• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52 
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70 
71 #include <trace/hooks/selinux.h>
72 
73 struct convert_context_args {
74 	struct selinux_state *state;
75 	struct policydb *oldp;
76 	struct policydb *newp;
77 };
78 
79 struct selinux_policy_convert_data {
80 	struct convert_context_args args;
81 	struct sidtab_convert_params sidtab_params;
82 };
83 
84 /* Forward declaration. */
85 static int context_struct_to_string(struct policydb *policydb,
86 				    struct context *context,
87 				    char **scontext,
88 				    u32 *scontext_len);
89 
90 static int sidtab_entry_to_string(struct policydb *policydb,
91 				  struct sidtab *sidtab,
92 				  struct sidtab_entry *entry,
93 				  char **scontext,
94 				  u32 *scontext_len);
95 
96 static void context_struct_compute_av(struct policydb *policydb,
97 				      struct context *scontext,
98 				      struct context *tcontext,
99 				      u16 tclass,
100 				      struct av_decision *avd,
101 				      struct extended_perms *xperms);
102 
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)103 static int selinux_set_mapping(struct policydb *pol,
104 			       const struct security_class_mapping *map,
105 			       struct selinux_map *out_map)
106 {
107 	u16 i, j;
108 	unsigned k;
109 	bool print_unknown_handle = false;
110 
111 	/* Find number of classes in the input mapping */
112 	if (!map)
113 		return -EINVAL;
114 	i = 0;
115 	while (map[i].name)
116 		i++;
117 
118 	/* Allocate space for the class records, plus one for class zero */
119 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
120 	if (!out_map->mapping)
121 		return -ENOMEM;
122 
123 	/* Store the raw class and permission values */
124 	j = 0;
125 	while (map[j].name) {
126 		const struct security_class_mapping *p_in = map + (j++);
127 		struct selinux_mapping *p_out = out_map->mapping + j;
128 
129 		/* An empty class string skips ahead */
130 		if (!strcmp(p_in->name, "")) {
131 			p_out->num_perms = 0;
132 			continue;
133 		}
134 
135 		p_out->value = string_to_security_class(pol, p_in->name);
136 		if (!p_out->value) {
137 			pr_info("SELinux:  Class %s not defined in policy.\n",
138 			       p_in->name);
139 			if (pol->reject_unknown)
140 				goto err;
141 			p_out->num_perms = 0;
142 			print_unknown_handle = true;
143 			continue;
144 		}
145 
146 		k = 0;
147 		while (p_in->perms[k]) {
148 			/* An empty permission string skips ahead */
149 			if (!*p_in->perms[k]) {
150 				k++;
151 				continue;
152 			}
153 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
154 							    p_in->perms[k]);
155 			if (!p_out->perms[k]) {
156 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
157 				       p_in->perms[k], p_in->name);
158 				if (pol->reject_unknown)
159 					goto err;
160 				print_unknown_handle = true;
161 			}
162 
163 			k++;
164 		}
165 		p_out->num_perms = k;
166 	}
167 
168 	if (print_unknown_handle)
169 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
170 		       pol->allow_unknown ? "allowed" : "denied");
171 
172 	out_map->size = i;
173 	return 0;
174 err:
175 	kfree(out_map->mapping);
176 	out_map->mapping = NULL;
177 	return -EINVAL;
178 }
179 
180 /*
181  * Get real, policy values from mapped values
182  */
183 
unmap_class(struct selinux_map * map,u16 tclass)184 static u16 unmap_class(struct selinux_map *map, u16 tclass)
185 {
186 	if (tclass < map->size)
187 		return map->mapping[tclass].value;
188 
189 	return tclass;
190 }
191 
192 /*
193  * Get kernel value for class from its policy value
194  */
map_class(struct selinux_map * map,u16 pol_value)195 static u16 map_class(struct selinux_map *map, u16 pol_value)
196 {
197 	u16 i;
198 
199 	for (i = 1; i < map->size; i++) {
200 		if (map->mapping[i].value == pol_value)
201 			return i;
202 	}
203 
204 	return SECCLASS_NULL;
205 }
206 
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)207 static void map_decision(struct selinux_map *map,
208 			 u16 tclass, struct av_decision *avd,
209 			 int allow_unknown)
210 {
211 	if (tclass < map->size) {
212 		struct selinux_mapping *mapping = &map->mapping[tclass];
213 		unsigned int i, n = mapping->num_perms;
214 		u32 result;
215 
216 		for (i = 0, result = 0; i < n; i++) {
217 			if (avd->allowed & mapping->perms[i])
218 				result |= 1<<i;
219 			if (allow_unknown && !mapping->perms[i])
220 				result |= 1<<i;
221 		}
222 		avd->allowed = result;
223 
224 		for (i = 0, result = 0; i < n; i++)
225 			if (avd->auditallow & mapping->perms[i])
226 				result |= 1<<i;
227 		avd->auditallow = result;
228 
229 		for (i = 0, result = 0; i < n; i++) {
230 			if (avd->auditdeny & mapping->perms[i])
231 				result |= 1<<i;
232 			if (!allow_unknown && !mapping->perms[i])
233 				result |= 1<<i;
234 		}
235 		/*
236 		 * In case the kernel has a bug and requests a permission
237 		 * between num_perms and the maximum permission number, we
238 		 * should audit that denial
239 		 */
240 		for (; i < (sizeof(u32)*8); i++)
241 			result |= 1<<i;
242 		avd->auditdeny = result;
243 	}
244 }
245 
security_mls_enabled(struct selinux_state * state)246 int security_mls_enabled(struct selinux_state *state)
247 {
248 	int mls_enabled;
249 	struct selinux_policy *policy;
250 
251 	if (!selinux_initialized(state))
252 		return 0;
253 
254 	rcu_read_lock();
255 	policy = rcu_dereference(state->policy);
256 	mls_enabled = policy->policydb.mls_enabled;
257 	rcu_read_unlock();
258 	return mls_enabled;
259 }
260 
261 /*
262  * Return the boolean value of a constraint expression
263  * when it is applied to the specified source and target
264  * security contexts.
265  *
266  * xcontext is a special beast...  It is used by the validatetrans rules
267  * only.  For these rules, scontext is the context before the transition,
268  * tcontext is the context after the transition, and xcontext is the context
269  * of the process performing the transition.  All other callers of
270  * constraint_expr_eval should pass in NULL for xcontext.
271  */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)272 static int constraint_expr_eval(struct policydb *policydb,
273 				struct context *scontext,
274 				struct context *tcontext,
275 				struct context *xcontext,
276 				struct constraint_expr *cexpr)
277 {
278 	u32 val1, val2;
279 	struct context *c;
280 	struct role_datum *r1, *r2;
281 	struct mls_level *l1, *l2;
282 	struct constraint_expr *e;
283 	int s[CEXPR_MAXDEPTH];
284 	int sp = -1;
285 
286 	for (e = cexpr; e; e = e->next) {
287 		switch (e->expr_type) {
288 		case CEXPR_NOT:
289 			BUG_ON(sp < 0);
290 			s[sp] = !s[sp];
291 			break;
292 		case CEXPR_AND:
293 			BUG_ON(sp < 1);
294 			sp--;
295 			s[sp] &= s[sp + 1];
296 			break;
297 		case CEXPR_OR:
298 			BUG_ON(sp < 1);
299 			sp--;
300 			s[sp] |= s[sp + 1];
301 			break;
302 		case CEXPR_ATTR:
303 			if (sp == (CEXPR_MAXDEPTH - 1))
304 				return 0;
305 			switch (e->attr) {
306 			case CEXPR_USER:
307 				val1 = scontext->user;
308 				val2 = tcontext->user;
309 				break;
310 			case CEXPR_TYPE:
311 				val1 = scontext->type;
312 				val2 = tcontext->type;
313 				break;
314 			case CEXPR_ROLE:
315 				val1 = scontext->role;
316 				val2 = tcontext->role;
317 				r1 = policydb->role_val_to_struct[val1 - 1];
318 				r2 = policydb->role_val_to_struct[val2 - 1];
319 				switch (e->op) {
320 				case CEXPR_DOM:
321 					s[++sp] = ebitmap_get_bit(&r1->dominates,
322 								  val2 - 1);
323 					continue;
324 				case CEXPR_DOMBY:
325 					s[++sp] = ebitmap_get_bit(&r2->dominates,
326 								  val1 - 1);
327 					continue;
328 				case CEXPR_INCOMP:
329 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
330 								    val2 - 1) &&
331 						   !ebitmap_get_bit(&r2->dominates,
332 								    val1 - 1));
333 					continue;
334 				default:
335 					break;
336 				}
337 				break;
338 			case CEXPR_L1L2:
339 				l1 = &(scontext->range.level[0]);
340 				l2 = &(tcontext->range.level[0]);
341 				goto mls_ops;
342 			case CEXPR_L1H2:
343 				l1 = &(scontext->range.level[0]);
344 				l2 = &(tcontext->range.level[1]);
345 				goto mls_ops;
346 			case CEXPR_H1L2:
347 				l1 = &(scontext->range.level[1]);
348 				l2 = &(tcontext->range.level[0]);
349 				goto mls_ops;
350 			case CEXPR_H1H2:
351 				l1 = &(scontext->range.level[1]);
352 				l2 = &(tcontext->range.level[1]);
353 				goto mls_ops;
354 			case CEXPR_L1H1:
355 				l1 = &(scontext->range.level[0]);
356 				l2 = &(scontext->range.level[1]);
357 				goto mls_ops;
358 			case CEXPR_L2H2:
359 				l1 = &(tcontext->range.level[0]);
360 				l2 = &(tcontext->range.level[1]);
361 				goto mls_ops;
362 mls_ops:
363 				switch (e->op) {
364 				case CEXPR_EQ:
365 					s[++sp] = mls_level_eq(l1, l2);
366 					continue;
367 				case CEXPR_NEQ:
368 					s[++sp] = !mls_level_eq(l1, l2);
369 					continue;
370 				case CEXPR_DOM:
371 					s[++sp] = mls_level_dom(l1, l2);
372 					continue;
373 				case CEXPR_DOMBY:
374 					s[++sp] = mls_level_dom(l2, l1);
375 					continue;
376 				case CEXPR_INCOMP:
377 					s[++sp] = mls_level_incomp(l2, l1);
378 					continue;
379 				default:
380 					BUG();
381 					return 0;
382 				}
383 				break;
384 			default:
385 				BUG();
386 				return 0;
387 			}
388 
389 			switch (e->op) {
390 			case CEXPR_EQ:
391 				s[++sp] = (val1 == val2);
392 				break;
393 			case CEXPR_NEQ:
394 				s[++sp] = (val1 != val2);
395 				break;
396 			default:
397 				BUG();
398 				return 0;
399 			}
400 			break;
401 		case CEXPR_NAMES:
402 			if (sp == (CEXPR_MAXDEPTH-1))
403 				return 0;
404 			c = scontext;
405 			if (e->attr & CEXPR_TARGET)
406 				c = tcontext;
407 			else if (e->attr & CEXPR_XTARGET) {
408 				c = xcontext;
409 				if (!c) {
410 					BUG();
411 					return 0;
412 				}
413 			}
414 			if (e->attr & CEXPR_USER)
415 				val1 = c->user;
416 			else if (e->attr & CEXPR_ROLE)
417 				val1 = c->role;
418 			else if (e->attr & CEXPR_TYPE)
419 				val1 = c->type;
420 			else {
421 				BUG();
422 				return 0;
423 			}
424 
425 			switch (e->op) {
426 			case CEXPR_EQ:
427 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
428 				break;
429 			case CEXPR_NEQ:
430 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
431 				break;
432 			default:
433 				BUG();
434 				return 0;
435 			}
436 			break;
437 		default:
438 			BUG();
439 			return 0;
440 		}
441 	}
442 
443 	BUG_ON(sp != 0);
444 	return s[0];
445 }
446 
447 /*
448  * security_dump_masked_av - dumps masked permissions during
449  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
450  */
dump_masked_av_helper(void * k,void * d,void * args)451 static int dump_masked_av_helper(void *k, void *d, void *args)
452 {
453 	struct perm_datum *pdatum = d;
454 	char **permission_names = args;
455 
456 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
457 
458 	permission_names[pdatum->value - 1] = (char *)k;
459 
460 	return 0;
461 }
462 
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)463 static void security_dump_masked_av(struct policydb *policydb,
464 				    struct context *scontext,
465 				    struct context *tcontext,
466 				    u16 tclass,
467 				    u32 permissions,
468 				    const char *reason)
469 {
470 	struct common_datum *common_dat;
471 	struct class_datum *tclass_dat;
472 	struct audit_buffer *ab;
473 	char *tclass_name;
474 	char *scontext_name = NULL;
475 	char *tcontext_name = NULL;
476 	char *permission_names[32];
477 	int index;
478 	u32 length;
479 	bool need_comma = false;
480 
481 	if (!permissions)
482 		return;
483 
484 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
485 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
486 	common_dat = tclass_dat->comdatum;
487 
488 	/* init permission_names */
489 	if (common_dat &&
490 	    hashtab_map(&common_dat->permissions.table,
491 			dump_masked_av_helper, permission_names) < 0)
492 		goto out;
493 
494 	if (hashtab_map(&tclass_dat->permissions.table,
495 			dump_masked_av_helper, permission_names) < 0)
496 		goto out;
497 
498 	/* get scontext/tcontext in text form */
499 	if (context_struct_to_string(policydb, scontext,
500 				     &scontext_name, &length) < 0)
501 		goto out;
502 
503 	if (context_struct_to_string(policydb, tcontext,
504 				     &tcontext_name, &length) < 0)
505 		goto out;
506 
507 	/* audit a message */
508 	ab = audit_log_start(audit_context(),
509 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
510 	if (!ab)
511 		goto out;
512 
513 	audit_log_format(ab, "op=security_compute_av reason=%s "
514 			 "scontext=%s tcontext=%s tclass=%s perms=",
515 			 reason, scontext_name, tcontext_name, tclass_name);
516 
517 	for (index = 0; index < 32; index++) {
518 		u32 mask = (1 << index);
519 
520 		if ((mask & permissions) == 0)
521 			continue;
522 
523 		audit_log_format(ab, "%s%s",
524 				 need_comma ? "," : "",
525 				 permission_names[index]
526 				 ? permission_names[index] : "????");
527 		need_comma = true;
528 	}
529 	audit_log_end(ab);
530 out:
531 	/* release scontext/tcontext */
532 	kfree(tcontext_name);
533 	kfree(scontext_name);
534 }
535 
536 /*
537  * security_boundary_permission - drops violated permissions
538  * on boundary constraint.
539  */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)540 static void type_attribute_bounds_av(struct policydb *policydb,
541 				     struct context *scontext,
542 				     struct context *tcontext,
543 				     u16 tclass,
544 				     struct av_decision *avd)
545 {
546 	struct context lo_scontext;
547 	struct context lo_tcontext, *tcontextp = tcontext;
548 	struct av_decision lo_avd;
549 	struct type_datum *source;
550 	struct type_datum *target;
551 	u32 masked = 0;
552 
553 	source = policydb->type_val_to_struct[scontext->type - 1];
554 	BUG_ON(!source);
555 
556 	if (!source->bounds)
557 		return;
558 
559 	target = policydb->type_val_to_struct[tcontext->type - 1];
560 	BUG_ON(!target);
561 
562 	memset(&lo_avd, 0, sizeof(lo_avd));
563 
564 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
565 	lo_scontext.type = source->bounds;
566 
567 	if (target->bounds) {
568 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
569 		lo_tcontext.type = target->bounds;
570 		tcontextp = &lo_tcontext;
571 	}
572 
573 	context_struct_compute_av(policydb, &lo_scontext,
574 				  tcontextp,
575 				  tclass,
576 				  &lo_avd,
577 				  NULL);
578 
579 	masked = ~lo_avd.allowed & avd->allowed;
580 
581 	if (likely(!masked))
582 		return;		/* no masked permission */
583 
584 	/* mask violated permissions */
585 	avd->allowed &= ~masked;
586 
587 	/* audit masked permissions */
588 	security_dump_masked_av(policydb, scontext, tcontext,
589 				tclass, masked, "bounds");
590 }
591 
592 /*
593  * flag which drivers have permissions
594  * only looking for ioctl based extended permssions
595  */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)596 void services_compute_xperms_drivers(
597 		struct extended_perms *xperms,
598 		struct avtab_node *node)
599 {
600 	unsigned int i;
601 
602 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
603 		/* if one or more driver has all permissions allowed */
604 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
605 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
606 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
607 		/* if allowing permissions within a driver */
608 		security_xperm_set(xperms->drivers.p,
609 					node->datum.u.xperms->driver);
610 	}
611 
612 	xperms->len = 1;
613 }
614 
615 /*
616  * Compute access vectors and extended permissions based on a context
617  * structure pair for the permissions in a particular class.
