1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70
71 #include <trace/hooks/selinux.h>
72
73 struct convert_context_args {
74 struct selinux_state *state;
75 struct policydb *oldp;
76 struct policydb *newp;
77 };
78
79 struct selinux_policy_convert_data {
80 struct convert_context_args args;
81 struct sidtab_convert_params sidtab_params;
82 };
83
84 /* Forward declaration. */
85 static int context_struct_to_string(struct policydb *policydb,
86 struct context *context,
87 char **scontext,
88 u32 *scontext_len);
89
90 static int sidtab_entry_to_string(struct policydb *policydb,
91 struct sidtab *sidtab,
92 struct sidtab_entry *entry,
93 char **scontext,
94 u32 *scontext_len);
95
96 static void context_struct_compute_av(struct policydb *policydb,
97 struct context *scontext,
98 struct context *tcontext,
99 u16 tclass,
100 struct av_decision *avd,
101 struct extended_perms *xperms);
102
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)103 static int selinux_set_mapping(struct policydb *pol,
104 const struct security_class_mapping *map,
105 struct selinux_map *out_map)
106 {
107 u16 i, j;
108 unsigned k;
109 bool print_unknown_handle = false;
110
111 /* Find number of classes in the input mapping */
112 if (!map)
113 return -EINVAL;
114 i = 0;
115 while (map[i].name)
116 i++;
117
118 /* Allocate space for the class records, plus one for class zero */
119 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
120 if (!out_map->mapping)
121 return -ENOMEM;
122
123 /* Store the raw class and permission values */
124 j = 0;
125 while (map[j].name) {
126 const struct security_class_mapping *p_in = map + (j++);
127 struct selinux_mapping *p_out = out_map->mapping + j;
128
129 /* An empty class string skips ahead */
130 if (!strcmp(p_in->name, "")) {
131 p_out->num_perms = 0;
132 continue;
133 }
134
135 p_out->value = string_to_security_class(pol, p_in->name);
136 if (!p_out->value) {
137 pr_info("SELinux: Class %s not defined in policy.\n",
138 p_in->name);
139 if (pol->reject_unknown)
140 goto err;
141 p_out->num_perms = 0;
142 print_unknown_handle = true;
143 continue;
144 }
145
146 k = 0;
147 while (p_in->perms[k]) {
148 /* An empty permission string skips ahead */
149 if (!*p_in->perms[k]) {
150 k++;
151 continue;
152 }
153 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
154 p_in->perms[k]);
155 if (!p_out->perms[k]) {
156 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
157 p_in->perms[k], p_in->name);
158 if (pol->reject_unknown)
159 goto err;
160 print_unknown_handle = true;
161 }
162
163 k++;
164 }
165 p_out->num_perms = k;
166 }
167
168 if (print_unknown_handle)
169 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
170 pol->allow_unknown ? "allowed" : "denied");
171
172 out_map->size = i;
173 return 0;
174 err:
175 kfree(out_map->mapping);
176 out_map->mapping = NULL;
177 return -EINVAL;
178 }
179
180 /*
181 * Get real, policy values from mapped values
182 */
183
unmap_class(struct selinux_map * map,u16 tclass)184 static u16 unmap_class(struct selinux_map *map, u16 tclass)
185 {
186 if (tclass < map->size)
187 return map->mapping[tclass].value;
188
189 return tclass;
190 }
191
192 /*
193 * Get kernel value for class from its policy value
194 */
map_class(struct selinux_map * map,u16 pol_value)195 static u16 map_class(struct selinux_map *map, u16 pol_value)
196 {
197 u16 i;
198
199 for (i = 1; i < map->size; i++) {
200 if (map->mapping[i].value == pol_value)
201 return i;
202 }
203
204 return SECCLASS_NULL;
205 }
206
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)207 static void map_decision(struct selinux_map *map,
208 u16 tclass, struct av_decision *avd,
209 int allow_unknown)
210 {
211 if (tclass < map->size) {
212 struct selinux_mapping *mapping = &map->mapping[tclass];
213 unsigned int i, n = mapping->num_perms;
214 u32 result;
215
216 for (i = 0, result = 0; i < n; i++) {
217 if (avd->allowed & mapping->perms[i])
218 result |= 1<<i;
219 if (allow_unknown && !mapping->perms[i])
220 result |= 1<<i;
221 }
222 avd->allowed = result;
223
224 for (i = 0, result = 0; i < n; i++)
225 if (avd->auditallow & mapping->perms[i])
226 result |= 1<<i;
227 avd->auditallow = result;
228
229 for (i = 0, result = 0; i < n; i++) {
230 if (avd->auditdeny & mapping->perms[i])
231 result |= 1<<i;
232 if (!allow_unknown && !mapping->perms[i])
233 result |= 1<<i;
234 }
235 /*
236 * In case the kernel has a bug and requests a permission
237 * between num_perms and the maximum permission number, we
238 * should audit that denial
239 */
240 for (; i < (sizeof(u32)*8); i++)
241 result |= 1<<i;
242 avd->auditdeny = result;
243 }
244 }
245
security_mls_enabled(struct selinux_state * state)246 int security_mls_enabled(struct selinux_state *state)
247 {
248 int mls_enabled;
249 struct selinux_policy *policy;
250
251 if (!selinux_initialized(state))
252 return 0;
253
254 rcu_read_lock();
255 policy = rcu_dereference(state->policy);
256 mls_enabled = policy->policydb.mls_enabled;
257 rcu_read_unlock();
258 return mls_enabled;
259 }
260
261 /*
262 * Return the boolean value of a constraint expression
263 * when it is applied to the specified source and target
264 * security contexts.
265 *
266 * xcontext is a special beast... It is used by the validatetrans rules
267 * only. For these rules, scontext is the context before the transition,
268 * tcontext is the context after the transition, and xcontext is the context
269 * of the process performing the transition. All other callers of
270 * constraint_expr_eval should pass in NULL for xcontext.
271 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)272 static int constraint_expr_eval(struct policydb *policydb,
273 struct context *scontext,
274 struct context *tcontext,
275 struct context *xcontext,
276 struct constraint_expr *cexpr)
277 {
278 u32 val1, val2;
279 struct context *c;
280 struct role_datum *r1, *r2;
281 struct mls_level *l1, *l2;
282 struct constraint_expr *e;
283 int s[CEXPR_MAXDEPTH];
284 int sp = -1;
285
286 for (e = cexpr; e; e = e->next) {
287 switch (e->expr_type) {
288 case CEXPR_NOT:
289 BUG_ON(sp < 0);
290 s[sp] = !s[sp];
291 break;
292 case CEXPR_AND:
293 BUG_ON(sp < 1);
294 sp--;
295 s[sp] &= s[sp + 1];
296 break;
297 case CEXPR_OR:
298 BUG_ON(sp < 1);
299 sp--;
300 s[sp] |= s[sp + 1];
301 break;
302 case CEXPR_ATTR:
303 if (sp == (CEXPR_MAXDEPTH - 1))
304 return 0;
305 switch (e->attr) {
306 case CEXPR_USER:
307 val1 = scontext->user;
308 val2 = tcontext->user;
309 break;
310 case CEXPR_TYPE:
311 val1 = scontext->type;
312 val2 = tcontext->type;
313 break;
314 case CEXPR_ROLE:
315 val1 = scontext->role;
316 val2 = tcontext->role;
317 r1 = policydb->role_val_to_struct[val1 - 1];
318 r2 = policydb->role_val_to_struct[val2 - 1];
319 switch (e->op) {
320 case CEXPR_DOM:
321 s[++sp] = ebitmap_get_bit(&r1->dominates,
322 val2 - 1);
323 continue;
324 case CEXPR_DOMBY:
325 s[++sp] = ebitmap_get_bit(&r2->dominates,
326 val1 - 1);
327 continue;
328 case CEXPR_INCOMP:
329 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
330 val2 - 1) &&
331 !ebitmap_get_bit(&r2->dominates,
332 val1 - 1));
333 continue;
334 default:
335 break;
336 }
337 break;
338 case CEXPR_L1L2:
339 l1 = &(scontext->range.level[0]);
340 l2 = &(tcontext->range.level[0]);
341 goto mls_ops;
342 case CEXPR_L1H2:
343 l1 = &(scontext->range.level[0]);
344 l2 = &(tcontext->range.level[1]);
345 goto mls_ops;
346 case CEXPR_H1L2:
347 l1 = &(scontext->range.level[1]);
348 l2 = &(tcontext->range.level[0]);
349 goto mls_ops;
350 case CEXPR_H1H2:
351 l1 = &(scontext->range.level[1]);
352 l2 = &(tcontext->range.level[1]);
353 goto mls_ops;
354 case CEXPR_L1H1:
355 l1 = &(scontext->range.level[0]);
356 l2 = &(scontext->range.level[1]);
357 goto mls_ops;
358 case CEXPR_L2H2:
359 l1 = &(tcontext->range.level[0]);
360 l2 = &(tcontext->range.level[1]);
361 goto mls_ops;
362 mls_ops:
363 switch (e->op) {
364 case CEXPR_EQ:
365 s[++sp] = mls_level_eq(l1, l2);
366 continue;
367 case CEXPR_NEQ:
368 s[++sp] = !mls_level_eq(l1, l2);
369 continue;
370 case CEXPR_DOM:
371 s[++sp] = mls_level_dom(l1, l2);
372 continue;
373 case CEXPR_DOMBY:
374 s[++sp] = mls_level_dom(l2, l1);
375 continue;
376 case CEXPR_INCOMP:
377 s[++sp] = mls_level_incomp(l2, l1);
378 continue;
379 default:
380 BUG();
381 return 0;
382 }
383 break;
384 default:
385 BUG();
386 return 0;
387 }
388
389 switch (e->op) {
390 case CEXPR_EQ:
391 s[++sp] = (val1 == val2);
392 break;
393 case CEXPR_NEQ:
394 s[++sp] = (val1 != val2);
395 break;
396 default:
397 BUG();
398 return 0;
399 }
400 break;
401 case CEXPR_NAMES:
402 if (sp == (CEXPR_MAXDEPTH-1))
403 return 0;
404 c = scontext;
405 if (e->attr & CEXPR_TARGET)
406 c = tcontext;
407 else if (e->attr & CEXPR_XTARGET) {
408 c = xcontext;
409 if (!c) {
410 BUG();
411 return 0;
412 }
413 }
414 if (e->attr & CEXPR_USER)
415 val1 = c->user;
416 else if (e->attr & CEXPR_ROLE)
417 val1 = c->role;
418 else if (e->attr & CEXPR_TYPE)
419 val1 = c->type;
420 else {
421 BUG();
422 return 0;
423 }
424
425 switch (e->op) {
426 case CEXPR_EQ:
427 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
428 break;
429 case CEXPR_NEQ:
430 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
431 break;
432 default:
433 BUG();
434 return 0;
435 }
436 break;
437 default:
438 BUG();
439 return 0;
440 }
441 }
442
443 BUG_ON(sp != 0);
444 return s[0];
445 }
446
447 /*
448 * security_dump_masked_av - dumps masked permissions during
449 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
450 */
dump_masked_av_helper(void * k,void * d,void * args)451 static int dump_masked_av_helper(void *k, void *d, void *args)
452 {
453 struct perm_datum *pdatum = d;
454 char **permission_names = args;
455
456 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
457
458 permission_names[pdatum->value - 1] = (char *)k;
459
460 return 0;
461 }
462
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)463 static void security_dump_masked_av(struct policydb *policydb,
464 struct context *scontext,
465 struct context *tcontext,
466 u16 tclass,
467 u32 permissions,
468 const char *reason)
469 {
470 struct common_datum *common_dat;
471 struct class_datum *tclass_dat;
472 struct audit_buffer *ab;
473 char *tclass_name;
474 char *scontext_name = NULL;
475 char *tcontext_name = NULL;
476 char *permission_names[32];
477 int index;
478 u32 length;
479 bool need_comma = false;
480
481 if (!permissions)
482 return;
483
484 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
485 tclass_dat = policydb->class_val_to_struct[tclass - 1];
486 common_dat = tclass_dat->comdatum;
487
488 /* init permission_names */
489 if (common_dat &&
490 hashtab_map(&common_dat->permissions.table,
491 dump_masked_av_helper, permission_names) < 0)
492 goto out;
493
494 if (hashtab_map(&tclass_dat->permissions.table,
495 dump_masked_av_helper, permission_names) < 0)
496 goto out;
497
498 /* get scontext/tcontext in text form */
499 if (context_struct_to_string(policydb, scontext,
500 &scontext_name, &length) < 0)
501 goto out;
502
503 if (context_struct_to_string(policydb, tcontext,
504 &tcontext_name, &length) < 0)
505 goto out;
506
507 /* audit a message */
508 ab = audit_log_start(audit_context(),
509 GFP_ATOMIC, AUDIT_SELINUX_ERR);
510 if (!ab)
511 goto out;
512
513 audit_log_format(ab, "op=security_compute_av reason=%s "
514 "scontext=%s tcontext=%s tclass=%s perms=",
515 reason, scontext_name, tcontext_name, tclass_name);
516
517 for (index = 0; index < 32; index++) {
518 u32 mask = (1 << index);
519
520 if ((mask & permissions) == 0)
521 continue;
522
523 audit_log_format(ab, "%s%s",
524 need_comma ? "," : "",
525 permission_names[index]
526 ? permission_names[index] : "????");
527 need_comma = true;
528 }
529 audit_log_end(ab);
530 out:
531 /* release scontext/tcontext */
532 kfree(tcontext_name);
533 kfree(scontext_name);
534 }
535
536 /*
537 * security_boundary_permission - drops violated permissions
538 * on boundary constraint.
539 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)540 static void type_attribute_bounds_av(struct policydb *policydb,
541 struct context *scontext,
542 struct context *tcontext,
543 u16 tclass,
544 struct av_decision *avd)
545 {
546 struct context lo_scontext;
547 struct context lo_tcontext, *tcontextp = tcontext;
548 struct av_decision lo_avd;
549 struct type_datum *source;
550 struct type_datum *target;
551 u32 masked = 0;
552
553 source = policydb->type_val_to_struct[scontext->type - 1];
554 BUG_ON(!source);
555
556 if (!source->bounds)
557 return;
558
559 target = policydb->type_val_to_struct[tcontext->type - 1];
560 BUG_ON(!target);
561
562 memset(&lo_avd, 0, sizeof(lo_avd));
563
564 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
565 lo_scontext.type = source->bounds;
566
567 if (target->bounds) {
568 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
569 lo_tcontext.type = target->bounds;
570 tcontextp = &lo_tcontext;
571 }
572
573 context_struct_compute_av(policydb, &lo_scontext,
574 tcontextp,
575 tclass,
576 &lo_avd,
577 NULL);
578
579 masked = ~lo_avd.allowed & avd->allowed;
580
581 if (likely(!masked))
582 return; /* no masked permission */
583
584 /* mask violated permissions */
585 avd->allowed &= ~masked;
586
587 /* audit masked permissions */
588 security_dump_masked_av(policydb, scontext, tcontext,
589 tclass, masked, "bounds");
590 }
591
592 /*
593 * flag which drivers have permissions
594 * only looking for ioctl based extended permssions
595 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)596 void services_compute_xperms_drivers(
597 struct extended_perms *xperms,
598 struct avtab_node *node)
599 {
600 unsigned int i;
601
602 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
603 /* if one or more driver has all permissions allowed */
604 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
605 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
606 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
607 /* if allowing permissions within a driver */
608 security_xperm_set(xperms->drivers.p,
609 node->datum.u.xperms->driver);
610 }
611
612 xperms->len = 1;
613 }
614
615 /*
616 * Compute access vectors and extended permissions based on a context
617 * structure pair for the permissions in a particular class.
