• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
3  *
4  * This implementation does not provide ISO-TP specific return values to the
5  * userspace.
6  *
7  * - RX path timeout of data reception leads to -ETIMEDOUT
8  * - RX path SN mismatch leads to -EILSEQ
9  * - RX path data reception with wrong padding leads to -EBADMSG
10  * - TX path flowcontrol reception timeout leads to -ECOMM
11  * - TX path flowcontrol reception overflow leads to -EMSGSIZE
12  * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
13  * - when a transfer (tx) is on the run the next write() blocks until it's done
14  * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
15  * - as we have static buffers the check whether the PDU fits into the buffer
16  *   is done at FF reception time (no support for sending 'wait frames')
17  *
18  * Copyright (c) 2020 Volkswagen Group Electronic Research
19  * All rights reserved.
20  *
21  * Redistribution and use in source and binary forms, with or without
22  * modification, are permitted provided that the following conditions
23  * are met:
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  * 3. Neither the name of Volkswagen nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * Alternatively, provided that this notice is retained in full, this
34  * software may be distributed under the terms of the GNU General
35  * Public License ("GPL") version 2, in which case the provisions of the
36  * GPL apply INSTEAD OF those given above.
37  *
38  * The provided data structures and external interfaces from this code
39  * are not restricted to be used by modules with a GPL compatible license.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
42  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
43  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
44  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
45  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
47  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
48  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
49  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
50  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
51  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52  * DAMAGE.
53  */
54 
55 #include <linux/module.h>
56 #include <linux/init.h>
57 #include <linux/interrupt.h>
58 #include <linux/spinlock.h>
59 #include <linux/hrtimer.h>
60 #include <linux/wait.h>
61 #include <linux/uio.h>
62 #include <linux/net.h>
63 #include <linux/netdevice.h>
64 #include <linux/socket.h>
65 #include <linux/if_arp.h>
66 #include <linux/skbuff.h>
67 #include <linux/can.h>
68 #include <linux/can/core.h>
69 #include <linux/can/skb.h>
70 #include <linux/can/isotp.h>
71 #include <linux/slab.h>
72 #include <net/sock.h>
73 #include <net/net_namespace.h>
74 
75 MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
76 MODULE_LICENSE("Dual BSD/GPL");
77 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
78 MODULE_ALIAS("can-proto-6");
79 
80 #define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
81 
82 #define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
83 			 (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
84 			 (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
85 
86 /* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
87  * take full 32 bit values (4 Gbyte). We would need some good concept to handle
88  * this between user space and kernel space. For now increase the static buffer
89  * to something about 64 kbyte to be able to test this new functionality.
90  */
91 #define MAX_MSG_LENGTH 66000
92 
93 /* N_PCI type values in bits 7-4 of N_PCI bytes */
94 #define N_PCI_SF 0x00	/* single frame */
95 #define N_PCI_FF 0x10	/* first frame */
96 #define N_PCI_CF 0x20	/* consecutive frame */
97 #define N_PCI_FC 0x30	/* flow control */
98 
99 #define N_PCI_SZ 1	/* size of the PCI byte #1 */
100 #define SF_PCI_SZ4 1	/* size of SingleFrame PCI including 4 bit SF_DL */
101 #define SF_PCI_SZ8 2	/* size of SingleFrame PCI including 8 bit SF_DL */
102 #define FF_PCI_SZ12 2	/* size of FirstFrame PCI including 12 bit FF_DL */
103 #define FF_PCI_SZ32 6	/* size of FirstFrame PCI including 32 bit FF_DL */
104 #define FC_CONTENT_SZ 3	/* flow control content size in byte (FS/BS/STmin) */
105 
106 #define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
107 #define ISOTP_ALL_BC_FLAGS (CAN_ISOTP_SF_BROADCAST | CAN_ISOTP_CF_BROADCAST)
108 
109 /* Flow Status given in FC frame */
110 #define ISOTP_FC_CTS 0		/* clear to send */
111 #define ISOTP_FC_WT 1		/* wait */
112 #define ISOTP_FC_OVFLW 2	/* overflow */
113 
114 #define ISOTP_FC_TIMEOUT 1	/* 1 sec */
115 #define ISOTP_ECHO_TIMEOUT 2	/* 2 secs */
116 
117 enum {
118 	ISOTP_IDLE = 0,
119 	ISOTP_WAIT_FIRST_FC,
120 	ISOTP_WAIT_FC,
121 	ISOTP_WAIT_DATA,
122 	ISOTP_SENDING,
123 	ISOTP_SHUTDOWN,
124 };
125 
126 struct tpcon {
127 	unsigned int idx;
128 	unsigned int len;
129 	u32 state;
130 	u8 bs;
131 	u8 sn;
132 	u8 ll_dl;
133 	u8 buf[MAX_MSG_LENGTH + 1];
134 };
135 
136 struct isotp_sock {
137 	struct sock sk;
138 	int bound;
139 	int ifindex;
140 	canid_t txid;
141 	canid_t rxid;
142 	ktime_t tx_gap;
143 	ktime_t lastrxcf_tstamp;
144 	struct hrtimer rxtimer, txtimer, txfrtimer;
145 	struct can_isotp_options opt;
146 	struct can_isotp_fc_options rxfc, txfc;
147 	struct can_isotp_ll_options ll;
148 	u32 frame_txtime;
149 	u32 force_tx_stmin;
150 	u32 force_rx_stmin;
151 	u32 cfecho; /* consecutive frame echo tag */
152 	struct tpcon rx, tx;
153 	struct list_head notifier;
154 	wait_queue_head_t wait;
155 	spinlock_t rx_lock; /* protect single thread state machine */
156 };
157 
158 static LIST_HEAD(isotp_notifier_list);
159 static DEFINE_SPINLOCK(isotp_notifier_lock);
160 static struct isotp_sock *isotp_busy_notifier;
161 
isotp_sk(const struct sock * sk)162 static inline struct isotp_sock *isotp_sk(const struct sock *sk)
163 {
164 	return (struct isotp_sock *)sk;
165 }
166 
isotp_bc_flags(struct isotp_sock * so)167 static u32 isotp_bc_flags(struct isotp_sock *so)
168 {
169 	return so->opt.flags & ISOTP_ALL_BC_FLAGS;
170 }
171 
isotp_register_rxid(struct isotp_sock * so)172 static bool isotp_register_rxid(struct isotp_sock *so)
173 {
174 	/* no broadcast modes => register rx_id for FC frame reception */
175 	return (isotp_bc_flags(so) == 0);
176 }
177 
isotp_rx_timer_handler(struct hrtimer * hrtimer)178 static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
179 {
180 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
181 					     rxtimer);
182 	struct sock *sk = &so->sk;
183 
184 	if (so->rx.state == ISOTP_WAIT_DATA) {
185 		/* we did not get new data frames in time */
186 
187 		/* report 'connection timed out' */
188 		sk->sk_err = ETIMEDOUT;
189 		if (!sock_flag(sk, SOCK_DEAD))
190 			sk_error_report(sk);
191 
192 		/* reset rx state */
193 		so->rx.state = ISOTP_IDLE;
194 	}
195 
196 	return HRTIMER_NORESTART;
197 }
198 
isotp_send_fc(struct sock * sk,int ae,u8 flowstatus)199 static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
200 {