618  */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)619 static void context_struct_compute_av(struct policydb *policydb,
620 				      struct context *scontext,
621 				      struct context *tcontext,
622 				      u16 tclass,
623 				      struct av_decision *avd,
624 				      struct extended_perms *xperms)
625 {
626 	struct constraint_node *constraint;
627 	struct role_allow *ra;
628 	struct avtab_key avkey;
629 	struct avtab_node *node;
630 	struct class_datum *tclass_datum;
631 	struct ebitmap *sattr, *tattr;
632 	struct ebitmap_node *snode, *tnode;
633 	unsigned int i, j;
634 
635 	avd->allowed = 0;
636 	avd->auditallow = 0;
637 	avd->auditdeny = 0xffffffff;
638 	if (xperms) {
639 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
640 		xperms->len = 0;
641 	}
642 
643 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
644 		if (printk_ratelimit())
645 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
646 		return;
647 	}
648 
649 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
650 
651 	/*
652 	 * If a specific type enforcement rule was defined for
653 	 * this permission check, then use it.
654 	 */
655 	avkey.target_class = tclass;
656 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
657 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
658 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
659 	ebitmap_for_each_positive_bit(sattr, snode, i) {
660 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
661 			avkey.source_type = i + 1;
662 			avkey.target_type = j + 1;
663 			for (node = avtab_search_node(&policydb->te_avtab,
664 						      &avkey);
665 			     node;
666 			     node = avtab_search_node_next(node, avkey.specified)) {
667 				if (node->key.specified == AVTAB_ALLOWED)
668 					avd->allowed |= node->datum.u.data;
669 				else if (node->key.specified == AVTAB_AUDITALLOW)
670 					avd->auditallow |= node->datum.u.data;
671 				else if (node->key.specified == AVTAB_AUDITDENY)
672 					avd->auditdeny &= node->datum.u.data;
673 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
674 					services_compute_xperms_drivers(xperms, node);
675 			}
676 
677 			/* Check conditional av table for additional permissions */
678 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
679 					avd, xperms);
680 
681 		}
682 	}
683 
684 	/*
685 	 * Remove any permissions prohibited by a constraint (this includes
686 	 * the MLS policy).
687 	 */
688 	constraint = tclass_datum->constraints;
689 	while (constraint) {
690 		if ((constraint->permissions & (avd->allowed)) &&
691 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
692 					  constraint->expr)) {
693 			avd->allowed &= ~(constraint->permissions);
694 		}
695 		constraint = constraint->next;
696 	}
697 
698 	/*
699 	 * If checking process transition permission and the
700 	 * role is changing, then check the (current_role, new_role)
701 	 * pair.
702 	 */
703 	if (tclass == policydb->process_class &&
704 	    (avd->allowed & policydb->process_trans_perms) &&
705 	    scontext->role != tcontext->role) {
706 		for (ra = policydb->role_allow; ra; ra = ra->next) {
707 			if (scontext->role == ra->role &&
708 			    tcontext->role == ra->new_role)
709 				break;
710 		}
711 		if (!ra)
712 			avd->allowed &= ~policydb->process_trans_perms;
713 	}
714 
715 	/*
716 	 * If the given source and target types have boundary
717 	 * constraint, lazy checks have to mask any violated
718 	 * permission and notice it to userspace via audit.
719 	 */
720 	type_attribute_bounds_av(policydb, scontext, tcontext,
721 				 tclass, avd);
722 }
723 
security_validtrans_handle_fail(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)724 static int security_validtrans_handle_fail(struct selinux_state *state,
725 					struct selinux_policy *policy,
726 					struct sidtab_entry *oentry,
727 					struct sidtab_entry *nentry,
728 					struct sidtab_entry *tentry,
729 					u16 tclass)
730 {
731 	struct policydb *p = &policy->policydb;
732 	struct sidtab *sidtab = policy->sidtab;
733 	char *o = NULL, *n = NULL, *t = NULL;
734 	u32 olen, nlen, tlen;
735 
736 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
737 		goto out;
738 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
739 		goto out;
740 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
741 		goto out;
742 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
743 		  "op=security_validate_transition seresult=denied"
744 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
745 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
746 out:
747 	kfree(o);
748 	kfree(n);
749 	kfree(t);
750 
751 	if (!enforcing_enabled(state))
752 		return 0;
753 	return -EPERM;
754 }
755 
security_compute_validatetrans(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)756 static int security_compute_validatetrans(struct selinux_state *state,
757 					  u32 oldsid, u32 newsid, u32 tasksid,
758 					  u16 orig_tclass, bool user)
759 {
760 	struct selinux_policy *policy;
761 	struct policydb *policydb;
762 	struct sidtab *sidtab;
763 	struct sidtab_entry *oentry;
764 	struct sidtab_entry *nentry;
765 	struct sidtab_entry *tentry;
766 	struct class_datum *tclass_datum;
767 	struct constraint_node *constraint;
768 	u16 tclass;
769 	int rc = 0;
770 
771 
772 	if (!selinux_initialized(state))
773 		return 0;
774 
775 	rcu_read_lock();
776 
777 	policy = rcu_dereference(state->policy);
778 	policydb = &policy->policydb;
779 	sidtab = policy->sidtab;
780 
781 	if (!user)
782 		tclass = unmap_class(&policy->map, orig_tclass);
783 	else
784 		tclass = orig_tclass;
785 
786 	if (!tclass || tclass > policydb->p_classes.nprim) {
787 		rc = -EINVAL;
788 		goto out;
789 	}
790 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
791 
792 	oentry = sidtab_search_entry(sidtab, oldsid);
793 	if (!oentry) {
794 		pr_err("SELinux: %s:  unrecognized SID %d\n",
795 			__func__, oldsid);
796 		rc = -EINVAL;
797 		goto out;
798 	}
799 
800 	nentry = sidtab_search_entry(sidtab, newsid);
801 	if (!nentry) {
802 		pr_err("SELinux: %s:  unrecognized SID %d\n",
803 			__func__, newsid);
804 		rc = -EINVAL;
805 		goto out;
806 	}
807 
808 	tentry = sidtab_search_entry(sidtab, tasksid);
809 	if (!tentry) {
810 		pr_err("SELinux: %s:  unrecognized SID %d\n",
811 			__func__, tasksid);
812 		rc = -EINVAL;
813 		goto out;
814 	}
815 
816 	constraint = tclass_datum->validatetrans;
817 	while (constraint) {
818 		if (!constraint_expr_eval(policydb, &oentry->context,
819 					  &nentry->context, &tentry->context,
820 					  constraint->expr)) {
821 			if (user)
822 				rc = -EPERM;
823 			else
824 				rc = security_validtrans_handle_fail(state,
825 								policy,
826 								oentry,
827 								nentry,
828 								tentry,
829 								tclass);
830 			goto out;
831 		}
832 		constraint = constraint->next;
833 	}
834 
835 out:
836 	rcu_read_unlock();
837 	return rc;
838 }
839 
security_validate_transition_user(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)840 int security_validate_transition_user(struct selinux_state *state,
841 				      u32 oldsid, u32 newsid, u32 tasksid,
842 				      u16 tclass)
843 {
844 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
845 					      tclass, true);
846 }
847 
security_validate_transition(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)848 int security_validate_transition(struct selinux_state *state,
849 				 u32 oldsid, u32 newsid, u32 tasksid,
850 				 u16 orig_tclass)
851 {
852 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
853 					      orig_tclass, false);
854 }
855 
856 /*
857  * security_bounded_transition - check whether the given
858  * transition is directed to bounded, or not.
859  * It returns 0, if @newsid is bounded by @oldsid.
860  * Otherwise, it returns error code.
861  *
862  * @state: SELinux state
863  * @oldsid : current security identifier
864  * @newsid : destinated security identifier
865  */
security_bounded_transition(struct selinux_state * state,u32 old_sid,u32 new_sid)866 int security_bounded_transition(struct selinux_state *state,
867 				u32 old_sid, u32 new_sid)
868 {
869 	struct selinux_policy *policy;
870 	struct policydb *policydb;
871 	struct sidtab *sidtab;
872 	struct sidtab_entry *old_entry, *new_entry;
873 	struct type_datum *type;
874 	int index;
875 	int rc;
876 
877 	if (!selinux_initialized(state))
878 		return 0;
879 
880 	rcu_read_lock();
881 	policy = rcu_dereference(state->policy);
882 	policydb = &policy->policydb;
883 	sidtab = policy->sidtab;
884 
885 	rc = -EINVAL;
886 	old_entry = sidtab_search_entry(sidtab, old_sid);
887 	if (!old_entry) {
888 		pr_err("SELinux: %s: unrecognized SID %u\n",
889 		       __func__, old_sid);
890 		goto out;
891 	}
892 
893 	rc = -EINVAL;
894 	new_entry = sidtab_search_entry(sidtab, new_sid);
895 	if (!new_entry) {
896 		pr_err("SELinux: %s: unrecognized SID %u\n",
897 		       __func__, new_sid);
898 		goto out;
899 	}
900 
901 	rc = 0;
902 	/* type/domain unchanged */
903 	if (old_entry->context.type == new_entry->context.type)
904 		goto out;
905 
906 	index = new_entry->context.type;
907 	while (true) {
908 		type = policydb->type_val_to_struct[index - 1];
909 		BUG_ON(!type);
910 
911 		/* not bounded anymore */
912 		rc = -EPERM;
913 		if (!type->bounds)
914 			break;
915 
916 		/* @newsid is bounded by @oldsid */
917 		rc = 0;
918 		if (type->bounds == old_entry->context.type)
919 			break;
920 
921 		index = type->bounds;
922 	}
923 
924 	if (rc) {
925 		char *old_name = NULL;
926 		char *new_name = NULL;
927 		u32 length;
928 
929 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
930 					    &old_name, &length) &&
931 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
932 					    &new_name, &length)) {
933 			audit_log(audit_context(),
934 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
935 				  "op=security_bounded_transition "
936 				  "seresult=denied "
937 				  "oldcontext=%s newcontext=%s",
938 				  old_name, new_name);
939 		}
940 		kfree(new_name);
941 		kfree(old_name);
942 	}
943 out:
944 	rcu_read_unlock();
945 
946 	return rc;
947 }
948 
avd_init(struct selinux_policy * policy,struct av_decision * avd)949 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
950 {
951 	avd->allowed = 0;
952 	avd->auditallow = 0;
953 	avd->auditdeny = 0xffffffff;
954 	if (policy)
955 		avd->seqno = policy->latest_granting;
956 	else
957 		avd->seqno = 0;
958 	avd->flags = 0;
959 }
960 
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)961 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
962 					struct avtab_node *node)
963 {
964 	unsigned int i;
965 
966 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
967 		if (xpermd->driver != node->datum.u.xperms->driver)
968 			return;
969 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
970 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
971 					xpermd->driver))
972 			return;
973 	} else {
974 		BUG();
975 	}
976 
977 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
978 		xpermd->used |= XPERMS_ALLOWED;
979 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
980 			memset(xpermd->allowed->p, 0xff,
981 					sizeof(xpermd->allowed->p));
982 		}
983 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
984 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
985 				xpermd->allowed->p[i] |=
986 					node->datum.u.xperms->perms.p[i];
987 		}
988 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
989 		xpermd->used |= XPERMS_AUDITALLOW;
990 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
991 			memset(xpermd->auditallow->p, 0xff,
992 					sizeof(xpermd->auditallow->p));
993 		}
994 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
995 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
996 				xpermd->auditallow->p[i] |=
997 					node->datum.u.xperms->perms.p[i];
998 		}
999 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1000 		xpermd->used |= XPERMS_DONTAUDIT;
1001 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1002 			memset(xpermd->dontaudit->p, 0xff,
1003 					sizeof(xpermd->dontaudit->p));
1004 		}
1005 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1006 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1007 				xpermd->dontaudit->p[i] |=
1008 					node->datum.u.xperms->perms.p[i];
1009 		}
1010 	} else {
1011 		BUG();
1012 	}
1013 }
1014 
security_compute_xperms_decision(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)1015 void security_compute_xperms_decision(struct selinux_state *state,
1016 				      u32 ssid,
1017 				      u32 tsid,
1018 				      u16 orig_tclass,
1019 				      u8 driver,
1020 				      struct extended_perms_decision *xpermd)
1021 {
1022 	struct selinux_policy *policy;
1023 	struct policydb *policydb;
1024 	struct sidtab *sidtab;
1025 	u16 tclass;
1026 	struct context *scontext, *tcontext;
1027 	struct avtab_key avkey;
1028 	struct avtab_node *node;
1029 	struct ebitmap *sattr, *tattr;
1030 	struct ebitmap_node *snode, *tnode;
1031 	unsigned int i, j;
1032 
1033 	xpermd->driver = driver;
1034 	xpermd->used = 0;
1035 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1036 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1037 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1038 
1039 	rcu_read_lock();
1040 	if (!selinux_initialized(state))
1041 		goto allow;
1042 
1043 	policy = rcu_dereference(state->policy);
1044 	policydb = &policy->policydb;
1045 	sidtab = policy->sidtab;
1046 
1047 	scontext = sidtab_search(sidtab, ssid);
1048 	if (!scontext) {
1049 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1050 		       __func__, ssid);
1051 		goto out;
1052 	}
1053 
1054 	tcontext = sidtab_search(sidtab, tsid);
1055 	if (!tcontext) {
1056 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1057 		       __func__, tsid);
1058 		goto out;
1059 	}
1060 
1061 	tclass = unmap_class(&policy->map, orig_tclass);
1062 	if (unlikely(orig_tclass && !tclass)) {
1063 		if (policydb->allow_unknown)
1064 			goto allow;
1065 		goto out;
1066 	}
1067 
1068 
1069 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1070 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1071 		goto out;
1072 	}
1073 
1074 	avkey.target_class = tclass;
1075 	avkey.specified = AVTAB_XPERMS;
1076 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1077 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1078 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1079 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1080 			avkey.source_type = i + 1;
1081 			avkey.target_type = j + 1;
1082 			for (node = avtab_search_node(&policydb->te_avtab,
1083 						      &avkey);
1084 			     node;
1085 			     node = avtab_search_node_next(node, avkey.specified))
1086 				services_compute_xperms_decision(xpermd, node);
1087 
1088 			cond_compute_xperms(&policydb->te_cond_avtab,
1089 						&avkey, xpermd);
1090 		}
1091 	}
1092 out:
1093 	rcu_read_unlock();
1094 	return;
1095 allow:
1096 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1097 	goto out;
1098 }
1099 
1100 /**
1101  * security_compute_av - Compute access vector decisions.
