1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44
45 #include <net/strparser.h>
46 #include <net/tls.h>
47
48 #include "tls.h"
49
50 struct tls_decrypt_arg {
51 struct_group(inargs,
52 bool zc;
53 bool async;
54 u8 tail;
55 );
56
57 struct sk_buff *skb;
58 };
59
60 struct tls_decrypt_ctx {
61 struct sock *sk;
62 u8 iv[MAX_IV_SIZE];
63 u8 aad[TLS_MAX_AAD_SIZE];
64 u8 tail;
65 bool free_sgout;
66 struct scatterlist sg[];
67 };
68
tls_err_abort(struct sock * sk,int err)69 noinline void tls_err_abort(struct sock *sk, int err)
70 {
71 WARN_ON_ONCE(err >= 0);
72 /* sk->sk_err should contain a positive error code. */
73 WRITE_ONCE(sk->sk_err, -err);
74 /* Paired with smp_rmb() in tcp_poll() */
75 smp_wmb();
76 sk_error_report(sk);
77 }
78
__skb_nsg(struct sk_buff * skb,int offset,int len,unsigned int recursion_level)79 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
80 unsigned int recursion_level)
81 {
82 int start = skb_headlen(skb);
83 int i, chunk = start - offset;
84 struct sk_buff *frag_iter;
85 int elt = 0;
86
87 if (unlikely(recursion_level >= 24))
88 return -EMSGSIZE;
89
90 if (chunk > 0) {
91 if (chunk > len)
92 chunk = len;
93 elt++;
94 len -= chunk;
95 if (len == 0)
96 return elt;
97 offset += chunk;
98 }
99
100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
101 int end;
102
103 WARN_ON(start > offset + len);
104
105 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
106 chunk = end - offset;
107 if (chunk > 0) {
108 if (chunk > len)
109 chunk = len;
110 elt++;
111 len -= chunk;
112 if (len == 0)
113 return elt;
114 offset += chunk;
115 }
116 start = end;
117 }
118
119 if (unlikely(skb_has_frag_list(skb))) {
120 skb_walk_frags(skb, frag_iter) {
121 int end, ret;
122
123 WARN_ON(start > offset + len);
124
125 end = start + frag_iter->len;
126 chunk = end - offset;
127 if (chunk > 0) {
128 if (chunk > len)
129 chunk = len;
130 ret = __skb_nsg(frag_iter, offset - start, chunk,
131 recursion_level + 1);
132 if (unlikely(ret < 0))
133 return ret;
134 elt += ret;
135 len -= chunk;
136 if (len == 0)
137 return elt;
138 offset += chunk;
139 }
140 start = end;
141 }
142 }
143 BUG_ON(len);
144 return elt;
145 }
146
147 /* Return the number of scatterlist elements required to completely map the
148 * skb, or -EMSGSIZE if the recursion depth is exceeded.
149 */
skb_nsg(struct sk_buff * skb,int offset,int len)150 static int skb_nsg(struct sk_buff *skb, int offset, int len)
151 {
152 return __skb_nsg(skb, offset, len, 0);
153 }
154
tls_padding_length(struct tls_prot_info * prot,struct sk_buff * skb,struct tls_decrypt_arg * darg)155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
156 struct tls_decrypt_arg *darg)
157 {
158 struct strp_msg *rxm = strp_msg(skb);
159 struct tls_msg *tlm = tls_msg(skb);
160 int sub = 0;
161
162 /* Determine zero-padding length */
163 if (prot->version == TLS_1_3_VERSION) {
164 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
165 char content_type = darg->zc ? darg->tail : 0;
166 int err;
167
168 while (content_type == 0) {
169 if (offset < prot->prepend_size)
170 return -EBADMSG;
171 err = skb_copy_bits(skb, rxm->offset + offset,
172 &content_type, 1);
173 if (err)
174 return err;
175 if (content_type)
176 break;
177 sub++;
178 offset--;
179 }
180 tlm->control = content_type;
181 }
182 return sub;
183 }
184
tls_decrypt_done(crypto_completion_data_t * data,int err)185 static void tls_decrypt_done(crypto_completion_data_t *data, int err)
186 {
187 struct aead_request *aead_req = crypto_get_completion_data(data);
188 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
189 struct scatterlist *sgout = aead_req->dst;
190 struct tls_sw_context_rx *ctx;
191 struct tls_decrypt_ctx *dctx;
192 struct tls_context *tls_ctx;
193 struct scatterlist *sg;
194 unsigned int pages;
195 struct sock *sk;
196 int aead_size;
197
198 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
199 aead_size = ALIGN(aead_size, __alignof__(*dctx));
200 dctx = (void *)((u8 *)aead_req + aead_size);
201
202 sk = dctx->sk;
203 tls_ctx = tls_get_ctx(sk);
204 ctx = tls_sw_ctx_rx(tls_ctx);
205
206 /* Propagate if there was an err */
207 if (err) {
208 if (err == -EBADMSG)
209 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
210 ctx->async_wait.err = err;
211 tls_err_abort(sk, err);
212 }
213
214 /* Free the destination pages if skb was not decrypted inplace */
215 if (dctx->free_sgout) {
216 /* Skip the first S/G entry as it points to AAD */
217 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
218 if (!sg)
219 break;
220 put_page(sg_page(sg));
221 }
222 }
223
224 kfree(aead_req);
225
226 if (atomic_dec_and_test(&ctx->decrypt_pending))
227 complete(&ctx->async_wait.completion);
228 }
229
tls_decrypt_async_wait(struct tls_sw_context_rx * ctx)230 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx)
231 {
232 if (!atomic_dec_and_test(&ctx->decrypt_pending))
233 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
234 atomic_inc(&ctx->decrypt_pending);
235
236 return ctx->async_wait.err;
237 }
238
tls_do_decryption(struct sock * sk,struct scatterlist * sgin,struct scatterlist * sgout,char * iv_recv,size_t data_len,struct aead_request * aead_req,struct tls_decrypt_arg * darg)239 static int tls_do_decryption(struct sock *sk,
240 struct scatterlist *sgin,
241 struct scatterlist *sgout,
242 char *iv_recv,
243 size_t data_len,
244 struct aead_request *aead_req,
245 struct tls_decrypt_arg *darg)
246 {
247 struct tls_context *tls_ctx = tls_get_ctx(sk);
248 struct tls_prot_info *prot = &tls_ctx->prot_info;
249 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
250 int ret;
251
252 aead_request_set_tfm(aead_req, ctx->aead_recv);
253 aead_request_set_ad(aead_req, prot->aad_size);
254 aead_request_set_crypt(aead_req, sgin, sgout,
255 data_len + prot->tag_size,
256 (u8 *)iv_recv);
257
258 if (darg->async) {
259 aead_request_set_callback(aead_req,
260 CRYPTO_TFM_REQ_MAY_BACKLOG,
261 tls_decrypt_done, aead_req);
262 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1);
263 atomic_inc(&ctx->decrypt_pending);
264 } else {
265 aead_request_set_callback(aead_req,
266 CRYPTO_TFM_REQ_MAY_BACKLOG,
267 crypto_req_done, &ctx->async_wait);
268 }
269
270 ret = crypto_aead_decrypt(aead_req);
271 if (ret == -EINPROGRESS) {
272 if (darg->async)
273 return 0;
274
275 ret = crypto_wait_req(ret, &ctx->async_wait);
276 }
277 darg->async = false;
278
279 return ret;
280 }
281
tls_trim_both_msgs(struct sock * sk,int target_size)282 static void tls_trim_both_msgs(struct sock *sk, int target_size)
283 {
284 struct tls_context *tls_ctx = tls_get_ctx(sk);
285 struct tls_prot_info *prot = &tls_ctx->prot_info;
286 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
287 struct tls_rec *rec = ctx->open_rec;
288
289 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
290 if (target_size > 0)
291 target_size += prot->overhead_size;
292 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
293 }
294
tls_alloc_encrypted_msg(struct sock * sk,int len)295 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
296 {
297 struct tls_context *tls_ctx = tls_get_ctx(sk);
298 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
299 struct tls_rec *rec = ctx->open_rec;
300 struct sk_msg *msg_en = &rec->msg_encrypted;
301
302 return sk_msg_alloc(sk, msg_en, len, 0);
303 }
304
tls_clone_plaintext_msg(struct sock * sk,int required)305 static int tls_clone_plaintext_msg(struct sock *sk, int required)
306 {
307 struct tls_context *tls_ctx = tls_get_ctx(sk);
308 struct tls_prot_info *prot = &tls_ctx->prot_info;
309 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
310 struct tls_rec *rec = ctx->open_rec;
311 struct sk_msg *msg_pl = &rec->msg_plaintext;
312 struct sk_msg *msg_en = &rec->msg_encrypted;
313 int skip, len;
314
315 /* We add page references worth len bytes from encrypted sg
316 * at the end of plaintext sg. It is guaranteed that msg_en
317 * has enough required room (ensured by caller).
318 */
319 len = required - msg_pl->sg.size;
320
321 /* Skip initial bytes in msg_en's data to be able to use
322 * same offset of both plain and encrypted data.
323 */
324 skip = prot->prepend_size + msg_pl->sg.size;
325
326 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
327 }
328
tls_get_rec(struct sock * sk)329 static struct tls_rec *tls_get_rec(struct sock *sk)
330 {
331 struct tls_context *tls_ctx = tls_get_ctx(sk);
332 struct tls_prot_info *prot = &tls_ctx->prot_info;
333 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
334 struct sk_msg *msg_pl, *msg_en;
335 struct tls_rec *rec;
336 int mem_size;
337
338 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
339
340 rec = kzalloc(mem_size, sk->sk_allocation);
341 if (!rec)
342 return NULL;
343
344 msg_pl = &rec->msg_plaintext;
345 msg_en = &rec->msg_encrypted;
346
347 sk_msg_init(msg_pl);
348 sk_msg_init(msg_en);
349
350 sg_init_table(rec->sg_aead_in, 2);
351 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
352 sg_unmark_end(&rec->sg_aead_in[1]);
353
354 sg_init_table(rec->sg_aead_out, 2);
355 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
356 sg_unmark_end(&rec->sg_aead_out[1]);
357
358 rec->sk = sk;
359
360 return rec;
361 }
362
tls_free_rec(struct sock * sk,struct tls_rec * rec)363 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
364 {
365 sk_msg_free(sk, &rec->msg_encrypted);
366 sk_msg_free(sk, &rec->msg_plaintext);
367 kfree(rec);
368 }
369
tls_free_open_rec(struct sock * sk)370 static void tls_free_open_rec(struct sock *sk)
371 {
372 struct tls_context *tls_ctx = tls_get_ctx(sk);
373 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
374 struct tls_rec *rec = ctx->open_rec;
375
376 if (rec) {
377 tls_free_rec(sk, rec);
378 ctx->open_rec = NULL;
379 }
380 }
381
tls_tx_records(struct sock * sk,int flags)382 int tls_tx_records(struct sock *sk, int flags)
383 {
384 struct tls_context *tls_ctx = tls_get_ctx(sk);
385 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
386 struct tls_rec *rec, *tmp;
387 struct sk_msg *msg_en;
388 int tx_flags, rc = 0;
389
390 if (tls_is_partially_sent_record(tls_ctx)) {
391 rec = list_first_entry(&ctx->tx_list,
392 struct tls_rec, list);
393
394 if (flags == -1)
395 tx_flags = rec->tx_flags;
396 else
397 tx_flags = flags;
398
399 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
400 if (rc)
401 goto tx_err;
402
403 /* Full record has been transmitted.
