1 // SPDX-License-Identifier: GPL-2.0
2
3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler
4 *
5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com>
6 *
7 */
8
9 #include <linux/ethtool.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/list.h>
15 #include <linux/errno.h>
16 #include <linux/skbuff.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/rcupdate.h>
21 #include <linux/time.h>
22 #include <net/netlink.h>
23 #include <net/pkt_sched.h>
24 #include <net/pkt_cls.h>
25 #include <net/sch_generic.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28
29 static LIST_HEAD(taprio_list);
30
31 #define TAPRIO_ALL_GATES_OPEN -1
32
33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
34 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
35 #define TAPRIO_FLAGS_INVALID U32_MAX
36
37 struct sched_entry {
38 struct list_head list;
39
40 /* The instant that this entry "closes" and the next one
41 * should open, the qdisc will make some effort so that no
42 * packet leaves after this time.
43 */
44 ktime_t close_time;
45 ktime_t next_txtime;
46 atomic_t budget;
47 int index;
48 u32 gate_mask;
49 u32 interval;
50 u8 command;
51 };
52
53 struct sched_gate_list {
54 struct rcu_head rcu;
55 struct list_head entries;
56 size_t num_entries;
57 ktime_t cycle_close_time;
58 s64 cycle_time;
59 s64 cycle_time_extension;
60 s64 base_time;
61 };
62
63 struct taprio_sched {
64 struct Qdisc **qdiscs;
65 struct Qdisc *root;
66 u32 flags;
67 enum tk_offsets tk_offset;
68 int clockid;
69 bool offloaded;
70 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
71 * speeds it's sub-nanoseconds per byte
72 */
73
74 /* Protects the update side of the RCU protected current_entry */
75 spinlock_t current_entry_lock;
76 struct sched_entry __rcu *current_entry;
77 struct sched_gate_list __rcu *oper_sched;
78 struct sched_gate_list __rcu *admin_sched;
79 struct hrtimer advance_timer;
80 struct list_head taprio_list;
81 u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */
82 u32 max_sdu[TC_MAX_QUEUE]; /* for dump and offloading */
83 u32 txtime_delay;
84 };
85
86 struct __tc_taprio_qopt_offload {
87 refcount_t users;
88 struct tc_taprio_qopt_offload offload;
89 };
90
sched_base_time(const struct sched_gate_list * sched)91 static ktime_t sched_base_time(const struct sched_gate_list *sched)
92 {
93 if (!sched)
94 return KTIME_MAX;
95
96 return ns_to_ktime(sched->base_time);
97 }
98
taprio_mono_to_any(const struct taprio_sched * q,ktime_t mono)99 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
100 {
101 /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
102 enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
103
104 switch (tk_offset) {
105 case TK_OFFS_MAX:
106 return mono;
107 default:
108 return ktime_mono_to_any(mono, tk_offset);
109 }
110 }
111
taprio_get_time(const struct taprio_sched * q)112 static ktime_t taprio_get_time(const struct taprio_sched *q)
113 {
114 return taprio_mono_to_any(q, ktime_get());
115 }
116
taprio_free_sched_cb(struct rcu_head * head)117 static void taprio_free_sched_cb(struct rcu_head *head)
118 {
119 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
120 struct sched_entry *entry, *n;
121
122 list_for_each_entry_safe(entry, n, &sched->entries, list) {
123 list_del(&entry->list);
124 kfree(entry);
125 }
126
127 kfree(sched);
128 }
129
switch_schedules(struct taprio_sched * q,struct sched_gate_list ** admin,struct sched_gate_list ** oper)130 static void switch_schedules(struct taprio_sched *q,
131 struct sched_gate_list **admin,
132 struct sched_gate_list **oper)
133 {
134 rcu_assign_pointer(q->oper_sched, *admin);
135 rcu_assign_pointer(q->admin_sched, NULL);
136
137 if (*oper)
138 call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
139
140 *oper = *admin;
141 *admin = NULL;
142 }
143
144 /* Get how much time has been already elapsed in the current cycle. */
get_cycle_time_elapsed(struct sched_gate_list * sched,ktime_t time)145 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
146 {
147 ktime_t time_since_sched_start;
148 s32 time_elapsed;
149
150 time_since_sched_start = ktime_sub(time, sched->base_time);
151 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
152
153 return time_elapsed;
154 }
155
get_interval_end_time(struct sched_gate_list * sched,struct sched_gate_list * admin,struct sched_entry * entry,ktime_t intv_start)156 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
157 struct sched_gate_list *admin,
158 struct sched_entry *entry,
159 ktime_t intv_start)
160 {
161 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
162 ktime_t intv_end, cycle_ext_end, cycle_end;
163
164 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
165 intv_end = ktime_add_ns(intv_start, entry->interval);
166 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
167
168 if (ktime_before(intv_end, cycle_end))
169 return intv_end;
170 else if (admin && admin != sched &&
171 ktime_after(admin->base_time, cycle_end) &&
172 ktime_before(admin->base_time, cycle_ext_end))
173 return admin->base_time;
174 else
175 return cycle_end;
176 }
177
length_to_duration(struct taprio_sched * q,int len)178 static int length_to_duration(struct taprio_sched *q, int len)
179 {
180 return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
181 }
182
183 /* Returns the entry corresponding to next available interval. If
184 * validate_interval is set, it only validates whether the timestamp occurs
185 * when the gate corresponding to the skb's traffic class is open.
186 */
find_entry_to_transmit(struct sk_buff * skb,struct Qdisc * sch,struct sched_gate_list * sched,struct sched_gate_list * admin,ktime_t time,ktime_t * interval_start,ktime_t * interval_end,bool validate_interval)187 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
188 struct Qdisc *sch,
189 struct sched_gate_list *sched,
190 struct sched_gate_list *admin,
191 ktime_t time,
192 ktime_t *interval_start,
193 ktime_t *interval_end,
194 bool validate_interval)
195 {
196 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
197 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
198 struct sched_entry *entry = NULL, *entry_found = NULL;
199 struct taprio_sched *q = qdisc_priv(sch);
200 struct net_device *dev = qdisc_dev(sch);
201 bool entry_available = false;
202 s32 cycle_elapsed;
203 int tc, n;
204
205 tc = netdev_get_prio_tc_map(dev, skb->priority);
206 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
207
208 *interval_start = 0;
209 *interval_end = 0;
210
211 if (!sched)
212 return NULL;
213
214 cycle = sched->cycle_time;
215 cycle_elapsed = get_cycle_time_elapsed(sched, time);
216 curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
217 cycle_end = ktime_add_ns(curr_intv_end, cycle);
218
219 list_for_each_entry(entry, &sched->entries, list) {
220 curr_intv_start = curr_intv_end;
221 curr_intv_end = get_interval_end_time(sched, admin, entry,
222 curr_intv_start);
223
224 if (ktime_after(curr_intv_start, cycle_end))
225 break;
226
227 if (!(entry->gate_mask & BIT(tc)) ||
228 packet_transmit_time > entry->interval)
229 continue;
230
231 txtime = entry->next_txtime;
232
233 if (ktime_before(txtime, time) || validate_interval) {
234 transmit_end_time = ktime_add_ns(time, packet_transmit_time);
235 if ((ktime_before(curr_intv_start, time) &&
236 ktime_before(transmit_end_time, curr_intv_end)) ||
237 (ktime_after(curr_intv_start, time) && !validate_interval)) {
238 entry_found = entry;
239 *interval_start = curr_intv_start;
240 *interval_end = curr_intv_end;
241 break;
242 } else if (!entry_available && !validate_interval) {
243 /* Here, we are just trying to find out the
244 * first available interval in the next cycle.