618 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)619 static void context_struct_compute_av(struct policydb *policydb,
620 struct context *scontext,
621 struct context *tcontext,
622 u16 tclass,
623 struct av_decision *avd,
624 struct extended_perms *xperms)
625 {
626 struct constraint_node *constraint;
627 struct role_allow *ra;
628 struct avtab_key avkey;
629 struct avtab_node *node;
630 struct class_datum *tclass_datum;
631 struct ebitmap *sattr, *tattr;
632 struct ebitmap_node *snode, *tnode;
633 unsigned int i, j;
634
635 avd->allowed = 0;
636 avd->auditallow = 0;
637 avd->auditdeny = 0xffffffff;
638 if (xperms) {
639 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
640 xperms->len = 0;
641 }
642
643 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
644 if (printk_ratelimit())
645 pr_warn("SELinux: Invalid class %hu\n", tclass);
646 return;
647 }
648
649 tclass_datum = policydb->class_val_to_struct[tclass - 1];
650
651 /*
652 * If a specific type enforcement rule was defined for
653 * this permission check, then use it.
654 */
655 avkey.target_class = tclass;
656 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
657 sattr = &policydb->type_attr_map_array[scontext->type - 1];
658 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
659 ebitmap_for_each_positive_bit(sattr, snode, i) {
660 ebitmap_for_each_positive_bit(tattr, tnode, j) {
661 avkey.source_type = i + 1;
662 avkey.target_type = j + 1;
663 for (node = avtab_search_node(&policydb->te_avtab,
664 &avkey);
665 node;
666 node = avtab_search_node_next(node, avkey.specified)) {
667 if (node->key.specified == AVTAB_ALLOWED)
668 avd->allowed |= node->datum.u.data;
669 else if (node->key.specified == AVTAB_AUDITALLOW)
670 avd->auditallow |= node->datum.u.data;
671 else if (node->key.specified == AVTAB_AUDITDENY)
672 avd->auditdeny &= node->datum.u.data;
673 else if (xperms && (node->key.specified & AVTAB_XPERMS))
674 services_compute_xperms_drivers(xperms, node);
675 }
676
677 /* Check conditional av table for additional permissions */
678 cond_compute_av(&policydb->te_cond_avtab, &avkey,
679 avd, xperms);
680
681 }
682 }
683
684 /*
685 * Remove any permissions prohibited by a constraint (this includes
686 * the MLS policy).
687 */
688 constraint = tclass_datum->constraints;
689 while (constraint) {
690 if ((constraint->permissions & (avd->allowed)) &&
691 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
692 constraint->expr)) {
693 avd->allowed &= ~(constraint->permissions);
694 }
695 constraint = constraint->next;
696 }
697
698 /*
699 * If checking process transition permission and the
700 * role is changing, then check the (current_role, new_role)
701 * pair.
702 */
703 if (tclass == policydb->process_class &&
704 (avd->allowed & policydb->process_trans_perms) &&
705 scontext->role != tcontext->role) {
706 for (ra = policydb->role_allow; ra; ra = ra->next) {
707 if (scontext->role == ra->role &&
708 tcontext->role == ra->new_role)
709 break;
710 }
711 if (!ra)
712 avd->allowed &= ~policydb->process_trans_perms;
713 }
714
715 /*
716 * If the given source and target types have boundary
717 * constraint, lazy checks have to mask any violated
718 * permission and notice it to userspace via audit.
719 */
720 type_attribute_bounds_av(policydb, scontext, tcontext,
721 tclass, avd);
722 }
723
security_validtrans_handle_fail(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)724 static int security_validtrans_handle_fail(struct selinux_state *state,
725 struct selinux_policy *policy,
726 struct sidtab_entry *oentry,
727 struct sidtab_entry *nentry,
728 struct sidtab_entry *tentry,
729 u16 tclass)
730 {
731 struct policydb *p = &policy->policydb;
732 struct sidtab *sidtab = policy->sidtab;
733 char *o = NULL, *n = NULL, *t = NULL;
734 u32 olen, nlen, tlen;
735
736 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
737 goto out;
738 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
739 goto out;
740 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
741 goto out;
742 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
743 "op=security_validate_transition seresult=denied"
744 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
745 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
746 out:
747 kfree(o);
748 kfree(n);
749 kfree(t);
750
751 if (!enforcing_enabled(state))
752 return 0;
753 return -EPERM;
754 }
755
security_compute_validatetrans(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)756 static int security_compute_validatetrans(struct selinux_state *state,
757 u32 oldsid, u32 newsid, u32 tasksid,
758 u16 orig_tclass, bool user)
759 {
760 struct selinux_policy *policy;
761 struct policydb *policydb;
762 struct sidtab *sidtab;
763 struct sidtab_entry *oentry;
764 struct sidtab_entry *nentry;
765 struct sidtab_entry *tentry;
766 struct class_datum *tclass_datum;
767 struct constraint_node *constraint;
768 u16 tclass;
769 int rc = 0;
770
771
772 if (!selinux_initialized(state))
773 return 0;
774
775 rcu_read_lock();
776
777 policy = rcu_dereference(state->policy);
778 policydb = &policy->policydb;
779 sidtab = policy->sidtab;
780
781 if (!user)
782 tclass = unmap_class(&policy->map, orig_tclass);
783 else
784 tclass = orig_tclass;
785
786 if (!tclass || tclass > policydb->p_classes.nprim) {
787 rc = -EINVAL;
788 goto out;
789 }
790 tclass_datum = policydb->class_val_to_struct[tclass - 1];
791
792 oentry = sidtab_search_entry(sidtab, oldsid);
793 if (!oentry) {
794 pr_err("SELinux: %s: unrecognized SID %d\n",
795 __func__, oldsid);
796 rc = -EINVAL;
797 goto out;
798 }
799
800 nentry = sidtab_search_entry(sidtab, newsid);
801 if (!nentry) {
802 pr_err("SELinux: %s: unrecognized SID %d\n",
803 __func__, newsid);
804 rc = -EINVAL;
805 goto out;
806 }
807
808 tentry = sidtab_search_entry(sidtab, tasksid);
809 if (!tentry) {
810 pr_err("SELinux: %s: unrecognized SID %d\n",
811 __func__, tasksid);
812 rc = -EINVAL;
813 goto out;
814 }
815
816 constraint = tclass_datum->validatetrans;
817 while (constraint) {
818 if (!constraint_expr_eval(policydb, &oentry->context,
819 &nentry->context, &tentry->context,
820 constraint->expr)) {
821 if (user)
822 rc = -EPERM;
823 else
824 rc = security_validtrans_handle_fail(state,
825 policy,
826 oentry,
827 nentry,
828 tentry,
829 tclass);
830 goto out;
831 }
832 constraint = constraint->next;
833 }
834
835 out:
836 rcu_read_unlock();
837 return rc;
838 }
839
security_validate_transition_user(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)840 int security_validate_transition_user(struct selinux_state *state,
841 u32 oldsid, u32 newsid, u32 tasksid,
842 u16 tclass)
843 {
844 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
845 tclass, true);
846 }
847
security_validate_transition(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)848 int security_validate_transition(struct selinux_state *state,
849 u32 oldsid, u32 newsid, u32 tasksid,
850 u16 orig_tclass)
851 {
852 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
853 orig_tclass, false);
854 }
855
856 /*
857 * security_bounded_transition - check whether the given
858 * transition is directed to bounded, or not.
859 * It returns 0, if @newsid is bounded by @oldsid.
860 * Otherwise, it returns error code.
861 *
862 * @state: SELinux state
863 * @oldsid : current security identifier
864 * @newsid : destinated security identifier
865 */
security_bounded_transition(struct selinux_state * state,u32 old_sid,u32 new_sid)866 int security_bounded_transition(struct selinux_state *state,
867 u32 old_sid, u32 new_sid)
868 {
869 struct selinux_policy *policy;
870 struct policydb *policydb;
871 struct sidtab *sidtab;
872 struct sidtab_entry *old_entry, *new_entry;
873 struct type_datum *type;
874 int index;
875 int rc;
876
877 if (!selinux_initialized(state))
878 return 0;
879
880 rcu_read_lock();
881 policy = rcu_dereference(state->policy);
882 policydb = &policy->policydb;
883 sidtab = policy->sidtab;
884
885 rc = -EINVAL;
886 old_entry = sidtab_search_entry(sidtab, old_sid);
887 if (!old_entry) {
888 pr_err("SELinux: %s: unrecognized SID %u\n",
889 __func__, old_sid);
890 goto out;
891 }
892
893 rc = -EINVAL;
894 new_entry = sidtab_search_entry(sidtab, new_sid);
895 if (!new_entry) {
896 pr_err("SELinux: %s: unrecognized SID %u\n",
897 __func__, new_sid);
898 goto out;
899 }
900
901 rc = 0;
902 /* type/domain unchanged */
903 if (old_entry->context.type == new_entry->context.type)
904 goto out;
905
906 index = new_entry->context.type;
907 while (true) {
908 type = policydb->type_val_to_struct[index - 1];
909 BUG_ON(!type);
910
911 /* not bounded anymore */
912 rc = -EPERM;
913 if (!type->bounds)
914 break;
915
916 /* @newsid is bounded by @oldsid */
917 rc = 0;
918 if (type->bounds == old_entry->context.type)
919 break;
920
921 index = type->bounds;
922 }
923
924 if (rc) {
925 char *old_name = NULL;
926 char *new_name = NULL;
927 u32 length;
928
929 if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
930 &old_name, &length) &&
931 !sidtab_entry_to_string(policydb, sidtab, new_entry,
932 &new_name, &length)) {
933 audit_log(audit_context(),
934 GFP_ATOMIC, AUDIT_SELINUX_ERR,
935 "op=security_bounded_transition "
936 "seresult=denied "
937 "oldcontext=%s newcontext=%s",
938 old_name, new_name);
939 }
940 kfree(new_name);
941 kfree(old_name);
942 }
943 out:
944 rcu_read_unlock();
945
946 return rc;
947 }
948
avd_init(struct selinux_policy * policy,struct av_decision * avd)949 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
950 {
951 avd->allowed = 0;
952 avd->auditallow = 0;
953 avd->auditdeny = 0xffffffff;
954 if (policy)
955 avd->seqno = policy->latest_granting;
956 else
957 avd->seqno = 0;
958 avd->flags = 0;
959 }
960
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)961 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
962 struct avtab_node *node)
963 {
964 unsigned int i;
965
966 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
967 if (xpermd->driver != node->datum.u.xperms->driver)
968 return;
969 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
970 if (!security_xperm_test(node->datum.u.xperms->perms.p,
971 xpermd->driver))
972 return;
973 } else {
974 BUG();
975 }
976
977 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
978 xpermd->used |= XPERMS_ALLOWED;
979 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
980 memset(xpermd->allowed->p, 0xff,
981 sizeof(xpermd->allowed->p));
982 }
983 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
984 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
985 xpermd->allowed->p[i] |=
986 node->datum.u.xperms->perms.p[i];
987 }
988 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
989 xpermd->used |= XPERMS_AUDITALLOW;
990 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
991 memset(xpermd->auditallow->p, 0xff,
992 sizeof(xpermd->auditallow->p));
993 }
994 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
995 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
996 xpermd->auditallow->p[i] |=
997 node->datum.u.xperms->perms.p[i];
998 }
999 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1000 xpermd->used |= XPERMS_DONTAUDIT;
1001 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1002 memset(xpermd->dontaudit->p, 0xff,
1003 sizeof(xpermd->dontaudit->p));
1004 }
1005 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1006 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1007 xpermd->dontaudit->p[i] |=
1008 node->datum.u.xperms->perms.p[i];
1009 }
1010 } else {
1011 BUG();
1012 }
1013 }
1014
security_compute_xperms_decision(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)1015 void security_compute_xperms_decision(struct selinux_state *state,
1016 u32 ssid,
1017 u32 tsid,
1018 u16 orig_tclass,
1019 u8 driver,
1020 struct extended_perms_decision *xpermd)
1021 {
1022 struct selinux_policy *policy;
1023 struct policydb *policydb;
1024 struct sidtab *sidtab;
1025 u16 tclass;
1026 struct context *scontext, *tcontext;
1027 struct avtab_key avkey;
1028 struct avtab_node *node;
1029 struct ebitmap *sattr, *tattr;
1030 struct ebitmap_node *snode, *tnode;
1031 unsigned int i, j;
1032
1033 xpermd->driver = driver;
1034 xpermd->used = 0;
1035 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1036 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1037 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1038
1039 rcu_read_lock();
1040 if (!selinux_initialized(state))
1041 goto allow;
1042
1043 policy = rcu_dereference(state->policy);
1044 policydb = &policy->policydb;
1045 sidtab = policy->sidtab;
1046
1047 scontext = sidtab_search(sidtab, ssid);
1048 if (!scontext) {
1049 pr_err("SELinux: %s: unrecognized SID %d\n",
1050 __func__, ssid);
1051 goto out;
1052 }
1053
1054 tcontext = sidtab_search(sidtab, tsid);
1055 if (!tcontext) {
1056 pr_err("SELinux: %s: unrecognized SID %d\n",
1057 __func__, tsid);
1058 goto out;
1059 }
1060
1061 tclass = unmap_class(&policy->map, orig_tclass);
1062 if (unlikely(orig_tclass && !tclass)) {
1063 if (policydb->allow_unknown)
1064 goto allow;
1065 goto out;
1066 }
1067
1068
1069 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1070 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1071 goto out;
1072 }
1073
1074 avkey.target_class = tclass;
1075 avkey.specified = AVTAB_XPERMS;
1076 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1077 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1078 ebitmap_for_each_positive_bit(sattr, snode, i) {
1079 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1080 avkey.source_type = i + 1;
1081 avkey.target_type = j + 1;
1082 for (node = avtab_search_node(&policydb->te_avtab,
1083 &avkey);
1084 node;
1085 node = avtab_search_node_next(node, avkey.specified))
1086 services_compute_xperms_decision(xpermd, node);
1087
1088 cond_compute_xperms(&policydb->te_cond_avtab,
1089 &avkey, xpermd);
1090 }
1091 }
1092 out:
1093 rcu_read_unlock();
1094 return;
1095 allow:
1096 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1097 goto out;
1098 }
1099
1100 /**
1101 * security_compute_av - Compute access vector decisions.