1102  * @state: SELinux state
1103  * @ssid: source security identifier
1104  * @tsid: target security identifier
1105  * @orig_tclass: target security class
1106  * @avd: access vector decisions
1107  * @xperms: extended permissions
1108  *
1109  * Compute a set of access vector decisions based on the
1110  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1111  */
security_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1112 void security_compute_av(struct selinux_state *state,
1113 			 u32 ssid,
1114 			 u32 tsid,
1115 			 u16 orig_tclass,
1116 			 struct av_decision *avd,
1117 			 struct extended_perms *xperms)
1118 {
1119 	struct selinux_policy *policy;
1120 	struct policydb *policydb;
1121 	struct sidtab *sidtab;
1122 	u16 tclass;
1123 	struct context *scontext = NULL, *tcontext = NULL;
1124 
1125 	rcu_read_lock();
1126 	policy = rcu_dereference(state->policy);
1127 	avd_init(policy, avd);
1128 	xperms->len = 0;
1129 	if (!selinux_initialized(state))
1130 		goto allow;
1131 
1132 	policydb = &policy->policydb;
1133 	sidtab = policy->sidtab;
1134 
1135 	scontext = sidtab_search(sidtab, ssid);
1136 	if (!scontext) {
1137 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1138 		       __func__, ssid);
1139 		goto out;
1140 	}
1141 
1142 	/* permissive domain? */
1143 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1144 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1145 
1146 	tcontext = sidtab_search(sidtab, tsid);
1147 	if (!tcontext) {
1148 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1149 		       __func__, tsid);
1150 		goto out;
1151 	}
1152 
1153 	tclass = unmap_class(&policy->map, orig_tclass);
1154 	if (unlikely(orig_tclass && !tclass)) {
1155 		if (policydb->allow_unknown)
1156 			goto allow;
1157 		goto out;
1158 	}
1159 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1160 				  xperms);
1161 	map_decision(&policy->map, orig_tclass, avd,
1162 		     policydb->allow_unknown);
1163 out:
1164 	rcu_read_unlock();
1165 	return;
1166 allow:
1167 	avd->allowed = 0xffffffff;
1168 	goto out;
1169 }
1170 
security_compute_av_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1171 void security_compute_av_user(struct selinux_state *state,
1172 			      u32 ssid,
1173 			      u32 tsid,
1174 			      u16 tclass,
1175 			      struct av_decision *avd)
1176 {
1177 	struct selinux_policy *policy;
1178 	struct policydb *policydb;
1179 	struct sidtab *sidtab;
1180 	struct context *scontext = NULL, *tcontext = NULL;
1181 
1182 	rcu_read_lock();
1183 	policy = rcu_dereference(state->policy);
1184 	avd_init(policy, avd);
1185 	if (!selinux_initialized(state))
1186 		goto allow;
1187 
1188 	policydb = &policy->policydb;
1189 	sidtab = policy->sidtab;
1190 
1191 	scontext = sidtab_search(sidtab, ssid);
1192 	if (!scontext) {
1193 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1194 		       __func__, ssid);
1195 		goto out;
1196 	}
1197 
1198 	/* permissive domain? */
1199 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1200 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1201 
1202 	tcontext = sidtab_search(sidtab, tsid);
1203 	if (!tcontext) {
1204 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1205 		       __func__, tsid);
1206 		goto out;
1207 	}
1208 
1209 	if (unlikely(!tclass)) {
1210 		if (policydb->allow_unknown)
1211 			goto allow;
1212 		goto out;
1213 	}
1214 
1215 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1216 				  NULL);
1217  out:
1218 	rcu_read_unlock();
1219 	return;
1220 allow:
1221 	avd->allowed = 0xffffffff;
1222 	goto out;
1223 }
1224 
1225 /*
1226  * Write the security context string representation of
1227  * the context structure `context' into a dynamically
1228  * allocated string of the correct size.  Set `*scontext'
1229  * to point to this string and set `*scontext_len' to
1230  * the length of the string.
1231  */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1232 static int context_struct_to_string(struct policydb *p,
1233 				    struct context *context,
1234 				    char **scontext, u32 *scontext_len)
1235 {
1236 	char *scontextp;
1237 
1238 	if (scontext)
1239 		*scontext = NULL;
1240 	*scontext_len = 0;
1241 
1242 	if (context->len) {
1243 		*scontext_len = context->len;
1244 		if (scontext) {
1245 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1246 			if (!(*scontext))
1247 				return -ENOMEM;
1248 		}
1249 		return 0;
1250 	}
1251 
1252 	/* Compute the size of the context. */
1253 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1254 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1255 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1256 	*scontext_len += mls_compute_context_len(p, context);
1257 
1258 	if (!scontext)
1259 		return 0;
1260 
1261 	/* Allocate space for the context; caller must free this space. */
1262 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1263 	if (!scontextp)
1264 		return -ENOMEM;
1265 	*scontext = scontextp;
1266 
1267 	/*
1268 	 * Copy the user name, role name and type name into the context.
1269 	 */
1270 	scontextp += sprintf(scontextp, "%s:%s:%s",
1271 		sym_name(p, SYM_USERS, context->user - 1),
1272 		sym_name(p, SYM_ROLES, context->role - 1),
1273 		sym_name(p, SYM_TYPES, context->type - 1));
1274 
1275 	mls_sid_to_context(p, context, &scontextp);
1276 
1277 	*scontextp = 0;
1278 
1279 	return 0;
1280 }
1281 
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1282 static int sidtab_entry_to_string(struct policydb *p,
1283 				  struct sidtab *sidtab,
1284 				  struct sidtab_entry *entry,
1285 				  char **scontext, u32 *scontext_len)
1286 {
1287 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1288 
1289 	if (rc != -ENOENT)
1290 		return rc;
1291 
1292 	rc = context_struct_to_string(p, &entry->context, scontext,
1293 				      scontext_len);
1294 	if (!rc && scontext)
1295 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1296 	return rc;
1297 }
1298 
1299 #include "initial_sid_to_string.h"
1300 
security_sidtab_hash_stats(struct selinux_state * state,char * page)1301 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1302 {
1303 	struct selinux_policy *policy;
1304 	int rc;
1305 
1306 	if (!selinux_initialized(state)) {
1307 		pr_err("SELinux: %s:  called before initial load_policy\n",
1308 		       __func__);
1309 		return -EINVAL;
1310 	}
1311 
1312 	rcu_read_lock();
1313 	policy = rcu_dereference(state->policy);
1314 	rc = sidtab_hash_stats(policy->sidtab, page);
1315 	rcu_read_unlock();
1316 
1317 	return rc;
1318 }
1319 
security_get_initial_sid_context(u32 sid)1320 const char *security_get_initial_sid_context(u32 sid)
1321 {
1322 	if (unlikely(sid > SECINITSID_NUM))
1323 		return NULL;
1324 	return initial_sid_to_string[sid];
1325 }
1326 
security_sid_to_context_core(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1327 static int security_sid_to_context_core(struct selinux_state *state,
1328 					u32 sid, char **scontext,
1329 					u32 *scontext_len, int force,
1330 					int only_invalid)
1331 {
1332 	struct selinux_policy *policy;
1333 	struct policydb *policydb;
1334 	struct sidtab *sidtab;
1335 	struct sidtab_entry *entry;
1336 	int rc = 0;
1337 
1338 	if (scontext)
1339 		*scontext = NULL;
1340 	*scontext_len  = 0;
1341 
1342 	if (!selinux_initialized(state)) {
1343 		if (sid <= SECINITSID_NUM) {
1344 			char *scontextp;
1345 			const char *s = initial_sid_to_string[sid];
1346 
1347 			if (!s)
1348 				return -EINVAL;
1349 			*scontext_len = strlen(s) + 1;
1350 			if (!scontext)
1351 				return 0;
1352 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1353 			if (!scontextp)
1354 				return -ENOMEM;
1355 			*scontext = scontextp;
1356 			return 0;
1357 		}
1358 		pr_err("SELinux: %s:  called before initial "
1359 		       "load_policy on unknown SID %d\n", __func__, sid);
1360 		return -EINVAL;
1361 	}
1362 	rcu_read_lock();
1363 	policy = rcu_dereference(state->policy);
1364 	policydb = &policy->policydb;
1365 	sidtab = policy->sidtab;
1366 
1367 	if (force)
1368 		entry = sidtab_search_entry_force(sidtab, sid);
1369 	else
1370 		entry = sidtab_search_entry(sidtab, sid);
1371 	if (!entry) {
1372 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1373 			__func__, sid);
1374 		rc = -EINVAL;
1375 		goto out_unlock;
1376 	}
1377 	if (only_invalid && !entry->context.len)
1378 		goto out_unlock;
1379 
1380 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1381 				    scontext_len);
1382 
1383 out_unlock:
1384 	rcu_read_unlock();
1385 	return rc;
1386 
1387 }
1388 
1389 /**
1390  * security_sid_to_context - Obtain a context for a given SID.
1391  * @state: SELinux state
1392  * @sid: security identifier, SID
1393  * @scontext: security context
1394  * @scontext_len: length in bytes
1395  *
1396  * Write the string representation of the context associated with @sid
1397  * into a dynamically allocated string of the correct size.  Set @scontext
1398  * to point to this string and set @scontext_len to the length of the string.
1399  */
security_sid_to_context(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1400 int security_sid_to_context(struct selinux_state *state,
1401 			    u32 sid, char **scontext, u32 *scontext_len)
1402 {
1403 	return security_sid_to_context_core(state, sid, scontext,
1404 					    scontext_len, 0, 0);
1405 }
1406 
security_sid_to_context_force(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1407 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1408 				  char **scontext, u32 *scontext_len)
1409 {
1410 	return security_sid_to_context_core(state, sid, scontext,
1411 					    scontext_len, 1, 0);
1412 }
1413 
1414 /**
1415  * security_sid_to_context_inval - Obtain a context for a given SID if it
1416  *                                 is invalid.
1417  * @state: SELinux state
1418  * @sid: security identifier, SID
1419  * @scontext: security context
1420  * @scontext_len: length in bytes
1421  *
1422  * Write the string representation of the context associated with @sid
1423  * into a dynamically allocated string of the correct size, but only if the
1424  * context is invalid in the current policy.  Set @scontext to point to
1425  * this string (or NULL if the context is valid) and set @scontext_len to
1426  * the length of the string (or 0 if the context is valid).
1427  */
security_sid_to_context_inval(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1428 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1429 				  char **scontext, u32 *scontext_len)
1430 {
1431 	return security_sid_to_context_core(state, sid, scontext,
1432 					    scontext_len, 1, 1);
1433 }
1434 
1435 /*
1436  * Caveat:  Mutates scontext.
1437  */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1438 static int string_to_context_struct(struct policydb *pol,
1439 				    struct sidtab *sidtabp,
1440 				    char *scontext,
1441 				    struct context *ctx,
1442 				    u32 def_sid)
1443 {
1444 	struct role_datum *role;
1445 	struct type_datum *typdatum;
1446 	struct user_datum *usrdatum;
1447 	char *scontextp, *p, oldc;
1448 	int rc = 0;
1449 
1450 	context_init(ctx);
1451 
1452 	/* Parse the security context. */
1453 
1454 	rc = -EINVAL;
1455 	scontextp = scontext;
1456 
1457 	/* Extract the user. */
1458 	p = scontextp;
1459 	while (*p && *p != ':')
1460 		p++;
1461 
1462 	if (*p == 0)
1463 		goto out;
1464 
1465 	*p++ = 0;
1466 
1467 	usrdatum = symtab_search(&pol->p_users, scontextp);
1468 	if (!usrdatum)
1469 		goto out;
1470 
1471 	ctx->user = usrdatum->value;
1472 
1473 	/* Extract role. */
1474 	scontextp = p;
1475 	while (*p && *p != ':')
1476 		p++;
1477 
1478 	if (*p == 0)
1479 		goto out;
1480 
1481 	*p++ = 0;
1482 
1483 	role = symtab_search(&pol->p_roles, scontextp);
1484 	if (!role)
1485 		goto out;
1486 	ctx->role = role->value;
1487 
1488 	/* Extract type. */
1489 	scontextp = p;
1490 	while (*p && *p != ':')
1491 		p++;
1492 	oldc = *p;
1493 	*p++ = 0;
1494 
1495 	typdatum = symtab_search(&pol->p_types, scontextp);
1496 	if (!typdatum || typdatum->attribute)
1497 		goto out;
1498 
1499 	ctx->type = typdatum->value;
1500 
1501 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1502 	if (rc)
1503 		goto out;
1504 
1505 	/* Check the validity of the new context. */
1506 	rc = -EINVAL;
1507 	if (!policydb_context_isvalid(pol, ctx))
1508 		goto out;
1509 	rc = 0;
1510 out:
1511 	if (rc)
1512 		context_destroy(ctx);
1513 	return rc;
1514 }
1515 
security_context_to_sid_core(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1516 static int security_context_to_sid_core(struct selinux_state *state,
1517 					const char *scontext, u32 scontext_len,
1518 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1519 					int force)
1520 {
1521 	struct selinux_policy *policy;
1522 	struct policydb *policydb;
1523 	struct sidtab *sidtab;
1524 	char *scontext2, *str = NULL;
1525 	struct context context;
1526 	int rc = 0;
1527 
1528 	/* An empty security context is never valid. */
1529 	if (!scontext_len)
1530 		return -EINVAL;
1531 
1532 	/* Copy the string to allow changes and ensure a NUL terminator */
1533 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1534 	if (!scontext2)
1535 		return -ENOMEM;
1536 
1537 	if (!selinux_initialized(state)) {
1538 		int i;
1539 
1540 		for (i = 1; i < SECINITSID_NUM; i++) {
1541 			const char *s = initial_sid_to_string[i];
1542 
1543 			if (s && !strcmp(s, scontext2)) {
1544 				*sid = i;
1545 				goto out;
1546 			}
1547 		}
1548 		*sid = SECINITSID_KERNEL;
1549 		goto out;
1550 	}
1551 	*sid = SECSID_NULL;
1552 
1553 	if (force) {
1554 		/* Save another copy for storing in uninterpreted form */
1555 		rc = -ENOMEM;
1556 		str = kstrdup(scontext2, gfp_flags);
1557 		if (!str)
1558 			goto out;
1559 	}
1560 retry:
1561 	rcu_read_lock();
1562 	policy = rcu_dereference(state->policy);
1563 	policydb = &policy->policydb;
1564 	sidtab = policy->sidtab;
1565 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1566 				      &context, def_sid);
1567 	if (rc == -EINVAL && force) {
1568 		context.str = str;
1569 		context.len = strlen(str) + 1;
1570 		str = NULL;
1571 	} else if (rc)
1572 		goto out_unlock;
1573 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1574 	if (rc == -ESTALE) {
1575 		rcu_read_unlock();
1576 		if (context.str) {
1577 			str = context.str;
1578 			context.str = NULL;
1579 		}
1580 		context_destroy(&context);
1581 		goto retry;
1582 	}
1583 	context_destroy(&context);
1584 out_unlock:
1585 	rcu_read_unlock();
1586 out:
1587 	kfree(scontext2);
1588 	kfree(str);
1589 	return rc;
1590 }
1591 
1592 /**
1593  * security_context_to_sid - Obtain a SID for a given security context.
1594  * @state: SELinux state
1595  * @scontext: security context
1596  * @scontext_len: length in bytes
1597  * @sid: security identifier, SID
1598  * @gfp: context for the allocation
1599  *
1600  * Obtains a SID associated with the security context that
1601  * has the string representation specified by @scontext.
1602  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1603  * memory is available, or 0 on success.
1604  */
security_context_to_sid(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1605 int security_context_to_sid(struct selinux_state *state,
1606 			    const char *scontext, u32 scontext_len, u32 *sid,
1607 			    gfp_t gfp)
1608 {
1609 	return security_context_to_sid_core(state, scontext, scontext_len,
1610 					    sid, SECSID_NULL, gfp, 0);
1611 }
1612 
security_context_str_to_sid(struct selinux_state * state,const char * scontext,u32 * sid,gfp_t gfp)1613 int security_context_str_to_sid(struct selinux_state *state,
1614 				const char *scontext, u32 *sid, gfp_t gfp)
1615 {
1616 	return security_context_to_sid(state, scontext, strlen(scontext),
1617 				       sid, gfp);
1618 }
1619 
1620 /**
1621  * security_context_to_sid_default - Obtain a SID for a given security context,
1622  * falling back to specified default if needed.