245 */
246 entry_available = true;
247 entry_found = entry;
248 *interval_start = ktime_add_ns(curr_intv_start, cycle);
249 *interval_end = ktime_add_ns(curr_intv_end, cycle);
250 }
251 } else if (ktime_before(txtime, earliest_txtime) &&
252 !entry_available) {
253 earliest_txtime = txtime;
254 entry_found = entry;
255 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
256 *interval_start = ktime_add(curr_intv_start, n * cycle);
257 *interval_end = ktime_add(curr_intv_end, n * cycle);
258 }
259 }
260
261 return entry_found;
262 }
263
is_valid_interval(struct sk_buff * skb,struct Qdisc * sch)264 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
265 {
266 struct taprio_sched *q = qdisc_priv(sch);
267 struct sched_gate_list *sched, *admin;
268 ktime_t interval_start, interval_end;
269 struct sched_entry *entry;
270
271 rcu_read_lock();
272 sched = rcu_dereference(q->oper_sched);
273 admin = rcu_dereference(q->admin_sched);
274
275 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
276 &interval_start, &interval_end, true);
277 rcu_read_unlock();
278
279 return entry;
280 }
281
taprio_flags_valid(u32 flags)282 static bool taprio_flags_valid(u32 flags)
283 {
284 /* Make sure no other flag bits are set. */
285 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
286 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
287 return false;
288 /* txtime-assist and full offload are mutually exclusive */
289 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
290 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
291 return false;
292 return true;
293 }
294
295 /* This returns the tstamp value set by TCP in terms of the set clock. */
get_tcp_tstamp(struct taprio_sched * q,struct sk_buff * skb)296 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
297 {
298 unsigned int offset = skb_network_offset(skb);
299 const struct ipv6hdr *ipv6h;
300 const struct iphdr *iph;
301 struct ipv6hdr _ipv6h;
302
303 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
304 if (!ipv6h)
305 return 0;
306
307 if (ipv6h->version == 4) {
308 iph = (struct iphdr *)ipv6h;
309 offset += iph->ihl * 4;
310
311 /* special-case 6in4 tunnelling, as that is a common way to get
312 * v6 connectivity in the home
313 */
314 if (iph->protocol == IPPROTO_IPV6) {
315 ipv6h = skb_header_pointer(skb, offset,
316 sizeof(_ipv6h), &_ipv6h);
317
318 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
319 return 0;
320 } else if (iph->protocol != IPPROTO_TCP) {
321 return 0;
322 }
323 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
324 return 0;
325 }
326
327 return taprio_mono_to_any(q, skb->skb_mstamp_ns);
328 }
329
330 /* There are a few scenarios where we will have to modify the txtime from
331 * what is read from next_txtime in sched_entry. They are:
332 * 1. If txtime is in the past,
333 * a. The gate for the traffic class is currently open and packet can be
334 * transmitted before it closes, schedule the packet right away.
335 * b. If the gate corresponding to the traffic class is going to open later
336 * in the cycle, set the txtime of packet to the interval start.
337 * 2. If txtime is in the future, there are packets corresponding to the
338 * current traffic class waiting to be transmitted. So, the following
339 * possibilities exist:
340 * a. We can transmit the packet before the window containing the txtime
341 * closes.
342 * b. The window might close before the transmission can be completed
343 * successfully. So, schedule the packet in the next open window.
344 */
get_packet_txtime(struct sk_buff * skb,struct Qdisc * sch)345 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
346 {
347 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
348 struct taprio_sched *q = qdisc_priv(sch);
349 struct sched_gate_list *sched, *admin;
350 ktime_t minimum_time, now, txtime;
351 int len, packet_transmit_time;
352 struct sched_entry *entry;
353 bool sched_changed;
354
355 now = taprio_get_time(q);
356 minimum_time = ktime_add_ns(now, q->txtime_delay);
357
358 tcp_tstamp = get_tcp_tstamp(q, skb);
359 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
360
361 rcu_read_lock();
362 admin = rcu_dereference(q->admin_sched);
363 sched = rcu_dereference(q->oper_sched);
364 if (admin && ktime_after(minimum_time, admin->base_time))
365 switch_schedules(q, &admin, &sched);
366
367 /* Until the schedule starts, all the queues are open */
368 if (!sched || ktime_before(minimum_time, sched->base_time)) {
369 txtime = minimum_time;
370 goto done;
371 }
372
373 len = qdisc_pkt_len(skb);
374 packet_transmit_time = length_to_duration(q, len);
375
376 do {
377 sched_changed = false;
378
379 entry = find_entry_to_transmit(skb, sch, sched, admin,
380 minimum_time,
381 &interval_start, &interval_end,
382 false);
383 if (!entry) {
384 txtime = 0;
385 goto done;
386 }
387
388 txtime = entry->next_txtime;
389 txtime = max_t(ktime_t, txtime, minimum_time);
390 txtime = max_t(ktime_t, txtime, interval_start);
391
392 if (admin && admin != sched &&
393 ktime_after(txtime, admin->base_time)) {
394 sched = admin;
395 sched_changed = true;
396 continue;
397 }
398
399 transmit_end_time = ktime_add(txtime, packet_transmit_time);
400 minimum_time = transmit_end_time;
401
402 /* Update the txtime of current entry to the next time it's
403 * interval starts.
404 */
405 if (ktime_after(transmit_end_time, interval_end))
406 entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
407 } while (sched_changed || ktime_after(transmit_end_time, interval_end));
408
409 entry->next_txtime = transmit_end_time;
410
411 done:
412 rcu_read_unlock();
413 return txtime;
414 }
415
taprio_enqueue_one(struct sk_buff * skb,struct Qdisc * sch,struct Qdisc * child,struct sk_buff ** to_free)416 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
417 struct Qdisc *child, struct sk_buff **to_free)
418 {
419 struct taprio_sched *q = qdisc_priv(sch);
420 struct net_device *dev = qdisc_dev(sch);
421 int prio = skb->priority;
422 u8 tc;
423
424 /* sk_flags are only safe to use on full sockets. */
425 if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
426 if (!is_valid_interval(skb, sch))
427 return qdisc_drop(skb, sch, to_free);
428 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
429 skb->tstamp = get_packet_txtime(skb, sch);
430 if (!skb->tstamp)
431 return qdisc_drop(skb, sch, to_free);
432 }
433
434 /* Devices with full offload are expected to honor this in hardware */
435 tc = netdev_get_prio_tc_map(dev, prio);
436 if (skb->len > q->max_frm_len[tc])
437 return qdisc_drop(skb, sch, to_free);
438
439 qdisc_qstats_backlog_inc(sch, skb);
440 sch->q.qlen++;
441
442 return qdisc_enqueue(skb, child, to_free);
443 }
444
445 /* Will not be called in the full offload case, since the TX queues are
446 * attached to the Qdisc created using qdisc_create_dflt()
447 */
taprio_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)448 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
449 struct sk_buff **to_free)
450 {
451 struct taprio_sched *q = qdisc_priv(sch);
452 struct Qdisc *child;
453 int queue;
454
455 queue = skb_get_queue_mapping(skb);
456
457 child = q->qdiscs[queue];
458 if (unlikely(!child))
459 return qdisc_drop(skb, sch, to_free);
460
461 /* Large packets might not be transmitted when the transmission duration
462 * exceeds any configured interval. Therefore, segment the skb into
463 * smaller chunks. Drivers with full offload are expected to handle
464 * this in hardware.
