1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2001 Momchil Velikov
4 * Portions Copyright (C) 2001 Christoph Hellwig
5 * Copyright (C) 2005 SGI, Christoph Lameter
6 * Copyright (C) 2006 Nick Piggin
7 * Copyright (C) 2012 Konstantin Khlebnikov
8 * Copyright (C) 2016 Intel, Matthew Wilcox
9 * Copyright (C) 2016 Intel, Ross Zwisler
10 */
11
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/cpu.h>
16 #include <linux/errno.h>
17 #include <linux/export.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/kmemleak.h>
22 #include <linux/percpu.h>
23 #include <linux/preempt.h> /* in_interrupt() */
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/xarray.h>
29
30 /*
31 * Radix tree node cache.
32 */
33 struct kmem_cache *radix_tree_node_cachep;
34
35 /*
36 * The radix tree is variable-height, so an insert operation not only has
37 * to build the branch to its corresponding item, it also has to build the
38 * branch to existing items if the size has to be increased (by
39 * radix_tree_extend).
40 *
41 * The worst case is a zero height tree with just a single item at index 0,
42 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
43 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
44 * Hence:
45 */
46 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
47
48 /*
49 * The IDR does not have to be as high as the radix tree since it uses
50 * signed integers, not unsigned longs.
51 */
52 #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
53 #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
54 RADIX_TREE_MAP_SHIFT))
55 #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
56
57 /*
58 * Per-cpu pool of preloaded nodes
59 */
60 DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = {
61 .lock = INIT_LOCAL_LOCK(lock),
62 };
63 EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads);
64
entry_to_node(void * ptr)65 static inline struct radix_tree_node *entry_to_node(void *ptr)
66 {
67 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
68 }
69
node_to_entry(void * ptr)70 static inline void *node_to_entry(void *ptr)
71 {
72 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
73 }
74
75 #define RADIX_TREE_RETRY XA_RETRY_ENTRY
76
77 static inline unsigned long
get_slot_offset(const struct radix_tree_node * parent,void __rcu ** slot)78 get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
79 {
80 return parent ? slot - parent->slots : 0;
81 }
82
radix_tree_descend(const struct radix_tree_node * parent,struct radix_tree_node ** nodep,unsigned long index)83 static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
84 struct radix_tree_node **nodep, unsigned long index)
85 {
86 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
87 void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
88
89 *nodep = (void *)entry;
90 return offset;
91 }
92
root_gfp_mask(const struct radix_tree_root * root)93 static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
94 {
95 return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
96 }
97
tag_set(struct radix_tree_node * node,unsigned int tag,int offset)98 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
99 int offset)
100 {
101 __set_bit(offset, node->tags[tag]);
102 }
103
tag_clear(struct radix_tree_node * node,unsigned int tag,int offset)104 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
105 int offset)
106 {
107 __clear_bit(offset, node->tags[tag]);
108 }
109
tag_get(const struct radix_tree_node * node,unsigned int tag,int offset)110 static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
111 int offset)
112 {
113 return test_bit(offset, node->tags[tag]);
114 }
115
root_tag_set(struct radix_tree_root * root,unsigned tag)116 static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
117 {
118 root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
119 }
120
root_tag_clear(struct radix_tree_root * root,unsigned tag)121 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
122 {
123 root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
124 }
125
root_tag_clear_all(struct radix_tree_root * root)126 static inline void root_tag_clear_all(struct radix_tree_root *root)
127 {
128 root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
129 }
130
root_tag_get(const struct radix_tree_root * root,unsigned tag)131 static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
132 {
133 return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
134 }
135
root_tags_get(const struct radix_tree_root * root)136 static inline unsigned root_tags_get(const struct radix_tree_root *root)
137 {
138 return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
139 }
140
is_idr(const struct radix_tree_root * root)141 static inline bool is_idr(const struct radix_tree_root *root)
142 {
143 return !!(root->xa_flags & ROOT_IS_IDR);
144 }
145
146 /*
147 * Returns 1 if any slot in the node has this tag set.
148 * Otherwise returns 0.
149 */
any_tag_set(const struct radix_tree_node * node,unsigned int tag)150 static inline int any_tag_set(const struct radix_tree_node *node,
151 unsigned int tag)
152 {
153 unsigned idx;
154 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
155 if (node->tags[tag][idx])
156 return 1;
157 }
158 return 0;
159 }
160
all_tag_set(struct radix_tree_node * node,unsigned int tag)161 static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
162 {
163 bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
164 }
165
166 /**
167 * radix_tree_find_next_bit - find the next set bit in a memory region
168 *
169 * @node: where to begin the search
170 * @tag: the tag index
171 * @offset: the bitnumber to start searching at
172 *
173 * Unrollable variant of find_next_bit() for constant size arrays.
174 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
175 * Returns next bit offset, or size if nothing found.
176 */
177 static __always_inline unsigned long
radix_tree_find_next_bit(struct radix_tree_node * node,unsigned int tag,unsigned long offset)178 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
179 unsigned long offset)
180 {
181 const unsigned long *addr = node->tags[tag];
182
183 if (offset < RADIX_TREE_MAP_SIZE) {
184 unsigned long tmp;
185
186 addr += offset / BITS_PER_LONG;
187 tmp = *addr >> (offset % BITS_PER_LONG);
188 if (tmp)
189 return __ffs(tmp) + offset;
190 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
191 while (offset < RADIX_TREE_MAP_SIZE) {
192 tmp = *++addr;
193 if (tmp)
194 return __ffs(tmp) + offset;
195 offset += BITS_PER_LONG;
196 }
197 }
198 return RADIX_TREE_MAP_SIZE;
199 }
200
iter_offset(const struct radix_tree_iter * iter)201 static unsigned int iter_offset(const struct radix_tree_iter *iter)
202 {
203 return iter->index & RADIX_TREE_MAP_MASK;
204 }
205
206 /*
207 * The maximum index which can be stored in a radix tree
208 */
shift_maxindex(unsigned int shift)209 static inline unsigned long shift_maxindex(unsigned int shift)
210 {
211 return (RADIX_TREE_MAP_SIZE << shift) - 1;
212 }
213
node_maxindex(const struct radix_tree_node * node)214 static inline unsigned long node_maxindex(const struct radix_tree_node *node)
215 {
216 return shift_maxindex(node->shift);
217 }
218
next_index(unsigned long index,const struct radix_tree_node * node,unsigned long offset)219 static unsigned long next_index(unsigned long index,
220 const struct radix_tree_node *node,
221 unsigned long offset)
222 {
223 return (index & ~node_maxindex(node)) + (offset << node->shift);
224 }
225
226 /*
227 * This assumes that the caller has performed appropriate preallocation, and
228 * that the caller has pinned this thread of control to the current CPU.