404 * Remove the head of tx_list
405 */
406 list_del(&rec->list);
407 sk_msg_free(sk, &rec->msg_plaintext);
408 kfree(rec);
409 }
410
411 /* Tx all ready records */
412 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
413 if (READ_ONCE(rec->tx_ready)) {
414 if (flags == -1)
415 tx_flags = rec->tx_flags;
416 else
417 tx_flags = flags;
418
419 msg_en = &rec->msg_encrypted;
420 rc = tls_push_sg(sk, tls_ctx,
421 &msg_en->sg.data[msg_en->sg.curr],
422 0, tx_flags);
423 if (rc)
424 goto tx_err;
425
426 list_del(&rec->list);
427 sk_msg_free(sk, &rec->msg_plaintext);
428 kfree(rec);
429 } else {
430 break;
431 }
432 }
433
434 tx_err:
435 if (rc < 0 && rc != -EAGAIN)
436 tls_err_abort(sk, -EBADMSG);
437
438 return rc;
439 }
440
tls_encrypt_done(crypto_completion_data_t * data,int err)441 static void tls_encrypt_done(crypto_completion_data_t *data, int err)
442 {
443 struct aead_request *aead_req = crypto_get_completion_data(data);
444 struct tls_sw_context_tx *ctx;
445 struct tls_context *tls_ctx;
446 struct tls_prot_info *prot;
447 struct scatterlist *sge;
448 struct sk_msg *msg_en;
449 struct tls_rec *rec;
450 struct sock *sk;
451
452 rec = container_of(aead_req, struct tls_rec, aead_req);
453 msg_en = &rec->msg_encrypted;
454
455 sk = rec->sk;
456 tls_ctx = tls_get_ctx(sk);
457 prot = &tls_ctx->prot_info;
458 ctx = tls_sw_ctx_tx(tls_ctx);
459
460 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
461 sge->offset -= prot->prepend_size;
462 sge->length += prot->prepend_size;
463
464 /* Check if error is previously set on socket */
465 if (err || sk->sk_err) {
466 rec = NULL;
467
468 /* If err is already set on socket, return the same code */
469 if (sk->sk_err) {
470 ctx->async_wait.err = -sk->sk_err;
471 } else {
472 ctx->async_wait.err = err;
473 tls_err_abort(sk, err);
474 }
475 }
476
477 if (rec) {
478 struct tls_rec *first_rec;
479
480 /* Mark the record as ready for transmission */
481 smp_store_mb(rec->tx_ready, true);
482
483 /* If received record is at head of tx_list, schedule tx */
484 first_rec = list_first_entry(&ctx->tx_list,
485 struct tls_rec, list);
486 if (rec == first_rec) {
487 /* Schedule the transmission */
488 if (!test_and_set_bit(BIT_TX_SCHEDULED,
489 &ctx->tx_bitmask))
490 schedule_delayed_work(&ctx->tx_work.work, 1);
491 }
492 }
493
494 if (atomic_dec_and_test(&ctx->encrypt_pending))
495 complete(&ctx->async_wait.completion);
496 }
497
tls_encrypt_async_wait(struct tls_sw_context_tx * ctx)498 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx)
499 {
500 if (!atomic_dec_and_test(&ctx->encrypt_pending))
501 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
502 atomic_inc(&ctx->encrypt_pending);
503
504 return ctx->async_wait.err;
505 }
506
tls_do_encryption(struct sock * sk,struct tls_context * tls_ctx,struct tls_sw_context_tx * ctx,struct aead_request * aead_req,size_t data_len,u32 start)507 static int tls_do_encryption(struct sock *sk,
508 struct tls_context *tls_ctx,
509 struct tls_sw_context_tx *ctx,
510 struct aead_request *aead_req,
511 size_t data_len, u32 start)
512 {
513 struct tls_prot_info *prot = &tls_ctx->prot_info;
514 struct tls_rec *rec = ctx->open_rec;
515 struct sk_msg *msg_en = &rec->msg_encrypted;
516 struct scatterlist *sge = sk_msg_elem(msg_en, start);
517 int rc, iv_offset = 0;
518
519 /* For CCM based ciphers, first byte of IV is a constant */
520 switch (prot->cipher_type) {
521 case TLS_CIPHER_AES_CCM_128:
522 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
523 iv_offset = 1;
524 break;
525 case TLS_CIPHER_SM4_CCM:
526 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
527 iv_offset = 1;
528 break;
529 }
530
531 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
532 prot->iv_size + prot->salt_size);
533
534 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
535 tls_ctx->tx.rec_seq);
536
537 sge->offset += prot->prepend_size;
538 sge->length -= prot->prepend_size;
539
540 msg_en->sg.curr = start;
541
542 aead_request_set_tfm(aead_req, ctx->aead_send);
543 aead_request_set_ad(aead_req, prot->aad_size);
544 aead_request_set_crypt(aead_req, rec->sg_aead_in,
545 rec->sg_aead_out,
546 data_len, rec->iv_data);
547
548 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
549 tls_encrypt_done, aead_req);
550
551 /* Add the record in tx_list */
552 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
553 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1);
554 atomic_inc(&ctx->encrypt_pending);
555
556 rc = crypto_aead_encrypt(aead_req);
557 if (!rc || rc != -EINPROGRESS) {
558 atomic_dec(&ctx->encrypt_pending);
559 sge->offset -= prot->prepend_size;
560 sge->length += prot->prepend_size;
561 }
562
563 if (!rc) {
564 WRITE_ONCE(rec->tx_ready, true);
565 } else if (rc != -EINPROGRESS) {
566 list_del(&rec->list);
567 return rc;
568 }
569
570 /* Unhook the record from context if encryption is not failure */
571 ctx->open_rec = NULL;
572 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
573 return rc;
574 }
575
tls_split_open_record(struct sock * sk,struct tls_rec * from,struct tls_rec ** to,struct sk_msg * msg_opl,struct sk_msg * msg_oen,u32 split_point,u32 tx_overhead_size,u32 * orig_end)576 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
577 struct tls_rec **to, struct sk_msg *msg_opl,
578 struct sk_msg *msg_oen, u32 split_point,
579 u32 tx_overhead_size, u32 *orig_end)
580 {
581 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
582 struct scatterlist *sge, *osge, *nsge;
583 u32 orig_size = msg_opl->sg.size;
584 struct scatterlist tmp = { };
585 struct sk_msg *msg_npl;
586 struct tls_rec *new;
587 int ret;
588
589 new = tls_get_rec(sk);
590 if (!new)
591 return -ENOMEM;
592 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
593 tx_overhead_size, 0);
594 if (ret < 0) {
595 tls_free_rec(sk, new);
596 return ret;
597 }
598
599 *orig_end = msg_opl->sg.end;
600 i = msg_opl->sg.start;
601 sge = sk_msg_elem(msg_opl, i);
602 while (apply && sge->length) {
603 if (sge->length > apply) {
604 u32 len = sge->length - apply;
605
606 get_page(sg_page(sge));
607 sg_set_page(&tmp, sg_page(sge), len,
608 sge->offset + apply);
609 sge->length = apply;
610 bytes += apply;
611 apply = 0;
612 } else {
613 apply -= sge->length;
614 bytes += sge->length;
615 }
616
617 sk_msg_iter_var_next(i);
618 if (i == msg_opl->sg.end)
619 break;
620 sge = sk_msg_elem(msg_opl, i);
621 }
622
623 msg_opl->sg.end = i;
624 msg_opl->sg.curr = i;
625 msg_opl->sg.copybreak = 0;
626 msg_opl->apply_bytes = 0;
627 msg_opl->sg.size = bytes;
628
629 msg_npl = &new->msg_plaintext;
630 msg_npl->apply_bytes = apply;
631 msg_npl->sg.size = orig_size - bytes;
632
633 j = msg_npl->sg.start;
634 nsge = sk_msg_elem(msg_npl, j);
635 if (tmp.length) {
636 memcpy(nsge, &tmp, sizeof(*nsge));
637 sk_msg_iter_var_next(j);
638 nsge = sk_msg_elem(msg_npl, j);
639 }
640
641 osge = sk_msg_elem(msg_opl, i);
642 while (osge->length) {
643 memcpy(nsge, osge, sizeof(*nsge));
644 sg_unmark_end(nsge);
645 sk_msg_iter_var_next(i);
646 sk_msg_iter_var_next(j);
647 if (i == *orig_end)
648 break;
649 osge = sk_msg_elem(msg_opl, i);
650 nsge = sk_msg_elem(msg_npl, j);
651 }
652
653 msg_npl->sg.end = j;
654 msg_npl->sg.curr = j;
655 msg_npl->sg.copybreak = 0;
656
657 *to = new;
658 return 0;
659 }
660
tls_merge_open_record(struct sock * sk,struct tls_rec * to,struct tls_rec * from,u32 orig_end)661 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
662 struct tls_rec *from, u32 orig_end)
663 {
664 struct sk_msg *msg_npl = &from->msg_plaintext;
665 struct sk_msg *msg_opl = &to->msg_plaintext;
666 struct scatterlist *osge, *nsge;
667 u32 i, j;
668
669 i = msg_opl->sg.end;
670 sk_msg_iter_var_prev(i);
671 j = msg_npl->sg.start;
672
673 osge = sk_msg_elem(msg_opl, i);
674 nsge = sk_msg_elem(msg_npl, j);
675
676 if (sg_page(osge) == sg_page(nsge) &&
677 osge->offset + osge->length == nsge->offset) {
678 osge->length += nsge->length;
679 put_page(sg_page(nsge));
680 }
681
682 msg_opl->sg.end = orig_end;
683 msg_opl->sg.curr = orig_end;
684 msg_opl->sg.copybreak = 0;
685 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
686 msg_opl->sg.size += msg_npl->sg.size;
687
688 sk_msg_free(sk, &to->msg_encrypted);
689 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
690
691 kfree(from);
692 }
693
tls_push_record(struct sock * sk,int flags,unsigned char record_type)694 static int tls_push_record(struct sock *sk, int flags,
695 unsigned char record_type)
696 {
697 struct tls_context *tls_ctx = tls_get_ctx(sk);
698 struct tls_prot_info *prot = &tls_ctx->prot_info;
699 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
700 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
701 u32 i, split_point, orig_end;
702 struct sk_msg *msg_pl, *msg_en;
703 struct aead_request *req;
704 bool split;
705 int rc;
706
707 if (!rec)
708 return 0;
709
710 msg_pl = &rec->msg_plaintext;
711 msg_en = &rec->msg_encrypted;
712
713 split_point = msg_pl->apply_bytes;
714 split = split_point && split_point < msg_pl->sg.size;
715 if (unlikely((!split &&
716 msg_pl->sg.size +
717 prot->overhead_size > msg_en->sg.size) ||
718 (split &&
719 split_point +
720 prot->overhead_size > msg_en->sg.size))) {
721 split = true;
722 split_point = msg_en->sg.size;
723 }
724 if (split) {
725 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
726 split_point, prot->overhead_size,
727 &orig_end);
728 if (rc < 0)
729 return rc;
730 /* This can happen if above tls_split_open_record allocates
731 * a single large encryption buffer instead of two smaller
732 * ones. In this case adjust pointers and continue without
733 * split.