465 */
466 if (skb_is_gso(skb)) {
467 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
468 netdev_features_t features = netif_skb_features(skb);
469 struct sk_buff *segs, *nskb;
470 int ret;
471
472 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
473 if (IS_ERR_OR_NULL(segs))
474 return qdisc_drop(skb, sch, to_free);
475
476 skb_list_walk_safe(segs, segs, nskb) {
477 skb_mark_not_on_list(segs);
478 qdisc_skb_cb(segs)->pkt_len = segs->len;
479 slen += segs->len;
480
481 ret = taprio_enqueue_one(segs, sch, child, to_free);
482 if (ret != NET_XMIT_SUCCESS) {
483 if (net_xmit_drop_count(ret))
484 qdisc_qstats_drop(sch);
485 } else {
486 numsegs++;
487 }
488 }
489
490 if (numsegs > 1)
491 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
492 consume_skb(skb);
493
494 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
495 }
496
497 return taprio_enqueue_one(skb, sch, child, to_free);
498 }
499
500 /* Will not be called in the full offload case, since the TX queues are
501 * attached to the Qdisc created using qdisc_create_dflt()
502 */
taprio_peek(struct Qdisc * sch)503 static struct sk_buff *taprio_peek(struct Qdisc *sch)
504 {
505 struct taprio_sched *q = qdisc_priv(sch);
506 struct net_device *dev = qdisc_dev(sch);
507 struct sched_entry *entry;
508 struct sk_buff *skb;
509 u32 gate_mask;
510 int i;
511
512 rcu_read_lock();
513 entry = rcu_dereference(q->current_entry);
514 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
515 rcu_read_unlock();
516
517 if (!gate_mask)
518 return NULL;
519
520 for (i = 0; i < dev->num_tx_queues; i++) {
521 struct Qdisc *child = q->qdiscs[i];
522 int prio;
523 u8 tc;
524
525 if (unlikely(!child))
526 continue;
527
528 skb = child->ops->peek(child);
529 if (!skb)
530 continue;
531
532 if (TXTIME_ASSIST_IS_ENABLED(q->flags))
533 return skb;
534
535 prio = skb->priority;
536 tc = netdev_get_prio_tc_map(dev, prio);
537
538 if (!(gate_mask & BIT(tc)))
539 continue;
540
541 return skb;
542 }
543
544 return NULL;
545 }
546
taprio_set_budget(struct taprio_sched * q,struct sched_entry * entry)547 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
548 {
549 atomic_set(&entry->budget,
550 div64_u64((u64)entry->interval * PSEC_PER_NSEC,
551 atomic64_read(&q->picos_per_byte)));
552 }
553
554 /* Will not be called in the full offload case, since the TX queues are
555 * attached to the Qdisc created using qdisc_create_dflt()
556 */
taprio_dequeue(struct Qdisc * sch)557 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
558 {
559 struct taprio_sched *q = qdisc_priv(sch);
560 struct net_device *dev = qdisc_dev(sch);
561 struct sk_buff *skb = NULL;
562 struct sched_entry *entry;
563 u32 gate_mask;
564 int i;
565
566 rcu_read_lock();
567 entry = rcu_dereference(q->current_entry);
568 /* if there's no entry, it means that the schedule didn't
569 * start yet, so force all gates to be open, this is in
570 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
571 * "AdminGateStates"
572 */
573 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
574
575 if (!gate_mask)
576 goto done;
577
578 for (i = 0; i < dev->num_tx_queues; i++) {
579 struct Qdisc *child = q->qdiscs[i];
580 ktime_t guard;
581 int prio;
582 int len;
583 u8 tc;
584
585 if (unlikely(!child))
586 continue;
587
588 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
589 skb = child->ops->dequeue(child);
590 if (!skb)
591 continue;
592 goto skb_found;
593 }
594
595 skb = child->ops->peek(child);
596 if (!skb)
597 continue;
598
599 prio = skb->priority;
600 tc = netdev_get_prio_tc_map(dev, prio);
601
602 if (!(gate_mask & BIT(tc))) {
603 skb = NULL;
604 continue;
605 }
606
607 len = qdisc_pkt_len(skb);
608 guard = ktime_add_ns(taprio_get_time(q),
609 length_to_duration(q, len));
610
611 /* In the case that there's no gate entry, there's no
612 * guard band ...
613 */
614 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
615 ktime_after(guard, entry->close_time)) {
616 skb = NULL;
617 continue;
618 }
619
620 /* ... and no budget. */
621 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
622 atomic_sub_return(len, &entry->budget) < 0) {
623 skb = NULL;
624 continue;
625 }
626
627 skb = child->ops->dequeue(child);
628 if (unlikely(!skb))
629 goto done;
630
631 skb_found:
632 qdisc_bstats_update(sch, skb);
633 qdisc_qstats_backlog_dec(sch, skb);
634 sch->q.qlen--;
635
636 goto done;
637 }
638
639 done:
640 rcu_read_unlock();
641
642 return skb;
643 }
644
should_restart_cycle(const struct sched_gate_list * oper,const struct sched_entry * entry)645 static bool should_restart_cycle(const struct sched_gate_list *oper,
646 const struct sched_entry *entry)
647 {
648 if (list_is_last(&entry->list, &oper->entries))
649 return true;
650
651 if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
652 return true;
653
654 return false;
655 }
656
should_change_schedules(const struct sched_gate_list * admin,const struct sched_gate_list * oper,ktime_t close_time)657 static bool should_change_schedules(const struct sched_gate_list *admin,
658 const struct sched_gate_list *oper,
659 ktime_t close_time)
660 {
661 ktime_t next_base_time, extension_time;
662
663 if (!admin)
664 return false;
665
666 next_base_time = sched_base_time(admin);
667
668 /* This is the simple case, the close_time would fall after
669 * the next schedule base_time.
670 */
671 if (ktime_compare(next_base_time, close_time) <= 0)
672 return true;
673
674 /* This is the cycle_time_extension case, if the close_time
675 * plus the amount that can be extended would fall after the
676 * next schedule base_time, we can extend the current schedule
677 * for that amount.
678 */
679 extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
680
681 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
682 * how precisely the extension should be made. So after
683 * conformance testing, this logic may change.
684 */
685 if (ktime_compare(next_base_time, extension_time) <= 0)
686 return true;
687
688 return false;
689 }
690
advance_sched(struct hrtimer * timer)691 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
692 {
693 struct taprio_sched *q = container_of(timer, struct taprio_sched,
694 advance_timer);
695 struct sched_gate_list *oper, *admin;
696 struct sched_entry *entry, *next;
697 struct Qdisc *sch = q->root;
698 ktime_t close_time;
699
700 spin_lock(&q->current_entry_lock);
701 entry = rcu_dereference_protected(q->current_entry,
702 lockdep_is_held(&q->current_entry_lock));
703 oper = rcu_dereference_protected(q->oper_sched,
704 lockdep_is_held(&q->current_entry_lock));
705 admin = rcu_dereference_protected(q->admin_sched,
706 lockdep_is_held(&q->current_entry_lock));
707
708 if (!oper)
709 switch_schedules(q, &admin, &oper);
710
711 /* This can happen in two cases: 1. this is the very first run
712 * of this function (i.e. we weren't running any schedule
713 * previously); 2. The previous schedule just ended. The first
714 * entry of all schedules are pre-calculated during the
715 * schedule initialization.
716 */
717 if (unlikely(!entry || entry->close_time == oper->base_time)) {
718 next = list_first_entry(&oper->entries, struct sched_entry,
719 list);
720 close_time = next->close_time;
721 goto first_run;
722 }
723
724 if (should_restart_cycle(oper, entry)) {
725 next = list_first_entry(&oper->entries, struct sched_entry,
726 list);
727 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
728 oper->cycle_time);
729 } else {
730 next = list_next_entry(entry, list);
731 }
732
733 close_time = ktime_add_ns(entry->close_time, next->interval);
734 close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
735
736 if (should_change_schedules(admin, oper, close_time)) {
737 /* Set things so the next time this runs, the new
738 * schedule runs.
739 */
740 close_time = sched_base_time(admin);
741 switch_schedules(q, &admin, &oper);
742 }
743
744 next->close_time = close_time;
745 taprio_set_budget(q, next);
746
747 first_run:
748 rcu_assign_pointer(q->current_entry, next);
749 spin_unlock(&q->current_entry_lock);
750
751 hrtimer_set_expires(&q->advance_timer, close_time);
752
753 rcu_read_lock();
754 __netif_schedule(sch);
755 rcu_read_unlock();
756
757 return HRTIMER_RESTART;
758 }
759
760 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
761 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 },
762 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 },
763 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
764 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 },
765 };
766
767 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = {
768 [TCA_TAPRIO_TC_ENTRY_INDEX] = { .type = NLA_U32 },
769 [TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 },
770 };
771
772 static struct netlink_range_validation_signed taprio_cycle_time_range = {
773 .min = 0,
774 .max = INT_MAX,
775 };
776
777 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
778 [TCA_TAPRIO_ATTR_PRIOMAP] = {
779 .len = sizeof(struct tc_mqprio_qopt)
780 },
781 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED },
782 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 },
783 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED },
784 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 },
785 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] =
786 NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range),
787 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
788 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 },
789 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 },
790 [TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED },
791 };
792
fill_sched_entry(struct taprio_sched * q,struct nlattr ** tb,struct sched_entry * entry,struct netlink_ext_ack * extack)793 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
794 struct sched_entry *entry,
795 struct netlink_ext_ack *extack)
796 {
797 int min_duration = length_to_duration(q, ETH_ZLEN);
798 u32 interval = 0;
799
800 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
801 entry->command = nla_get_u8(
802 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
803
804 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
805 entry->gate_mask = nla_get_u32(
806 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
807
808 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
809 interval = nla_get_u32(
810 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
811
812 /* The interval should allow at least the minimum ethernet
813 * frame to go out.
