1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54
55 #include "workqueue_internal.h"
56
57 #include <trace/hooks/wqlockup.h>
58 /* events/workqueue.h uses default TRACE_INCLUDE_PATH */
59 #undef TRACE_INCLUDE_PATH
60
61 enum {
62 /*
63 * worker_pool flags
64 *
65 * A bound pool is either associated or disassociated with its CPU.
66 * While associated (!DISASSOCIATED), all workers are bound to the
67 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 * is in effect.
69 *
70 * While DISASSOCIATED, the cpu may be offline and all workers have
71 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 * be executing on any CPU. The pool behaves as an unbound one.
73 *
74 * Note that DISASSOCIATED should be flipped only while holding
75 * wq_pool_attach_mutex to avoid changing binding state while
76 * worker_attach_to_pool() is in progress.
77 */
78 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
79 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
80
81 /* worker flags */
82 WORKER_DIE = 1 << 1, /* die die die */
83 WORKER_IDLE = 1 << 2, /* is idle */
84 WORKER_PREP = 1 << 3, /* preparing to run works */
85 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
86 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
87 WORKER_REBOUND = 1 << 8, /* worker was rebound */
88
89 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
90 WORKER_UNBOUND | WORKER_REBOUND,
91
92 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
93
94 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
95 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
96
97 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
98 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
99
100 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
101 /* call for help after 10ms
102 (min two ticks) */
103 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
104 CREATE_COOLDOWN = HZ, /* time to breath after fail */
105
106 /*
107 * Rescue workers are used only on emergencies and shared by
108 * all cpus. Give MIN_NICE.
109 */
110 RESCUER_NICE_LEVEL = MIN_NICE,
111 HIGHPRI_NICE_LEVEL = MIN_NICE,
112
113 WQ_NAME_LEN = 24,
114 };
115
116 /*
117 * Structure fields follow one of the following exclusion rules.
118 *
119 * I: Modifiable by initialization/destruction paths and read-only for
120 * everyone else.
121 *
122 * P: Preemption protected. Disabling preemption is enough and should
123 * only be modified and accessed from the local cpu.
124 *
125 * L: pool->lock protected. Access with pool->lock held.
126 *
127 * X: During normal operation, modification requires pool->lock and should
128 * be done only from local cpu. Either disabling preemption on local
129 * cpu or grabbing pool->lock is enough for read access. If
130 * POOL_DISASSOCIATED is set, it's identical to L.
131 *
132 * A: wq_pool_attach_mutex protected.
133 *
134 * PL: wq_pool_mutex protected.
135 *
136 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
137 *
138 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
139 *
140 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
141 * RCU for reads.
142 *
143 * WQ: wq->mutex protected.
144 *
145 * WR: wq->mutex protected for writes. RCU protected for reads.
146 *
147 * MD: wq_mayday_lock protected.
148 */
149
150 /* struct worker is defined in workqueue_internal.h */
151
152 struct worker_pool {
153 raw_spinlock_t lock; /* the pool lock */
154 int cpu; /* I: the associated cpu */
155 int node; /* I: the associated node ID */
156 int id; /* I: pool ID */
157 unsigned int flags; /* X: flags */
158
159 unsigned long watchdog_ts; /* L: watchdog timestamp */
160
161 /*
162 * The counter is incremented in a process context on the associated CPU
163 * w/ preemption disabled, and decremented or reset in the same context
164 * but w/ pool->lock held. The readers grab pool->lock and are
165 * guaranteed to see if the counter reached zero.
166 */
167 int nr_running;
168
169 struct list_head worklist; /* L: list of pending works */
170
171 int nr_workers; /* L: total number of workers */
172 int nr_idle; /* L: currently idle workers */
173
174 struct list_head idle_list; /* L: list of idle workers */
175 struct timer_list idle_timer; /* L: worker idle timeout */
176 struct timer_list mayday_timer; /* L: SOS timer for workers */
177
178 /* a workers is either on busy_hash or idle_list, or the manager */
179 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
180 /* L: hash of busy workers */
181
182 struct worker *manager; /* L: purely informational */
183 struct list_head workers; /* A: attached workers */
184 struct completion *detach_completion; /* all workers detached */
185
186 struct ida worker_ida; /* worker IDs for task name */
187
188 struct workqueue_attrs *attrs; /* I: worker attributes */
189 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
190 int refcnt; /* PL: refcnt for unbound pools */
191
192 /*
193 * Destruction of pool is RCU protected to allow dereferences
194 * from get_work_pool().
195 */
196 struct rcu_head rcu;
197 };
198
199 /*
200 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
201 * of work_struct->data are used for flags and the remaining high bits
202 * point to the pwq; thus, pwqs need to be aligned at two's power of the
203 * number of flag bits.
204 */
205 struct pool_workqueue {
206 struct worker_pool *pool; /* I: the associated pool */
207 struct workqueue_struct *wq; /* I: the owning workqueue */
208 int work_color; /* L: current color */
209 int flush_color; /* L: flushing color */
210 int refcnt; /* L: reference count */
211 int nr_in_flight[WORK_NR_COLORS];
212 /* L: nr of in_flight works */
213
214 /*
215 * nr_active management and WORK_STRUCT_INACTIVE:
216 *
217 * When pwq->nr_active >= max_active, new work item is queued to
218 * pwq->inactive_works instead of pool->worklist and marked with
219 * WORK_STRUCT_INACTIVE.
220 *
221 * All work items marked with WORK_STRUCT_INACTIVE do not participate
222 * in pwq->nr_active and all work items in pwq->inactive_works are
223 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
224 * work items are in pwq->inactive_works. Some of them are ready to
225 * run in pool->worklist or worker->scheduled. Those work itmes are
226 * only struct wq_barrier which is used for flush_work() and should
227 * not participate in pwq->nr_active. For non-barrier work item, it
228 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
229 */
230 int nr_active; /* L: nr of active works */
231 int max_active; /* L: max active works */
232 struct list_head inactive_works; /* L: inactive works */
233 struct list_head pwqs_node; /* WR: node on wq->pwqs */
234 struct list_head mayday_node; /* MD: node on wq->maydays */
235
236 /*
237 * Release of unbound pwq is punted to system_wq. See put_pwq()
238 * and pwq_unbound_release_workfn() for details. pool_workqueue
239 * itself is also RCU protected so that the first pwq can be
240 * determined without grabbing wq->mutex.
241 */
242 struct work_struct unbound_release_work;
243 struct rcu_head rcu;
244 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
245
246 /*
247 * Structure used to wait for workqueue flush.
248 */
249 struct wq_flusher {
250 struct list_head list; /* WQ: list of flushers */
251 int flush_color; /* WQ: flush color waiting for */
252 struct completion done; /* flush completion */
253 };
254
255 struct wq_device;
256
257 /*
258 * The externally visible workqueue. It relays the issued work items to
259 * the appropriate worker_pool through its pool_workqueues.
260 */
261 struct workqueue_struct {
262 struct list_head pwqs; /* WR: all pwqs of this wq */
263 struct list_head list; /* PR: list of all workqueues */
264
265 struct mutex mutex; /* protects this wq */
266 int work_color; /* WQ: current work color */
267 int flush_color; /* WQ: current flush color */
268 atomic_t nr_pwqs_to_flush; /* flush in progress */
269 struct wq_flusher *first_flusher; /* WQ: first flusher */
270 struct list_head flusher_queue; /* WQ: flush waiters */
271 struct list_head flusher_overflow; /* WQ: flush overflow list */
272
273 struct list_head maydays; /* MD: pwqs requesting rescue */
274 struct worker *rescuer; /* MD: rescue worker */
275
276 int nr_drainers; /* WQ: drain in progress */
277 int saved_max_active; /* WQ: saved pwq max_active */
278
279 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
280 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
281
282 #ifdef CONFIG_SYSFS
283 struct wq_device *wq_dev; /* I: for sysfs interface */
284 #endif
285 #ifdef CONFIG_LOCKDEP
286 char *lock_name;
287 struct lock_class_key key;
288 struct lockdep_map lockdep_map;
289 #endif
290 char name[WQ_NAME_LEN]; /* I: workqueue name */
291
292 /*
293 * Destruction of workqueue_struct is RCU protected to allow walking
294 * the workqueues list without grabbing wq_pool_mutex.
295 * This is used to dump all workqueues from sysrq.
296 */
297 struct rcu_head rcu;
298
299 /* hot fields used during command issue, aligned to cacheline */
300 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
301 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
302 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
303 };
304
305 static struct kmem_cache *pwq_cache;
306
307 static cpumask_var_t *wq_numa_possible_cpumask;
308 /* possible CPUs of each node */
309
310 static bool wq_disable_numa;
311 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
312
313 /* see the comment above the definition of WQ_POWER_EFFICIENT */
314 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
315 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
316
317 static bool wq_online; /* can kworkers be created yet? */
318
319 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
320
321 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
322 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
323
324 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
325 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
326 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
327 /* wait for manager to go away */
328 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
329
330 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
331 static bool workqueue_freezing; /* PL: have wqs started freezing? */
332
333 /* PL&A: allowable cpus for unbound wqs and work items */
334 static cpumask_var_t wq_unbound_cpumask;
335
336 /* CPU where unbound work was last round robin scheduled from this CPU */
337 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
338
339 /*
340 * Local execution of unbound work items is no longer guaranteed. The
341 * following always forces round-robin CPU selection on unbound work items
342 * to uncover usages which depend on it.
343 */
344 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
345 static bool wq_debug_force_rr_cpu = true;
346 #else
347 static bool wq_debug_force_rr_cpu = false;
348 #endif
349 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
350
351 /* the per-cpu worker pools */
352 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
353
354 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
355
356 /* PL: hash of all unbound pools keyed by pool->attrs */
357 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
358
359 /* I: attributes used when instantiating standard unbound pools on demand */
360 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
361
362 /* I: attributes used when instantiating ordered pools on demand */
363 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
364
365 struct workqueue_struct *system_wq __read_mostly;
366 EXPORT_SYMBOL(system_wq);
367 struct workqueue_struct *system_highpri_wq __read_mostly;
368 EXPORT_SYMBOL_GPL(system_highpri_wq);
369 struct workqueue_struct *system_long_wq __read_mostly;
370 EXPORT_SYMBOL_GPL(system_long_wq);
371 struct workqueue_struct *system_unbound_wq __read_mostly;
372 EXPORT_SYMBOL_GPL(system_unbound_wq);
373 struct workqueue_struct *system_freezable_wq __read_mostly;
374 EXPORT_SYMBOL_GPL(system_freezable_wq);
375 struct workqueue_struct *system_power_efficient_wq __read_mostly;
376 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
377 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
378 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
379
380 static int worker_thread(void *__worker);
381 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
382 static void show_pwq(struct pool_workqueue *pwq);
383 static void show_one_worker_pool(struct worker_pool *pool);
384
385 #define CREATE_TRACE_POINTS
386 #include <trace/events/workqueue.h>
387
388 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_start);
389 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_end);
390
391 #define assert_rcu_or_pool_mutex() \
392 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
393 !lockdep_is_held(&wq_pool_mutex), \
394 "RCU or wq_pool_mutex should be held")
395
396 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
397 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
398 !lockdep_is_held(&wq->mutex) && \
399 !lockdep_is_held(&wq_pool_mutex), \
400 "RCU, wq->mutex or wq_pool_mutex should be held")
401
402 #define for_each_cpu_worker_pool(pool, cpu) \
403 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
404 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
405 (pool)++)
406
407 /**
408 * for_each_pool - iterate through all worker_pools in the system
409 * @pool: iteration cursor
410 * @pi: integer used for iteration
411 *
412 * This must be called either with wq_pool_mutex held or RCU read
413 * locked. If the pool needs to be used beyond the locking in effect, the
414 * caller is responsible for guaranteeing that the pool stays online.
415 *
416 * The if/else clause exists only for the lockdep assertion and can be
417 * ignored.
418 */
419 #define for_each_pool(pool, pi) \
420 idr_for_each_entry(&worker_pool_idr, pool, pi) \
421 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
422 else
423
424 /**
425 * for_each_pool_worker - iterate through all workers of a worker_pool
426 * @worker: iteration cursor
427 * @pool: worker_pool to iterate workers of
428 *
429 * This must be called with wq_pool_attach_mutex.
430 *
431 * The if/else clause exists only for the lockdep assertion and can be
432 * ignored.
433 */
434 #define for_each_pool_worker(worker, pool) \
435 list_for_each_entry((worker), &(pool)->workers, node) \
436 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
437 else
438
439 /**
440 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
441 * @pwq: iteration cursor
442 * @wq: the target workqueue
443 *
444 * This must be called either with wq->mutex held or RCU read locked.
445 * If the pwq needs to be used beyond the locking in effect, the caller is
446 * responsible for guaranteeing that the pwq stays online.
447 *
448 * The if/else clause exists only for the lockdep assertion and can be
449 * ignored.
450 */
451 #define for_each_pwq(pwq, wq) \
452 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
453 lockdep_is_held(&(wq->mutex)))
454
455 #ifdef CONFIG_DEBUG_OBJECTS_WORK
456
457 static const struct debug_obj_descr work_debug_descr;
458
work_debug_hint(void * addr)459 static void *work_debug_hint(void *addr)
460 {
461 return ((struct work_struct *) addr)->func;
462 }
463
work_is_static_object(void * addr)464 static bool work_is_static_object(void *addr)
465 {
466 struct work_struct *work = addr;
467
468 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
469 }
470
471 /*
472 * fixup_init is called when:
473 * - an active object is initialized
474 */
work_fixup_init(void * addr,enum debug_obj_state state)475 static bool work_fixup_init(void *addr, enum debug_obj_state state)
476 {
477 struct work_struct *work = addr;
478
479 switch (state) {
480 case ODEBUG_STATE_ACTIVE:
481 cancel_work_sync(work);
482 debug_object_init(work, &work_debug_descr);
483 return true;
484 default:
485 return false;
486 }
487 }
488
489 /*
490 * fixup_free is called when:
491 * - an active object is freed
492 */
work_fixup_free(void * addr,enum debug_obj_state state)493 static bool work_fixup_free(void *addr, enum debug_obj_state state)
494 {
495 struct work_struct *work = addr;
496
497 switch (state) {
498 case ODEBUG_STATE_ACTIVE:
499 cancel_work_sync(work);
500 debug_object_free(work, &work_debug_descr);
501 return true;
502 default:
503 return false;
504 }
505 }
506
507 static const struct debug_obj_descr work_debug_descr = {
508 .name = "work_struct",
509 .debug_hint = work_debug_hint,
510 .is_static_object = work_is_static_object,
511 .fixup_init = work_fixup_init,
512 .fixup_free = work_fixup_free,
513 };
514
debug_work_activate(struct work_struct * work)515 static inline void debug_work_activate(struct work_struct *work)
516 {
517 debug_object_activate(work, &work_debug_descr);
518 }
519
debug_work_deactivate(struct work_struct * work)520 static inline void debug_work_deactivate(struct work_struct *work)
521 {
522 debug_object_deactivate(work, &work_debug_descr);
523 }
524
__init_work(struct work_struct * work,int onstack)525 void __init_work(struct work_struct *work, int onstack)
526 {
527 if (onstack)
528 debug_object_init_on_stack(work, &work_debug_descr);
529 else
530 debug_object_init(work, &work_debug_descr);
531 }
532 EXPORT_SYMBOL_GPL(__init_work);
533
destroy_work_on_stack(struct work_struct * work)534 void destroy_work_on_stack(struct work_struct *work)
535 {
536 debug_object_free(work, &work_debug_descr);
537 }
538 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
539
destroy_delayed_work_on_stack(struct delayed_work * work)540 void destroy_delayed_work_on_stack(struct delayed_work *work)
541 {
542 destroy_timer_on_stack(&work->timer);
543 debug_object_free(&work->work, &work_debug_descr);
544 }
545 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
546
547 #else
debug_work_activate(struct work_struct * work)548 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)549 static inline void debug_work_deactivate(struct work_struct *work) { }
550 #endif
551
552 /**
553 * worker_pool_assign_id - allocate ID and assign it to @pool
554 * @pool: the pool pointer of interest
555 *
556 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
557 * successfully, -errno on failure.
558 */
worker_pool_assign_id(struct worker_pool * pool)559 static int worker_pool_assign_id(struct worker_pool *pool)
560 {
561 int ret;
562
563 lockdep_assert_held(&wq_pool_mutex);
564
565 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
566 GFP_KERNEL);
567 if (ret >= 0) {
568 pool->id = ret;
569 return 0;
570 }
571 return ret;
572 }
573
574 /**
575 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
576 * @wq: the target workqueue
577 * @node: the node ID
578 *
579 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
580 * read locked.
581 * If the pwq needs to be used beyond the locking in effect, the caller is
582 * responsible for guaranteeing that the pwq stays online.
583 *
584 * Return: The unbound pool_workqueue for @node.
585 */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)586 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
587 int node)
588 {
589 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
590
591 /*
592 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
593 * delayed item is pending. The plan is to keep CPU -> NODE
594 * mapping valid and stable across CPU on/offlines. Once that
595 * happens, this workaround can be removed.
596 */
597 if (unlikely(node == NUMA_NO_NODE))
598 return wq->dfl_pwq;
599
600 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
601 }
602
work_color_to_flags(int color)603 static unsigned int work_color_to_flags(int color)
604 {
605 return color << WORK_STRUCT_COLOR_SHIFT;
606 }
607
get_work_color(unsigned long work_data)608 static int get_work_color(unsigned long work_data)
609 {
610 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
611 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
612 }
613
work_next_color(int color)614 static int work_next_color(int color)
615 {
616 return (color + 1) % WORK_NR_COLORS;
617 }
618
619 /*
620 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
621 * contain the pointer to the queued pwq. Once execution starts, the flag
622 * is cleared and the high bits contain OFFQ flags and pool ID.
623 *
624 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
625 * and clear_work_data() can be used to set the pwq, pool or clear
626 * work->data. These functions should only be called while the work is
627 * owned - ie. while the PENDING bit is set.
628 *
629 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
630 * corresponding to a work. Pool is available once the work has been
631 * queued anywhere after initialization until it is sync canceled. pwq is
632 * available only while the work item is queued.
633 *
634 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
635 * canceled. While being canceled, a work item may have its PENDING set
636 * but stay off timer and worklist for arbitrarily long and nobody should
637 * try to steal the PENDING bit.
638 */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)639 static inline void set_work_data(struct work_struct *work, unsigned long data,
640 unsigned long flags)
641 {
642 WARN_ON_ONCE(!work_pending(work));
643 atomic_long_set(&work->data, data | flags | work_static(work));
644 }
645
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)646 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
647 unsigned long extra_flags)
648 {
649 set_work_data(work, (unsigned long)pwq,
650 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
651 }
652
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)653 static void set_work_pool_and_keep_pending(struct work_struct *work,
654 int pool_id)
655 {
656 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
657 WORK_STRUCT_PENDING);
658 }
659
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)660 static void set_work_pool_and_clear_pending(struct work_struct *work,
661 int pool_id)
662 {
663 /*
664 * The following wmb is paired with the implied mb in
665 * test_and_set_bit(PENDING) and ensures all updates to @work made
666 * here are visible to and precede any updates by the next PENDING
667 * owner.
668 */
669 smp_wmb();
670 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
671 /*
672 * The following mb guarantees that previous clear of a PENDING bit
673 * will not be reordered with any speculative LOADS or STORES from
674 * work->current_func, which is executed afterwards. This possible
675 * reordering can lead to a missed execution on attempt to queue
676 * the same @work. E.g. consider this case:
677 *
678 * CPU#0 CPU#1
679 * ---------------------------- --------------------------------
680 *
681 * 1 STORE event_indicated
682 * 2 queue_work_on() {
683 * 3 test_and_set_bit(PENDING)
684 * 4 } set_..._and_clear_pending() {
685 * 5 set_work_data() # clear bit
686 * 6 smp_mb()
687 * 7 work->current_func() {
688 * 8 LOAD event_indicated
689 * }
690 *
691 * Without an explicit full barrier speculative LOAD on line 8 can
692 * be executed before CPU#0 does STORE on line 1. If that happens,
693 * CPU#0 observes the PENDING bit is still set and new execution of
694 * a @work is not queued in a hope, that CPU#1 will eventually
695 * finish the queued @work. Meanwhile CPU#1 does not see
696 * event_indicated is set, because speculative LOAD was executed
697 * before actual STORE.
698 */
699 smp_mb();
700 }
701
clear_work_data(struct work_struct * work)702 static void clear_work_data(struct work_struct *work)
703 {
704 smp_wmb(); /* see set_work_pool_and_clear_pending() */
705 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
706 }
707
work_struct_pwq(unsigned long data)708 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
709 {
710 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
711 }
712
get_work_pwq(struct work_struct * work)713 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
714 {
715 unsigned long data = atomic_long_read(&work->data);
716
717 if (data & WORK_STRUCT_PWQ)
718 return work_struct_pwq(data);
719 else
720 return NULL;
721 }
722
723 /**
724 * get_work_pool - return the worker_pool a given work was associated with
725 * @work: the work item of interest
726 *
727 * Pools are created and destroyed under wq_pool_mutex, and allows read
728 * access under RCU read lock. As such, this function should be
729 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
730 *
731 * All fields of the returned pool are accessible as long as the above
732 * mentioned locking is in effect. If the returned pool needs to be used
733 * beyond the critical section, the caller is responsible for ensuring the
734 * returned pool is and stays online.
735 *
736 * Return: The worker_pool @work was last associated with. %NULL if none.
737 */
get_work_pool(struct work_struct * work)738 static struct worker_pool *get_work_pool(struct work_struct *work)
739 {
740 unsigned long data = atomic_long_read(&work->data);
741 int pool_id;
742
743 assert_rcu_or_pool_mutex();
744
745 if (data & WORK_STRUCT_PWQ)
746 return work_struct_pwq(data)->pool;
747
748 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
749 if (pool_id == WORK_OFFQ_POOL_NONE)
750 return NULL;
751
752 return idr_find(&worker_pool_idr, pool_id);
753 }
754
755 /**
756 * get_work_pool_id - return the worker pool ID a given work is associated with
757 * @work: the work item of interest
758 *
759 * Return: The worker_pool ID @work was last associated with.
760 * %WORK_OFFQ_POOL_NONE if none.
761 */
get_work_pool_id(struct work_struct * work)762 static int get_work_pool_id(struct work_struct *work)
763 {
764 unsigned long data = atomic_long_read(&work->data);
765
766 if (data & WORK_STRUCT_PWQ)
767 return work_struct_pwq(data)->pool->id;
768
769 return data >> WORK_OFFQ_POOL_SHIFT;
770 }
771
mark_work_canceling(struct work_struct * work)772 static void mark_work_canceling(struct work_struct *work)
773 {
774 unsigned long pool_id = get_work_pool_id(work);
775
776 pool_id <<= WORK_OFFQ_POOL_SHIFT;
777 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
778 }
779
work_is_canceling(struct work_struct * work)780 static bool work_is_canceling(struct work_struct *work)
781 {
782 unsigned long data = atomic_long_read(&work->data);
783
784 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
785 }
786
787 /*
788 * Policy functions. These define the policies on how the global worker
789 * pools are managed. Unless noted otherwise, these functions assume that
790 * they're being called with pool->lock held.
791 */
792
__need_more_worker(struct worker_pool * pool)793 static bool __need_more_worker(struct worker_pool *pool)
794 {
795 return !pool->nr_running;
796 }
797
798 /*
799 * Need to wake up a worker? Called from anything but currently
800 * running workers.
801 *
802 * Note that, because unbound workers never contribute to nr_running, this
803 * function will always return %true for unbound pools as long as the
804 * worklist isn't empty.