229 */
230 static struct radix_tree_node *
radix_tree_node_alloc(gfp_t gfp_mask,struct radix_tree_node * parent,struct radix_tree_root * root,unsigned int shift,unsigned int offset,unsigned int count,unsigned int nr_values)231 radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
232 struct radix_tree_root *root,
233 unsigned int shift, unsigned int offset,
234 unsigned int count, unsigned int nr_values)
235 {
236 struct radix_tree_node *ret = NULL;
237
238 /*
239 * Preload code isn't irq safe and it doesn't make sense to use
240 * preloading during an interrupt anyway as all the allocations have
241 * to be atomic. So just do normal allocation when in interrupt.
242 */
243 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
244 struct radix_tree_preload *rtp;
245
246 /*
247 * Even if the caller has preloaded, try to allocate from the
248 * cache first for the new node to get accounted to the memory
249 * cgroup.
250 */
251 ret = kmem_cache_alloc(radix_tree_node_cachep,
252 gfp_mask | __GFP_NOWARN);
253 if (ret)
254 goto out;
255
256 /*
257 * Provided the caller has preloaded here, we will always
258 * succeed in getting a node here (and never reach
259 * kmem_cache_alloc)
260 */
261 rtp = this_cpu_ptr(&radix_tree_preloads);
262 if (rtp->nr) {
263 ret = rtp->nodes;
264 rtp->nodes = ret->parent;
265 rtp->nr--;
266 }
267 /*
268 * Update the allocation stack trace as this is more useful
269 * for debugging.
270 */
271 kmemleak_update_trace(ret);
272 goto out;
273 }
274 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
275 out:
276 BUG_ON(radix_tree_is_internal_node(ret));
277 if (ret) {
278 ret->shift = shift;
279 ret->offset = offset;
280 ret->count = count;
281 ret->nr_values = nr_values;
282 ret->parent = parent;
283 ret->array = root;
284 }
285 return ret;
286 }
287
radix_tree_node_rcu_free(struct rcu_head * head)288 void radix_tree_node_rcu_free(struct rcu_head *head)
289 {
290 struct radix_tree_node *node =
291 container_of(head, struct radix_tree_node, rcu_head);
292
293 /*
294 * Must only free zeroed nodes into the slab. We can be left with
295 * non-NULL entries by radix_tree_free_nodes, so clear the entries
296 * and tags here.
297 */
298 memset(node->slots, 0, sizeof(node->slots));
299 memset(node->tags, 0, sizeof(node->tags));
300 INIT_LIST_HEAD(&node->private_list);
301
302 kmem_cache_free(radix_tree_node_cachep, node);
303 }
304
305 static inline void
radix_tree_node_free(struct radix_tree_node * node)306 radix_tree_node_free(struct radix_tree_node *node)
307 {
308 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
309 }
310
311 /*
312 * Load up this CPU's radix_tree_node buffer with sufficient objects to
313 * ensure that the addition of a single element in the tree cannot fail. On
314 * success, return zero, with preemption disabled. On error, return -ENOMEM
315 * with preemption not disabled.
316 *
317 * To make use of this facility, the radix tree must be initialised without
318 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
319 */
__radix_tree_preload(gfp_t gfp_mask,unsigned nr)320 static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
321 {
322 struct radix_tree_preload *rtp;
323 struct radix_tree_node *node;
324 int ret = -ENOMEM;
325
326 /*
327 * Nodes preloaded by one cgroup can be used by another cgroup, so
328 * they should never be accounted to any particular memory cgroup.
329 */
330 gfp_mask &= ~__GFP_ACCOUNT;
331
332 local_lock(&radix_tree_preloads.lock);
333 rtp = this_cpu_ptr(&radix_tree_preloads);
334 while (rtp->nr < nr) {
335 local_unlock(&radix_tree_preloads.lock);
336 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
337 if (node == NULL)
338 goto out;
339 local_lock(&radix_tree_preloads.lock);
340 rtp = this_cpu_ptr(&radix_tree_preloads);
341 if (rtp->nr < nr) {
342 node->parent = rtp->nodes;
343 rtp->nodes = node;
344 rtp->nr++;
345 } else {
346 kmem_cache_free(radix_tree_node_cachep, node);
347 }
348 }
349 ret = 0;
350 out:
351 return ret;
352 }
353
354 /*
355 * Load up this CPU's radix_tree_node buffer with sufficient objects to
356 * ensure that the addition of a single element in the tree cannot fail. On
357 * success, return zero, with preemption disabled. On error, return -ENOMEM
358 * with preemption not disabled.
359 *
360 * To make use of this facility, the radix tree must be initialised without
361 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
362 */
radix_tree_preload(gfp_t gfp_mask)363 int radix_tree_preload(gfp_t gfp_mask)
364 {
365 /* Warn on non-sensical use... */
366 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
367 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
368 }
369 EXPORT_SYMBOL(radix_tree_preload);
370
371 /*
372 * The same as above function, except we don't guarantee preloading happens.
373 * We do it, if we decide it helps. On success, return zero with preemption
374 * disabled. On error, return -ENOMEM with preemption not disabled.
375 */
radix_tree_maybe_preload(gfp_t gfp_mask)376 int radix_tree_maybe_preload(gfp_t gfp_mask)
377 {
378 if (gfpflags_allow_blocking(gfp_mask))
379 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
380 /* Preloading doesn't help anything with this gfp mask, skip it */
381 local_lock(&radix_tree_preloads.lock);
382 return 0;
383 }
384 EXPORT_SYMBOL(radix_tree_maybe_preload);
385
radix_tree_load_root(const struct radix_tree_root * root,struct radix_tree_node ** nodep,unsigned long * maxindex)386 static unsigned radix_tree_load_root(const struct radix_tree_root *root,
387 struct radix_tree_node **nodep, unsigned long *maxindex)
388 {
389 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
390
391 *nodep = node;
392
393 if (likely(radix_tree_is_internal_node(node))) {
394 node = entry_to_node(node);
395 *maxindex = node_maxindex(node);
396 return node->shift + RADIX_TREE_MAP_SHIFT;
397 }
398
399 *maxindex = 0;
400 return 0;
401 }
402
403 /*
404 * Extend a radix tree so it can store key @index.