1623  *
1624  * @state: SELinux state
1625  * @scontext: security context
1626  * @scontext_len: length in bytes
1627  * @sid: security identifier, SID
1628  * @def_sid: default SID to assign on error
1629  * @gfp_flags: the allocator get-free-page (GFP) flags
1630  *
1631  * Obtains a SID associated with the security context that
1632  * has the string representation specified by @scontext.
1633  * The default SID is passed to the MLS layer to be used to allow
1634  * kernel labeling of the MLS field if the MLS field is not present
1635  * (for upgrading to MLS without full relabel).
1636  * Implicitly forces adding of the context even if it cannot be mapped yet.
1637  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1638  * memory is available, or 0 on success.
1639  */
security_context_to_sid_default(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1640 int security_context_to_sid_default(struct selinux_state *state,
1641 				    const char *scontext, u32 scontext_len,
1642 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1643 {
1644 	return security_context_to_sid_core(state, scontext, scontext_len,
1645 					    sid, def_sid, gfp_flags, 1);
1646 }
1647 
security_context_to_sid_force(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid)1648 int security_context_to_sid_force(struct selinux_state *state,
1649 				  const char *scontext, u32 scontext_len,
1650 				  u32 *sid)
1651 {
1652 	return security_context_to_sid_core(state, scontext, scontext_len,
1653 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1654 }
1655 
compute_sid_handle_invalid_context(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1656 static int compute_sid_handle_invalid_context(
1657 	struct selinux_state *state,
1658 	struct selinux_policy *policy,
1659 	struct sidtab_entry *sentry,
1660 	struct sidtab_entry *tentry,
1661 	u16 tclass,
1662 	struct context *newcontext)
1663 {
1664 	struct policydb *policydb = &policy->policydb;
1665 	struct sidtab *sidtab = policy->sidtab;
1666 	char *s = NULL, *t = NULL, *n = NULL;
1667 	u32 slen, tlen, nlen;
1668 	struct audit_buffer *ab;
1669 
1670 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1671 		goto out;
1672 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1673 		goto out;
1674 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1675 		goto out;
1676 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1677 	if (!ab)
1678 		goto out;
1679 	audit_log_format(ab,
1680 			 "op=security_compute_sid invalid_context=");
1681 	/* no need to record the NUL with untrusted strings */
1682 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1683 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1684 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1685 	audit_log_end(ab);
1686 out:
1687 	kfree(s);
1688 	kfree(t);
1689 	kfree(n);
1690 	if (!enforcing_enabled(state))
1691 		return 0;
1692 	return -EACCES;
1693 }
1694 
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1695 static void filename_compute_type(struct policydb *policydb,
1696 				  struct context *newcontext,
1697 				  u32 stype, u32 ttype, u16 tclass,
1698 				  const char *objname)
1699 {
1700 	struct filename_trans_key ft;
1701 	struct filename_trans_datum *datum;
1702 
1703 	/*
1704 	 * Most filename trans rules are going to live in specific directories
1705 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1706 	 * if the ttype does not contain any rules.
1707 	 */
1708 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1709 		return;
1710 
1711 	ft.ttype = ttype;
1712 	ft.tclass = tclass;
1713 	ft.name = objname;
1714 
1715 	datum = policydb_filenametr_search(policydb, &ft);
1716 	while (datum) {
1717 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1718 			newcontext->type = datum->otype;
1719 			return;
1720 		}
1721 		datum = datum->next;
1722 	}
1723 }
1724 
security_compute_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1725 static int security_compute_sid(struct selinux_state *state,
1726 				u32 ssid,
1727 				u32 tsid,
1728 				u16 orig_tclass,
1729 				u32 specified,
1730 				const char *objname,
1731 				u32 *out_sid,
1732 				bool kern)
1733 {
1734 	struct selinux_policy *policy;
1735 	struct policydb *policydb;
1736 	struct sidtab *sidtab;
1737 	struct class_datum *cladatum;
1738 	struct context *scontext, *tcontext, newcontext;
1739 	struct sidtab_entry *sentry, *tentry;
1740 	struct avtab_key avkey;
1741 	struct avtab_datum *avdatum;
1742 	struct avtab_node *node;
1743 	u16 tclass;
1744 	int rc = 0;
1745 	bool sock;
1746 
1747 	if (!selinux_initialized(state)) {
1748 		switch (orig_tclass) {
1749 		case SECCLASS_PROCESS: /* kernel value */
1750 			*out_sid = ssid;
1751 			break;
1752 		default:
1753 			*out_sid = tsid;
1754 			break;
1755 		}
1756 		goto out;
1757 	}
1758 
1759 retry:
1760 	cladatum = NULL;
1761 	context_init(&newcontext);
1762 
1763 	rcu_read_lock();
1764 
1765 	policy = rcu_dereference(state->policy);
1766 
1767 	if (kern) {
1768 		tclass = unmap_class(&policy->map, orig_tclass);
1769 		sock = security_is_socket_class(orig_tclass);
1770 	} else {
1771 		tclass = orig_tclass;
1772 		sock = security_is_socket_class(map_class(&policy->map,
1773 							  tclass));
1774 	}
1775 
1776 	policydb = &policy->policydb;
1777 	sidtab = policy->sidtab;
1778 
1779 	sentry = sidtab_search_entry(sidtab, ssid);
1780 	if (!sentry) {
1781 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1782 		       __func__, ssid);
1783 		rc = -EINVAL;
1784 		goto out_unlock;
1785 	}
1786 	tentry = sidtab_search_entry(sidtab, tsid);
1787 	if (!tentry) {
1788 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1789 		       __func__, tsid);
1790 		rc = -EINVAL;
1791 		goto out_unlock;
1792 	}
1793 
1794 	scontext = &sentry->context;
1795 	tcontext = &tentry->context;
1796 
1797 	if (tclass && tclass <= policydb->p_classes.nprim)
1798 		cladatum = policydb->class_val_to_struct[tclass - 1];
1799 
1800 	/* Set the user identity. */
1801 	switch (specified) {
1802 	case AVTAB_TRANSITION:
1803 	case AVTAB_CHANGE:
1804 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1805 			newcontext.user = tcontext->user;
1806 		} else {
1807 			/* notice this gets both DEFAULT_SOURCE and unset */
1808 			/* Use the process user identity. */
1809 			newcontext.user = scontext->user;
1810 		}
1811 		break;
1812 	case AVTAB_MEMBER:
1813 		/* Use the related object owner. */
1814 		newcontext.user = tcontext->user;
1815 		break;
1816 	}
1817 
1818 	/* Set the role to default values. */
1819 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1820 		newcontext.role = scontext->role;
1821 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1822 		newcontext.role = tcontext->role;
1823 	} else {
1824 		if ((tclass == policydb->process_class) || sock)
1825 			newcontext.role = scontext->role;
1826 		else
1827 			newcontext.role = OBJECT_R_VAL;
1828 	}
1829 
1830 	/* Set the type to default values. */
1831 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1832 		newcontext.type = scontext->type;
1833 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1834 		newcontext.type = tcontext->type;
1835 	} else {
1836 		if ((tclass == policydb->process_class) || sock) {
1837 			/* Use the type of process. */
1838 			newcontext.type = scontext->type;
1839 		} else {
1840 			/* Use the type of the related object. */
1841 			newcontext.type = tcontext->type;
1842 		}
1843 	}
1844 
1845 	/* Look for a type transition/member/change rule. */
1846 	avkey.source_type = scontext->type;
1847 	avkey.target_type = tcontext->type;
1848 	avkey.target_class = tclass;
1849 	avkey.specified = specified;
1850 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1851 
1852 	/* If no permanent rule, also check for enabled conditional rules */
1853 	if (!avdatum) {
1854 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1855 		for (; node; node = avtab_search_node_next(node, specified)) {
1856 			if (node->key.specified & AVTAB_ENABLED) {
1857 				avdatum = &node->datum;
1858 				break;
1859 			}
1860 		}
1861 	}
1862 
1863 	if (avdatum) {
1864 		/* Use the type from the type transition/member/change rule. */
1865 		newcontext.type = avdatum->u.data;
1866 	}
1867 
1868 	/* if we have a objname this is a file trans check so check those rules */
1869 	if (objname)
1870 		filename_compute_type(policydb, &newcontext, scontext->type,
1871 				      tcontext->type, tclass, objname);
1872 
1873 	/* Check for class-specific changes. */
1874 	if (specified & AVTAB_TRANSITION) {
1875 		/* Look for a role transition rule. */
1876 		struct role_trans_datum *rtd;
1877 		struct role_trans_key rtk = {
1878 			.role = scontext->role,
1879 			.type = tcontext->type,
1880 			.tclass = tclass,
1881 		};
1882 
1883 		rtd = policydb_roletr_search(policydb, &rtk);
1884 		if (rtd)
1885 			newcontext.role = rtd->new_role;
1886 	}
1887 
1888 	/* Set the MLS attributes.
1889 	   This is done last because it may allocate memory. */
1890 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1891 			     &newcontext, sock);
1892 	if (rc)
1893 		goto out_unlock;
1894 
1895 	/* Check the validity of the context. */
1896 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1897 		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1898 							tentry, tclass,
1899 							&newcontext);
1900 		if (rc)
1901 			goto out_unlock;
1902 	}
1903 	/* Obtain the sid for the context. */
1904 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1905 	if (rc == -ESTALE) {
1906 		rcu_read_unlock();
1907 		context_destroy(&newcontext);
1908 		goto retry;
1909 	}
1910 out_unlock:
1911 	rcu_read_unlock();
1912 	context_destroy(&newcontext);
1913 out:
1914 	return rc;
1915 }
1916 
1917 /**
1918  * security_transition_sid - Compute the SID for a new subject/object.
1919  * @state: SELinux state
1920  * @ssid: source security identifier
1921  * @tsid: target security identifier
1922  * @tclass: target security class
1923  * @qstr: object name
1924  * @out_sid: security identifier for new subject/object
1925  *
1926  * Compute a SID to use for labeling a new subject or object in the
1927  * class @tclass based on a SID pair (@ssid, @tsid).
1928  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1929  * if insufficient memory is available, or %0 if the new SID was
1930  * computed successfully.
1931  */
security_transition_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1932 int security_transition_sid(struct selinux_state *state,
1933 			    u32 ssid, u32 tsid, u16 tclass,
1934 			    const struct qstr *qstr, u32 *out_sid)
1935 {
1936 	return security_compute_sid(state, ssid, tsid, tclass,
1937 				    AVTAB_TRANSITION,
1938 				    qstr ? qstr->name : NULL, out_sid, true);
1939 }
1940 
security_transition_sid_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1941 int security_transition_sid_user(struct selinux_state *state,
1942 				 u32 ssid, u32 tsid, u16 tclass,
1943 				 const char *objname, u32 *out_sid)
1944 {
1945 	return security_compute_sid(state, ssid, tsid, tclass,
1946 				    AVTAB_TRANSITION,
1947 				    objname, out_sid, false);
1948 }
1949 
1950 /**
1951  * security_member_sid - Compute the SID for member selection.
1952  * @state: SELinux state
1953  * @ssid: source security identifier
1954  * @tsid: target security identifier
1955  * @tclass: target security class
1956  * @out_sid: security identifier for selected member
1957  *
1958  * Compute a SID to use when selecting a member of a polyinstantiated
1959  * object of class @tclass based on a SID pair (@ssid, @tsid).
1960  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1961  * if insufficient memory is available, or %0 if the SID was
1962  * computed successfully.
1963  */
security_member_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1964 int security_member_sid(struct selinux_state *state,
1965 			u32 ssid,
1966 			u32 tsid,
1967 			u16 tclass,
1968 			u32 *out_sid)
1969 {
1970 	return security_compute_sid(state, ssid, tsid, tclass,
1971 				    AVTAB_MEMBER, NULL,
1972 				    out_sid, false);
1973 }
1974 
1975 /**
1976  * security_change_sid - Compute the SID for object relabeling.
1977  * @state: SELinux state
1978  * @ssid: source security identifier
1979  * @tsid: target security identifier
1980  * @tclass: target security class
1981  * @out_sid: security identifier for selected member
1982  *
1983  * Compute a SID to use for relabeling an object of class @tclass
1984  * based on a SID pair (@ssid, @tsid).
1985  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1986  * if insufficient memory is available, or %0 if the SID was
1987  * computed successfully.
1988  */
security_change_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1989 int security_change_sid(struct selinux_state *state,
1990 			u32 ssid,
1991 			u32 tsid,
1992 			u16 tclass,
1993 			u32 *out_sid)
1994 {
1995 	return security_compute_sid(state,
1996 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1997 				    out_sid, false);
1998 }
1999 
convert_context_handle_invalid_context(struct selinux_state * state,struct policydb * policydb,struct context * context)2000 static inline int convert_context_handle_invalid_context(
2001 	struct selinux_state *state,
2002 	struct policydb *policydb,
2003 	struct context *context)
2004 {
2005 	char *s;
2006 	u32 len;
2007 
2008 	if (enforcing_enabled(state))
2009 		return -EINVAL;
2010 
2011 	if (!context_struct_to_string(policydb, context, &s, &len)) {
2012 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2013 			s);
2014 		kfree(s);
2015 	}
2016 	return 0;
2017 }
2018 
2019 /*
2020  * Convert the values in the security context
2021  * structure `oldc' from the values specified
2022  * in the policy `p->oldp' to the values specified
2023  * in the policy `p->newp', storing the new context
2024  * in `newc'.  Verify that the context is valid
2025  * under the new policy.
2026  */
convert_context(struct context * oldc,struct context * newc,void * p,gfp_t gfp_flags)2027 static int convert_context(struct context *oldc, struct context *newc, void *p,
2028 			   gfp_t gfp_flags)
2029 {
2030 	struct convert_context_args *args;
2031 	struct ocontext *oc;
2032 	struct role_datum *role;
2033 	struct type_datum *typdatum;
2034 	struct user_datum *usrdatum;
2035 	char *s;
2036 	u32 len;
2037 	int rc;
2038 
2039 	args = p;
2040 
2041 	if (oldc->str) {
2042 		s = kstrdup(oldc->str, gfp_flags);
2043 		if (!s)
2044 			return -ENOMEM;
2045 
2046 		rc = string_to_context_struct(args->newp, NULL, s,
2047 					      newc, SECSID_NULL);
2048 		if (rc == -EINVAL) {
2049 			/*
2050 			 * Retain string representation for later mapping.
2051 			 *
2052 			 * IMPORTANT: We need to copy the contents of oldc->str
2053 			 * back into s again because string_to_context_struct()
2054 			 * may have garbled it.
2055 			 */
2056 			memcpy(s, oldc->str, oldc->len);
2057 			context_init(newc);
2058 			newc->str = s;
2059 			newc->len = oldc->len;
2060 			return 0;
2061 		}
2062 		kfree(s);
2063 		if (rc) {
2064 			/* Other error condition, e.g. ENOMEM. */
2065 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2066 			       oldc->str, -rc);
2067 			return rc;
2068 		}
2069 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2070 			oldc->str);
2071 		return 0;
2072 	}
2073 
2074 	context_init(newc);
2075 
2076 	/* Convert the user. */
2077 	usrdatum = symtab_search(&args->newp->p_users,
2078 				 sym_name(args->oldp,
2079 					  SYM_USERS, oldc->user - 1));
2080 	if (!usrdatum)
2081 		goto bad;
2082 	newc->user = usrdatum->value;
2083 
2084 	/* Convert the role. */
2085 	role = symtab_search(&args->newp->p_roles,
2086 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2087 	if (!role)
2088 		goto bad;
2089 	newc->role = role->value;
2090 
2091 	/* Convert the type. */
2092 	typdatum = symtab_search(&args->newp->p_types,
2093 				 sym_name(args->oldp,
2094 					  SYM_TYPES, oldc->type - 1));
2095 	if (!typdatum)
2096 		goto bad;
2097 	newc->type = typdatum->value;
2098 
2099 	/* Convert the MLS fields if dealing with MLS policies */
2100 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2101 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2102 		if (rc)
2103 			goto bad;
2104 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2105 		/*
2106 		 * Switching between non-MLS and MLS policy:
2107 		 * ensure that the MLS fields of the context for all
2108 		 * existing entries in the sidtab are filled in with a
2109 		 * suitable default value, likely taken from one of the
2110 		 * initial SIDs.