201 	struct net_device *dev;
202 	struct sk_buff *nskb;
203 	struct canfd_frame *ncf;
204 	struct isotp_sock *so = isotp_sk(sk);
205 	int can_send_ret;
206 
207 	nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
208 	if (!nskb)
209 		return 1;
210 
211 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
212 	if (!dev) {
213 		kfree_skb(nskb);
214 		return 1;
215 	}
216 
217 	can_skb_reserve(nskb);
218 	can_skb_prv(nskb)->ifindex = dev->ifindex;
219 	can_skb_prv(nskb)->skbcnt = 0;
220 
221 	nskb->dev = dev;
222 	can_skb_set_owner(nskb, sk);
223 	ncf = (struct canfd_frame *)nskb->data;
224 	skb_put_zero(nskb, so->ll.mtu);
225 
226 	/* create & send flow control reply */
227 	ncf->can_id = so->txid;
228 
229 	if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
230 		memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
231 		ncf->len = CAN_MAX_DLEN;
232 	} else {
233 		ncf->len = ae + FC_CONTENT_SZ;
234 	}
235 
236 	ncf->data[ae] = N_PCI_FC | flowstatus;
237 	ncf->data[ae + 1] = so->rxfc.bs;
238 	ncf->data[ae + 2] = so->rxfc.stmin;
239 
240 	if (ae)
241 		ncf->data[0] = so->opt.ext_address;
242 
243 	ncf->flags = so->ll.tx_flags;
244 
245 	can_send_ret = can_send(nskb, 1);
246 	if (can_send_ret)
247 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
248 			       __func__, ERR_PTR(can_send_ret));
249 
250 	dev_put(dev);
251 
252 	/* reset blocksize counter */
253 	so->rx.bs = 0;
254 
255 	/* reset last CF frame rx timestamp for rx stmin enforcement */
256 	so->lastrxcf_tstamp = ktime_set(0, 0);
257 
258 	/* start rx timeout watchdog */
259 	hrtimer_start(&so->rxtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
260 		      HRTIMER_MODE_REL_SOFT);
261 	return 0;
262 }
263 
isotp_rcv_skb(struct sk_buff * skb,struct sock * sk)264 static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
265 {
266 	struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
267 
268 	BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
269 
270 	memset(addr, 0, sizeof(*addr));
271 	addr->can_family = AF_CAN;
272 	addr->can_ifindex = skb->dev->ifindex;
273 
274 	if (sock_queue_rcv_skb(sk, skb) < 0)
275 		kfree_skb(skb);
276 }
277 
padlen(u8 datalen)278 static u8 padlen(u8 datalen)
279 {
280 	static const u8 plen[] = {
281 		8, 8, 8, 8, 8, 8, 8, 8, 8,	/* 0 - 8 */
282 		12, 12, 12, 12,			/* 9 - 12 */
283 		16, 16, 16, 16,			/* 13 - 16 */
284 		20, 20, 20, 20,			/* 17 - 20 */
285 		24, 24, 24, 24,			/* 21 - 24 */
286 		32, 32, 32, 32, 32, 32, 32, 32,	/* 25 - 32 */
287 		48, 48, 48, 48, 48, 48, 48, 48,	/* 33 - 40 */
288 		48, 48, 48, 48, 48, 48, 48, 48	/* 41 - 48 */
289 	};
290 
291 	if (datalen > 48)
292 		return 64;
293 
294 	return plen[datalen];
295 }
296 
297 /* check for length optimization and return 1/true when the check fails */
check_optimized(struct canfd_frame * cf,int start_index)298 static int check_optimized(struct canfd_frame *cf, int start_index)
299 {
300 	/* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
301 	 * padding would start at this point. E.g. if the padding would
302 	 * start at cf.data[7] cf->len has to be 7 to be optimal.
303 	 * Note: The data[] index starts with zero.
304 	 */
305 	if (cf->len <= CAN_MAX_DLEN)
306 		return (cf->len != start_index);
307 
308 	/* This relation is also valid in the non-linear DLC range, where
309 	 * we need to take care of the minimal next possible CAN_DL.
310 	 * The correct check would be (padlen(cf->len) != padlen(start_index)).
311 	 * But as cf->len can only take discrete values from 12, .., 64 at this
312 	 * point the padlen(cf->len) is always equal to cf->len.
313 	 */
314 	return (cf->len != padlen(start_index));
315 }
316 
317 /* check padding and return 1/true when the check fails */
check_pad(struct isotp_sock * so,struct canfd_frame * cf,int start_index,u8 content)318 static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
319 		     int start_index, u8 content)
320 {
321 	int i;
322 
323 	/* no RX_PADDING value => check length of optimized frame length */
324 	if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
325 		if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
326 			return check_optimized(cf, start_index);
327 
328 		/* no valid test against empty value => ignore frame */
329 		return 1;
330 	}
331 
332 	/* check datalength of correctly padded CAN frame */
333 	if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
334 	    cf->len != padlen(cf->len))
335 		return 1;
336 
337 	/* check padding content */
338 	if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
339 		for (i = start_index; i < cf->len; i++)
340 			if (cf->data[i] != content)
341 				return 1;
342 	}
343 	return 0;
344 }
345 
346 static void isotp_send_cframe(struct isotp_sock *so);
347 
isotp_rcv_fc(struct isotp_sock * so,struct canfd_frame * cf,int ae)348 static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
349 {
350 	struct sock *sk = &so->sk;
351 
352 	if (so->tx.state != ISOTP_WAIT_FC &&
353 	    so->tx.state != ISOTP_WAIT_FIRST_FC)
354 		return 0;
355 
356 	hrtimer_cancel(&so->txtimer);
357 
358 	if ((cf->len < ae + FC_CONTENT_SZ) ||
359 	    ((so->opt.flags & ISOTP_CHECK_PADDING) &&
360 	     check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
361 		/* malformed PDU - report 'not a data message' */
362 		sk->sk_err = EBADMSG;
363 		if (!sock_flag(sk, SOCK_DEAD))
364 			sk_error_report(sk);
365 
366 		so->tx.state = ISOTP_IDLE;
367 		wake_up_interruptible(&so->wait);
368 		return 1;
369 	}
370 
371 	/* get communication parameters only from the first FC frame */
372 	if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
373 		so->txfc.bs = cf->data[ae + 1];
374 		so->txfc.stmin = cf->data[ae + 2];
375 
376 		/* fix wrong STmin values according spec */
377 		if (so->txfc.stmin > 0x7F &&
378 		    (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
379 			so->txfc.stmin = 0x7F;
380 
381 		so->tx_gap = ktime_set(0, 0);
382 		/* add transmission time for CAN frame N_As */
383 		so->tx_gap = ktime_add_ns(so->tx_gap, so->frame_txtime);
384 		/* add waiting time for consecutive frames N_Cs */
385 		if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
386 			so->tx_gap = ktime_add_ns(so->tx_gap,
387 						  so->force_tx_stmin);
388 		else if (so->txfc.stmin < 0x80)
389 			so->tx_gap = ktime_add_ns(so->tx_gap,
390 						  so->txfc.stmin * 1000000);
391 		else
392 			so->tx_gap = ktime_add_ns(so->tx_gap,
393 						  (so->txfc.stmin - 0xF0)
394 						  * 100000);
395 		so->tx.state = ISOTP_WAIT_FC;
396 	}
397 
398 	switch (cf->data[ae] & 0x0F) {
399 	case ISOTP_FC_CTS:
400 		so->tx.bs = 0;
401 		so->tx.state = ISOTP_SENDING;
402 		/* send CF frame and enable echo timeout handling */
403 		hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
404 			      HRTIMER_MODE_REL_SOFT);
405 		isotp_send_cframe(so);
406 		break;
407 
408 	case ISOTP_FC_WT:
409 		/* start timer to wait for next FC frame */
410 		hrtimer_start(&so->txtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
411 			      HRTIMER_MODE_REL_SOFT);
412 		break;
413 