814 */
815 if (interval < min_duration) {
816 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
817 return -EINVAL;
818 }
819
820 entry->interval = interval;
821
822 return 0;
823 }
824
parse_sched_entry(struct taprio_sched * q,struct nlattr * n,struct sched_entry * entry,int index,struct netlink_ext_ack * extack)825 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
826 struct sched_entry *entry, int index,
827 struct netlink_ext_ack *extack)
828 {
829 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
830 int err;
831
832 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
833 entry_policy, NULL);
834 if (err < 0) {
835 NL_SET_ERR_MSG(extack, "Could not parse nested entry");
836 return -EINVAL;
837 }
838
839 entry->index = index;
840
841 return fill_sched_entry(q, tb, entry, extack);
842 }
843
parse_sched_list(struct taprio_sched * q,struct nlattr * list,struct sched_gate_list * sched,struct netlink_ext_ack * extack)844 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
845 struct sched_gate_list *sched,
846 struct netlink_ext_ack *extack)
847 {
848 struct nlattr *n;
849 int err, rem;
850 int i = 0;
851
852 if (!list)
853 return -EINVAL;
854
855 nla_for_each_nested(n, list, rem) {
856 struct sched_entry *entry;
857
858 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
859 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
860 continue;
861 }
862
863 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
864 if (!entry) {
865 NL_SET_ERR_MSG(extack, "Not enough memory for entry");
866 return -ENOMEM;
867 }
868
869 err = parse_sched_entry(q, n, entry, i, extack);
870 if (err < 0) {
871 kfree(entry);
872 return err;
873 }
874
875 list_add_tail(&entry->list, &sched->entries);
876 i++;
877 }
878
879 sched->num_entries = i;
880
881 return i;
882 }
883
parse_taprio_schedule(struct taprio_sched * q,struct nlattr ** tb,struct sched_gate_list * new,struct netlink_ext_ack * extack)884 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
885 struct sched_gate_list *new,
886 struct netlink_ext_ack *extack)
887 {
888 int err = 0;
889
890 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
891 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
892 return -ENOTSUPP;
893 }
894
895 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
896 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
897
898 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
899 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
900
901 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
902 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
903
904 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
905 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
906 new, extack);
907 if (err < 0)
908 return err;
909
910 if (!new->cycle_time) {
911 struct sched_entry *entry;
912 ktime_t cycle = 0;
913
914 list_for_each_entry(entry, &new->entries, list)
915 cycle = ktime_add_ns(cycle, entry->interval);
916
917 if (!cycle) {
918 NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
919 return -EINVAL;
920 }
921
922 if (cycle < 0 || cycle > INT_MAX) {
923 NL_SET_ERR_MSG(extack, "'cycle_time' is too big");
924 return -EINVAL;
925 }
926
927 new->cycle_time = cycle;
928 }
929
930 return 0;
931 }
932
taprio_parse_mqprio_opt(struct net_device * dev,struct tc_mqprio_qopt * qopt,struct netlink_ext_ack * extack,u32 taprio_flags)933 static int taprio_parse_mqprio_opt(struct net_device *dev,
934 struct tc_mqprio_qopt *qopt,
935 struct netlink_ext_ack *extack,
936 u32 taprio_flags)
937 {
938 int i, j;
939
940 if (!qopt && !dev->num_tc) {
941 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
942 return -EINVAL;
943 }
944
945 /* If num_tc is already set, it means that the user already
946 * configured the mqprio part
947 */
948 if (dev->num_tc)
949 return 0;
950
951 /* Verify num_tc is not out of max range */
952 if (qopt->num_tc > TC_MAX_QUEUE) {
953 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
954 return -EINVAL;
955 }
956
957 /* taprio imposes that traffic classes map 1:n to tx queues */
958 if (qopt->num_tc > dev->num_tx_queues) {
959 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
960 return -EINVAL;
961 }
962
963 /* Verify priority mapping uses valid tcs */
964 for (i = 0; i <= TC_BITMASK; i++) {
965 if (qopt->prio_tc_map[i] >= qopt->num_tc) {
966 NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
967 return -EINVAL;
968 }
969 }
970
971 for (i = 0; i < qopt->num_tc; i++) {
972 unsigned int last = qopt->offset[i] + qopt->count[i];
973
974 /* Verify the queue count is in tx range being equal to the
975 * real_num_tx_queues indicates the last queue is in use.
976 */
977 if (qopt->offset[i] >= dev->num_tx_queues ||
978 !qopt->count[i] ||
979 last > dev->real_num_tx_queues) {
980 NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
981 return -EINVAL;
982 }
983
984 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
985 continue;
986
987 /* Verify that the offset and counts do not overlap */
988 for (j = i + 1; j < qopt->num_tc; j++) {
989 if (last > qopt->offset[j]) {
990 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
991 return -EINVAL;
992 }
993 }
994 }
995
996 return 0;
997 }
998
taprio_get_start_time(struct Qdisc * sch,struct sched_gate_list * sched,ktime_t * start)999 static int taprio_get_start_time(struct Qdisc *sch,
1000 struct sched_gate_list *sched,
1001 ktime_t *start)
1002 {
1003 struct taprio_sched *q = qdisc_priv(sch);
1004 ktime_t now, base, cycle;
1005 s64 n;
1006
1007 base = sched_base_time(sched);
1008 now = taprio_get_time(q);
1009
1010 if (ktime_after(base, now)) {
1011 *start = base;
1012 return 0;
1013 }
1014
1015 cycle = sched->cycle_time;
1016
1017 /* The qdisc is expected to have at least one sched_entry. Moreover,
1018 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1019 * something went really wrong. In that case, we should warn about this
1020 * inconsistent state and return error.
1021 */
1022 if (WARN_ON(!cycle))
1023 return -EFAULT;
1024
1025 /* Schedule the start time for the beginning of the next
1026 * cycle.
1027 */
1028 n = div64_s64(ktime_sub_ns(now, base), cycle);
1029 *start = ktime_add_ns(base, (n + 1) * cycle);
1030 return 0;
1031 }
1032
setup_first_close_time(struct taprio_sched * q,struct sched_gate_list * sched,ktime_t base)1033 static void setup_first_close_time(struct taprio_sched *q,
1034 struct sched_gate_list *sched, ktime_t base)
1035 {
1036 struct sched_entry *first;
1037 ktime_t cycle;
1038
1039 first = list_first_entry(&sched->entries,
1040 struct sched_entry, list);
1041
1042 cycle = sched->cycle_time;
1043
1044 /* FIXME: find a better place to do this */
1045 sched->cycle_close_time = ktime_add_ns(base, cycle);
1046
1047 first->close_time = ktime_add_ns(base, first->interval);
1048 taprio_set_budget(q, first);
1049 rcu_assign_pointer(q->current_entry, NULL);
1050 }
1051
taprio_start_sched(struct Qdisc * sch,ktime_t start,struct sched_gate_list * new)1052 static void taprio_start_sched(struct Qdisc *sch,
1053 ktime_t start, struct sched_gate_list *new)
1054 {
1055 struct taprio_sched *q = qdisc_priv(sch);
1056 ktime_t expires;
1057
1058 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1059 return;
1060
1061 expires = hrtimer_get_expires(&q->advance_timer);
1062 if (expires == 0)
1063 expires = KTIME_MAX;
1064
1065 /* If the new schedule starts before the next expiration, we
1066 * reprogram it to the earliest one, so we change the admin
1067 * schedule to the operational one at the right time.