734 */
735 if (!msg_pl->sg.size) {
736 tls_merge_open_record(sk, rec, tmp, orig_end);
737 msg_pl = &rec->msg_plaintext;
738 msg_en = &rec->msg_encrypted;
739 split = false;
740 }
741 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
742 prot->overhead_size);
743 }
744
745 rec->tx_flags = flags;
746 req = &rec->aead_req;
747
748 i = msg_pl->sg.end;
749 sk_msg_iter_var_prev(i);
750
751 rec->content_type = record_type;
752 if (prot->version == TLS_1_3_VERSION) {
753 /* Add content type to end of message. No padding added */
754 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
755 sg_mark_end(&rec->sg_content_type);
756 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
757 &rec->sg_content_type);
758 } else {
759 sg_mark_end(sk_msg_elem(msg_pl, i));
760 }
761
762 if (msg_pl->sg.end < msg_pl->sg.start) {
763 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
764 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
765 msg_pl->sg.data);
766 }
767
768 i = msg_pl->sg.start;
769 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
770
771 i = msg_en->sg.end;
772 sk_msg_iter_var_prev(i);
773 sg_mark_end(sk_msg_elem(msg_en, i));
774
775 i = msg_en->sg.start;
776 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
777
778 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
779 tls_ctx->tx.rec_seq, record_type, prot);
780
781 tls_fill_prepend(tls_ctx,
782 page_address(sg_page(&msg_en->sg.data[i])) +
783 msg_en->sg.data[i].offset,
784 msg_pl->sg.size + prot->tail_size,
785 record_type);
786
787 tls_ctx->pending_open_record_frags = false;
788
789 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
790 msg_pl->sg.size + prot->tail_size, i);
791 if (rc < 0) {
792 if (rc != -EINPROGRESS) {
793 tls_err_abort(sk, -EBADMSG);
794 if (split) {
795 tls_ctx->pending_open_record_frags = true;
796 tls_merge_open_record(sk, rec, tmp, orig_end);
797 }
798 }
799 ctx->async_capable = 1;
800 return rc;
801 } else if (split) {
802 msg_pl = &tmp->msg_plaintext;
803 msg_en = &tmp->msg_encrypted;
804 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
805 tls_ctx->pending_open_record_frags = true;
806 ctx->open_rec = tmp;
807 }
808
809 return tls_tx_records(sk, flags);
810 }
811
bpf_exec_tx_verdict(struct sk_msg * msg,struct sock * sk,bool full_record,u8 record_type,ssize_t * copied,int flags)812 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
813 bool full_record, u8 record_type,
814 ssize_t *copied, int flags)
815 {
816 struct tls_context *tls_ctx = tls_get_ctx(sk);
817 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
818 struct sk_msg msg_redir = { };
819 struct sk_psock *psock;
820 struct sock *sk_redir;
821 struct tls_rec *rec;
822 bool enospc, policy, redir_ingress;
823 int err = 0, send;
824 u32 delta = 0;
825
826 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
827 psock = sk_psock_get(sk);
828 if (!psock || !policy) {
829 err = tls_push_record(sk, flags, record_type);
830 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
831 *copied -= sk_msg_free(sk, msg);
832 tls_free_open_rec(sk);
833 err = -sk->sk_err;
834 }
835 if (psock)
836 sk_psock_put(sk, psock);
837 return err;
838 }
839 more_data:
840 enospc = sk_msg_full(msg);
841 if (psock->eval == __SK_NONE) {
842 delta = msg->sg.size;
843 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
844 delta -= msg->sg.size;
845 }
846 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
847 !enospc && !full_record) {
848 err = -ENOSPC;
849 goto out_err;
850 }
851 msg->cork_bytes = 0;
852 send = msg->sg.size;
853 if (msg->apply_bytes && msg->apply_bytes < send)
854 send = msg->apply_bytes;
855
856 switch (psock->eval) {
857 case __SK_PASS:
858 err = tls_push_record(sk, flags, record_type);
859 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
860 *copied -= sk_msg_free(sk, msg);
861 tls_free_open_rec(sk);
862 err = -sk->sk_err;
863 goto out_err;
864 }
865 break;
866 case __SK_REDIRECT:
867 redir_ingress = psock->redir_ingress;
868 sk_redir = psock->sk_redir;
869 memcpy(&msg_redir, msg, sizeof(*msg));
870 if (msg->apply_bytes < send)
871 msg->apply_bytes = 0;
872 else
873 msg->apply_bytes -= send;
874 sk_msg_return_zero(sk, msg, send);
875 msg->sg.size -= send;
876 release_sock(sk);
877 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
878 &msg_redir, send, flags);
879 lock_sock(sk);
880 if (err < 0) {
881 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
882 msg->sg.size = 0;
883 }
884 if (msg->sg.size == 0)
885 tls_free_open_rec(sk);
886 break;
887 case __SK_DROP:
888 default:
889 sk_msg_free_partial(sk, msg, send);
890 if (msg->apply_bytes < send)
891 msg->apply_bytes = 0;
892 else
893 msg->apply_bytes -= send;
894 if (msg->sg.size == 0)
895 tls_free_open_rec(sk);
896 *copied -= (send + delta);
897 err = -EACCES;
898 }
899
900 if (likely(!err)) {
901 bool reset_eval = !ctx->open_rec;
902
903 rec = ctx->open_rec;
904 if (rec) {
905 msg = &rec->msg_plaintext;
906 if (!msg->apply_bytes)
907 reset_eval = true;
908 }
909 if (reset_eval) {
910 psock->eval = __SK_NONE;
911 if (psock->sk_redir) {
912 sock_put(psock->sk_redir);
913 psock->sk_redir = NULL;
914 }
915 }
916 if (rec)
917 goto more_data;
918 }
919 out_err:
920 sk_psock_put(sk, psock);
921 return err;
922 }
923
tls_sw_push_pending_record(struct sock * sk,int flags)924 static int tls_sw_push_pending_record(struct sock *sk, int flags)
925 {
926 struct tls_context *tls_ctx = tls_get_ctx(sk);
927 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
928 struct tls_rec *rec = ctx->open_rec;
929 struct sk_msg *msg_pl;
930 size_t copied;
931
932 if (!rec)
933 return 0;
934
935 msg_pl = &rec->msg_plaintext;
936 copied = msg_pl->sg.size;
937 if (!copied)
938 return 0;
939
940 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
941 &copied, flags);
942 }
943
tls_sw_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)944 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
945 {
946 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
947 struct tls_context *tls_ctx = tls_get_ctx(sk);
948 struct tls_prot_info *prot = &tls_ctx->prot_info;
949 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
950 bool async_capable = ctx->async_capable;
951 unsigned char record_type = TLS_RECORD_TYPE_DATA;
952 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
953 bool eor = !(msg->msg_flags & MSG_MORE);
954 size_t try_to_copy;
955 ssize_t copied = 0;
956 struct sk_msg *msg_pl, *msg_en;
957 struct tls_rec *rec;
958 int required_size;
959 int num_async = 0;
960 bool full_record;
961 int record_room;
962 int num_zc = 0;
963 int orig_size;
964 int ret = 0;
965
966 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
967 MSG_CMSG_COMPAT))
968 return -EOPNOTSUPP;
969
970 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
971 if (ret)
972 return ret;
973 lock_sock(sk);
974
975 if (unlikely(msg->msg_controllen)) {
976 ret = tls_process_cmsg(sk, msg, &record_type);
977 if (ret) {
978 if (ret == -EINPROGRESS)
979 num_async++;
980 else if (ret != -EAGAIN)
981 goto send_end;
982 }
983 }
984
985 while (msg_data_left(msg)) {
986 if (sk->sk_err) {
987 ret = -sk->sk_err;
988 goto send_end;
989 }
990
991 if (ctx->open_rec)
992 rec = ctx->open_rec;
993 else
994 rec = ctx->open_rec = tls_get_rec(sk);
995 if (!rec) {
996 ret = -ENOMEM;
997 goto send_end;
998 }
999
1000 msg_pl = &rec->msg_plaintext;
1001 msg_en = &rec->msg_encrypted;
1002
1003 orig_size = msg_pl->sg.size;
1004 full_record = false;
1005 try_to_copy = msg_data_left(msg);
1006 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1007 if (try_to_copy >= record_room) {
1008 try_to_copy = record_room;
1009 full_record = true;
1010 }
1011
1012 required_size = msg_pl->sg.size + try_to_copy +
1013 prot->overhead_size;
1014
1015 if (!sk_stream_memory_free(sk))
1016 goto wait_for_sndbuf;
1017
1018 alloc_encrypted:
1019 ret = tls_alloc_encrypted_msg(sk, required_size);
1020 if (ret) {
1021 if (ret != -ENOSPC)
1022 goto wait_for_memory;
1023
1024 /* Adjust try_to_copy according to the amount that was
1025 * actually allocated. The difference is due
1026 * to max sg elements limit
1027 */
1028 try_to_copy -= required_size - msg_en->sg.size;
1029 full_record = true;
1030 }
1031
1032 if (!is_kvec && (full_record || eor) && !async_capable) {
1033 u32 first = msg_pl->sg.end;
1034
1035 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1036 msg_pl, try_to_copy);
1037 if (ret)
1038 goto fallback_to_reg_send;
1039
1040 num_zc++;
1041 copied += try_to_copy;
1042
1043 sk_msg_sg_copy_set(msg_pl, first);
1044 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1045 record_type, &copied,
1046 msg->msg_flags);
1047 if (ret) {
1048 if (ret == -EINPROGRESS)
1049 num_async++;
1050 else if (ret == -ENOMEM)
1051 goto wait_for_memory;
1052 else if (ctx->open_rec && ret == -ENOSPC)
1053 goto rollback_iter;
1054 else if (ret != -EAGAIN)
1055 goto send_end;
1056 }
1057 continue;
1058 rollback_iter:
1059 copied -= try_to_copy;
1060 sk_msg_sg_copy_clear(msg_pl, first);
1061 iov_iter_revert(&msg->msg_iter,
1062 msg_pl->sg.size - orig_size);
1063 fallback_to_reg_send:
1064 sk_msg_trim(sk, msg_pl, orig_size);
1065 }
1066
1067 required_size = msg_pl->sg.size + try_to_copy;
1068
1069 ret = tls_clone_plaintext_msg(sk, required_size);
1070 if (ret) {
1071 if (ret != -ENOSPC)
1072 goto send_end;
1073
1074 /* Adjust try_to_copy according to the amount that was
1075 * actually allocated. The difference is due
1076 * to max sg elements limit
1077 */
1078 try_to_copy -= required_size - msg_pl->sg.size;
1079 full_record = true;
1080 sk_msg_trim(sk, msg_en,
1081 msg_pl->sg.size + prot->overhead_size);
1082 }
1083
1084 if (try_to_copy) {
1085 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1086 msg_pl, try_to_copy);
1087 if (ret < 0)
1088 goto trim_sgl;
1089 }
1090
1091 /* Open records defined only if successfully copied, otherwise
1092 * we would trim the sg but not reset the open record frags.