414 	case ISOTP_FC_OVFLW:
415 		/* overflow on receiver side - report 'message too long' */
416 		sk->sk_err = EMSGSIZE;
417 		if (!sock_flag(sk, SOCK_DEAD))
418 			sk_error_report(sk);
419 		fallthrough;
420 
421 	default:
422 		/* stop this tx job */
423 		so->tx.state = ISOTP_IDLE;
424 		wake_up_interruptible(&so->wait);
425 	}
426 	return 0;
427 }
428 
isotp_rcv_sf(struct sock * sk,struct canfd_frame * cf,int pcilen,struct sk_buff * skb,int len)429 static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
430 			struct sk_buff *skb, int len)
431 {
432 	struct isotp_sock *so = isotp_sk(sk);
433 	struct sk_buff *nskb;
434 
435 	hrtimer_cancel(&so->rxtimer);
436 	so->rx.state = ISOTP_IDLE;
437 
438 	if (!len || len > cf->len - pcilen)
439 		return 1;
440 
441 	if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
442 	    check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
443 		/* malformed PDU - report 'not a data message' */
444 		sk->sk_err = EBADMSG;
445 		if (!sock_flag(sk, SOCK_DEAD))
446 			sk_error_report(sk);
447 		return 1;
448 	}
449 
450 	nskb = alloc_skb(len, gfp_any());
451 	if (!nskb)
452 		return 1;
453 
454 	memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
455 
456 	nskb->tstamp = skb->tstamp;
457 	nskb->dev = skb->dev;
458 	isotp_rcv_skb(nskb, sk);
459 	return 0;
460 }
461 
isotp_rcv_ff(struct sock * sk,struct canfd_frame * cf,int ae)462 static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
463 {
464 	struct isotp_sock *so = isotp_sk(sk);
465 	int i;
466 	int off;
467 	int ff_pci_sz;
468 
469 	hrtimer_cancel(&so->rxtimer);
470 	so->rx.state = ISOTP_IDLE;
471 
472 	/* get the used sender LL_DL from the (first) CAN frame data length */
473 	so->rx.ll_dl = padlen(cf->len);
474 
475 	/* the first frame has to use the entire frame up to LL_DL length */
476 	if (cf->len != so->rx.ll_dl)
477 		return 1;
478 
479 	/* get the FF_DL */
480 	so->rx.len = (cf->data[ae] & 0x0F) << 8;
481 	so->rx.len += cf->data[ae + 1];
482 
483 	/* Check for FF_DL escape sequence supporting 32 bit PDU length */
484 	if (so->rx.len) {
485 		ff_pci_sz = FF_PCI_SZ12;
486 	} else {
487 		/* FF_DL = 0 => get real length from next 4 bytes */
488 		so->rx.len = cf->data[ae + 2] << 24;
489 		so->rx.len += cf->data[ae + 3] << 16;
490 		so->rx.len += cf->data[ae + 4] << 8;
491 		so->rx.len += cf->data[ae + 5];
492 		ff_pci_sz = FF_PCI_SZ32;
493 	}
494 
495 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
496 	off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
497 
498 	if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
499 		return 1;
500 
501 	if (so->rx.len > MAX_MSG_LENGTH) {
502 		/* send FC frame with overflow status */
503 		isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
504 		return 1;
505 	}
506 
507 	/* copy the first received data bytes */
508 	so->rx.idx = 0;
509 	for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
510 		so->rx.buf[so->rx.idx++] = cf->data[i];
511 
512 	/* initial setup for this pdu reception */
513 	so->rx.sn = 1;
514 	so->rx.state = ISOTP_WAIT_DATA;
515 
516 	/* no creation of flow control frames */
517 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
518 		return 0;
519 
520 	/* send our first FC frame */
521 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
522 	return 0;
523 }
524 
isotp_rcv_cf(struct sock * sk,struct canfd_frame * cf,int ae,struct sk_buff * skb)525 static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
526 			struct sk_buff *skb)
527 {
528 	struct isotp_sock *so = isotp_sk(sk);
529 	struct sk_buff *nskb;
530 	int i;
531 
532 	if (so->rx.state != ISOTP_WAIT_DATA)
533 		return 0;
534 
535 	/* drop if timestamp gap is less than force_rx_stmin nano secs */
536 	if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
537 		if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
538 		    so->force_rx_stmin)
539 			return 0;
540 
541 		so->lastrxcf_tstamp = skb->tstamp;
542 	}
543 
544 	hrtimer_cancel(&so->rxtimer);
545 
546 	/* CFs are never longer than the FF */
547 	if (cf->len > so->rx.ll_dl)
548 		return 1;
549 
550 	/* CFs have usually the LL_DL length */
551 	if (cf->len < so->rx.ll_dl) {
552 		/* this is only allowed for the last CF */
553 		if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
554 			return 1;
555 	}
556 
557 	if ((cf->data[ae] & 0x0F) != so->rx.sn) {
558 		/* wrong sn detected - report 'illegal byte sequence' */
559 		sk->sk_err = EILSEQ;
560 		if (!sock_flag(sk, SOCK_DEAD))
561 			sk_error_report(sk);
562 
563 		/* reset rx state */
564 		so->rx.state = ISOTP_IDLE;
565 		return 1;
566 	}
567 	so->rx.sn++;
568 	so->rx.sn %= 16;
569 
570 	for (i = ae + N_PCI_SZ; i < cf->len; i++) {
571 		so->rx.buf[so->rx.idx++] = cf->data[i];
572 		if (so->rx.idx >= so->rx.len)
573 			break;
574 	}
575 
576 	if (so->rx.idx >= so->rx.len) {
577 		/* we are done */
578 		so->rx.state = ISOTP_IDLE;
579 
580 		if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
581 		    check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
582 			/* malformed PDU - report 'not a data message' */
583 			sk->sk_err = EBADMSG;
584 			if (!sock_flag(sk, SOCK_DEAD))
585 				sk_error_report(sk);
586 			return 1;
587 		}
588 
589 		nskb = alloc_skb(so->rx.len, gfp_any());
590 		if (!nskb)
591 			return 1;
592 
593 		memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
594 		       so->rx.len);
595 
596 		nskb->tstamp = skb->tstamp;
597 		nskb->dev = skb->dev;
598 		isotp_rcv_skb(nskb, sk);
599 		return 0;
600 	}
601 
602 	/* perform blocksize handling, if enabled */
603 	if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
604 		/* start rx timeout watchdog */
605 		hrtimer_start(&so->rxtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
606 			      HRTIMER_MODE_REL_SOFT);
607 		return 0;
608 	}
609 
610 	/* no creation of flow control frames */
611 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
612 		return 0;
613 
614 	/* we reached the specified blocksize so->rxfc.bs */
615 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
616 	return 0;
617 }
618 
isotp_rcv(struct sk_buff * skb,void * data)619 static void isotp_rcv(struct sk_buff *skb, void *data)
620 {
621 	struct sock *sk = (struct sock *)data;
622 	struct isotp_sock *so = isotp_sk(sk);
623 	struct canfd_frame *cf;
624 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
625 	u8 n_pci_type, sf_dl;
626 
627 	/* Strictly receive only frames with the configured MTU size
628 	 * => clear separation of CAN2.0 / CAN FD transport channels
629 	 */
630 	if (skb->len != so->ll.mtu)
631 		return;
632 
633 	cf = (struct canfd_frame *)skb->data;
634 
635 	/* if enabled: check reception of my configured extended address */
636 	if (ae && cf->data[0] != so->opt.rx_ext_address)
637 		return;
638 
639 	n_pci_type = cf->data[ae] & 0xF0;
640 
641 	/* Make sure the state changes and data structures stay consistent at
642 	 * CAN frame reception time. This locking is not needed in real world
643 	 * use cases but the inconsistency can be triggered with syzkaller.