405 */
radix_tree_extend(struct radix_tree_root * root,gfp_t gfp,unsigned long index,unsigned int shift)406 static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
407 unsigned long index, unsigned int shift)
408 {
409 void *entry;
410 unsigned int maxshift;
411 int tag;
412
413 /* Figure out what the shift should be. */
414 maxshift = shift;
415 while (index > shift_maxindex(maxshift))
416 maxshift += RADIX_TREE_MAP_SHIFT;
417
418 entry = rcu_dereference_raw(root->xa_head);
419 if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
420 goto out;
421
422 do {
423 struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
424 root, shift, 0, 1, 0);
425 if (!node)
426 return -ENOMEM;
427
428 if (is_idr(root)) {
429 all_tag_set(node, IDR_FREE);
430 if (!root_tag_get(root, IDR_FREE)) {
431 tag_clear(node, IDR_FREE, 0);
432 root_tag_set(root, IDR_FREE);
433 }
434 } else {
435 /* Propagate the aggregated tag info to the new child */
436 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
437 if (root_tag_get(root, tag))
438 tag_set(node, tag, 0);
439 }
440 }
441
442 BUG_ON(shift > BITS_PER_LONG);
443 if (radix_tree_is_internal_node(entry)) {
444 entry_to_node(entry)->parent = node;
445 } else if (xa_is_value(entry)) {
446 /* Moving a value entry root->xa_head to a node */
447 node->nr_values = 1;
448 }
449 /*
450 * entry was already in the radix tree, so we do not need
451 * rcu_assign_pointer here
452 */
453 node->slots[0] = (void __rcu *)entry;
454 entry = node_to_entry(node);
455 rcu_assign_pointer(root->xa_head, entry);
456 shift += RADIX_TREE_MAP_SHIFT;
457 } while (shift <= maxshift);
458 out:
459 return maxshift + RADIX_TREE_MAP_SHIFT;
460 }
461
462 /**
463 * radix_tree_shrink - shrink radix tree to minimum height
464 * @root: radix tree root
465 */
radix_tree_shrink(struct radix_tree_root * root)466 static inline bool radix_tree_shrink(struct radix_tree_root *root)
467 {
468 bool shrunk = false;
469
470 for (;;) {
471 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
472 struct radix_tree_node *child;
473
474 if (!radix_tree_is_internal_node(node))
475 break;
476 node = entry_to_node(node);
477
478 /*
479 * The candidate node has more than one child, or its child
480 * is not at the leftmost slot, we cannot shrink.
481 */
482 if (node->count != 1)
483 break;
484 child = rcu_dereference_raw(node->slots[0]);
485 if (!child)
486 break;
487
488 /*
489 * For an IDR, we must not shrink entry 0 into the root in
490 * case somebody calls idr_replace() with a pointer that
491 * appears to be an internal entry
492 */
493 if (!node->shift && is_idr(root))
494 break;
495
496 if (radix_tree_is_internal_node(child))
497 entry_to_node(child)->parent = NULL;
498
499 /*
500 * We don't need rcu_assign_pointer(), since we are simply
501 * moving the node from one part of the tree to another: if it
502 * was safe to dereference the old pointer to it
503 * (node->slots[0]), it will be safe to dereference the new
504 * one (root->xa_head) as far as dependent read barriers go.
505 */
506 root->xa_head = (void __rcu *)child;
507 if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
508 root_tag_clear(root, IDR_FREE);
509
510 /*
511 * We have a dilemma here. The node's slot[0] must not be
512 * NULLed in case there are concurrent lookups expecting to
513 * find the item. However if this was a bottom-level node,
514 * then it may be subject to the slot pointer being visible
515 * to callers dereferencing it. If item corresponding to
516 * slot[0] is subsequently deleted, these callers would expect
517 * their slot to become empty sooner or later.
518 *
519 * For example, lockless pagecache will look up a slot, deref
520 * the page pointer, and if the page has 0 refcount it means it
521 * was concurrently deleted from pagecache so try the deref
522 * again. Fortunately there is already a requirement for logic
523 * to retry the entire slot lookup -- the indirect pointer
524 * problem (replacing direct root node with an indirect pointer
525 * also results in a stale slot). So tag the slot as indirect
526 * to force callers to retry.
527 */
528 node->count = 0;
529 if (!radix_tree_is_internal_node(child)) {
530 node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
531 }
532
533 WARN_ON_ONCE(!list_empty(&node->private_list));
534 radix_tree_node_free(node);
535 shrunk = true;
536 }
537
538 return shrunk;
539 }
540
delete_node(struct radix_tree_root * root,struct radix_tree_node * node)541 static bool delete_node(struct radix_tree_root *root,
542 struct radix_tree_node *node)
543 {
544 bool deleted = false;
545
546 do {
547 struct radix_tree_node *parent;
548
549 if (node->count) {
550 if (node_to_entry(node) ==
551 rcu_dereference_raw(root->xa_head))
552 deleted |= radix_tree_shrink(root);
553 return deleted;
554 }
555
556 parent = node->parent;
557 if (parent) {
558 parent->slots[node->offset] = NULL;
559 parent->count--;
560 } else {
561 /*
562 * Shouldn't the tags already have all been cleared
563 * by the caller?
564 */
565 if (!is_idr(root))
566 root_tag_clear_all(root);
567 root->xa_head = NULL;
568 }
569
570 WARN_ON_ONCE(!list_empty(&node->private_list));
571 radix_tree_node_free(node);
572 deleted = true;
573
574 node = parent;
575 } while (node);
576
577 return deleted;
578 }
579
580 /**
581 * __radix_tree_create - create a slot in a radix tree
582 * @root: radix tree root
583 * @index: index key
584 * @nodep: returns node
585 * @slotp: returns slot
586 *
587 * Create, if necessary, and return the node and slot for an item
588 * at position @index in the radix tree @root.
589 *
590 * Until there is more than one item in the tree, no nodes are
591 * allocated and @root->xa_head is used as a direct slot instead of
592 * pointing to a node, in which case *@nodep will be NULL.
593 *
594 * Returns -ENOMEM, or 0 for success.
595 */
__radix_tree_create(struct radix_tree_root * root,unsigned long index,struct radix_tree_node ** nodep,void __rcu *** slotp)596 static int __radix_tree_create(struct radix_tree_root *root,
597 unsigned long index, struct radix_tree_node **nodep,
598 void __rcu ***slotp)
599 {
600 struct radix_tree_node *node = NULL, *child;
601 void __rcu **slot = (void __rcu **)&root->xa_head;
602 unsigned long maxindex;
603 unsigned int shift, offset = 0;
604 unsigned long max = index;
605 gfp_t gfp = root_gfp_mask(root);
606
607 shift = radix_tree_load_root(root, &child, &maxindex);
608
609 /* Make sure the tree is high enough. */
610 if (max > maxindex) {
611 int error = radix_tree_extend(root, gfp, max, shift);
612 if (error < 0)
613 return error;
614 shift = error;
615 child = rcu_dereference_raw(root->xa_head);
616 }
617
618 while (shift > 0) {
619 shift -= RADIX_TREE_MAP_SHIFT;
620 if (child == NULL) {
621 /* Have to add a child node. */
622 child = radix_tree_node_alloc(gfp, node, root, shift,
623 offset, 0, 0);
624 if (!child)
625 return -ENOMEM;
626 rcu_assign_pointer(*slot, node_to_entry(child));
627 if (node)
628 node->count++;
629 } else if (!radix_tree_is_internal_node(child))
630 break;
631
632 /* Go a level down */
633 node = entry_to_node(child);
634 offset = radix_tree_descend(node, &child, index);
635 slot = &node->slots[offset];
636 }
637
638 if (nodep)
639 *nodep = node;
640 if (slotp)
641 *slotp = slot;
642 return 0;
643 }
644
645 /*
646 * Free any nodes below this node. The tree is presumed to not need
647 * shrinking, and any user data in the tree is presumed to not need a
648 * destructor called on it. If we need to add a destructor, we can
649 * add that functionality later. Note that we may not clear tags or
650 * slots from the tree as an RCU walker may still have a pointer into
651 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
652 * but we'll still have to clear those in rcu_free.