805 */
need_more_worker(struct worker_pool * pool)806 static bool need_more_worker(struct worker_pool *pool)
807 {
808 return !list_empty(&pool->worklist) && __need_more_worker(pool);
809 }
810
811 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)812 static bool may_start_working(struct worker_pool *pool)
813 {
814 return pool->nr_idle;
815 }
816
817 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)818 static bool keep_working(struct worker_pool *pool)
819 {
820 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
821 }
822
823 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)824 static bool need_to_create_worker(struct worker_pool *pool)
825 {
826 return need_more_worker(pool) && !may_start_working(pool);
827 }
828
829 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)830 static bool too_many_workers(struct worker_pool *pool)
831 {
832 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
833 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
834 int nr_busy = pool->nr_workers - nr_idle;
835
836 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
837 }
838
839 /*
840 * Wake up functions.
841 */
842
843 /* Return the first idle worker. Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)844 static struct worker *first_idle_worker(struct worker_pool *pool)
845 {
846 if (unlikely(list_empty(&pool->idle_list)))
847 return NULL;
848
849 return list_first_entry(&pool->idle_list, struct worker, entry);
850 }
851
852 /**
853 * wake_up_worker - wake up an idle worker
854 * @pool: worker pool to wake worker from
855 *
856 * Wake up the first idle worker of @pool.
857 *
858 * CONTEXT:
859 * raw_spin_lock_irq(pool->lock).
860 */
wake_up_worker(struct worker_pool * pool)861 static void wake_up_worker(struct worker_pool *pool)
862 {
863 struct worker *worker = first_idle_worker(pool);
864
865 if (likely(worker))
866 wake_up_process(worker->task);
867 }
868
869 /**
870 * wq_worker_running - a worker is running again
871 * @task: task waking up
872 *
873 * This function is called when a worker returns from schedule()
874 */
wq_worker_running(struct task_struct * task)875 void wq_worker_running(struct task_struct *task)
876 {
877 struct worker *worker = kthread_data(task);
878
879 if (!worker->sleeping)
880 return;
881
882 /*
883 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
884 * and the nr_running increment below, we may ruin the nr_running reset
885 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
886 * pool. Protect against such race.
887 */
888 preempt_disable();
889 if (!(worker->flags & WORKER_NOT_RUNNING))
890 worker->pool->nr_running++;
891 preempt_enable();
892 worker->sleeping = 0;
893 }
894
895 /**
896 * wq_worker_sleeping - a worker is going to sleep
897 * @task: task going to sleep
898 *
899 * This function is called from schedule() when a busy worker is
900 * going to sleep.
901 */
wq_worker_sleeping(struct task_struct * task)902 void wq_worker_sleeping(struct task_struct *task)
903 {
904 struct worker *worker = kthread_data(task);
905 struct worker_pool *pool;
906
907 /*
908 * Rescuers, which may not have all the fields set up like normal
909 * workers, also reach here, let's not access anything before
910 * checking NOT_RUNNING.
911 */
912 if (worker->flags & WORKER_NOT_RUNNING)
913 return;
914
915 pool = worker->pool;
916
917 /* Return if preempted before wq_worker_running() was reached */
918 if (worker->sleeping)
919 return;
920
921 worker->sleeping = 1;
922 raw_spin_lock_irq(&pool->lock);
923
924 /*
925 * Recheck in case unbind_workers() preempted us. We don't
926 * want to decrement nr_running after the worker is unbound
927 * and nr_running has been reset.
928 */
929 if (worker->flags & WORKER_NOT_RUNNING) {
930 raw_spin_unlock_irq(&pool->lock);
931 return;
932 }
933
934 pool->nr_running--;
935 if (need_more_worker(pool))
936 wake_up_worker(pool);
937 raw_spin_unlock_irq(&pool->lock);
938 }
939
940 /**
941 * wq_worker_last_func - retrieve worker's last work function
942 * @task: Task to retrieve last work function of.
943 *
944 * Determine the last function a worker executed. This is called from
945 * the scheduler to get a worker's last known identity.
946 *
947 * CONTEXT:
948 * raw_spin_lock_irq(rq->lock)
949 *
950 * This function is called during schedule() when a kworker is going
951 * to sleep. It's used by psi to identify aggregation workers during
952 * dequeuing, to allow periodic aggregation to shut-off when that
953 * worker is the last task in the system or cgroup to go to sleep.
954 *
955 * As this function doesn't involve any workqueue-related locking, it
956 * only returns stable values when called from inside the scheduler's
957 * queuing and dequeuing paths, when @task, which must be a kworker,
958 * is guaranteed to not be processing any works.
959 *
960 * Return:
961 * The last work function %current executed as a worker, NULL if it
962 * hasn't executed any work yet.
963 */
wq_worker_last_func(struct task_struct * task)964 work_func_t wq_worker_last_func(struct task_struct *task)
965 {
966 struct worker *worker = kthread_data(task);
967
968 return worker->last_func;
969 }
970
971 /**
972 * worker_set_flags - set worker flags and adjust nr_running accordingly
973 * @worker: self
974 * @flags: flags to set
975 *
976 * Set @flags in @worker->flags and adjust nr_running accordingly.
977 *
978 * CONTEXT:
979 * raw_spin_lock_irq(pool->lock)
980 */
worker_set_flags(struct worker * worker,unsigned int flags)981 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
982 {
983 struct worker_pool *pool = worker->pool;
984
985 WARN_ON_ONCE(worker->task != current);
986
987 /* If transitioning into NOT_RUNNING, adjust nr_running. */
988 if ((flags & WORKER_NOT_RUNNING) &&
989 !(worker->flags & WORKER_NOT_RUNNING)) {
990 pool->nr_running--;
991 }
992
993 worker->flags |= flags;
994 }
995
996 /**
997 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
998 * @worker: self
999 * @flags: flags to clear
1000 *
1001 * Clear @flags in @worker->flags and adjust nr_running accordingly.
1002 *
1003 * CONTEXT:
1004 * raw_spin_lock_irq(pool->lock)
1005 */
worker_clr_flags(struct worker * worker,unsigned int flags)1006 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1007 {
1008 struct worker_pool *pool = worker->pool;
1009 unsigned int oflags = worker->flags;
1010
1011 WARN_ON_ONCE(worker->task != current);
1012
1013 worker->flags &= ~flags;
1014
1015 /*
1016 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1017 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1018 * of multiple flags, not a single flag.
1019 */
1020 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1021 if (!(worker->flags & WORKER_NOT_RUNNING))
1022 pool->nr_running++;
1023 }
1024
1025 /**
1026 * find_worker_executing_work - find worker which is executing a work
1027 * @pool: pool of interest
1028 * @work: work to find worker for
1029 *
1030 * Find a worker which is executing @work on @pool by searching
1031 * @pool->busy_hash which is keyed by the address of @work. For a worker
1032 * to match, its current execution should match the address of @work and
1033 * its work function. This is to avoid unwanted dependency between
1034 * unrelated work executions through a work item being recycled while still
1035 * being executed.
1036 *
1037 * This is a bit tricky. A work item may be freed once its execution
1038 * starts and nothing prevents the freed area from being recycled for
1039 * another work item. If the same work item address ends up being reused
1040 * before the original execution finishes, workqueue will identify the
1041 * recycled work item as currently executing and make it wait until the
1042 * current execution finishes, introducing an unwanted dependency.
1043 *
1044 * This function checks the work item address and work function to avoid
1045 * false positives. Note that this isn't complete as one may construct a
1046 * work function which can introduce dependency onto itself through a
1047 * recycled work item. Well, if somebody wants to shoot oneself in the
1048 * foot that badly, there's only so much we can do, and if such deadlock
1049 * actually occurs, it should be easy to locate the culprit work function.
1050 *
1051 * CONTEXT:
1052 * raw_spin_lock_irq(pool->lock).
1053 *
1054 * Return:
1055 * Pointer to worker which is executing @work if found, %NULL
1056 * otherwise.
1057 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1058 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1059 struct work_struct *work)
1060 {
1061 struct worker *worker;
1062
1063 hash_for_each_possible(pool->busy_hash, worker, hentry,
1064 (unsigned long)work)
1065 if (worker->current_work == work &&
1066 worker->current_func == work->func)
1067 return worker;
1068
1069 return NULL;
1070 }
1071
1072 /**
1073 * move_linked_works - move linked works to a list
1074 * @work: start of series of works to be scheduled
1075 * @head: target list to append @work to
1076 * @nextp: out parameter for nested worklist walking
1077 *
1078 * Schedule linked works starting from @work to @head. Work series to
1079 * be scheduled starts at @work and includes any consecutive work with
1080 * WORK_STRUCT_LINKED set in its predecessor.
1081 *
1082 * If @nextp is not NULL, it's updated to point to the next work of
1083 * the last scheduled work. This allows move_linked_works() to be
1084 * nested inside outer list_for_each_entry_safe().
1085 *
1086 * CONTEXT:
1087 * raw_spin_lock_irq(pool->lock).
1088 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1089 static void move_linked_works(struct work_struct *work, struct list_head *head,
1090 struct work_struct **nextp)
1091 {
1092 struct work_struct *n;
1093
1094 /*
1095 * Linked worklist will always end before the end of the list,
1096 * use NULL for list head.
1097 */
1098 list_for_each_entry_safe_from(work, n, NULL, entry) {
1099 list_move_tail(&work->entry, head);
1100 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1101 break;
1102 }
1103
1104 /*
1105 * If we're already inside safe list traversal and have moved
1106 * multiple works to the scheduled queue, the next position
1107 * needs to be updated.
1108 */
1109 if (nextp)
1110 *nextp = n;
1111 }
1112
1113 /**
1114 * get_pwq - get an extra reference on the specified pool_workqueue
1115 * @pwq: pool_workqueue to get
1116 *
1117 * Obtain an extra reference on @pwq. The caller should guarantee that
1118 * @pwq has positive refcnt and be holding the matching pool->lock.
1119 */
get_pwq(struct pool_workqueue * pwq)1120 static void get_pwq(struct pool_workqueue *pwq)
1121 {
1122 lockdep_assert_held(&pwq->pool->lock);
1123 WARN_ON_ONCE(pwq->refcnt <= 0);
1124 pwq->refcnt++;
1125 }
1126
1127 /**
1128 * put_pwq - put a pool_workqueue reference
1129 * @pwq: pool_workqueue to put
1130 *
1131 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1132 * destruction. The caller should be holding the matching pool->lock.
1133 */
put_pwq(struct pool_workqueue * pwq)1134 static void put_pwq(struct pool_workqueue *pwq)
1135 {
1136 lockdep_assert_held(&pwq->pool->lock);
1137 if (likely(--pwq->refcnt))
1138 return;
1139 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1140 return;
1141 /*
1142 * @pwq can't be released under pool->lock, bounce to
1143 * pwq_unbound_release_workfn(). This never recurses on the same
1144 * pool->lock as this path is taken only for unbound workqueues and
1145 * the release work item is scheduled on a per-cpu workqueue. To
1146 * avoid lockdep warning, unbound pool->locks are given lockdep
1147 * subclass of 1 in get_unbound_pool().
1148 */
1149 schedule_work(&pwq->unbound_release_work);
1150 }
1151
1152 /**
1153 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1154 * @pwq: pool_workqueue to put (can be %NULL)
1155 *
1156 * put_pwq() with locking. This function also allows %NULL @pwq.
1157 */
put_pwq_unlocked(struct pool_workqueue * pwq)1158 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1159 {
1160 if (pwq) {
1161 /*
1162 * As both pwqs and pools are RCU protected, the
1163 * following lock operations are safe.
1164 */
1165 raw_spin_lock_irq(&pwq->pool->lock);
1166 put_pwq(pwq);
1167 raw_spin_unlock_irq(&pwq->pool->lock);
1168 }
1169 }
1170
pwq_activate_inactive_work(struct work_struct * work)1171 static void pwq_activate_inactive_work(struct work_struct *work)
1172 {
1173 struct pool_workqueue *pwq = get_work_pwq(work);
1174
1175 trace_workqueue_activate_work(work);
1176 if (list_empty(&pwq->pool->worklist))
1177 pwq->pool->watchdog_ts = jiffies;
1178 move_linked_works(work, &pwq->pool->worklist, NULL);
1179 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1180 pwq->nr_active++;
1181 }
1182
pwq_activate_first_inactive(struct pool_workqueue * pwq)1183 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1184 {
1185 struct work_struct *work = list_first_entry(&pwq->inactive_works,
1186 struct work_struct, entry);
1187
1188 pwq_activate_inactive_work(work);
1189 }
1190
1191 /**
1192 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1193 * @pwq: pwq of interest
1194 * @work_data: work_data of work which left the queue
1195 *
1196 * A work either has completed or is removed from pending queue,
1197 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1198 *
1199 * CONTEXT:
1200 * raw_spin_lock_irq(pool->lock).
1201 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1202 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1203 {
1204 int color = get_work_color(work_data);
1205
1206 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1207 pwq->nr_active--;
1208 if (!list_empty(&pwq->inactive_works)) {
1209 /* one down, submit an inactive one */
1210 if (pwq->nr_active < pwq->max_active)
1211 pwq_activate_first_inactive(pwq);
1212 }
1213 }
1214
1215 pwq->nr_in_flight[color]--;
1216
1217 /* is flush in progress and are we at the flushing tip? */
1218 if (likely(pwq->flush_color != color))
1219 goto out_put;
1220
1221 /* are there still in-flight works? */
1222 if (pwq->nr_in_flight[color])
1223 goto out_put;
1224
1225 /* this pwq is done, clear flush_color */
1226 pwq->flush_color = -1;
1227
1228 /*
1229 * If this was the last pwq, wake up the first flusher. It
1230 * will handle the rest.
1231 */
1232 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1233 complete(&pwq->wq->first_flusher->done);
1234 out_put:
1235 put_pwq(pwq);
1236 }
1237
1238 /**
1239 * try_to_grab_pending - steal work item from worklist and disable irq
1240 * @work: work item to steal
1241 * @is_dwork: @work is a delayed_work
1242 * @flags: place to store irq state
1243 *
1244 * Try to grab PENDING bit of @work. This function can handle @work in any
1245 * stable state - idle, on timer or on worklist.
1246 *
1247 * Return:
1248 *
1249 * ======== ================================================================
1250 * 1 if @work was pending and we successfully stole PENDING
1251 * 0 if @work was idle and we claimed PENDING
1252 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1253 * -ENOENT if someone else is canceling @work, this state may persist
1254 * for arbitrarily long
1255 * ======== ================================================================
1256 *
1257 * Note:
1258 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1259 * interrupted while holding PENDING and @work off queue, irq must be
1260 * disabled on entry. This, combined with delayed_work->timer being
1261 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1262 *
1263 * On successful return, >= 0, irq is disabled and the caller is
1264 * responsible for releasing it using local_irq_restore(*@flags).
1265 *
1266 * This function is safe to call from any context including IRQ handler.
1267 */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1268 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1269 unsigned long *flags)
1270 {
1271 struct worker_pool *pool;
1272 struct pool_workqueue *pwq;
1273
1274 local_irq_save(*flags);
1275
1276 /* try to steal the timer if it exists */
1277 if (is_dwork) {
1278 struct delayed_work *dwork = to_delayed_work(work);
1279
1280 /*
1281 * dwork->timer is irqsafe. If del_timer() fails, it's
1282 * guaranteed that the timer is not queued anywhere and not
1283 * running on the local CPU.
1284 */
1285 if (likely(del_timer(&dwork->timer)))
1286 return 1;
1287 }
1288
1289 /* try to claim PENDING the normal way */
1290 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1291 return 0;
1292
1293 rcu_read_lock();
1294 /*
1295 * The queueing is in progress, or it is already queued. Try to
1296 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1297 */
1298 pool = get_work_pool(work);
1299 if (!pool)
1300 goto fail;
1301
1302 raw_spin_lock(&pool->lock);
1303 /*
1304 * work->data is guaranteed to point to pwq only while the work
1305 * item is queued on pwq->wq, and both updating work->data to point
1306 * to pwq on queueing and to pool on dequeueing are done under
1307 * pwq->pool->lock. This in turn guarantees that, if work->data
1308 * points to pwq which is associated with a locked pool, the work
1309 * item is currently queued on that pool.
1310 */
1311 pwq = get_work_pwq(work);
1312 if (pwq && pwq->pool == pool) {
1313 debug_work_deactivate(work);
1314
1315 /*
1316 * A cancelable inactive work item must be in the
1317 * pwq->inactive_works since a queued barrier can't be
1318 * canceled (see the comments in insert_wq_barrier()).
1319 *
1320 * An inactive work item cannot be grabbed directly because
1321 * it might have linked barrier work items which, if left
1322 * on the inactive_works list, will confuse pwq->nr_active
1323 * management later on and cause stall. Make sure the work
1324 * item is activated before grabbing.
1325 */
1326 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1327 pwq_activate_inactive_work(work);
1328
1329 list_del_init(&work->entry);
1330 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1331
1332 /* work->data points to pwq iff queued, point to pool */
1333 set_work_pool_and_keep_pending(work, pool->id);
1334
1335 raw_spin_unlock(&pool->lock);
1336 rcu_read_unlock();
1337 return 1;
1338 }
1339 raw_spin_unlock(&pool->lock);
1340 fail:
1341 rcu_read_unlock();
1342 local_irq_restore(*flags);
1343 if (work_is_canceling(work))
1344 return -ENOENT;
1345 cpu_relax();
1346 return -EAGAIN;
1347 }
1348
1349 /**
1350 * insert_work - insert a work into a pool
1351 * @pwq: pwq @work belongs to
1352 * @work: work to insert
1353 * @head: insertion point
1354 * @extra_flags: extra WORK_STRUCT_* flags to set
1355 *
1356 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1357 * work_struct flags.
1358 *
1359 * CONTEXT:
1360 * raw_spin_lock_irq(pool->lock).
1361 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1362 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1363 struct list_head *head, unsigned int extra_flags)
1364 {
1365 struct worker_pool *pool = pwq->pool;
1366
1367 /* record the work call stack in order to print it in KASAN reports */
1368 kasan_record_aux_stack_noalloc(work);
1369
1370 /* we own @work, set data and link */
1371 set_work_pwq(work, pwq, extra_flags);
1372 list_add_tail(&work->entry, head);
1373 get_pwq(pwq);
1374
1375 if (__need_more_worker(pool))
1376 wake_up_worker(pool);
1377 }
1378
1379 /*
1380 * Test whether @work is being queued from another work executing on the
1381 * same workqueue.
1382 */
is_chained_work(struct workqueue_struct * wq)1383 static bool is_chained_work(struct workqueue_struct *wq)
1384 {
1385 struct worker *worker;
1386
1387 worker = current_wq_worker();
1388 /*
1389 * Return %true iff I'm a worker executing a work item on @wq. If
1390 * I'm @worker, it's safe to dereference it without locking.
1391 */
1392 return worker && worker->current_pwq->wq == wq;
1393 }
1394
1395 /*
1396 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1397 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1398 * avoid perturbing sensitive tasks.
1399 */
wq_select_unbound_cpu(int cpu)1400 static int wq_select_unbound_cpu(int cpu)
1401 {
1402 static bool printed_dbg_warning;
1403 int new_cpu;
1404
1405 if (likely(!wq_debug_force_rr_cpu)) {
1406 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1407 return cpu;
1408 } else if (!printed_dbg_warning) {
1409 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1410 printed_dbg_warning = true;
1411 }
1412
1413 if (cpumask_empty(wq_unbound_cpumask))
1414 return cpu;
1415
1416 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1417 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1418 if (unlikely(new_cpu >= nr_cpu_ids)) {
1419 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1420 if (unlikely(new_cpu >= nr_cpu_ids))
1421 return cpu;
1422 }
1423 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1424
1425 return new_cpu;
1426 }
1427
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1428 static void __queue_work(int cpu, struct workqueue_struct *wq,
1429 struct work_struct *work)
1430 {
1431 struct pool_workqueue *pwq;
1432 struct worker_pool *last_pool;
1433 struct list_head *worklist;
1434 unsigned int work_flags;
1435 unsigned int req_cpu = cpu;
1436
1437 /*
1438 * While a work item is PENDING && off queue, a task trying to
1439 * steal the PENDING will busy-loop waiting for it to either get
1440 * queued or lose PENDING. Grabbing PENDING and queueing should
1441 * happen with IRQ disabled.
1442 */
1443 lockdep_assert_irqs_disabled();
1444
1445
1446 /* if draining, only works from the same workqueue are allowed */
1447 if (unlikely(wq->flags & __WQ_DRAINING) &&
1448 WARN_ON_ONCE(!is_chained_work(wq)))
1449 return;
1450 rcu_read_lock();
1451 retry:
1452 /* pwq which will be used unless @work is executing elsewhere */
1453 if (wq->flags & WQ_UNBOUND) {
1454 if (req_cpu == WORK_CPU_UNBOUND)
1455 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1456 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1457 } else {
1458 if (req_cpu == WORK_CPU_UNBOUND)
1459 cpu = raw_smp_processor_id();
1460 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1461 }
1462
1463 /*
1464 * If @work was previously on a different pool, it might still be
1465 * running there, in which case the work needs to be queued on that
1466 * pool to guarantee non-reentrancy.
1467 */
1468 last_pool = get_work_pool(work);
1469 if (last_pool && last_pool != pwq->pool) {
1470 struct worker *worker;
1471
1472 raw_spin_lock(&last_pool->lock);
1473
1474 worker = find_worker_executing_work(last_pool, work);
1475
1476 if (worker && worker->current_pwq->wq == wq) {
1477 pwq = worker->current_pwq;
1478 } else {
1479 /* meh... not running there, queue here */
1480 raw_spin_unlock(&last_pool->lock);
1481 raw_spin_lock(&pwq->pool->lock);
1482 }
1483 } else {
1484 raw_spin_lock(&pwq->pool->lock);
1485 }
1486
1487 /*
1488 * pwq is determined and locked. For unbound pools, we could have
1489 * raced with pwq release and it could already be dead. If its
1490 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1491 * without another pwq replacing it in the numa_pwq_tbl or while
1492 * work items are executing on it, so the retrying is guaranteed to
1493 * make forward-progress.
1494 */
1495 if (unlikely(!pwq->refcnt)) {
1496 if (wq->flags & WQ_UNBOUND) {
1497 raw_spin_unlock(&pwq->pool->lock);
1498 cpu_relax();
1499 goto retry;
1500 }
1501 /* oops */
1502 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1503 wq->name, cpu);
1504 }
1505
1506 /* pwq determined, queue */
1507 trace_workqueue_queue_work(req_cpu, pwq, work);
1508
1509 if (WARN_ON(!list_empty(&work->entry)))
1510 goto out;
1511
1512 pwq->nr_in_flight[pwq->work_color]++;
1513 work_flags = work_color_to_flags(pwq->work_color);
1514
1515 if (likely(pwq->nr_active < pwq->max_active)) {
1516 trace_workqueue_activate_work(work);
1517 pwq->nr_active++;
1518 worklist = &pwq->pool->worklist;
1519 if (list_empty(worklist))
1520 pwq->pool->watchdog_ts = jiffies;
1521 } else {
1522 work_flags |= WORK_STRUCT_INACTIVE;
1523 worklist = &pwq->inactive_works;
1524 }
1525
1526 debug_work_activate(work);
1527 insert_work(pwq, work, worklist, work_flags);
1528
1529 out:
1530 raw_spin_unlock(&pwq->pool->lock);
1531 rcu_read_unlock();
1532 }
1533
1534 /**
1535 * queue_work_on - queue work on specific cpu
1536 * @cpu: CPU number to execute work on
1537 * @wq: workqueue to use
1538 * @work: work to queue
1539 *
1540 * We queue the work to a specific CPU, the caller must ensure it
1541 * can't go away. Callers that fail to ensure that the specified
1542 * CPU cannot go away will execute on a randomly chosen CPU.
1543 *
1544 * Return: %false if @work was already on a queue, %true otherwise.
1545 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1546 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1547 struct work_struct *work)
1548 {
1549 bool ret = false;
1550 unsigned long flags;
1551
1552 local_irq_save(flags);
1553
1554 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1555 __queue_work(cpu, wq, work);
1556 ret = true;
1557 }
1558
1559 local_irq_restore(flags);
1560 return ret;
1561 }
1562 EXPORT_SYMBOL(queue_work_on);
1563
1564 /**
1565 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1566 * @node: NUMA node ID that we want to select a CPU from
1567 *
1568 * This function will attempt to find a "random" cpu available on a given
1569 * node. If there are no CPUs available on the given node it will return
1570 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1571 * available CPU if we need to schedule this work.