644 	 */
645 	spin_lock(&so->rx_lock);
646 
647 	if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
648 		/* check rx/tx path half duplex expectations */
649 		if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
650 		    (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
651 			goto out_unlock;
652 	}
653 
654 	switch (n_pci_type) {
655 	case N_PCI_FC:
656 		/* tx path: flow control frame containing the FC parameters */
657 		isotp_rcv_fc(so, cf, ae);
658 		break;
659 
660 	case N_PCI_SF:
661 		/* rx path: single frame
662 		 *
663 		 * As we do not have a rx.ll_dl configuration, we can only test
664 		 * if the CAN frames payload length matches the LL_DL == 8
665 		 * requirements - no matter if it's CAN 2.0 or CAN FD
666 		 */
667 
668 		/* get the SF_DL from the N_PCI byte */
669 		sf_dl = cf->data[ae] & 0x0F;
670 
671 		if (cf->len <= CAN_MAX_DLEN) {
672 			isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
673 		} else {
674 			if (can_is_canfd_skb(skb)) {
675 				/* We have a CAN FD frame and CAN_DL is greater than 8:
676 				 * Only frames with the SF_DL == 0 ESC value are valid.
677 				 *
678 				 * If so take care of the increased SF PCI size
679 				 * (SF_PCI_SZ8) to point to the message content behind
680 				 * the extended SF PCI info and get the real SF_DL
681 				 * length value from the formerly first data byte.
682 				 */
683 				if (sf_dl == 0)
684 					isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
685 						     cf->data[SF_PCI_SZ4 + ae]);
686 			}
687 		}
688 		break;
689 
690 	case N_PCI_FF:
691 		/* rx path: first frame */
692 		isotp_rcv_ff(sk, cf, ae);
693 		break;
694 
695 	case N_PCI_CF:
696 		/* rx path: consecutive frame */
697 		isotp_rcv_cf(sk, cf, ae, skb);
698 		break;
699 	}
700 
701 out_unlock:
702 	spin_unlock(&so->rx_lock);
703 }
704 
isotp_fill_dataframe(struct canfd_frame * cf,struct isotp_sock * so,int ae,int off)705 static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
706 				 int ae, int off)
707 {
708 	int pcilen = N_PCI_SZ + ae + off;
709 	int space = so->tx.ll_dl - pcilen;
710 	int num = min_t(int, so->tx.len - so->tx.idx, space);
711 	int i;
712 
713 	cf->can_id = so->txid;
714 	cf->len = num + pcilen;
715 
716 	if (num < space) {
717 		if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
718 			/* user requested padding */
719 			cf->len = padlen(cf->len);
720 			memset(cf->data, so->opt.txpad_content, cf->len);
721 		} else if (cf->len > CAN_MAX_DLEN) {
722 			/* mandatory padding for CAN FD frames */
723 			cf->len = padlen(cf->len);
724 			memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
725 			       cf->len);
726 		}
727 	}
728 
729 	for (i = 0; i < num; i++)
730 		cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
731 
732 	if (ae)
733 		cf->data[0] = so->opt.ext_address;
734 }
735 
isotp_send_cframe(struct isotp_sock * so)736 static void isotp_send_cframe(struct isotp_sock *so)
737 {
738 	struct sock *sk = &so->sk;
739 	struct sk_buff *skb;
740 	struct net_device *dev;
741 	struct canfd_frame *cf;
742 	int can_send_ret;
743 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
744 
745 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
746 	if (!dev)
747 		return;
748 
749 	skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), GFP_ATOMIC);
750 	if (!skb) {
751 		dev_put(dev);
752 		return;
753 	}
754 
755 	can_skb_reserve(skb);
756 	can_skb_prv(skb)->ifindex = dev->ifindex;
757 	can_skb_prv(skb)->skbcnt = 0;
758 
759 	cf = (struct canfd_frame *)skb->data;
760 	skb_put_zero(skb, so->ll.mtu);
761 
762 	/* create consecutive frame */
763 	isotp_fill_dataframe(cf, so, ae, 0);
764 
765 	/* place consecutive frame N_PCI in appropriate index */
766 	cf->data[ae] = N_PCI_CF | so->tx.sn++;
767 	so->tx.sn %= 16;
768 	so->tx.bs++;
769 
770 	cf->flags = so->ll.tx_flags;
771 
772 	skb->dev = dev;
773 	can_skb_set_owner(skb, sk);
774 
775 	/* cfecho should have been zero'ed by init/isotp_rcv_echo() */
776 	if (so->cfecho)
777 		pr_notice_once("can-isotp: cfecho is %08X != 0\n", so->cfecho);
778 
779 	/* set consecutive frame echo tag */
780 	so->cfecho = *(u32 *)cf->data;
781 
782 	/* send frame with local echo enabled */
783 	can_send_ret = can_send(skb, 1);
784 	if (can_send_ret) {
785 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
786 			       __func__, ERR_PTR(can_send_ret));
787 		if (can_send_ret == -ENOBUFS)
788 			pr_notice_once("can-isotp: tx queue is full\n");
789 	}
790 	dev_put(dev);
791 }
792 
isotp_create_fframe(struct canfd_frame * cf,struct isotp_sock * so,int ae)793 static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
794 				int ae)
795 {
796 	int i;
797 	int ff_pci_sz;
798 
799 	cf->can_id = so->txid;
800 	cf->len = so->tx.ll_dl;
801 	if (ae)
802 		cf->data[0] = so->opt.ext_address;
803 
804 	/* create N_PCI bytes with 12/32 bit FF_DL data length */
805 	if (so->tx.len > 4095) {
806 		/* use 32 bit FF_DL notation */
807 		cf->data[ae] = N_PCI_FF;
808 		cf->data[ae + 1] = 0;
809 		cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
810 		cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
811 		cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
812 		cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
813 		ff_pci_sz = FF_PCI_SZ32;
814 	} else {
815 		/* use 12 bit FF_DL notation */
816 		cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
817 		cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
818 		ff_pci_sz = FF_PCI_SZ12;
819 	}
820 
821 	/* add first data bytes depending on ae */
822 	for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
823 		cf->data[i] = so->tx.buf[so->tx.idx++];
824 
825 	so->tx.sn = 1;
826 }
827 
isotp_rcv_echo(struct sk_buff * skb,void * data)828 static void isotp_rcv_echo(struct sk_buff *skb, void *data)
829 {
830 	struct sock *sk = (struct sock *)data;
831 	struct isotp_sock *so = isotp_sk(sk);
832 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
833 
834 	/* only handle my own local echo CF/SF skb's (no FF!) */
835 	if (skb->sk != sk || so->cfecho != *(u32 *)cf->data)
836 		return;
837 
838 	/* cancel local echo timeout */
839 	hrtimer_cancel(&so->txtimer);
840 
841 	/* local echo skb with consecutive frame has been consumed */
842 	so->cfecho = 0;
843 
844 	if (so->tx.idx >= so->tx.len) {
845 		/* we are done */