2111 		 */
2112 		oc = args->newp->ocontexts[OCON_ISID];
2113 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2114 			oc = oc->next;
2115 		if (!oc) {
2116 			pr_err("SELinux:  unable to look up"
2117 				" the initial SIDs list\n");
2118 			goto bad;
2119 		}
2120 		rc = mls_range_set(newc, &oc->context[0].range);
2121 		if (rc)
2122 			goto bad;
2123 	}
2124 
2125 	/* Check the validity of the new context. */
2126 	if (!policydb_context_isvalid(args->newp, newc)) {
2127 		rc = convert_context_handle_invalid_context(args->state,
2128 							args->oldp,
2129 							oldc);
2130 		if (rc)
2131 			goto bad;
2132 	}
2133 
2134 	return 0;
2135 bad:
2136 	/* Map old representation to string and save it. */
2137 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2138 	if (rc)
2139 		return rc;
2140 	context_destroy(newc);
2141 	newc->str = s;
2142 	newc->len = len;
2143 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2144 		newc->str);
2145 	return 0;
2146 }
2147 
security_load_policycaps(struct selinux_state * state,struct selinux_policy * policy)2148 static void security_load_policycaps(struct selinux_state *state,
2149 				struct selinux_policy *policy)
2150 {
2151 	struct policydb *p;
2152 	unsigned int i;
2153 	struct ebitmap_node *node;
2154 
2155 	p = &policy->policydb;
2156 
2157 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2158 		WRITE_ONCE(state->policycap[i],
2159 			ebitmap_get_bit(&p->policycaps, i));
2160 
2161 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2162 		pr_info("SELinux:  policy capability %s=%d\n",
2163 			selinux_policycap_names[i],
2164 			ebitmap_get_bit(&p->policycaps, i));
2165 
2166 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2167 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2168 			pr_info("SELinux:  unknown policy capability %u\n",
2169 				i);
2170 	}
2171 
2172 	state->android_netlink_route = p->android_netlink_route;
2173 	state->android_netlink_getneigh = p->android_netlink_getneigh;
2174 	selinux_nlmsg_init();
2175 }
2176 
2177 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2178 				struct selinux_policy *newpolicy);
2179 
selinux_policy_free(struct selinux_policy * policy)2180 static void selinux_policy_free(struct selinux_policy *policy)
2181 {
2182 	if (!policy)
2183 		return;
2184 
2185 	sidtab_destroy(policy->sidtab);
2186 	kfree(policy->map.mapping);
2187 	policydb_destroy(&policy->policydb);
2188 	kfree(policy->sidtab);
2189 	kfree(policy);
2190 }
2191 
selinux_policy_cond_free(struct selinux_policy * policy)2192 static void selinux_policy_cond_free(struct selinux_policy *policy)
2193 {
2194 	cond_policydb_destroy_dup(&policy->policydb);
2195 	kfree(policy);
2196 }
2197 
selinux_policy_cancel(struct selinux_state * state,struct selinux_load_state * load_state)2198 void selinux_policy_cancel(struct selinux_state *state,
2199 			   struct selinux_load_state *load_state)
2200 {
2201 	struct selinux_policy *oldpolicy;
2202 
2203 	oldpolicy = rcu_dereference_protected(state->policy,
2204 					lockdep_is_held(&state->policy_mutex));
2205 
2206 	sidtab_cancel_convert(oldpolicy->sidtab);
2207 	selinux_policy_free(load_state->policy);
2208 	kfree(load_state->convert_data);
2209 }
2210 
selinux_notify_policy_change(struct selinux_state * state,u32 seqno)2211 static void selinux_notify_policy_change(struct selinux_state *state,
2212 					u32 seqno)
2213 {
2214 	/* Flush external caches and notify userspace of policy load */
2215 	avc_ss_reset(state->avc, seqno);
2216 	selnl_notify_policyload(seqno);
2217 	selinux_status_update_policyload(state, seqno);
2218 	selinux_netlbl_cache_invalidate();
2219 	selinux_xfrm_notify_policyload();
2220 	selinux_ima_measure_state_locked(state);
2221 }
2222 
selinux_policy_commit(struct selinux_state * state,struct selinux_load_state * load_state)2223 void selinux_policy_commit(struct selinux_state *state,
2224 			   struct selinux_load_state *load_state)
2225 {
2226 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2227 	unsigned long flags;
2228 	u32 seqno;
2229 
2230 	oldpolicy = rcu_dereference_protected(state->policy,
2231 					lockdep_is_held(&state->policy_mutex));
2232 
2233 	/* If switching between different policy types, log MLS status */
2234 	if (oldpolicy) {
2235 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2236 			pr_info("SELinux: Disabling MLS support...\n");
2237 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2238 			pr_info("SELinux: Enabling MLS support...\n");
2239 	}
2240 
2241 	/* Set latest granting seqno for new policy. */
2242 	if (oldpolicy)
2243 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2244 	else
2245 		newpolicy->latest_granting = 1;
2246 	seqno = newpolicy->latest_granting;
2247 
2248 	/* Install the new policy. */
2249 	if (oldpolicy) {
2250 		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2251 		rcu_assign_pointer(state->policy, newpolicy);
2252 		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2253 	} else {
2254 		rcu_assign_pointer(state->policy, newpolicy);
2255 	}
2256 
2257 	/* Load the policycaps from the new policy */
2258 	security_load_policycaps(state, newpolicy);
2259 
2260 	if (!selinux_initialized(state)) {
2261 		/*
2262 		 * After first policy load, the security server is
2263 		 * marked as initialized and ready to handle requests and
2264 		 * any objects created prior to policy load are then labeled.
2265 		 */
2266 		selinux_mark_initialized(state);
2267 		selinux_complete_init();
2268 		trace_android_rvh_selinux_is_initialized(state);
2269 	}
2270 
2271 	/* Free the old policy */
2272 	synchronize_rcu();
2273 	selinux_policy_free(oldpolicy);
2274 	kfree(load_state->convert_data);
2275 
2276 	/* Notify others of the policy change */
2277 	selinux_notify_policy_change(state, seqno);
2278 }
2279 
2280 /**
2281  * security_load_policy - Load a security policy configuration.
2282  * @state: SELinux state
2283  * @data: binary policy data
2284  * @len: length of data in bytes
2285  * @load_state: policy load state
2286  *
2287  * Load a new set of security policy configuration data,
2288  * validate it and convert the SID table as necessary.
2289  * This function will flush the access vector cache after
2290  * loading the new policy.
2291  */
security_load_policy(struct selinux_state * state,void * data,size_t len,struct selinux_load_state * load_state)2292 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2293 			 struct selinux_load_state *load_state)
2294 {
2295 	struct selinux_policy *newpolicy, *oldpolicy;
2296 	struct selinux_policy_convert_data *convert_data;
2297 	int rc = 0;
2298 	struct policy_file file = { data, len }, *fp = &file;
2299 
2300 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2301 	if (!newpolicy)
2302 		return -ENOMEM;
2303 
2304 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2305 	if (!newpolicy->sidtab) {
2306 		rc = -ENOMEM;
2307 		goto err_policy;
2308 	}
2309 
2310 	rc = policydb_read(&newpolicy->policydb, fp);
2311 	if (rc)
2312 		goto err_sidtab;
2313 
2314 	newpolicy->policydb.len = len;
2315 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2316 				&newpolicy->map);
2317 	if (rc)
2318 		goto err_policydb;
2319 
2320 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2321 	if (rc) {
2322 		pr_err("SELinux:  unable to load the initial SIDs\n");
2323 		goto err_mapping;
2324 	}
2325 
2326 	if (!selinux_initialized(state)) {
2327 		/* First policy load, so no need to preserve state from old policy */
2328 		load_state->policy = newpolicy;
2329 		load_state->convert_data = NULL;
2330 		return 0;
2331 	}
2332 
2333 	oldpolicy = rcu_dereference_protected(state->policy,
2334 					lockdep_is_held(&state->policy_mutex));
2335 
2336 	/* Preserve active boolean values from the old policy */
2337 	rc = security_preserve_bools(oldpolicy, newpolicy);
2338 	if (rc) {
2339 		pr_err("SELinux:  unable to preserve booleans\n");
2340 		goto err_free_isids;
2341 	}
2342 
2343 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2344 	if (!convert_data) {
2345 		rc = -ENOMEM;
2346 		goto err_free_isids;
2347 	}
2348 
2349 	/*
2350 	 * Convert the internal representations of contexts
2351 	 * in the new SID table.
2352 	 */
2353 	convert_data->args.state = state;
2354 	convert_data->args.oldp = &oldpolicy->policydb;
2355 	convert_data->args.newp = &newpolicy->policydb;
2356 
2357 	convert_data->sidtab_params.func = convert_context;
2358 	convert_data->sidtab_params.args = &convert_data->args;
2359 	convert_data->sidtab_params.target = newpolicy->sidtab;
2360 
2361 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2362 	if (rc) {
2363 		pr_err("SELinux:  unable to convert the internal"
2364 			" representation of contexts in the new SID"
2365 			" table\n");
2366 		goto err_free_convert_data;
2367 	}
2368 
2369 	load_state->policy = newpolicy;
2370 	load_state->convert_data = convert_data;
2371 	return 0;
2372 
2373 err_free_convert_data:
2374 	kfree(convert_data);
2375 err_free_isids:
2376 	sidtab_destroy(newpolicy->sidtab);
2377 err_mapping:
2378 	kfree(newpolicy->map.mapping);
2379 err_policydb:
2380 	policydb_destroy(&newpolicy->policydb);
2381 err_sidtab:
2382 	kfree(newpolicy->sidtab);
2383 err_policy:
2384 	kfree(newpolicy);
2385 
2386 	return rc;
2387 }
2388 
2389 /**
2390  * ocontext_to_sid - Helper to safely get sid for an ocontext
2391  * @sidtab: SID table
2392  * @c: ocontext structure
2393  * @index: index of the context entry (0 or 1)
2394  * @out_sid: pointer to the resulting SID value
2395  *
2396  * For all ocontexts except OCON_ISID the SID fields are populated
2397  * on-demand when needed. Since updating the SID value is an SMP-sensitive
2398  * operation, this helper must be used to do that safely.
2399  *
2400  * WARNING: This function may return -ESTALE, indicating that the caller
2401  * must retry the operation after re-acquiring the policy pointer!
2402  */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2403 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2404 			   size_t index, u32 *out_sid)
2405 {
2406 	int rc;
2407 	u32 sid;
2408 
2409 	/* Ensure the associated sidtab entry is visible to this thread. */
2410 	sid = smp_load_acquire(&c->sid[index]);
2411 	if (!sid) {
2412 		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2413 		if (rc)
2414 			return rc;
2415 
2416 		/*
2417 		 * Ensure the new sidtab entry is visible to other threads
2418 		 * when they see the SID.
2419 		 */
2420 		smp_store_release(&c->sid[index], sid);
2421 	}
2422 	*out_sid = sid;
2423 	return 0;
2424 }
2425 
2426 /**
2427  * security_port_sid - Obtain the SID for a port.
2428  * @state: SELinux state
2429  * @protocol: protocol number
2430  * @port: port number
2431  * @out_sid: security identifier
2432  */
security_port_sid(struct selinux_state * state,u8 protocol,u16 port,u32 * out_sid)2433 int security_port_sid(struct selinux_state *state,
2434 		      u8 protocol, u16 port, u32 *out_sid)
2435 {
2436 	struct selinux_policy *policy;
2437 	struct policydb *policydb;
2438 	struct sidtab *sidtab;
2439 	struct ocontext *c;
2440 	int rc;
2441 
2442 	if (!selinux_initialized(state)) {
2443 		*out_sid = SECINITSID_PORT;
2444 		return 0;
2445 	}
2446 
2447 retry:
2448 	rc = 0;
2449 	rcu_read_lock();
2450 	policy = rcu_dereference(state->policy);
2451 	policydb = &policy->policydb;
2452 	sidtab = policy->sidtab;
2453 
2454 	c = policydb->ocontexts[OCON_PORT];
2455 	while (c) {
2456 		if (c->u.port.protocol == protocol &&
2457 		    c->u.port.low_port <= port &&
2458 		    c->u.port.high_port >= port)
2459 			break;
2460 		c = c->next;
2461 	}
2462 
2463 	if (c) {
2464 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2465 		if (rc == -ESTALE) {
2466 			rcu_read_unlock();
2467 			goto retry;
2468 		}
2469 		if (rc)
2470 			goto out;
2471 	} else {
2472 		*out_sid = SECINITSID_PORT;
2473 	}
2474 
2475 out:
2476 	rcu_read_unlock();
2477 	return rc;
2478 }
2479 
2480 /**
2481  * security_ib_pkey_sid - Obtain the SID for a pkey.
2482  * @state: SELinux state
2483  * @subnet_prefix: Subnet Prefix
2484  * @pkey_num: pkey number
2485  * @out_sid: security identifier
2486  */
security_ib_pkey_sid(struct selinux_state * state,u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2487 int security_ib_pkey_sid(struct selinux_state *state,
2488 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2489 {
2490 	struct selinux_policy *policy;
2491 	struct policydb *policydb;
2492 	struct sidtab *sidtab;
2493 	struct ocontext *c;
2494 	int rc;
2495 
2496 	if (!selinux_initialized(state)) {
2497 		*out_sid = SECINITSID_UNLABELED;
2498 		return 0;
2499 	}
2500 
2501 retry:
2502 	rc = 0;
2503 	rcu_read_lock();
2504 	policy = rcu_dereference(state->policy);
2505 	policydb = &policy->policydb;
2506 	sidtab = policy->sidtab;
2507 
2508 	c = policydb->ocontexts[OCON_IBPKEY];
2509 	while (c) {
2510 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2511 		    c->u.ibpkey.high_pkey >= pkey_num &&
2512 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2513 			break;
2514 
2515 		c = c->next;
2516 	}
2517 
2518 	if (c) {
2519 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2520 		if (rc == -ESTALE) {
2521 			rcu_read_unlock();
2522 			goto retry;
2523 		}
2524 		if (rc)
2525 			goto out;
2526 	} else
2527 		*out_sid = SECINITSID_UNLABELED;
2528 
2529 out:
2530 	rcu_read_unlock();
2531 	return rc;
2532 }
2533 
2534 /**
2535  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2536  * @state: SELinux state
2537  * @dev_name: device name
2538  * @port_num: port number
2539  * @out_sid: security identifier
2540  */
security_ib_endport_sid(struct selinux_state * state,const char * dev_name,u8 port_num,u32 * out_sid)2541 int security_ib_endport_sid(struct selinux_state *state,
2542 			    const char *dev_name, u8 port_num, u32 *out_sid)
2543 {
2544 	struct selinux_policy *policy;
2545 	struct policydb *policydb;
2546 	struct sidtab *sidtab;
2547 	struct ocontext *c;
2548 	int rc;
2549 
2550 	if (!selinux_initialized(state)) {
2551 		*out_sid = SECINITSID_UNLABELED;
2552 		return 0;
2553 	}
2554 
2555 retry:
2556 	rc = 0;
2557 	rcu_read_lock();
2558 	policy = rcu_dereference(state->policy);
2559 	policydb = &policy->policydb;
2560 	sidtab = policy->sidtab;
2561 
2562 	c = policydb->ocontexts[OCON_IBENDPORT];
2563 	while (c) {
2564 		if (c->u.ibendport.port == port_num &&
2565 		    !strncmp(c->u.ibendport.dev_name,
2566 			     dev_name,
2567 			     IB_DEVICE_NAME_MAX))
2568 			break;
2569 
2570 		c = c->next;
2571 	}
2572 
2573 	if (c) {
2574 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2575 		if (rc == -ESTALE) {
2576 			rcu_read_unlock();
2577 			goto retry;
2578 		}
2579 		if (rc)
2580 			goto out;
2581 	} else
2582 		*out_sid = SECINITSID_UNLABELED;
2583 
2584 out:
2585 	rcu_read_unlock();
2586 	return rc;
2587 }
2588 
2589 /**
2590  * security_netif_sid - Obtain the SID for a network interface.