1572 */
workqueue_select_cpu_near(int node)1573 static int workqueue_select_cpu_near(int node)
1574 {
1575 int cpu;
1576
1577 /* No point in doing this if NUMA isn't enabled for workqueues */
1578 if (!wq_numa_enabled)
1579 return WORK_CPU_UNBOUND;
1580
1581 /* Delay binding to CPU if node is not valid or online */
1582 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1583 return WORK_CPU_UNBOUND;
1584
1585 /* Use local node/cpu if we are already there */
1586 cpu = raw_smp_processor_id();
1587 if (node == cpu_to_node(cpu))
1588 return cpu;
1589
1590 /* Use "random" otherwise know as "first" online CPU of node */
1591 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1592
1593 /* If CPU is valid return that, otherwise just defer */
1594 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1595 }
1596
1597 /**
1598 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1599 * @node: NUMA node that we are targeting the work for
1600 * @wq: workqueue to use
1601 * @work: work to queue
1602 *
1603 * We queue the work to a "random" CPU within a given NUMA node. The basic
1604 * idea here is to provide a way to somehow associate work with a given
1605 * NUMA node.
1606 *
1607 * This function will only make a best effort attempt at getting this onto
1608 * the right NUMA node. If no node is requested or the requested node is
1609 * offline then we just fall back to standard queue_work behavior.
1610 *
1611 * Currently the "random" CPU ends up being the first available CPU in the
1612 * intersection of cpu_online_mask and the cpumask of the node, unless we
1613 * are running on the node. In that case we just use the current CPU.
1614 *
1615 * Return: %false if @work was already on a queue, %true otherwise.
1616 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1617 bool queue_work_node(int node, struct workqueue_struct *wq,
1618 struct work_struct *work)
1619 {
1620 unsigned long flags;
1621 bool ret = false;
1622
1623 /*
1624 * This current implementation is specific to unbound workqueues.
1625 * Specifically we only return the first available CPU for a given
1626 * node instead of cycling through individual CPUs within the node.
1627 *
1628 * If this is used with a per-cpu workqueue then the logic in
1629 * workqueue_select_cpu_near would need to be updated to allow for
1630 * some round robin type logic.
1631 */
1632 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1633
1634 local_irq_save(flags);
1635
1636 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1637 int cpu = workqueue_select_cpu_near(node);
1638
1639 __queue_work(cpu, wq, work);
1640 ret = true;
1641 }
1642
1643 local_irq_restore(flags);
1644 return ret;
1645 }
1646 EXPORT_SYMBOL_GPL(queue_work_node);
1647
delayed_work_timer_fn(struct timer_list * t)1648 void delayed_work_timer_fn(struct timer_list *t)
1649 {
1650 struct delayed_work *dwork = from_timer(dwork, t, timer);
1651
1652 /* should have been called from irqsafe timer with irq already off */
1653 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1654 }
1655 EXPORT_SYMBOL(delayed_work_timer_fn);
1656
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1657 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1658 struct delayed_work *dwork, unsigned long delay)
1659 {
1660 struct timer_list *timer = &dwork->timer;
1661 struct work_struct *work = &dwork->work;
1662
1663 WARN_ON_ONCE(!wq);
1664 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1665 WARN_ON_ONCE(timer_pending(timer));
1666 WARN_ON_ONCE(!list_empty(&work->entry));
1667
1668 /*
1669 * If @delay is 0, queue @dwork->work immediately. This is for
1670 * both optimization and correctness. The earliest @timer can
1671 * expire is on the closest next tick and delayed_work users depend
1672 * on that there's no such delay when @delay is 0.
1673 */
1674 if (!delay) {
1675 __queue_work(cpu, wq, &dwork->work);
1676 return;
1677 }
1678
1679 dwork->wq = wq;
1680 dwork->cpu = cpu;
1681 timer->expires = jiffies + delay;
1682
1683 if (unlikely(cpu != WORK_CPU_UNBOUND))
1684 add_timer_on(timer, cpu);
1685 else
1686 add_timer(timer);
1687 }
1688
1689 /**
1690 * queue_delayed_work_on - queue work on specific CPU after delay
1691 * @cpu: CPU number to execute work on
1692 * @wq: workqueue to use
1693 * @dwork: work to queue
1694 * @delay: number of jiffies to wait before queueing
1695 *
1696 * Return: %false if @work was already on a queue, %true otherwise. If
1697 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1698 * execution.
1699 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1700 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1701 struct delayed_work *dwork, unsigned long delay)
1702 {
1703 struct work_struct *work = &dwork->work;
1704 bool ret = false;
1705 unsigned long flags;
1706
1707 /* read the comment in __queue_work() */
1708 local_irq_save(flags);
1709
1710 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1711 __queue_delayed_work(cpu, wq, dwork, delay);
1712 ret = true;
1713 }
1714
1715 local_irq_restore(flags);
1716 return ret;
1717 }
1718 EXPORT_SYMBOL(queue_delayed_work_on);
1719
1720 /**
1721 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1722 * @cpu: CPU number to execute work on
1723 * @wq: workqueue to use
1724 * @dwork: work to queue
1725 * @delay: number of jiffies to wait before queueing
1726 *
1727 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1728 * modify @dwork's timer so that it expires after @delay. If @delay is
1729 * zero, @work is guaranteed to be scheduled immediately regardless of its
1730 * current state.
1731 *
1732 * Return: %false if @dwork was idle and queued, %true if @dwork was
1733 * pending and its timer was modified.
1734 *
1735 * This function is safe to call from any context including IRQ handler.
1736 * See try_to_grab_pending() for details.
1737 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1738 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1739 struct delayed_work *dwork, unsigned long delay)
1740 {
1741 unsigned long flags;
1742 int ret;
1743
1744 do {
1745 ret = try_to_grab_pending(&dwork->work, true, &flags);
1746 } while (unlikely(ret == -EAGAIN));
1747
1748 if (likely(ret >= 0)) {
1749 __queue_delayed_work(cpu, wq, dwork, delay);
1750 local_irq_restore(flags);
1751 }
1752
1753 /* -ENOENT from try_to_grab_pending() becomes %true */
1754 return ret;
1755 }
1756 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1757
rcu_work_rcufn(struct rcu_head * rcu)1758 static void rcu_work_rcufn(struct rcu_head *rcu)
1759 {
1760 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1761
1762 /* read the comment in __queue_work() */
1763 local_irq_disable();
1764 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1765 local_irq_enable();
1766 }
1767
1768 /**
1769 * queue_rcu_work - queue work after a RCU grace period
1770 * @wq: workqueue to use
1771 * @rwork: work to queue
1772 *
1773 * Return: %false if @rwork was already pending, %true otherwise. Note
1774 * that a full RCU grace period is guaranteed only after a %true return.
1775 * While @rwork is guaranteed to be executed after a %false return, the
1776 * execution may happen before a full RCU grace period has passed.
1777 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1778 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1779 {
1780 struct work_struct *work = &rwork->work;
1781
1782 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1783 rwork->wq = wq;
1784 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
1785 return true;
1786 }
1787
1788 return false;
1789 }
1790 EXPORT_SYMBOL(queue_rcu_work);
1791
1792 /**
1793 * worker_enter_idle - enter idle state
1794 * @worker: worker which is entering idle state
1795 *
1796 * @worker is entering idle state. Update stats and idle timer if
1797 * necessary.
1798 *
1799 * LOCKING:
1800 * raw_spin_lock_irq(pool->lock).
1801 */
worker_enter_idle(struct worker * worker)1802 static void worker_enter_idle(struct worker *worker)
1803 {
1804 struct worker_pool *pool = worker->pool;
1805
1806 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1807 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1808 (worker->hentry.next || worker->hentry.pprev)))
1809 return;
1810
1811 /* can't use worker_set_flags(), also called from create_worker() */
1812 worker->flags |= WORKER_IDLE;
1813 pool->nr_idle++;
1814 worker->last_active = jiffies;
1815
1816 /* idle_list is LIFO */
1817 list_add(&worker->entry, &pool->idle_list);
1818
1819 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1820 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1821
1822 /* Sanity check nr_running. */
1823 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1824 }
1825
1826 /**
1827 * worker_leave_idle - leave idle state
1828 * @worker: worker which is leaving idle state
1829 *
1830 * @worker is leaving idle state. Update stats.
1831 *
1832 * LOCKING:
1833 * raw_spin_lock_irq(pool->lock).
1834 */
worker_leave_idle(struct worker * worker)1835 static void worker_leave_idle(struct worker *worker)
1836 {
1837 struct worker_pool *pool = worker->pool;
1838
1839 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1840 return;
1841 worker_clr_flags(worker, WORKER_IDLE);
1842 pool->nr_idle--;
1843 list_del_init(&worker->entry);
1844 }
1845
alloc_worker(int node)1846 static struct worker *alloc_worker(int node)
1847 {
1848 struct worker *worker;
1849
1850 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1851 if (worker) {
1852 INIT_LIST_HEAD(&worker->entry);
1853 INIT_LIST_HEAD(&worker->scheduled);
1854 INIT_LIST_HEAD(&worker->node);
1855 /* on creation a worker is in !idle && prep state */
1856 worker->flags = WORKER_PREP;
1857 }
1858 return worker;
1859 }
1860
1861 /**
1862 * worker_attach_to_pool() - attach a worker to a pool
1863 * @worker: worker to be attached
1864 * @pool: the target pool
1865 *
1866 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1867 * cpu-binding of @worker are kept coordinated with the pool across
1868 * cpu-[un]hotplugs.
1869 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1870 static void worker_attach_to_pool(struct worker *worker,
1871 struct worker_pool *pool)
1872 {
1873 mutex_lock(&wq_pool_attach_mutex);
1874
1875 /*
1876 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1877 * stable across this function. See the comments above the flag
1878 * definition for details.
1879 */
1880 if (pool->flags & POOL_DISASSOCIATED)
1881 worker->flags |= WORKER_UNBOUND;
1882 else
1883 kthread_set_per_cpu(worker->task, pool->cpu);
1884
1885 if (worker->rescue_wq)
1886 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1887
1888 list_add_tail(&worker->node, &pool->workers);
1889 worker->pool = pool;
1890
1891 mutex_unlock(&wq_pool_attach_mutex);
1892 }
1893
1894 /**
1895 * worker_detach_from_pool() - detach a worker from its pool
1896 * @worker: worker which is attached to its pool
1897 *
1898 * Undo the attaching which had been done in worker_attach_to_pool(). The
1899 * caller worker shouldn't access to the pool after detached except it has
1900 * other reference to the pool.
1901 */
worker_detach_from_pool(struct worker * worker)1902 static void worker_detach_from_pool(struct worker *worker)
1903 {
1904 struct worker_pool *pool = worker->pool;
1905 struct completion *detach_completion = NULL;
1906
1907 mutex_lock(&wq_pool_attach_mutex);
1908
1909 kthread_set_per_cpu(worker->task, -1);
1910 list_del(&worker->node);
1911 worker->pool = NULL;
1912
1913 if (list_empty(&pool->workers))
1914 detach_completion = pool->detach_completion;
1915 mutex_unlock(&wq_pool_attach_mutex);
1916
1917 /* clear leftover flags without pool->lock after it is detached */
1918 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1919
1920 if (detach_completion)
1921 complete(detach_completion);
1922 }
1923
1924 /**
1925 * create_worker - create a new workqueue worker
1926 * @pool: pool the new worker will belong to
1927 *
1928 * Create and start a new worker which is attached to @pool.
1929 *
1930 * CONTEXT:
1931 * Might sleep. Does GFP_KERNEL allocations.
1932 *
1933 * Return:
1934 * Pointer to the newly created worker.
1935 */
create_worker(struct worker_pool * pool)1936 static struct worker *create_worker(struct worker_pool *pool)
1937 {
1938 struct worker *worker;
1939 int id;
1940 char id_buf[16];
1941
1942 /* ID is needed to determine kthread name */
1943 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1944 if (id < 0)
1945 return NULL;
1946
1947 worker = alloc_worker(pool->node);
1948 if (!worker)
1949 goto fail;
1950
1951 worker->id = id;
1952
1953 if (pool->cpu >= 0)
1954 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1955 pool->attrs->nice < 0 ? "H" : "");
1956 else
1957 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1958
1959 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1960 "kworker/%s", id_buf);
1961 if (IS_ERR(worker->task))
1962 goto fail;
1963
1964 set_user_nice(worker->task, pool->attrs->nice);
1965 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1966
1967 /* successful, attach the worker to the pool */
1968 worker_attach_to_pool(worker, pool);
1969
1970 /* start the newly created worker */
1971 raw_spin_lock_irq(&pool->lock);
1972 worker->pool->nr_workers++;
1973 worker_enter_idle(worker);
1974 wake_up_process(worker->task);
1975 raw_spin_unlock_irq(&pool->lock);
1976
1977 return worker;
1978
1979 fail:
1980 ida_free(&pool->worker_ida, id);
1981 kfree(worker);
1982 return NULL;
1983 }
1984
1985 /**
1986 * destroy_worker - destroy a workqueue worker
1987 * @worker: worker to be destroyed
1988 *
1989 * Destroy @worker and adjust @pool stats accordingly. The worker should
1990 * be idle.
1991 *
1992 * CONTEXT:
1993 * raw_spin_lock_irq(pool->lock).
1994 */
destroy_worker(struct worker * worker)1995 static void destroy_worker(struct worker *worker)
1996 {
1997 struct worker_pool *pool = worker->pool;
1998
1999 lockdep_assert_held(&pool->lock);
2000
2001 /* sanity check frenzy */
2002 if (WARN_ON(worker->current_work) ||
2003 WARN_ON(!list_empty(&worker->scheduled)) ||
2004 WARN_ON(!(worker->flags & WORKER_IDLE)))
2005 return;
2006
2007 pool->nr_workers--;
2008 pool->nr_idle--;
2009
2010 list_del_init(&worker->entry);
2011 worker->flags |= WORKER_DIE;
2012 wake_up_process(worker->task);
2013 }
2014
idle_worker_timeout(struct timer_list * t)2015 static void idle_worker_timeout(struct timer_list *t)
2016 {
2017 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2018
2019 raw_spin_lock_irq(&pool->lock);
2020
2021 while (too_many_workers(pool)) {
2022 struct worker *worker;
2023 unsigned long expires;
2024
2025 /* idle_list is kept in LIFO order, check the last one */
2026 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2027 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2028
2029 if (time_before(jiffies, expires)) {
2030 mod_timer(&pool->idle_timer, expires);
2031 break;
2032 }
2033
2034 destroy_worker(worker);
2035 }
2036
2037 raw_spin_unlock_irq(&pool->lock);
2038 }
2039
send_mayday(struct work_struct * work)2040 static void send_mayday(struct work_struct *work)
2041 {
2042 struct pool_workqueue *pwq = get_work_pwq(work);
2043 struct workqueue_struct *wq = pwq->wq;
2044
2045 lockdep_assert_held(&wq_mayday_lock);
2046
2047 if (!wq->rescuer)
2048 return;
2049
2050 /* mayday mayday mayday */
2051 if (list_empty(&pwq->mayday_node)) {
2052 /*
2053 * If @pwq is for an unbound wq, its base ref may be put at
2054 * any time due to an attribute change. Pin @pwq until the
2055 * rescuer is done with it.
2056 */
2057 get_pwq(pwq);
2058 list_add_tail(&pwq->mayday_node, &wq->maydays);
2059 wake_up_process(wq->rescuer->task);
2060 }
2061 }
2062
pool_mayday_timeout(struct timer_list * t)2063 static void pool_mayday_timeout(struct timer_list *t)
2064 {
2065 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2066 struct work_struct *work;
2067
2068 raw_spin_lock_irq(&pool->lock);
2069 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2070
2071 if (need_to_create_worker(pool)) {
2072 /*
2073 * We've been trying to create a new worker but
2074 * haven't been successful. We might be hitting an
2075 * allocation deadlock. Send distress signals to
2076 * rescuers.
2077 */
2078 list_for_each_entry(work, &pool->worklist, entry)
2079 send_mayday(work);
2080 }
2081
2082 raw_spin_unlock(&wq_mayday_lock);
2083 raw_spin_unlock_irq(&pool->lock);
2084
2085 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2086 }
2087
2088 /**
2089 * maybe_create_worker - create a new worker if necessary
2090 * @pool: pool to create a new worker for
2091 *
2092 * Create a new worker for @pool if necessary. @pool is guaranteed to
2093 * have at least one idle worker on return from this function. If
2094 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2095 * sent to all rescuers with works scheduled on @pool to resolve
2096 * possible allocation deadlock.
2097 *
2098 * On return, need_to_create_worker() is guaranteed to be %false and
2099 * may_start_working() %true.
2100 *
2101 * LOCKING:
2102 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2103 * multiple times. Does GFP_KERNEL allocations. Called only from
2104 * manager.
2105 */
maybe_create_worker(struct worker_pool * pool)2106 static void maybe_create_worker(struct worker_pool *pool)
2107 __releases(&pool->lock)
2108 __acquires(&pool->lock)
2109 {
2110 restart:
2111 raw_spin_unlock_irq(&pool->lock);
2112
2113 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2114 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2115
2116 while (true) {
2117 if (create_worker(pool) || !need_to_create_worker(pool))
2118 break;
2119
2120 schedule_timeout_interruptible(CREATE_COOLDOWN);
2121
2122 if (!need_to_create_worker(pool))
2123 break;
2124 }
2125
2126 del_timer_sync(&pool->mayday_timer);
2127 raw_spin_lock_irq(&pool->lock);
2128 /*
2129 * This is necessary even after a new worker was just successfully
2130 * created as @pool->lock was dropped and the new worker might have
2131 * already become busy.
2132 */
2133 if (need_to_create_worker(pool))
2134 goto restart;
2135 }
2136
2137 /**
2138 * manage_workers - manage worker pool
2139 * @worker: self
2140 *
2141 * Assume the manager role and manage the worker pool @worker belongs
2142 * to. At any given time, there can be only zero or one manager per
2143 * pool. The exclusion is handled automatically by this function.
2144 *
2145 * The caller can safely start processing works on false return. On
2146 * true return, it's guaranteed that need_to_create_worker() is false
2147 * and may_start_working() is true.
2148 *
2149 * CONTEXT:
2150 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2151 * multiple times. Does GFP_KERNEL allocations.
2152 *
2153 * Return:
2154 * %false if the pool doesn't need management and the caller can safely
2155 * start processing works, %true if management function was performed and
2156 * the conditions that the caller verified before calling the function may
2157 * no longer be true.
2158 */
manage_workers(struct worker * worker)2159 static bool manage_workers(struct worker *worker)
2160 {
2161 struct worker_pool *pool = worker->pool;
2162
2163 if (pool->flags & POOL_MANAGER_ACTIVE)
2164 return false;
2165
2166 pool->flags |= POOL_MANAGER_ACTIVE;
2167 pool->manager = worker;
2168
2169 maybe_create_worker(pool);
2170
2171 pool->manager = NULL;
2172 pool->flags &= ~POOL_MANAGER_ACTIVE;
2173 rcuwait_wake_up(&manager_wait);
2174 return true;
2175 }
2176
2177 /**
2178 * process_one_work - process single work
2179 * @worker: self
2180 * @work: work to process
2181 *
2182 * Process @work. This function contains all the logics necessary to
2183 * process a single work including synchronization against and
2184 * interaction with other workers on the same cpu, queueing and
2185 * flushing. As long as context requirement is met, any worker can
2186 * call this function to process a work.
2187 *
2188 * CONTEXT:
2189 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2190 */
process_one_work(struct worker * worker,struct work_struct * work)2191 static void process_one_work(struct worker *worker, struct work_struct *work)
2192 __releases(&pool->lock)
2193 __acquires(&pool->lock)
2194 {
2195 struct pool_workqueue *pwq = get_work_pwq(work);
2196 struct worker_pool *pool = worker->pool;
2197 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2198 unsigned long work_data;
2199 struct worker *collision;
2200 #ifdef CONFIG_LOCKDEP
2201 /*
2202 * It is permissible to free the struct work_struct from
2203 * inside the function that is called from it, this we need to
2204 * take into account for lockdep too. To avoid bogus "held
2205 * lock freed" warnings as well as problems when looking into
2206 * work->lockdep_map, make a copy and use that here.
2207 */
2208 struct lockdep_map lockdep_map;
2209
2210 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2211 #endif
2212 /* ensure we're on the correct CPU */
2213 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2214 raw_smp_processor_id() != pool->cpu);
2215
2216 /*
2217 * A single work shouldn't be executed concurrently by
2218 * multiple workers on a single cpu. Check whether anyone is
2219 * already processing the work. If so, defer the work to the
2220 * currently executing one.
2221 */
2222 collision = find_worker_executing_work(pool, work);
2223 if (unlikely(collision)) {
2224 move_linked_works(work, &collision->scheduled, NULL);
2225 return;
2226 }
2227
2228 /* claim and dequeue */
2229 debug_work_deactivate(work);
2230 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2231 worker->current_work = work;
2232 worker->current_func = work->func;
2233 worker->current_pwq = pwq;
2234 work_data = *work_data_bits(work);
2235 worker->current_color = get_work_color(work_data);
2236
2237 /*
2238 * Record wq name for cmdline and debug reporting, may get
2239 * overridden through set_worker_desc().
2240 */
2241 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2242
2243 list_del_init(&work->entry);
2244
2245 /*
2246 * CPU intensive works don't participate in concurrency management.
2247 * They're the scheduler's responsibility. This takes @worker out
2248 * of concurrency management and the next code block will chain
2249 * execution of the pending work items.
2250 */
2251 if (unlikely(cpu_intensive))
2252 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2253
2254 /*
2255 * Wake up another worker if necessary. The condition is always
2256 * false for normal per-cpu workers since nr_running would always
2257 * be >= 1 at this point. This is used to chain execution of the
2258 * pending work items for WORKER_NOT_RUNNING workers such as the
2259 * UNBOUND and CPU_INTENSIVE ones.
2260 */
2261 if (need_more_worker(pool))
2262 wake_up_worker(pool);
2263
2264 /*
2265 * Record the last pool and clear PENDING which should be the last
2266 * update to @work. Also, do this inside @pool->lock so that
2267 * PENDING and queued state changes happen together while IRQ is
2268 * disabled.
2269 */
2270 set_work_pool_and_clear_pending(work, pool->id);
2271
2272 raw_spin_unlock_irq(&pool->lock);
2273
2274 lock_map_acquire(&pwq->wq->lockdep_map);
2275 lock_map_acquire(&lockdep_map);
2276 /*
2277 * Strictly speaking we should mark the invariant state without holding
2278 * any locks, that is, before these two lock_map_acquire()'s.
2279 *
2280 * However, that would result in:
2281 *
2282 * A(W1)
2283 * WFC(C)
2284 * A(W1)
2285 * C(C)
2286 *
2287 * Which would create W1->C->W1 dependencies, even though there is no
2288 * actual deadlock possible. There are two solutions, using a
2289 * read-recursive acquire on the work(queue) 'locks', but this will then
2290 * hit the lockdep limitation on recursive locks, or simply discard
2291 * these locks.
2292 *
2293 * AFAICT there is no possible deadlock scenario between the
2294 * flush_work() and complete() primitives (except for single-threaded
2295 * workqueues), so hiding them isn't a problem.
2296 */
2297 lockdep_invariant_state(true);
2298 trace_workqueue_execute_start(work);
2299 worker->current_func(work);
2300 /*
2301 * While we must be careful to not use "work" after this, the trace
2302 * point will only record its address.