846 		so->tx.state = ISOTP_IDLE;
847 		wake_up_interruptible(&so->wait);
848 		return;
849 	}
850 
851 	if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
852 		/* stop and wait for FC with timeout */
853 		so->tx.state = ISOTP_WAIT_FC;
854 		hrtimer_start(&so->txtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
855 			      HRTIMER_MODE_REL_SOFT);
856 		return;
857 	}
858 
859 	/* no gap between data frames needed => use burst mode */
860 	if (!so->tx_gap) {
861 		/* enable echo timeout handling */
862 		hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
863 			      HRTIMER_MODE_REL_SOFT);
864 		isotp_send_cframe(so);
865 		return;
866 	}
867 
868 	/* start timer to send next consecutive frame with correct delay */
869 	hrtimer_start(&so->txfrtimer, so->tx_gap, HRTIMER_MODE_REL_SOFT);
870 }
871 
isotp_tx_timer_handler(struct hrtimer * hrtimer)872 static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
873 {
874 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
875 					     txtimer);
876 	struct sock *sk = &so->sk;
877 
878 	/* don't handle timeouts in IDLE or SHUTDOWN state */
879 	if (so->tx.state == ISOTP_IDLE || so->tx.state == ISOTP_SHUTDOWN)
880 		return HRTIMER_NORESTART;
881 
882 	/* we did not get any flow control or echo frame in time */
883 
884 	/* report 'communication error on send' */
885 	sk->sk_err = ECOMM;
886 	if (!sock_flag(sk, SOCK_DEAD))
887 		sk_error_report(sk);
888 
889 	/* reset tx state */
890 	so->tx.state = ISOTP_IDLE;
891 	wake_up_interruptible(&so->wait);
892 
893 	return HRTIMER_NORESTART;
894 }
895 
isotp_txfr_timer_handler(struct hrtimer * hrtimer)896 static enum hrtimer_restart isotp_txfr_timer_handler(struct hrtimer *hrtimer)
897 {
898 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
899 					     txfrtimer);
900 
901 	/* start echo timeout handling and cover below protocol error */
902 	hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
903 		      HRTIMER_MODE_REL_SOFT);
904 
905 	/* cfecho should be consumed by isotp_rcv_echo() here */
906 	if (so->tx.state == ISOTP_SENDING && !so->cfecho)
907 		isotp_send_cframe(so);
908 
909 	return HRTIMER_NORESTART;
910 }
911 
isotp_sendmsg(struct socket * sock,struct msghdr * msg,size_t size)912 static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
913 {
914 	struct sock *sk = sock->sk;
915 	struct isotp_sock *so = isotp_sk(sk);
916 	struct sk_buff *skb;
917 	struct net_device *dev;
918 	struct canfd_frame *cf;
919 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
920 	int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
921 	s64 hrtimer_sec = ISOTP_ECHO_TIMEOUT;
922 	int off;
923 	int err;
924 
925 	if (!so->bound || so->tx.state == ISOTP_SHUTDOWN)
926 		return -EADDRNOTAVAIL;
927 
928 	while (cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SENDING) != ISOTP_IDLE) {
929 		/* we do not support multiple buffers - for now */
930 		if (msg->msg_flags & MSG_DONTWAIT)
931 			return -EAGAIN;
932 
933 		if (so->tx.state == ISOTP_SHUTDOWN)
934 			return -EADDRNOTAVAIL;
935 
936 		/* wait for complete transmission of current pdu */
937 		err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
938 		if (err)
939 			goto err_event_drop;
940 	}
941 
942 	if (!size || size > MAX_MSG_LENGTH) {
943 		err = -EINVAL;
944 		goto err_out_drop;
945 	}
946 
947 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
948 	off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
949 
950 	/* does the given data fit into a single frame for SF_BROADCAST? */
951 	if ((isotp_bc_flags(so) == CAN_ISOTP_SF_BROADCAST) &&
952 	    (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off)) {
953 		err = -EINVAL;
954 		goto err_out_drop;
955 	}
956 
957 	err = memcpy_from_msg(so->tx.buf, msg, size);
958 	if (err < 0)
959 		goto err_out_drop;
960 
961 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
962 	if (!dev) {
963 		err = -ENXIO;
964 		goto err_out_drop;
965 	}
966 
967 	skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
968 				  msg->msg_flags & MSG_DONTWAIT, &err);
969 	if (!skb) {
970 		dev_put(dev);
971 		goto err_out_drop;
972 	}
973 
974 	can_skb_reserve(skb);
975 	can_skb_prv(skb)->ifindex = dev->ifindex;
976 	can_skb_prv(skb)->skbcnt = 0;
977 
978 	so->tx.len = size;
979 	so->tx.idx = 0;
980 
981 	cf = (struct canfd_frame *)skb->data;
982 	skb_put_zero(skb, so->ll.mtu);
983 
984 	/* cfecho should have been zero'ed by init / former isotp_rcv_echo() */
985 	if (so->cfecho)
986 		pr_notice_once("can-isotp: uninit cfecho %08X\n", so->cfecho);
987 
988 	/* check for single frame transmission depending on TX_DL */
989 	if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
990 		/* The message size generally fits into a SingleFrame - good.
991 		 *
992 		 * SF_DL ESC offset optimization:
993 		 *
994 		 * When TX_DL is greater 8 but the message would still fit
995 		 * into a 8 byte CAN frame, we can omit the offset.
996 		 * This prevents a protocol caused length extension from
997 		 * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
998 		 */
999 		if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
1000 			off = 0;
1001 
1002 		isotp_fill_dataframe(cf, so, ae, off);
1003 
1004 		/* place single frame N_PCI w/o length in appropriate index */
1005 		cf->data[ae] = N_PCI_SF;
1006 
1007 		/* place SF_DL size value depending on the SF_DL ESC offset */
1008 		if (off)
1009 			cf->data[SF_PCI_SZ4 + ae] = size;
1010 		else
1011 			cf->data[ae] |= size;
1012 
1013 		/* set CF echo tag for isotp_rcv_echo() (SF-mode) */
1014 		so->cfecho = *(u32 *)cf->data;
1015 	} else {
1016 		/* send first frame */
1017 
1018 		isotp_create_fframe(cf, so, ae);
1019 
1020 		if (isotp_bc_flags(so) == CAN_ISOTP_CF_BROADCAST) {
1021 			/* set timer for FC-less operation (STmin = 0) */
1022 			if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
1023 				so->tx_gap = ktime_set(0, so->force_tx_stmin);
1024 			else
1025 				so->tx_gap = ktime_set(0, so->frame_txtime);
1026 
1027 			/* disable wait for FCs due to activated block size */
1028 			so->txfc.bs = 0;
1029 
1030 			/* set CF echo tag for isotp_rcv_echo() (CF-mode) */
1031 			so->cfecho = *(u32 *)cf->data;
1032 		} else {
1033 			/* standard flow control check */
1034 			so->tx.state = ISOTP_WAIT_FIRST_FC;
1035 
1036 			/* start timeout for FC */