653 */
radix_tree_free_nodes(struct radix_tree_node * node)654 static void radix_tree_free_nodes(struct radix_tree_node *node)
655 {
656 unsigned offset = 0;
657 struct radix_tree_node *child = entry_to_node(node);
658
659 for (;;) {
660 void *entry = rcu_dereference_raw(child->slots[offset]);
661 if (xa_is_node(entry) && child->shift) {
662 child = entry_to_node(entry);
663 offset = 0;
664 continue;
665 }
666 offset++;
667 while (offset == RADIX_TREE_MAP_SIZE) {
668 struct radix_tree_node *old = child;
669 offset = child->offset + 1;
670 child = child->parent;
671 WARN_ON_ONCE(!list_empty(&old->private_list));
672 radix_tree_node_free(old);
673 if (old == entry_to_node(node))
674 return;
675 }
676 }
677 }
678
insert_entries(struct radix_tree_node * node,void __rcu ** slot,void * item)679 static inline int insert_entries(struct radix_tree_node *node,
680 void __rcu **slot, void *item)
681 {
682 if (*slot)
683 return -EEXIST;
684 rcu_assign_pointer(*slot, item);
685 if (node) {
686 node->count++;
687 if (xa_is_value(item))
688 node->nr_values++;
689 }
690 return 1;
691 }
692
693 /**
694 * radix_tree_insert - insert into a radix tree
695 * @root: radix tree root
696 * @index: index key
697 * @item: item to insert
698 *
699 * Insert an item into the radix tree at position @index.
700 */
radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)701 int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
702 void *item)
703 {
704 struct radix_tree_node *node;
705 void __rcu **slot;
706 int error;
707
708 BUG_ON(radix_tree_is_internal_node(item));
709
710 error = __radix_tree_create(root, index, &node, &slot);
711 if (error)
712 return error;
713
714 error = insert_entries(node, slot, item);
715 if (error < 0)
716 return error;
717
718 if (node) {
719 unsigned offset = get_slot_offset(node, slot);
720 BUG_ON(tag_get(node, 0, offset));
721 BUG_ON(tag_get(node, 1, offset));
722 BUG_ON(tag_get(node, 2, offset));
723 } else {
724 BUG_ON(root_tags_get(root));
725 }
726
727 return 0;
728 }
729 EXPORT_SYMBOL(radix_tree_insert);
730
731 /**
732 * __radix_tree_lookup - lookup an item in a radix tree
733 * @root: radix tree root
734 * @index: index key
735 * @nodep: returns node
736 * @slotp: returns slot
737 *
738 * Lookup and return the item at position @index in the radix
739 * tree @root.
740 *
741 * Until there is more than one item in the tree, no nodes are
742 * allocated and @root->xa_head is used as a direct slot instead of
743 * pointing to a node, in which case *@nodep will be NULL.
744 */
__radix_tree_lookup(const struct radix_tree_root * root,unsigned long index,struct radix_tree_node ** nodep,void __rcu *** slotp)745 void *__radix_tree_lookup(const struct radix_tree_root *root,
746 unsigned long index, struct radix_tree_node **nodep,
747 void __rcu ***slotp)
748 {
749 struct radix_tree_node *node, *parent;
750 unsigned long maxindex;
751 void __rcu **slot;
752
753 restart:
754 parent = NULL;
755 slot = (void __rcu **)&root->xa_head;
756 radix_tree_load_root(root, &node, &maxindex);
757 if (index > maxindex)
758 return NULL;
759
760 while (radix_tree_is_internal_node(node)) {
761 unsigned offset;
762
763 parent = entry_to_node(node);
764 offset = radix_tree_descend(parent, &node, index);
765 slot = parent->slots + offset;
766 if (node == RADIX_TREE_RETRY)
767 goto restart;
768 if (parent->shift == 0)
769 break;
770 }
771
772 if (nodep)
773 *nodep = parent;
774 if (slotp)
775 *slotp = slot;
776 return node;
777 }
778
779 /**
780 * radix_tree_lookup_slot - lookup a slot in a radix tree
781 * @root: radix tree root
782 * @index: index key
783 *
784 * Returns: the slot corresponding to the position @index in the
785 * radix tree @root. This is useful for update-if-exists operations.
786 *
787 * This function can be called under rcu_read_lock iff the slot is not
788 * modified by radix_tree_replace_slot, otherwise it must be called
789 * exclusive from other writers. Any dereference of the slot must be done
790 * using radix_tree_deref_slot.
791 */
radix_tree_lookup_slot(const struct radix_tree_root * root,unsigned long index)792 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
793 unsigned long index)
794 {
795 void __rcu **slot;
796
797 if (!__radix_tree_lookup(root, index, NULL, &slot))
798 return NULL;
799 return slot;
800 }
801 EXPORT_SYMBOL(radix_tree_lookup_slot);
802
803 /**
804 * radix_tree_lookup - perform lookup operation on a radix tree
805 * @root: radix tree root
806 * @index: index key
807 *
808 * Lookup the item at the position @index in the radix tree @root.
809 *
810 * This function can be called under rcu_read_lock, however the caller
811 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
812 * them safely). No RCU barriers are required to access or modify the
813 * returned item, however.
814 */
radix_tree_lookup(const struct radix_tree_root * root,unsigned long index)815 void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
816 {
817 return __radix_tree_lookup(root, index, NULL, NULL);
818 }
819 EXPORT_SYMBOL(radix_tree_lookup);
820
replace_slot(void __rcu ** slot,void * item,struct radix_tree_node * node,int count,int values)821 static void replace_slot(void __rcu **slot, void *item,
822 struct radix_tree_node *node, int count, int values)
823 {
824 if (node && (count || values)) {
825 node->count += count;
826 node->nr_values += values;
827 }
828
829 rcu_assign_pointer(*slot, item);
830 }
831
node_tag_get(const struct radix_tree_root * root,const struct radix_tree_node * node,unsigned int tag,unsigned int offset)832 static bool node_tag_get(const struct radix_tree_root *root,
833 const struct radix_tree_node *node,
834 unsigned int tag, unsigned int offset)
835 {
836 if (node)
837 return tag_get(node, tag, offset);
838 return root_tag_get(root, tag);
839 }
840
841 /*
842 * IDR users want to be able to store NULL in the tree, so if the slot isn't
843 * free, don't adjust the count, even if it's transitioning between NULL and
844 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
845 * have empty bits, but it only stores NULL in slots when they're being
846 * deleted.