1093 */
1094 tls_ctx->pending_open_record_frags = true;
1095 copied += try_to_copy;
1096 if (full_record || eor) {
1097 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1098 record_type, &copied,
1099 msg->msg_flags);
1100 if (ret) {
1101 if (ret == -EINPROGRESS)
1102 num_async++;
1103 else if (ret == -ENOMEM)
1104 goto wait_for_memory;
1105 else if (ret != -EAGAIN) {
1106 if (ret == -ENOSPC)
1107 ret = 0;
1108 goto send_end;
1109 }
1110 }
1111 }
1112
1113 continue;
1114
1115 wait_for_sndbuf:
1116 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1117 wait_for_memory:
1118 ret = sk_stream_wait_memory(sk, &timeo);
1119 if (ret) {
1120 trim_sgl:
1121 if (ctx->open_rec)
1122 tls_trim_both_msgs(sk, orig_size);
1123 goto send_end;
1124 }
1125
1126 if (ctx->open_rec && msg_en->sg.size < required_size)
1127 goto alloc_encrypted;
1128 }
1129
1130 if (!num_async) {
1131 goto send_end;
1132 } else if (num_zc) {
1133 int err;
1134
1135 /* Wait for pending encryptions to get completed */
1136 err = tls_encrypt_async_wait(ctx);
1137 if (err) {
1138 ret = err;
1139 copied = 0;
1140 }
1141 }
1142
1143 /* Transmit if any encryptions have completed */
1144 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1145 cancel_delayed_work(&ctx->tx_work.work);
1146 tls_tx_records(sk, msg->msg_flags);
1147 }
1148
1149 send_end:
1150 ret = sk_stream_error(sk, msg->msg_flags, ret);
1151
1152 release_sock(sk);
1153 mutex_unlock(&tls_ctx->tx_lock);
1154 return copied > 0 ? copied : ret;
1155 }
1156
1157 /*
1158 * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1159 */
tls_sw_splice_eof(struct socket * sock)1160 void tls_sw_splice_eof(struct socket *sock)
1161 {
1162 struct sock *sk = sock->sk;
1163 struct tls_context *tls_ctx = tls_get_ctx(sk);
1164 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1165 struct tls_rec *rec;
1166 struct sk_msg *msg_pl;
1167 ssize_t copied = 0;
1168 bool retrying = false;
1169 int ret = 0;
1170
1171 if (!ctx->open_rec)
1172 return;
1173
1174 mutex_lock(&tls_ctx->tx_lock);
1175 lock_sock(sk);
1176
1177 retry:
1178 /* same checks as in tls_sw_push_pending_record() */
1179 rec = ctx->open_rec;
1180 if (!rec)
1181 goto unlock;
1182
1183 msg_pl = &rec->msg_plaintext;
1184 if (msg_pl->sg.size == 0)
1185 goto unlock;
1186
1187 /* Check the BPF advisor and perform transmission. */
1188 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1189 &copied, 0);
1190 switch (ret) {
1191 case 0:
1192 case -EAGAIN:
1193 if (retrying)
1194 goto unlock;
1195 retrying = true;
1196 goto retry;
1197 case -EINPROGRESS:
1198 break;
1199 default:
1200 goto unlock;
1201 }
1202
1203 /* Wait for pending encryptions to get completed */
1204 if (tls_encrypt_async_wait(ctx))
1205 goto unlock;
1206
1207 /* Transmit if any encryptions have completed */
1208 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1209 cancel_delayed_work(&ctx->tx_work.work);
1210 tls_tx_records(sk, 0);
1211 }
1212
1213 unlock:
1214 release_sock(sk);
1215 mutex_unlock(&tls_ctx->tx_lock);
1216 }
1217
tls_sw_do_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1218 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1219 int offset, size_t size, int flags)
1220 {
1221 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1222 struct tls_context *tls_ctx = tls_get_ctx(sk);
1223 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1224 struct tls_prot_info *prot = &tls_ctx->prot_info;
1225 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1226 struct sk_msg *msg_pl;
1227 struct tls_rec *rec;
1228 int num_async = 0;
1229 ssize_t copied = 0;
1230 bool full_record;
1231 int record_room;
1232 int ret = 0;
1233 bool eor;
1234
1235 eor = !(flags & MSG_SENDPAGE_NOTLAST);
1236 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1237
1238 /* Call the sk_stream functions to manage the sndbuf mem. */
1239 while (size > 0) {
1240 size_t copy, required_size;
1241
1242 if (sk->sk_err) {
1243 ret = -sk->sk_err;
1244 goto sendpage_end;
1245 }
1246
1247 if (ctx->open_rec)
1248 rec = ctx->open_rec;
1249 else
1250 rec = ctx->open_rec = tls_get_rec(sk);
1251 if (!rec) {
1252 ret = -ENOMEM;
1253 goto sendpage_end;
1254 }
1255
1256 msg_pl = &rec->msg_plaintext;
1257
1258 full_record = false;
1259 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1260 copy = size;
1261 if (copy >= record_room) {
1262 copy = record_room;
1263 full_record = true;
1264 }
1265
1266 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1267
1268 if (!sk_stream_memory_free(sk))
1269 goto wait_for_sndbuf;
1270 alloc_payload:
1271 ret = tls_alloc_encrypted_msg(sk, required_size);
1272 if (ret) {
1273 if (ret != -ENOSPC)
1274 goto wait_for_memory;
1275
1276 /* Adjust copy according to the amount that was
1277 * actually allocated. The difference is due
1278 * to max sg elements limit
1279 */
1280 copy -= required_size - msg_pl->sg.size;
1281 full_record = true;
1282 }
1283
1284 sk_msg_page_add(msg_pl, page, copy, offset);
1285 msg_pl->sg.copybreak = 0;
1286 msg_pl->sg.curr = msg_pl->sg.end;
1287 sk_mem_charge(sk, copy);
1288
1289 offset += copy;
1290 size -= copy;
1291 copied += copy;
1292
1293 tls_ctx->pending_open_record_frags = true;
1294 if (full_record || eor || sk_msg_full(msg_pl)) {
1295 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1296 record_type, &copied, flags);
1297 if (ret) {
1298 if (ret == -EINPROGRESS)
1299 num_async++;
1300 else if (ret == -ENOMEM)
1301 goto wait_for_memory;
1302 else if (ret != -EAGAIN) {
1303 if (ret == -ENOSPC)
1304 ret = 0;
1305 goto sendpage_end;
1306 }
1307 }
1308 }
1309 continue;
1310 wait_for_sndbuf:
1311 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1312 wait_for_memory:
1313 ret = sk_stream_wait_memory(sk, &timeo);
1314 if (ret) {
1315 if (ctx->open_rec)
1316 tls_trim_both_msgs(sk, msg_pl->sg.size);
1317 goto sendpage_end;
1318 }
1319
1320 if (ctx->open_rec)
1321 goto alloc_payload;
1322 }
1323
1324 if (num_async) {
1325 /* Transmit if any encryptions have completed */
1326 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1327 cancel_delayed_work(&ctx->tx_work.work);
1328 tls_tx_records(sk, flags);
1329 }
1330 }
1331 sendpage_end:
1332 ret = sk_stream_error(sk, flags, ret);
1333 return copied > 0 ? copied : ret;
1334 }
1335
tls_sw_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1336 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1337 int offset, size_t size, int flags)
1338 {
1339 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1340 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1341 MSG_NO_SHARED_FRAGS))
1342 return -EOPNOTSUPP;
1343
1344 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1345 }
1346
tls_sw_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1347 int tls_sw_sendpage(struct sock *sk, struct page *page,
1348 int offset, size_t size, int flags)
1349 {
1350 struct tls_context *tls_ctx = tls_get_ctx(sk);
1351 int ret;
1352
1353 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1354 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1355 return -EOPNOTSUPP;
1356
1357 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1358 if (ret)
1359 return ret;
1360 lock_sock(sk);
1361 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1362 release_sock(sk);
1363 mutex_unlock(&tls_ctx->tx_lock);
1364 return ret;
1365 }
1366
1367 static int
tls_rx_rec_wait(struct sock * sk,struct sk_psock * psock,bool nonblock,bool released)1368 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1369 bool released)
1370 {
1371 struct tls_context *tls_ctx = tls_get_ctx(sk);
1372 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1373 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1374 long timeo;
1375
1376 timeo = sock_rcvtimeo(sk, nonblock);
1377
1378 while (!tls_strp_msg_ready(ctx)) {
1379 if (!sk_psock_queue_empty(psock))
1380 return 0;
1381
1382 if (sk->sk_err)
1383 return sock_error(sk);
1384
1385 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1386 tls_strp_check_rcv(&ctx->strp);
1387 if (tls_strp_msg_ready(ctx))
1388 break;
1389 }
1390
1391 if (sk->sk_shutdown & RCV_SHUTDOWN)
1392 return 0;
1393
1394 if (sock_flag(sk, SOCK_DONE))
1395 return 0;
1396
1397 if (!timeo)
1398 return -EAGAIN;
1399
1400 released = true;
1401 add_wait_queue(sk_sleep(sk), &wait);
1402 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1403 sk_wait_event(sk, &timeo,
1404 tls_strp_msg_ready(ctx) ||
1405 !sk_psock_queue_empty(psock),
1406 &wait);
1407 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1408 remove_wait_queue(sk_sleep(sk), &wait);
1409
1410 /* Handle signals */
1411 if (signal_pending(current))
1412 return sock_intr_errno(timeo);
1413 }
1414
1415 tls_strp_msg_load(&ctx->strp, released);
1416
1417 return 1;
1418 }
1419
tls_setup_from_iter(struct iov_iter * from,int length,int * pages_used,struct scatterlist * to,int to_max_pages)1420 static int tls_setup_from_iter(struct iov_iter *from,
1421 int length, int *pages_used,
1422 struct scatterlist *to,
1423 int to_max_pages)
1424 {
1425 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1426 struct page *pages[MAX_SKB_FRAGS];
1427 unsigned int size = 0;
1428 ssize_t copied, use;
1429 size_t offset;
1430
1431 while (length > 0) {
1432 i = 0;
1433 maxpages = to_max_pages - num_elem;
1434 if (maxpages == 0) {
1435 rc = -EFAULT;
1436 goto out;
1437 }
1438 copied = iov_iter_get_pages2(from, pages,
1439 length,
1440 maxpages, &offset);
1441 if (copied <= 0) {
1442 rc = -EFAULT;
1443 goto out;
1444 }
1445
1446 length -= copied;
1447 size += copied;
1448 while (copied) {
1449 use = min_t(int, copied, PAGE_SIZE - offset);
1450
1451 sg_set_page(&to[num_elem],
1452 pages[i], use, offset);
1453 sg_unmark_end(&to[num_elem]);
1454 /* We do not uncharge memory from this API */
1455
1456 offset = 0;
1457 copied -= use;
1458
1459 i++;
1460 num_elem++;
1461 }
1462 }
1463 /* Mark the end in the last sg entry if newly added */
1464 if (num_elem > *pages_used)
1465 sg_mark_end(&to[num_elem - 1]);
1466 out:
1467 if (rc)
1468 iov_iter_revert(from, size);
1469 *pages_used = num_elem;
1470
1471 return rc;
1472 }
1473
1474 static struct sk_buff *
tls_alloc_clrtxt_skb(struct sock * sk,struct sk_buff * skb,unsigned int full_len)1475 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1476 unsigned int full_len)
1477 {
1478 struct strp_msg *clr_rxm;
1479 struct sk_buff *clr_skb;
1480 int err;
1481
1482 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1483 &err, sk->sk_allocation);
1484 if (!clr_skb)
1485 return NULL;
1486
1487 skb_copy_header(clr_skb, skb);
1488 clr_skb->len = full_len;
1489 clr_skb->data_len = full_len;
1490
1491 clr_rxm = strp_msg(clr_skb);
1492 clr_rxm->offset = 0;
1493
1494 return clr_skb;
1495 }
1496
1497 /* Decrypt handlers
1498 *
1499 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1500 * They must transform the darg in/out argument are as follows:
1501 * | Input | Output
1502 * -------------------------------------------------------------------
1503 * zc | Zero-copy decrypt allowed | Zero-copy performed
1504 * async | Async decrypt allowed | Async crypto used / in progress
1505 * skb | * | Output skb
1506 *
1507 * If ZC decryption was performed darg.skb will point to the input skb.