1037 			hrtimer_sec = ISOTP_FC_TIMEOUT;
1038 
1039 			/* no CF echo tag for isotp_rcv_echo() (FF-mode) */
1040 			so->cfecho = 0;
1041 		}
1042 	}
1043 
1044 	hrtimer_start(&so->txtimer, ktime_set(hrtimer_sec, 0),
1045 		      HRTIMER_MODE_REL_SOFT);
1046 
1047 	/* send the first or only CAN frame */
1048 	cf->flags = so->ll.tx_flags;
1049 
1050 	skb->dev = dev;
1051 	skb->sk = sk;
1052 	err = can_send(skb, 1);
1053 	dev_put(dev);
1054 	if (err) {
1055 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
1056 			       __func__, ERR_PTR(err));
1057 
1058 		/* no transmission -> no timeout monitoring */
1059 		hrtimer_cancel(&so->txtimer);
1060 
1061 		/* reset consecutive frame echo tag */
1062 		so->cfecho = 0;
1063 
1064 		goto err_out_drop;
1065 	}
1066 
1067 	if (wait_tx_done) {
1068 		/* wait for complete transmission of current pdu */
1069 		err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1070 		if (err)
1071 			goto err_event_drop;
1072 
1073 		err = sock_error(sk);
1074 		if (err)
1075 			return err;
1076 	}
1077 
1078 	return size;
1079 
1080 err_event_drop:
1081 	/* got signal: force tx state machine to be idle */
1082 	so->tx.state = ISOTP_IDLE;
1083 	hrtimer_cancel(&so->txfrtimer);
1084 	hrtimer_cancel(&so->txtimer);
1085 err_out_drop:
1086 	/* drop this PDU and unlock a potential wait queue */
1087 	so->tx.state = ISOTP_IDLE;
1088 	wake_up_interruptible(&so->wait);
1089 
1090 	return err;
1091 }
1092 
isotp_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)1093 static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1094 			 int flags)
1095 {
1096 	struct sock *sk = sock->sk;
1097 	struct sk_buff *skb;
1098 	struct isotp_sock *so = isotp_sk(sk);
1099 	int ret = 0;
1100 
1101 	if (flags & ~(MSG_DONTWAIT | MSG_TRUNC | MSG_PEEK | MSG_CMSG_COMPAT))
1102 		return -EINVAL;
1103 
1104 	if (!so->bound)
1105 		return -EADDRNOTAVAIL;
1106 
1107 	skb = skb_recv_datagram(sk, flags, &ret);
1108 	if (!skb)
1109 		return ret;
1110 
1111 	if (size < skb->len)
1112 		msg->msg_flags |= MSG_TRUNC;
1113 	else
1114 		size = skb->len;
1115 
1116 	ret = memcpy_to_msg(msg, skb->data, size);
1117 	if (ret < 0)
1118 		goto out_err;
1119 
1120 	sock_recv_cmsgs(msg, sk, skb);
1121 
1122 	if (msg->msg_name) {
1123 		__sockaddr_check_size(ISOTP_MIN_NAMELEN);
1124 		msg->msg_namelen = ISOTP_MIN_NAMELEN;
1125 		memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
1126 	}
1127 
1128 	/* set length of return value */
1129 	ret = (flags & MSG_TRUNC) ? skb->len : size;
1130 
1131 out_err:
1132 	skb_free_datagram(sk, skb);
1133 
1134 	return ret;
1135 }
1136 
isotp_release(struct socket * sock)1137 static int isotp_release(struct socket *sock)
1138 {
1139 	struct sock *sk = sock->sk;
1140 	struct isotp_sock *so;
1141 	struct net *net;
1142 
1143 	if (!sk)
1144 		return 0;
1145 
1146 	so = isotp_sk(sk);
1147 	net = sock_net(sk);
1148 
1149 	/* wait for complete transmission of current pdu */
1150 	while (wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE) == 0 &&
1151 	       cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SHUTDOWN) != ISOTP_IDLE)
1152 		;
1153 
1154 	/* force state machines to be idle also when a signal occurred */
1155 	so->tx.state = ISOTP_SHUTDOWN;
1156 	so->rx.state = ISOTP_IDLE;
1157 
1158 	spin_lock(&isotp_notifier_lock);
1159 	while (isotp_busy_notifier == so) {
1160 		spin_unlock(&isotp_notifier_lock);
1161 		schedule_timeout_uninterruptible(1);
1162 		spin_lock(&isotp_notifier_lock);
1163 	}
1164 	list_del(&so->notifier);
1165 	spin_unlock(&isotp_notifier_lock);
1166 
1167 	lock_sock(sk);
1168 
1169 	/* remove current filters & unregister */
1170 	if (so->bound) {
1171 		if (so->ifindex) {
1172 			struct net_device *dev;
1173 
1174 			dev = dev_get_by_index(net, so->ifindex);
1175 			if (dev) {
1176 				if (isotp_register_rxid(so))
1177 					can_rx_unregister(net, dev, so->rxid,
1178 							  SINGLE_MASK(so->rxid),
1179 							  isotp_rcv, sk);
1180 
1181 				can_rx_unregister(net, dev, so->txid,
1182 						  SINGLE_MASK(so->txid),
1183 						  isotp_rcv_echo, sk);
1184 				dev_put(dev);
1185 				synchronize_rcu();
1186 			}
1187 		}
1188 	}
1189 
1190 	hrtimer_cancel(&so->txfrtimer);
1191 	hrtimer_cancel(&so->txtimer);
1192 	hrtimer_cancel(&so->rxtimer);
1193 
1194 	so->ifindex = 0;
1195 	so->bound = 0;
1196 
1197 	sock_orphan(sk);
1198 	sock->sk = NULL;
1199 
1200 	release_sock(sk);
1201 	sock_put(sk);
1202 
1203 	return 0;
1204 }
1205 
isotp_bind(struct socket * sock,struct sockaddr * uaddr,int len)1206 static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
1207 {
1208 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1209 	struct sock *sk = sock->sk;
1210 	struct isotp_sock *so = isotp_sk(sk);
1211 	struct net *net = sock_net(sk);
1212 	int ifindex;
1213 	struct net_device *dev;
1214 	canid_t tx_id = addr->can_addr.tp.tx_id;
1215 	canid_t rx_id = addr->can_addr.tp.rx_id;
1216 	int err = 0;
1217 	int notify_enetdown = 0;
1218 
1219 	if (len < ISOTP_MIN_NAMELEN)
1220 		return -EINVAL;
1221 
1222 	if (addr->can_family != AF_CAN)
1223 		return -EINVAL;
1224 
1225 	/* sanitize tx CAN identifier */
1226 	if (tx_id & CAN_EFF_FLAG)
1227 		tx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1228 	else
1229 		tx_id &= CAN_SFF_MASK;
1230 
1231 	/* give feedback on wrong CAN-ID value */
1232 	if (tx_id != addr->can_addr.tp.tx_id)
1233 		return -EINVAL;
1234 
1235 	/* sanitize rx CAN identifier (if needed) */
1236 	if (isotp_register_rxid(so)) {
1237 		if (rx_id & CAN_EFF_FLAG)
1238 			rx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1239 		else
1240 			rx_id &= CAN_SFF_MASK;
1241 
1242 		/* give feedback on wrong CAN-ID value */
1243 		if (rx_id != addr->can_addr.tp.rx_id)
1244 			return -EINVAL;
1245 	}
1246 
1247 	if (!addr->can_ifindex)
1248 		return -ENODEV;
1249 
1250 	lock_sock(sk);
1251 
1252 	if (so->bound) {
1253 		err = -EINVAL;
1254 		goto out;
1255 	}
1256 
1257 	/* ensure different CAN IDs when the rx_id is to be registered */
1258 	if (isotp_register_rxid(so) && rx_id == tx_id) {
1259 		err = -EADDRNOTAVAIL;
1260 		goto out;
1261 	}
1262 
1263 	dev = dev_get_by_index(net, addr->can_ifindex);
1264 	if (!dev) {
1265 		err = -ENODEV;
1266 		goto out;
1267 	}
1268 	if (dev->type != ARPHRD_CAN) {
1269 		dev_put(dev);
1270 		err = -ENODEV;
1271 		goto out;