847 */
calculate_count(struct radix_tree_root * root,struct radix_tree_node * node,void __rcu ** slot,void * item,void * old)848 static int calculate_count(struct radix_tree_root *root,
849 struct radix_tree_node *node, void __rcu **slot,
850 void *item, void *old)
851 {
852 if (is_idr(root)) {
853 unsigned offset = get_slot_offset(node, slot);
854 bool free = node_tag_get(root, node, IDR_FREE, offset);
855 if (!free)
856 return 0;
857 if (!old)
858 return 1;
859 }
860 return !!item - !!old;
861 }
862
863 /**
864 * __radix_tree_replace - replace item in a slot
865 * @root: radix tree root
866 * @node: pointer to tree node
867 * @slot: pointer to slot in @node
868 * @item: new item to store in the slot.
869 *
870 * For use with __radix_tree_lookup(). Caller must hold tree write locked
871 * across slot lookup and replacement.
872 */
__radix_tree_replace(struct radix_tree_root * root,struct radix_tree_node * node,void __rcu ** slot,void * item)873 void __radix_tree_replace(struct radix_tree_root *root,
874 struct radix_tree_node *node,
875 void __rcu **slot, void *item)
876 {
877 void *old = rcu_dereference_raw(*slot);
878 int values = !!xa_is_value(item) - !!xa_is_value(old);
879 int count = calculate_count(root, node, slot, item, old);
880
881 /*
882 * This function supports replacing value entries and
883 * deleting entries, but that needs accounting against the
884 * node unless the slot is root->xa_head.
885 */
886 WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
887 (count || values));
888 replace_slot(slot, item, node, count, values);
889
890 if (!node)
891 return;
892
893 delete_node(root, node);
894 }
895
896 /**
897 * radix_tree_replace_slot - replace item in a slot
898 * @root: radix tree root
899 * @slot: pointer to slot
900 * @item: new item to store in the slot.
901 *
902 * For use with radix_tree_lookup_slot() and
903 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
904 * across slot lookup and replacement.
905 *
906 * NOTE: This cannot be used to switch between non-entries (empty slots),
907 * regular entries, and value entries, as that requires accounting
908 * inside the radix tree node. When switching from one type of entry or
909 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
910 * radix_tree_iter_replace().
911 */
radix_tree_replace_slot(struct radix_tree_root * root,void __rcu ** slot,void * item)912 void radix_tree_replace_slot(struct radix_tree_root *root,
913 void __rcu **slot, void *item)
914 {
915 __radix_tree_replace(root, NULL, slot, item);
916 }
917 EXPORT_SYMBOL(radix_tree_replace_slot);
918
919 /**
920 * radix_tree_iter_replace - replace item in a slot
921 * @root: radix tree root
922 * @iter: iterator state
923 * @slot: pointer to slot
924 * @item: new item to store in the slot.
925 *
926 * For use with radix_tree_for_each_slot().
927 * Caller must hold tree write locked.
928 */
radix_tree_iter_replace(struct radix_tree_root * root,const struct radix_tree_iter * iter,void __rcu ** slot,void * item)929 void radix_tree_iter_replace(struct radix_tree_root *root,
930 const struct radix_tree_iter *iter,
931 void __rcu **slot, void *item)
932 {
933 __radix_tree_replace(root, iter->node, slot, item);
934 }
935
node_tag_set(struct radix_tree_root * root,struct radix_tree_node * node,unsigned int tag,unsigned int offset)936 static void node_tag_set(struct radix_tree_root *root,
937 struct radix_tree_node *node,
938 unsigned int tag, unsigned int offset)
939 {
940 while (node) {
941 if (tag_get(node, tag, offset))
942 return;
943 tag_set(node, tag, offset);
944 offset = node->offset;
945 node = node->parent;
946 }
947
948 if (!root_tag_get(root, tag))
949 root_tag_set(root, tag);
950 }
951
952 /**
953 * radix_tree_tag_set - set a tag on a radix tree node
954 * @root: radix tree root
955 * @index: index key
956 * @tag: tag index
957 *
958 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
959 * corresponding to @index in the radix tree. From
960 * the root all the way down to the leaf node.
961 *
962 * Returns the address of the tagged item. Setting a tag on a not-present
963 * item is a bug.
964 */
radix_tree_tag_set(struct radix_tree_root * root,unsigned long index,unsigned int tag)965 void *radix_tree_tag_set(struct radix_tree_root *root,
966 unsigned long index, unsigned int tag)
967 {
968 struct radix_tree_node *node, *parent;
969 unsigned long maxindex;
970
971 radix_tree_load_root(root, &node, &maxindex);
972 BUG_ON(index > maxindex);
973
974 while (radix_tree_is_internal_node(node)) {
975 unsigned offset;
976
977 parent = entry_to_node(node);
978 offset = radix_tree_descend(parent, &node, index);
979 BUG_ON(!node);
980
981 if (!tag_get(parent, tag, offset))
982 tag_set(parent, tag, offset);
983 }
984
985 /* set the root's tag bit */
986 if (!root_tag_get(root, tag))
987 root_tag_set(root, tag);
988
989 return node;
990 }
991 EXPORT_SYMBOL(radix_tree_tag_set);
992
node_tag_clear(struct radix_tree_root * root,struct radix_tree_node * node,unsigned int tag,unsigned int offset)993 static void node_tag_clear(struct radix_tree_root *root,
994 struct radix_tree_node *node,
995 unsigned int tag, unsigned int offset)
996 {
997 while (node) {
998 if (!tag_get(node, tag, offset))
999 return;
1000 tag_clear(node, tag, offset);
1001 if (any_tag_set(node, tag))
1002 return;
1003
1004 offset = node->offset;
1005 node = node->parent;
1006 }
1007
1008 /* clear the root's tag bit */
1009 if (root_tag_get(root, tag))
1010 root_tag_clear(root, tag);
1011 }
1012
1013 /**
1014 * radix_tree_tag_clear - clear a tag on a radix tree node
1015 * @root: radix tree root
1016 * @index: index key
1017 * @tag: tag index
1018 *
1019 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1020 * corresponding to @index in the radix tree. If this causes
1021 * the leaf node to have no tags set then clear the tag in the
1022 * next-to-leaf node, etc.
1023 *
1024 * Returns the address of the tagged item on success, else NULL. ie:
1025 * has the same return value and semantics as radix_tree_lookup().