1508 */
1509
1510 /* This function decrypts the input skb into either out_iov or in out_sg
1511 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1512 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1513 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1514 * NULL, then the decryption happens inside skb buffers itself, i.e.
1515 * zero-copy gets disabled and 'darg->zc' is updated.
1516 */
tls_decrypt_sg(struct sock * sk,struct iov_iter * out_iov,struct scatterlist * out_sg,struct tls_decrypt_arg * darg)1517 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1518 struct scatterlist *out_sg,
1519 struct tls_decrypt_arg *darg)
1520 {
1521 struct tls_context *tls_ctx = tls_get_ctx(sk);
1522 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1523 struct tls_prot_info *prot = &tls_ctx->prot_info;
1524 int n_sgin, n_sgout, aead_size, err, pages = 0;
1525 struct sk_buff *skb = tls_strp_msg(ctx);
1526 const struct strp_msg *rxm = strp_msg(skb);
1527 const struct tls_msg *tlm = tls_msg(skb);
1528 struct aead_request *aead_req;
1529 struct scatterlist *sgin = NULL;
1530 struct scatterlist *sgout = NULL;
1531 const int data_len = rxm->full_len - prot->overhead_size;
1532 int tail_pages = !!prot->tail_size;
1533 struct tls_decrypt_ctx *dctx;
1534 struct sk_buff *clear_skb;
1535 int iv_offset = 0;
1536 u8 *mem;
1537
1538 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1539 rxm->full_len - prot->prepend_size);
1540 if (n_sgin < 1)
1541 return n_sgin ?: -EBADMSG;
1542
1543 if (darg->zc && (out_iov || out_sg)) {
1544 clear_skb = NULL;
1545
1546 if (out_iov)
1547 n_sgout = 1 + tail_pages +
1548 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1549 else
1550 n_sgout = sg_nents(out_sg);
1551 } else {
1552 darg->zc = false;
1553
1554 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1555 if (!clear_skb)
1556 return -ENOMEM;
1557
1558 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1559 }
1560
1561 /* Increment to accommodate AAD */
1562 n_sgin = n_sgin + 1;
1563
1564 /* Allocate a single block of memory which contains
1565 * aead_req || tls_decrypt_ctx.
1566 * Both structs are variable length.
1567 */
1568 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1569 aead_size = ALIGN(aead_size, __alignof__(*dctx));
1570 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1571 sk->sk_allocation);
1572 if (!mem) {
1573 err = -ENOMEM;
1574 goto exit_free_skb;
1575 }
1576
1577 /* Segment the allocated memory */
1578 aead_req = (struct aead_request *)mem;
1579 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1580 dctx->sk = sk;
1581 sgin = &dctx->sg[0];
1582 sgout = &dctx->sg[n_sgin];
1583
1584 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1585 switch (prot->cipher_type) {
1586 case TLS_CIPHER_AES_CCM_128:
1587 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1588 iv_offset = 1;
1589 break;
1590 case TLS_CIPHER_SM4_CCM:
1591 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1592 iv_offset = 1;
1593 break;
1594 }
1595
1596 /* Prepare IV */
1597 if (prot->version == TLS_1_3_VERSION ||
1598 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1599 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1600 prot->iv_size + prot->salt_size);
1601 } else {
1602 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1603 &dctx->iv[iv_offset] + prot->salt_size,
1604 prot->iv_size);
1605 if (err < 0)
1606 goto exit_free;
1607 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1608 }
1609 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1610
1611 /* Prepare AAD */
1612 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1613 prot->tail_size,
1614 tls_ctx->rx.rec_seq, tlm->control, prot);
1615
1616 /* Prepare sgin */
1617 sg_init_table(sgin, n_sgin);
1618 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1619 err = skb_to_sgvec(skb, &sgin[1],
1620 rxm->offset + prot->prepend_size,
1621 rxm->full_len - prot->prepend_size);
1622 if (err < 0)
1623 goto exit_free;
1624
1625 if (clear_skb) {
1626 sg_init_table(sgout, n_sgout);
1627 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1628
1629 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1630 data_len + prot->tail_size);
1631 if (err < 0)
1632 goto exit_free;
1633 } else if (out_iov) {
1634 sg_init_table(sgout, n_sgout);
1635 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1636
1637 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1638 (n_sgout - 1 - tail_pages));
1639 if (err < 0)
1640 goto exit_free_pages;
1641
1642 if (prot->tail_size) {
1643 sg_unmark_end(&sgout[pages]);
1644 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1645 prot->tail_size);
1646 sg_mark_end(&sgout[pages + 1]);
1647 }
1648 } else if (out_sg) {
1649 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1650 }
1651 dctx->free_sgout = !!pages;
1652
1653 /* Prepare and submit AEAD request */
1654 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1655 data_len + prot->tail_size, aead_req, darg);
1656 if (err)
1657 goto exit_free_pages;
1658
1659 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1660 clear_skb = NULL;
1661
1662 if (unlikely(darg->async)) {
1663 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1664 if (err)
1665 __skb_queue_tail(&ctx->async_hold, darg->skb);
1666 return err;
1667 }
1668
1669 if (prot->tail_size)
1670 darg->tail = dctx->tail;
1671
1672 exit_free_pages:
1673 /* Release the pages in case iov was mapped to pages */
1674 for (; pages > 0; pages--)
1675 put_page(sg_page(&sgout[pages]));
1676 exit_free:
1677 kfree(mem);
1678 exit_free_skb:
1679 consume_skb(clear_skb);
1680 return err;
1681 }
1682
1683 static int
tls_decrypt_sw(struct sock * sk,struct tls_context * tls_ctx,struct msghdr * msg,struct tls_decrypt_arg * darg)1684 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1685 struct msghdr *msg, struct tls_decrypt_arg *darg)
1686 {
1687 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1688 struct tls_prot_info *prot = &tls_ctx->prot_info;
1689 struct strp_msg *rxm;
1690 int pad, err;
1691
1692 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1693 if (err < 0) {
1694 if (err == -EBADMSG)
1695 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1696 return err;
1697 }
1698 /* keep going even for ->async, the code below is TLS 1.3 */
1699
1700 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1701 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1702 darg->tail != TLS_RECORD_TYPE_DATA)) {
1703 darg->zc = false;
1704 if (!darg->tail)
1705 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1706 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1707 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1708 }
1709
1710 pad = tls_padding_length(prot, darg->skb, darg);
1711 if (pad < 0) {
1712 if (darg->skb != tls_strp_msg(ctx))
1713 consume_skb(darg->skb);
1714 return pad;
1715 }
1716
1717 rxm = strp_msg(darg->skb);
1718 rxm->full_len -= pad;
1719
1720 return 0;
1721 }
1722
1723 static int
tls_decrypt_device(struct sock * sk,struct msghdr * msg,struct tls_context * tls_ctx,struct tls_decrypt_arg * darg)1724 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1725 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1726 {
1727 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1728 struct tls_prot_info *prot = &tls_ctx->prot_info;
1729 struct strp_msg *rxm;
1730 int pad, err;
1731
1732 if (tls_ctx->rx_conf != TLS_HW)
1733 return 0;
1734
1735 err = tls_device_decrypted(sk, tls_ctx);
1736 if (err <= 0)
1737 return err;
1738
1739 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1740 if (pad < 0)
1741 return pad;
1742
1743 darg->async = false;
1744 darg->skb = tls_strp_msg(ctx);
1745 /* ->zc downgrade check, in case TLS 1.3 gets here */
1746 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1747 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1748
1749 rxm = strp_msg(darg->skb);
1750 rxm->full_len -= pad;
1751
1752 if (!darg->zc) {
1753 /* Non-ZC case needs a real skb */
1754 darg->skb = tls_strp_msg_detach(ctx);
1755 if (!darg->skb)
1756 return -ENOMEM;
1757 } else {
1758 unsigned int off, len;
1759
1760 /* In ZC case nobody cares about the output skb.
1761 * Just copy the data here. Note the skb is not fully trimmed.
1762 */
1763 off = rxm->offset + prot->prepend_size;
1764 len = rxm->full_len - prot->overhead_size;
1765
1766 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1767 if (err)
1768 return err;
1769 }
1770 return 1;
1771 }
1772
tls_rx_one_record(struct sock * sk,struct msghdr * msg,struct tls_decrypt_arg * darg)1773 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1774 struct tls_decrypt_arg *darg)
1775 {
1776 struct tls_context *tls_ctx = tls_get_ctx(sk);
1777 struct tls_prot_info *prot = &tls_ctx->prot_info;
1778 struct strp_msg *rxm;
1779 int err;
1780
1781 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1782 if (!err)
1783 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1784 if (err < 0)
1785 return err;
1786
1787 rxm = strp_msg(darg->skb);
1788 rxm->offset += prot->prepend_size;
1789 rxm->full_len -= prot->overhead_size;
1790 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1791
1792 return 0;
1793 }
1794
decrypt_skb(struct sock * sk,struct scatterlist * sgout)1795 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1796 {
1797 struct tls_decrypt_arg darg = { .zc = true, };
1798
1799 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1800 }
1801
tls_record_content_type(struct msghdr * msg,struct tls_msg * tlm,u8 * control)1802 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1803 u8 *control)
1804 {
1805 int err;
1806
1807 if (!*control) {
1808 *control = tlm->control;
1809 if (!*control)
1810 return -EBADMSG;
1811
1812 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1813 sizeof(*control), control);
1814 if (*control != TLS_RECORD_TYPE_DATA) {
1815 if (err || msg->msg_flags & MSG_CTRUNC)
1816 return -EIO;
1817 }
1818 } else if (*control != tlm->control) {
1819 return 0;
1820 }
1821
1822 return 1;
1823 }
1824
tls_rx_rec_done(struct tls_sw_context_rx * ctx)1825 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1826 {
1827 tls_strp_msg_done(&ctx->strp);
1828 }
1829
1830 /* This function traverses the rx_list in tls receive context to copies the
1831 * decrypted records into the buffer provided by caller zero copy is not
1832 * true. Further, the records are removed from the rx_list if it is not a peek
1833 * case and the record has been consumed completely.