2303 */
2304 trace_workqueue_execute_end(work, worker->current_func);
2305 lock_map_release(&lockdep_map);
2306 lock_map_release(&pwq->wq->lockdep_map);
2307
2308 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2309 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2310 " last function: %ps\n",
2311 current->comm, preempt_count(), task_pid_nr(current),
2312 worker->current_func);
2313 debug_show_held_locks(current);
2314 dump_stack();
2315 }
2316
2317 /*
2318 * The following prevents a kworker from hogging CPU on !PREEMPTION
2319 * kernels, where a requeueing work item waiting for something to
2320 * happen could deadlock with stop_machine as such work item could
2321 * indefinitely requeue itself while all other CPUs are trapped in
2322 * stop_machine. At the same time, report a quiescent RCU state so
2323 * the same condition doesn't freeze RCU.
2324 */
2325 cond_resched();
2326
2327 raw_spin_lock_irq(&pool->lock);
2328
2329 /* clear cpu intensive status */
2330 if (unlikely(cpu_intensive))
2331 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2332
2333 /* tag the worker for identification in schedule() */
2334 worker->last_func = worker->current_func;
2335
2336 /* we're done with it, release */
2337 hash_del(&worker->hentry);
2338 worker->current_work = NULL;
2339 worker->current_func = NULL;
2340 worker->current_pwq = NULL;
2341 worker->current_color = INT_MAX;
2342 pwq_dec_nr_in_flight(pwq, work_data);
2343 }
2344
2345 /**
2346 * process_scheduled_works - process scheduled works
2347 * @worker: self
2348 *
2349 * Process all scheduled works. Please note that the scheduled list
2350 * may change while processing a work, so this function repeatedly
2351 * fetches a work from the top and executes it.
2352 *
2353 * CONTEXT:
2354 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2355 * multiple times.
2356 */
process_scheduled_works(struct worker * worker)2357 static void process_scheduled_works(struct worker *worker)
2358 {
2359 while (!list_empty(&worker->scheduled)) {
2360 struct work_struct *work = list_first_entry(&worker->scheduled,
2361 struct work_struct, entry);
2362 process_one_work(worker, work);
2363 }
2364 }
2365
set_pf_worker(bool val)2366 static void set_pf_worker(bool val)
2367 {
2368 mutex_lock(&wq_pool_attach_mutex);
2369 if (val)
2370 current->flags |= PF_WQ_WORKER;
2371 else
2372 current->flags &= ~PF_WQ_WORKER;
2373 mutex_unlock(&wq_pool_attach_mutex);
2374 }
2375
2376 /**
2377 * worker_thread - the worker thread function
2378 * @__worker: self
2379 *
2380 * The worker thread function. All workers belong to a worker_pool -
2381 * either a per-cpu one or dynamic unbound one. These workers process all
2382 * work items regardless of their specific target workqueue. The only
2383 * exception is work items which belong to workqueues with a rescuer which
2384 * will be explained in rescuer_thread().
2385 *
2386 * Return: 0
2387 */
worker_thread(void * __worker)2388 static int worker_thread(void *__worker)
2389 {
2390 struct worker *worker = __worker;
2391 struct worker_pool *pool = worker->pool;
2392
2393 /* tell the scheduler that this is a workqueue worker */
2394 set_pf_worker(true);
2395 woke_up:
2396 raw_spin_lock_irq(&pool->lock);
2397
2398 /* am I supposed to die? */
2399 if (unlikely(worker->flags & WORKER_DIE)) {
2400 raw_spin_unlock_irq(&pool->lock);
2401 WARN_ON_ONCE(!list_empty(&worker->entry));
2402 set_pf_worker(false);
2403
2404 set_task_comm(worker->task, "kworker/dying");
2405 ida_free(&pool->worker_ida, worker->id);
2406 worker_detach_from_pool(worker);
2407 kfree(worker);
2408 return 0;
2409 }
2410
2411 worker_leave_idle(worker);
2412 recheck:
2413 /* no more worker necessary? */
2414 if (!need_more_worker(pool))
2415 goto sleep;
2416
2417 /* do we need to manage? */
2418 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2419 goto recheck;
2420
2421 /*
2422 * ->scheduled list can only be filled while a worker is
2423 * preparing to process a work or actually processing it.
2424 * Make sure nobody diddled with it while I was sleeping.
2425 */
2426 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2427
2428 /*
2429 * Finish PREP stage. We're guaranteed to have at least one idle
2430 * worker or that someone else has already assumed the manager
2431 * role. This is where @worker starts participating in concurrency
2432 * management if applicable and concurrency management is restored
2433 * after being rebound. See rebind_workers() for details.
2434 */
2435 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2436
2437 do {
2438 struct work_struct *work =
2439 list_first_entry(&pool->worklist,
2440 struct work_struct, entry);
2441
2442 pool->watchdog_ts = jiffies;
2443
2444 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2445 /* optimization path, not strictly necessary */
2446 process_one_work(worker, work);
2447 if (unlikely(!list_empty(&worker->scheduled)))
2448 process_scheduled_works(worker);
2449 } else {
2450 move_linked_works(work, &worker->scheduled, NULL);
2451 process_scheduled_works(worker);
2452 }
2453 } while (keep_working(pool));
2454
2455 worker_set_flags(worker, WORKER_PREP);
2456 sleep:
2457 /*
2458 * pool->lock is held and there's no work to process and no need to
2459 * manage, sleep. Workers are woken up only while holding
2460 * pool->lock or from local cpu, so setting the current state
2461 * before releasing pool->lock is enough to prevent losing any
2462 * event.
2463 */
2464 worker_enter_idle(worker);
2465 __set_current_state(TASK_IDLE);
2466 raw_spin_unlock_irq(&pool->lock);
2467 schedule();
2468 goto woke_up;
2469 }
2470
2471 /**
2472 * rescuer_thread - the rescuer thread function
2473 * @__rescuer: self
2474 *
2475 * Workqueue rescuer thread function. There's one rescuer for each
2476 * workqueue which has WQ_MEM_RECLAIM set.
2477 *
2478 * Regular work processing on a pool may block trying to create a new
2479 * worker which uses GFP_KERNEL allocation which has slight chance of
2480 * developing into deadlock if some works currently on the same queue
2481 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2482 * the problem rescuer solves.
2483 *
2484 * When such condition is possible, the pool summons rescuers of all
2485 * workqueues which have works queued on the pool and let them process
2486 * those works so that forward progress can be guaranteed.
2487 *
2488 * This should happen rarely.
2489 *
2490 * Return: 0
2491 */
rescuer_thread(void * __rescuer)2492 static int rescuer_thread(void *__rescuer)
2493 {
2494 struct worker *rescuer = __rescuer;
2495 struct workqueue_struct *wq = rescuer->rescue_wq;
2496 struct list_head *scheduled = &rescuer->scheduled;
2497 bool should_stop;
2498
2499 set_user_nice(current, RESCUER_NICE_LEVEL);
2500
2501 /*
2502 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2503 * doesn't participate in concurrency management.
2504 */
2505 set_pf_worker(true);
2506 repeat:
2507 set_current_state(TASK_IDLE);
2508
2509 /*
2510 * By the time the rescuer is requested to stop, the workqueue
2511 * shouldn't have any work pending, but @wq->maydays may still have
2512 * pwq(s) queued. This can happen by non-rescuer workers consuming
2513 * all the work items before the rescuer got to them. Go through
2514 * @wq->maydays processing before acting on should_stop so that the
2515 * list is always empty on exit.
2516 */
2517 should_stop = kthread_should_stop();
2518
2519 /* see whether any pwq is asking for help */
2520 raw_spin_lock_irq(&wq_mayday_lock);
2521
2522 while (!list_empty(&wq->maydays)) {
2523 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2524 struct pool_workqueue, mayday_node);
2525 struct worker_pool *pool = pwq->pool;
2526 struct work_struct *work, *n;
2527 bool first = true;
2528
2529 __set_current_state(TASK_RUNNING);
2530 list_del_init(&pwq->mayday_node);
2531
2532 raw_spin_unlock_irq(&wq_mayday_lock);
2533
2534 worker_attach_to_pool(rescuer, pool);
2535
2536 raw_spin_lock_irq(&pool->lock);
2537
2538 /*
2539 * Slurp in all works issued via this workqueue and
2540 * process'em.
2541 */
2542 WARN_ON_ONCE(!list_empty(scheduled));
2543 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2544 if (get_work_pwq(work) == pwq) {
2545 if (first)
2546 pool->watchdog_ts = jiffies;
2547 move_linked_works(work, scheduled, &n);
2548 }
2549 first = false;
2550 }
2551
2552 if (!list_empty(scheduled)) {
2553 process_scheduled_works(rescuer);
2554
2555 /*
2556 * The above execution of rescued work items could
2557 * have created more to rescue through
2558 * pwq_activate_first_inactive() or chained
2559 * queueing. Let's put @pwq back on mayday list so
2560 * that such back-to-back work items, which may be
2561 * being used to relieve memory pressure, don't
2562 * incur MAYDAY_INTERVAL delay inbetween.
2563 */
2564 if (pwq->nr_active && need_to_create_worker(pool)) {
2565 raw_spin_lock(&wq_mayday_lock);
2566 /*
2567 * Queue iff we aren't racing destruction
2568 * and somebody else hasn't queued it already.
2569 */
2570 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2571 get_pwq(pwq);
2572 list_add_tail(&pwq->mayday_node, &wq->maydays);
2573 }
2574 raw_spin_unlock(&wq_mayday_lock);
2575 }
2576 }
2577
2578 /*
2579 * Put the reference grabbed by send_mayday(). @pool won't
2580 * go away while we're still attached to it.
2581 */
2582 put_pwq(pwq);
2583
2584 /*
2585 * Leave this pool. If need_more_worker() is %true, notify a
2586 * regular worker; otherwise, we end up with 0 concurrency
2587 * and stalling the execution.
2588 */
2589 if (need_more_worker(pool))
2590 wake_up_worker(pool);
2591
2592 raw_spin_unlock_irq(&pool->lock);
2593
2594 worker_detach_from_pool(rescuer);
2595
2596 raw_spin_lock_irq(&wq_mayday_lock);
2597 }
2598
2599 raw_spin_unlock_irq(&wq_mayday_lock);
2600
2601 if (should_stop) {
2602 __set_current_state(TASK_RUNNING);
2603 set_pf_worker(false);
2604 return 0;
2605 }
2606
2607 /* rescuers should never participate in concurrency management */
2608 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2609 schedule();
2610 goto repeat;
2611 }
2612
2613 /**
2614 * check_flush_dependency - check for flush dependency sanity
2615 * @target_wq: workqueue being flushed
2616 * @target_work: work item being flushed (NULL for workqueue flushes)
2617 *
2618 * %current is trying to flush the whole @target_wq or @target_work on it.
2619 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2620 * reclaiming memory or running on a workqueue which doesn't have
2621 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2622 * a deadlock.
2623 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2624 static void check_flush_dependency(struct workqueue_struct *target_wq,
2625 struct work_struct *target_work)
2626 {
2627 work_func_t target_func = target_work ? target_work->func : NULL;
2628 struct worker *worker;
2629
2630 if (target_wq->flags & WQ_MEM_RECLAIM)
2631 return;
2632
2633 worker = current_wq_worker();
2634
2635 WARN_ONCE(current->flags & PF_MEMALLOC,
2636 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2637 current->pid, current->comm, target_wq->name, target_func);
2638 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2639 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2640 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2641 worker->current_pwq->wq->name, worker->current_func,
2642 target_wq->name, target_func);
2643 }
2644
2645 struct wq_barrier {
2646 struct work_struct work;
2647 struct completion done;
2648 struct task_struct *task; /* purely informational */
2649 };
2650
wq_barrier_func(struct work_struct * work)2651 static void wq_barrier_func(struct work_struct *work)
2652 {
2653 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2654 complete(&barr->done);
2655 }
2656
2657 /**
2658 * insert_wq_barrier - insert a barrier work
2659 * @pwq: pwq to insert barrier into
2660 * @barr: wq_barrier to insert
2661 * @target: target work to attach @barr to
2662 * @worker: worker currently executing @target, NULL if @target is not executing
2663 *
2664 * @barr is linked to @target such that @barr is completed only after
2665 * @target finishes execution. Please note that the ordering
2666 * guarantee is observed only with respect to @target and on the local
2667 * cpu.
2668 *
2669 * Currently, a queued barrier can't be canceled. This is because
2670 * try_to_grab_pending() can't determine whether the work to be
2671 * grabbed is at the head of the queue and thus can't clear LINKED
2672 * flag of the previous work while there must be a valid next work
2673 * after a work with LINKED flag set.
2674 *
2675 * Note that when @worker is non-NULL, @target may be modified
2676 * underneath us, so we can't reliably determine pwq from @target.
2677 *
2678 * CONTEXT:
2679 * raw_spin_lock_irq(pool->lock).
2680 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2681 static void insert_wq_barrier(struct pool_workqueue *pwq,
2682 struct wq_barrier *barr,
2683 struct work_struct *target, struct worker *worker)
2684 {
2685 unsigned int work_flags = 0;
2686 unsigned int work_color;
2687 struct list_head *head;
2688
2689 /*
2690 * debugobject calls are safe here even with pool->lock locked
2691 * as we know for sure that this will not trigger any of the
2692 * checks and call back into the fixup functions where we
2693 * might deadlock.
2694 */
2695 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2696 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2697
2698 init_completion_map(&barr->done, &target->lockdep_map);
2699
2700 barr->task = current;
2701
2702 /* The barrier work item does not participate in pwq->nr_active. */
2703 work_flags |= WORK_STRUCT_INACTIVE;
2704
2705 /*
2706 * If @target is currently being executed, schedule the
2707 * barrier to the worker; otherwise, put it after @target.
2708 */
2709 if (worker) {
2710 head = worker->scheduled.next;
2711 work_color = worker->current_color;
2712 } else {
2713 unsigned long *bits = work_data_bits(target);
2714
2715 head = target->entry.next;
2716 /* there can already be other linked works, inherit and set */
2717 work_flags |= *bits & WORK_STRUCT_LINKED;
2718 work_color = get_work_color(*bits);
2719 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2720 }
2721
2722 pwq->nr_in_flight[work_color]++;
2723 work_flags |= work_color_to_flags(work_color);
2724
2725 debug_work_activate(&barr->work);
2726 insert_work(pwq, &barr->work, head, work_flags);
2727 }
2728
2729 /**
2730 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2731 * @wq: workqueue being flushed
2732 * @flush_color: new flush color, < 0 for no-op
2733 * @work_color: new work color, < 0 for no-op
2734 *
2735 * Prepare pwqs for workqueue flushing.
2736 *
2737 * If @flush_color is non-negative, flush_color on all pwqs should be
2738 * -1. If no pwq has in-flight commands at the specified color, all
2739 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2740 * has in flight commands, its pwq->flush_color is set to
2741 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2742 * wakeup logic is armed and %true is returned.
2743 *
2744 * The caller should have initialized @wq->first_flusher prior to
2745 * calling this function with non-negative @flush_color. If
2746 * @flush_color is negative, no flush color update is done and %false
2747 * is returned.
2748 *
2749 * If @work_color is non-negative, all pwqs should have the same
2750 * work_color which is previous to @work_color and all will be
2751 * advanced to @work_color.
2752 *
2753 * CONTEXT:
2754 * mutex_lock(wq->mutex).
2755 *
2756 * Return:
2757 * %true if @flush_color >= 0 and there's something to flush. %false
2758 * otherwise.
2759 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2760 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2761 int flush_color, int work_color)
2762 {
2763 bool wait = false;
2764 struct pool_workqueue *pwq;
2765
2766 if (flush_color >= 0) {
2767 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2768 atomic_set(&wq->nr_pwqs_to_flush, 1);
2769 }
2770
2771 for_each_pwq(pwq, wq) {
2772 struct worker_pool *pool = pwq->pool;
2773
2774 raw_spin_lock_irq(&pool->lock);
2775
2776 if (flush_color >= 0) {
2777 WARN_ON_ONCE(pwq->flush_color != -1);
2778
2779 if (pwq->nr_in_flight[flush_color]) {
2780 pwq->flush_color = flush_color;
2781 atomic_inc(&wq->nr_pwqs_to_flush);
2782 wait = true;
2783 }
2784 }
2785
2786 if (work_color >= 0) {
2787 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2788 pwq->work_color = work_color;
2789 }
2790
2791 raw_spin_unlock_irq(&pool->lock);
2792 }
2793
2794 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2795 complete(&wq->first_flusher->done);
2796
2797 return wait;
2798 }
2799
2800 /**
2801 * __flush_workqueue - ensure that any scheduled work has run to completion.
2802 * @wq: workqueue to flush
2803 *
2804 * This function sleeps until all work items which were queued on entry
2805 * have finished execution, but it is not livelocked by new incoming ones.
2806 */
__flush_workqueue(struct workqueue_struct * wq)2807 void __flush_workqueue(struct workqueue_struct *wq)
2808 {
2809 struct wq_flusher this_flusher = {
2810 .list = LIST_HEAD_INIT(this_flusher.list),
2811 .flush_color = -1,
2812 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2813 };
2814 int next_color;
2815
2816 if (WARN_ON(!wq_online))
2817 return;
2818
2819 lock_map_acquire(&wq->lockdep_map);
2820 lock_map_release(&wq->lockdep_map);
2821
2822 mutex_lock(&wq->mutex);
2823
2824 /*
2825 * Start-to-wait phase
2826 */
2827 next_color = work_next_color(wq->work_color);
2828
2829 if (next_color != wq->flush_color) {
2830 /*
2831 * Color space is not full. The current work_color
2832 * becomes our flush_color and work_color is advanced
2833 * by one.
2834 */
2835 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2836 this_flusher.flush_color = wq->work_color;
2837 wq->work_color = next_color;
2838
2839 if (!wq->first_flusher) {
2840 /* no flush in progress, become the first flusher */
2841 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2842
2843 wq->first_flusher = &this_flusher;
2844
2845 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2846 wq->work_color)) {
2847 /* nothing to flush, done */
2848 wq->flush_color = next_color;
2849 wq->first_flusher = NULL;
2850 goto out_unlock;
2851 }
2852 } else {
2853 /* wait in queue */
2854 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2855 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2856 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2857 }
2858 } else {
2859 /*
2860 * Oops, color space is full, wait on overflow queue.
2861 * The next flush completion will assign us
2862 * flush_color and transfer to flusher_queue.
2863 */
2864 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2865 }
2866
2867 check_flush_dependency(wq, NULL);
2868
2869 mutex_unlock(&wq->mutex);
2870
2871 wait_for_completion(&this_flusher.done);
2872
2873 /*
2874 * Wake-up-and-cascade phase
2875 *
2876 * First flushers are responsible for cascading flushes and
2877 * handling overflow. Non-first flushers can simply return.
2878 */
2879 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2880 return;
2881
2882 mutex_lock(&wq->mutex);
2883
2884 /* we might have raced, check again with mutex held */
2885 if (wq->first_flusher != &this_flusher)
2886 goto out_unlock;
2887
2888 WRITE_ONCE(wq->first_flusher, NULL);
2889
2890 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2891 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2892
2893 while (true) {
2894 struct wq_flusher *next, *tmp;
2895
2896 /* complete all the flushers sharing the current flush color */
2897 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2898 if (next->flush_color != wq->flush_color)
2899 break;
2900 list_del_init(&next->list);
2901 complete(&next->done);
2902 }
2903
2904 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2905 wq->flush_color != work_next_color(wq->work_color));
2906
2907 /* this flush_color is finished, advance by one */
2908 wq->flush_color = work_next_color(wq->flush_color);
2909
2910 /* one color has been freed, handle overflow queue */
2911 if (!list_empty(&wq->flusher_overflow)) {
2912 /*
2913 * Assign the same color to all overflowed
2914 * flushers, advance work_color and append to
2915 * flusher_queue. This is the start-to-wait
2916 * phase for these overflowed flushers.
2917 */
2918 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2919 tmp->flush_color = wq->work_color;
2920
2921 wq->work_color = work_next_color(wq->work_color);
2922
2923 list_splice_tail_init(&wq->flusher_overflow,
2924 &wq->flusher_queue);
2925 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2926 }
2927
2928 if (list_empty(&wq->flusher_queue)) {
2929 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2930 break;
2931 }
2932
2933 /*
2934 * Need to flush more colors. Make the next flusher
2935 * the new first flusher and arm pwqs.
2936 */
2937 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2938 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2939
2940 list_del_init(&next->list);
2941 wq->first_flusher = next;
2942
2943 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2944 break;
2945
2946 /*
2947 * Meh... this color is already done, clear first
2948 * flusher and repeat cascading.
2949 */
2950 wq->first_flusher = NULL;
2951 }
2952
2953 out_unlock:
2954 mutex_unlock(&wq->mutex);
2955 }
2956 EXPORT_SYMBOL(__flush_workqueue);
2957
2958 /**
2959 * drain_workqueue - drain a workqueue
2960 * @wq: workqueue to drain
2961 *
2962 * Wait until the workqueue becomes empty. While draining is in progress,
2963 * only chain queueing is allowed. IOW, only currently pending or running
2964 * work items on @wq can queue further work items on it. @wq is flushed
2965 * repeatedly until it becomes empty. The number of flushing is determined
2966 * by the depth of chaining and should be relatively short. Whine if it
2967 * takes too long.
2968 */
drain_workqueue(struct workqueue_struct * wq)2969 void drain_workqueue(struct workqueue_struct *wq)
2970 {
2971 unsigned int flush_cnt = 0;
2972 struct pool_workqueue *pwq;
2973
2974 /*
2975 * __queue_work() needs to test whether there are drainers, is much
2976 * hotter than drain_workqueue() and already looks at @wq->flags.
2977 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2978 */
2979 mutex_lock(&wq->mutex);
2980 if (!wq->nr_drainers++)
2981 wq->flags |= __WQ_DRAINING;
2982 mutex_unlock(&wq->mutex);
2983 reflush:
2984 __flush_workqueue(wq);
2985
2986 mutex_lock(&wq->mutex);
2987
2988 for_each_pwq(pwq, wq) {
2989 bool drained;
2990
2991 raw_spin_lock_irq(&pwq->pool->lock);
2992 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
2993 raw_spin_unlock_irq(&pwq->pool->lock);
2994
2995 if (drained)
2996 continue;
2997
2998 if (++flush_cnt == 10 ||
2999 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3000 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3001 wq->name, __func__, flush_cnt);
3002
3003 mutex_unlock(&wq->mutex);
3004 goto reflush;
3005 }
3006
3007 if (!--wq->nr_drainers)
3008 wq->flags &= ~__WQ_DRAINING;
3009 mutex_unlock(&wq->mutex);
3010 }
3011 EXPORT_SYMBOL_GPL(drain_workqueue);
3012
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)3013 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3014 bool from_cancel)
3015 {
3016 struct worker *worker = NULL;
3017 struct worker_pool *pool;
3018 struct pool_workqueue *pwq;
3019
3020 might_sleep();
3021
3022 rcu_read_lock();
3023 pool = get_work_pool(work);
3024 if (!pool) {
3025 rcu_read_unlock();
3026 return false;
3027 }
3028
3029 raw_spin_lock_irq(&pool->lock);
3030 /* see the comment in try_to_grab_pending() with the same code */
3031 pwq = get_work_pwq(work);
3032 if (pwq) {
3033 if (unlikely(pwq->pool != pool))
3034 goto already_gone;
3035 } else {
3036 worker = find_worker_executing_work(pool, work);
3037 if (!worker)
3038 goto already_gone;
3039 pwq = worker->current_pwq;
3040 }
3041
3042 check_flush_dependency(pwq->wq, work);
3043
3044 insert_wq_barrier(pwq, barr, work, worker);
3045 raw_spin_unlock_irq(&pool->lock);
3046
3047 /*
3048 * Force a lock recursion deadlock when using flush_work() inside a
3049 * single-threaded or rescuer equipped workqueue.
3050 *
3051 * For single threaded workqueues the deadlock happens when the work
3052 * is after the work issuing the flush_work(). For rescuer equipped
3053 * workqueues the deadlock happens when the rescuer stalls, blocking
3054 * forward progress.