1102 * @state: SELinux state
1103 * @ssid: source security identifier
1104 * @tsid: target security identifier
1105 * @orig_tclass: target security class
1106 * @avd: access vector decisions
1107 * @xperms: extended permissions
1108 *
1109 * Compute a set of access vector decisions based on the
1110 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1111 */
security_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1112 void security_compute_av(struct selinux_state *state,
1113 u32 ssid,
1114 u32 tsid,
1115 u16 orig_tclass,
1116 struct av_decision *avd,
1117 struct extended_perms *xperms)
1118 {
1119 struct selinux_policy *policy;
1120 struct policydb *policydb;
1121 struct sidtab *sidtab;
1122 u16 tclass;
1123 struct context *scontext = NULL, *tcontext = NULL;
1124
1125 rcu_read_lock();
1126 policy = rcu_dereference(state->policy);
1127 avd_init(policy, avd);
1128 xperms->len = 0;
1129 if (!selinux_initialized(state))
1130 goto allow;
1131
1132 policydb = &policy->policydb;
1133 sidtab = policy->sidtab;
1134
1135 scontext = sidtab_search(sidtab, ssid);
1136 if (!scontext) {
1137 pr_err("SELinux: %s: unrecognized SID %d\n",
1138 __func__, ssid);
1139 goto out;
1140 }
1141
1142 /* permissive domain? */
1143 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1144 avd->flags |= AVD_FLAGS_PERMISSIVE;
1145
1146 tcontext = sidtab_search(sidtab, tsid);
1147 if (!tcontext) {
1148 pr_err("SELinux: %s: unrecognized SID %d\n",
1149 __func__, tsid);
1150 goto out;
1151 }
1152
1153 tclass = unmap_class(&policy->map, orig_tclass);
1154 if (unlikely(orig_tclass && !tclass)) {
1155 if (policydb->allow_unknown)
1156 goto allow;
1157 goto out;
1158 }
1159 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1160 xperms);
1161 map_decision(&policy->map, orig_tclass, avd,
1162 policydb->allow_unknown);
1163 out:
1164 rcu_read_unlock();
1165 return;
1166 allow:
1167 avd->allowed = 0xffffffff;
1168 goto out;
1169 }
1170
security_compute_av_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1171 void security_compute_av_user(struct selinux_state *state,
1172 u32 ssid,
1173 u32 tsid,
1174 u16 tclass,
1175 struct av_decision *avd)
1176 {
1177 struct selinux_policy *policy;
1178 struct policydb *policydb;
1179 struct sidtab *sidtab;
1180 struct context *scontext = NULL, *tcontext = NULL;
1181
1182 rcu_read_lock();
1183 policy = rcu_dereference(state->policy);
1184 avd_init(policy, avd);
1185 if (!selinux_initialized(state))
1186 goto allow;
1187
1188 policydb = &policy->policydb;
1189 sidtab = policy->sidtab;
1190
1191 scontext = sidtab_search(sidtab, ssid);
1192 if (!scontext) {
1193 pr_err("SELinux: %s: unrecognized SID %d\n",
1194 __func__, ssid);
1195 goto out;
1196 }
1197
1198 /* permissive domain? */
1199 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1200 avd->flags |= AVD_FLAGS_PERMISSIVE;
1201
1202 tcontext = sidtab_search(sidtab, tsid);
1203 if (!tcontext) {
1204 pr_err("SELinux: %s: unrecognized SID %d\n",
1205 __func__, tsid);
1206 goto out;
1207 }
1208
1209 if (unlikely(!tclass)) {
1210 if (policydb->allow_unknown)
1211 goto allow;
1212 goto out;
1213 }
1214
1215 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1216 NULL);
1217 out:
1218 rcu_read_unlock();
1219 return;
1220 allow:
1221 avd->allowed = 0xffffffff;
1222 goto out;
1223 }
1224
1225 /*
1226 * Write the security context string representation of
1227 * the context structure `context' into a dynamically
1228 * allocated string of the correct size. Set `*scontext'
1229 * to point to this string and set `*scontext_len' to
1230 * the length of the string.
1231 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1232 static int context_struct_to_string(struct policydb *p,
1233 struct context *context,
1234 char **scontext, u32 *scontext_len)
1235 {
1236 char *scontextp;
1237
1238 if (scontext)
1239 *scontext = NULL;
1240 *scontext_len = 0;
1241
1242 if (context->len) {
1243 *scontext_len = context->len;
1244 if (scontext) {
1245 *scontext = kstrdup(context->str, GFP_ATOMIC);
1246 if (!(*scontext))
1247 return -ENOMEM;
1248 }
1249 return 0;
1250 }
1251
1252 /* Compute the size of the context. */
1253 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1254 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1255 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1256 *scontext_len += mls_compute_context_len(p, context);
1257
1258 if (!scontext)
1259 return 0;
1260
1261 /* Allocate space for the context; caller must free this space. */
1262 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1263 if (!scontextp)
1264 return -ENOMEM;
1265 *scontext = scontextp;
1266
1267 /*
1268 * Copy the user name, role name and type name into the context.
1269 */
1270 scontextp += sprintf(scontextp, "%s:%s:%s",
1271 sym_name(p, SYM_USERS, context->user - 1),
1272 sym_name(p, SYM_ROLES, context->role - 1),
1273 sym_name(p, SYM_TYPES, context->type - 1));
1274
1275 mls_sid_to_context(p, context, &scontextp);
1276
1277 *scontextp = 0;
1278
1279 return 0;
1280 }
1281
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1282 static int sidtab_entry_to_string(struct policydb *p,
1283 struct sidtab *sidtab,
1284 struct sidtab_entry *entry,
1285 char **scontext, u32 *scontext_len)
1286 {
1287 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1288
1289 if (rc != -ENOENT)
1290 return rc;
1291
1292 rc = context_struct_to_string(p, &entry->context, scontext,
1293 scontext_len);
1294 if (!rc && scontext)
1295 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1296 return rc;
1297 }
1298
1299 #include "initial_sid_to_string.h"
1300
security_sidtab_hash_stats(struct selinux_state * state,char * page)1301 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1302 {
1303 struct selinux_policy *policy;
1304 int rc;
1305
1306 if (!selinux_initialized(state)) {
1307 pr_err("SELinux: %s: called before initial load_policy\n",
1308 __func__);
1309 return -EINVAL;
1310 }
1311
1312 rcu_read_lock();
1313 policy = rcu_dereference(state->policy);
1314 rc = sidtab_hash_stats(policy->sidtab, page);
1315 rcu_read_unlock();
1316
1317 return rc;
1318 }
1319
security_get_initial_sid_context(u32 sid)1320 const char *security_get_initial_sid_context(u32 sid)
1321 {
1322 if (unlikely(sid > SECINITSID_NUM))
1323 return NULL;
1324 return initial_sid_to_string[sid];
1325 }
1326
security_sid_to_context_core(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1327 static int security_sid_to_context_core(struct selinux_state *state,
1328 u32 sid, char **scontext,
1329 u32 *scontext_len, int force,
1330 int only_invalid)
1331 {
1332 struct selinux_policy *policy;
1333 struct policydb *policydb;
1334 struct sidtab *sidtab;
1335 struct sidtab_entry *entry;
1336 int rc = 0;
1337
1338 if (scontext)
1339 *scontext = NULL;
1340 *scontext_len = 0;
1341
1342 if (!selinux_initialized(state)) {
1343 if (sid <= SECINITSID_NUM) {
1344 char *scontextp;
1345 const char *s = initial_sid_to_string[sid];
1346
1347 if (!s)
1348 return -EINVAL;
1349 *scontext_len = strlen(s) + 1;
1350 if (!scontext)
1351 return 0;
1352 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1353 if (!scontextp)
1354 return -ENOMEM;
1355 *scontext = scontextp;
1356 return 0;
1357 }
1358 pr_err("SELinux: %s: called before initial "
1359 "load_policy on unknown SID %d\n", __func__, sid);
1360 return -EINVAL;
1361 }
1362 rcu_read_lock();
1363 policy = rcu_dereference(state->policy);
1364 policydb = &policy->policydb;
1365 sidtab = policy->sidtab;
1366
1367 if (force)
1368 entry = sidtab_search_entry_force(sidtab, sid);
1369 else
1370 entry = sidtab_search_entry(sidtab, sid);
1371 if (!entry) {
1372 pr_err("SELinux: %s: unrecognized SID %d\n",
1373 __func__, sid);
1374 rc = -EINVAL;
1375 goto out_unlock;
1376 }
1377 if (only_invalid && !entry->context.len)
1378 goto out_unlock;
1379
1380 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1381 scontext_len);
1382
1383 out_unlock:
1384 rcu_read_unlock();
1385 return rc;
1386
1387 }
1388
1389 /**
1390 * security_sid_to_context - Obtain a context for a given SID.
1391 * @state: SELinux state
1392 * @sid: security identifier, SID
1393 * @scontext: security context
1394 * @scontext_len: length in bytes
1395 *
1396 * Write the string representation of the context associated with @sid
1397 * into a dynamically allocated string of the correct size. Set @scontext
1398 * to point to this string and set @scontext_len to the length of the string.
1399 */
security_sid_to_context(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1400 int security_sid_to_context(struct selinux_state *state,
1401 u32 sid, char **scontext, u32 *scontext_len)
1402 {
1403 return security_sid_to_context_core(state, sid, scontext,
1404 scontext_len, 0, 0);
1405 }
1406
security_sid_to_context_force(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1407 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1408 char **scontext, u32 *scontext_len)
1409 {
1410 return security_sid_to_context_core(state, sid, scontext,
1411 scontext_len, 1, 0);
1412 }
1413
1414 /**
1415 * security_sid_to_context_inval - Obtain a context for a given SID if it
1416 * is invalid.
1417 * @state: SELinux state
1418 * @sid: security identifier, SID
1419 * @scontext: security context
1420 * @scontext_len: length in bytes
1421 *
1422 * Write the string representation of the context associated with @sid
1423 * into a dynamically allocated string of the correct size, but only if the
1424 * context is invalid in the current policy. Set @scontext to point to
1425 * this string (or NULL if the context is valid) and set @scontext_len to
1426 * the length of the string (or 0 if the context is valid).
1427 */
security_sid_to_context_inval(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1428 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1429 char **scontext, u32 *scontext_len)
1430 {
1431 return security_sid_to_context_core(state, sid, scontext,
1432 scontext_len, 1, 1);
1433 }
1434
1435 /*
1436 * Caveat: Mutates scontext.
1437 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1438 static int string_to_context_struct(struct policydb *pol,
1439 struct sidtab *sidtabp,
1440 char *scontext,
1441 struct context *ctx,
1442 u32 def_sid)
1443 {
1444 struct role_datum *role;
1445 struct type_datum *typdatum;
1446 struct user_datum *usrdatum;
1447 char *scontextp, *p, oldc;
1448 int rc = 0;
1449
1450 context_init(ctx);
1451
1452 /* Parse the security context. */
1453
1454 rc = -EINVAL;
1455 scontextp = scontext;
1456
1457 /* Extract the user. */
1458 p = scontextp;
1459 while (*p && *p != ':')
1460 p++;
1461
1462 if (*p == 0)
1463 goto out;
1464
1465 *p++ = 0;
1466
1467 usrdatum = symtab_search(&pol->p_users, scontextp);
1468 if (!usrdatum)
1469 goto out;
1470
1471 ctx->user = usrdatum->value;
1472
1473 /* Extract role. */
1474 scontextp = p;
1475 while (*p && *p != ':')
1476 p++;
1477
1478 if (*p == 0)
1479 goto out;
1480
1481 *p++ = 0;
1482
1483 role = symtab_search(&pol->p_roles, scontextp);
1484 if (!role)
1485 goto out;
1486 ctx->role = role->value;
1487
1488 /* Extract type. */
1489 scontextp = p;
1490 while (*p && *p != ':')
1491 p++;
1492 oldc = *p;
1493 *p++ = 0;
1494
1495 typdatum = symtab_search(&pol->p_types, scontextp);
1496 if (!typdatum || typdatum->attribute)
1497 goto out;
1498
1499 ctx->type = typdatum->value;
1500
1501 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1502 if (rc)
1503 goto out;
1504
1505 /* Check the validity of the new context. */
1506 rc = -EINVAL;
1507 if (!policydb_context_isvalid(pol, ctx))
1508 goto out;
1509 rc = 0;
1510 out:
1511 if (rc)
1512 context_destroy(ctx);
1513 return rc;
1514 }
1515
security_context_to_sid_core(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1516 static int security_context_to_sid_core(struct selinux_state *state,
1517 const char *scontext, u32 scontext_len,
1518 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1519 int force)
1520 {
1521 struct selinux_policy *policy;
1522 struct policydb *policydb;
1523 struct sidtab *sidtab;
1524 char *scontext2, *str = NULL;
1525 struct context context;
1526 int rc = 0;
1527
1528 /* An empty security context is never valid. */
1529 if (!scontext_len)
1530 return -EINVAL;
1531
1532 /* Copy the string to allow changes and ensure a NUL terminator */
1533 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1534 if (!scontext2)
1535 return -ENOMEM;
1536
1537 if (!selinux_initialized(state)) {
1538 int i;
1539
1540 for (i = 1; i < SECINITSID_NUM; i++) {
1541 const char *s = initial_sid_to_string[i];
1542
1543 if (s && !strcmp(s, scontext2)) {
1544 *sid = i;
1545 goto out;
1546 }
1547 }
1548 *sid = SECINITSID_KERNEL;
1549 goto out;
1550 }
1551 *sid = SECSID_NULL;
1552
1553 if (force) {
1554 /* Save another copy for storing in uninterpreted form */
1555 rc = -ENOMEM;
1556 str = kstrdup(scontext2, gfp_flags);
1557 if (!str)
1558 goto out;
1559 }
1560 retry:
1561 rcu_read_lock();
1562 policy = rcu_dereference(state->policy);
1563 policydb = &policy->policydb;
1564 sidtab = policy->sidtab;
1565 rc = string_to_context_struct(policydb, sidtab, scontext2,
1566 &context, def_sid);
1567 if (rc == -EINVAL && force) {
1568 context.str = str;
1569 context.len = strlen(str) + 1;
1570 str = NULL;
1571 } else if (rc)
1572 goto out_unlock;
1573 rc = sidtab_context_to_sid(sidtab, &context, sid);
1574 if (rc == -ESTALE) {
1575 rcu_read_unlock();
1576 if (context.str) {
1577 str = context.str;
1578 context.str = NULL;
1579 }
1580 context_destroy(&context);
1581 goto retry;
1582 }
1583 context_destroy(&context);
1584 out_unlock:
1585 rcu_read_unlock();
1586 out:
1587 kfree(scontext2);
1588 kfree(str);
1589 return rc;
1590 }
1591
1592 /**
1593 * security_context_to_sid - Obtain a SID for a given security context.