1834 */
process_rx_list(struct tls_sw_context_rx * ctx,struct msghdr * msg,u8 * control,size_t skip,size_t len,bool is_peek,bool * more)1835 static int process_rx_list(struct tls_sw_context_rx *ctx,
1836 struct msghdr *msg,
1837 u8 *control,
1838 size_t skip,
1839 size_t len,
1840 bool is_peek,
1841 bool *more)
1842 {
1843 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1844 struct tls_msg *tlm;
1845 ssize_t copied = 0;
1846 int err;
1847
1848 while (skip && skb) {
1849 struct strp_msg *rxm = strp_msg(skb);
1850 tlm = tls_msg(skb);
1851
1852 err = tls_record_content_type(msg, tlm, control);
1853 if (err <= 0)
1854 goto more;
1855
1856 if (skip < rxm->full_len)
1857 break;
1858
1859 skip = skip - rxm->full_len;
1860 skb = skb_peek_next(skb, &ctx->rx_list);
1861 }
1862
1863 while (len && skb) {
1864 struct sk_buff *next_skb;
1865 struct strp_msg *rxm = strp_msg(skb);
1866 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1867
1868 tlm = tls_msg(skb);
1869
1870 err = tls_record_content_type(msg, tlm, control);
1871 if (err <= 0)
1872 goto more;
1873
1874 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1875 msg, chunk);
1876 if (err < 0)
1877 goto more;
1878
1879 len = len - chunk;
1880 copied = copied + chunk;
1881
1882 /* Consume the data from record if it is non-peek case*/
1883 if (!is_peek) {
1884 rxm->offset = rxm->offset + chunk;
1885 rxm->full_len = rxm->full_len - chunk;
1886
1887 /* Return if there is unconsumed data in the record */
1888 if (rxm->full_len - skip)
1889 break;
1890 }
1891
1892 /* The remaining skip-bytes must lie in 1st record in rx_list.
1893 * So from the 2nd record, 'skip' should be 0.
1894 */
1895 skip = 0;
1896
1897 if (msg)
1898 msg->msg_flags |= MSG_EOR;
1899
1900 next_skb = skb_peek_next(skb, &ctx->rx_list);
1901
1902 if (!is_peek) {
1903 __skb_unlink(skb, &ctx->rx_list);
1904 consume_skb(skb);
1905 }
1906
1907 skb = next_skb;
1908 }
1909 err = 0;
1910
1911 out:
1912 return copied ? : err;
1913 more:
1914 if (more)
1915 *more = true;
1916 goto out;
1917 }
1918
1919 static bool
tls_read_flush_backlog(struct sock * sk,struct tls_prot_info * prot,size_t len_left,size_t decrypted,ssize_t done,size_t * flushed_at)1920 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1921 size_t len_left, size_t decrypted, ssize_t done,
1922 size_t *flushed_at)
1923 {
1924 size_t max_rec;
1925
1926 if (len_left <= decrypted)
1927 return false;
1928
1929 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1930 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1931 return false;
1932
1933 *flushed_at = done;
1934 return sk_flush_backlog(sk);
1935 }
1936
tls_rx_reader_acquire(struct sock * sk,struct tls_sw_context_rx * ctx,bool nonblock)1937 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1938 bool nonblock)
1939 {
1940 long timeo;
1941
1942 timeo = sock_rcvtimeo(sk, nonblock);
1943
1944 while (unlikely(ctx->reader_present)) {
1945 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1946
1947 ctx->reader_contended = 1;
1948
1949 add_wait_queue(&ctx->wq, &wait);
1950 sk_wait_event(sk, &timeo,
1951 !READ_ONCE(ctx->reader_present), &wait);
1952 remove_wait_queue(&ctx->wq, &wait);
1953
1954 if (timeo <= 0)
1955 return -EAGAIN;
1956 if (signal_pending(current))
1957 return sock_intr_errno(timeo);
1958 }
1959
1960 WRITE_ONCE(ctx->reader_present, 1);
1961
1962 return 0;
1963 }
1964
tls_rx_reader_lock(struct sock * sk,struct tls_sw_context_rx * ctx,bool nonblock)1965 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1966 bool nonblock)
1967 {
1968 int err;
1969
1970 lock_sock(sk);
1971 err = tls_rx_reader_acquire(sk, ctx, nonblock);
1972 if (err)
1973 release_sock(sk);
1974 return err;
1975 }
1976
tls_rx_reader_release(struct sock * sk,struct tls_sw_context_rx * ctx)1977 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1978 {
1979 if (unlikely(ctx->reader_contended)) {
1980 if (wq_has_sleeper(&ctx->wq))
1981 wake_up(&ctx->wq);
1982 else
1983 ctx->reader_contended = 0;
1984
1985 WARN_ON_ONCE(!ctx->reader_present);
1986 }
1987
1988 WRITE_ONCE(ctx->reader_present, 0);
1989 }
1990
tls_rx_reader_unlock(struct sock * sk,struct tls_sw_context_rx * ctx)1991 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1992 {
1993 tls_rx_reader_release(sk, ctx);
1994 release_sock(sk);
1995 }
1996
tls_sw_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)1997 int tls_sw_recvmsg(struct sock *sk,
1998 struct msghdr *msg,
1999 size_t len,
2000 int flags,
2001 int *addr_len)
2002 {
2003 struct tls_context *tls_ctx = tls_get_ctx(sk);
2004 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2005 struct tls_prot_info *prot = &tls_ctx->prot_info;
2006 ssize_t decrypted = 0, async_copy_bytes = 0;
2007 struct sk_psock *psock;
2008 unsigned char control = 0;
2009 size_t flushed_at = 0;
2010 struct strp_msg *rxm;
2011 struct tls_msg *tlm;
2012 ssize_t copied = 0;
2013 bool async = false;
2014 int target, err;
2015 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
2016 bool is_peek = flags & MSG_PEEK;
2017 bool rx_more = false;
2018 bool released = true;
2019 bool bpf_strp_enabled;
2020 bool zc_capable;
2021
2022 if (unlikely(flags & MSG_ERRQUEUE))
2023 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
2024
2025 psock = sk_psock_get(sk);
2026 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
2027 if (err < 0)
2028 return err;
2029 bpf_strp_enabled = sk_psock_strp_enabled(psock);
2030
2031 /* If crypto failed the connection is broken */
2032 err = ctx->async_wait.err;
2033 if (err)
2034 goto end;
2035
2036 /* Process pending decrypted records. It must be non-zero-copy */
2037 err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more);
2038 if (err < 0)
2039 goto end;
2040
2041 copied = err;
2042 if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more)
2043 goto end;
2044
2045 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2046 len = len - copied;
2047
2048 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
2049 ctx->zc_capable;
2050 decrypted = 0;
2051 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
2052 struct tls_decrypt_arg darg;
2053 int to_decrypt, chunk;
2054
2055 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
2056 released);
2057 if (err <= 0) {
2058 if (psock) {
2059 chunk = sk_msg_recvmsg(sk, psock, msg, len,
2060 flags);
2061 if (chunk > 0) {
2062 decrypted += chunk;
2063 len -= chunk;
2064 continue;
2065 }
2066 }
2067 goto recv_end;
2068 }
2069
2070 memset(&darg.inargs, 0, sizeof(darg.inargs));
2071
2072 rxm = strp_msg(tls_strp_msg(ctx));
2073 tlm = tls_msg(tls_strp_msg(ctx));
2074
2075 to_decrypt = rxm->full_len - prot->overhead_size;
2076
2077 if (zc_capable && to_decrypt <= len &&
2078 tlm->control == TLS_RECORD_TYPE_DATA)
2079 darg.zc = true;
2080
2081 /* Do not use async mode if record is non-data */
2082 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2083 darg.async = ctx->async_capable;
2084 else
2085 darg.async = false;
2086
2087 err = tls_rx_one_record(sk, msg, &darg);
2088 if (err < 0) {
2089 tls_err_abort(sk, -EBADMSG);
2090 goto recv_end;
2091 }
2092
2093 async |= darg.async;
2094
2095 /* If the type of records being processed is not known yet,
2096 * set it to record type just dequeued. If it is already known,
2097 * but does not match the record type just dequeued, go to end.
2098 * We always get record type here since for tls1.2, record type
2099 * is known just after record is dequeued from stream parser.
2100 * For tls1.3, we disable async.