3055 */
3056 if (!from_cancel &&
3057 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3058 lock_map_acquire(&pwq->wq->lockdep_map);
3059 lock_map_release(&pwq->wq->lockdep_map);
3060 }
3061 rcu_read_unlock();
3062 return true;
3063 already_gone:
3064 raw_spin_unlock_irq(&pool->lock);
3065 rcu_read_unlock();
3066 return false;
3067 }
3068
__flush_work(struct work_struct * work,bool from_cancel)3069 static bool __flush_work(struct work_struct *work, bool from_cancel)
3070 {
3071 struct wq_barrier barr;
3072
3073 if (WARN_ON(!wq_online))
3074 return false;
3075
3076 if (WARN_ON(!work->func))
3077 return false;
3078
3079 lock_map_acquire(&work->lockdep_map);
3080 lock_map_release(&work->lockdep_map);
3081
3082 if (start_flush_work(work, &barr, from_cancel)) {
3083 wait_for_completion(&barr.done);
3084 destroy_work_on_stack(&barr.work);
3085 return true;
3086 } else {
3087 return false;
3088 }
3089 }
3090
3091 /**
3092 * flush_work - wait for a work to finish executing the last queueing instance
3093 * @work: the work to flush
3094 *
3095 * Wait until @work has finished execution. @work is guaranteed to be idle
3096 * on return if it hasn't been requeued since flush started.
3097 *
3098 * Return:
3099 * %true if flush_work() waited for the work to finish execution,
3100 * %false if it was already idle.
3101 */
flush_work(struct work_struct * work)3102 bool flush_work(struct work_struct *work)
3103 {
3104 return __flush_work(work, false);
3105 }
3106 EXPORT_SYMBOL_GPL(flush_work);
3107
3108 struct cwt_wait {
3109 wait_queue_entry_t wait;
3110 struct work_struct *work;
3111 };
3112
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3113 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3114 {
3115 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3116
3117 if (cwait->work != key)
3118 return 0;
3119 return autoremove_wake_function(wait, mode, sync, key);
3120 }
3121
__cancel_work_timer(struct work_struct * work,bool is_dwork)3122 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3123 {
3124 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3125 unsigned long flags;
3126 int ret;
3127
3128 do {
3129 ret = try_to_grab_pending(work, is_dwork, &flags);
3130 /*
3131 * If someone else is already canceling, wait for it to
3132 * finish. flush_work() doesn't work for PREEMPT_NONE
3133 * because we may get scheduled between @work's completion
3134 * and the other canceling task resuming and clearing
3135 * CANCELING - flush_work() will return false immediately
3136 * as @work is no longer busy, try_to_grab_pending() will
3137 * return -ENOENT as @work is still being canceled and the
3138 * other canceling task won't be able to clear CANCELING as
3139 * we're hogging the CPU.
3140 *
3141 * Let's wait for completion using a waitqueue. As this
3142 * may lead to the thundering herd problem, use a custom
3143 * wake function which matches @work along with exclusive
3144 * wait and wakeup.
3145 */
3146 if (unlikely(ret == -ENOENT)) {
3147 struct cwt_wait cwait;
3148
3149 init_wait(&cwait.wait);
3150 cwait.wait.func = cwt_wakefn;
3151 cwait.work = work;
3152
3153 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3154 TASK_UNINTERRUPTIBLE);
3155 if (work_is_canceling(work))
3156 schedule();
3157 finish_wait(&cancel_waitq, &cwait.wait);
3158 }
3159 } while (unlikely(ret < 0));
3160
3161 /* tell other tasks trying to grab @work to back off */
3162 mark_work_canceling(work);
3163 local_irq_restore(flags);
3164
3165 /*
3166 * This allows canceling during early boot. We know that @work
3167 * isn't executing.
3168 */
3169 if (wq_online)
3170 __flush_work(work, true);
3171
3172 clear_work_data(work);
3173
3174 /*
3175 * Paired with prepare_to_wait() above so that either
3176 * waitqueue_active() is visible here or !work_is_canceling() is
3177 * visible there.
3178 */
3179 smp_mb();
3180 if (waitqueue_active(&cancel_waitq))
3181 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3182
3183 return ret;
3184 }
3185
3186 /**
3187 * cancel_work_sync - cancel a work and wait for it to finish
3188 * @work: the work to cancel
3189 *
3190 * Cancel @work and wait for its execution to finish. This function
3191 * can be used even if the work re-queues itself or migrates to
3192 * another workqueue. On return from this function, @work is
3193 * guaranteed to be not pending or executing on any CPU.
3194 *
3195 * cancel_work_sync(&delayed_work->work) must not be used for
3196 * delayed_work's. Use cancel_delayed_work_sync() instead.
3197 *
3198 * The caller must ensure that the workqueue on which @work was last
3199 * queued can't be destroyed before this function returns.
3200 *
3201 * Return:
3202 * %true if @work was pending, %false otherwise.
3203 */
cancel_work_sync(struct work_struct * work)3204 bool cancel_work_sync(struct work_struct *work)
3205 {
3206 return __cancel_work_timer(work, false);
3207 }
3208 EXPORT_SYMBOL_GPL(cancel_work_sync);
3209
3210 /**
3211 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3212 * @dwork: the delayed work to flush
3213 *
3214 * Delayed timer is cancelled and the pending work is queued for
3215 * immediate execution. Like flush_work(), this function only
3216 * considers the last queueing instance of @dwork.
3217 *
3218 * Return:
3219 * %true if flush_work() waited for the work to finish execution,
3220 * %false if it was already idle.
3221 */
flush_delayed_work(struct delayed_work * dwork)3222 bool flush_delayed_work(struct delayed_work *dwork)
3223 {
3224 local_irq_disable();
3225 if (del_timer_sync(&dwork->timer))
3226 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3227 local_irq_enable();
3228 return flush_work(&dwork->work);
3229 }
3230 EXPORT_SYMBOL(flush_delayed_work);
3231
3232 /**
3233 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3234 * @rwork: the rcu work to flush
3235 *
3236 * Return:
3237 * %true if flush_rcu_work() waited for the work to finish execution,
3238 * %false if it was already idle.
3239 */
flush_rcu_work(struct rcu_work * rwork)3240 bool flush_rcu_work(struct rcu_work *rwork)
3241 {
3242 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3243 rcu_barrier();
3244 flush_work(&rwork->work);
3245 return true;
3246 } else {
3247 return flush_work(&rwork->work);
3248 }
3249 }
3250 EXPORT_SYMBOL(flush_rcu_work);
3251
__cancel_work(struct work_struct * work,bool is_dwork)3252 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3253 {
3254 unsigned long flags;
3255 int ret;
3256
3257 do {
3258 ret = try_to_grab_pending(work, is_dwork, &flags);
3259 } while (unlikely(ret == -EAGAIN));
3260
3261 if (unlikely(ret < 0))
3262 return false;
3263
3264 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3265 local_irq_restore(flags);
3266 return ret;
3267 }
3268
3269 /*
3270 * See cancel_delayed_work()
3271 */
cancel_work(struct work_struct * work)3272 bool cancel_work(struct work_struct *work)
3273 {
3274 return __cancel_work(work, false);
3275 }
3276 EXPORT_SYMBOL(cancel_work);
3277
3278 /**
3279 * cancel_delayed_work - cancel a delayed work
3280 * @dwork: delayed_work to cancel
3281 *
3282 * Kill off a pending delayed_work.
3283 *
3284 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3285 * pending.
3286 *
3287 * Note:
3288 * The work callback function may still be running on return, unless
3289 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3290 * use cancel_delayed_work_sync() to wait on it.
3291 *
3292 * This function is safe to call from any context including IRQ handler.
3293 */
cancel_delayed_work(struct delayed_work * dwork)3294 bool cancel_delayed_work(struct delayed_work *dwork)
3295 {
3296 return __cancel_work(&dwork->work, true);
3297 }
3298 EXPORT_SYMBOL(cancel_delayed_work);
3299
3300 /**
3301 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3302 * @dwork: the delayed work cancel
3303 *
3304 * This is cancel_work_sync() for delayed works.
3305 *
3306 * Return:
3307 * %true if @dwork was pending, %false otherwise.
3308 */
cancel_delayed_work_sync(struct delayed_work * dwork)3309 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3310 {
3311 return __cancel_work_timer(&dwork->work, true);
3312 }
3313 EXPORT_SYMBOL(cancel_delayed_work_sync);
3314
3315 /**
3316 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3317 * @func: the function to call
3318 *
3319 * schedule_on_each_cpu() executes @func on each online CPU using the
3320 * system workqueue and blocks until all CPUs have completed.
3321 * schedule_on_each_cpu() is very slow.
3322 *
3323 * Return:
3324 * 0 on success, -errno on failure.
3325 */
schedule_on_each_cpu(work_func_t func)3326 int schedule_on_each_cpu(work_func_t func)
3327 {
3328 int cpu;
3329 struct work_struct __percpu *works;
3330
3331 works = alloc_percpu(struct work_struct);
3332 if (!works)
3333 return -ENOMEM;
3334
3335 cpus_read_lock();
3336
3337 for_each_online_cpu(cpu) {
3338 struct work_struct *work = per_cpu_ptr(works, cpu);
3339
3340 INIT_WORK(work, func);
3341 schedule_work_on(cpu, work);
3342 }
3343
3344 for_each_online_cpu(cpu)
3345 flush_work(per_cpu_ptr(works, cpu));
3346
3347 cpus_read_unlock();
3348 free_percpu(works);
3349 return 0;
3350 }
3351
3352 /**
3353 * execute_in_process_context - reliably execute the routine with user context
3354 * @fn: the function to execute
3355 * @ew: guaranteed storage for the execute work structure (must
3356 * be available when the work executes)
3357 *
3358 * Executes the function immediately if process context is available,
3359 * otherwise schedules the function for delayed execution.
3360 *
3361 * Return: 0 - function was executed
3362 * 1 - function was scheduled for execution
3363 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3364 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3365 {
3366 if (!in_interrupt()) {
3367 fn(&ew->work);
3368 return 0;
3369 }
3370
3371 INIT_WORK(&ew->work, fn);
3372 schedule_work(&ew->work);
3373
3374 return 1;
3375 }
3376 EXPORT_SYMBOL_GPL(execute_in_process_context);
3377
3378 /**
3379 * free_workqueue_attrs - free a workqueue_attrs
3380 * @attrs: workqueue_attrs to free
3381 *
3382 * Undo alloc_workqueue_attrs().
3383 */
free_workqueue_attrs(struct workqueue_attrs * attrs)3384 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3385 {
3386 if (attrs) {
3387 free_cpumask_var(attrs->cpumask);
3388 kfree(attrs);
3389 }
3390 }
3391
3392 /**
3393 * alloc_workqueue_attrs - allocate a workqueue_attrs
3394 *
3395 * Allocate a new workqueue_attrs, initialize with default settings and
3396 * return it.
3397 *
3398 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3399 */
alloc_workqueue_attrs(void)3400 struct workqueue_attrs *alloc_workqueue_attrs(void)
3401 {
3402 struct workqueue_attrs *attrs;
3403
3404 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3405 if (!attrs)
3406 goto fail;
3407 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3408 goto fail;
3409
3410 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3411 return attrs;
3412 fail:
3413 free_workqueue_attrs(attrs);
3414 return NULL;
3415 }
3416
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3417 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3418 const struct workqueue_attrs *from)
3419 {
3420 to->nice = from->nice;
3421 cpumask_copy(to->cpumask, from->cpumask);
3422 /*
3423 * Unlike hash and equality test, this function doesn't ignore
3424 * ->no_numa as it is used for both pool and wq attrs. Instead,
3425 * get_unbound_pool() explicitly clears ->no_numa after copying.
3426 */
3427 to->no_numa = from->no_numa;
3428 }
3429
3430 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3431 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3432 {
3433 u32 hash = 0;
3434
3435 hash = jhash_1word(attrs->nice, hash);
3436 hash = jhash(cpumask_bits(attrs->cpumask),
3437 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3438 return hash;
3439 }
3440
3441 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3442 static bool wqattrs_equal(const struct workqueue_attrs *a,
3443 const struct workqueue_attrs *b)
3444 {
3445 if (a->nice != b->nice)
3446 return false;
3447 if (!cpumask_equal(a->cpumask, b->cpumask))
3448 return false;
3449 return true;
3450 }
3451
3452 /**
3453 * init_worker_pool - initialize a newly zalloc'd worker_pool
3454 * @pool: worker_pool to initialize
3455 *
3456 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3457 *
3458 * Return: 0 on success, -errno on failure. Even on failure, all fields
3459 * inside @pool proper are initialized and put_unbound_pool() can be called
3460 * on @pool safely to release it.
3461 */
init_worker_pool(struct worker_pool * pool)3462 static int init_worker_pool(struct worker_pool *pool)
3463 {
3464 raw_spin_lock_init(&pool->lock);
3465 pool->id = -1;
3466 pool->cpu = -1;
3467 pool->node = NUMA_NO_NODE;
3468 pool->flags |= POOL_DISASSOCIATED;
3469 pool->watchdog_ts = jiffies;
3470 INIT_LIST_HEAD(&pool->worklist);
3471 INIT_LIST_HEAD(&pool->idle_list);
3472 hash_init(pool->busy_hash);
3473
3474 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3475
3476 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3477
3478 INIT_LIST_HEAD(&pool->workers);
3479
3480 ida_init(&pool->worker_ida);
3481 INIT_HLIST_NODE(&pool->hash_node);
3482 pool->refcnt = 1;
3483
3484 /* shouldn't fail above this point */
3485 pool->attrs = alloc_workqueue_attrs();
3486 if (!pool->attrs)
3487 return -ENOMEM;
3488 return 0;
3489 }
3490
3491 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3492 static void wq_init_lockdep(struct workqueue_struct *wq)
3493 {
3494 char *lock_name;
3495
3496 lockdep_register_key(&wq->key);
3497 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3498 if (!lock_name)
3499 lock_name = wq->name;
3500
3501 wq->lock_name = lock_name;
3502 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3503 }
3504
wq_unregister_lockdep(struct workqueue_struct * wq)3505 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3506 {
3507 lockdep_unregister_key(&wq->key);
3508 }
3509
wq_free_lockdep(struct workqueue_struct * wq)3510 static void wq_free_lockdep(struct workqueue_struct *wq)
3511 {
3512 if (wq->lock_name != wq->name)
3513 kfree(wq->lock_name);
3514 }
3515 #else
wq_init_lockdep(struct workqueue_struct * wq)3516 static void wq_init_lockdep(struct workqueue_struct *wq)
3517 {
3518 }
3519
wq_unregister_lockdep(struct workqueue_struct * wq)3520 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3521 {
3522 }
3523
wq_free_lockdep(struct workqueue_struct * wq)3524 static void wq_free_lockdep(struct workqueue_struct *wq)
3525 {
3526 }
3527 #endif
3528
rcu_free_wq(struct rcu_head * rcu)3529 static void rcu_free_wq(struct rcu_head *rcu)
3530 {
3531 struct workqueue_struct *wq =
3532 container_of(rcu, struct workqueue_struct, rcu);
3533
3534 wq_free_lockdep(wq);
3535
3536 if (!(wq->flags & WQ_UNBOUND))
3537 free_percpu(wq->cpu_pwqs);
3538 else
3539 free_workqueue_attrs(wq->unbound_attrs);
3540
3541 kfree(wq);
3542 }
3543
rcu_free_pool(struct rcu_head * rcu)3544 static void rcu_free_pool(struct rcu_head *rcu)
3545 {
3546 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3547
3548 ida_destroy(&pool->worker_ida);
3549 free_workqueue_attrs(pool->attrs);
3550 kfree(pool);
3551 }
3552
3553 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3554 static bool wq_manager_inactive(struct worker_pool *pool)
3555 {
3556 raw_spin_lock_irq(&pool->lock);
3557
3558 if (pool->flags & POOL_MANAGER_ACTIVE) {
3559 raw_spin_unlock_irq(&pool->lock);
3560 return false;
3561 }
3562 return true;
3563 }
3564
3565 /**
3566 * put_unbound_pool - put a worker_pool
3567 * @pool: worker_pool to put
3568 *
3569 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3570 * safe manner. get_unbound_pool() calls this function on its failure path
3571 * and this function should be able to release pools which went through,
3572 * successfully or not, init_worker_pool().
3573 *
3574 * Should be called with wq_pool_mutex held.
3575 */
put_unbound_pool(struct worker_pool * pool)3576 static void put_unbound_pool(struct worker_pool *pool)
3577 {
3578 DECLARE_COMPLETION_ONSTACK(detach_completion);
3579 struct worker *worker;
3580
3581 lockdep_assert_held(&wq_pool_mutex);
3582
3583 if (--pool->refcnt)
3584 return;
3585
3586 /* sanity checks */
3587 if (WARN_ON(!(pool->cpu < 0)) ||
3588 WARN_ON(!list_empty(&pool->worklist)))
3589 return;
3590
3591 /* release id and unhash */
3592 if (pool->id >= 0)
3593 idr_remove(&worker_pool_idr, pool->id);
3594 hash_del(&pool->hash_node);
3595
3596 /*
3597 * Become the manager and destroy all workers. This prevents
3598 * @pool's workers from blocking on attach_mutex. We're the last
3599 * manager and @pool gets freed with the flag set.
3600 * Because of how wq_manager_inactive() works, we will hold the
3601 * spinlock after a successful wait.
3602 */
3603 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3604 TASK_UNINTERRUPTIBLE);
3605 pool->flags |= POOL_MANAGER_ACTIVE;
3606
3607 while ((worker = first_idle_worker(pool)))
3608 destroy_worker(worker);
3609 WARN_ON(pool->nr_workers || pool->nr_idle);
3610 raw_spin_unlock_irq(&pool->lock);
3611
3612 mutex_lock(&wq_pool_attach_mutex);
3613 if (!list_empty(&pool->workers))
3614 pool->detach_completion = &detach_completion;
3615 mutex_unlock(&wq_pool_attach_mutex);
3616
3617 if (pool->detach_completion)
3618 wait_for_completion(pool->detach_completion);
3619
3620 /* shut down the timers */
3621 del_timer_sync(&pool->idle_timer);
3622 del_timer_sync(&pool->mayday_timer);
3623
3624 /* RCU protected to allow dereferences from get_work_pool() */
3625 call_rcu(&pool->rcu, rcu_free_pool);
3626 }
3627
3628 /**
3629 * get_unbound_pool - get a worker_pool with the specified attributes
3630 * @attrs: the attributes of the worker_pool to get
3631 *
3632 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3633 * reference count and return it. If there already is a matching
3634 * worker_pool, it will be used; otherwise, this function attempts to
3635 * create a new one.
3636 *
3637 * Should be called with wq_pool_mutex held.
3638 *
3639 * Return: On success, a worker_pool with the same attributes as @attrs.
3640 * On failure, %NULL.
3641 */
get_unbound_pool(const struct workqueue_attrs * attrs)3642 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3643 {
3644 u32 hash = wqattrs_hash(attrs);
3645 struct worker_pool *pool;
3646 int node;
3647 int target_node = NUMA_NO_NODE;
3648
3649 lockdep_assert_held(&wq_pool_mutex);
3650
3651 /* do we already have a matching pool? */
3652 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3653 if (wqattrs_equal(pool->attrs, attrs)) {
3654 pool->refcnt++;
3655 return pool;
3656 }
3657 }
3658
3659 /* if cpumask is contained inside a NUMA node, we belong to that node */
3660 if (wq_numa_enabled) {
3661 for_each_node(node) {
3662 if (cpumask_subset(attrs->cpumask,
3663 wq_numa_possible_cpumask[node])) {
3664 target_node = node;
3665 break;
3666 }
3667 }
3668 }
3669
3670 /* nope, create a new one */
3671 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3672 if (!pool || init_worker_pool(pool) < 0)
3673 goto fail;
3674
3675 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3676 copy_workqueue_attrs(pool->attrs, attrs);
3677 pool->node = target_node;
3678
3679 /*
3680 * no_numa isn't a worker_pool attribute, always clear it. See
3681 * 'struct workqueue_attrs' comments for detail.
3682 */
3683 pool->attrs->no_numa = false;
3684
3685 if (worker_pool_assign_id(pool) < 0)
3686 goto fail;
3687
3688 /* create and start the initial worker */
3689 if (wq_online && !create_worker(pool))
3690 goto fail;
3691
3692 /* install */
3693 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3694
3695 return pool;
3696 fail:
3697 if (pool)
3698 put_unbound_pool(pool);
3699 return NULL;
3700 }
3701
rcu_free_pwq(struct rcu_head * rcu)3702 static void rcu_free_pwq(struct rcu_head *rcu)
3703 {
3704 kmem_cache_free(pwq_cache,
3705 container_of(rcu, struct pool_workqueue, rcu));
3706 }
3707
3708 /*
3709 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3710 * and needs to be destroyed.
3711 */
pwq_unbound_release_workfn(struct work_struct * work)3712 static void pwq_unbound_release_workfn(struct work_struct *work)
3713 {
3714 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3715 unbound_release_work);
3716 struct workqueue_struct *wq = pwq->wq;
3717 struct worker_pool *pool = pwq->pool;
3718 bool is_last = false;
3719
3720 /*
3721 * when @pwq is not linked, it doesn't hold any reference to the
3722 * @wq, and @wq is invalid to access.
3723 */
3724 if (!list_empty(&pwq->pwqs_node)) {
3725 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3726 return;
3727
3728 mutex_lock(&wq->mutex);
3729 list_del_rcu(&pwq->pwqs_node);
3730 is_last = list_empty(&wq->pwqs);
3731 mutex_unlock(&wq->mutex);
3732 }
3733
3734 mutex_lock(&wq_pool_mutex);
3735 put_unbound_pool(pool);
3736 mutex_unlock(&wq_pool_mutex);
3737
3738 call_rcu(&pwq->rcu, rcu_free_pwq);
3739
3740 /*
3741 * If we're the last pwq going away, @wq is already dead and no one
3742 * is gonna access it anymore. Schedule RCU free.
3743 */
3744 if (is_last) {
3745 wq_unregister_lockdep(wq);
3746 call_rcu(&wq->rcu, rcu_free_wq);
3747 }
3748 }
3749
3750 /**
3751 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3752 * @pwq: target pool_workqueue
3753 *
3754 * If @pwq isn't freezing, set @pwq->max_active to the associated
3755 * workqueue's saved_max_active and activate inactive work items
3756 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3757 */
pwq_adjust_max_active(struct pool_workqueue * pwq)3758 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3759 {
3760 struct workqueue_struct *wq = pwq->wq;
3761 bool freezable = wq->flags & WQ_FREEZABLE;
3762 unsigned long flags;
3763
3764 /* for @wq->saved_max_active */
3765 lockdep_assert_held(&wq->mutex);
3766
3767 /* fast exit for non-freezable wqs */
3768 if (!freezable && pwq->max_active == wq->saved_max_active)
3769 return;
3770
3771 /* this function can be called during early boot w/ irq disabled */
3772 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3773
3774 /*
3775 * During [un]freezing, the caller is responsible for ensuring that
3776 * this function is called at least once after @workqueue_freezing
3777 * is updated and visible.
3778 */
3779 if (!freezable || !workqueue_freezing) {
3780 bool kick = false;
3781
3782 pwq->max_active = wq->saved_max_active;
3783
3784 while (!list_empty(&pwq->inactive_works) &&
3785 pwq->nr_active < pwq->max_active) {
3786 pwq_activate_first_inactive(pwq);
3787 kick = true;
3788 }
3789
3790 /*
3791 * Need to kick a worker after thawed or an unbound wq's
3792 * max_active is bumped. In realtime scenarios, always kicking a
3793 * worker will cause interference on the isolated cpu cores, so
3794 * let's kick iff work items were activated.