1594 * @state: SELinux state
1595 * @scontext: security context
1596 * @scontext_len: length in bytes
1597 * @sid: security identifier, SID
1598 * @gfp: context for the allocation
1599 *
1600 * Obtains a SID associated with the security context that
1601 * has the string representation specified by @scontext.
1602 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1603 * memory is available, or 0 on success.
1604 */
security_context_to_sid(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1605 int security_context_to_sid(struct selinux_state *state,
1606 const char *scontext, u32 scontext_len, u32 *sid,
1607 gfp_t gfp)
1608 {
1609 return security_context_to_sid_core(state, scontext, scontext_len,
1610 sid, SECSID_NULL, gfp, 0);
1611 }
1612
security_context_str_to_sid(struct selinux_state * state,const char * scontext,u32 * sid,gfp_t gfp)1613 int security_context_str_to_sid(struct selinux_state *state,
1614 const char *scontext, u32 *sid, gfp_t gfp)
1615 {
1616 return security_context_to_sid(state, scontext, strlen(scontext),
1617 sid, gfp);
1618 }
1619
1620 /**
1621 * security_context_to_sid_default - Obtain a SID for a given security context,
1622 * falling back to specified default if needed.
1623 *
1624 * @state: SELinux state
1625 * @scontext: security context
1626 * @scontext_len: length in bytes
1627 * @sid: security identifier, SID
1628 * @def_sid: default SID to assign on error
1629 * @gfp_flags: the allocator get-free-page (GFP) flags
1630 *
1631 * Obtains a SID associated with the security context that
1632 * has the string representation specified by @scontext.
1633 * The default SID is passed to the MLS layer to be used to allow
1634 * kernel labeling of the MLS field if the MLS field is not present
1635 * (for upgrading to MLS without full relabel).
1636 * Implicitly forces adding of the context even if it cannot be mapped yet.
1637 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1638 * memory is available, or 0 on success.
1639 */
security_context_to_sid_default(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1640 int security_context_to_sid_default(struct selinux_state *state,
1641 const char *scontext, u32 scontext_len,
1642 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1643 {
1644 return security_context_to_sid_core(state, scontext, scontext_len,
1645 sid, def_sid, gfp_flags, 1);
1646 }
1647
security_context_to_sid_force(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid)1648 int security_context_to_sid_force(struct selinux_state *state,
1649 const char *scontext, u32 scontext_len,
1650 u32 *sid)
1651 {
1652 return security_context_to_sid_core(state, scontext, scontext_len,
1653 sid, SECSID_NULL, GFP_KERNEL, 1);
1654 }
1655
compute_sid_handle_invalid_context(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1656 static int compute_sid_handle_invalid_context(
1657 struct selinux_state *state,
1658 struct selinux_policy *policy,
1659 struct sidtab_entry *sentry,
1660 struct sidtab_entry *tentry,
1661 u16 tclass,
1662 struct context *newcontext)
1663 {
1664 struct policydb *policydb = &policy->policydb;
1665 struct sidtab *sidtab = policy->sidtab;
1666 char *s = NULL, *t = NULL, *n = NULL;
1667 u32 slen, tlen, nlen;
1668 struct audit_buffer *ab;
1669
1670 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1671 goto out;
1672 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1673 goto out;
1674 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1675 goto out;
1676 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1677 if (!ab)
1678 goto out;
1679 audit_log_format(ab,
1680 "op=security_compute_sid invalid_context=");
1681 /* no need to record the NUL with untrusted strings */
1682 audit_log_n_untrustedstring(ab, n, nlen - 1);
1683 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1684 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1685 audit_log_end(ab);
1686 out:
1687 kfree(s);
1688 kfree(t);
1689 kfree(n);
1690 if (!enforcing_enabled(state))
1691 return 0;
1692 return -EACCES;
1693 }
1694
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1695 static void filename_compute_type(struct policydb *policydb,
1696 struct context *newcontext,
1697 u32 stype, u32 ttype, u16 tclass,
1698 const char *objname)
1699 {
1700 struct filename_trans_key ft;
1701 struct filename_trans_datum *datum;
1702
1703 /*
1704 * Most filename trans rules are going to live in specific directories
1705 * like /dev or /var/run. This bitmap will quickly skip rule searches
1706 * if the ttype does not contain any rules.
1707 */
1708 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1709 return;
1710
1711 ft.ttype = ttype;
1712 ft.tclass = tclass;
1713 ft.name = objname;
1714
1715 datum = policydb_filenametr_search(policydb, &ft);
1716 while (datum) {
1717 if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1718 newcontext->type = datum->otype;
1719 return;
1720 }
1721 datum = datum->next;
1722 }
1723 }
1724
security_compute_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1725 static int security_compute_sid(struct selinux_state *state,
1726 u32 ssid,
1727 u32 tsid,
1728 u16 orig_tclass,
1729 u32 specified,
1730 const char *objname,
1731 u32 *out_sid,
1732 bool kern)
1733 {
1734 struct selinux_policy *policy;
1735 struct policydb *policydb;
1736 struct sidtab *sidtab;
1737 struct class_datum *cladatum;
1738 struct context *scontext, *tcontext, newcontext;
1739 struct sidtab_entry *sentry, *tentry;
1740 struct avtab_key avkey;
1741 struct avtab_datum *avdatum;
1742 struct avtab_node *node;
1743 u16 tclass;
1744 int rc = 0;
1745 bool sock;
1746
1747 if (!selinux_initialized(state)) {
1748 switch (orig_tclass) {
1749 case SECCLASS_PROCESS: /* kernel value */
1750 *out_sid = ssid;
1751 break;
1752 default:
1753 *out_sid = tsid;
1754 break;
1755 }
1756 goto out;
1757 }
1758
1759 retry:
1760 cladatum = NULL;
1761 context_init(&newcontext);
1762
1763 rcu_read_lock();
1764
1765 policy = rcu_dereference(state->policy);
1766
1767 if (kern) {
1768 tclass = unmap_class(&policy->map, orig_tclass);
1769 sock = security_is_socket_class(orig_tclass);
1770 } else {
1771 tclass = orig_tclass;
1772 sock = security_is_socket_class(map_class(&policy->map,
1773 tclass));
1774 }
1775
1776 policydb = &policy->policydb;
1777 sidtab = policy->sidtab;
1778
1779 sentry = sidtab_search_entry(sidtab, ssid);
1780 if (!sentry) {
1781 pr_err("SELinux: %s: unrecognized SID %d\n",
1782 __func__, ssid);
1783 rc = -EINVAL;
1784 goto out_unlock;
1785 }
1786 tentry = sidtab_search_entry(sidtab, tsid);
1787 if (!tentry) {
1788 pr_err("SELinux: %s: unrecognized SID %d\n",
1789 __func__, tsid);
1790 rc = -EINVAL;
1791 goto out_unlock;
1792 }
1793
1794 scontext = &sentry->context;
1795 tcontext = &tentry->context;
1796
1797 if (tclass && tclass <= policydb->p_classes.nprim)
1798 cladatum = policydb->class_val_to_struct[tclass - 1];
1799
1800 /* Set the user identity. */
1801 switch (specified) {
1802 case AVTAB_TRANSITION:
1803 case AVTAB_CHANGE:
1804 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1805 newcontext.user = tcontext->user;
1806 } else {
1807 /* notice this gets both DEFAULT_SOURCE and unset */
1808 /* Use the process user identity. */
1809 newcontext.user = scontext->user;
1810 }
1811 break;
1812 case AVTAB_MEMBER:
1813 /* Use the related object owner. */
1814 newcontext.user = tcontext->user;
1815 break;
1816 }
1817
1818 /* Set the role to default values. */
1819 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1820 newcontext.role = scontext->role;
1821 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1822 newcontext.role = tcontext->role;
1823 } else {
1824 if ((tclass == policydb->process_class) || sock)
1825 newcontext.role = scontext->role;
1826 else
1827 newcontext.role = OBJECT_R_VAL;
1828 }
1829
1830 /* Set the type to default values. */
1831 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1832 newcontext.type = scontext->type;
1833 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1834 newcontext.type = tcontext->type;
1835 } else {
1836 if ((tclass == policydb->process_class) || sock) {
1837 /* Use the type of process. */
1838 newcontext.type = scontext->type;
1839 } else {
1840 /* Use the type of the related object. */
1841 newcontext.type = tcontext->type;
1842 }
1843 }
1844
1845 /* Look for a type transition/member/change rule. */
1846 avkey.source_type = scontext->type;
1847 avkey.target_type = tcontext->type;
1848 avkey.target_class = tclass;
1849 avkey.specified = specified;
1850 avdatum = avtab_search(&policydb->te_avtab, &avkey);
1851
1852 /* If no permanent rule, also check for enabled conditional rules */
1853 if (!avdatum) {
1854 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1855 for (; node; node = avtab_search_node_next(node, specified)) {
1856 if (node->key.specified & AVTAB_ENABLED) {
1857 avdatum = &node->datum;
1858 break;
1859 }
1860 }
1861 }
1862
1863 if (avdatum) {
1864 /* Use the type from the type transition/member/change rule. */
1865 newcontext.type = avdatum->u.data;
1866 }
1867
1868 /* if we have a objname this is a file trans check so check those rules */
1869 if (objname)
1870 filename_compute_type(policydb, &newcontext, scontext->type,
1871 tcontext->type, tclass, objname);
1872
1873 /* Check for class-specific changes. */
1874 if (specified & AVTAB_TRANSITION) {
1875 /* Look for a role transition rule. */
1876 struct role_trans_datum *rtd;
1877 struct role_trans_key rtk = {
1878 .role = scontext->role,
1879 .type = tcontext->type,
1880 .tclass = tclass,
1881 };
1882
1883 rtd = policydb_roletr_search(policydb, &rtk);
1884 if (rtd)
1885 newcontext.role = rtd->new_role;
1886 }
1887
1888 /* Set the MLS attributes.
1889 This is done last because it may allocate memory. */
1890 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1891 &newcontext, sock);
1892 if (rc)
1893 goto out_unlock;
1894
1895 /* Check the validity of the context. */
1896 if (!policydb_context_isvalid(policydb, &newcontext)) {
1897 rc = compute_sid_handle_invalid_context(state, policy, sentry,
1898 tentry, tclass,
1899 &newcontext);
1900 if (rc)
1901 goto out_unlock;
1902 }
1903 /* Obtain the sid for the context. */
1904 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1905 if (rc == -ESTALE) {
1906 rcu_read_unlock();
1907 context_destroy(&newcontext);
1908 goto retry;
1909 }
1910 out_unlock:
1911 rcu_read_unlock();
1912 context_destroy(&newcontext);
1913 out:
1914 return rc;
1915 }
1916
1917 /**
1918 * security_transition_sid - Compute the SID for a new subject/object.
1919 * @state: SELinux state
1920 * @ssid: source security identifier
1921 * @tsid: target security identifier
1922 * @tclass: target security class
1923 * @qstr: object name
1924 * @out_sid: security identifier for new subject/object
1925 *
1926 * Compute a SID to use for labeling a new subject or object in the
1927 * class @tclass based on a SID pair (@ssid, @tsid).
1928 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1929 * if insufficient memory is available, or %0 if the new SID was
1930 * computed successfully.
1931 */
security_transition_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1932 int security_transition_sid(struct selinux_state *state,
1933 u32 ssid, u32 tsid, u16 tclass,
1934 const struct qstr *qstr, u32 *out_sid)
1935 {
1936 return security_compute_sid(state, ssid, tsid, tclass,
1937 AVTAB_TRANSITION,
1938 qstr ? qstr->name : NULL, out_sid, true);
1939 }
1940
security_transition_sid_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1941 int security_transition_sid_user(struct selinux_state *state,
1942 u32 ssid, u32 tsid, u16 tclass,
1943 const char *objname, u32 *out_sid)
1944 {
1945 return security_compute_sid(state, ssid, tsid, tclass,
1946 AVTAB_TRANSITION,
1947 objname, out_sid, false);
1948 }
1949
1950 /**
1951 * security_member_sid - Compute the SID for member selection.
1952 * @state: SELinux state
1953 * @ssid: source security identifier
1954 * @tsid: target security identifier
1955 * @tclass: target security class
1956 * @out_sid: security identifier for selected member
1957 *
1958 * Compute a SID to use when selecting a member of a polyinstantiated
1959 * object of class @tclass based on a SID pair (@ssid, @tsid).
1960 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1961 * if insufficient memory is available, or %0 if the SID was
1962 * computed successfully.
1963 */
security_member_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1964 int security_member_sid(struct selinux_state *state,
1965 u32 ssid,
1966 u32 tsid,
1967 u16 tclass,
1968 u32 *out_sid)
1969 {
1970 return security_compute_sid(state, ssid, tsid, tclass,
1971 AVTAB_MEMBER, NULL,
1972 out_sid, false);
1973 }
1974
1975 /**
1976 * security_change_sid - Compute the SID for object relabeling.
1977 * @state: SELinux state
1978 * @ssid: source security identifier
1979 * @tsid: target security identifier
1980 * @tclass: target security class
1981 * @out_sid: security identifier for selected member
1982 *
1983 * Compute a SID to use for relabeling an object of class @tclass
1984 * based on a SID pair (@ssid, @tsid).
1985 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1986 * if insufficient memory is available, or %0 if the SID was
1987 * computed successfully.
1988 */
security_change_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1989 int security_change_sid(struct selinux_state *state,
1990 u32 ssid,
1991 u32 tsid,
1992 u16 tclass,
1993 u32 *out_sid)
1994 {
1995 return security_compute_sid(state,
1996 ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1997 out_sid, false);
1998 }
1999
convert_context_handle_invalid_context(struct selinux_state * state,struct policydb * policydb,struct context * context)2000 static inline int convert_context_handle_invalid_context(
2001 struct selinux_state *state,
2002 struct policydb *policydb,
2003 struct context *context)
2004 {
2005 char *s;
2006 u32 len;
2007
2008 if (enforcing_enabled(state))
2009 return -EINVAL;
2010
2011 if (!context_struct_to_string(policydb, context, &s, &len)) {
2012 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
2013 s);
2014 kfree(s);
2015 }
2016 return 0;
2017 }
2018
2019 /*
2020 * Convert the values in the security context
2021 * structure `oldc' from the values specified
2022 * in the policy `p->oldp' to the values specified
2023 * in the policy `p->newp', storing the new context
2024 * in `newc'. Verify that the context is valid
2025 * under the new policy.