1068 */
1069 start = min_t(ktime_t, start, expires);
1070
1071 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1072 }
1073
taprio_set_picos_per_byte(struct net_device * dev,struct taprio_sched * q)1074 static void taprio_set_picos_per_byte(struct net_device *dev,
1075 struct taprio_sched *q)
1076 {
1077 struct ethtool_link_ksettings ecmd;
1078 int speed = SPEED_10;
1079 int picos_per_byte;
1080 int err;
1081
1082 err = __ethtool_get_link_ksettings(dev, &ecmd);
1083 if (err < 0)
1084 goto skip;
1085
1086 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1087 speed = ecmd.base.speed;
1088
1089 skip:
1090 picos_per_byte = (USEC_PER_SEC * 8) / speed;
1091
1092 atomic64_set(&q->picos_per_byte, picos_per_byte);
1093 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1094 dev->name, (long long)atomic64_read(&q->picos_per_byte),
1095 ecmd.base.speed);
1096 }
1097
taprio_dev_notifier(struct notifier_block * nb,unsigned long event,void * ptr)1098 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1099 void *ptr)
1100 {
1101 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1102 struct taprio_sched *q;
1103
1104 ASSERT_RTNL();
1105
1106 if (event != NETDEV_UP && event != NETDEV_CHANGE)
1107 return NOTIFY_DONE;
1108
1109 list_for_each_entry(q, &taprio_list, taprio_list) {
1110 if (dev != qdisc_dev(q->root))
1111 continue;
1112
1113 taprio_set_picos_per_byte(dev, q);
1114 break;
1115 }
1116
1117 return NOTIFY_DONE;
1118 }
1119
setup_txtime(struct taprio_sched * q,struct sched_gate_list * sched,ktime_t base)1120 static void setup_txtime(struct taprio_sched *q,
1121 struct sched_gate_list *sched, ktime_t base)
1122 {
1123 struct sched_entry *entry;
1124 u64 interval = 0;
1125
1126 list_for_each_entry(entry, &sched->entries, list) {
1127 entry->next_txtime = ktime_add_ns(base, interval);
1128 interval += entry->interval;
1129 }
1130 }
1131
taprio_offload_alloc(int num_entries)1132 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1133 {
1134 struct __tc_taprio_qopt_offload *__offload;
1135
1136 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1137 GFP_KERNEL);
1138 if (!__offload)
1139 return NULL;
1140
1141 refcount_set(&__offload->users, 1);
1142
1143 return &__offload->offload;
1144 }
1145
taprio_offload_get(struct tc_taprio_qopt_offload * offload)1146 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1147 *offload)
1148 {
1149 struct __tc_taprio_qopt_offload *__offload;
1150
1151 __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1152 offload);
1153
1154 refcount_inc(&__offload->users);
1155
1156 return offload;
1157 }
1158 EXPORT_SYMBOL_GPL(taprio_offload_get);
1159
taprio_offload_free(struct tc_taprio_qopt_offload * offload)1160 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1161 {
1162 struct __tc_taprio_qopt_offload *__offload;
1163
1164 __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1165 offload);
1166
1167 if (!refcount_dec_and_test(&__offload->users))
1168 return;
1169
1170 kfree(__offload);
1171 }
1172 EXPORT_SYMBOL_GPL(taprio_offload_free);
1173
1174 /* The function will only serve to keep the pointers to the "oper" and "admin"
1175 * schedules valid in relation to their base times, so when calling dump() the
1176 * users looks at the right schedules.
1177 * When using full offload, the admin configuration is promoted to oper at the
1178 * base_time in the PHC time domain. But because the system time is not
1179 * necessarily in sync with that, we can't just trigger a hrtimer to call
1180 * switch_schedules at the right hardware time.
1181 * At the moment we call this by hand right away from taprio, but in the future
1182 * it will be useful to create a mechanism for drivers to notify taprio of the
1183 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1184 * This is left as TODO.
1185 */
taprio_offload_config_changed(struct taprio_sched * q)1186 static void taprio_offload_config_changed(struct taprio_sched *q)
1187 {
1188 struct sched_gate_list *oper, *admin;
1189
1190 oper = rtnl_dereference(q->oper_sched);
1191 admin = rtnl_dereference(q->admin_sched);
1192
1193 switch_schedules(q, &admin, &oper);
1194 }
1195
tc_map_to_queue_mask(struct net_device * dev,u32 tc_mask)1196 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1197 {
1198 u32 i, queue_mask = 0;
1199
1200 for (i = 0; i < dev->num_tc; i++) {
1201 u32 offset, count;
1202
1203 if (!(tc_mask & BIT(i)))
1204 continue;
1205
1206 offset = dev->tc_to_txq[i].offset;
1207 count = dev->tc_to_txq[i].count;
1208
1209 queue_mask |= GENMASK(offset + count - 1, offset);
1210 }
1211
1212 return queue_mask;
1213 }
1214
taprio_sched_to_offload(struct net_device * dev,struct sched_gate_list * sched,struct tc_taprio_qopt_offload * offload)1215 static void taprio_sched_to_offload(struct net_device *dev,
1216 struct sched_gate_list *sched,
1217 struct tc_taprio_qopt_offload *offload)
1218 {
1219 struct sched_entry *entry;
1220 int i = 0;
1221
1222 offload->base_time = sched->base_time;
1223 offload->cycle_time = sched->cycle_time;
1224 offload->cycle_time_extension = sched->cycle_time_extension;
1225
1226 list_for_each_entry(entry, &sched->entries, list) {
1227 struct tc_taprio_sched_entry *e = &offload->entries[i];
1228
1229 e->command = entry->command;
1230 e->interval = entry->interval;
1231 e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1232
1233 i++;
1234 }
1235
1236 offload->num_entries = i;
1237 }
1238
taprio_enable_offload(struct net_device * dev,struct taprio_sched * q,struct sched_gate_list * sched,struct netlink_ext_ack * extack)1239 static int taprio_enable_offload(struct net_device *dev,
1240 struct taprio_sched *q,
1241 struct sched_gate_list *sched,
1242 struct netlink_ext_ack *extack)
1243 {
1244 const struct net_device_ops *ops = dev->netdev_ops;
1245 struct tc_taprio_qopt_offload *offload;
1246 struct tc_taprio_caps caps;
1247 int tc, err = 0;
1248
1249 if (!ops->ndo_setup_tc) {
1250 NL_SET_ERR_MSG(extack,
1251 "Device does not support taprio offload");
1252 return -EOPNOTSUPP;
1253 }
1254
1255 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1256 &caps, sizeof(caps));
1257
1258 if (!caps.supports_queue_max_sdu) {
1259 for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1260 if (q->max_sdu[tc]) {
1261 NL_SET_ERR_MSG_MOD(extack,
1262 "Device does not handle queueMaxSDU");
1263 return -EOPNOTSUPP;
1264 }
1265 }
1266 }
1267
1268 offload = taprio_offload_alloc(sched->num_entries);
1269 if (!offload) {
1270 NL_SET_ERR_MSG(extack,
1271 "Not enough memory for enabling offload mode");
1272 return -ENOMEM;
1273 }
1274 offload->enable = 1;
1275 taprio_sched_to_offload(dev, sched, offload);
1276
1277 for (tc = 0; tc < TC_MAX_QUEUE; tc++)
1278 offload->max_sdu[tc] = q->max_sdu[tc];
1279
1280 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1281 if (err < 0) {
1282 NL_SET_ERR_MSG(extack,
1283 "Device failed to setup taprio offload");
1284 goto done;
1285 }
1286
1287 q->offloaded = true;
1288
1289 done:
1290 taprio_offload_free(offload);
1291
1292 return err;
1293 }
1294
taprio_disable_offload(struct net_device * dev,struct taprio_sched * q,struct netlink_ext_ack * extack)1295 static int taprio_disable_offload(struct net_device *dev,
1296 struct taprio_sched *q,
1297 struct netlink_ext_ack *extack)
1298 {
1299 const struct net_device_ops *ops = dev->netdev_ops;
1300 struct tc_taprio_qopt_offload *offload;
1301 int err;
1302
1303 if (!q->offloaded)
1304 return 0;
1305
1306 offload = taprio_offload_alloc(0);
1307 if (!offload) {
1308 NL_SET_ERR_MSG(extack,
1309 "Not enough memory to disable offload mode");
1310 return -ENOMEM;
1311 }
1312 offload->enable = 0;
1313
1314 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1315 if (err < 0) {
1316 NL_SET_ERR_MSG(extack,
1317 "Device failed to disable offload");
1318 goto out;
1319 }
1320
1321 q->offloaded = false;
1322
1323 out:
1324 taprio_offload_free(offload);
1325
1326 return err;
1327 }
1328
1329 /* If full offload is enabled, the only possible clockid is the net device's
1330 * PHC. For that reason, specifying a clockid through netlink is incorrect.
1331 * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1332 * in sync with the specified clockid via a user space daemon such as phc2sys.
1333 * For both software taprio and txtime-assist, the clockid is used for the
1334 * hrtimer that advances the schedule and hence mandatory.