1026 */
radix_tree_tag_clear(struct radix_tree_root * root,unsigned long index,unsigned int tag)1027 void *radix_tree_tag_clear(struct radix_tree_root *root,
1028 unsigned long index, unsigned int tag)
1029 {
1030 struct radix_tree_node *node, *parent;
1031 unsigned long maxindex;
1032 int offset;
1033
1034 radix_tree_load_root(root, &node, &maxindex);
1035 if (index > maxindex)
1036 return NULL;
1037
1038 parent = NULL;
1039
1040 while (radix_tree_is_internal_node(node)) {
1041 parent = entry_to_node(node);
1042 offset = radix_tree_descend(parent, &node, index);
1043 }
1044
1045 if (node)
1046 node_tag_clear(root, parent, tag, offset);
1047
1048 return node;
1049 }
1050 EXPORT_SYMBOL(radix_tree_tag_clear);
1051
1052 /**
1053 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1054 * @root: radix tree root
1055 * @iter: iterator state
1056 * @tag: tag to clear
1057 */
radix_tree_iter_tag_clear(struct radix_tree_root * root,const struct radix_tree_iter * iter,unsigned int tag)1058 void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1059 const struct radix_tree_iter *iter, unsigned int tag)
1060 {
1061 node_tag_clear(root, iter->node, tag, iter_offset(iter));
1062 }
1063
1064 /**
1065 * radix_tree_tag_get - get a tag on a radix tree node
1066 * @root: radix tree root
1067 * @index: index key
1068 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1069 *
1070 * Return values:
1071 *
1072 * 0: tag not present or not set
1073 * 1: tag set
1074 *
1075 * Note that the return value of this function may not be relied on, even if
1076 * the RCU lock is held, unless tag modification and node deletion are excluded
1077 * from concurrency.
1078 */
radix_tree_tag_get(const struct radix_tree_root * root,unsigned long index,unsigned int tag)1079 int radix_tree_tag_get(const struct radix_tree_root *root,
1080 unsigned long index, unsigned int tag)
1081 {
1082 struct radix_tree_node *node, *parent;
1083 unsigned long maxindex;
1084
1085 if (!root_tag_get(root, tag))
1086 return 0;
1087
1088 radix_tree_load_root(root, &node, &maxindex);
1089 if (index > maxindex)
1090 return 0;
1091
1092 while (radix_tree_is_internal_node(node)) {
1093 unsigned offset;
1094
1095 parent = entry_to_node(node);
1096 offset = radix_tree_descend(parent, &node, index);
1097
1098 if (!tag_get(parent, tag, offset))
1099 return 0;
1100 if (node == RADIX_TREE_RETRY)
1101 break;
1102 }
1103
1104 return 1;
1105 }
1106 EXPORT_SYMBOL(radix_tree_tag_get);
1107
1108 /* Construct iter->tags bit-mask from node->tags[tag] array */
set_iter_tags(struct radix_tree_iter * iter,struct radix_tree_node * node,unsigned offset,unsigned tag)1109 static void set_iter_tags(struct radix_tree_iter *iter,
1110 struct radix_tree_node *node, unsigned offset,
1111 unsigned tag)
1112 {
1113 unsigned tag_long = offset / BITS_PER_LONG;
1114 unsigned tag_bit = offset % BITS_PER_LONG;
1115
1116 if (!node) {
1117 iter->tags = 1;
1118 return;
1119 }
1120
1121 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1122
1123 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1124 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1125 /* Pick tags from next element */
1126 if (tag_bit)
1127 iter->tags |= node->tags[tag][tag_long + 1] <<
1128 (BITS_PER_LONG - tag_bit);
1129 /* Clip chunk size, here only BITS_PER_LONG tags */
1130 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1131 }
1132 }
1133
radix_tree_iter_resume(void __rcu ** slot,struct radix_tree_iter * iter)1134 void __rcu **radix_tree_iter_resume(void __rcu **slot,
1135 struct radix_tree_iter *iter)
1136 {
1137 iter->index = __radix_tree_iter_add(iter, 1);
1138 iter->next_index = iter->index;
1139 iter->tags = 0;
1140 return NULL;
1141 }
1142 EXPORT_SYMBOL(radix_tree_iter_resume);
1143
1144 /**
1145 * radix_tree_next_chunk - find next chunk of slots for iteration
1146 *
1147 * @root: radix tree root
1148 * @iter: iterator state
1149 * @flags: RADIX_TREE_ITER_* flags and tag index
1150 * Returns: pointer to chunk first slot, or NULL if iteration is over
1151 */
radix_tree_next_chunk(const struct radix_tree_root * root,struct radix_tree_iter * iter,unsigned flags)1152 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1153 struct radix_tree_iter *iter, unsigned flags)
1154 {
1155 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1156 struct radix_tree_node *node, *child;
1157 unsigned long index, offset, maxindex;
1158
1159 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1160 return NULL;
1161
1162 /*
1163 * Catch next_index overflow after ~0UL. iter->index never overflows
1164 * during iterating; it can be zero only at the beginning.
1165 * And we cannot overflow iter->next_index in a single step,
1166 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1167 *
1168 * This condition also used by radix_tree_next_slot() to stop
1169 * contiguous iterating, and forbid switching to the next chunk.
1170 */
1171 index = iter->next_index;
1172 if (!index && iter->index)
1173 return NULL;
1174
1175 restart:
1176 radix_tree_load_root(root, &child, &maxindex);
1177 if (index > maxindex)
1178 return NULL;
1179 if (!child)
1180 return NULL;
1181
1182 if (!radix_tree_is_internal_node(child)) {
1183 /* Single-slot tree */
1184 iter->index = index;
1185 iter->next_index = maxindex + 1;
1186 iter->tags = 1;
1187 iter->node = NULL;
1188 return (void __rcu **)&root->xa_head;
1189 }
1190
1191 do {
1192 node = entry_to_node(child);
1193 offset = radix_tree_descend(node, &child, index);
1194
1195 if ((flags & RADIX_TREE_ITER_TAGGED) ?
1196 !tag_get(node, tag, offset) : !child) {
1197 /* Hole detected */
1198 if (flags & RADIX_TREE_ITER_CONTIG)
1199 return NULL;
1200
1201 if (flags & RADIX_TREE_ITER_TAGGED)
1202 offset = radix_tree_find_next_bit(node, tag,
1203 offset + 1);
1204 else
1205 while (++offset < RADIX_TREE_MAP_SIZE) {
1206 void *slot = rcu_dereference_raw(
1207 node->slots[offset]);
1208 if (slot)
1209 break;
1210 }
1211 index &= ~node_maxindex(node);
1212 index += offset << node->shift;
1213 /* Overflow after ~0UL */
1214 if (!index)
1215 return NULL;
1216 if (offset == RADIX_TREE_MAP_SIZE)
1217 goto restart;
1218 child = rcu_dereference_raw(node->slots[offset]);
1219 }
1220
1221 if (!child)
1222 goto restart;
1223 if (child == RADIX_TREE_RETRY)
1224 break;
1225 } while (node->shift && radix_tree_is_internal_node(child));
1226
1227 /* Update the iterator state */
1228 iter->index = (index &~ node_maxindex(node)) | offset;
1229 iter->next_index = (index | node_maxindex(node)) + 1;
1230 iter->node = node;
1231
1232 if (flags & RADIX_TREE_ITER_TAGGED)
1233 set_iter_tags(iter, node, offset, tag);
1234
1235 return node->slots + offset;
1236 }
1237 EXPORT_SYMBOL(radix_tree_next_chunk);
1238
1239 /**
1240 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1241 * @root: radix tree root
1242 * @results: where the results of the lookup are placed
1243 * @first_index: start the lookup from this key
1244 * @max_items: place up to this many items at *results
1245 *
1246 * Performs an index-ascending scan of the tree for present items. Places
1247 * them at *@results and returns the number of items which were placed at
1248 * *@results.