2026 */
convert_context(struct context * oldc,struct context * newc,void * p,gfp_t gfp_flags)2027 static int convert_context(struct context *oldc, struct context *newc, void *p,
2028 gfp_t gfp_flags)
2029 {
2030 struct convert_context_args *args;
2031 struct ocontext *oc;
2032 struct role_datum *role;
2033 struct type_datum *typdatum;
2034 struct user_datum *usrdatum;
2035 char *s;
2036 u32 len;
2037 int rc;
2038
2039 args = p;
2040
2041 if (oldc->str) {
2042 s = kstrdup(oldc->str, gfp_flags);
2043 if (!s)
2044 return -ENOMEM;
2045
2046 rc = string_to_context_struct(args->newp, NULL, s,
2047 newc, SECSID_NULL);
2048 if (rc == -EINVAL) {
2049 /*
2050 * Retain string representation for later mapping.
2051 *
2052 * IMPORTANT: We need to copy the contents of oldc->str
2053 * back into s again because string_to_context_struct()
2054 * may have garbled it.
2055 */
2056 memcpy(s, oldc->str, oldc->len);
2057 context_init(newc);
2058 newc->str = s;
2059 newc->len = oldc->len;
2060 return 0;
2061 }
2062 kfree(s);
2063 if (rc) {
2064 /* Other error condition, e.g. ENOMEM. */
2065 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2066 oldc->str, -rc);
2067 return rc;
2068 }
2069 pr_info("SELinux: Context %s became valid (mapped).\n",
2070 oldc->str);
2071 return 0;
2072 }
2073
2074 context_init(newc);
2075
2076 /* Convert the user. */
2077 usrdatum = symtab_search(&args->newp->p_users,
2078 sym_name(args->oldp,
2079 SYM_USERS, oldc->user - 1));
2080 if (!usrdatum)
2081 goto bad;
2082 newc->user = usrdatum->value;
2083
2084 /* Convert the role. */
2085 role = symtab_search(&args->newp->p_roles,
2086 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2087 if (!role)
2088 goto bad;
2089 newc->role = role->value;
2090
2091 /* Convert the type. */
2092 typdatum = symtab_search(&args->newp->p_types,
2093 sym_name(args->oldp,
2094 SYM_TYPES, oldc->type - 1));
2095 if (!typdatum)
2096 goto bad;
2097 newc->type = typdatum->value;
2098
2099 /* Convert the MLS fields if dealing with MLS policies */
2100 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2101 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2102 if (rc)
2103 goto bad;
2104 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2105 /*
2106 * Switching between non-MLS and MLS policy:
2107 * ensure that the MLS fields of the context for all
2108 * existing entries in the sidtab are filled in with a
2109 * suitable default value, likely taken from one of the
2110 * initial SIDs.
2111 */
2112 oc = args->newp->ocontexts[OCON_ISID];
2113 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2114 oc = oc->next;
2115 if (!oc) {
2116 pr_err("SELinux: unable to look up"
2117 " the initial SIDs list\n");
2118 goto bad;
2119 }
2120 rc = mls_range_set(newc, &oc->context[0].range);
2121 if (rc)
2122 goto bad;
2123 }
2124
2125 /* Check the validity of the new context. */
2126 if (!policydb_context_isvalid(args->newp, newc)) {
2127 rc = convert_context_handle_invalid_context(args->state,
2128 args->oldp,
2129 oldc);
2130 if (rc)
2131 goto bad;
2132 }
2133
2134 return 0;
2135 bad:
2136 /* Map old representation to string and save it. */
2137 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2138 if (rc)
2139 return rc;
2140 context_destroy(newc);
2141 newc->str = s;
2142 newc->len = len;
2143 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2144 newc->str);
2145 return 0;
2146 }
2147
security_load_policycaps(struct selinux_state * state,struct selinux_policy * policy)2148 static void security_load_policycaps(struct selinux_state *state,
2149 struct selinux_policy *policy)
2150 {
2151 struct policydb *p;
2152 unsigned int i;
2153 struct ebitmap_node *node;
2154
2155 p = &policy->policydb;
2156
2157 for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2158 WRITE_ONCE(state->policycap[i],
2159 ebitmap_get_bit(&p->policycaps, i));
2160
2161 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2162 pr_info("SELinux: policy capability %s=%d\n",
2163 selinux_policycap_names[i],
2164 ebitmap_get_bit(&p->policycaps, i));
2165
2166 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2167 if (i >= ARRAY_SIZE(selinux_policycap_names))
2168 pr_info("SELinux: unknown policy capability %u\n",
2169 i);
2170 }
2171
2172 state->android_netlink_route = p->android_netlink_route;
2173 state->android_netlink_getneigh = p->android_netlink_getneigh;
2174 selinux_nlmsg_init();
2175 }
2176
2177 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2178 struct selinux_policy *newpolicy);
2179
selinux_policy_free(struct selinux_policy * policy)2180 static void selinux_policy_free(struct selinux_policy *policy)
2181 {
2182 if (!policy)
2183 return;
2184
2185 sidtab_destroy(policy->sidtab);
2186 kfree(policy->map.mapping);
2187 policydb_destroy(&policy->policydb);
2188 kfree(policy->sidtab);
2189 kfree(policy);
2190 }
2191
selinux_policy_cond_free(struct selinux_policy * policy)2192 static void selinux_policy_cond_free(struct selinux_policy *policy)
2193 {
2194 cond_policydb_destroy_dup(&policy->policydb);
2195 kfree(policy);
2196 }
2197
selinux_policy_cancel(struct selinux_state * state,struct selinux_load_state * load_state)2198 void selinux_policy_cancel(struct selinux_state *state,
2199 struct selinux_load_state *load_state)
2200 {
2201 struct selinux_policy *oldpolicy;
2202
2203 oldpolicy = rcu_dereference_protected(state->policy,
2204 lockdep_is_held(&state->policy_mutex));
2205
2206 sidtab_cancel_convert(oldpolicy->sidtab);
2207 selinux_policy_free(load_state->policy);
2208 kfree(load_state->convert_data);
2209 }
2210
selinux_notify_policy_change(struct selinux_state * state,u32 seqno)2211 static void selinux_notify_policy_change(struct selinux_state *state,
2212 u32 seqno)
2213 {
2214 /* Flush external caches and notify userspace of policy load */
2215 avc_ss_reset(state->avc, seqno);
2216 selnl_notify_policyload(seqno);
2217 selinux_status_update_policyload(state, seqno);
2218 selinux_netlbl_cache_invalidate();
2219 selinux_xfrm_notify_policyload();
2220 selinux_ima_measure_state_locked(state);
2221 }
2222
selinux_policy_commit(struct selinux_state * state,struct selinux_load_state * load_state)2223 void selinux_policy_commit(struct selinux_state *state,
2224 struct selinux_load_state *load_state)
2225 {
2226 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2227 unsigned long flags;
2228 u32 seqno;
2229
2230 oldpolicy = rcu_dereference_protected(state->policy,
2231 lockdep_is_held(&state->policy_mutex));
2232
2233 /* If switching between different policy types, log MLS status */
2234 if (oldpolicy) {
2235 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2236 pr_info("SELinux: Disabling MLS support...\n");
2237 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2238 pr_info("SELinux: Enabling MLS support...\n");
2239 }
2240
2241 /* Set latest granting seqno for new policy. */
2242 if (oldpolicy)
2243 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2244 else
2245 newpolicy->latest_granting = 1;
2246 seqno = newpolicy->latest_granting;
2247
2248 /* Install the new policy. */
2249 if (oldpolicy) {
2250 sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2251 rcu_assign_pointer(state->policy, newpolicy);
2252 sidtab_freeze_end(oldpolicy->sidtab, &flags);
2253 } else {
2254 rcu_assign_pointer(state->policy, newpolicy);
2255 }
2256
2257 /* Load the policycaps from the new policy */
2258 security_load_policycaps(state, newpolicy);
2259
2260 if (!selinux_initialized(state)) {
2261 /*
2262 * After first policy load, the security server is
2263 * marked as initialized and ready to handle requests and
2264 * any objects created prior to policy load are then labeled.
2265 */
2266 selinux_mark_initialized(state);
2267 selinux_complete_init();
2268 trace_android_rvh_selinux_is_initialized(state);
2269 }
2270
2271 /* Free the old policy */
2272 synchronize_rcu();
2273 selinux_policy_free(oldpolicy);
2274 kfree(load_state->convert_data);
2275
2276 /* Notify others of the policy change */
2277 selinux_notify_policy_change(state, seqno);
2278 }
2279
2280 /**
2281 * security_load_policy - Load a security policy configuration.
2282 * @state: SELinux state
2283 * @data: binary policy data
2284 * @len: length of data in bytes
2285 * @load_state: policy load state
2286 *
2287 * Load a new set of security policy configuration data,
2288 * validate it and convert the SID table as necessary.
2289 * This function will flush the access vector cache after
2290 * loading the new policy.
2291 */
security_load_policy(struct selinux_state * state,void * data,size_t len,struct selinux_load_state * load_state)2292 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2293 struct selinux_load_state *load_state)
2294 {
2295 struct selinux_policy *newpolicy, *oldpolicy;
2296 struct selinux_policy_convert_data *convert_data;
2297 int rc = 0;
2298 struct policy_file file = { data, len }, *fp = &file;
2299
2300 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2301 if (!newpolicy)
2302 return -ENOMEM;
2303
2304 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2305 if (!newpolicy->sidtab) {
2306 rc = -ENOMEM;
2307 goto err_policy;
2308 }
2309
2310 rc = policydb_read(&newpolicy->policydb, fp);
2311 if (rc)
2312 goto err_sidtab;
2313
2314 newpolicy->policydb.len = len;
2315 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2316 &newpolicy->map);
2317 if (rc)
2318 goto err_policydb;
2319
2320 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2321 if (rc) {
2322 pr_err("SELinux: unable to load the initial SIDs\n");
2323 goto err_mapping;
2324 }
2325
2326 if (!selinux_initialized(state)) {
2327 /* First policy load, so no need to preserve state from old policy */
2328 load_state->policy = newpolicy;
2329 load_state->convert_data = NULL;
2330 return 0;
2331 }
2332
2333 oldpolicy = rcu_dereference_protected(state->policy,
2334 lockdep_is_held(&state->policy_mutex));
2335
2336 /* Preserve active boolean values from the old policy */
2337 rc = security_preserve_bools(oldpolicy, newpolicy);
2338 if (rc) {
2339 pr_err("SELinux: unable to preserve booleans\n");
2340 goto err_free_isids;
2341 }
2342
2343 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2344 if (!convert_data) {
2345 rc = -ENOMEM;
2346 goto err_free_isids;
2347 }
2348
2349 /*
2350 * Convert the internal representations of contexts
2351 * in the new SID table.
2352 */
2353 convert_data->args.state = state;
2354 convert_data->args.oldp = &oldpolicy->policydb;
2355 convert_data->args.newp = &newpolicy->policydb;
2356
2357 convert_data->sidtab_params.func = convert_context;
2358 convert_data->sidtab_params.args = &convert_data->args;
2359 convert_data->sidtab_params.target = newpolicy->sidtab;
2360
2361 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2362 if (rc) {
2363 pr_err("SELinux: unable to convert the internal"
2364 " representation of contexts in the new SID"
2365 " table\n");
2366 goto err_free_convert_data;
2367 }
2368
2369 load_state->policy = newpolicy;
2370 load_state->convert_data = convert_data;
2371 return 0;
2372
2373 err_free_convert_data:
2374 kfree(convert_data);
2375 err_free_isids:
2376 sidtab_destroy(newpolicy->sidtab);
2377 err_mapping:
2378 kfree(newpolicy->map.mapping);
2379 err_policydb:
2380 policydb_destroy(&newpolicy->policydb);
2381 err_sidtab:
2382 kfree(newpolicy->sidtab);
2383 err_policy:
2384 kfree(newpolicy);
2385
2386 return rc;
2387 }
2388
2389 /**
2390 * ocontext_to_sid - Helper to safely get sid for an ocontext
2391 * @sidtab: SID table
2392 * @c: ocontext structure
2393 * @index: index of the context entry (0 or 1)
2394 * @out_sid: pointer to the resulting SID value
2395 *
2396 * For all ocontexts except OCON_ISID the SID fields are populated
2397 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2398 * operation, this helper must be used to do that safely.
2399 *
2400 * WARNING: This function may return -ESTALE, indicating that the caller
2401 * must retry the operation after re-acquiring the policy pointer!
2402 */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2403 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2404 size_t index, u32 *out_sid)
2405 {
2406 int rc;
2407 u32 sid;
2408
2409 /* Ensure the associated sidtab entry is visible to this thread. */
2410 sid = smp_load_acquire(&c->sid[index]);
2411 if (!sid) {
2412 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2413 if (rc)
2414 return rc;
2415
2416 /*
2417 * Ensure the new sidtab entry is visible to other threads
2418 * when they see the SID.
2419 */
2420 smp_store_release(&c->sid[index], sid);
2421 }
2422 *out_sid = sid;
2423 return 0;
2424 }
2425
2426 /**
2427 * security_port_sid - Obtain the SID for a port.
2428 * @state: SELinux state
2429 * @protocol: protocol number
2430 * @port: port number
2431 * @out_sid: security identifier
2432 */
security_port_sid(struct selinux_state * state,u8 protocol,u16 port,u32 * out_sid)2433 int security_port_sid(struct selinux_state *state,
2434 u8 protocol, u16 port, u32 *out_sid)
2435 {
2436 struct selinux_policy *policy;
2437 struct policydb *policydb;
2438 struct sidtab *sidtab;
2439 struct ocontext *c;
2440 int rc;
2441
2442 if (!selinux_initialized(state)) {
2443 *out_sid = SECINITSID_PORT;
2444 return 0;
2445 }
2446
2447 retry:
2448 rc = 0;
2449 rcu_read_lock();
2450 policy = rcu_dereference(state->policy);
2451 policydb = &policy->policydb;
2452 sidtab = policy->sidtab;
2453
2454 c = policydb->ocontexts[OCON_PORT];
2455 while (c) {
2456 if (c->u.port.protocol == protocol &&
2457 c->u.port.low_port <= port &&
2458 c->u.port.high_port >= port)
2459 break;
2460 c = c->next;
2461 }
2462
2463 if (c) {
2464 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2465 if (rc == -ESTALE) {
2466 rcu_read_unlock();
2467 goto retry;
2468 }
2469 if (rc)
2470 goto out;
2471 } else {
2472 *out_sid = SECINITSID_PORT;
2473 }
2474
2475 out:
2476 rcu_read_unlock();
2477 return rc;
2478 }
2479
2480 /**
2481 * security_ib_pkey_sid - Obtain the SID for a pkey.