1335 */
taprio_parse_clockid(struct Qdisc * sch,struct nlattr ** tb,struct netlink_ext_ack * extack)1336 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1337 struct netlink_ext_ack *extack)
1338 {
1339 struct taprio_sched *q = qdisc_priv(sch);
1340 struct net_device *dev = qdisc_dev(sch);
1341 int err = -EINVAL;
1342
1343 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1344 const struct ethtool_ops *ops = dev->ethtool_ops;
1345 struct ethtool_ts_info info = {
1346 .cmd = ETHTOOL_GET_TS_INFO,
1347 .phc_index = -1,
1348 };
1349
1350 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1351 NL_SET_ERR_MSG(extack,
1352 "The 'clockid' cannot be specified for full offload");
1353 goto out;
1354 }
1355
1356 if (ops && ops->get_ts_info)
1357 err = ops->get_ts_info(dev, &info);
1358
1359 if (err || info.phc_index < 0) {
1360 NL_SET_ERR_MSG(extack,
1361 "Device does not have a PTP clock");
1362 err = -ENOTSUPP;
1363 goto out;
1364 }
1365 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1366 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1367 enum tk_offsets tk_offset;
1368
1369 /* We only support static clockids and we don't allow
1370 * for it to be modified after the first init.
1371 */
1372 if (clockid < 0 ||
1373 (q->clockid != -1 && q->clockid != clockid)) {
1374 NL_SET_ERR_MSG(extack,
1375 "Changing the 'clockid' of a running schedule is not supported");
1376 err = -ENOTSUPP;
1377 goto out;
1378 }
1379
1380 switch (clockid) {
1381 case CLOCK_REALTIME:
1382 tk_offset = TK_OFFS_REAL;
1383 break;
1384 case CLOCK_MONOTONIC:
1385 tk_offset = TK_OFFS_MAX;
1386 break;
1387 case CLOCK_BOOTTIME:
1388 tk_offset = TK_OFFS_BOOT;
1389 break;
1390 case CLOCK_TAI:
1391 tk_offset = TK_OFFS_TAI;
1392 break;
1393 default:
1394 NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1395 err = -EINVAL;
1396 goto out;
1397 }
1398 /* This pairs with READ_ONCE() in taprio_mono_to_any */
1399 WRITE_ONCE(q->tk_offset, tk_offset);
1400
1401 q->clockid = clockid;
1402 } else {
1403 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1404 goto out;
1405 }
1406
1407 /* Everything went ok, return success. */
1408 err = 0;
1409
1410 out:
1411 return err;
1412 }
1413
taprio_parse_tc_entry(struct Qdisc * sch,struct nlattr * opt,u32 max_sdu[TC_QOPT_MAX_QUEUE],unsigned long * seen_tcs,struct netlink_ext_ack * extack)1414 static int taprio_parse_tc_entry(struct Qdisc *sch,
1415 struct nlattr *opt,
1416 u32 max_sdu[TC_QOPT_MAX_QUEUE],
1417 unsigned long *seen_tcs,
1418 struct netlink_ext_ack *extack)
1419 {
1420 struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { };
1421 struct net_device *dev = qdisc_dev(sch);
1422 u32 val = 0;
1423 int err, tc;
1424
1425 err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt,
1426 taprio_tc_policy, extack);
1427 if (err < 0)
1428 return err;
1429
1430 if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) {
1431 NL_SET_ERR_MSG_MOD(extack, "TC entry index missing");
1432 return -EINVAL;
1433 }
1434
1435 tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
1436 if (tc >= TC_QOPT_MAX_QUEUE) {
1437 NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range");
1438 return -ERANGE;
1439 }
1440
1441 if (*seen_tcs & BIT(tc)) {
1442 NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry");
1443 return -EINVAL;
1444 }
1445
1446 *seen_tcs |= BIT(tc);
1447
1448 if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU])
1449 val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
1450
1451 if (val > dev->max_mtu) {
1452 NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU");
1453 return -ERANGE;
1454 }
1455
1456 max_sdu[tc] = val;
1457
1458 return 0;
1459 }
1460
taprio_parse_tc_entries(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1461 static int taprio_parse_tc_entries(struct Qdisc *sch,
1462 struct nlattr *opt,
1463 struct netlink_ext_ack *extack)
1464 {
1465 struct taprio_sched *q = qdisc_priv(sch);
1466 struct net_device *dev = qdisc_dev(sch);
1467 u32 max_sdu[TC_QOPT_MAX_QUEUE];
1468 unsigned long seen_tcs = 0;
1469 struct nlattr *n;
1470 int tc, rem;
1471 int err = 0;
1472
1473 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
1474 max_sdu[tc] = q->max_sdu[tc];
1475
1476 nla_for_each_nested(n, opt, rem) {
1477 if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY)
1478 continue;
1479
1480 err = taprio_parse_tc_entry(sch, n, max_sdu, &seen_tcs, extack);
1481 if (err)
1482 goto out;
1483 }
1484
1485 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1486 q->max_sdu[tc] = max_sdu[tc];
1487 if (max_sdu[tc])
1488 q->max_frm_len[tc] = max_sdu[tc] + dev->hard_header_len;
1489 else
1490 q->max_frm_len[tc] = U32_MAX; /* never oversized */
1491 }
1492
1493 out:
1494 return err;
1495 }
1496
taprio_mqprio_cmp(const struct net_device * dev,const struct tc_mqprio_qopt * mqprio)1497 static int taprio_mqprio_cmp(const struct net_device *dev,
1498 const struct tc_mqprio_qopt *mqprio)
1499 {
1500 int i;
1501
1502 if (!mqprio || mqprio->num_tc != dev->num_tc)
1503 return -1;
1504
1505 for (i = 0; i < mqprio->num_tc; i++)
1506 if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1507 dev->tc_to_txq[i].offset != mqprio->offset[i])
1508 return -1;
1509
1510 for (i = 0; i <= TC_BITMASK; i++)
1511 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1512 return -1;
1513
1514 return 0;
1515 }
1516
1517 /* The semantics of the 'flags' argument in relation to 'change()'
1518 * requests, are interpreted following two rules (which are applied in
1519 * this order): (1) an omitted 'flags' argument is interpreted as
1520 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1521 * changed.
1522 */
taprio_new_flags(const struct nlattr * attr,u32 old,struct netlink_ext_ack * extack)1523 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1524 struct netlink_ext_ack *extack)
1525 {
1526 u32 new = 0;
1527
1528 if (attr)
1529 new = nla_get_u32(attr);
1530
1531 if (old != TAPRIO_FLAGS_INVALID && old != new) {
1532 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1533 return -EOPNOTSUPP;
1534 }
1535
1536 if (!taprio_flags_valid(new)) {
1537 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1538 return -EINVAL;
1539 }
1540
1541 return new;
1542 }
1543
taprio_change(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1544 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1545 struct netlink_ext_ack *extack)
1546 {
1547 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1548 struct sched_gate_list *oper, *admin, *new_admin;
1549 struct taprio_sched *q = qdisc_priv(sch);
1550 struct net_device *dev = qdisc_dev(sch);
1551 struct tc_mqprio_qopt *mqprio = NULL;
1552 unsigned long flags;
1553 ktime_t start;
1554 int i, err;
1555
1556 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1557 taprio_policy, extack);
1558 if (err < 0)
1559 return err;
1560
1561 if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1562 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1563
1564 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1565 q->flags, extack);
1566 if (err < 0)
1567 return err;
1568
1569 q->flags = err;
1570
1571 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1572 if (err < 0)
1573 return err;
1574
1575 err = taprio_parse_tc_entries(sch, opt, extack);
1576 if (err)
1577 return err;
1578
1579 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1580 if (!new_admin) {
1581 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1582 return -ENOMEM;
1583 }
1584 INIT_LIST_HEAD(&new_admin->entries);
1585
1586 oper = rtnl_dereference(q->oper_sched);
1587 admin = rtnl_dereference(q->admin_sched);
1588
1589 /* no changes - no new mqprio settings */
1590 if (!taprio_mqprio_cmp(dev, mqprio))
1591 mqprio = NULL;
1592
1593 if (mqprio && (oper || admin)) {
1594 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1595 err = -ENOTSUPP;
1596 goto free_sched;
1597 }
1598
1599 err = parse_taprio_schedule(q, tb, new_admin, extack);
1600 if (err < 0)
1601 goto free_sched;
1602
1603 if (new_admin->num_entries == 0) {