1272 	}
1273 	if (dev->mtu < so->ll.mtu) {
1274 		dev_put(dev);
1275 		err = -EINVAL;
1276 		goto out;
1277 	}
1278 	if (!(dev->flags & IFF_UP))
1279 		notify_enetdown = 1;
1280 
1281 	ifindex = dev->ifindex;
1282 
1283 	if (isotp_register_rxid(so))
1284 		can_rx_register(net, dev, rx_id, SINGLE_MASK(rx_id),
1285 				isotp_rcv, sk, "isotp", sk);
1286 
1287 	/* no consecutive frame echo skb in flight */
1288 	so->cfecho = 0;
1289 
1290 	/* register for echo skb's */
1291 	can_rx_register(net, dev, tx_id, SINGLE_MASK(tx_id),
1292 			isotp_rcv_echo, sk, "isotpe", sk);
1293 
1294 	dev_put(dev);
1295 
1296 	/* switch to new settings */
1297 	so->ifindex = ifindex;
1298 	so->rxid = rx_id;
1299 	so->txid = tx_id;
1300 	so->bound = 1;
1301 
1302 out:
1303 	release_sock(sk);
1304 
1305 	if (notify_enetdown) {
1306 		sk->sk_err = ENETDOWN;
1307 		if (!sock_flag(sk, SOCK_DEAD))
1308 			sk_error_report(sk);
1309 	}
1310 
1311 	return err;
1312 }
1313 
isotp_getname(struct socket * sock,struct sockaddr * uaddr,int peer)1314 static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1315 {
1316 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1317 	struct sock *sk = sock->sk;
1318 	struct isotp_sock *so = isotp_sk(sk);
1319 
1320 	if (peer)
1321 		return -EOPNOTSUPP;
1322 
1323 	memset(addr, 0, ISOTP_MIN_NAMELEN);
1324 	addr->can_family = AF_CAN;
1325 	addr->can_ifindex = so->ifindex;
1326 	addr->can_addr.tp.rx_id = so->rxid;
1327 	addr->can_addr.tp.tx_id = so->txid;
1328 
1329 	return ISOTP_MIN_NAMELEN;
1330 }
1331 
isotp_setsockopt_locked(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1332 static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
1333 			    sockptr_t optval, unsigned int optlen)
1334 {
1335 	struct sock *sk = sock->sk;
1336 	struct isotp_sock *so = isotp_sk(sk);
1337 	int ret = 0;
1338 
1339 	if (so->bound)
1340 		return -EISCONN;
1341 
1342 	switch (optname) {
1343 	case CAN_ISOTP_OPTS:
1344 		if (optlen != sizeof(struct can_isotp_options))
1345 			return -EINVAL;
1346 
1347 		if (copy_from_sockptr(&so->opt, optval, optlen))
1348 			return -EFAULT;
1349 
1350 		/* no separate rx_ext_address is given => use ext_address */
1351 		if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
1352 			so->opt.rx_ext_address = so->opt.ext_address;
1353 
1354 		/* these broadcast flags are not allowed together */
1355 		if (isotp_bc_flags(so) == ISOTP_ALL_BC_FLAGS) {
1356 			/* CAN_ISOTP_SF_BROADCAST is prioritized */
1357 			so->opt.flags &= ~CAN_ISOTP_CF_BROADCAST;
1358 
1359 			/* give user feedback on wrong config attempt */
1360 			ret = -EINVAL;
1361 		}
1362 
1363 		/* check for frame_txtime changes (0 => no changes) */
1364 		if (so->opt.frame_txtime) {
1365 			if (so->opt.frame_txtime == CAN_ISOTP_FRAME_TXTIME_ZERO)
1366 				so->frame_txtime = 0;
1367 			else
1368 				so->frame_txtime = so->opt.frame_txtime;
1369 		}
1370 		break;
1371 
1372 	case CAN_ISOTP_RECV_FC:
1373 		if (optlen != sizeof(struct can_isotp_fc_options))
1374 			return -EINVAL;
1375 
1376 		if (copy_from_sockptr(&so->rxfc, optval, optlen))
1377 			return -EFAULT;
1378 		break;
1379 
1380 	case CAN_ISOTP_TX_STMIN:
1381 		if (optlen != sizeof(u32))
1382 			return -EINVAL;
1383 
1384 		if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
1385 			return -EFAULT;
1386 		break;
1387 
1388 	case CAN_ISOTP_RX_STMIN:
1389 		if (optlen != sizeof(u32))
1390 			return -EINVAL;
1391 
1392 		if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
1393 			return -EFAULT;
1394 		break;
1395 
1396 	case CAN_ISOTP_LL_OPTS:
1397 		if (optlen == sizeof(struct can_isotp_ll_options)) {
1398 			struct can_isotp_ll_options ll;
1399 
1400 			if (copy_from_sockptr(&ll, optval, optlen))
1401 				return -EFAULT;
1402 
1403 			/* check for correct ISO 11898-1 DLC data length */
1404 			if (ll.tx_dl != padlen(ll.tx_dl))
1405 				return -EINVAL;
1406 
1407 			if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
1408 				return -EINVAL;
1409 
1410 			if (ll.mtu == CAN_MTU &&
1411 			    (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1412 				return -EINVAL;
1413 
1414 			memcpy(&so->ll, &ll, sizeof(ll));
1415 
1416 			/* set ll_dl for tx path to similar place as for rx */
1417 			so->tx.ll_dl = ll.tx_dl;
1418 		} else {
1419 			return -EINVAL;
1420 		}
1421 		break;
1422 
1423 	default:
1424 		ret = -ENOPROTOOPT;
1425 	}
1426 
1427 	return ret;
1428 }
1429 
isotp_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1430 static int isotp_setsockopt(struct socket *sock, int level, int optname,
1431 			    sockptr_t optval, unsigned int optlen)
1432 
1433 {
1434 	struct sock *sk = sock->sk;
1435 	int ret;
1436 
1437 	if (level != SOL_CAN_ISOTP)
1438 		return -EINVAL;
1439 
1440 	lock_sock(sk);
1441 	ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
1442 	release_sock(sk);
1443 	return ret;
1444 }
1445 
isotp_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1446 static int isotp_getsockopt(struct socket *sock, int level, int optname,
1447 			    char __user *optval, int __user *optlen)
1448 {
1449 	struct sock *sk = sock->sk;
1450 	struct isotp_sock *so = isotp_sk(sk);
1451 	int len;
1452 	void *val;
1453 
1454 	if (level != SOL_CAN_ISOTP)
1455 		return -EINVAL;
1456 	if (get_user(len, optlen))
1457 		return -EFAULT;
1458 	if (len < 0)
1459 		return -EINVAL;
1460 
1461 	switch (optname) {
1462 	case CAN_ISOTP_OPTS:
1463 		len = min_t(int, len, sizeof(struct can_isotp_options));
1464 		val = &so->opt;
1465 		break;
1466 
1467 	case CAN_ISOTP_RECV_FC:
1468 		len = min_t(int, len, sizeof(struct can_isotp_fc_options));
1469 		val = &so->rxfc;
1470 		break;
1471 
1472 	case CAN_ISOTP_TX_STMIN:
1473 		len = min_t(int, len, sizeof(u32));
1474 		val = &so->force_tx_stmin;
1475 		break;
1476 
1477 	case CAN_ISOTP_RX_STMIN:
1478 		len = min_t(int, len, sizeof(u32));
1479 		val = &so->force_rx_stmin;
1480 		break;
1481 
1482 	case CAN_ISOTP_LL_OPTS:
1483 		len = min_t(int, len, sizeof(struct can_isotp_ll_options));
1484 		val = &so->ll;
1485 		break;
1486 
1487 	default:
1488 		return -ENOPROTOOPT;
1489 	}
1490 
1491 	if (put_user(len, optlen))
1492 		return -EFAULT;
1493 	if (copy_to_user(optval, val, len))
1494 		return -EFAULT;
1495 	return 0;
1496 }
1497 
isotp_notify(struct isotp_sock * so,unsigned long msg,struct net_device * dev)1498 static void isotp_notify(struct isotp_sock *so, unsigned long msg,