2482 * @state: SELinux state
2483 * @subnet_prefix: Subnet Prefix
2484 * @pkey_num: pkey number
2485 * @out_sid: security identifier
2486 */
security_ib_pkey_sid(struct selinux_state * state,u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2487 int security_ib_pkey_sid(struct selinux_state *state,
2488 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2489 {
2490 struct selinux_policy *policy;
2491 struct policydb *policydb;
2492 struct sidtab *sidtab;
2493 struct ocontext *c;
2494 int rc;
2495
2496 if (!selinux_initialized(state)) {
2497 *out_sid = SECINITSID_UNLABELED;
2498 return 0;
2499 }
2500
2501 retry:
2502 rc = 0;
2503 rcu_read_lock();
2504 policy = rcu_dereference(state->policy);
2505 policydb = &policy->policydb;
2506 sidtab = policy->sidtab;
2507
2508 c = policydb->ocontexts[OCON_IBPKEY];
2509 while (c) {
2510 if (c->u.ibpkey.low_pkey <= pkey_num &&
2511 c->u.ibpkey.high_pkey >= pkey_num &&
2512 c->u.ibpkey.subnet_prefix == subnet_prefix)
2513 break;
2514
2515 c = c->next;
2516 }
2517
2518 if (c) {
2519 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2520 if (rc == -ESTALE) {
2521 rcu_read_unlock();
2522 goto retry;
2523 }
2524 if (rc)
2525 goto out;
2526 } else
2527 *out_sid = SECINITSID_UNLABELED;
2528
2529 out:
2530 rcu_read_unlock();
2531 return rc;
2532 }
2533
2534 /**
2535 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2536 * @state: SELinux state
2537 * @dev_name: device name
2538 * @port_num: port number
2539 * @out_sid: security identifier
2540 */
security_ib_endport_sid(struct selinux_state * state,const char * dev_name,u8 port_num,u32 * out_sid)2541 int security_ib_endport_sid(struct selinux_state *state,
2542 const char *dev_name, u8 port_num, u32 *out_sid)
2543 {
2544 struct selinux_policy *policy;
2545 struct policydb *policydb;
2546 struct sidtab *sidtab;
2547 struct ocontext *c;
2548 int rc;
2549
2550 if (!selinux_initialized(state)) {
2551 *out_sid = SECINITSID_UNLABELED;
2552 return 0;
2553 }
2554
2555 retry:
2556 rc = 0;
2557 rcu_read_lock();
2558 policy = rcu_dereference(state->policy);
2559 policydb = &policy->policydb;
2560 sidtab = policy->sidtab;
2561
2562 c = policydb->ocontexts[OCON_IBENDPORT];
2563 while (c) {
2564 if (c->u.ibendport.port == port_num &&
2565 !strncmp(c->u.ibendport.dev_name,
2566 dev_name,
2567 IB_DEVICE_NAME_MAX))
2568 break;
2569
2570 c = c->next;
2571 }
2572
2573 if (c) {
2574 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2575 if (rc == -ESTALE) {
2576 rcu_read_unlock();
2577 goto retry;
2578 }
2579 if (rc)
2580 goto out;
2581 } else
2582 *out_sid = SECINITSID_UNLABELED;
2583
2584 out:
2585 rcu_read_unlock();
2586 return rc;
2587 }
2588
2589 /**
2590 * security_netif_sid - Obtain the SID for a network interface.
2591 * @state: SELinux state
2592 * @name: interface name
2593 * @if_sid: interface SID
2594 */
security_netif_sid(struct selinux_state * state,char * name,u32 * if_sid)2595 int security_netif_sid(struct selinux_state *state,
2596 char *name, u32 *if_sid)
2597 {
2598 struct selinux_policy *policy;
2599 struct policydb *policydb;
2600 struct sidtab *sidtab;
2601 int rc;
2602 struct ocontext *c;
2603
2604 if (!selinux_initialized(state)) {
2605 *if_sid = SECINITSID_NETIF;
2606 return 0;
2607 }
2608
2609 retry:
2610 rc = 0;
2611 rcu_read_lock();
2612 policy = rcu_dereference(state->policy);
2613 policydb = &policy->policydb;
2614 sidtab = policy->sidtab;
2615
2616 c = policydb->ocontexts[OCON_NETIF];
2617 while (c) {
2618 if (strcmp(name, c->u.name) == 0)
2619 break;
2620 c = c->next;
2621 }
2622
2623 if (c) {
2624 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2625 if (rc == -ESTALE) {
2626 rcu_read_unlock();
2627 goto retry;
2628 }
2629 if (rc)
2630 goto out;
2631 } else
2632 *if_sid = SECINITSID_NETIF;
2633
2634 out:
2635 rcu_read_unlock();
2636 return rc;
2637 }
2638
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2639 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2640 {
2641 int i, fail = 0;
2642
2643 for (i = 0; i < 4; i++)
2644 if (addr[i] != (input[i] & mask[i])) {
2645 fail = 1;
2646 break;
2647 }
2648
2649 return !fail;
2650 }
2651
2652 /**
2653 * security_node_sid - Obtain the SID for a node (host).
2654 * @state: SELinux state
2655 * @domain: communication domain aka address family
2656 * @addrp: address
2657 * @addrlen: address length in bytes
2658 * @out_sid: security identifier
2659 */
security_node_sid(struct selinux_state * state,u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2660 int security_node_sid(struct selinux_state *state,
2661 u16 domain,
2662 void *addrp,
2663 u32 addrlen,
2664 u32 *out_sid)
2665 {
2666 struct selinux_policy *policy;
2667 struct policydb *policydb;
2668 struct sidtab *sidtab;
2669 int rc;
2670 struct ocontext *c;
2671
2672 if (!selinux_initialized(state)) {
2673 *out_sid = SECINITSID_NODE;
2674 return 0;
2675 }
2676
2677 retry:
2678 rcu_read_lock();
2679 policy = rcu_dereference(state->policy);
2680 policydb = &policy->policydb;
2681 sidtab = policy->sidtab;
2682
2683 switch (domain) {
2684 case AF_INET: {
2685 u32 addr;
2686
2687 rc = -EINVAL;
2688 if (addrlen != sizeof(u32))
2689 goto out;
2690
2691 addr = *((u32 *)addrp);
2692
2693 c = policydb->ocontexts[OCON_NODE];
2694 while (c) {
2695 if (c->u.node.addr == (addr & c->u.node.mask))
2696 break;
2697 c = c->next;
2698 }
2699 break;
2700 }
2701
2702 case AF_INET6:
2703 rc = -EINVAL;
2704 if (addrlen != sizeof(u64) * 2)
2705 goto out;
2706 c = policydb->ocontexts[OCON_NODE6];
2707 while (c) {
2708 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2709 c->u.node6.mask))
2710 break;
2711 c = c->next;
2712 }
2713 break;
2714
2715 default:
2716 rc = 0;
2717 *out_sid = SECINITSID_NODE;
2718 goto out;
2719 }
2720
2721 if (c) {
2722 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2723 if (rc == -ESTALE) {
2724 rcu_read_unlock();
2725 goto retry;
2726 }
2727 if (rc)
2728 goto out;
2729 } else {
2730 *out_sid = SECINITSID_NODE;
2731 }
2732
2733 rc = 0;
2734 out:
2735 rcu_read_unlock();
2736 return rc;
2737 }
2738
2739 #define SIDS_NEL 25
2740
2741 /**
2742 * security_get_user_sids - Obtain reachable SIDs for a user.
2743 * @state: SELinux state
2744 * @fromsid: starting SID
2745 * @username: username
2746 * @sids: array of reachable SIDs for user
2747 * @nel: number of elements in @sids
2748 *
2749 * Generate the set of SIDs for legal security contexts
2750 * for a given user that can be reached by @fromsid.
2751 * Set *@sids to point to a dynamically allocated
2752 * array containing the set of SIDs. Set *@nel to the
2753 * number of elements in the array.
2754 */
2755
security_get_user_sids(struct selinux_state * state,u32 fromsid,char * username,u32 ** sids,u32 * nel)2756 int security_get_user_sids(struct selinux_state *state,
2757 u32 fromsid,
2758 char *username,
2759 u32 **sids,
2760 u32 *nel)
2761 {
2762 struct selinux_policy *policy;
2763 struct policydb *policydb;
2764 struct sidtab *sidtab;
2765 struct context *fromcon, usercon;
2766 u32 *mysids = NULL, *mysids2, sid;
2767 u32 i, j, mynel, maxnel = SIDS_NEL;
2768 struct user_datum *user;
2769 struct role_datum *role;
2770 struct ebitmap_node *rnode, *tnode;
2771 int rc;
2772
2773 *sids = NULL;
2774 *nel = 0;
2775
2776 if (!selinux_initialized(state))
2777 return 0;
2778
2779 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2780 if (!mysids)
2781 return -ENOMEM;
2782
2783 retry:
2784 mynel = 0;
2785 rcu_read_lock();
2786 policy = rcu_dereference(state->policy);
2787 policydb = &policy->policydb;
2788 sidtab = policy->sidtab;
2789
2790 context_init(&usercon);
2791
2792 rc = -EINVAL;
2793 fromcon = sidtab_search(sidtab, fromsid);
2794 if (!fromcon)
2795 goto out_unlock;
2796
2797 rc = -EINVAL;
2798 user = symtab_search(&policydb->p_users, username);
2799 if (!user)
2800 goto out_unlock;
2801
2802 usercon.user = user->value;
2803
2804 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2805 role = policydb->role_val_to_struct[i];
2806 usercon.role = i + 1;
2807 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2808 usercon.type = j + 1;
2809
2810 if (mls_setup_user_range(policydb, fromcon, user,
2811 &usercon))
2812 continue;
2813
2814 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2815 if (rc == -ESTALE) {
2816 rcu_read_unlock();
2817 goto retry;
2818 }
2819 if (rc)
2820 goto out_unlock;
2821 if (mynel < maxnel) {
2822 mysids[mynel++] = sid;
2823 } else {
2824 rc = -ENOMEM;
2825 maxnel += SIDS_NEL;
2826 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2827 if (!mysids2)
2828 goto out_unlock;
2829 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2830 kfree(mysids);
2831 mysids = mysids2;
2832 mysids[mynel++] = sid;
2833 }
2834 }
2835 }
2836 rc = 0;
2837 out_unlock:
2838 rcu_read_unlock();
2839 if (rc || !mynel) {
2840 kfree(mysids);
2841 return rc;
2842 }
2843
2844 rc = -ENOMEM;
2845 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2846 if (!mysids2) {
2847 kfree(mysids);
2848 return rc;
2849 }
2850 for (i = 0, j = 0; i < mynel; i++) {
2851 struct av_decision dummy_avd;
2852 rc = avc_has_perm_noaudit(state,
2853 fromsid, mysids[i],
2854 SECCLASS_PROCESS, /* kernel value */
2855 PROCESS__TRANSITION, AVC_STRICT,
2856 &dummy_avd);
2857 if (!rc)
2858 mysids2[j++] = mysids[i];
2859 cond_resched();
2860 }
2861 kfree(mysids);
2862 *sids = mysids2;
2863 *nel = j;
2864 return 0;
2865 }
2866
2867 /**
2868 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2869 * @policy: policy
2870 * @fstype: filesystem type
2871 * @path: path from root of mount
2872 * @orig_sclass: file security class
2873 * @sid: SID for path
2874 *
2875 * Obtain a SID to use for a file in a filesystem that
2876 * cannot support xattr or use a fixed labeling behavior like
2877 * transition SIDs or task SIDs.
2878 *
2879 * WARNING: This function may return -ESTALE, indicating that the caller
2880 * must retry the operation after re-acquiring the policy pointer!
2881 */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2882 static inline int __security_genfs_sid(struct selinux_policy *policy,
2883 const char *fstype,
2884 const char *path,
2885 u16 orig_sclass,
2886 u32 *sid)
2887 {
2888 struct policydb *policydb = &policy->policydb;
2889 struct sidtab *sidtab = policy->sidtab;
2890 int len;
2891 u16 sclass;
2892 struct genfs *genfs;
2893 struct ocontext *c;
2894 int cmp = 0;
2895
2896 while (path[0] == '/' && path[1] == '/')
2897 path++;
2898
2899 sclass = unmap_class(&policy->map, orig_sclass);
2900 *sid = SECINITSID_UNLABELED;
2901
2902 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2903 cmp = strcmp(fstype, genfs->fstype);
2904 if (cmp <= 0)
2905 break;
2906 }
2907
2908 if (!genfs || cmp)
2909 return -ENOENT;
2910
2911 for (c = genfs->head; c; c = c->next) {
2912 len = strlen(c->u.name);
2913 if ((!c->v.sclass || sclass == c->v.sclass) &&
2914 (strncmp(c->u.name, path, len) == 0))
2915 break;
2916 }
2917
2918 if (!c)
2919 return -ENOENT;
2920
2921 return ocontext_to_sid(sidtab, c, 0, sid);
2922 }
2923
2924 /**
2925 * security_genfs_sid - Obtain a SID for a file in a filesystem
2926 * @state: SELinux state
2927 * @fstype: filesystem type
2928 * @path: path from root of mount
2929 * @orig_sclass: file security class
2930 * @sid: SID for path
2931 *
2932 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2933 * it afterward.
2934 */
security_genfs_sid(struct selinux_state * state,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2935 int security_genfs_sid(struct selinux_state *state,
2936 const char *fstype,
2937 const char *path,
2938 u16 orig_sclass,
2939 u32 *sid)
2940 {
2941 struct selinux_policy *policy;
2942 int retval;
2943
2944 if (!selinux_initialized(state)) {
2945 *sid = SECINITSID_UNLABELED;
2946 return 0;
2947 }
2948
2949 do {
2950 rcu_read_lock();
2951 policy = rcu_dereference(state->policy);
2952 retval = __security_genfs_sid(policy, fstype, path,
2953 orig_sclass, sid);
2954 rcu_read_unlock();
2955 } while (retval == -ESTALE);
2956 return retval;
2957 }
2958
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2959 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2960 const char *fstype,
2961 const char *path,
2962 u16 orig_sclass,
2963 u32 *sid)
2964 {
2965 /* no lock required, policy is not yet accessible by other threads */
2966 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2967 }
2968
2969 /**
2970 * security_fs_use - Determine how to handle labeling for a filesystem.