3795 */
3796 if (kick)
3797 wake_up_worker(pwq->pool);
3798 } else {
3799 pwq->max_active = 0;
3800 }
3801
3802 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3803 }
3804
3805 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3806 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3807 struct worker_pool *pool)
3808 {
3809 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3810
3811 memset(pwq, 0, sizeof(*pwq));
3812
3813 pwq->pool = pool;
3814 pwq->wq = wq;
3815 pwq->flush_color = -1;
3816 pwq->refcnt = 1;
3817 INIT_LIST_HEAD(&pwq->inactive_works);
3818 INIT_LIST_HEAD(&pwq->pwqs_node);
3819 INIT_LIST_HEAD(&pwq->mayday_node);
3820 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3821 }
3822
3823 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3824 static void link_pwq(struct pool_workqueue *pwq)
3825 {
3826 struct workqueue_struct *wq = pwq->wq;
3827
3828 lockdep_assert_held(&wq->mutex);
3829
3830 /* may be called multiple times, ignore if already linked */
3831 if (!list_empty(&pwq->pwqs_node))
3832 return;
3833
3834 /* set the matching work_color */
3835 pwq->work_color = wq->work_color;
3836
3837 /* sync max_active to the current setting */
3838 pwq_adjust_max_active(pwq);
3839
3840 /* link in @pwq */
3841 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3842 }
3843
3844 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3845 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3846 const struct workqueue_attrs *attrs)
3847 {
3848 struct worker_pool *pool;
3849 struct pool_workqueue *pwq;
3850
3851 lockdep_assert_held(&wq_pool_mutex);
3852
3853 pool = get_unbound_pool(attrs);
3854 if (!pool)
3855 return NULL;
3856
3857 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3858 if (!pwq) {
3859 put_unbound_pool(pool);
3860 return NULL;
3861 }
3862
3863 init_pwq(pwq, wq, pool);
3864 return pwq;
3865 }
3866
3867 /**
3868 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3869 * @attrs: the wq_attrs of the default pwq of the target workqueue
3870 * @node: the target NUMA node
3871 * @cpu_going_down: if >= 0, the CPU to consider as offline
3872 * @cpumask: outarg, the resulting cpumask
3873 *
3874 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3875 * @cpu_going_down is >= 0, that cpu is considered offline during
3876 * calculation. The result is stored in @cpumask.
3877 *
3878 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3879 * enabled and @node has online CPUs requested by @attrs, the returned
3880 * cpumask is the intersection of the possible CPUs of @node and
3881 * @attrs->cpumask.
3882 *
3883 * The caller is responsible for ensuring that the cpumask of @node stays
3884 * stable.
3885 *
3886 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3887 * %false if equal.
3888 */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3889 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3890 int cpu_going_down, cpumask_t *cpumask)
3891 {
3892 if (!wq_numa_enabled || attrs->no_numa)
3893 goto use_dfl;
3894
3895 /* does @node have any online CPUs @attrs wants? */
3896 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3897 if (cpu_going_down >= 0)
3898 cpumask_clear_cpu(cpu_going_down, cpumask);
3899
3900 if (cpumask_empty(cpumask))
3901 goto use_dfl;
3902
3903 /* yeap, return possible CPUs in @node that @attrs wants */
3904 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3905
3906 if (cpumask_empty(cpumask)) {
3907 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3908 "possible intersect\n");
3909 return false;
3910 }
3911
3912 return !cpumask_equal(cpumask, attrs->cpumask);
3913
3914 use_dfl:
3915 cpumask_copy(cpumask, attrs->cpumask);
3916 return false;
3917 }
3918
3919 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3920 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3921 int node,
3922 struct pool_workqueue *pwq)
3923 {
3924 struct pool_workqueue *old_pwq;
3925
3926 lockdep_assert_held(&wq_pool_mutex);
3927 lockdep_assert_held(&wq->mutex);
3928
3929 /* link_pwq() can handle duplicate calls */
3930 link_pwq(pwq);
3931
3932 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3933 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3934 return old_pwq;
3935 }
3936
3937 /* context to store the prepared attrs & pwqs before applying */
3938 struct apply_wqattrs_ctx {
3939 struct workqueue_struct *wq; /* target workqueue */
3940 struct workqueue_attrs *attrs; /* attrs to apply */
3941 struct list_head list; /* queued for batching commit */
3942 struct pool_workqueue *dfl_pwq;
3943 struct pool_workqueue *pwq_tbl[];
3944 };
3945
3946 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3947 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3948 {
3949 if (ctx) {
3950 int node;
3951
3952 for_each_node(node)
3953 put_pwq_unlocked(ctx->pwq_tbl[node]);
3954 put_pwq_unlocked(ctx->dfl_pwq);
3955
3956 free_workqueue_attrs(ctx->attrs);
3957
3958 kfree(ctx);
3959 }
3960 }
3961
3962 /* allocate the attrs and pwqs for later installation */
3963 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)3964 apply_wqattrs_prepare(struct workqueue_struct *wq,
3965 const struct workqueue_attrs *attrs,
3966 const cpumask_var_t unbound_cpumask)
3967 {
3968 struct apply_wqattrs_ctx *ctx;
3969 struct workqueue_attrs *new_attrs, *tmp_attrs;
3970 int node;
3971
3972 lockdep_assert_held(&wq_pool_mutex);
3973
3974 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3975
3976 new_attrs = alloc_workqueue_attrs();
3977 tmp_attrs = alloc_workqueue_attrs();
3978 if (!ctx || !new_attrs || !tmp_attrs)
3979 goto out_free;
3980
3981 /*
3982 * Calculate the attrs of the default pwq with unbound_cpumask
3983 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask.
3984 * If the user configured cpumask doesn't overlap with the
3985 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3986 */
3987 copy_workqueue_attrs(new_attrs, attrs);
3988 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask);
3989 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3990 cpumask_copy(new_attrs->cpumask, unbound_cpumask);
3991
3992 /*
3993 * We may create multiple pwqs with differing cpumasks. Make a
3994 * copy of @new_attrs which will be modified and used to obtain
3995 * pools.
3996 */
3997 copy_workqueue_attrs(tmp_attrs, new_attrs);
3998
3999 /*
4000 * If something goes wrong during CPU up/down, we'll fall back to
4001 * the default pwq covering whole @attrs->cpumask. Always create
4002 * it even if we don't use it immediately.
4003 */
4004 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4005 if (!ctx->dfl_pwq)
4006 goto out_free;
4007
4008 for_each_node(node) {
4009 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4010 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4011 if (!ctx->pwq_tbl[node])
4012 goto out_free;
4013 } else {
4014 ctx->dfl_pwq->refcnt++;
4015 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4016 }
4017 }
4018
4019 /* save the user configured attrs and sanitize it. */
4020 copy_workqueue_attrs(new_attrs, attrs);
4021 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4022 ctx->attrs = new_attrs;
4023
4024 ctx->wq = wq;
4025 free_workqueue_attrs(tmp_attrs);
4026 return ctx;
4027
4028 out_free:
4029 free_workqueue_attrs(tmp_attrs);
4030 free_workqueue_attrs(new_attrs);
4031 apply_wqattrs_cleanup(ctx);
4032 return NULL;
4033 }
4034
4035 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)4036 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4037 {
4038 int node;
4039
4040 /* all pwqs have been created successfully, let's install'em */
4041 mutex_lock(&ctx->wq->mutex);
4042
4043 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4044
4045 /* save the previous pwq and install the new one */
4046 for_each_node(node)
4047 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4048 ctx->pwq_tbl[node]);
4049
4050 /* @dfl_pwq might not have been used, ensure it's linked */
4051 link_pwq(ctx->dfl_pwq);
4052 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4053
4054 mutex_unlock(&ctx->wq->mutex);
4055 }
4056
apply_wqattrs_lock(void)4057 static void apply_wqattrs_lock(void)
4058 {
4059 /* CPUs should stay stable across pwq creations and installations */
4060 cpus_read_lock();
4061 mutex_lock(&wq_pool_mutex);
4062 }
4063
apply_wqattrs_unlock(void)4064 static void apply_wqattrs_unlock(void)
4065 {
4066 mutex_unlock(&wq_pool_mutex);
4067 cpus_read_unlock();
4068 }
4069
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4070 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4071 const struct workqueue_attrs *attrs)
4072 {
4073 struct apply_wqattrs_ctx *ctx;
4074
4075 /* only unbound workqueues can change attributes */
4076 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4077 return -EINVAL;
4078
4079 /* creating multiple pwqs breaks ordering guarantee */
4080 if (!list_empty(&wq->pwqs)) {
4081 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4082 return -EINVAL;
4083
4084 wq->flags &= ~__WQ_ORDERED;
4085 }
4086
4087 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4088 if (!ctx)
4089 return -ENOMEM;
4090
4091 /* the ctx has been prepared successfully, let's commit it */
4092 apply_wqattrs_commit(ctx);
4093 apply_wqattrs_cleanup(ctx);
4094
4095 return 0;
4096 }
4097
4098 /**
4099 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4100 * @wq: the target workqueue
4101 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4102 *
4103 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4104 * machines, this function maps a separate pwq to each NUMA node with
4105 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4106 * NUMA node it was issued on. Older pwqs are released as in-flight work
4107 * items finish. Note that a work item which repeatedly requeues itself
4108 * back-to-back will stay on its current pwq.
4109 *
4110 * Performs GFP_KERNEL allocations.
4111 *
4112 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4113 *
4114 * Return: 0 on success and -errno on failure.
4115 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4116 int apply_workqueue_attrs(struct workqueue_struct *wq,
4117 const struct workqueue_attrs *attrs)
4118 {
4119 int ret;
4120
4121 lockdep_assert_cpus_held();
4122
4123 mutex_lock(&wq_pool_mutex);
4124 ret = apply_workqueue_attrs_locked(wq, attrs);
4125 mutex_unlock(&wq_pool_mutex);
4126
4127 return ret;
4128 }
4129
4130 /**
4131 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4132 * @wq: the target workqueue
4133 * @cpu: the CPU coming up or going down
4134 * @online: whether @cpu is coming up or going down
4135 *
4136 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4137 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4138 * @wq accordingly.
4139 *
4140 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4141 * falls back to @wq->dfl_pwq which may not be optimal but is always
4142 * correct.
4143 *
4144 * Note that when the last allowed CPU of a NUMA node goes offline for a
4145 * workqueue with a cpumask spanning multiple nodes, the workers which were
4146 * already executing the work items for the workqueue will lose their CPU
4147 * affinity and may execute on any CPU. This is similar to how per-cpu
4148 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4149 * affinity, it's the user's responsibility to flush the work item from
4150 * CPU_DOWN_PREPARE.
4151 */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4152 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4153 bool online)
4154 {
4155 int node = cpu_to_node(cpu);
4156 int cpu_off = online ? -1 : cpu;
4157 struct pool_workqueue *old_pwq = NULL, *pwq;
4158 struct workqueue_attrs *target_attrs;
4159 cpumask_t *cpumask;
4160
4161 lockdep_assert_held(&wq_pool_mutex);
4162
4163 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4164 wq->unbound_attrs->no_numa)
4165 return;
4166
4167 /*
4168 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4169 * Let's use a preallocated one. The following buf is protected by
4170 * CPU hotplug exclusion.
4171 */
4172 target_attrs = wq_update_unbound_numa_attrs_buf;
4173 cpumask = target_attrs->cpumask;
4174
4175 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4176 pwq = unbound_pwq_by_node(wq, node);
4177
4178 /*
4179 * Let's determine what needs to be done. If the target cpumask is
4180 * different from the default pwq's, we need to compare it to @pwq's
4181 * and create a new one if they don't match. If the target cpumask
4182 * equals the default pwq's, the default pwq should be used.
4183 */
4184 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4185 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4186 return;
4187 } else {
4188 goto use_dfl_pwq;
4189 }
4190
4191 /* create a new pwq */
4192 pwq = alloc_unbound_pwq(wq, target_attrs);
4193 if (!pwq) {
4194 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4195 wq->name);
4196 goto use_dfl_pwq;
4197 }
4198
4199 /* Install the new pwq. */
4200 mutex_lock(&wq->mutex);
4201 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4202 goto out_unlock;
4203
4204 use_dfl_pwq:
4205 mutex_lock(&wq->mutex);
4206 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4207 get_pwq(wq->dfl_pwq);
4208 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4209 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4210 out_unlock:
4211 mutex_unlock(&wq->mutex);
4212 put_pwq_unlocked(old_pwq);
4213 }
4214
alloc_and_link_pwqs(struct workqueue_struct * wq)4215 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4216 {
4217 bool highpri = wq->flags & WQ_HIGHPRI;
4218 int cpu, ret;
4219
4220 if (!(wq->flags & WQ_UNBOUND)) {
4221 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4222 if (!wq->cpu_pwqs)
4223 return -ENOMEM;
4224
4225 for_each_possible_cpu(cpu) {
4226 struct pool_workqueue *pwq =
4227 per_cpu_ptr(wq->cpu_pwqs, cpu);
4228 struct worker_pool *cpu_pools =
4229 per_cpu(cpu_worker_pools, cpu);
4230
4231 init_pwq(pwq, wq, &cpu_pools[highpri]);
4232
4233 mutex_lock(&wq->mutex);
4234 link_pwq(pwq);
4235 mutex_unlock(&wq->mutex);
4236 }
4237 return 0;
4238 }
4239
4240 cpus_read_lock();
4241 if (wq->flags & __WQ_ORDERED) {
4242 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4243 /* there should only be single pwq for ordering guarantee */
4244 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4245 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4246 "ordering guarantee broken for workqueue %s\n", wq->name);
4247 } else {
4248 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4249 }
4250 cpus_read_unlock();
4251
4252 return ret;
4253 }
4254
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4255 static int wq_clamp_max_active(int max_active, unsigned int flags,
4256 const char *name)
4257 {
4258 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4259
4260 if (max_active < 1 || max_active > lim)
4261 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4262 max_active, name, 1, lim);
4263
4264 return clamp_val(max_active, 1, lim);
4265 }
4266
4267 /*
4268 * Workqueues which may be used during memory reclaim should have a rescuer
4269 * to guarantee forward progress.
4270 */
init_rescuer(struct workqueue_struct * wq)4271 static int init_rescuer(struct workqueue_struct *wq)
4272 {
4273 struct worker *rescuer;
4274 int ret;
4275
4276 if (!(wq->flags & WQ_MEM_RECLAIM))
4277 return 0;
4278
4279 rescuer = alloc_worker(NUMA_NO_NODE);
4280 if (!rescuer)
4281 return -ENOMEM;
4282
4283 rescuer->rescue_wq = wq;
4284 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4285 if (IS_ERR(rescuer->task)) {
4286 ret = PTR_ERR(rescuer->task);
4287 kfree(rescuer);
4288 return ret;
4289 }
4290
4291 wq->rescuer = rescuer;
4292 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4293 wake_up_process(rescuer->task);
4294
4295 return 0;
4296 }
4297
4298 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4299 struct workqueue_struct *alloc_workqueue(const char *fmt,
4300 unsigned int flags,
4301 int max_active, ...)
4302 {
4303 size_t tbl_size = 0;
4304 va_list args;
4305 struct workqueue_struct *wq;
4306 struct pool_workqueue *pwq;
4307
4308 /*
4309 * Unbound && max_active == 1 used to imply ordered, which is no
4310 * longer the case on NUMA machines due to per-node pools. While
4311 * alloc_ordered_workqueue() is the right way to create an ordered
4312 * workqueue, keep the previous behavior to avoid subtle breakages
4313 * on NUMA.
4314 */
4315 if ((flags & WQ_UNBOUND) && max_active == 1)
4316 flags |= __WQ_ORDERED;
4317
4318 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4319 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4320 flags |= WQ_UNBOUND;
4321
4322 /* allocate wq and format name */
4323 if (flags & WQ_UNBOUND)
4324 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4325
4326 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4327 if (!wq)
4328 return NULL;
4329
4330 if (flags & WQ_UNBOUND) {
4331 wq->unbound_attrs = alloc_workqueue_attrs();
4332 if (!wq->unbound_attrs)
4333 goto err_free_wq;
4334 }
4335
4336 va_start(args, max_active);
4337 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4338 va_end(args);
4339
4340 max_active = max_active ?: WQ_DFL_ACTIVE;
4341 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4342
4343 /* init wq */
4344 wq->flags = flags;
4345 wq->saved_max_active = max_active;
4346 mutex_init(&wq->mutex);
4347 atomic_set(&wq->nr_pwqs_to_flush, 0);
4348 INIT_LIST_HEAD(&wq->pwqs);
4349 INIT_LIST_HEAD(&wq->flusher_queue);
4350 INIT_LIST_HEAD(&wq->flusher_overflow);
4351 INIT_LIST_HEAD(&wq->maydays);
4352
4353 wq_init_lockdep(wq);
4354 INIT_LIST_HEAD(&wq->list);
4355
4356 if (alloc_and_link_pwqs(wq) < 0)
4357 goto err_unreg_lockdep;
4358
4359 if (wq_online && init_rescuer(wq) < 0)
4360 goto err_destroy;
4361
4362 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4363 goto err_destroy;
4364
4365 /*
4366 * wq_pool_mutex protects global freeze state and workqueues list.
4367 * Grab it, adjust max_active and add the new @wq to workqueues
4368 * list.
4369 */
4370 mutex_lock(&wq_pool_mutex);
4371
4372 mutex_lock(&wq->mutex);
4373 for_each_pwq(pwq, wq)
4374 pwq_adjust_max_active(pwq);
4375 mutex_unlock(&wq->mutex);
4376
4377 list_add_tail_rcu(&wq->list, &workqueues);
4378
4379 mutex_unlock(&wq_pool_mutex);
4380
4381 return wq;
4382
4383 err_unreg_lockdep:
4384 wq_unregister_lockdep(wq);
4385 wq_free_lockdep(wq);
4386 err_free_wq:
4387 free_workqueue_attrs(wq->unbound_attrs);
4388 kfree(wq);
4389 return NULL;
4390 err_destroy:
4391 destroy_workqueue(wq);
4392 return NULL;
4393 }
4394 EXPORT_SYMBOL_GPL(alloc_workqueue);
4395
pwq_busy(struct pool_workqueue * pwq)4396 static bool pwq_busy(struct pool_workqueue *pwq)
4397 {
4398 int i;
4399
4400 for (i = 0; i < WORK_NR_COLORS; i++)
4401 if (pwq->nr_in_flight[i])
4402 return true;
4403
4404 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4405 return true;
4406 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4407 return true;
4408
4409 return false;
4410 }
4411
4412 /**
4413 * destroy_workqueue - safely terminate a workqueue
4414 * @wq: target workqueue
4415 *
4416 * Safely destroy a workqueue. All work currently pending will be done first.
4417 */
destroy_workqueue(struct workqueue_struct * wq)4418 void destroy_workqueue(struct workqueue_struct *wq)
4419 {
4420 struct pool_workqueue *pwq;
4421 int node;
4422
4423 /*
4424 * Remove it from sysfs first so that sanity check failure doesn't
4425 * lead to sysfs name conflicts.
4426 */
4427 workqueue_sysfs_unregister(wq);
4428
4429 /* drain it before proceeding with destruction */
4430 drain_workqueue(wq);
4431
4432 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4433 if (wq->rescuer) {
4434 struct worker *rescuer = wq->rescuer;
4435
4436 /* this prevents new queueing */
4437 raw_spin_lock_irq(&wq_mayday_lock);
4438 wq->rescuer = NULL;
4439 raw_spin_unlock_irq(&wq_mayday_lock);
4440
4441 /* rescuer will empty maydays list before exiting */
4442 kthread_stop(rescuer->task);
4443 kfree(rescuer);
4444 }
4445
4446 /*
4447 * Sanity checks - grab all the locks so that we wait for all
4448 * in-flight operations which may do put_pwq().
4449 */
4450 mutex_lock(&wq_pool_mutex);
4451 mutex_lock(&wq->mutex);
4452 for_each_pwq(pwq, wq) {
4453 raw_spin_lock_irq(&pwq->pool->lock);
4454 if (WARN_ON(pwq_busy(pwq))) {
4455 pr_warn("%s: %s has the following busy pwq\n",
4456 __func__, wq->name);
4457 show_pwq(pwq);
4458 raw_spin_unlock_irq(&pwq->pool->lock);
4459 mutex_unlock(&wq->mutex);
4460 mutex_unlock(&wq_pool_mutex);
4461 show_one_workqueue(wq);
4462 return;
4463 }
4464 raw_spin_unlock_irq(&pwq->pool->lock);
4465 }
4466 mutex_unlock(&wq->mutex);
4467
4468 /*
4469 * wq list is used to freeze wq, remove from list after
4470 * flushing is complete in case freeze races us.
4471 */
4472 list_del_rcu(&wq->list);
4473 mutex_unlock(&wq_pool_mutex);
4474
4475 if (!(wq->flags & WQ_UNBOUND)) {
4476 wq_unregister_lockdep(wq);
4477 /*
4478 * The base ref is never dropped on per-cpu pwqs. Directly
4479 * schedule RCU free.
4480 */
4481 call_rcu(&wq->rcu, rcu_free_wq);
4482 } else {
4483 /*
4484 * We're the sole accessor of @wq at this point. Directly
4485 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4486 * @wq will be freed when the last pwq is released.
4487 */
4488 for_each_node(node) {
4489 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4490 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4491 put_pwq_unlocked(pwq);
4492 }
4493
4494 /*
4495 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4496 * put. Don't access it afterwards.
4497 */
4498 pwq = wq->dfl_pwq;
4499 wq->dfl_pwq = NULL;
4500 put_pwq_unlocked(pwq);
4501 }
4502 }
4503 EXPORT_SYMBOL_GPL(destroy_workqueue);
4504
4505 /**
4506 * workqueue_set_max_active - adjust max_active of a workqueue
4507 * @wq: target workqueue
4508 * @max_active: new max_active value.
4509 *
4510 * Set max_active of @wq to @max_active.
4511 *
4512 * CONTEXT:
4513 * Don't call from IRQ context.
4514 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4515 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4516 {
4517 struct pool_workqueue *pwq;
4518
4519 /* disallow meddling with max_active for ordered workqueues */
4520 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4521 return;
4522
4523 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4524
4525 mutex_lock(&wq->mutex);
4526
4527 wq->flags &= ~__WQ_ORDERED;
4528 wq->saved_max_active = max_active;
4529
4530 for_each_pwq(pwq, wq)
4531 pwq_adjust_max_active(pwq);
4532
4533 mutex_unlock(&wq->mutex);
4534 }
4535 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4536
4537 /**
4538 * current_work - retrieve %current task's work struct
4539 *
4540 * Determine if %current task is a workqueue worker and what it's working on.
4541 * Useful to find out the context that the %current task is running in.
4542 *
4543 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4544 */
current_work(void)4545 struct work_struct *current_work(void)
4546 {
4547 struct worker *worker = current_wq_worker();
4548
4549 return worker ? worker->current_work : NULL;
4550 }
4551 EXPORT_SYMBOL(current_work);
4552
4553 /**
4554 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4555 *
4556 * Determine whether %current is a workqueue rescuer. Can be used from
4557 * work functions to determine whether it's being run off the rescuer task.
4558 *
4559 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4560 */
current_is_workqueue_rescuer(void)4561 bool current_is_workqueue_rescuer(void)
4562 {
4563 struct worker *worker = current_wq_worker();
4564
4565 return worker && worker->rescue_wq;
4566 }
4567
4568 /**
4569 * workqueue_congested - test whether a workqueue is congested
4570 * @cpu: CPU in question
4571 * @wq: target workqueue
4572 *
4573 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4574 * no synchronization around this function and the test result is
4575 * unreliable and only useful as advisory hints or for debugging.
4576 *
4577 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4578 * Note that both per-cpu and unbound workqueues may be associated with
4579 * multiple pool_workqueues which have separate congested states. A
4580 * workqueue being congested on one CPU doesn't mean the workqueue is also
4581 * contested on other CPUs / NUMA nodes.
4582 *
4583 * Return:
4584 * %true if congested, %false otherwise.