2591  * @state: SELinux state
2592  * @name: interface name
2593  * @if_sid: interface SID
2594  */
security_netif_sid(struct selinux_state * state,char * name,u32 * if_sid)2595 int security_netif_sid(struct selinux_state *state,
2596 		       char *name, u32 *if_sid)
2597 {
2598 	struct selinux_policy *policy;
2599 	struct policydb *policydb;
2600 	struct sidtab *sidtab;
2601 	int rc;
2602 	struct ocontext *c;
2603 
2604 	if (!selinux_initialized(state)) {
2605 		*if_sid = SECINITSID_NETIF;
2606 		return 0;
2607 	}
2608 
2609 retry:
2610 	rc = 0;
2611 	rcu_read_lock();
2612 	policy = rcu_dereference(state->policy);
2613 	policydb = &policy->policydb;
2614 	sidtab = policy->sidtab;
2615 
2616 	c = policydb->ocontexts[OCON_NETIF];
2617 	while (c) {
2618 		if (strcmp(name, c->u.name) == 0)
2619 			break;
2620 		c = c->next;
2621 	}
2622 
2623 	if (c) {
2624 		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2625 		if (rc == -ESTALE) {
2626 			rcu_read_unlock();
2627 			goto retry;
2628 		}
2629 		if (rc)
2630 			goto out;
2631 	} else
2632 		*if_sid = SECINITSID_NETIF;
2633 
2634 out:
2635 	rcu_read_unlock();
2636 	return rc;
2637 }
2638 
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2639 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2640 {
2641 	int i, fail = 0;
2642 
2643 	for (i = 0; i < 4; i++)
2644 		if (addr[i] != (input[i] & mask[i])) {
2645 			fail = 1;
2646 			break;
2647 		}
2648 
2649 	return !fail;
2650 }
2651 
2652 /**
2653  * security_node_sid - Obtain the SID for a node (host).
2654  * @state: SELinux state
2655  * @domain: communication domain aka address family
2656  * @addrp: address
2657  * @addrlen: address length in bytes
2658  * @out_sid: security identifier
2659  */
security_node_sid(struct selinux_state * state,u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2660 int security_node_sid(struct selinux_state *state,
2661 		      u16 domain,
2662 		      void *addrp,
2663 		      u32 addrlen,
2664 		      u32 *out_sid)
2665 {
2666 	struct selinux_policy *policy;
2667 	struct policydb *policydb;
2668 	struct sidtab *sidtab;
2669 	int rc;
2670 	struct ocontext *c;
2671 
2672 	if (!selinux_initialized(state)) {
2673 		*out_sid = SECINITSID_NODE;
2674 		return 0;
2675 	}
2676 
2677 retry:
2678 	rcu_read_lock();
2679 	policy = rcu_dereference(state->policy);
2680 	policydb = &policy->policydb;
2681 	sidtab = policy->sidtab;
2682 
2683 	switch (domain) {
2684 	case AF_INET: {
2685 		u32 addr;
2686 
2687 		rc = -EINVAL;
2688 		if (addrlen != sizeof(u32))
2689 			goto out;
2690 
2691 		addr = *((u32 *)addrp);
2692 
2693 		c = policydb->ocontexts[OCON_NODE];
2694 		while (c) {
2695 			if (c->u.node.addr == (addr & c->u.node.mask))
2696 				break;
2697 			c = c->next;
2698 		}
2699 		break;
2700 	}
2701 
2702 	case AF_INET6:
2703 		rc = -EINVAL;
2704 		if (addrlen != sizeof(u64) * 2)
2705 			goto out;
2706 		c = policydb->ocontexts[OCON_NODE6];
2707 		while (c) {
2708 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2709 						c->u.node6.mask))
2710 				break;
2711 			c = c->next;
2712 		}
2713 		break;
2714 
2715 	default:
2716 		rc = 0;
2717 		*out_sid = SECINITSID_NODE;
2718 		goto out;
2719 	}
2720 
2721 	if (c) {
2722 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2723 		if (rc == -ESTALE) {
2724 			rcu_read_unlock();
2725 			goto retry;
2726 		}
2727 		if (rc)
2728 			goto out;
2729 	} else {
2730 		*out_sid = SECINITSID_NODE;
2731 	}
2732 
2733 	rc = 0;
2734 out:
2735 	rcu_read_unlock();
2736 	return rc;
2737 }
2738 
2739 #define SIDS_NEL 25
2740 
2741 /**
2742  * security_get_user_sids - Obtain reachable SIDs for a user.
2743  * @state: SELinux state
2744  * @fromsid: starting SID
2745  * @username: username
2746  * @sids: array of reachable SIDs for user
2747  * @nel: number of elements in @sids
2748  *
2749  * Generate the set of SIDs for legal security contexts
2750  * for a given user that can be reached by @fromsid.
2751  * Set *@sids to point to a dynamically allocated
2752  * array containing the set of SIDs.  Set *@nel to the
2753  * number of elements in the array.
2754  */
2755 
security_get_user_sids(struct selinux_state * state,u32 fromsid,char * username,u32 ** sids,u32 * nel)2756 int security_get_user_sids(struct selinux_state *state,
2757 			   u32 fromsid,
2758 			   char *username,
2759 			   u32 **sids,
2760 			   u32 *nel)
2761 {
2762 	struct selinux_policy *policy;
2763 	struct policydb *policydb;
2764 	struct sidtab *sidtab;
2765 	struct context *fromcon, usercon;
2766 	u32 *mysids = NULL, *mysids2, sid;
2767 	u32 i, j, mynel, maxnel = SIDS_NEL;
2768 	struct user_datum *user;
2769 	struct role_datum *role;
2770 	struct ebitmap_node *rnode, *tnode;
2771 	int rc;
2772 
2773 	*sids = NULL;
2774 	*nel = 0;
2775 
2776 	if (!selinux_initialized(state))
2777 		return 0;
2778 
2779 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2780 	if (!mysids)
2781 		return -ENOMEM;
2782 
2783 retry:
2784 	mynel = 0;
2785 	rcu_read_lock();
2786 	policy = rcu_dereference(state->policy);
2787 	policydb = &policy->policydb;
2788 	sidtab = policy->sidtab;
2789 
2790 	context_init(&usercon);
2791 
2792 	rc = -EINVAL;
2793 	fromcon = sidtab_search(sidtab, fromsid);
2794 	if (!fromcon)
2795 		goto out_unlock;
2796 
2797 	rc = -EINVAL;
2798 	user = symtab_search(&policydb->p_users, username);
2799 	if (!user)
2800 		goto out_unlock;
2801 
2802 	usercon.user = user->value;
2803 
2804 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2805 		role = policydb->role_val_to_struct[i];
2806 		usercon.role = i + 1;
2807 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2808 			usercon.type = j + 1;
2809 
2810 			if (mls_setup_user_range(policydb, fromcon, user,
2811 						 &usercon))
2812 				continue;
2813 
2814 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2815 			if (rc == -ESTALE) {
2816 				rcu_read_unlock();
2817 				goto retry;
2818 			}
2819 			if (rc)
2820 				goto out_unlock;
2821 			if (mynel < maxnel) {
2822 				mysids[mynel++] = sid;
2823 			} else {
2824 				rc = -ENOMEM;
2825 				maxnel += SIDS_NEL;
2826 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2827 				if (!mysids2)
2828 					goto out_unlock;
2829 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2830 				kfree(mysids);
2831 				mysids = mysids2;
2832 				mysids[mynel++] = sid;
2833 			}
2834 		}
2835 	}
2836 	rc = 0;
2837 out_unlock:
2838 	rcu_read_unlock();
2839 	if (rc || !mynel) {
2840 		kfree(mysids);
2841 		return rc;
2842 	}
2843 
2844 	rc = -ENOMEM;
2845 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2846 	if (!mysids2) {
2847 		kfree(mysids);
2848 		return rc;
2849 	}
2850 	for (i = 0, j = 0; i < mynel; i++) {
2851 		struct av_decision dummy_avd;
2852 		rc = avc_has_perm_noaudit(state,
2853 					  fromsid, mysids[i],
2854 					  SECCLASS_PROCESS, /* kernel value */
2855 					  PROCESS__TRANSITION, AVC_STRICT,
2856 					  &dummy_avd);
2857 		if (!rc)
2858 			mysids2[j++] = mysids[i];
2859 		cond_resched();
2860 	}
2861 	kfree(mysids);
2862 	*sids = mysids2;
2863 	*nel = j;
2864 	return 0;
2865 }
2866 
2867 /**
2868  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2869  * @policy: policy
2870  * @fstype: filesystem type
2871  * @path: path from root of mount
2872  * @orig_sclass: file security class
2873  * @sid: SID for path
2874  *
2875  * Obtain a SID to use for a file in a filesystem that
2876  * cannot support xattr or use a fixed labeling behavior like
2877  * transition SIDs or task SIDs.
2878  *
2879  * WARNING: This function may return -ESTALE, indicating that the caller
2880  * must retry the operation after re-acquiring the policy pointer!
2881  */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2882 static inline int __security_genfs_sid(struct selinux_policy *policy,
2883 				       const char *fstype,
2884 				       const char *path,
2885 				       u16 orig_sclass,
2886 				       u32 *sid)
2887 {
2888 	struct policydb *policydb = &policy->policydb;
2889 	struct sidtab *sidtab = policy->sidtab;
2890 	int len;
2891 	u16 sclass;
2892 	struct genfs *genfs;
2893 	struct ocontext *c;
2894 	int cmp = 0;
2895 
2896 	while (path[0] == '/' && path[1] == '/')
2897 		path++;
2898 
2899 	sclass = unmap_class(&policy->map, orig_sclass);
2900 	*sid = SECINITSID_UNLABELED;
2901 
2902 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2903 		cmp = strcmp(fstype, genfs->fstype);
2904 		if (cmp <= 0)
2905 			break;
2906 	}
2907 
2908 	if (!genfs || cmp)
2909 		return -ENOENT;
2910 
2911 	for (c = genfs->head; c; c = c->next) {
2912 		len = strlen(c->u.name);
2913 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2914 		    (strncmp(c->u.name, path, len) == 0))
2915 			break;
2916 	}
2917 
2918 	if (!c)
2919 		return -ENOENT;
2920 
2921 	return ocontext_to_sid(sidtab, c, 0, sid);
2922 }
2923 
2924 /**
2925  * security_genfs_sid - Obtain a SID for a file in a filesystem
2926  * @state: SELinux state
2927  * @fstype: filesystem type
2928  * @path: path from root of mount
2929  * @orig_sclass: file security class
2930  * @sid: SID for path
2931  *
2932  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2933  * it afterward.
2934  */
security_genfs_sid(struct selinux_state * state,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2935 int security_genfs_sid(struct selinux_state *state,
2936 		       const char *fstype,
2937 		       const char *path,
2938 		       u16 orig_sclass,
2939 		       u32 *sid)
2940 {
2941 	struct selinux_policy *policy;
2942 	int retval;
2943 
2944 	if (!selinux_initialized(state)) {
2945 		*sid = SECINITSID_UNLABELED;
2946 		return 0;
2947 	}
2948 
2949 	do {
2950 		rcu_read_lock();
2951 		policy = rcu_dereference(state->policy);
2952 		retval = __security_genfs_sid(policy, fstype, path,
2953 					      orig_sclass, sid);
2954 		rcu_read_unlock();
2955 	} while (retval == -ESTALE);
2956 	return retval;
2957 }
2958 
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2959 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2960 			const char *fstype,
2961 			const char *path,
2962 			u16 orig_sclass,
2963 			u32 *sid)
2964 {
2965 	/* no lock required, policy is not yet accessible by other threads */
2966 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2967 }
2968 
2969 /**
2970  * security_fs_use - Determine how to handle labeling for a filesystem.
2971  * @state: SELinux state
2972  * @sb: superblock in question
2973  */
security_fs_use(struct selinux_state * state,struct super_block * sb)2974 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2975 {
2976 	struct selinux_policy *policy;
2977 	struct policydb *policydb;
2978 	struct sidtab *sidtab;
2979 	int rc;
2980 	struct ocontext *c;
2981 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2982 	const char *fstype = sb->s_type->name;
2983 
2984 	if (!selinux_initialized(state)) {
2985 		sbsec->behavior = SECURITY_FS_USE_NONE;
2986 		sbsec->sid = SECINITSID_UNLABELED;
2987 		return 0;
2988 	}
2989 
2990 retry:
2991 	rcu_read_lock();
2992 	policy = rcu_dereference(state->policy);
2993 	policydb = &policy->policydb;
2994 	sidtab = policy->sidtab;
2995 
2996 	c = policydb->ocontexts[OCON_FSUSE];
2997 	while (c) {
2998 		if (strcmp(fstype, c->u.name) == 0)
2999 			break;
3000 		c = c->next;
3001 	}
3002 
3003 	if (c) {
3004 		sbsec->behavior = c->v.behavior;
3005 		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
3006 		if (rc == -ESTALE) {
3007 			rcu_read_unlock();
3008 			goto retry;
3009 		}
3010 		if (rc)
3011 			goto out;
3012 	} else {
3013 		rc = __security_genfs_sid(policy, fstype, "/",
3014 					SECCLASS_DIR, &sbsec->sid);
3015 		if (rc == -ESTALE) {
3016 			rcu_read_unlock();
3017 			goto retry;
3018 		}
3019 		if (rc) {
3020 			sbsec->behavior = SECURITY_FS_USE_NONE;
3021 			rc = 0;
3022 		} else {
3023 			sbsec->behavior = SECURITY_FS_USE_GENFS;
3024 		}
3025 	}
3026 
3027 out:
3028 	rcu_read_unlock();
3029 	return rc;
3030 }
3031 
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)3032 int security_get_bools(struct selinux_policy *policy,
3033 		       u32 *len, char ***names, int **values)
3034 {
3035 	struct policydb *policydb;
3036 	u32 i;
3037 	int rc;
3038 
3039 	policydb = &policy->policydb;
3040 
3041 	*names = NULL;
3042 	*values = NULL;
3043 
3044 	rc = 0;
3045 	*len = policydb->p_bools.nprim;
3046 	if (!*len)
3047 		goto out;
3048 
3049 	rc = -ENOMEM;
3050 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3051 	if (!*names)
3052 		goto err;
3053 
3054 	rc = -ENOMEM;
3055 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3056 	if (!*values)
3057 		goto err;
3058 
3059 	for (i = 0; i < *len; i++) {
3060 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3061 
3062 		rc = -ENOMEM;
3063 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3064 				      GFP_ATOMIC);
3065 		if (!(*names)[i])
3066 			goto err;
3067 	}
3068 	rc = 0;
3069 out:
3070 	return rc;
3071 err:
3072 	if (*names) {
3073 		for (i = 0; i < *len; i++)
3074 			kfree((*names)[i]);
3075 		kfree(*names);
3076 	}
3077 	kfree(*values);
3078 	*len = 0;
3079 	*names = NULL;
3080 	*values = NULL;
3081 	goto out;
3082 }
3083 
3084 
security_set_bools(struct selinux_state * state,u32 len,int * values)3085 int security_set_bools(struct selinux_state *state, u32 len, int *values)
3086 {
3087 	struct selinux_policy *newpolicy, *oldpolicy;
3088 	int rc;
3089 	u32 i, seqno = 0;
3090 
3091 	if (!selinux_initialized(state))
3092 		return -EINVAL;
3093 
3094 	oldpolicy = rcu_dereference_protected(state->policy,
3095 					lockdep_is_held(&state->policy_mutex));
3096 
3097 	/* Consistency check on number of booleans, should never fail */
3098 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3099 		return -EINVAL;
3100 
3101 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3102 	if (!newpolicy)
3103 		return -ENOMEM;
3104 
3105 	/*
3106 	 * Deep copy only the parts of the policydb that might be
3107 	 * modified as a result of changing booleans.