2971 * @state: SELinux state
2972 * @sb: superblock in question
2973 */
security_fs_use(struct selinux_state * state,struct super_block * sb)2974 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2975 {
2976 struct selinux_policy *policy;
2977 struct policydb *policydb;
2978 struct sidtab *sidtab;
2979 int rc;
2980 struct ocontext *c;
2981 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2982 const char *fstype = sb->s_type->name;
2983
2984 if (!selinux_initialized(state)) {
2985 sbsec->behavior = SECURITY_FS_USE_NONE;
2986 sbsec->sid = SECINITSID_UNLABELED;
2987 return 0;
2988 }
2989
2990 retry:
2991 rcu_read_lock();
2992 policy = rcu_dereference(state->policy);
2993 policydb = &policy->policydb;
2994 sidtab = policy->sidtab;
2995
2996 c = policydb->ocontexts[OCON_FSUSE];
2997 while (c) {
2998 if (strcmp(fstype, c->u.name) == 0)
2999 break;
3000 c = c->next;
3001 }
3002
3003 if (c) {
3004 sbsec->behavior = c->v.behavior;
3005 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
3006 if (rc == -ESTALE) {
3007 rcu_read_unlock();
3008 goto retry;
3009 }
3010 if (rc)
3011 goto out;
3012 } else {
3013 rc = __security_genfs_sid(policy, fstype, "/",
3014 SECCLASS_DIR, &sbsec->sid);
3015 if (rc == -ESTALE) {
3016 rcu_read_unlock();
3017 goto retry;
3018 }
3019 if (rc) {
3020 sbsec->behavior = SECURITY_FS_USE_NONE;
3021 rc = 0;
3022 } else {
3023 sbsec->behavior = SECURITY_FS_USE_GENFS;
3024 }
3025 }
3026
3027 out:
3028 rcu_read_unlock();
3029 return rc;
3030 }
3031
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)3032 int security_get_bools(struct selinux_policy *policy,
3033 u32 *len, char ***names, int **values)
3034 {
3035 struct policydb *policydb;
3036 u32 i;
3037 int rc;
3038
3039 policydb = &policy->policydb;
3040
3041 *names = NULL;
3042 *values = NULL;
3043
3044 rc = 0;
3045 *len = policydb->p_bools.nprim;
3046 if (!*len)
3047 goto out;
3048
3049 rc = -ENOMEM;
3050 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3051 if (!*names)
3052 goto err;
3053
3054 rc = -ENOMEM;
3055 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3056 if (!*values)
3057 goto err;
3058
3059 for (i = 0; i < *len; i++) {
3060 (*values)[i] = policydb->bool_val_to_struct[i]->state;
3061
3062 rc = -ENOMEM;
3063 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3064 GFP_ATOMIC);
3065 if (!(*names)[i])
3066 goto err;
3067 }
3068 rc = 0;
3069 out:
3070 return rc;
3071 err:
3072 if (*names) {
3073 for (i = 0; i < *len; i++)
3074 kfree((*names)[i]);
3075 kfree(*names);
3076 }
3077 kfree(*values);
3078 *len = 0;
3079 *names = NULL;
3080 *values = NULL;
3081 goto out;
3082 }
3083
3084
security_set_bools(struct selinux_state * state,u32 len,int * values)3085 int security_set_bools(struct selinux_state *state, u32 len, int *values)
3086 {
3087 struct selinux_policy *newpolicy, *oldpolicy;
3088 int rc;
3089 u32 i, seqno = 0;
3090
3091 if (!selinux_initialized(state))
3092 return -EINVAL;
3093
3094 oldpolicy = rcu_dereference_protected(state->policy,
3095 lockdep_is_held(&state->policy_mutex));
3096
3097 /* Consistency check on number of booleans, should never fail */
3098 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3099 return -EINVAL;
3100
3101 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3102 if (!newpolicy)
3103 return -ENOMEM;
3104
3105 /*
3106 * Deep copy only the parts of the policydb that might be
3107 * modified as a result of changing booleans.
3108 */
3109 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3110 if (rc) {
3111 kfree(newpolicy);
3112 return -ENOMEM;
3113 }
3114
3115 /* Update the boolean states in the copy */
3116 for (i = 0; i < len; i++) {
3117 int new_state = !!values[i];
3118 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3119
3120 if (new_state != old_state) {
3121 audit_log(audit_context(), GFP_ATOMIC,
3122 AUDIT_MAC_CONFIG_CHANGE,
3123 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3124 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3125 new_state,
3126 old_state,
3127 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3128 audit_get_sessionid(current));
3129 newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3130 }
3131 }
3132
3133 /* Re-evaluate the conditional rules in the copy */
3134 evaluate_cond_nodes(&newpolicy->policydb);
3135
3136 /* Set latest granting seqno for new policy */
3137 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3138 seqno = newpolicy->latest_granting;
3139
3140 /* Install the new policy */
3141 rcu_assign_pointer(state->policy, newpolicy);
3142
3143 /*
3144 * Free the conditional portions of the old policydb
3145 * that were copied for the new policy, and the oldpolicy
3146 * structure itself but not what it references.
3147 */
3148 synchronize_rcu();
3149 selinux_policy_cond_free(oldpolicy);
3150
3151 /* Notify others of the policy change */
3152 selinux_notify_policy_change(state, seqno);
3153 return 0;
3154 }
3155
security_get_bool_value(struct selinux_state * state,u32 index)3156 int security_get_bool_value(struct selinux_state *state,
3157 u32 index)
3158 {
3159 struct selinux_policy *policy;
3160 struct policydb *policydb;
3161 int rc;
3162 u32 len;
3163
3164 if (!selinux_initialized(state))
3165 return 0;
3166
3167 rcu_read_lock();
3168 policy = rcu_dereference(state->policy);
3169 policydb = &policy->policydb;
3170
3171 rc = -EFAULT;
3172 len = policydb->p_bools.nprim;
3173 if (index >= len)
3174 goto out;
3175
3176 rc = policydb->bool_val_to_struct[index]->state;
3177 out:
3178 rcu_read_unlock();
3179 return rc;
3180 }
3181
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3182 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3183 struct selinux_policy *newpolicy)
3184 {
3185 int rc, *bvalues = NULL;
3186 char **bnames = NULL;
3187 struct cond_bool_datum *booldatum;
3188 u32 i, nbools = 0;
3189
3190 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3191 if (rc)
3192 goto out;
3193 for (i = 0; i < nbools; i++) {
3194 booldatum = symtab_search(&newpolicy->policydb.p_bools,
3195 bnames[i]);
3196 if (booldatum)
3197 booldatum->state = bvalues[i];
3198 }
3199 evaluate_cond_nodes(&newpolicy->policydb);
3200
3201 out:
3202 if (bnames) {
3203 for (i = 0; i < nbools; i++)
3204 kfree(bnames[i]);
3205 }
3206 kfree(bnames);
3207 kfree(bvalues);
3208 return rc;
3209 }
3210
3211 /*
3212 * security_sid_mls_copy() - computes a new sid based on the given
3213 * sid and the mls portion of mls_sid.
3214 */
security_sid_mls_copy(struct selinux_state * state,u32 sid,u32 mls_sid,u32 * new_sid)3215 int security_sid_mls_copy(struct selinux_state *state,
3216 u32 sid, u32 mls_sid, u32 *new_sid)
3217 {
3218 struct selinux_policy *policy;
3219 struct policydb *policydb;
3220 struct sidtab *sidtab;
3221 struct context *context1;
3222 struct context *context2;
3223 struct context newcon;
3224 char *s;
3225 u32 len;
3226 int rc;
3227
3228 if (!selinux_initialized(state)) {
3229 *new_sid = sid;
3230 return 0;
3231 }
3232
3233 retry:
3234 rc = 0;
3235 context_init(&newcon);
3236
3237 rcu_read_lock();
3238 policy = rcu_dereference(state->policy);
3239 policydb = &policy->policydb;
3240 sidtab = policy->sidtab;
3241
3242 if (!policydb->mls_enabled) {
3243 *new_sid = sid;
3244 goto out_unlock;
3245 }
3246
3247 rc = -EINVAL;
3248 context1 = sidtab_search(sidtab, sid);
3249 if (!context1) {
3250 pr_err("SELinux: %s: unrecognized SID %d\n",
3251 __func__, sid);
3252 goto out_unlock;
3253 }
3254
3255 rc = -EINVAL;
3256 context2 = sidtab_search(sidtab, mls_sid);
3257 if (!context2) {
3258 pr_err("SELinux: %s: unrecognized SID %d\n",
3259 __func__, mls_sid);
3260 goto out_unlock;
3261 }
3262
3263 newcon.user = context1->user;
3264 newcon.role = context1->role;
3265 newcon.type = context1->type;
3266 rc = mls_context_cpy(&newcon, context2);
3267 if (rc)
3268 goto out_unlock;
3269
3270 /* Check the validity of the new context. */
3271 if (!policydb_context_isvalid(policydb, &newcon)) {
3272 rc = convert_context_handle_invalid_context(state, policydb,
3273 &newcon);
3274 if (rc) {
3275 if (!context_struct_to_string(policydb, &newcon, &s,
3276 &len)) {
3277 struct audit_buffer *ab;
3278
3279 ab = audit_log_start(audit_context(),
3280 GFP_ATOMIC,
3281 AUDIT_SELINUX_ERR);
3282 audit_log_format(ab,
3283 "op=security_sid_mls_copy invalid_context=");
3284 /* don't record NUL with untrusted strings */
3285 audit_log_n_untrustedstring(ab, s, len - 1);
3286 audit_log_end(ab);
3287 kfree(s);
3288 }
3289 goto out_unlock;
3290 }
3291 }
3292 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3293 if (rc == -ESTALE) {
3294 rcu_read_unlock();
3295 context_destroy(&newcon);
3296 goto retry;
3297 }
3298 out_unlock:
3299 rcu_read_unlock();
3300 context_destroy(&newcon);
3301 return rc;
3302 }
3303
3304 /**
3305 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3306 * @state: SELinux state
3307 * @nlbl_sid: NetLabel SID
3308 * @nlbl_type: NetLabel labeling protocol type
3309 * @xfrm_sid: XFRM SID
3310 * @peer_sid: network peer sid
3311 *
3312 * Description:
3313 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3314 * resolved into a single SID it is returned via @peer_sid and the function
3315 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3316 * returns a negative value. A table summarizing the behavior is below:
3317 *
3318 * | function return | @sid
3319 * ------------------------------+-----------------+-----------------
3320 * no peer labels | 0 | SECSID_NULL
3321 * single peer label | 0 | <peer_label>
3322 * multiple, consistent labels | 0 | <peer_label>
3323 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3324 *
3325 */
security_net_peersid_resolve(struct selinux_state * state,u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3326 int security_net_peersid_resolve(struct selinux_state *state,
3327 u32 nlbl_sid, u32 nlbl_type,
3328 u32 xfrm_sid,
3329 u32 *peer_sid)
3330 {
3331 struct selinux_policy *policy;
3332 struct policydb *policydb;
3333 struct sidtab *sidtab;
3334 int rc;
3335 struct context *nlbl_ctx;
3336 struct context *xfrm_ctx;
3337
3338 *peer_sid = SECSID_NULL;
3339
3340 /* handle the common (which also happens to be the set of easy) cases
3341 * right away, these two if statements catch everything involving a
3342 * single or absent peer SID/label */
3343 if (xfrm_sid == SECSID_NULL) {
3344 *peer_sid = nlbl_sid;
3345 return 0;
3346 }
3347 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3348 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3349 * is present */
3350 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3351 *peer_sid = xfrm_sid;
3352 return 0;
3353 }
3354
3355 if (!selinux_initialized(state))
3356 return 0;
3357
3358 rcu_read_lock();
3359 policy = rcu_dereference(state->policy);
3360 policydb = &policy->policydb;
3361 sidtab = policy->sidtab;
3362
3363 /*
3364 * We don't need to check initialized here since the only way both
3365 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3366 * security server was initialized and state->initialized was true.
3367 */
3368 if (!policydb->mls_enabled) {
3369 rc = 0;
3370 goto out;
3371 }
3372
3373 rc = -EINVAL;
3374 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3375 if (!nlbl_ctx) {
3376 pr_err("SELinux: %s: unrecognized SID %d\n",
3377 __func__, nlbl_sid);
3378 goto out;
3379 }
3380 rc = -EINVAL;
3381 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3382 if (!xfrm_ctx) {
3383 pr_err("SELinux: %s: unrecognized SID %d\n",
3384 __func__, xfrm_sid);
3385 goto out;
3386 }
3387 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3388 if (rc)
3389 goto out;
3390
3391 /* at present NetLabel SIDs/labels really only carry MLS
3392 * information so if the MLS portion of the NetLabel SID
3393 * matches the MLS portion of the labeled XFRM SID/label
3394 * then pass along the XFRM SID as it is the most
3395 * expressive */
3396 *peer_sid = xfrm_sid;
3397 out:
3398 rcu_read_unlock();
3399 return rc;
3400 }
3401
get_classes_callback(void * k,void * d,void * args)3402 static int get_classes_callback(void *k, void *d, void *args)
3403 {
3404 struct class_datum *datum = d;
3405 char *name = k, **classes = args;
3406 int value = datum->value - 1;
3407
3408 classes[value] = kstrdup(name, GFP_ATOMIC);
3409 if (!classes[value])
3410 return -ENOMEM;
3411
3412 return 0;
3413 }
3414
security_get_classes(struct selinux_policy * policy,char *** classes,int * nclasses)3415 int security_get_classes(struct selinux_policy *policy,
3416 char ***classes, int *nclasses)
3417 {
3418 struct policydb *policydb;
3419 int rc;
3420
3421 policydb = &policy->policydb;
3422
3423 rc = -ENOMEM;
3424 *nclasses = policydb->p_classes.nprim;
3425 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3426 if (!*classes)
3427 goto out;
3428
3429 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3430 *classes);
3431 if (rc) {
3432 int i;
3433 for (i = 0; i < *nclasses; i++)
3434 kfree((*classes)[i]);
3435 kfree(*classes);
3436 }
3437
3438 out:
3439 return rc;
3440 }
3441
get_permissions_callback(void * k,void * d,void * args)3442 static int get_permissions_callback(void *k, void *d, void *args)
3443 {
3444 struct perm_datum *datum = d;
3445 char *name = k, **perms = args;
3446 int value = datum->value - 1;
3447
3448 perms[value] = kstrdup(name, GFP_ATOMIC);
3449 if (!perms[value])
3450 return -ENOMEM;
3451
3452 return 0;
3453 }
3454
security_get_permissions(struct selinux_policy * policy,char * class,char *** perms,int * nperms)3455 int security_get_permissions(struct selinux_policy *policy,
3456 char *class, char ***perms, int *nperms)
3457 {
3458 struct policydb *policydb;
3459 int rc, i;
3460 struct class_datum *match;
3461
3462 policydb = &policy->policydb;
3463
3464 rc = -EINVAL;
3465 match = symtab_search(&policydb->p_classes, class);
3466 if (!match) {
3467 pr_err("SELinux: %s: unrecognized class %s\n",
3468 __func__, class);
3469 goto out;
3470 }
3471
3472 rc = -ENOMEM;
3473 *nperms = match->permissions.nprim;
3474 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3475 if (!*perms)
3476 goto out;
3477
3478 if (match->comdatum) {
3479 rc = hashtab_map(&match->comdatum->permissions.table,
3480 get_permissions_callback, *perms);
3481 if (rc)
3482 goto err;
3483 }
3484
3485 rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3486 *perms);
3487 if (rc)
3488 goto err;
3489
3490 out:
3491 return rc;
3492
3493 err:
3494 for (i = 0; i < *nperms; i++)
3495 kfree((*perms)[i]);
3496 kfree(*perms);
3497 return rc;
3498 }
3499
security_get_reject_unknown(struct selinux_state * state)3500 int security_get_reject_unknown(struct selinux_state *state)
3501 {
3502 struct selinux_policy *policy;
3503 int value;
3504
3505 if (!selinux_initialized(state))
3506 return 0;
3507
3508 rcu_read_lock();
3509 policy = rcu_dereference(state->policy);
3510 value = policy->policydb.reject_unknown;
3511 rcu_read_unlock();
3512 return value;
3513 }
3514
security_get_allow_unknown(struct selinux_state * state)3515 int security_get_allow_unknown(struct selinux_state *state)
3516 {
3517 struct selinux_policy *policy;
3518 int value;
3519
3520 if (!selinux_initialized(state))
3521 return 0;
3522
3523 rcu_read_lock();
3524 policy = rcu_dereference(state->policy);
3525 value = policy->policydb.allow_unknown;
3526 rcu_read_unlock();
3527 return value;
3528 }
3529
3530 /**
3531 * security_policycap_supported - Check for a specific policy capability
3532 * @state: SELinux state
3533 * @req_cap: capability
3534 *
3535 * Description:
3536 * This function queries the currently loaded policy to see if it supports the
3537 * capability specified by @req_cap. Returns true (1) if the capability is
3538 * supported, false (0) if it isn't supported.