1249 *
1250 * The implementation is naive.
1251 *
1252 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1253 * rcu_read_lock. In this case, rather than the returned results being
1254 * an atomic snapshot of the tree at a single point in time, the
1255 * semantics of an RCU protected gang lookup are as though multiple
1256 * radix_tree_lookups have been issued in individual locks, and results
1257 * stored in 'results'.
1258 */
1259 unsigned int
radix_tree_gang_lookup(const struct radix_tree_root * root,void ** results,unsigned long first_index,unsigned int max_items)1260 radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1261 unsigned long first_index, unsigned int max_items)
1262 {
1263 struct radix_tree_iter iter;
1264 void __rcu **slot;
1265 unsigned int ret = 0;
1266
1267 if (unlikely(!max_items))
1268 return 0;
1269
1270 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1271 results[ret] = rcu_dereference_raw(*slot);
1272 if (!results[ret])
1273 continue;
1274 if (radix_tree_is_internal_node(results[ret])) {
1275 slot = radix_tree_iter_retry(&iter);
1276 continue;
1277 }
1278 if (++ret == max_items)
1279 break;
1280 }
1281
1282 return ret;
1283 }
1284 EXPORT_SYMBOL(radix_tree_gang_lookup);
1285
1286 /**
1287 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1288 * based on a tag
1289 * @root: radix tree root
1290 * @results: where the results of the lookup are placed
1291 * @first_index: start the lookup from this key
1292 * @max_items: place up to this many items at *results
1293 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1294 *
1295 * Performs an index-ascending scan of the tree for present items which
1296 * have the tag indexed by @tag set. Places the items at *@results and
1297 * returns the number of items which were placed at *@results.
1298 */
1299 unsigned int
radix_tree_gang_lookup_tag(const struct radix_tree_root * root,void ** results,unsigned long first_index,unsigned int max_items,unsigned int tag)1300 radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1301 unsigned long first_index, unsigned int max_items,
1302 unsigned int tag)
1303 {
1304 struct radix_tree_iter iter;
1305 void __rcu **slot;
1306 unsigned int ret = 0;
1307
1308 if (unlikely(!max_items))
1309 return 0;
1310
1311 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1312 results[ret] = rcu_dereference_raw(*slot);
1313 if (!results[ret])
1314 continue;
1315 if (radix_tree_is_internal_node(results[ret])) {
1316 slot = radix_tree_iter_retry(&iter);
1317 continue;
1318 }
1319 if (++ret == max_items)
1320 break;
1321 }
1322
1323 return ret;
1324 }
1325 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1326
1327 /**
1328 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1329 * radix tree based on a tag
1330 * @root: radix tree root
1331 * @results: where the results of the lookup are placed
1332 * @first_index: start the lookup from this key
1333 * @max_items: place up to this many items at *results
1334 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1335 *
1336 * Performs an index-ascending scan of the tree for present items which
1337 * have the tag indexed by @tag set. Places the slots at *@results and
1338 * returns the number of slots which were placed at *@results.
1339 */
1340 unsigned int
radix_tree_gang_lookup_tag_slot(const struct radix_tree_root * root,void __rcu *** results,unsigned long first_index,unsigned int max_items,unsigned int tag)1341 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1342 void __rcu ***results, unsigned long first_index,
1343 unsigned int max_items, unsigned int tag)
1344 {
1345 struct radix_tree_iter iter;
1346 void __rcu **slot;
1347 unsigned int ret = 0;
1348
1349 if (unlikely(!max_items))
1350 return 0;
1351
1352 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1353 results[ret] = slot;
1354 if (++ret == max_items)
1355 break;
1356 }
1357
1358 return ret;
1359 }
1360 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1361
__radix_tree_delete(struct radix_tree_root * root,struct radix_tree_node * node,void __rcu ** slot)1362 static bool __radix_tree_delete(struct radix_tree_root *root,
1363 struct radix_tree_node *node, void __rcu **slot)
1364 {
1365 void *old = rcu_dereference_raw(*slot);
1366 int values = xa_is_value(old) ? -1 : 0;
1367 unsigned offset = get_slot_offset(node, slot);
1368 int tag;
1369
1370 if (is_idr(root))
1371 node_tag_set(root, node, IDR_FREE, offset);
1372 else
1373 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1374 node_tag_clear(root, node, tag, offset);
1375
1376 replace_slot(slot, NULL, node, -1, values);
1377 return node && delete_node(root, node);
1378 }
1379
1380 /**
1381 * radix_tree_iter_delete - delete the entry at this iterator position
1382 * @root: radix tree root
1383 * @iter: iterator state
1384 * @slot: pointer to slot
1385 *
1386 * Delete the entry at the position currently pointed to by the iterator.
1387 * This may result in the current node being freed; if it is, the iterator
1388 * is advanced so that it will not reference the freed memory. This
1389 * function may be called without any locking if there are no other threads
1390 * which can access this tree.
1391 */
radix_tree_iter_delete(struct radix_tree_root * root,struct radix_tree_iter * iter,void __rcu ** slot)1392 void radix_tree_iter_delete(struct radix_tree_root *root,
1393 struct radix_tree_iter *iter, void __rcu **slot)
1394 {
1395 if (__radix_tree_delete(root, iter->node, slot))
1396 iter->index = iter->next_index;
1397 }
1398 EXPORT_SYMBOL(radix_tree_iter_delete);
1399
1400 /**
1401 * radix_tree_delete_item - delete an item from a radix tree
1402 * @root: radix tree root
1403 * @index: index key
1404 * @item: expected item
1405 *
1406 * Remove @item at @index from the radix tree rooted at @root.
1407 *
1408 * Return: the deleted entry, or %NULL if it was not present
1409 * or the entry at the given @index was not @item.