4585 */
workqueue_congested(int cpu,struct workqueue_struct * wq)4586 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4587 {
4588 struct pool_workqueue *pwq;
4589 bool ret;
4590
4591 rcu_read_lock();
4592 preempt_disable();
4593
4594 if (cpu == WORK_CPU_UNBOUND)
4595 cpu = smp_processor_id();
4596
4597 if (!(wq->flags & WQ_UNBOUND))
4598 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4599 else
4600 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4601
4602 ret = !list_empty(&pwq->inactive_works);
4603 preempt_enable();
4604 rcu_read_unlock();
4605
4606 return ret;
4607 }
4608 EXPORT_SYMBOL_GPL(workqueue_congested);
4609
4610 /**
4611 * work_busy - test whether a work is currently pending or running
4612 * @work: the work to be tested
4613 *
4614 * Test whether @work is currently pending or running. There is no
4615 * synchronization around this function and the test result is
4616 * unreliable and only useful as advisory hints or for debugging.
4617 *
4618 * Return:
4619 * OR'd bitmask of WORK_BUSY_* bits.
4620 */
work_busy(struct work_struct * work)4621 unsigned int work_busy(struct work_struct *work)
4622 {
4623 struct worker_pool *pool;
4624 unsigned long flags;
4625 unsigned int ret = 0;
4626
4627 if (work_pending(work))
4628 ret |= WORK_BUSY_PENDING;
4629
4630 rcu_read_lock();
4631 pool = get_work_pool(work);
4632 if (pool) {
4633 raw_spin_lock_irqsave(&pool->lock, flags);
4634 if (find_worker_executing_work(pool, work))
4635 ret |= WORK_BUSY_RUNNING;
4636 raw_spin_unlock_irqrestore(&pool->lock, flags);
4637 }
4638 rcu_read_unlock();
4639
4640 return ret;
4641 }
4642 EXPORT_SYMBOL_GPL(work_busy);
4643
4644 /**
4645 * set_worker_desc - set description for the current work item
4646 * @fmt: printf-style format string
4647 * @...: arguments for the format string
4648 *
4649 * This function can be called by a running work function to describe what
4650 * the work item is about. If the worker task gets dumped, this
4651 * information will be printed out together to help debugging. The
4652 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4653 */
set_worker_desc(const char * fmt,...)4654 void set_worker_desc(const char *fmt, ...)
4655 {
4656 struct worker *worker = current_wq_worker();
4657 va_list args;
4658
4659 if (worker) {
4660 va_start(args, fmt);
4661 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4662 va_end(args);
4663 }
4664 }
4665 EXPORT_SYMBOL_GPL(set_worker_desc);
4666
4667 /**
4668 * print_worker_info - print out worker information and description
4669 * @log_lvl: the log level to use when printing
4670 * @task: target task
4671 *
4672 * If @task is a worker and currently executing a work item, print out the
4673 * name of the workqueue being serviced and worker description set with
4674 * set_worker_desc() by the currently executing work item.
4675 *
4676 * This function can be safely called on any task as long as the
4677 * task_struct itself is accessible. While safe, this function isn't
4678 * synchronized and may print out mixups or garbages of limited length.
4679 */
print_worker_info(const char * log_lvl,struct task_struct * task)4680 void print_worker_info(const char *log_lvl, struct task_struct *task)
4681 {
4682 work_func_t *fn = NULL;
4683 char name[WQ_NAME_LEN] = { };
4684 char desc[WORKER_DESC_LEN] = { };
4685 struct pool_workqueue *pwq = NULL;
4686 struct workqueue_struct *wq = NULL;
4687 struct worker *worker;
4688
4689 if (!(task->flags & PF_WQ_WORKER))
4690 return;
4691
4692 /*
4693 * This function is called without any synchronization and @task
4694 * could be in any state. Be careful with dereferences.
4695 */
4696 worker = kthread_probe_data(task);
4697
4698 /*
4699 * Carefully copy the associated workqueue's workfn, name and desc.
4700 * Keep the original last '\0' in case the original is garbage.
4701 */
4702 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4703 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4704 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4705 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4706 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4707
4708 if (fn || name[0] || desc[0]) {
4709 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4710 if (strcmp(name, desc))
4711 pr_cont(" (%s)", desc);
4712 pr_cont("\n");
4713 }
4714 }
4715
pr_cont_pool_info(struct worker_pool * pool)4716 static void pr_cont_pool_info(struct worker_pool *pool)
4717 {
4718 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4719 if (pool->node != NUMA_NO_NODE)
4720 pr_cont(" node=%d", pool->node);
4721 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4722 }
4723
pr_cont_work(bool comma,struct work_struct * work)4724 static void pr_cont_work(bool comma, struct work_struct *work)
4725 {
4726 if (work->func == wq_barrier_func) {
4727 struct wq_barrier *barr;
4728
4729 barr = container_of(work, struct wq_barrier, work);
4730
4731 pr_cont("%s BAR(%d)", comma ? "," : "",
4732 task_pid_nr(barr->task));
4733 } else {
4734 pr_cont("%s %ps", comma ? "," : "", work->func);
4735 }
4736 }
4737
show_pwq(struct pool_workqueue * pwq)4738 static void show_pwq(struct pool_workqueue *pwq)
4739 {
4740 struct worker_pool *pool = pwq->pool;
4741 struct work_struct *work;
4742 struct worker *worker;
4743 bool has_in_flight = false, has_pending = false;
4744 int bkt;
4745
4746 pr_info(" pwq %d:", pool->id);
4747 pr_cont_pool_info(pool);
4748
4749 pr_cont(" active=%d/%d refcnt=%d%s\n",
4750 pwq->nr_active, pwq->max_active, pwq->refcnt,
4751 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4752
4753 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4754 if (worker->current_pwq == pwq) {
4755 has_in_flight = true;
4756 break;
4757 }
4758 }
4759 if (has_in_flight) {
4760 bool comma = false;
4761
4762 pr_info(" in-flight:");
4763 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4764 if (worker->current_pwq != pwq)
4765 continue;
4766
4767 pr_cont("%s %d%s:%ps", comma ? "," : "",
4768 task_pid_nr(worker->task),
4769 worker->rescue_wq ? "(RESCUER)" : "",
4770 worker->current_func);
4771 list_for_each_entry(work, &worker->scheduled, entry)
4772 pr_cont_work(false, work);
4773 comma = true;
4774 }
4775 pr_cont("\n");
4776 }
4777
4778 list_for_each_entry(work, &pool->worklist, entry) {
4779 if (get_work_pwq(work) == pwq) {
4780 has_pending = true;
4781 break;
4782 }
4783 }
4784 if (has_pending) {
4785 bool comma = false;
4786
4787 pr_info(" pending:");
4788 list_for_each_entry(work, &pool->worklist, entry) {
4789 if (get_work_pwq(work) != pwq)
4790 continue;
4791
4792 pr_cont_work(comma, work);
4793 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4794 }
4795 pr_cont("\n");
4796 }
4797
4798 if (!list_empty(&pwq->inactive_works)) {
4799 bool comma = false;
4800
4801 pr_info(" inactive:");
4802 list_for_each_entry(work, &pwq->inactive_works, entry) {
4803 pr_cont_work(comma, work);
4804 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4805 }
4806 pr_cont("\n");
4807 }
4808 }
4809
4810 /**
4811 * show_one_workqueue - dump state of specified workqueue
4812 * @wq: workqueue whose state will be printed
4813 */
show_one_workqueue(struct workqueue_struct * wq)4814 void show_one_workqueue(struct workqueue_struct *wq)
4815 {
4816 struct pool_workqueue *pwq;
4817 bool idle = true;
4818 unsigned long flags;
4819
4820 for_each_pwq(pwq, wq) {
4821 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4822 idle = false;
4823 break;
4824 }
4825 }
4826 if (idle) /* Nothing to print for idle workqueue */
4827 return;
4828
4829 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4830
4831 for_each_pwq(pwq, wq) {
4832 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4833 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4834 /*
4835 * Defer printing to avoid deadlocks in console
4836 * drivers that queue work while holding locks
4837 * also taken in their write paths.
4838 */
4839 printk_deferred_enter();
4840 show_pwq(pwq);
4841 printk_deferred_exit();
4842 }
4843 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4844 /*
4845 * We could be printing a lot from atomic context, e.g.
4846 * sysrq-t -> show_all_workqueues(). Avoid triggering
4847 * hard lockup.
4848 */
4849 touch_nmi_watchdog();
4850 }
4851
4852 }
4853
4854 /**
4855 * show_one_worker_pool - dump state of specified worker pool
4856 * @pool: worker pool whose state will be printed
4857 */
show_one_worker_pool(struct worker_pool * pool)4858 static void show_one_worker_pool(struct worker_pool *pool)
4859 {
4860 struct worker *worker;
4861 bool first = true;
4862 unsigned long flags;
4863 unsigned long hung = 0;
4864
4865 raw_spin_lock_irqsave(&pool->lock, flags);
4866 if (pool->nr_workers == pool->nr_idle)
4867 goto next_pool;
4868
4869 /* How long the first pending work is waiting for a worker. */
4870 if (!list_empty(&pool->worklist))
4871 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
4872
4873 /*
4874 * Defer printing to avoid deadlocks in console drivers that
4875 * queue work while holding locks also taken in their write
4876 * paths.
4877 */
4878 printk_deferred_enter();
4879 pr_info("pool %d:", pool->id);
4880 pr_cont_pool_info(pool);
4881 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
4882 if (pool->manager)
4883 pr_cont(" manager: %d",
4884 task_pid_nr(pool->manager->task));
4885 list_for_each_entry(worker, &pool->idle_list, entry) {
4886 pr_cont(" %s%d", first ? "idle: " : "",
4887 task_pid_nr(worker->task));
4888 first = false;
4889 }
4890 pr_cont("\n");
4891 printk_deferred_exit();
4892 next_pool:
4893 raw_spin_unlock_irqrestore(&pool->lock, flags);
4894 /*
4895 * We could be printing a lot from atomic context, e.g.
4896 * sysrq-t -> show_all_workqueues(). Avoid triggering
4897 * hard lockup.
4898 */
4899 touch_nmi_watchdog();
4900
4901 }
4902
4903 /**
4904 * show_all_workqueues - dump workqueue state
4905 *
4906 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4907 * all busy workqueues and pools.
4908 */
show_all_workqueues(void)4909 void show_all_workqueues(void)
4910 {
4911 struct workqueue_struct *wq;
4912 struct worker_pool *pool;
4913 int pi;
4914
4915 rcu_read_lock();
4916
4917 pr_info("Showing busy workqueues and worker pools:\n");
4918
4919 list_for_each_entry_rcu(wq, &workqueues, list)
4920 show_one_workqueue(wq);
4921
4922 for_each_pool(pool, pi)
4923 show_one_worker_pool(pool);
4924
4925 rcu_read_unlock();
4926 }
4927
4928 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4929 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4930 {
4931 int off;
4932
4933 /* always show the actual comm */
4934 off = strscpy(buf, task->comm, size);
4935 if (off < 0)
4936 return;
4937
4938 /* stabilize PF_WQ_WORKER and worker pool association */
4939 mutex_lock(&wq_pool_attach_mutex);
4940
4941 if (task->flags & PF_WQ_WORKER) {
4942 struct worker *worker = kthread_data(task);
4943 struct worker_pool *pool = worker->pool;
4944
4945 if (pool) {
4946 raw_spin_lock_irq(&pool->lock);
4947 /*
4948 * ->desc tracks information (wq name or
4949 * set_worker_desc()) for the latest execution. If
4950 * current, prepend '+', otherwise '-'.
4951 */
4952 if (worker->desc[0] != '\0') {
4953 if (worker->current_work)
4954 scnprintf(buf + off, size - off, "+%s",
4955 worker->desc);
4956 else
4957 scnprintf(buf + off, size - off, "-%s",
4958 worker->desc);
4959 }
4960 raw_spin_unlock_irq(&pool->lock);
4961 }
4962 }
4963
4964 mutex_unlock(&wq_pool_attach_mutex);
4965 }
4966 EXPORT_SYMBOL_GPL(wq_worker_comm);
4967
4968 #ifdef CONFIG_SMP
4969
4970 /*
4971 * CPU hotplug.
4972 *
4973 * There are two challenges in supporting CPU hotplug. Firstly, there
4974 * are a lot of assumptions on strong associations among work, pwq and
4975 * pool which make migrating pending and scheduled works very
4976 * difficult to implement without impacting hot paths. Secondly,
4977 * worker pools serve mix of short, long and very long running works making
4978 * blocked draining impractical.
4979 *
4980 * This is solved by allowing the pools to be disassociated from the CPU
4981 * running as an unbound one and allowing it to be reattached later if the
4982 * cpu comes back online.
4983 */
4984
unbind_workers(int cpu)4985 static void unbind_workers(int cpu)
4986 {
4987 struct worker_pool *pool;
4988 struct worker *worker;
4989
4990 for_each_cpu_worker_pool(pool, cpu) {
4991 mutex_lock(&wq_pool_attach_mutex);
4992 raw_spin_lock_irq(&pool->lock);
4993
4994 /*
4995 * We've blocked all attach/detach operations. Make all workers
4996 * unbound and set DISASSOCIATED. Before this, all workers
4997 * must be on the cpu. After this, they may become diasporas.
4998 * And the preemption disabled section in their sched callbacks
4999 * are guaranteed to see WORKER_UNBOUND since the code here
5000 * is on the same cpu.
5001 */
5002 for_each_pool_worker(worker, pool)
5003 worker->flags |= WORKER_UNBOUND;
5004
5005 pool->flags |= POOL_DISASSOCIATED;
5006
5007 /*
5008 * The handling of nr_running in sched callbacks are disabled
5009 * now. Zap nr_running. After this, nr_running stays zero and
5010 * need_more_worker() and keep_working() are always true as
5011 * long as the worklist is not empty. This pool now behaves as
5012 * an unbound (in terms of concurrency management) pool which
5013 * are served by workers tied to the pool.
5014 */
5015 pool->nr_running = 0;
5016
5017 /*
5018 * With concurrency management just turned off, a busy
5019 * worker blocking could lead to lengthy stalls. Kick off
5020 * unbound chain execution of currently pending work items.
5021 */
5022 wake_up_worker(pool);
5023
5024 raw_spin_unlock_irq(&pool->lock);
5025
5026 for_each_pool_worker(worker, pool) {
5027 kthread_set_per_cpu(worker->task, -1);
5028 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
5029 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
5030 else
5031 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
5032 }
5033
5034 mutex_unlock(&wq_pool_attach_mutex);
5035 }
5036 }
5037
5038 /**
5039 * rebind_workers - rebind all workers of a pool to the associated CPU
5040 * @pool: pool of interest
5041 *
5042 * @pool->cpu is coming online. Rebind all workers to the CPU.
5043 */
rebind_workers(struct worker_pool * pool)5044 static void rebind_workers(struct worker_pool *pool)
5045 {
5046 struct worker *worker;
5047
5048 lockdep_assert_held(&wq_pool_attach_mutex);
5049
5050 /*
5051 * Restore CPU affinity of all workers. As all idle workers should
5052 * be on the run-queue of the associated CPU before any local
5053 * wake-ups for concurrency management happen, restore CPU affinity
5054 * of all workers first and then clear UNBOUND. As we're called
5055 * from CPU_ONLINE, the following shouldn't fail.
5056 */
5057 for_each_pool_worker(worker, pool) {
5058 kthread_set_per_cpu(worker->task, pool->cpu);
5059 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5060 pool->attrs->cpumask) < 0);
5061 }
5062
5063 raw_spin_lock_irq(&pool->lock);
5064
5065 pool->flags &= ~POOL_DISASSOCIATED;
5066
5067 for_each_pool_worker(worker, pool) {
5068 unsigned int worker_flags = worker->flags;
5069
5070 /*
5071 * We want to clear UNBOUND but can't directly call
5072 * worker_clr_flags() or adjust nr_running. Atomically
5073 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5074 * @worker will clear REBOUND using worker_clr_flags() when
5075 * it initiates the next execution cycle thus restoring
5076 * concurrency management. Note that when or whether
5077 * @worker clears REBOUND doesn't affect correctness.
5078 *
5079 * WRITE_ONCE() is necessary because @worker->flags may be
5080 * tested without holding any lock in
5081 * wq_worker_running(). Without it, NOT_RUNNING test may
5082 * fail incorrectly leading to premature concurrency
5083 * management operations.
5084 */
5085 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5086 worker_flags |= WORKER_REBOUND;
5087 worker_flags &= ~WORKER_UNBOUND;
5088 WRITE_ONCE(worker->flags, worker_flags);
5089 }
5090
5091 raw_spin_unlock_irq(&pool->lock);
5092 }
5093
5094 /**
5095 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5096 * @pool: unbound pool of interest
5097 * @cpu: the CPU which is coming up
5098 *
5099 * An unbound pool may end up with a cpumask which doesn't have any online
5100 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5101 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5102 * online CPU before, cpus_allowed of all its workers should be restored.
5103 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5104 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5105 {
5106 static cpumask_t cpumask;
5107 struct worker *worker;
5108
5109 lockdep_assert_held(&wq_pool_attach_mutex);
5110
5111 /* is @cpu allowed for @pool? */
5112 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5113 return;
5114
5115 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5116
5117 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5118 for_each_pool_worker(worker, pool)
5119 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5120 }
5121
workqueue_prepare_cpu(unsigned int cpu)5122 int workqueue_prepare_cpu(unsigned int cpu)
5123 {
5124 struct worker_pool *pool;
5125
5126 for_each_cpu_worker_pool(pool, cpu) {
5127 if (pool->nr_workers)
5128 continue;
5129 if (!create_worker(pool))
5130 return -ENOMEM;
5131 }
5132 return 0;
5133 }
5134
workqueue_online_cpu(unsigned int cpu)5135 int workqueue_online_cpu(unsigned int cpu)
5136 {
5137 struct worker_pool *pool;
5138 struct workqueue_struct *wq;
5139 int pi;
5140
5141 mutex_lock(&wq_pool_mutex);
5142
5143 for_each_pool(pool, pi) {
5144 mutex_lock(&wq_pool_attach_mutex);
5145
5146 if (pool->cpu == cpu)
5147 rebind_workers(pool);
5148 else if (pool->cpu < 0)
5149 restore_unbound_workers_cpumask(pool, cpu);
5150
5151 mutex_unlock(&wq_pool_attach_mutex);
5152 }
5153
5154 /* update NUMA affinity of unbound workqueues */
5155 list_for_each_entry(wq, &workqueues, list)
5156 wq_update_unbound_numa(wq, cpu, true);
5157
5158 mutex_unlock(&wq_pool_mutex);
5159 return 0;
5160 }
5161
workqueue_offline_cpu(unsigned int cpu)5162 int workqueue_offline_cpu(unsigned int cpu)
5163 {
5164 struct workqueue_struct *wq;
5165
5166 /* unbinding per-cpu workers should happen on the local CPU */
5167 if (WARN_ON(cpu != smp_processor_id()))
5168 return -1;
5169
5170 unbind_workers(cpu);
5171
5172 /* update NUMA affinity of unbound workqueues */
5173 mutex_lock(&wq_pool_mutex);
5174 list_for_each_entry(wq, &workqueues, list)
5175 wq_update_unbound_numa(wq, cpu, false);
5176 mutex_unlock(&wq_pool_mutex);
5177
5178 return 0;
5179 }
5180
5181 struct work_for_cpu {
5182 struct work_struct work;
5183 long (*fn)(void *);
5184 void *arg;
5185 long ret;
5186 };
5187
work_for_cpu_fn(struct work_struct * work)5188 static void work_for_cpu_fn(struct work_struct *work)
5189 {
5190 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5191
5192 wfc->ret = wfc->fn(wfc->arg);
5193 }
5194
5195 /**
5196 * work_on_cpu - run a function in thread context on a particular cpu
5197 * @cpu: the cpu to run on
5198 * @fn: the function to run
5199 * @arg: the function arg
5200 *
5201 * It is up to the caller to ensure that the cpu doesn't go offline.
5202 * The caller must not hold any locks which would prevent @fn from completing.
5203 *
5204 * Return: The value @fn returns.
5205 */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5206 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5207 {
5208 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5209
5210 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5211 schedule_work_on(cpu, &wfc.work);
5212 flush_work(&wfc.work);
5213 destroy_work_on_stack(&wfc.work);
5214 return wfc.ret;
5215 }
5216 EXPORT_SYMBOL_GPL(work_on_cpu);
5217
5218 /**
5219 * work_on_cpu_safe - run a function in thread context on a particular cpu
5220 * @cpu: the cpu to run on
5221 * @fn: the function to run
5222 * @arg: the function argument
5223 *
5224 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5225 * any locks which would prevent @fn from completing.
5226 *
5227 * Return: The value @fn returns.
5228 */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5229 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5230 {
5231 long ret = -ENODEV;
5232
5233 cpus_read_lock();
5234 if (cpu_online(cpu))
5235 ret = work_on_cpu(cpu, fn, arg);
5236 cpus_read_unlock();
5237 return ret;
5238 }
5239 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5240 #endif /* CONFIG_SMP */
5241
5242 #ifdef CONFIG_FREEZER
5243
5244 /**
5245 * freeze_workqueues_begin - begin freezing workqueues
5246 *
5247 * Start freezing workqueues. After this function returns, all freezable
5248 * workqueues will queue new works to their inactive_works list instead of
5249 * pool->worklist.
5250 *
5251 * CONTEXT:
5252 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5253 */
freeze_workqueues_begin(void)5254 void freeze_workqueues_begin(void)
5255 {
5256 struct workqueue_struct *wq;
5257 struct pool_workqueue *pwq;
5258
5259 mutex_lock(&wq_pool_mutex);
5260
5261 WARN_ON_ONCE(workqueue_freezing);
5262 workqueue_freezing = true;
5263
5264 list_for_each_entry(wq, &workqueues, list) {
5265 mutex_lock(&wq->mutex);
5266 for_each_pwq(pwq, wq)
5267 pwq_adjust_max_active(pwq);
5268 mutex_unlock(&wq->mutex);
5269 }
5270
5271 mutex_unlock(&wq_pool_mutex);
5272 }
5273
5274 /**
5275 * freeze_workqueues_busy - are freezable workqueues still busy?
5276 *
5277 * Check whether freezing is complete. This function must be called
5278 * between freeze_workqueues_begin() and thaw_workqueues().
5279 *
5280 * CONTEXT:
5281 * Grabs and releases wq_pool_mutex.
5282 *
5283 * Return:
5284 * %true if some freezable workqueues are still busy. %false if freezing
5285 * is complete.
5286 */
freeze_workqueues_busy(void)5287 bool freeze_workqueues_busy(void)
5288 {
5289 bool busy = false;
5290 struct workqueue_struct *wq;
5291 struct pool_workqueue *pwq;
5292
5293 mutex_lock(&wq_pool_mutex);
5294
5295 WARN_ON_ONCE(!workqueue_freezing);
5296
5297 list_for_each_entry(wq, &workqueues, list) {
5298 if (!(wq->flags & WQ_FREEZABLE))
5299 continue;
5300 /*
5301 * nr_active is monotonically decreasing. It's safe
5302 * to peek without lock.
5303 */
5304 rcu_read_lock();
5305 for_each_pwq(pwq, wq) {
5306 WARN_ON_ONCE(pwq->nr_active < 0);
5307 if (pwq->nr_active) {
5308 busy = true;
5309 rcu_read_unlock();
5310 goto out_unlock;
5311 }
5312 }
5313 rcu_read_unlock();
5314 }
5315 out_unlock:
5316 mutex_unlock(&wq_pool_mutex);
5317 return busy;
5318 }
5319
5320 /**
5321 * thaw_workqueues - thaw workqueues
5322 *
5323 * Thaw workqueues. Normal queueing is restored and all collected
5324 * frozen works are transferred to their respective pool worklists.