3108 	 */
3109 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3110 	if (rc) {
3111 		kfree(newpolicy);
3112 		return -ENOMEM;
3113 	}
3114 
3115 	/* Update the boolean states in the copy */
3116 	for (i = 0; i < len; i++) {
3117 		int new_state = !!values[i];
3118 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3119 
3120 		if (new_state != old_state) {
3121 			audit_log(audit_context(), GFP_ATOMIC,
3122 				AUDIT_MAC_CONFIG_CHANGE,
3123 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3124 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3125 				new_state,
3126 				old_state,
3127 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3128 				audit_get_sessionid(current));
3129 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3130 		}
3131 	}
3132 
3133 	/* Re-evaluate the conditional rules in the copy */
3134 	evaluate_cond_nodes(&newpolicy->policydb);
3135 
3136 	/* Set latest granting seqno for new policy */
3137 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3138 	seqno = newpolicy->latest_granting;
3139 
3140 	/* Install the new policy */
3141 	rcu_assign_pointer(state->policy, newpolicy);
3142 
3143 	/*
3144 	 * Free the conditional portions of the old policydb
3145 	 * that were copied for the new policy, and the oldpolicy
3146 	 * structure itself but not what it references.
3147 	 */
3148 	synchronize_rcu();
3149 	selinux_policy_cond_free(oldpolicy);
3150 
3151 	/* Notify others of the policy change */
3152 	selinux_notify_policy_change(state, seqno);
3153 	return 0;
3154 }
3155 
security_get_bool_value(struct selinux_state * state,u32 index)3156 int security_get_bool_value(struct selinux_state *state,
3157 			    u32 index)
3158 {
3159 	struct selinux_policy *policy;
3160 	struct policydb *policydb;
3161 	int rc;
3162 	u32 len;
3163 
3164 	if (!selinux_initialized(state))
3165 		return 0;
3166 
3167 	rcu_read_lock();
3168 	policy = rcu_dereference(state->policy);
3169 	policydb = &policy->policydb;
3170 
3171 	rc = -EFAULT;
3172 	len = policydb->p_bools.nprim;
3173 	if (index >= len)
3174 		goto out;
3175 
3176 	rc = policydb->bool_val_to_struct[index]->state;
3177 out:
3178 	rcu_read_unlock();
3179 	return rc;
3180 }
3181 
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3182 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3183 				struct selinux_policy *newpolicy)
3184 {
3185 	int rc, *bvalues = NULL;
3186 	char **bnames = NULL;
3187 	struct cond_bool_datum *booldatum;
3188 	u32 i, nbools = 0;
3189 
3190 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3191 	if (rc)
3192 		goto out;
3193 	for (i = 0; i < nbools; i++) {
3194 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3195 					bnames[i]);
3196 		if (booldatum)
3197 			booldatum->state = bvalues[i];
3198 	}
3199 	evaluate_cond_nodes(&newpolicy->policydb);
3200 
3201 out:
3202 	if (bnames) {
3203 		for (i = 0; i < nbools; i++)
3204 			kfree(bnames[i]);
3205 	}
3206 	kfree(bnames);
3207 	kfree(bvalues);
3208 	return rc;
3209 }
3210 
3211 /*
3212  * security_sid_mls_copy() - computes a new sid based on the given
3213  * sid and the mls portion of mls_sid.
3214  */
security_sid_mls_copy(struct selinux_state * state,u32 sid,u32 mls_sid,u32 * new_sid)3215 int security_sid_mls_copy(struct selinux_state *state,
3216 			  u32 sid, u32 mls_sid, u32 *new_sid)
3217 {
3218 	struct selinux_policy *policy;
3219 	struct policydb *policydb;
3220 	struct sidtab *sidtab;
3221 	struct context *context1;
3222 	struct context *context2;
3223 	struct context newcon;
3224 	char *s;
3225 	u32 len;
3226 	int rc;
3227 
3228 	if (!selinux_initialized(state)) {
3229 		*new_sid = sid;
3230 		return 0;
3231 	}
3232 
3233 retry:
3234 	rc = 0;
3235 	context_init(&newcon);
3236 
3237 	rcu_read_lock();
3238 	policy = rcu_dereference(state->policy);
3239 	policydb = &policy->policydb;
3240 	sidtab = policy->sidtab;
3241 
3242 	if (!policydb->mls_enabled) {
3243 		*new_sid = sid;
3244 		goto out_unlock;
3245 	}
3246 
3247 	rc = -EINVAL;
3248 	context1 = sidtab_search(sidtab, sid);
3249 	if (!context1) {
3250 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3251 			__func__, sid);
3252 		goto out_unlock;
3253 	}
3254 
3255 	rc = -EINVAL;
3256 	context2 = sidtab_search(sidtab, mls_sid);
3257 	if (!context2) {
3258 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3259 			__func__, mls_sid);
3260 		goto out_unlock;
3261 	}
3262 
3263 	newcon.user = context1->user;
3264 	newcon.role = context1->role;
3265 	newcon.type = context1->type;
3266 	rc = mls_context_cpy(&newcon, context2);
3267 	if (rc)
3268 		goto out_unlock;
3269 
3270 	/* Check the validity of the new context. */
3271 	if (!policydb_context_isvalid(policydb, &newcon)) {
3272 		rc = convert_context_handle_invalid_context(state, policydb,
3273 							&newcon);
3274 		if (rc) {
3275 			if (!context_struct_to_string(policydb, &newcon, &s,
3276 						      &len)) {
3277 				struct audit_buffer *ab;
3278 
3279 				ab = audit_log_start(audit_context(),
3280 						     GFP_ATOMIC,
3281 						     AUDIT_SELINUX_ERR);
3282 				audit_log_format(ab,
3283 						 "op=security_sid_mls_copy invalid_context=");
3284 				/* don't record NUL with untrusted strings */
3285 				audit_log_n_untrustedstring(ab, s, len - 1);
3286 				audit_log_end(ab);
3287 				kfree(s);
3288 			}
3289 			goto out_unlock;
3290 		}
3291 	}
3292 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3293 	if (rc == -ESTALE) {
3294 		rcu_read_unlock();
3295 		context_destroy(&newcon);
3296 		goto retry;
3297 	}
3298 out_unlock:
3299 	rcu_read_unlock();
3300 	context_destroy(&newcon);
3301 	return rc;
3302 }
3303 
3304 /**
3305  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3306  * @state: SELinux state
3307  * @nlbl_sid: NetLabel SID
3308  * @nlbl_type: NetLabel labeling protocol type
3309  * @xfrm_sid: XFRM SID
3310  * @peer_sid: network peer sid
3311  *
3312  * Description:
3313  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3314  * resolved into a single SID it is returned via @peer_sid and the function
3315  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3316  * returns a negative value.  A table summarizing the behavior is below:
3317  *
3318  *                                 | function return |      @sid
3319  *   ------------------------------+-----------------+-----------------
3320  *   no peer labels                |        0        |    SECSID_NULL
3321  *   single peer label             |        0        |    <peer_label>
3322  *   multiple, consistent labels   |        0        |    <peer_label>
3323  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3324  *
3325  */
security_net_peersid_resolve(struct selinux_state * state,u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3326 int security_net_peersid_resolve(struct selinux_state *state,
3327 				 u32 nlbl_sid, u32 nlbl_type,
3328 				 u32 xfrm_sid,
3329 				 u32 *peer_sid)
3330 {
3331 	struct selinux_policy *policy;
3332 	struct policydb *policydb;
3333 	struct sidtab *sidtab;
3334 	int rc;
3335 	struct context *nlbl_ctx;
3336 	struct context *xfrm_ctx;
3337 
3338 	*peer_sid = SECSID_NULL;
3339 
3340 	/* handle the common (which also happens to be the set of easy) cases
3341 	 * right away, these two if statements catch everything involving a
3342 	 * single or absent peer SID/label */
3343 	if (xfrm_sid == SECSID_NULL) {
3344 		*peer_sid = nlbl_sid;
3345 		return 0;
3346 	}
3347 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3348 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3349 	 * is present */
3350 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3351 		*peer_sid = xfrm_sid;
3352 		return 0;
3353 	}
3354 
3355 	if (!selinux_initialized(state))
3356 		return 0;
3357 
3358 	rcu_read_lock();
3359 	policy = rcu_dereference(state->policy);
3360 	policydb = &policy->policydb;
3361 	sidtab = policy->sidtab;
3362 
3363 	/*
3364 	 * We don't need to check initialized here since the only way both
3365 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3366 	 * security server was initialized and state->initialized was true.
3367 	 */
3368 	if (!policydb->mls_enabled) {
3369 		rc = 0;
3370 		goto out;
3371 	}
3372 
3373 	rc = -EINVAL;
3374 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3375 	if (!nlbl_ctx) {
3376 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3377 		       __func__, nlbl_sid);
3378 		goto out;
3379 	}
3380 	rc = -EINVAL;
3381 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3382 	if (!xfrm_ctx) {
3383 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3384 		       __func__, xfrm_sid);
3385 		goto out;
3386 	}
3387 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3388 	if (rc)
3389 		goto out;
3390 
3391 	/* at present NetLabel SIDs/labels really only carry MLS
3392 	 * information so if the MLS portion of the NetLabel SID
3393 	 * matches the MLS portion of the labeled XFRM SID/label
3394 	 * then pass along the XFRM SID as it is the most
3395 	 * expressive */
3396 	*peer_sid = xfrm_sid;
3397 out:
3398 	rcu_read_unlock();
3399 	return rc;
3400 }
3401 
get_classes_callback(void * k,void * d,void * args)3402 static int get_classes_callback(void *k, void *d, void *args)
3403 {
3404 	struct class_datum *datum = d;
3405 	char *name = k, **classes = args;
3406 	int value = datum->value - 1;
3407 
3408 	classes[value] = kstrdup(name, GFP_ATOMIC);
3409 	if (!classes[value])
3410 		return -ENOMEM;
3411 
3412 	return 0;
3413 }
3414 
security_get_classes(struct selinux_policy * policy,char *** classes,int * nclasses)3415 int security_get_classes(struct selinux_policy *policy,
3416 			 char ***classes, int *nclasses)
3417 {
3418 	struct policydb *policydb;
3419 	int rc;
3420 
3421 	policydb = &policy->policydb;
3422 
3423 	rc = -ENOMEM;
3424 	*nclasses = policydb->p_classes.nprim;
3425 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3426 	if (!*classes)
3427 		goto out;
3428 
3429 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3430 			 *classes);
3431 	if (rc) {
3432 		int i;
3433 		for (i = 0; i < *nclasses; i++)
3434 			kfree((*classes)[i]);
3435 		kfree(*classes);
3436 	}
3437 
3438 out:
3439 	return rc;
3440 }
3441 
get_permissions_callback(void * k,void * d,void * args)3442 static int get_permissions_callback(void *k, void *d, void *args)
3443 {
3444 	struct perm_datum *datum = d;
3445 	char *name = k, **perms = args;
3446 	int value = datum->value - 1;
3447 
3448 	perms[value] = kstrdup(name, GFP_ATOMIC);
3449 	if (!perms[value])
3450 		return -ENOMEM;
3451 
3452 	return 0;
3453 }
3454 
security_get_permissions(struct selinux_policy * policy,char * class,char *** perms,int * nperms)3455 int security_get_permissions(struct selinux_policy *policy,
3456 			     char *class, char ***perms, int *nperms)
3457 {
3458 	struct policydb *policydb;
3459 	int rc, i;
3460 	struct class_datum *match;
3461 
3462 	policydb = &policy->policydb;
3463 
3464 	rc = -EINVAL;
3465 	match = symtab_search(&policydb->p_classes, class);
3466 	if (!match) {
3467 		pr_err("SELinux: %s:  unrecognized class %s\n",
3468 			__func__, class);
3469 		goto out;
3470 	}
3471 
3472 	rc = -ENOMEM;
3473 	*nperms = match->permissions.nprim;
3474 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3475 	if (!*perms)
3476 		goto out;
3477 
3478 	if (match->comdatum) {
3479 		rc = hashtab_map(&match->comdatum->permissions.table,
3480 				 get_permissions_callback, *perms);
3481 		if (rc)
3482 			goto err;
3483 	}
3484 
3485 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3486 			 *perms);
3487 	if (rc)
3488 		goto err;
3489 
3490 out:
3491 	return rc;
3492 
3493 err:
3494 	for (i = 0; i < *nperms; i++)
3495 		kfree((*perms)[i]);
3496 	kfree(*perms);
3497 	return rc;
3498 }
3499 
security_get_reject_unknown(struct selinux_state * state)3500 int security_get_reject_unknown(struct selinux_state *state)
3501 {
3502 	struct selinux_policy *policy;
3503 	int value;
3504 
3505 	if (!selinux_initialized(state))
3506 		return 0;
3507 
3508 	rcu_read_lock();
3509 	policy = rcu_dereference(state->policy);
3510 	value = policy->policydb.reject_unknown;
3511 	rcu_read_unlock();
3512 	return value;
3513 }
3514 
security_get_allow_unknown(struct selinux_state * state)3515 int security_get_allow_unknown(struct selinux_state *state)
3516 {
3517 	struct selinux_policy *policy;
3518 	int value;
3519 
3520 	if (!selinux_initialized(state))
3521 		return 0;
3522 
3523 	rcu_read_lock();
3524 	policy = rcu_dereference(state->policy);
3525 	value = policy->policydb.allow_unknown;
3526 	rcu_read_unlock();
3527 	return value;
3528 }
3529 
3530 /**
3531  * security_policycap_supported - Check for a specific policy capability
3532  * @state: SELinux state
3533  * @req_cap: capability
3534  *
3535  * Description:
3536  * This function queries the currently loaded policy to see if it supports the
3537  * capability specified by @req_cap.  Returns true (1) if the capability is
3538  * supported, false (0) if it isn't supported.