2101 */
2102 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2103 if (err <= 0) {
2104 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2105 tls_rx_rec_done(ctx);
2106 put_on_rx_list_err:
2107 __skb_queue_tail(&ctx->rx_list, darg.skb);
2108 goto recv_end;
2109 }
2110
2111 /* periodically flush backlog, and feed strparser */
2112 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2113 decrypted + copied,
2114 &flushed_at);
2115
2116 /* TLS 1.3 may have updated the length by more than overhead */
2117 rxm = strp_msg(darg.skb);
2118 chunk = rxm->full_len;
2119 tls_rx_rec_done(ctx);
2120
2121 if (!darg.zc) {
2122 bool partially_consumed = chunk > len;
2123 struct sk_buff *skb = darg.skb;
2124
2125 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2126
2127 if (async) {
2128 /* TLS 1.2-only, to_decrypt must be text len */
2129 chunk = min_t(int, to_decrypt, len);
2130 async_copy_bytes += chunk;
2131 put_on_rx_list:
2132 decrypted += chunk;
2133 len -= chunk;
2134 __skb_queue_tail(&ctx->rx_list, skb);
2135 if (unlikely(control != TLS_RECORD_TYPE_DATA))
2136 break;
2137 continue;
2138 }
2139
2140 if (bpf_strp_enabled) {
2141 released = true;
2142 err = sk_psock_tls_strp_read(psock, skb);
2143 if (err != __SK_PASS) {
2144 rxm->offset = rxm->offset + rxm->full_len;
2145 rxm->full_len = 0;
2146 if (err == __SK_DROP)
2147 consume_skb(skb);
2148 continue;
2149 }
2150 }
2151
2152 if (partially_consumed)
2153 chunk = len;
2154
2155 err = skb_copy_datagram_msg(skb, rxm->offset,
2156 msg, chunk);
2157 if (err < 0)
2158 goto put_on_rx_list_err;
2159
2160 if (is_peek)
2161 goto put_on_rx_list;
2162
2163 if (partially_consumed) {
2164 rxm->offset += chunk;
2165 rxm->full_len -= chunk;
2166 goto put_on_rx_list;
2167 }
2168
2169 consume_skb(skb);
2170 }
2171
2172 decrypted += chunk;
2173 len -= chunk;
2174
2175 /* Return full control message to userspace before trying
2176 * to parse another message type
2177 */
2178 msg->msg_flags |= MSG_EOR;
2179 if (control != TLS_RECORD_TYPE_DATA)
2180 break;
2181 }
2182
2183 recv_end:
2184 if (async) {
2185 int ret;
2186
2187 /* Wait for all previously submitted records to be decrypted */
2188 ret = tls_decrypt_async_wait(ctx);
2189 __skb_queue_purge(&ctx->async_hold);
2190
2191 if (ret) {
2192 if (err >= 0 || err == -EINPROGRESS)
2193 err = ret;
2194 decrypted = 0;
2195 goto end;
2196 }
2197
2198 /* Drain records from the rx_list & copy if required */
2199 if (is_peek || is_kvec)
2200 err = process_rx_list(ctx, msg, &control, copied,
2201 decrypted, is_peek, NULL);
2202 else
2203 err = process_rx_list(ctx, msg, &control, 0,
2204 async_copy_bytes, is_peek, NULL);
2205 }
2206
2207 copied += decrypted;
2208
2209 end:
2210 tls_rx_reader_unlock(sk, ctx);
2211 if (psock)
2212 sk_psock_put(sk, psock);
2213 return copied ? : err;
2214 }
2215
tls_sw_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2216 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2217 struct pipe_inode_info *pipe,
2218 size_t len, unsigned int flags)
2219 {
2220 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2221 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2222 struct strp_msg *rxm = NULL;
2223 struct sock *sk = sock->sk;
2224 struct tls_msg *tlm;
2225 struct sk_buff *skb;
2226 ssize_t copied = 0;
2227 int chunk;
2228 int err;
2229
2230 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2231 if (err < 0)
2232 return err;
2233
2234 if (!skb_queue_empty(&ctx->rx_list)) {
2235 skb = __skb_dequeue(&ctx->rx_list);
2236 } else {
2237 struct tls_decrypt_arg darg;
2238
2239 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2240 true);
2241 if (err <= 0)
2242 goto splice_read_end;
2243
2244 memset(&darg.inargs, 0, sizeof(darg.inargs));
2245
2246 err = tls_rx_one_record(sk, NULL, &darg);
2247 if (err < 0) {
2248 tls_err_abort(sk, -EBADMSG);
2249 goto splice_read_end;
2250 }
2251
2252 tls_rx_rec_done(ctx);
2253 skb = darg.skb;
2254 }
2255
2256 rxm = strp_msg(skb);
2257 tlm = tls_msg(skb);
2258
2259 /* splice does not support reading control messages */
2260 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2261 err = -EINVAL;
2262 goto splice_requeue;
2263 }
2264
2265 chunk = min_t(unsigned int, rxm->full_len, len);
2266 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2267 if (copied < 0)
2268 goto splice_requeue;
2269
2270 if (chunk < rxm->full_len) {
2271 rxm->offset += len;
2272 rxm->full_len -= len;
2273 goto splice_requeue;
2274 }
2275
2276 consume_skb(skb);
2277
2278 splice_read_end:
2279 tls_rx_reader_unlock(sk, ctx);
2280 return copied ? : err;
2281
2282 splice_requeue:
2283 __skb_queue_head(&ctx->rx_list, skb);
2284 goto splice_read_end;
2285 }
2286
tls_sw_sock_is_readable(struct sock * sk)2287 bool tls_sw_sock_is_readable(struct sock *sk)
2288 {
2289 struct tls_context *tls_ctx = tls_get_ctx(sk);
2290 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2291 bool ingress_empty = true;
2292 struct sk_psock *psock;
2293
2294 rcu_read_lock();
2295 psock = sk_psock(sk);
2296 if (psock)
2297 ingress_empty = list_empty(&psock->ingress_msg);
2298 rcu_read_unlock();
2299
2300 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2301 !skb_queue_empty(&ctx->rx_list);
2302 }
2303
tls_rx_msg_size(struct tls_strparser * strp,struct sk_buff * skb)2304 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2305 {
2306 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2307 struct tls_prot_info *prot = &tls_ctx->prot_info;
2308 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2309 size_t cipher_overhead;
2310 size_t data_len = 0;
2311 int ret;
2312
2313 /* Verify that we have a full TLS header, or wait for more data */
2314 if (strp->stm.offset + prot->prepend_size > skb->len)
2315 return 0;
2316
2317 /* Sanity-check size of on-stack buffer. */
2318 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2319 ret = -EINVAL;
2320 goto read_failure;
2321 }
2322
2323 /* Linearize header to local buffer */
2324 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2325 if (ret < 0)
2326 goto read_failure;
2327
2328 strp->mark = header[0];
2329
2330 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2331
2332 cipher_overhead = prot->tag_size;
2333 if (prot->version != TLS_1_3_VERSION &&
2334 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2335 cipher_overhead += prot->iv_size;
2336
2337 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2338 prot->tail_size) {
2339 ret = -EMSGSIZE;
2340 goto read_failure;
2341 }
2342 if (data_len < cipher_overhead) {
2343 ret = -EBADMSG;
2344 goto read_failure;
2345 }
2346
2347 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2348 if (header[1] != TLS_1_2_VERSION_MINOR ||
2349 header[2] != TLS_1_2_VERSION_MAJOR) {
2350 ret = -EINVAL;
2351 goto read_failure;
2352 }
2353
2354 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2355 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2356 return data_len + TLS_HEADER_SIZE;
2357
2358 read_failure:
2359 tls_err_abort(strp->sk, ret);
2360
2361 return ret;
2362 }
2363
tls_rx_msg_ready(struct tls_strparser * strp)2364 void tls_rx_msg_ready(struct tls_strparser *strp)
2365 {
2366 struct tls_sw_context_rx *ctx;
2367
2368 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2369 ctx->saved_data_ready(strp->sk);
2370 }
2371
tls_data_ready(struct sock * sk)2372 static void tls_data_ready(struct sock *sk)
2373 {
2374 struct tls_context *tls_ctx = tls_get_ctx(sk);
2375 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2376 struct sk_psock *psock;
2377 gfp_t alloc_save;
2378
2379 alloc_save = sk->sk_allocation;
2380 sk->sk_allocation = GFP_ATOMIC;
2381 tls_strp_data_ready(&ctx->strp);
2382 sk->sk_allocation = alloc_save;
2383
2384 psock = sk_psock_get(sk);
2385 if (psock) {
2386 if (!list_empty(&psock->ingress_msg))
2387 ctx->saved_data_ready(sk);
2388 sk_psock_put(sk, psock);
2389 }
2390 }
2391
tls_sw_cancel_work_tx(struct tls_context * tls_ctx)2392 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2393 {
2394 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2395
2396 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2397 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2398 cancel_delayed_work_sync(&ctx->tx_work.work);
2399 }
2400
tls_sw_release_resources_tx(struct sock * sk)2401 void tls_sw_release_resources_tx(struct sock *sk)
2402 {
2403 struct tls_context *tls_ctx = tls_get_ctx(sk);
2404 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2405 struct tls_rec *rec, *tmp;
2406
2407 /* Wait for any pending async encryptions to complete */
2408 tls_encrypt_async_wait(ctx);
2409
2410 tls_tx_records(sk, -1);
2411
2412 /* Free up un-sent records in tx_list. First, free
2413 * the partially sent record if any at head of tx_list.
2414 */
2415 if (tls_ctx->partially_sent_record) {
2416 tls_free_partial_record(sk, tls_ctx);
2417 rec = list_first_entry(&ctx->tx_list,
2418 struct tls_rec, list);
2419 list_del(&rec->list);
2420 sk_msg_free(sk, &rec->msg_plaintext);
2421 kfree(rec);
2422 }
2423
2424 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2425 list_del(&rec->list);
2426 sk_msg_free(sk, &rec->msg_encrypted);
2427 sk_msg_free(sk, &rec->msg_plaintext);
2428 kfree(rec);
2429 }
2430
2431 crypto_free_aead(ctx->aead_send);
2432 tls_free_open_rec(sk);
2433 }
2434
tls_sw_free_ctx_tx(struct tls_context * tls_ctx)2435 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2436 {
2437 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2438
2439 kfree(ctx);
2440 }
2441
tls_sw_release_resources_rx(struct sock * sk)2442 void tls_sw_release_resources_rx(struct sock *sk)
2443 {
2444 struct tls_context *tls_ctx = tls_get_ctx(sk);
2445 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2446
2447 kfree(tls_ctx->rx.rec_seq);
2448 kfree(tls_ctx->rx.iv);
2449
2450 if (ctx->aead_recv) {
2451 __skb_queue_purge(&ctx->rx_list);
2452 crypto_free_aead(ctx->aead_recv);
2453 tls_strp_stop(&ctx->strp);
2454 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2455 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2456 * never swapped.
2457 */
2458 if (ctx->saved_data_ready) {
2459 write_lock_bh(&sk->sk_callback_lock);
2460 sk->sk_data_ready = ctx->saved_data_ready;
2461 write_unlock_bh(&sk->sk_callback_lock);
2462 }
2463 }
2464 }
2465
tls_sw_strparser_done(struct tls_context * tls_ctx)2466 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2467 {
2468 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2469
2470 tls_strp_done(&ctx->strp);
2471 }
2472
tls_sw_free_ctx_rx(struct tls_context * tls_ctx)2473 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2474 {
2475 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2476
2477 kfree(ctx);
2478 }
2479
tls_sw_free_resources_rx(struct sock * sk)2480 void tls_sw_free_resources_rx(struct sock *sk)
2481 {
2482 struct tls_context *tls_ctx = tls_get_ctx(sk);
2483
2484 tls_sw_release_resources_rx(sk);
2485 tls_sw_free_ctx_rx(tls_ctx);
2486 }
2487
2488 /* The work handler to transmitt the encrypted records in tx_list */
tx_work_handler(struct work_struct * work)2489 static void tx_work_handler(struct work_struct *work)
2490 {
2491 struct delayed_work *delayed_work = to_delayed_work(work);
2492 struct tx_work *tx_work = container_of(delayed_work,
2493 struct tx_work, work);
2494 struct sock *sk = tx_work->sk;
2495 struct tls_context *tls_ctx = tls_get_ctx(sk);
2496 struct tls_sw_context_tx *ctx;
2497
2498 if (unlikely(!tls_ctx))
2499 return;
2500
2501 ctx = tls_sw_ctx_tx(tls_ctx);
2502 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2503 return;
2504
2505 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2506 return;
2507
2508 if (mutex_trylock(&tls_ctx->tx_lock)) {
2509 lock_sock(sk);
2510 tls_tx_records(sk, -1);
2511 release_sock(sk);
2512 mutex_unlock(&tls_ctx->tx_lock);
2513 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2514 /* Someone is holding the tx_lock, they will likely run Tx
2515 * and cancel the work on their way out of the lock section.