1604 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1605 err = -EINVAL;
1606 goto free_sched;
1607 }
1608
1609 err = taprio_parse_clockid(sch, tb, extack);
1610 if (err < 0)
1611 goto free_sched;
1612
1613 taprio_set_picos_per_byte(dev, q);
1614
1615 if (mqprio) {
1616 err = netdev_set_num_tc(dev, mqprio->num_tc);
1617 if (err)
1618 goto free_sched;
1619 for (i = 0; i < mqprio->num_tc; i++)
1620 netdev_set_tc_queue(dev, i,
1621 mqprio->count[i],
1622 mqprio->offset[i]);
1623
1624 /* Always use supplied priority mappings */
1625 for (i = 0; i <= TC_BITMASK; i++)
1626 netdev_set_prio_tc_map(dev, i,
1627 mqprio->prio_tc_map[i]);
1628 }
1629
1630 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1631 err = taprio_enable_offload(dev, q, new_admin, extack);
1632 else
1633 err = taprio_disable_offload(dev, q, extack);
1634 if (err)
1635 goto free_sched;
1636
1637 /* Protects against enqueue()/dequeue() */
1638 spin_lock_bh(qdisc_lock(sch));
1639
1640 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1641 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1642 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1643 err = -EINVAL;
1644 goto unlock;
1645 }
1646
1647 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1648 }
1649
1650 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1651 !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1652 !hrtimer_active(&q->advance_timer)) {
1653 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1654 q->advance_timer.function = advance_sched;
1655 }
1656
1657 err = taprio_get_start_time(sch, new_admin, &start);
1658 if (err < 0) {
1659 NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1660 goto unlock;
1661 }
1662
1663 setup_txtime(q, new_admin, start);
1664
1665 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1666 if (!oper) {
1667 rcu_assign_pointer(q->oper_sched, new_admin);
1668 err = 0;
1669 new_admin = NULL;
1670 goto unlock;
1671 }
1672
1673 rcu_assign_pointer(q->admin_sched, new_admin);
1674 if (admin)
1675 call_rcu(&admin->rcu, taprio_free_sched_cb);
1676 } else {
1677 setup_first_close_time(q, new_admin, start);
1678
1679 /* Protects against advance_sched() */
1680 spin_lock_irqsave(&q->current_entry_lock, flags);
1681
1682 taprio_start_sched(sch, start, new_admin);
1683
1684 rcu_assign_pointer(q->admin_sched, new_admin);
1685 if (admin)
1686 call_rcu(&admin->rcu, taprio_free_sched_cb);
1687
1688 spin_unlock_irqrestore(&q->current_entry_lock, flags);
1689
1690 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1691 taprio_offload_config_changed(q);
1692 }
1693
1694 new_admin = NULL;
1695 err = 0;
1696
1697 unlock:
1698 spin_unlock_bh(qdisc_lock(sch));
1699
1700 free_sched:
1701 if (new_admin)
1702 call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1703
1704 return err;
1705 }
1706
taprio_reset(struct Qdisc * sch)1707 static void taprio_reset(struct Qdisc *sch)
1708 {
1709 struct taprio_sched *q = qdisc_priv(sch);
1710 struct net_device *dev = qdisc_dev(sch);
1711 int i;
1712
1713 hrtimer_cancel(&q->advance_timer);
1714
1715 if (q->qdiscs) {
1716 for (i = 0; i < dev->num_tx_queues; i++)
1717 if (q->qdiscs[i])
1718 qdisc_reset(q->qdiscs[i]);
1719 }
1720 }
1721
taprio_destroy(struct Qdisc * sch)1722 static void taprio_destroy(struct Qdisc *sch)
1723 {
1724 struct taprio_sched *q = qdisc_priv(sch);
1725 struct net_device *dev = qdisc_dev(sch);
1726 struct sched_gate_list *oper, *admin;
1727 unsigned int i;
1728
1729 list_del(&q->taprio_list);
1730
1731 /* Note that taprio_reset() might not be called if an error
1732 * happens in qdisc_create(), after taprio_init() has been called.
1733 */
1734 hrtimer_cancel(&q->advance_timer);
1735 qdisc_synchronize(sch);
1736
1737 taprio_disable_offload(dev, q, NULL);
1738
1739 if (q->qdiscs) {
1740 for (i = 0; i < dev->num_tx_queues; i++)
1741 qdisc_put(q->qdiscs[i]);
1742
1743 kfree(q->qdiscs);
1744 }
1745 q->qdiscs = NULL;
1746
1747 netdev_reset_tc(dev);
1748
1749 oper = rtnl_dereference(q->oper_sched);
1750 admin = rtnl_dereference(q->admin_sched);
1751
1752 if (oper)
1753 call_rcu(&oper->rcu, taprio_free_sched_cb);
1754
1755 if (admin)
1756 call_rcu(&admin->rcu, taprio_free_sched_cb);
1757 }
1758
taprio_init(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1759 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1760 struct netlink_ext_ack *extack)
1761 {
1762 struct taprio_sched *q = qdisc_priv(sch);
1763 struct net_device *dev = qdisc_dev(sch);
1764 int i;
1765
1766 spin_lock_init(&q->current_entry_lock);
1767
1768 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1769 q->advance_timer.function = advance_sched;
1770
1771 q->root = sch;
1772
1773 /* We only support static clockids. Use an invalid value as default
1774 * and get the valid one on taprio_change().
1775 */
1776 q->clockid = -1;
1777 q->flags = TAPRIO_FLAGS_INVALID;
1778
1779 list_add(&q->taprio_list, &taprio_list);
1780
1781 if (sch->parent != TC_H_ROOT) {
1782 NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc");
1783 return -EOPNOTSUPP;
1784 }
1785
1786 if (!netif_is_multiqueue(dev)) {
1787 NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required");
1788 return -EOPNOTSUPP;
1789 }
1790
1791 /* pre-allocate qdisc, attachment can't fail */
1792 q->qdiscs = kcalloc(dev->num_tx_queues,
1793 sizeof(q->qdiscs[0]),
1794 GFP_KERNEL);
1795
1796 if (!q->qdiscs)
1797 return -ENOMEM;
1798
1799 if (!opt)
1800 return -EINVAL;
1801
1802 for (i = 0; i < dev->num_tx_queues; i++) {
1803 struct netdev_queue *dev_queue;
1804 struct Qdisc *qdisc;
1805
1806 dev_queue = netdev_get_tx_queue(dev, i);
1807 qdisc = qdisc_create_dflt(dev_queue,
1808 &pfifo_qdisc_ops,
1809 TC_H_MAKE(TC_H_MAJ(sch->handle),
1810 TC_H_MIN(i + 1)),
1811 extack);
1812 if (!qdisc)
1813 return -ENOMEM;
1814
1815 if (i < dev->real_num_tx_queues)
1816 qdisc_hash_add(qdisc, false);
1817
1818 q->qdiscs[i] = qdisc;
1819 }
1820
1821 return taprio_change(sch, opt, extack);
1822 }
1823
taprio_attach(struct Qdisc * sch)1824 static void taprio_attach(struct Qdisc *sch)
1825 {
1826 struct taprio_sched *q = qdisc_priv(sch);
1827 struct net_device *dev = qdisc_dev(sch);
1828 unsigned int ntx;
1829
1830 /* Attach underlying qdisc */
1831 for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
1832 struct Qdisc *qdisc = q->qdiscs[ntx];
1833 struct Qdisc *old;
1834
1835 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1836 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1837 old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
1838 } else {
1839 old = dev_graft_qdisc(qdisc->dev_queue, sch);
1840 qdisc_refcount_inc(sch);
1841 }
1842 if (old)
1843 qdisc_put(old);
1844 }
1845
1846 /* access to the child qdiscs is not needed in offload mode */
1847 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1848 kfree(q->qdiscs);
1849 q->qdiscs = NULL;
1850 }
1851 }
1852
taprio_queue_get(struct Qdisc * sch,unsigned long cl)1853 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1854 unsigned long cl)
1855 {
1856 struct net_device *dev = qdisc_dev(sch);
1857 unsigned long ntx = cl - 1;
1858
1859 if (ntx >= dev->num_tx_queues)
1860 return NULL;
1861
1862 return netdev_get_tx_queue(dev, ntx);
1863 }
1864
taprio_graft(struct Qdisc * sch,unsigned long cl,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)1865 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1866 struct Qdisc *new, struct Qdisc **old,
1867 struct netlink_ext_ack *extack)
1868 {
1869 struct taprio_sched *q = qdisc_priv(sch);
1870 struct net_device *dev = qdisc_dev(sch);
1871 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1872
1873 if (!dev_queue)
1874 return -EINVAL;
1875
1876 if (dev->flags & IFF_UP)
1877 dev_deactivate(dev);
1878
1879 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1880 *old = dev_graft_qdisc(dev_queue, new);
1881 } else {
1882 *old = q->qdiscs[cl - 1];
1883 q->qdiscs[cl - 1] = new;
1884 }
1885
1886 if (new)
1887 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1888
1889 if (dev->flags & IFF_UP)