1410 */
radix_tree_delete_item(struct radix_tree_root * root,unsigned long index,void * item)1411 void *radix_tree_delete_item(struct radix_tree_root *root,
1412 unsigned long index, void *item)
1413 {
1414 struct radix_tree_node *node = NULL;
1415 void __rcu **slot = NULL;
1416 void *entry;
1417
1418 entry = __radix_tree_lookup(root, index, &node, &slot);
1419 if (!slot)
1420 return NULL;
1421 if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1422 get_slot_offset(node, slot))))
1423 return NULL;
1424
1425 if (item && entry != item)
1426 return NULL;
1427
1428 __radix_tree_delete(root, node, slot);
1429
1430 return entry;
1431 }
1432 EXPORT_SYMBOL(radix_tree_delete_item);
1433
1434 /**
1435 * radix_tree_delete - delete an entry from a radix tree
1436 * @root: radix tree root
1437 * @index: index key
1438 *
1439 * Remove the entry at @index from the radix tree rooted at @root.
1440 *
1441 * Return: The deleted entry, or %NULL if it was not present.
1442 */
radix_tree_delete(struct radix_tree_root * root,unsigned long index)1443 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1444 {
1445 return radix_tree_delete_item(root, index, NULL);
1446 }
1447 EXPORT_SYMBOL(radix_tree_delete);
1448
1449 /**
1450 * radix_tree_tagged - test whether any items in the tree are tagged
1451 * @root: radix tree root
1452 * @tag: tag to test
1453 */
radix_tree_tagged(const struct radix_tree_root * root,unsigned int tag)1454 int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1455 {
1456 return root_tag_get(root, tag);
1457 }
1458 EXPORT_SYMBOL(radix_tree_tagged);
1459
1460 /**
1461 * idr_preload - preload for idr_alloc()
1462 * @gfp_mask: allocation mask to use for preloading
1463 *
1464 * Preallocate memory to use for the next call to idr_alloc(). This function
1465 * returns with preemption disabled. It will be enabled by idr_preload_end().
1466 */
idr_preload(gfp_t gfp_mask)1467 void idr_preload(gfp_t gfp_mask)
1468 {
1469 if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1470 local_lock(&radix_tree_preloads.lock);
1471 }
1472 EXPORT_SYMBOL(idr_preload);
1473
idr_get_free(struct radix_tree_root * root,struct radix_tree_iter * iter,gfp_t gfp,unsigned long max)1474 void __rcu **idr_get_free(struct radix_tree_root *root,
1475 struct radix_tree_iter *iter, gfp_t gfp,
1476 unsigned long max)
1477 {
1478 struct radix_tree_node *node = NULL, *child;
1479 void __rcu **slot = (void __rcu **)&root->xa_head;
1480 unsigned long maxindex, start = iter->next_index;
1481 unsigned int shift, offset = 0;
1482
1483 grow:
1484 shift = radix_tree_load_root(root, &child, &maxindex);
1485 if (!radix_tree_tagged(root, IDR_FREE))
1486 start = max(start, maxindex + 1);
1487 if (start > max)
1488 return ERR_PTR(-ENOSPC);
1489
1490 if (start > maxindex) {
1491 int error = radix_tree_extend(root, gfp, start, shift);
1492 if (error < 0)
1493 return ERR_PTR(error);
1494 shift = error;
1495 child = rcu_dereference_raw(root->xa_head);
1496 }
1497 if (start == 0 && shift == 0)
1498 shift = RADIX_TREE_MAP_SHIFT;
1499
1500 while (shift) {
1501 shift -= RADIX_TREE_MAP_SHIFT;
1502 if (child == NULL) {
1503 /* Have to add a child node. */
1504 child = radix_tree_node_alloc(gfp, node, root, shift,
1505 offset, 0, 0);
1506 if (!child)
1507 return ERR_PTR(-ENOMEM);
1508 all_tag_set(child, IDR_FREE);
1509 rcu_assign_pointer(*slot, node_to_entry(child));
1510 if (node)
1511 node->count++;
1512 } else if (!radix_tree_is_internal_node(child))
1513 break;
1514
1515 node = entry_to_node(child);
1516 offset = radix_tree_descend(node, &child, start);
1517 if (!tag_get(node, IDR_FREE, offset)) {
1518 offset = radix_tree_find_next_bit(node, IDR_FREE,
1519 offset + 1);
1520 start = next_index(start, node, offset);
1521 if (start > max || start == 0)
1522 return ERR_PTR(-ENOSPC);
1523 while (offset == RADIX_TREE_MAP_SIZE) {
1524 offset = node->offset + 1;
1525 node = node->parent;
1526 if (!node)
1527 goto grow;
1528 shift = node->shift;
1529 }
1530 child = rcu_dereference_raw(node->slots[offset]);
1531 }
1532 slot = &node->slots[offset];
1533 }
1534
1535 iter->index = start;
1536 if (node)
1537 iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1538 else
1539 iter->next_index = 1;
1540 iter->node = node;
1541 set_iter_tags(iter, node, offset, IDR_FREE);
1542
1543 return slot;
1544 }
1545
1546 /**
1547 * idr_destroy - release all internal memory from an IDR
1548 * @idr: idr handle
1549 *
1550 * After this function is called, the IDR is empty, and may be reused or
1551 * the data structure containing it may be freed.
1552 *
1553 * A typical clean-up sequence for objects stored in an idr tree will use
1554 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1555 * free the memory used to keep track of those objects.
1556 */
idr_destroy(struct idr * idr)1557 void idr_destroy(struct idr *idr)
1558 {
1559 struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
1560 if (radix_tree_is_internal_node(node))
1561 radix_tree_free_nodes(node);
1562 idr->idr_rt.xa_head = NULL;
1563 root_tag_set(&idr->idr_rt, IDR_FREE);
1564 }
1565 EXPORT_SYMBOL(idr_destroy);
1566
1567 static void
radix_tree_node_ctor(void * arg)1568 radix_tree_node_ctor(void *arg)
1569 {
1570 struct radix_tree_node *node = arg;
1571
1572 memset(node, 0, sizeof(*node));
1573 INIT_LIST_HEAD(&node->private_list);
1574 }
1575
radix_tree_cpu_dead(unsigned int cpu)1576 static int radix_tree_cpu_dead(unsigned int cpu)
1577 {
1578 struct radix_tree_preload *rtp;
1579 struct radix_tree_node *node;
1580
1581 /* Free per-cpu pool of preloaded nodes */
1582 rtp = &per_cpu(radix_tree_preloads, cpu);
1583 while (rtp->nr) {
1584 node = rtp->nodes;
1585 rtp->nodes = node->parent;
1586 kmem_cache_free(radix_tree_node_cachep, node);
1587 rtp->nr--;
1588 }
1589 return 0;
1590 }
1591
radix_tree_init(void)1592 void __init radix_tree_init(void)
1593 {
1594 int ret;
1595
1596 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1597 BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
1598 BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1599 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1600 sizeof(struct radix_tree_node), 0,
1601 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1602 radix_tree_node_ctor);
1603 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1604 NULL, radix_tree_cpu_dead);
1605 WARN_ON(ret < 0);
1606 }
1607