5325 *
5326 * CONTEXT:
5327 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5328 */
thaw_workqueues(void)5329 void thaw_workqueues(void)
5330 {
5331 struct workqueue_struct *wq;
5332 struct pool_workqueue *pwq;
5333
5334 mutex_lock(&wq_pool_mutex);
5335
5336 if (!workqueue_freezing)
5337 goto out_unlock;
5338
5339 workqueue_freezing = false;
5340
5341 /* restore max_active and repopulate worklist */
5342 list_for_each_entry(wq, &workqueues, list) {
5343 mutex_lock(&wq->mutex);
5344 for_each_pwq(pwq, wq)
5345 pwq_adjust_max_active(pwq);
5346 mutex_unlock(&wq->mutex);
5347 }
5348
5349 out_unlock:
5350 mutex_unlock(&wq_pool_mutex);
5351 }
5352 #endif /* CONFIG_FREEZER */
5353
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)5354 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5355 {
5356 LIST_HEAD(ctxs);
5357 int ret = 0;
5358 struct workqueue_struct *wq;
5359 struct apply_wqattrs_ctx *ctx, *n;
5360
5361 lockdep_assert_held(&wq_pool_mutex);
5362
5363 list_for_each_entry(wq, &workqueues, list) {
5364 if (!(wq->flags & WQ_UNBOUND))
5365 continue;
5366
5367 /* creating multiple pwqs breaks ordering guarantee */
5368 if (!list_empty(&wq->pwqs)) {
5369 if (wq->flags & __WQ_ORDERED_EXPLICIT)
5370 continue;
5371 wq->flags &= ~__WQ_ORDERED;
5372 }
5373
5374 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5375 if (!ctx) {
5376 ret = -ENOMEM;
5377 break;
5378 }
5379
5380 list_add_tail(&ctx->list, &ctxs);
5381 }
5382
5383 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5384 if (!ret)
5385 apply_wqattrs_commit(ctx);
5386 apply_wqattrs_cleanup(ctx);
5387 }
5388
5389 if (!ret) {
5390 mutex_lock(&wq_pool_attach_mutex);
5391 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5392 mutex_unlock(&wq_pool_attach_mutex);
5393 }
5394 return ret;
5395 }
5396
5397 /**
5398 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5399 * @cpumask: the cpumask to set
5400 *
5401 * The low-level workqueues cpumask is a global cpumask that limits
5402 * the affinity of all unbound workqueues. This function check the @cpumask
5403 * and apply it to all unbound workqueues and updates all pwqs of them.
5404 *
5405 * Return: 0 - Success
5406 * -EINVAL - Invalid @cpumask
5407 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5408 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5409 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5410 {
5411 int ret = -EINVAL;
5412
5413 /*
5414 * Not excluding isolated cpus on purpose.
5415 * If the user wishes to include them, we allow that.
5416 */
5417 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5418 if (!cpumask_empty(cpumask)) {
5419 apply_wqattrs_lock();
5420 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5421 ret = 0;
5422 goto out_unlock;
5423 }
5424
5425 ret = workqueue_apply_unbound_cpumask(cpumask);
5426
5427 out_unlock:
5428 apply_wqattrs_unlock();
5429 }
5430
5431 return ret;
5432 }
5433
5434 #ifdef CONFIG_SYSFS
5435 /*
5436 * Workqueues with WQ_SYSFS flag set is visible to userland via
5437 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5438 * following attributes.
5439 *
5440 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5441 * max_active RW int : maximum number of in-flight work items
5442 *
5443 * Unbound workqueues have the following extra attributes.
5444 *
5445 * pool_ids RO int : the associated pool IDs for each node
5446 * nice RW int : nice value of the workers
5447 * cpumask RW mask : bitmask of allowed CPUs for the workers
5448 * numa RW bool : whether enable NUMA affinity
5449 */
5450 struct wq_device {
5451 struct workqueue_struct *wq;
5452 struct device dev;
5453 };
5454
dev_to_wq(struct device * dev)5455 static struct workqueue_struct *dev_to_wq(struct device *dev)
5456 {
5457 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5458
5459 return wq_dev->wq;
5460 }
5461
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5462 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5463 char *buf)
5464 {
5465 struct workqueue_struct *wq = dev_to_wq(dev);
5466
5467 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5468 }
5469 static DEVICE_ATTR_RO(per_cpu);
5470
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5471 static ssize_t max_active_show(struct device *dev,
5472 struct device_attribute *attr, char *buf)
5473 {
5474 struct workqueue_struct *wq = dev_to_wq(dev);
5475
5476 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5477 }
5478
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5479 static ssize_t max_active_store(struct device *dev,
5480 struct device_attribute *attr, const char *buf,
5481 size_t count)
5482 {
5483 struct workqueue_struct *wq = dev_to_wq(dev);
5484 int val;
5485
5486 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5487 return -EINVAL;
5488
5489 workqueue_set_max_active(wq, val);
5490 return count;
5491 }
5492 static DEVICE_ATTR_RW(max_active);
5493
5494 static struct attribute *wq_sysfs_attrs[] = {
5495 &dev_attr_per_cpu.attr,
5496 &dev_attr_max_active.attr,
5497 NULL,
5498 };
5499 ATTRIBUTE_GROUPS(wq_sysfs);
5500
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5501 static ssize_t wq_pool_ids_show(struct device *dev,
5502 struct device_attribute *attr, char *buf)
5503 {
5504 struct workqueue_struct *wq = dev_to_wq(dev);
5505 const char *delim = "";
5506 int node, written = 0;
5507
5508 cpus_read_lock();
5509 rcu_read_lock();
5510 for_each_node(node) {
5511 written += scnprintf(buf + written, PAGE_SIZE - written,
5512 "%s%d:%d", delim, node,
5513 unbound_pwq_by_node(wq, node)->pool->id);
5514 delim = " ";
5515 }
5516 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5517 rcu_read_unlock();
5518 cpus_read_unlock();
5519
5520 return written;
5521 }
5522
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5523 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5524 char *buf)
5525 {
5526 struct workqueue_struct *wq = dev_to_wq(dev);
5527 int written;
5528
5529 mutex_lock(&wq->mutex);
5530 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5531 mutex_unlock(&wq->mutex);
5532
5533 return written;
5534 }
5535
5536 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5537 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5538 {
5539 struct workqueue_attrs *attrs;
5540
5541 lockdep_assert_held(&wq_pool_mutex);
5542
5543 attrs = alloc_workqueue_attrs();
5544 if (!attrs)
5545 return NULL;
5546
5547 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5548 return attrs;
5549 }
5550
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5551 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5552 const char *buf, size_t count)
5553 {
5554 struct workqueue_struct *wq = dev_to_wq(dev);
5555 struct workqueue_attrs *attrs;
5556 int ret = -ENOMEM;
5557
5558 apply_wqattrs_lock();
5559
5560 attrs = wq_sysfs_prep_attrs(wq);
5561 if (!attrs)
5562 goto out_unlock;
5563
5564 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5565 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5566 ret = apply_workqueue_attrs_locked(wq, attrs);
5567 else
5568 ret = -EINVAL;
5569
5570 out_unlock:
5571 apply_wqattrs_unlock();
5572 free_workqueue_attrs(attrs);
5573 return ret ?: count;
5574 }
5575
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5576 static ssize_t wq_cpumask_show(struct device *dev,
5577 struct device_attribute *attr, char *buf)
5578 {
5579 struct workqueue_struct *wq = dev_to_wq(dev);
5580 int written;
5581
5582 mutex_lock(&wq->mutex);
5583 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5584 cpumask_pr_args(wq->unbound_attrs->cpumask));
5585 mutex_unlock(&wq->mutex);
5586 return written;
5587 }
5588
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5589 static ssize_t wq_cpumask_store(struct device *dev,
5590 struct device_attribute *attr,
5591 const char *buf, size_t count)
5592 {
5593 struct workqueue_struct *wq = dev_to_wq(dev);
5594 struct workqueue_attrs *attrs;
5595 int ret = -ENOMEM;
5596
5597 apply_wqattrs_lock();
5598
5599 attrs = wq_sysfs_prep_attrs(wq);
5600 if (!attrs)
5601 goto out_unlock;
5602
5603 ret = cpumask_parse(buf, attrs->cpumask);
5604 if (!ret)
5605 ret = apply_workqueue_attrs_locked(wq, attrs);
5606
5607 out_unlock:
5608 apply_wqattrs_unlock();
5609 free_workqueue_attrs(attrs);
5610 return ret ?: count;
5611 }
5612
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5613 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5614 char *buf)
5615 {
5616 struct workqueue_struct *wq = dev_to_wq(dev);
5617 int written;
5618
5619 mutex_lock(&wq->mutex);
5620 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5621 !wq->unbound_attrs->no_numa);
5622 mutex_unlock(&wq->mutex);
5623
5624 return written;
5625 }
5626
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5627 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5628 const char *buf, size_t count)
5629 {
5630 struct workqueue_struct *wq = dev_to_wq(dev);
5631 struct workqueue_attrs *attrs;
5632 int v, ret = -ENOMEM;
5633
5634 apply_wqattrs_lock();
5635
5636 attrs = wq_sysfs_prep_attrs(wq);
5637 if (!attrs)
5638 goto out_unlock;
5639
5640 ret = -EINVAL;
5641 if (sscanf(buf, "%d", &v) == 1) {
5642 attrs->no_numa = !v;
5643 ret = apply_workqueue_attrs_locked(wq, attrs);
5644 }
5645
5646 out_unlock:
5647 apply_wqattrs_unlock();
5648 free_workqueue_attrs(attrs);
5649 return ret ?: count;
5650 }
5651
5652 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5653 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5654 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5655 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5656 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5657 __ATTR_NULL,
5658 };
5659
5660 static struct bus_type wq_subsys = {
5661 .name = "workqueue",
5662 .dev_groups = wq_sysfs_groups,
5663 };
5664
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5665 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5666 struct device_attribute *attr, char *buf)
5667 {
5668 int written;
5669
5670 mutex_lock(&wq_pool_mutex);
5671 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5672 cpumask_pr_args(wq_unbound_cpumask));
5673 mutex_unlock(&wq_pool_mutex);
5674
5675 return written;
5676 }
5677
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5678 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5679 struct device_attribute *attr, const char *buf, size_t count)
5680 {
5681 cpumask_var_t cpumask;
5682 int ret;
5683
5684 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5685 return -ENOMEM;
5686
5687 ret = cpumask_parse(buf, cpumask);
5688 if (!ret)
5689 ret = workqueue_set_unbound_cpumask(cpumask);
5690
5691 free_cpumask_var(cpumask);
5692 return ret ? ret : count;
5693 }
5694
5695 static struct device_attribute wq_sysfs_cpumask_attr =
5696 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5697 wq_unbound_cpumask_store);
5698
wq_sysfs_init(void)5699 static int __init wq_sysfs_init(void)
5700 {
5701 int err;
5702
5703 err = subsys_virtual_register(&wq_subsys, NULL);
5704 if (err)
5705 return err;
5706
5707 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5708 }
5709 core_initcall(wq_sysfs_init);
5710
wq_device_release(struct device * dev)5711 static void wq_device_release(struct device *dev)
5712 {
5713 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5714
5715 kfree(wq_dev);
5716 }
5717
5718 /**
5719 * workqueue_sysfs_register - make a workqueue visible in sysfs
5720 * @wq: the workqueue to register
5721 *
5722 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5723 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5724 * which is the preferred method.
5725 *
5726 * Workqueue user should use this function directly iff it wants to apply
5727 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5728 * apply_workqueue_attrs() may race against userland updating the
5729 * attributes.
5730 *
5731 * Return: 0 on success, -errno on failure.
5732 */
workqueue_sysfs_register(struct workqueue_struct * wq)5733 int workqueue_sysfs_register(struct workqueue_struct *wq)
5734 {
5735 struct wq_device *wq_dev;
5736 int ret;
5737
5738 /*
5739 * Adjusting max_active or creating new pwqs by applying
5740 * attributes breaks ordering guarantee. Disallow exposing ordered
5741 * workqueues.
5742 */
5743 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5744 return -EINVAL;
5745
5746 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5747 if (!wq_dev)
5748 return -ENOMEM;
5749
5750 wq_dev->wq = wq;
5751 wq_dev->dev.bus = &wq_subsys;
5752 wq_dev->dev.release = wq_device_release;
5753 dev_set_name(&wq_dev->dev, "%s", wq->name);
5754
5755 /*
5756 * unbound_attrs are created separately. Suppress uevent until
5757 * everything is ready.
5758 */
5759 dev_set_uevent_suppress(&wq_dev->dev, true);
5760
5761 ret = device_register(&wq_dev->dev);
5762 if (ret) {
5763 put_device(&wq_dev->dev);
5764 wq->wq_dev = NULL;
5765 return ret;
5766 }
5767
5768 if (wq->flags & WQ_UNBOUND) {
5769 struct device_attribute *attr;
5770
5771 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5772 ret = device_create_file(&wq_dev->dev, attr);
5773 if (ret) {
5774 device_unregister(&wq_dev->dev);
5775 wq->wq_dev = NULL;
5776 return ret;
5777 }
5778 }
5779 }
5780
5781 dev_set_uevent_suppress(&wq_dev->dev, false);
5782 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5783 return 0;
5784 }
5785
5786 /**
5787 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5788 * @wq: the workqueue to unregister
5789 *
5790 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5791 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5792 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5793 {
5794 struct wq_device *wq_dev = wq->wq_dev;
5795
5796 if (!wq->wq_dev)
5797 return;
5798
5799 wq->wq_dev = NULL;
5800 device_unregister(&wq_dev->dev);
5801 }
5802 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5803 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5804 #endif /* CONFIG_SYSFS */
5805
5806 /*
5807 * Workqueue watchdog.
5808 *
5809 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5810 * flush dependency, a concurrency managed work item which stays RUNNING
5811 * indefinitely. Workqueue stalls can be very difficult to debug as the
5812 * usual warning mechanisms don't trigger and internal workqueue state is
5813 * largely opaque.
5814 *
5815 * Workqueue watchdog monitors all worker pools periodically and dumps
5816 * state if some pools failed to make forward progress for a while where
5817 * forward progress is defined as the first item on ->worklist changing.
5818 *
5819 * This mechanism is controlled through the kernel parameter
5820 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5821 * corresponding sysfs parameter file.
5822 */
5823 #ifdef CONFIG_WQ_WATCHDOG
5824
5825 static unsigned long wq_watchdog_thresh = 30;
5826 static struct timer_list wq_watchdog_timer;
5827
5828 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5829 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5830
wq_watchdog_reset_touched(void)5831 static void wq_watchdog_reset_touched(void)
5832 {
5833 int cpu;
5834
5835 wq_watchdog_touched = jiffies;
5836 for_each_possible_cpu(cpu)
5837 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5838 }
5839
wq_watchdog_timer_fn(struct timer_list * unused)5840 static void wq_watchdog_timer_fn(struct timer_list *unused)
5841 {
5842 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5843 bool lockup_detected = false;
5844 unsigned long now = jiffies;
5845 struct worker_pool *pool;
5846 int pi;
5847
5848 if (!thresh)
5849 return;
5850
5851 rcu_read_lock();
5852
5853 for_each_pool(pool, pi) {
5854 unsigned long pool_ts, touched, ts;
5855
5856 if (list_empty(&pool->worklist))
5857 continue;
5858
5859 /*
5860 * If a virtual machine is stopped by the host it can look to
5861 * the watchdog like a stall.
5862 */
5863 kvm_check_and_clear_guest_paused();
5864
5865 /* get the latest of pool and touched timestamps */
5866 if (pool->cpu >= 0)
5867 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5868 else
5869 touched = READ_ONCE(wq_watchdog_touched);
5870 pool_ts = READ_ONCE(pool->watchdog_ts);
5871
5872 if (time_after(pool_ts, touched))
5873 ts = pool_ts;
5874 else
5875 ts = touched;
5876
5877 /* did we stall? */
5878 if (time_after(now, ts + thresh)) {
5879 lockup_detected = true;
5880 pr_emerg("BUG: workqueue lockup - pool");
5881 pr_cont_pool_info(pool);
5882 pr_cont(" stuck for %us!\n",
5883 jiffies_to_msecs(now - pool_ts) / 1000);
5884 trace_android_vh_wq_lockup_pool(pool->cpu, pool_ts);
5885 }
5886 }
5887
5888 rcu_read_unlock();
5889
5890 if (lockup_detected)
5891 show_all_workqueues();
5892
5893 wq_watchdog_reset_touched();
5894 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5895 }
5896
wq_watchdog_touch(int cpu)5897 notrace void wq_watchdog_touch(int cpu)
5898 {
5899 if (cpu >= 0)
5900 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5901
5902 wq_watchdog_touched = jiffies;
5903 }
5904
wq_watchdog_set_thresh(unsigned long thresh)5905 static void wq_watchdog_set_thresh(unsigned long thresh)
5906 {
5907 wq_watchdog_thresh = 0;
5908 del_timer_sync(&wq_watchdog_timer);
5909
5910 if (thresh) {
5911 wq_watchdog_thresh = thresh;
5912 wq_watchdog_reset_touched();
5913 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5914 }
5915 }
5916
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5917 static int wq_watchdog_param_set_thresh(const char *val,
5918 const struct kernel_param *kp)
5919 {
5920 unsigned long thresh;
5921 int ret;
5922
5923 ret = kstrtoul(val, 0, &thresh);
5924 if (ret)
5925 return ret;
5926
5927 if (system_wq)
5928 wq_watchdog_set_thresh(thresh);
5929 else
5930 wq_watchdog_thresh = thresh;
5931
5932 return 0;
5933 }
5934
5935 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5936 .set = wq_watchdog_param_set_thresh,
5937 .get = param_get_ulong,
5938 };
5939
5940 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5941 0644);
5942
wq_watchdog_init(void)5943 static void wq_watchdog_init(void)
5944 {
5945 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5946 wq_watchdog_set_thresh(wq_watchdog_thresh);
5947 }
5948
5949 #else /* CONFIG_WQ_WATCHDOG */
5950
wq_watchdog_init(void)5951 static inline void wq_watchdog_init(void) { }
5952
5953 #endif /* CONFIG_WQ_WATCHDOG */
5954
wq_numa_init(void)5955 static void __init wq_numa_init(void)
5956 {
5957 cpumask_var_t *tbl;
5958 int node, cpu;
5959
5960 if (num_possible_nodes() <= 1)
5961 return;
5962
5963 if (wq_disable_numa) {
5964 pr_info("workqueue: NUMA affinity support disabled\n");
5965 return;
5966 }
5967
5968 for_each_possible_cpu(cpu) {
5969 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5970 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5971 return;
5972 }
5973 }
5974
5975 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5976 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5977
5978 /*
5979 * We want masks of possible CPUs of each node which isn't readily
5980 * available. Build one from cpu_to_node() which should have been
5981 * fully initialized by now.
5982 */
5983 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5984 BUG_ON(!tbl);
5985
5986 for_each_node(node)
5987 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5988 node_online(node) ? node : NUMA_NO_NODE));
5989
5990 for_each_possible_cpu(cpu) {
5991 node = cpu_to_node(cpu);
5992 cpumask_set_cpu(cpu, tbl[node]);
5993 }
5994
5995 wq_numa_possible_cpumask = tbl;
5996 wq_numa_enabled = true;
5997 }
5998
5999 /**
6000 * workqueue_init_early - early init for workqueue subsystem
6001 *
6002 * This is the first half of two-staged workqueue subsystem initialization
6003 * and invoked as soon as the bare basics - memory allocation, cpumasks and
6004 * idr are up. It sets up all the data structures and system workqueues
6005 * and allows early boot code to create workqueues and queue/cancel work
6006 * items. Actual work item execution starts only after kthreads can be
6007 * created and scheduled right before early initcalls.
6008 */
workqueue_init_early(void)6009 void __init workqueue_init_early(void)
6010 {
6011 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6012 int i, cpu;
6013
6014 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6015
6016 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6017 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6018 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
6019
6020 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6021
6022 /* initialize CPU pools */
6023 for_each_possible_cpu(cpu) {
6024 struct worker_pool *pool;
6025
6026 i = 0;
6027 for_each_cpu_worker_pool(pool, cpu) {
6028 BUG_ON(init_worker_pool(pool));
6029 pool->cpu = cpu;
6030 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6031 pool->attrs->nice = std_nice[i++];
6032 pool->node = cpu_to_node(cpu);
6033
6034 /* alloc pool ID */
6035 mutex_lock(&wq_pool_mutex);
6036 BUG_ON(worker_pool_assign_id(pool));
6037 mutex_unlock(&wq_pool_mutex);
6038 }
6039 }
6040
6041 /* create default unbound and ordered wq attrs */
6042 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6043 struct workqueue_attrs *attrs;
6044
6045 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6046 attrs->nice = std_nice[i];
6047 unbound_std_wq_attrs[i] = attrs;
6048
6049 /*
6050 * An ordered wq should have only one pwq as ordering is
6051 * guaranteed by max_active which is enforced by pwqs.
6052 * Turn off NUMA so that dfl_pwq is used for all nodes.
6053 */
6054 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6055 attrs->nice = std_nice[i];
6056 attrs->no_numa = true;
6057 ordered_wq_attrs[i] = attrs;
6058 }
6059
6060 system_wq = alloc_workqueue("events", 0, 0);
6061 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6062 system_long_wq = alloc_workqueue("events_long", 0, 0);
6063 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6064 WQ_UNBOUND_MAX_ACTIVE);
6065 system_freezable_wq = alloc_workqueue("events_freezable",
6066 WQ_FREEZABLE, 0);
6067 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6068 WQ_POWER_EFFICIENT, 0);
6069 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6070 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6071 0);
6072 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6073 !system_unbound_wq || !system_freezable_wq ||
6074 !system_power_efficient_wq ||
6075 !system_freezable_power_efficient_wq);
6076 }
6077
6078 /**
6079 * workqueue_init - bring workqueue subsystem fully online
6080 *
6081 * This is the latter half of two-staged workqueue subsystem initialization
6082 * and invoked as soon as kthreads can be created and scheduled.
6083 * Workqueues have been created and work items queued on them, but there
6084 * are no kworkers executing the work items yet. Populate the worker pools
6085 * with the initial workers and enable future kworker creations.
6086 */
workqueue_init(void)6087 void __init workqueue_init(void)
6088 {
6089 struct workqueue_struct *wq;
6090 struct worker_pool *pool;
6091 int cpu, bkt;
6092
6093 /*
6094 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6095 * CPU to node mapping may not be available that early on some
6096 * archs such as power and arm64. As per-cpu pools created
6097 * previously could be missing node hint and unbound pools NUMA
6098 * affinity, fix them up.
6099 *
6100 * Also, while iterating workqueues, create rescuers if requested.
6101 */
6102 wq_numa_init();
6103
6104 mutex_lock(&wq_pool_mutex);
6105
6106 for_each_possible_cpu(cpu) {
6107 for_each_cpu_worker_pool(pool, cpu) {
6108 pool->node = cpu_to_node(cpu);
6109 }
6110 }
6111
6112 list_for_each_entry(wq, &workqueues, list) {
6113 wq_update_unbound_numa(wq, smp_processor_id(), true);
6114 WARN(init_rescuer(wq),
6115 "workqueue: failed to create early rescuer for %s",
6116 wq->name);
6117 }
6118
6119 mutex_unlock(&wq_pool_mutex);
6120
6121 /* create the initial workers */
6122 for_each_online_cpu(cpu) {
6123 for_each_cpu_worker_pool(pool, cpu) {
6124 pool->flags &= ~POOL_DISASSOCIATED;
6125 BUG_ON(!create_worker(pool));
6126 }
6127 }
6128
6129 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6130 BUG_ON(!create_worker(pool));
6131
6132 wq_online = true;
6133 wq_watchdog_init();
6134 }
6135
6136 /*
6137 * Despite the naming, this is a no-op function which is here only for avoiding
6138 * link error. Since compile-time warning may fail to catch, we will need to
6139 * emit run-time warning from __flush_workqueue().
6140 */
__warn_flushing_systemwide_wq(void)6141 void __warn_flushing_systemwide_wq(void) { }
6142 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6143