1499 			 struct net_device *dev)
1500 {
1501 	struct sock *sk = &so->sk;
1502 
1503 	if (!net_eq(dev_net(dev), sock_net(sk)))
1504 		return;
1505 
1506 	if (so->ifindex != dev->ifindex)
1507 		return;
1508 
1509 	switch (msg) {
1510 	case NETDEV_UNREGISTER:
1511 		lock_sock(sk);
1512 		/* remove current filters & unregister */
1513 		if (so->bound) {
1514 			if (isotp_register_rxid(so))
1515 				can_rx_unregister(dev_net(dev), dev, so->rxid,
1516 						  SINGLE_MASK(so->rxid),
1517 						  isotp_rcv, sk);
1518 
1519 			can_rx_unregister(dev_net(dev), dev, so->txid,
1520 					  SINGLE_MASK(so->txid),
1521 					  isotp_rcv_echo, sk);
1522 		}
1523 
1524 		so->ifindex = 0;
1525 		so->bound  = 0;
1526 		release_sock(sk);
1527 
1528 		sk->sk_err = ENODEV;
1529 		if (!sock_flag(sk, SOCK_DEAD))
1530 			sk_error_report(sk);
1531 		break;
1532 
1533 	case NETDEV_DOWN:
1534 		sk->sk_err = ENETDOWN;
1535 		if (!sock_flag(sk, SOCK_DEAD))
1536 			sk_error_report(sk);
1537 		break;
1538 	}
1539 }
1540 
isotp_notifier(struct notifier_block * nb,unsigned long msg,void * ptr)1541 static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
1542 			  void *ptr)
1543 {
1544 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1545 
1546 	if (dev->type != ARPHRD_CAN)
1547 		return NOTIFY_DONE;
1548 	if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
1549 		return NOTIFY_DONE;
1550 	if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
1551 		return NOTIFY_DONE;
1552 
1553 	spin_lock(&isotp_notifier_lock);
1554 	list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
1555 		spin_unlock(&isotp_notifier_lock);
1556 		isotp_notify(isotp_busy_notifier, msg, dev);
1557 		spin_lock(&isotp_notifier_lock);
1558 	}
1559 	isotp_busy_notifier = NULL;
1560 	spin_unlock(&isotp_notifier_lock);
1561 	return NOTIFY_DONE;
1562 }
1563 
isotp_init(struct sock * sk)1564 static int isotp_init(struct sock *sk)
1565 {
1566 	struct isotp_sock *so = isotp_sk(sk);
1567 
1568 	so->ifindex = 0;
1569 	so->bound = 0;
1570 
1571 	so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
1572 	so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1573 	so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1574 	so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1575 	so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1576 	so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1577 	so->frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1578 	so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
1579 	so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
1580 	so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
1581 	so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
1582 	so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
1583 	so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
1584 
1585 	/* set ll_dl for tx path to similar place as for rx */
1586 	so->tx.ll_dl = so->ll.tx_dl;
1587 
1588 	so->rx.state = ISOTP_IDLE;
1589 	so->tx.state = ISOTP_IDLE;
1590 
1591 	hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1592 	so->rxtimer.function = isotp_rx_timer_handler;
1593 	hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1594 	so->txtimer.function = isotp_tx_timer_handler;
1595 	hrtimer_init(&so->txfrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1596 	so->txfrtimer.function = isotp_txfr_timer_handler;
1597 
1598 	init_waitqueue_head(&so->wait);
1599 	spin_lock_init(&so->rx_lock);
1600 
1601 	spin_lock(&isotp_notifier_lock);
1602 	list_add_tail(&so->notifier, &isotp_notifier_list);
1603 	spin_unlock(&isotp_notifier_lock);
1604 
1605 	return 0;
1606 }
1607 
isotp_poll(struct file * file,struct socket * sock,poll_table * wait)1608 static __poll_t isotp_poll(struct file *file, struct socket *sock, poll_table *wait)
1609 {
1610 	struct sock *sk = sock->sk;
1611 	struct isotp_sock *so = isotp_sk(sk);
1612 
1613 	__poll_t mask = datagram_poll(file, sock, wait);
1614 	poll_wait(file, &so->wait, wait);
1615 
1616 	/* Check for false positives due to TX state */
1617 	if ((mask & EPOLLWRNORM) && (so->tx.state != ISOTP_IDLE))
1618 		mask &= ~(EPOLLOUT | EPOLLWRNORM);
1619 
1620 	return mask;
1621 }
1622 
isotp_sock_no_ioctlcmd(struct socket * sock,unsigned int cmd,unsigned long arg)1623 static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1624 				  unsigned long arg)
1625 {
1626 	/* no ioctls for socket layer -> hand it down to NIC layer */
1627 	return -ENOIOCTLCMD;
1628 }
1629 
1630 static const struct proto_ops isotp_ops = {
1631 	.family = PF_CAN,
1632 	.release = isotp_release,
1633 	.bind = isotp_bind,
1634 	.connect = sock_no_connect,
1635 	.socketpair = sock_no_socketpair,
1636 	.accept = sock_no_accept,
1637 	.getname = isotp_getname,
1638 	.poll = isotp_poll,
1639 	.ioctl = isotp_sock_no_ioctlcmd,
1640 	.gettstamp = sock_gettstamp,
1641 	.listen = sock_no_listen,
1642 	.shutdown = sock_no_shutdown,
1643 	.setsockopt = isotp_setsockopt,
1644 	.getsockopt = isotp_getsockopt,
1645 	.sendmsg = isotp_sendmsg,
1646 	.recvmsg = isotp_recvmsg,
1647 	.mmap = sock_no_mmap,
1648 	.sendpage = sock_no_sendpage,
1649 };
1650 
1651 static struct proto isotp_proto __read_mostly = {
1652 	.name = "CAN_ISOTP",
1653 	.owner = THIS_MODULE,
1654 	.obj_size = sizeof(struct isotp_sock),
1655 	.init = isotp_init,
1656 };
1657 
1658 static const struct can_proto isotp_can_proto = {
1659 	.type = SOCK_DGRAM,
1660 	.protocol = CAN_ISOTP,
1661 	.ops = &isotp_ops,
1662 	.prot = &isotp_proto,
1663 };
1664 
1665 static struct notifier_block canisotp_notifier = {
1666 	.notifier_call = isotp_notifier
1667 };
1668 
isotp_module_init(void)1669 static __init int isotp_module_init(void)
1670 {
1671 	int err;
1672 
1673 	pr_info("can: isotp protocol\n");
1674 
1675 	err = can_proto_register(&isotp_can_proto);
1676 	if (err < 0)
1677 		pr_err("can: registration of isotp protocol failed %pe\n", ERR_PTR(err));
1678 	else
1679 		register_netdevice_notifier(&canisotp_notifier);
1680 
1681 	return err;
1682 }
1683 
isotp_module_exit(void)1684 static __exit void isotp_module_exit(void)
1685 {
1686 	can_proto_unregister(&isotp_can_proto);
1687 	unregister_netdevice_notifier(&canisotp_notifier);
1688 }
1689 
1690 module_init(isotp_module_init);
1691 module_exit(isotp_module_exit);
1692