2516 * Schedule a long delay just in case.
2517 */
2518 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2519 }
2520 }
2521
tls_is_tx_ready(struct tls_sw_context_tx * ctx)2522 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2523 {
2524 struct tls_rec *rec;
2525
2526 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2527 if (!rec)
2528 return false;
2529
2530 return READ_ONCE(rec->tx_ready);
2531 }
2532
tls_sw_write_space(struct sock * sk,struct tls_context * ctx)2533 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2534 {
2535 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2536
2537 /* Schedule the transmission if tx list is ready */
2538 if (tls_is_tx_ready(tx_ctx) &&
2539 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2540 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2541 }
2542
tls_sw_strparser_arm(struct sock * sk,struct tls_context * tls_ctx)2543 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2544 {
2545 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2546
2547 write_lock_bh(&sk->sk_callback_lock);
2548 rx_ctx->saved_data_ready = sk->sk_data_ready;
2549 sk->sk_data_ready = tls_data_ready;
2550 write_unlock_bh(&sk->sk_callback_lock);
2551 }
2552
tls_update_rx_zc_capable(struct tls_context * tls_ctx)2553 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2554 {
2555 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2556
2557 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2558 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2559 }
2560
init_ctx_tx(struct tls_context * ctx,struct sock * sk)2561 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2562 {
2563 struct tls_sw_context_tx *sw_ctx_tx;
2564
2565 if (!ctx->priv_ctx_tx) {
2566 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2567 if (!sw_ctx_tx)
2568 return NULL;
2569 } else {
2570 sw_ctx_tx = ctx->priv_ctx_tx;
2571 }
2572
2573 crypto_init_wait(&sw_ctx_tx->async_wait);
2574 atomic_set(&sw_ctx_tx->encrypt_pending, 1);
2575 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2576 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2577 sw_ctx_tx->tx_work.sk = sk;
2578
2579 return sw_ctx_tx;
2580 }
2581
init_ctx_rx(struct tls_context * ctx)2582 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2583 {
2584 struct tls_sw_context_rx *sw_ctx_rx;
2585
2586 if (!ctx->priv_ctx_rx) {
2587 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2588 if (!sw_ctx_rx)
2589 return NULL;
2590 } else {
2591 sw_ctx_rx = ctx->priv_ctx_rx;
2592 }
2593
2594 crypto_init_wait(&sw_ctx_rx->async_wait);
2595 atomic_set(&sw_ctx_rx->decrypt_pending, 1);
2596 init_waitqueue_head(&sw_ctx_rx->wq);
2597 skb_queue_head_init(&sw_ctx_rx->rx_list);
2598 skb_queue_head_init(&sw_ctx_rx->async_hold);
2599
2600 return sw_ctx_rx;
2601 }
2602
tls_set_sw_offload(struct sock * sk,struct tls_context * ctx,int tx)2603 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2604 {
2605 struct tls_context *tls_ctx = tls_get_ctx(sk);
2606 struct tls_prot_info *prot = &tls_ctx->prot_info;
2607 struct tls_crypto_info *crypto_info;
2608 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2609 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2610 struct cipher_context *cctx;
2611 struct crypto_aead **aead;
2612 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2613 struct crypto_tfm *tfm;
2614 char *iv, *rec_seq, *key, *salt, *cipher_name;
2615 size_t keysize;
2616 int rc = 0;
2617
2618 if (!ctx) {
2619 rc = -EINVAL;
2620 goto out;
2621 }
2622
2623 if (tx) {
2624 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2625 if (!ctx->priv_ctx_tx)
2626 return -ENOMEM;
2627
2628 sw_ctx_tx = ctx->priv_ctx_tx;
2629 crypto_info = &ctx->crypto_send.info;
2630 cctx = &ctx->tx;
2631 aead = &sw_ctx_tx->aead_send;
2632 } else {
2633 ctx->priv_ctx_rx = init_ctx_rx(ctx);
2634 if (!ctx->priv_ctx_rx)
2635 return -ENOMEM;
2636
2637 sw_ctx_rx = ctx->priv_ctx_rx;
2638 crypto_info = &ctx->crypto_recv.info;
2639 cctx = &ctx->rx;
2640 aead = &sw_ctx_rx->aead_recv;
2641 }
2642
2643 switch (crypto_info->cipher_type) {
2644 case TLS_CIPHER_AES_GCM_128: {
2645 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2646
2647 gcm_128_info = (void *)crypto_info;
2648 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2649 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2650 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2651 iv = gcm_128_info->iv;
2652 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2653 rec_seq = gcm_128_info->rec_seq;
2654 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2655 key = gcm_128_info->key;
2656 salt = gcm_128_info->salt;
2657 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2658 cipher_name = "gcm(aes)";
2659 break;
2660 }
2661 case TLS_CIPHER_AES_GCM_256: {
2662 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2663
2664 gcm_256_info = (void *)crypto_info;
2665 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2666 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2667 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2668 iv = gcm_256_info->iv;
2669 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2670 rec_seq = gcm_256_info->rec_seq;
2671 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2672 key = gcm_256_info->key;
2673 salt = gcm_256_info->salt;
2674 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2675 cipher_name = "gcm(aes)";
2676 break;
2677 }
2678 case TLS_CIPHER_AES_CCM_128: {
2679 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2680
2681 ccm_128_info = (void *)crypto_info;
2682 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2683 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2684 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2685 iv = ccm_128_info->iv;
2686 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2687 rec_seq = ccm_128_info->rec_seq;
2688 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2689 key = ccm_128_info->key;
2690 salt = ccm_128_info->salt;
2691 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2692 cipher_name = "ccm(aes)";
2693 break;
2694 }
2695 case TLS_CIPHER_CHACHA20_POLY1305: {
2696 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2697
2698 chacha20_poly1305_info = (void *)crypto_info;
2699 nonce_size = 0;
2700 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2701 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2702 iv = chacha20_poly1305_info->iv;
2703 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2704 rec_seq = chacha20_poly1305_info->rec_seq;
2705 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2706 key = chacha20_poly1305_info->key;
2707 salt = chacha20_poly1305_info->salt;
2708 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2709 cipher_name = "rfc7539(chacha20,poly1305)";
2710 break;
2711 }
2712 case TLS_CIPHER_SM4_GCM: {
2713 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2714
2715 sm4_gcm_info = (void *)crypto_info;
2716 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2717 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2718 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2719 iv = sm4_gcm_info->iv;
2720 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2721 rec_seq = sm4_gcm_info->rec_seq;
2722 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2723 key = sm4_gcm_info->key;
2724 salt = sm4_gcm_info->salt;
2725 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2726 cipher_name = "gcm(sm4)";
2727 break;
2728 }
2729 case TLS_CIPHER_SM4_CCM: {
2730 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2731
2732 sm4_ccm_info = (void *)crypto_info;
2733 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2734 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2735 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2736 iv = sm4_ccm_info->iv;
2737 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2738 rec_seq = sm4_ccm_info->rec_seq;
2739 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2740 key = sm4_ccm_info->key;
2741 salt = sm4_ccm_info->salt;
2742 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2743 cipher_name = "ccm(sm4)";
2744 break;
2745 }
2746 case TLS_CIPHER_ARIA_GCM_128: {
2747 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
2748
2749 aria_gcm_128_info = (void *)crypto_info;
2750 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2751 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
2752 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2753 iv = aria_gcm_128_info->iv;
2754 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
2755 rec_seq = aria_gcm_128_info->rec_seq;
2756 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
2757 key = aria_gcm_128_info->key;
2758 salt = aria_gcm_128_info->salt;
2759 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
2760 cipher_name = "gcm(aria)";
2761 break;
2762 }
2763 case TLS_CIPHER_ARIA_GCM_256: {
2764 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
2765
2766 gcm_256_info = (void *)crypto_info;
2767 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2768 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
2769 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2770 iv = gcm_256_info->iv;
2771 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
2772 rec_seq = gcm_256_info->rec_seq;
2773 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
2774 key = gcm_256_info->key;
2775 salt = gcm_256_info->salt;
2776 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
2777 cipher_name = "gcm(aria)";
2778 break;
2779 }
2780 default:
2781 rc = -EINVAL;
2782 goto free_priv;
2783 }
2784
2785 if (crypto_info->version == TLS_1_3_VERSION) {
2786 nonce_size = 0;
2787 prot->aad_size = TLS_HEADER_SIZE;
2788 prot->tail_size = 1;
2789 } else {
2790 prot->aad_size = TLS_AAD_SPACE_SIZE;
2791 prot->tail_size = 0;
2792 }
2793
2794 /* Sanity-check the sizes for stack allocations. */
2795 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2796 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2797 prot->aad_size > TLS_MAX_AAD_SIZE) {
2798 rc = -EINVAL;
2799 goto free_priv;
2800 }
2801
2802 prot->version = crypto_info->version;
2803 prot->cipher_type = crypto_info->cipher_type;
2804 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2805 prot->tag_size = tag_size;
2806 prot->overhead_size = prot->prepend_size +
2807 prot->tag_size + prot->tail_size;
2808 prot->iv_size = iv_size;
2809 prot->salt_size = salt_size;
2810 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2811 if (!cctx->iv) {
2812 rc = -ENOMEM;
2813 goto free_priv;
2814 }
2815 /* Note: 128 & 256 bit salt are the same size */
2816 prot->rec_seq_size = rec_seq_size;
2817 memcpy(cctx->iv, salt, salt_size);
2818 memcpy(cctx->iv + salt_size, iv, iv_size);
2819 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2820 if (!cctx->rec_seq) {
2821 rc = -ENOMEM;
2822 goto free_iv;
2823 }
2824
2825 if (!*aead) {
2826 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2827 if (IS_ERR(*aead)) {
2828 rc = PTR_ERR(*aead);
2829 *aead = NULL;
2830 goto free_rec_seq;
2831 }
2832 }
2833
2834 ctx->push_pending_record = tls_sw_push_pending_record;
2835
2836 rc = crypto_aead_setkey(*aead, key, keysize);
2837
2838 if (rc)
2839 goto free_aead;
2840
2841 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2842 if (rc)
2843 goto free_aead;
2844
2845 if (sw_ctx_rx) {
2846 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2847
2848 tls_update_rx_zc_capable(ctx);
2849 sw_ctx_rx->async_capable =
2850 crypto_info->version != TLS_1_3_VERSION &&
2851 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2852
2853 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2854 if (rc)
2855 goto free_aead;
2856 }
2857
2858 goto out;
2859
2860 free_aead:
2861 crypto_free_aead(*aead);
2862 *aead = NULL;
2863 free_rec_seq:
2864 kfree(cctx->rec_seq);
2865 cctx->rec_seq = NULL;
2866 free_iv:
2867 kfree(cctx->iv);
2868 cctx->iv = NULL;
2869 free_priv:
2870 if (tx) {
2871 kfree(ctx->priv_ctx_tx);
2872 ctx->priv_ctx_tx = NULL;
2873 } else {
2874 kfree(ctx->priv_ctx_rx);
2875 ctx->priv_ctx_rx = NULL;
2876 }
2877 out:
2878 return rc;
2879 }
2880