3539  *
3540  */
security_policycap_supported(struct selinux_state * state,unsigned int req_cap)3541 int security_policycap_supported(struct selinux_state *state,
3542 				 unsigned int req_cap)
3543 {
3544 	struct selinux_policy *policy;
3545 	int rc;
3546 
3547 	if (!selinux_initialized(state))
3548 		return 0;
3549 
3550 	rcu_read_lock();
3551 	policy = rcu_dereference(state->policy);
3552 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3553 	rcu_read_unlock();
3554 
3555 	return rc;
3556 }
3557 
3558 struct selinux_audit_rule {
3559 	u32 au_seqno;
3560 	struct context au_ctxt;
3561 };
3562 
selinux_audit_rule_free(void * vrule)3563 void selinux_audit_rule_free(void *vrule)
3564 {
3565 	struct selinux_audit_rule *rule = vrule;
3566 
3567 	if (rule) {
3568 		context_destroy(&rule->au_ctxt);
3569 		kfree(rule);
3570 	}
3571 }
3572 
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3573 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3574 {
3575 	struct selinux_state *state = &selinux_state;
3576 	struct selinux_policy *policy;
3577 	struct policydb *policydb;
3578 	struct selinux_audit_rule *tmprule;
3579 	struct role_datum *roledatum;
3580 	struct type_datum *typedatum;
3581 	struct user_datum *userdatum;
3582 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3583 	int rc = 0;
3584 
3585 	*rule = NULL;
3586 
3587 	if (!selinux_initialized(state))
3588 		return -EOPNOTSUPP;
3589 
3590 	switch (field) {
3591 	case AUDIT_SUBJ_USER:
3592 	case AUDIT_SUBJ_ROLE:
3593 	case AUDIT_SUBJ_TYPE:
3594 	case AUDIT_OBJ_USER:
3595 	case AUDIT_OBJ_ROLE:
3596 	case AUDIT_OBJ_TYPE:
3597 		/* only 'equals' and 'not equals' fit user, role, and type */
3598 		if (op != Audit_equal && op != Audit_not_equal)
3599 			return -EINVAL;
3600 		break;
3601 	case AUDIT_SUBJ_SEN:
3602 	case AUDIT_SUBJ_CLR:
3603 	case AUDIT_OBJ_LEV_LOW:
3604 	case AUDIT_OBJ_LEV_HIGH:
3605 		/* we do not allow a range, indicated by the presence of '-' */
3606 		if (strchr(rulestr, '-'))
3607 			return -EINVAL;
3608 		break;
3609 	default:
3610 		/* only the above fields are valid */
3611 		return -EINVAL;
3612 	}
3613 
3614 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3615 	if (!tmprule)
3616 		return -ENOMEM;
3617 
3618 	context_init(&tmprule->au_ctxt);
3619 
3620 	rcu_read_lock();
3621 	policy = rcu_dereference(state->policy);
3622 	policydb = &policy->policydb;
3623 
3624 	tmprule->au_seqno = policy->latest_granting;
3625 
3626 	switch (field) {
3627 	case AUDIT_SUBJ_USER:
3628 	case AUDIT_OBJ_USER:
3629 		rc = -EINVAL;
3630 		userdatum = symtab_search(&policydb->p_users, rulestr);
3631 		if (!userdatum)
3632 			goto out;
3633 		tmprule->au_ctxt.user = userdatum->value;
3634 		break;
3635 	case AUDIT_SUBJ_ROLE:
3636 	case AUDIT_OBJ_ROLE:
3637 		rc = -EINVAL;
3638 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3639 		if (!roledatum)
3640 			goto out;
3641 		tmprule->au_ctxt.role = roledatum->value;
3642 		break;
3643 	case AUDIT_SUBJ_TYPE:
3644 	case AUDIT_OBJ_TYPE:
3645 		rc = -EINVAL;
3646 		typedatum = symtab_search(&policydb->p_types, rulestr);
3647 		if (!typedatum)
3648 			goto out;
3649 		tmprule->au_ctxt.type = typedatum->value;
3650 		break;
3651 	case AUDIT_SUBJ_SEN:
3652 	case AUDIT_SUBJ_CLR:
3653 	case AUDIT_OBJ_LEV_LOW:
3654 	case AUDIT_OBJ_LEV_HIGH:
3655 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3656 				     GFP_ATOMIC);
3657 		if (rc)
3658 			goto out;
3659 		break;
3660 	}
3661 	rc = 0;
3662 out:
3663 	rcu_read_unlock();
3664 
3665 	if (rc) {
3666 		selinux_audit_rule_free(tmprule);
3667 		tmprule = NULL;
3668 	}
3669 
3670 	*rule = tmprule;
3671 
3672 	return rc;
3673 }
3674 
3675 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3676 int selinux_audit_rule_known(struct audit_krule *rule)
3677 {
3678 	int i;
3679 
3680 	for (i = 0; i < rule->field_count; i++) {
3681 		struct audit_field *f = &rule->fields[i];
3682 		switch (f->type) {
3683 		case AUDIT_SUBJ_USER:
3684 		case AUDIT_SUBJ_ROLE:
3685 		case AUDIT_SUBJ_TYPE:
3686 		case AUDIT_SUBJ_SEN:
3687 		case AUDIT_SUBJ_CLR:
3688 		case AUDIT_OBJ_USER:
3689 		case AUDIT_OBJ_ROLE:
3690 		case AUDIT_OBJ_TYPE:
3691 		case AUDIT_OBJ_LEV_LOW:
3692 		case AUDIT_OBJ_LEV_HIGH:
3693 			return 1;
3694 		}
3695 	}
3696 
3697 	return 0;
3698 }
3699 
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3700 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3701 {
3702 	struct selinux_state *state = &selinux_state;
3703 	struct selinux_policy *policy;
3704 	struct context *ctxt;
3705 	struct mls_level *level;
3706 	struct selinux_audit_rule *rule = vrule;
3707 	int match = 0;
3708 
3709 	if (unlikely(!rule)) {
3710 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3711 		return -ENOENT;
3712 	}
3713 
3714 	if (!selinux_initialized(state))
3715 		return 0;
3716 
3717 	rcu_read_lock();
3718 
3719 	policy = rcu_dereference(state->policy);
3720 
3721 	if (rule->au_seqno < policy->latest_granting) {
3722 		match = -ESTALE;
3723 		goto out;
3724 	}
3725 
3726 	ctxt = sidtab_search(policy->sidtab, sid);
3727 	if (unlikely(!ctxt)) {
3728 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3729 			  sid);
3730 		match = -ENOENT;
3731 		goto out;
3732 	}
3733 
3734 	/* a field/op pair that is not caught here will simply fall through
3735 	   without a match */
3736 	switch (field) {
3737 	case AUDIT_SUBJ_USER:
3738 	case AUDIT_OBJ_USER:
3739 		switch (op) {
3740 		case Audit_equal:
3741 			match = (ctxt->user == rule->au_ctxt.user);
3742 			break;
3743 		case Audit_not_equal:
3744 			match = (ctxt->user != rule->au_ctxt.user);
3745 			break;
3746 		}
3747 		break;
3748 	case AUDIT_SUBJ_ROLE:
3749 	case AUDIT_OBJ_ROLE:
3750 		switch (op) {
3751 		case Audit_equal:
3752 			match = (ctxt->role == rule->au_ctxt.role);
3753 			break;
3754 		case Audit_not_equal:
3755 			match = (ctxt->role != rule->au_ctxt.role);
3756 			break;
3757 		}
3758 		break;
3759 	case AUDIT_SUBJ_TYPE:
3760 	case AUDIT_OBJ_TYPE:
3761 		switch (op) {
3762 		case Audit_equal:
3763 			match = (ctxt->type == rule->au_ctxt.type);
3764 			break;
3765 		case Audit_not_equal:
3766 			match = (ctxt->type != rule->au_ctxt.type);
3767 			break;
3768 		}
3769 		break;
3770 	case AUDIT_SUBJ_SEN:
3771 	case AUDIT_SUBJ_CLR:
3772 	case AUDIT_OBJ_LEV_LOW:
3773 	case AUDIT_OBJ_LEV_HIGH:
3774 		level = ((field == AUDIT_SUBJ_SEN ||
3775 			  field == AUDIT_OBJ_LEV_LOW) ?
3776 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3777 		switch (op) {
3778 		case Audit_equal:
3779 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3780 					     level);
3781 			break;
3782 		case Audit_not_equal:
3783 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3784 					      level);
3785 			break;
3786 		case Audit_lt:
3787 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3788 					       level) &&
3789 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3790 					       level));
3791 			break;
3792 		case Audit_le:
3793 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3794 					      level);
3795 			break;
3796 		case Audit_gt:
3797 			match = (mls_level_dom(level,
3798 					      &rule->au_ctxt.range.level[0]) &&
3799 				 !mls_level_eq(level,
3800 					       &rule->au_ctxt.range.level[0]));
3801 			break;
3802 		case Audit_ge:
3803 			match = mls_level_dom(level,
3804 					      &rule->au_ctxt.range.level[0]);
3805 			break;
3806 		}
3807 	}
3808 
3809 out:
3810 	rcu_read_unlock();
3811 	return match;
3812 }
3813 
aurule_avc_callback(u32 event)3814 static int aurule_avc_callback(u32 event)
3815 {
3816 	if (event == AVC_CALLBACK_RESET)
3817 		return audit_update_lsm_rules();
3818 	return 0;
3819 }
3820 
aurule_init(void)3821 static int __init aurule_init(void)
3822 {
3823 	int err;
3824 
3825 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3826 	if (err)
3827 		panic("avc_add_callback() failed, error %d\n", err);
3828 
3829 	return err;
3830 }
3831 __initcall(aurule_init);
3832 
3833 #ifdef CONFIG_NETLABEL
3834 /**
3835  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3836  * @secattr: the NetLabel packet security attributes
3837  * @sid: the SELinux SID
3838  *
3839  * Description:
3840  * Attempt to cache the context in @ctx, which was derived from the packet in
3841  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3842  * already been initialized.
3843  *
3844  */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3845 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3846 				      u32 sid)
3847 {
3848 	u32 *sid_cache;
3849 
3850 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3851 	if (sid_cache == NULL)
3852 		return;
3853 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3854 	if (secattr->cache == NULL) {
3855 		kfree(sid_cache);
3856 		return;
3857 	}
3858 
3859 	*sid_cache = sid;
3860 	secattr->cache->free = kfree;
3861 	secattr->cache->data = sid_cache;
3862 	secattr->flags |= NETLBL_SECATTR_CACHE;
3863 }
3864 
3865 /**
3866  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3867  * @state: SELinux state
3868  * @secattr: the NetLabel packet security attributes
3869  * @sid: the SELinux SID
3870  *
3871  * Description:
3872  * Convert the given NetLabel security attributes in @secattr into a
3873  * SELinux SID.  If the @secattr field does not contain a full SELinux
3874  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3875  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3876  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3877  * conversion for future lookups.  Returns zero on success, negative values on
3878  * failure.
3879  *
3880  */
security_netlbl_secattr_to_sid(struct selinux_state * state,struct netlbl_lsm_secattr * secattr,u32 * sid)3881 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3882 				   struct netlbl_lsm_secattr *secattr,
3883 				   u32 *sid)
3884 {
3885 	struct selinux_policy *policy;
3886 	struct policydb *policydb;
3887 	struct sidtab *sidtab;
3888 	int rc;
3889 	struct context *ctx;
3890 	struct context ctx_new;
3891 
3892 	if (!selinux_initialized(state)) {
3893 		*sid = SECSID_NULL;
3894 		return 0;
3895 	}
3896 
3897 retry:
3898 	rc = 0;
3899 	rcu_read_lock();
3900 	policy = rcu_dereference(state->policy);
3901 	policydb = &policy->policydb;
3902 	sidtab = policy->sidtab;
3903 
3904 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3905 		*sid = *(u32 *)secattr->cache->data;
3906 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3907 		*sid = secattr->attr.secid;
3908 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3909 		rc = -EIDRM;
3910 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3911 		if (ctx == NULL)
3912 			goto out;
3913 
3914 		context_init(&ctx_new);
3915 		ctx_new.user = ctx->user;
3916 		ctx_new.role = ctx->role;
3917 		ctx_new.type = ctx->type;
3918 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3919 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3920 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3921 			if (rc)
3922 				goto out;
3923 		}
3924 		rc = -EIDRM;
3925 		if (!mls_context_isvalid(policydb, &ctx_new)) {
3926 			ebitmap_destroy(&ctx_new.range.level[0].cat);
3927 			goto out;
3928 		}
3929 
3930 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3931 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3932 		if (rc == -ESTALE) {
3933 			rcu_read_unlock();
3934 			goto retry;
3935 		}
3936 		if (rc)
3937 			goto out;
3938 
3939 		security_netlbl_cache_add(secattr, *sid);
3940 	} else
3941 		*sid = SECSID_NULL;
3942 
3943 out:
3944 	rcu_read_unlock();
3945 	return rc;
3946 }
3947 
3948 /**
3949  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3950  * @state: SELinux state
3951  * @sid: the SELinux SID
3952  * @secattr: the NetLabel packet security attributes
3953  *
3954  * Description:
3955  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3956  * Returns zero on success, negative values on failure.
3957  *
3958  */
security_netlbl_sid_to_secattr(struct selinux_state * state,u32 sid,struct netlbl_lsm_secattr * secattr)3959 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3960 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3961 {
3962 	struct selinux_policy *policy;
3963 	struct policydb *policydb;
3964 	int rc;
3965 	struct context *ctx;
3966 
3967 	if (!selinux_initialized(state))
3968 		return 0;
3969 
3970 	rcu_read_lock();
3971 	policy = rcu_dereference(state->policy);
3972 	policydb = &policy->policydb;
3973 
3974 	rc = -ENOENT;
3975 	ctx = sidtab_search(policy->sidtab, sid);
3976 	if (ctx == NULL)
3977 		goto out;
3978 
3979 	rc = -ENOMEM;
3980 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3981 				  GFP_ATOMIC);
3982 	if (secattr->domain == NULL)
3983 		goto out;
3984 
3985 	secattr->attr.secid = sid;
3986 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3987 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3988 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3989 out:
3990 	rcu_read_unlock();
3991 	return rc;
3992 }
3993 #endif /* CONFIG_NETLABEL */
3994 
3995 /**
3996  * __security_read_policy - read the policy.
3997  * @policy: SELinux policy
3998  * @data: binary policy data
3999  * @len: length of data in bytes
4000  *
4001  */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)4002 static int __security_read_policy(struct selinux_policy *policy,
4003 				  void *data, size_t *len)
4004 {
4005 	int rc;
4006 	struct policy_file fp;
4007 
4008 	fp.data = data;
4009 	fp.len = *len;
4010 
4011 	rc = policydb_write(&policy->policydb, &fp);
4012 	if (rc)
4013 		return rc;
4014 
4015 	*len = (unsigned long)fp.data - (unsigned long)data;
4016 	return 0;
4017 }
4018 
4019 /**
4020  * security_read_policy - read the policy.
4021  * @state: selinux_state
4022  * @data: binary policy data
4023  * @len: length of data in bytes
4024  *
4025  */
security_read_policy(struct selinux_state * state,void ** data,size_t * len)4026 int security_read_policy(struct selinux_state *state,
4027 			 void **data, size_t *len)
4028 {
4029 	struct selinux_policy *policy;
4030 
4031 	policy = rcu_dereference_protected(
4032 			state->policy, lockdep_is_held(&state->policy_mutex));
4033 	if (!policy)
4034 		return -EINVAL;
4035 
4036 	*len = policy->policydb.len;
4037 	*data = vmalloc_user(*len);
4038 	if (!*data)
4039 		return -ENOMEM;
4040 
4041 	return __security_read_policy(policy, *data, len);
4042 }
4043 
4044 /**
4045  * security_read_state_kernel - read the policy.
4046  * @state: selinux_state
4047  * @data: binary policy data
4048  * @len: length of data in bytes
4049  *
4050  * Allocates kernel memory for reading SELinux policy.
4051  * This function is for internal use only and should not
4052  * be used for returning data to user space.
4053  *
4054  * This function must be called with policy_mutex held.
4055  */
security_read_state_kernel(struct selinux_state * state,void ** data,size_t * len)4056 int security_read_state_kernel(struct selinux_state *state,
4057 			       void **data, size_t *len)
4058 {
4059 	int err;
4060 	struct selinux_policy *policy;
4061 
4062 	policy = rcu_dereference_protected(
4063 			state->policy, lockdep_is_held(&state->policy_mutex));
4064 	if (!policy)
4065 		return -EINVAL;
4066 
4067 	*len = policy->policydb.len;
4068 	*data = vmalloc(*len);
4069 	if (!*data)
4070 		return -ENOMEM;
4071 
4072 	err = __security_read_policy(policy, *data, len);
4073 	if (err) {
4074 		vfree(*data);
4075 		*data = NULL;
4076 		*len = 0;
4077 	}
4078 	return err;
4079 }
4080