1890 dev_activate(dev);
1891
1892 return 0;
1893 }
1894
dump_entry(struct sk_buff * msg,const struct sched_entry * entry)1895 static int dump_entry(struct sk_buff *msg,
1896 const struct sched_entry *entry)
1897 {
1898 struct nlattr *item;
1899
1900 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1901 if (!item)
1902 return -ENOSPC;
1903
1904 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1905 goto nla_put_failure;
1906
1907 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1908 goto nla_put_failure;
1909
1910 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1911 entry->gate_mask))
1912 goto nla_put_failure;
1913
1914 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1915 entry->interval))
1916 goto nla_put_failure;
1917
1918 return nla_nest_end(msg, item);
1919
1920 nla_put_failure:
1921 nla_nest_cancel(msg, item);
1922 return -1;
1923 }
1924
dump_schedule(struct sk_buff * msg,const struct sched_gate_list * root)1925 static int dump_schedule(struct sk_buff *msg,
1926 const struct sched_gate_list *root)
1927 {
1928 struct nlattr *entry_list;
1929 struct sched_entry *entry;
1930
1931 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1932 root->base_time, TCA_TAPRIO_PAD))
1933 return -1;
1934
1935 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1936 root->cycle_time, TCA_TAPRIO_PAD))
1937 return -1;
1938
1939 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1940 root->cycle_time_extension, TCA_TAPRIO_PAD))
1941 return -1;
1942
1943 entry_list = nla_nest_start_noflag(msg,
1944 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1945 if (!entry_list)
1946 goto error_nest;
1947
1948 list_for_each_entry(entry, &root->entries, list) {
1949 if (dump_entry(msg, entry) < 0)
1950 goto error_nest;
1951 }
1952
1953 nla_nest_end(msg, entry_list);
1954 return 0;
1955
1956 error_nest:
1957 nla_nest_cancel(msg, entry_list);
1958 return -1;
1959 }
1960
taprio_dump_tc_entries(struct taprio_sched * q,struct sk_buff * skb)1961 static int taprio_dump_tc_entries(struct taprio_sched *q, struct sk_buff *skb)
1962 {
1963 struct nlattr *n;
1964 int tc;
1965
1966 for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1967 n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY);
1968 if (!n)
1969 return -EMSGSIZE;
1970
1971 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc))
1972 goto nla_put_failure;
1973
1974 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
1975 q->max_sdu[tc]))
1976 goto nla_put_failure;
1977
1978 nla_nest_end(skb, n);
1979 }
1980
1981 return 0;
1982
1983 nla_put_failure:
1984 nla_nest_cancel(skb, n);
1985 return -EMSGSIZE;
1986 }
1987
taprio_dump(struct Qdisc * sch,struct sk_buff * skb)1988 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1989 {
1990 struct taprio_sched *q = qdisc_priv(sch);
1991 struct net_device *dev = qdisc_dev(sch);
1992 struct sched_gate_list *oper, *admin;
1993 struct tc_mqprio_qopt opt = { 0 };
1994 struct nlattr *nest, *sched_nest;
1995 unsigned int i;
1996
1997 oper = rtnl_dereference(q->oper_sched);
1998 admin = rtnl_dereference(q->admin_sched);
1999
2000 opt.num_tc = netdev_get_num_tc(dev);
2001 memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
2002
2003 for (i = 0; i < netdev_get_num_tc(dev); i++) {
2004 opt.count[i] = dev->tc_to_txq[i].count;
2005 opt.offset[i] = dev->tc_to_txq[i].offset;
2006 }
2007
2008 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
2009 if (!nest)
2010 goto start_error;
2011
2012 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
2013 goto options_error;
2014
2015 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
2016 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
2017 goto options_error;
2018
2019 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
2020 goto options_error;
2021
2022 if (q->txtime_delay &&
2023 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
2024 goto options_error;
2025
2026 if (taprio_dump_tc_entries(q, skb))
2027 goto options_error;
2028
2029 if (oper && dump_schedule(skb, oper))
2030 goto options_error;
2031
2032 if (!admin)
2033 goto done;
2034
2035 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
2036 if (!sched_nest)
2037 goto options_error;
2038
2039 if (dump_schedule(skb, admin))
2040 goto admin_error;
2041
2042 nla_nest_end(skb, sched_nest);
2043
2044 done:
2045 return nla_nest_end(skb, nest);
2046
2047 admin_error:
2048 nla_nest_cancel(skb, sched_nest);
2049
2050 options_error:
2051 nla_nest_cancel(skb, nest);
2052
2053 start_error:
2054 return -ENOSPC;
2055 }
2056
taprio_leaf(struct Qdisc * sch,unsigned long cl)2057 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
2058 {
2059 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2060
2061 if (!dev_queue)
2062 return NULL;
2063
2064 return rtnl_dereference(dev_queue->qdisc_sleeping);
2065 }
2066
taprio_find(struct Qdisc * sch,u32 classid)2067 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
2068 {
2069 unsigned int ntx = TC_H_MIN(classid);
2070
2071 if (!taprio_queue_get(sch, ntx))
2072 return 0;
2073 return ntx;
2074 }
2075
taprio_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)2076 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
2077 struct sk_buff *skb, struct tcmsg *tcm)
2078 {
2079 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2080
2081 tcm->tcm_parent = TC_H_ROOT;
2082 tcm->tcm_handle |= TC_H_MIN(cl);
2083 tcm->tcm_info = rtnl_dereference(dev_queue->qdisc_sleeping)->handle;
2084
2085 return 0;
2086 }
2087
taprio_dump_class_stats(struct Qdisc * sch,unsigned long cl,struct gnet_dump * d)2088 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2089 struct gnet_dump *d)
2090 __releases(d->lock)
2091 __acquires(d->lock)
2092 {
2093 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2094
2095 sch = rtnl_dereference(dev_queue->qdisc_sleeping);
2096 if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 ||
2097 qdisc_qstats_copy(d, sch) < 0)
2098 return -1;
2099 return 0;
2100 }
2101
taprio_walk(struct Qdisc * sch,struct qdisc_walker * arg)2102 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2103 {
2104 struct net_device *dev = qdisc_dev(sch);
2105 unsigned long ntx;
2106
2107 if (arg->stop)
2108 return;
2109
2110 arg->count = arg->skip;
2111 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2112 if (!tc_qdisc_stats_dump(sch, ntx + 1, arg))
2113 break;
2114 }
2115 }
2116
taprio_select_queue(struct Qdisc * sch,struct tcmsg * tcm)2117 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2118 struct tcmsg *tcm)
2119 {
2120 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2121 }
2122
2123 static const struct Qdisc_class_ops taprio_class_ops = {
2124 .graft = taprio_graft,
2125 .leaf = taprio_leaf,
2126 .find = taprio_find,
2127 .walk = taprio_walk,
2128 .dump = taprio_dump_class,
2129 .dump_stats = taprio_dump_class_stats,
2130 .select_queue = taprio_select_queue,
2131 };
2132
2133 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2134 .cl_ops = &taprio_class_ops,
2135 .id = "taprio",
2136 .priv_size = sizeof(struct taprio_sched),
2137 .init = taprio_init,
2138 .change = taprio_change,
2139 .destroy = taprio_destroy,
2140 .reset = taprio_reset,
2141 .attach = taprio_attach,
2142 .peek = taprio_peek,
2143 .dequeue = taprio_dequeue,
2144 .enqueue = taprio_enqueue,
2145 .dump = taprio_dump,
2146 .owner = THIS_MODULE,
2147 };
2148
2149 static struct notifier_block taprio_device_notifier = {
2150 .notifier_call = taprio_dev_notifier,
2151 };
2152
taprio_module_init(void)2153 static int __init taprio_module_init(void)
2154 {
2155 int err = register_netdevice_notifier(&taprio_device_notifier);
2156
2157 if (err)
2158 return err;
2159
2160 return register_qdisc(&taprio_qdisc_ops);
2161 }
2162
taprio_module_exit(void)2163 static void __exit taprio_module_exit(void)
2164 {
2165 unregister_qdisc(&taprio_qdisc_ops);
2166 unregister_netdevice_notifier(&taprio_device_notifier);
2167 }
2168
2169 module_init(taprio_module_init);
2170 module_exit(taprio_module_exit);
2171 MODULE_LICENSE("GPL");
2172