
6032 			pool->node = cpu_to_node(cpu);
6033 
6034 			/* alloc pool ID */
6035 			mutex_lock(&wq_pool_mutex);
6036 			BUG_ON(worker_pool_assign_id(pool));
6037 			mutex_unlock(&wq_pool_mutex);
6038 		}
6039 	}
6040 
6041 	/* create default unbound and ordered wq attrs */
6042 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6043 		struct workqueue_attrs *attrs;
6044 
6045 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6046 		attrs->nice = std_nice[i];
6047 		unbound_std_wq_attrs[i] = attrs;
6048 
6049 		/*
6050 		 * An ordered wq should have only one pwq as ordering is
6051 		 * guaranteed by max_active which is enforced by pwqs.
6052 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6053 		 */
6054 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6055 		attrs->nice = std_nice[i];
6056 		attrs->no_numa = true;
6057 		ordered_wq_attrs[i] = attrs;
6058 	}
6059 
6060 	system_wq = alloc_workqueue("events", 0, 0);
6061 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6062 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6063 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6064 					    WQ_UNBOUND_MAX_ACTIVE);
6065 	system_freezable_wq = alloc_workqueue("events_freezable",
6066 					      WQ_FREEZABLE, 0);
6067 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6068 					      WQ_POWER_EFFICIENT, 0);
6069 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6070 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6071 					      0);
6072 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6073 	       !system_unbound_wq || !system_freezable_wq ||
6074 	       !system_power_efficient_wq ||
6075 	       !system_freezable_power_efficient_wq);
6076 }
6077 
6078 /**
6079  * workqueue_init - bring workqueue subsystem fully online
6080  *
6081  * This is the latter half of two-staged workqueue subsystem initialization
6082  * and invoked as soon as kthreads can be created and scheduled.
6083  * Workqueues have been created and work items queued on them, but there
6084  * are no kworkers executing the work items yet.  Populate the worker pools
6085  * with the initial workers and enable future kworker creations.
6086  */
workqueue_init(void)6087 void __init workqueue_init(void)
6088 {
6089 	struct workqueue_struct *wq;
6090 	struct worker_pool *pool;
6091 	int cpu, bkt;
6092 
6093 	/*
6094 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6095 	 * CPU to node mapping may not be available that early on some
6096 	 * archs such as power and arm64.  As per-cpu pools created
6097 	 * previously could be missing node hint and unbound pools NUMA
6098 	 * affinity, fix them up.
6099 	 *
6100 	 * Also, while iterating workqueues, create rescuers if requested.
6101 	 */
6102 	wq_numa_init();
6103 
6104 	mutex_lock(&wq_pool_mutex);
6105 
6106 	for_each_possible_cpu(cpu) {
6107 		for_each_cpu_worker_pool(pool, cpu) {
6108 			pool->node = cpu_to_node(cpu);
6109 		}
6110 	}
6111 
6112 	list_for_each_entry(wq, &workqueues, list) {
6113 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6114 		WARN(init_rescuer(wq),
6115 		     "workqueue: failed to create early rescuer for %s",
6116 		     wq->name);
6117 	}
6118 
6119 	mutex_unlock(&wq_pool_mutex);
6120 
6121 	/* create the initial workers */
6122 	for_each_online_cpu(cpu) {
6123 		for_each_cpu_worker_pool(pool, cpu) {
6124 			pool->flags &= ~POOL_DISASSOCIATED;
6125 			BUG_ON(!create_worker(pool));
6126 		}
6127 	}
6128 
6129 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6130 		BUG_ON(!create_worker(pool));
6131 
6132 	wq_online = true;
6133 	wq_watchdog_init();
6134 }
6135 
6136 /*
6137  * Despite the naming, this is a no-op function which is here only for avoiding
6138  * link error. Since compile-time warning may fail to catch, we will need to
6139  * emit run-time warning from __flush_workqueue().
6140  */
__warn_flushing_systemwide_wq(void)6141 void __warn_flushing_systemwide_wq(void) { }
6142 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6143