3539 *
3540 */
security_policycap_supported(struct selinux_state * state,unsigned int req_cap)3541 int security_policycap_supported(struct selinux_state *state,
3542 unsigned int req_cap)
3543 {
3544 struct selinux_policy *policy;
3545 int rc;
3546
3547 if (!selinux_initialized(state))
3548 return 0;
3549
3550 rcu_read_lock();
3551 policy = rcu_dereference(state->policy);
3552 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3553 rcu_read_unlock();
3554
3555 return rc;
3556 }
3557
3558 struct selinux_audit_rule {
3559 u32 au_seqno;
3560 struct context au_ctxt;
3561 };
3562
selinux_audit_rule_free(void * vrule)3563 void selinux_audit_rule_free(void *vrule)
3564 {
3565 struct selinux_audit_rule *rule = vrule;
3566
3567 if (rule) {
3568 context_destroy(&rule->au_ctxt);
3569 kfree(rule);
3570 }
3571 }
3572
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3573 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3574 {
3575 struct selinux_state *state = &selinux_state;
3576 struct selinux_policy *policy;
3577 struct policydb *policydb;
3578 struct selinux_audit_rule *tmprule;
3579 struct role_datum *roledatum;
3580 struct type_datum *typedatum;
3581 struct user_datum *userdatum;
3582 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3583 int rc = 0;
3584
3585 *rule = NULL;
3586
3587 if (!selinux_initialized(state))
3588 return -EOPNOTSUPP;
3589
3590 switch (field) {
3591 case AUDIT_SUBJ_USER:
3592 case AUDIT_SUBJ_ROLE:
3593 case AUDIT_SUBJ_TYPE:
3594 case AUDIT_OBJ_USER:
3595 case AUDIT_OBJ_ROLE:
3596 case AUDIT_OBJ_TYPE:
3597 /* only 'equals' and 'not equals' fit user, role, and type */
3598 if (op != Audit_equal && op != Audit_not_equal)
3599 return -EINVAL;
3600 break;
3601 case AUDIT_SUBJ_SEN:
3602 case AUDIT_SUBJ_CLR:
3603 case AUDIT_OBJ_LEV_LOW:
3604 case AUDIT_OBJ_LEV_HIGH:
3605 /* we do not allow a range, indicated by the presence of '-' */
3606 if (strchr(rulestr, '-'))
3607 return -EINVAL;
3608 break;
3609 default:
3610 /* only the above fields are valid */
3611 return -EINVAL;
3612 }
3613
3614 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3615 if (!tmprule)
3616 return -ENOMEM;
3617
3618 context_init(&tmprule->au_ctxt);
3619
3620 rcu_read_lock();
3621 policy = rcu_dereference(state->policy);
3622 policydb = &policy->policydb;
3623
3624 tmprule->au_seqno = policy->latest_granting;
3625
3626 switch (field) {
3627 case AUDIT_SUBJ_USER:
3628 case AUDIT_OBJ_USER:
3629 rc = -EINVAL;
3630 userdatum = symtab_search(&policydb->p_users, rulestr);
3631 if (!userdatum)
3632 goto out;
3633 tmprule->au_ctxt.user = userdatum->value;
3634 break;
3635 case AUDIT_SUBJ_ROLE:
3636 case AUDIT_OBJ_ROLE:
3637 rc = -EINVAL;
3638 roledatum = symtab_search(&policydb->p_roles, rulestr);
3639 if (!roledatum)
3640 goto out;
3641 tmprule->au_ctxt.role = roledatum->value;
3642 break;
3643 case AUDIT_SUBJ_TYPE:
3644 case AUDIT_OBJ_TYPE:
3645 rc = -EINVAL;
3646 typedatum = symtab_search(&policydb->p_types, rulestr);
3647 if (!typedatum)
3648 goto out;
3649 tmprule->au_ctxt.type = typedatum->value;
3650 break;
3651 case AUDIT_SUBJ_SEN:
3652 case AUDIT_SUBJ_CLR:
3653 case AUDIT_OBJ_LEV_LOW:
3654 case AUDIT_OBJ_LEV_HIGH:
3655 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3656 GFP_ATOMIC);
3657 if (rc)
3658 goto out;
3659 break;
3660 }
3661 rc = 0;
3662 out:
3663 rcu_read_unlock();
3664
3665 if (rc) {
3666 selinux_audit_rule_free(tmprule);
3667 tmprule = NULL;
3668 }
3669
3670 *rule = tmprule;
3671
3672 return rc;
3673 }
3674
3675 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3676 int selinux_audit_rule_known(struct audit_krule *rule)
3677 {
3678 int i;
3679
3680 for (i = 0; i < rule->field_count; i++) {
3681 struct audit_field *f = &rule->fields[i];
3682 switch (f->type) {
3683 case AUDIT_SUBJ_USER:
3684 case AUDIT_SUBJ_ROLE:
3685 case AUDIT_SUBJ_TYPE:
3686 case AUDIT_SUBJ_SEN:
3687 case AUDIT_SUBJ_CLR:
3688 case AUDIT_OBJ_USER:
3689 case AUDIT_OBJ_ROLE:
3690 case AUDIT_OBJ_TYPE:
3691 case AUDIT_OBJ_LEV_LOW:
3692 case AUDIT_OBJ_LEV_HIGH:
3693 return 1;
3694 }
3695 }
3696
3697 return 0;
3698 }
3699
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3700 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3701 {
3702 struct selinux_state *state = &selinux_state;
3703 struct selinux_policy *policy;
3704 struct context *ctxt;
3705 struct mls_level *level;
3706 struct selinux_audit_rule *rule = vrule;
3707 int match = 0;
3708
3709 if (unlikely(!rule)) {
3710 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3711 return -ENOENT;
3712 }
3713
3714 if (!selinux_initialized(state))
3715 return 0;
3716
3717 rcu_read_lock();
3718
3719 policy = rcu_dereference(state->policy);
3720
3721 if (rule->au_seqno < policy->latest_granting) {
3722 match = -ESTALE;
3723 goto out;
3724 }
3725
3726 ctxt = sidtab_search(policy->sidtab, sid);
3727 if (unlikely(!ctxt)) {
3728 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3729 sid);
3730 match = -ENOENT;
3731 goto out;
3732 }
3733
3734 /* a field/op pair that is not caught here will simply fall through
3735 without a match */
3736 switch (field) {
3737 case AUDIT_SUBJ_USER:
3738 case AUDIT_OBJ_USER:
3739 switch (op) {
3740 case Audit_equal:
3741 match = (ctxt->user == rule->au_ctxt.user);
3742 break;
3743 case Audit_not_equal:
3744 match = (ctxt->user != rule->au_ctxt.user);
3745 break;
3746 }
3747 break;
3748 case AUDIT_SUBJ_ROLE:
3749 case AUDIT_OBJ_ROLE:
3750 switch (op) {
3751 case Audit_equal:
3752 match = (ctxt->role == rule->au_ctxt.role);
3753 break;
3754 case Audit_not_equal:
3755 match = (ctxt->role != rule->au_ctxt.role);
3756 break;
3757 }
3758 break;
3759 case AUDIT_SUBJ_TYPE:
3760 case AUDIT_OBJ_TYPE:
3761 switch (op) {
3762 case Audit_equal:
3763 match = (ctxt->type == rule->au_ctxt.type);
3764 break;
3765 case Audit_not_equal:
3766 match = (ctxt->type != rule->au_ctxt.type);
3767 break;
3768 }
3769 break;
3770 case AUDIT_SUBJ_SEN:
3771 case AUDIT_SUBJ_CLR:
3772 case AUDIT_OBJ_LEV_LOW:
3773 case AUDIT_OBJ_LEV_HIGH:
3774 level = ((field == AUDIT_SUBJ_SEN ||
3775 field == AUDIT_OBJ_LEV_LOW) ?
3776 &ctxt->range.level[0] : &ctxt->range.level[1]);
3777 switch (op) {
3778 case Audit_equal:
3779 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3780 level);
3781 break;
3782 case Audit_not_equal:
3783 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3784 level);
3785 break;
3786 case Audit_lt:
3787 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3788 level) &&
3789 !mls_level_eq(&rule->au_ctxt.range.level[0],
3790 level));
3791 break;
3792 case Audit_le:
3793 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3794 level);
3795 break;
3796 case Audit_gt:
3797 match = (mls_level_dom(level,
3798 &rule->au_ctxt.range.level[0]) &&
3799 !mls_level_eq(level,
3800 &rule->au_ctxt.range.level[0]));
3801 break;
3802 case Audit_ge:
3803 match = mls_level_dom(level,
3804 &rule->au_ctxt.range.level[0]);
3805 break;
3806 }
3807 }
3808
3809 out:
3810 rcu_read_unlock();
3811 return match;
3812 }
3813
aurule_avc_callback(u32 event)3814 static int aurule_avc_callback(u32 event)
3815 {
3816 if (event == AVC_CALLBACK_RESET)
3817 return audit_update_lsm_rules();
3818 return 0;
3819 }
3820
aurule_init(void)3821 static int __init aurule_init(void)
3822 {
3823 int err;
3824
3825 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3826 if (err)
3827 panic("avc_add_callback() failed, error %d\n", err);
3828
3829 return err;
3830 }
3831 __initcall(aurule_init);
3832
3833 #ifdef CONFIG_NETLABEL
3834 /**
3835 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3836 * @secattr: the NetLabel packet security attributes
3837 * @sid: the SELinux SID
3838 *
3839 * Description:
3840 * Attempt to cache the context in @ctx, which was derived from the packet in
3841 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3842 * already been initialized.
3843 *
3844 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3845 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3846 u32 sid)
3847 {
3848 u32 *sid_cache;
3849
3850 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3851 if (sid_cache == NULL)
3852 return;
3853 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3854 if (secattr->cache == NULL) {
3855 kfree(sid_cache);
3856 return;
3857 }
3858
3859 *sid_cache = sid;
3860 secattr->cache->free = kfree;
3861 secattr->cache->data = sid_cache;
3862 secattr->flags |= NETLBL_SECATTR_CACHE;
3863 }
3864
3865 /**
3866 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3867 * @state: SELinux state
3868 * @secattr: the NetLabel packet security attributes
3869 * @sid: the SELinux SID
3870 *
3871 * Description:
3872 * Convert the given NetLabel security attributes in @secattr into a
3873 * SELinux SID. If the @secattr field does not contain a full SELinux
3874 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3875 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3876 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3877 * conversion for future lookups. Returns zero on success, negative values on
3878 * failure.
3879 *
3880 */
security_netlbl_secattr_to_sid(struct selinux_state * state,struct netlbl_lsm_secattr * secattr,u32 * sid)3881 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3882 struct netlbl_lsm_secattr *secattr,
3883 u32 *sid)
3884 {
3885 struct selinux_policy *policy;
3886 struct policydb *policydb;
3887 struct sidtab *sidtab;
3888 int rc;
3889 struct context *ctx;
3890 struct context ctx_new;
3891
3892 if (!selinux_initialized(state)) {
3893 *sid = SECSID_NULL;
3894 return 0;
3895 }
3896
3897 retry:
3898 rc = 0;
3899 rcu_read_lock();
3900 policy = rcu_dereference(state->policy);
3901 policydb = &policy->policydb;
3902 sidtab = policy->sidtab;
3903
3904 if (secattr->flags & NETLBL_SECATTR_CACHE)
3905 *sid = *(u32 *)secattr->cache->data;
3906 else if (secattr->flags & NETLBL_SECATTR_SECID)
3907 *sid = secattr->attr.secid;
3908 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3909 rc = -EIDRM;
3910 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3911 if (ctx == NULL)
3912 goto out;
3913
3914 context_init(&ctx_new);
3915 ctx_new.user = ctx->user;
3916 ctx_new.role = ctx->role;
3917 ctx_new.type = ctx->type;
3918 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3919 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3920 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3921 if (rc)
3922 goto out;
3923 }
3924 rc = -EIDRM;
3925 if (!mls_context_isvalid(policydb, &ctx_new)) {
3926 ebitmap_destroy(&ctx_new.range.level[0].cat);
3927 goto out;
3928 }
3929
3930 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3931 ebitmap_destroy(&ctx_new.range.level[0].cat);
3932 if (rc == -ESTALE) {
3933 rcu_read_unlock();
3934 goto retry;
3935 }
3936 if (rc)
3937 goto out;
3938
3939 security_netlbl_cache_add(secattr, *sid);
3940 } else
3941 *sid = SECSID_NULL;
3942
3943 out:
3944 rcu_read_unlock();
3945 return rc;
3946 }
3947
3948 /**
3949 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3950 * @state: SELinux state
3951 * @sid: the SELinux SID
3952 * @secattr: the NetLabel packet security attributes
3953 *
3954 * Description:
3955 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3956 * Returns zero on success, negative values on failure.
3957 *
3958 */
security_netlbl_sid_to_secattr(struct selinux_state * state,u32 sid,struct netlbl_lsm_secattr * secattr)3959 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3960 u32 sid, struct netlbl_lsm_secattr *secattr)
3961 {
3962 struct selinux_policy *policy;
3963 struct policydb *policydb;
3964 int rc;
3965 struct context *ctx;
3966
3967 if (!selinux_initialized(state))
3968 return 0;
3969
3970 rcu_read_lock();
3971 policy = rcu_dereference(state->policy);
3972 policydb = &policy->policydb;
3973
3974 rc = -ENOENT;
3975 ctx = sidtab_search(policy->sidtab, sid);
3976 if (ctx == NULL)
3977 goto out;
3978
3979 rc = -ENOMEM;
3980 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3981 GFP_ATOMIC);
3982 if (secattr->domain == NULL)
3983 goto out;
3984
3985 secattr->attr.secid = sid;
3986 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3987 mls_export_netlbl_lvl(policydb, ctx, secattr);
3988 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3989 out:
3990 rcu_read_unlock();
3991 return rc;
3992 }
3993 #endif /* CONFIG_NETLABEL */
3994
3995 /**
3996 * __security_read_policy - read the policy.
3997 * @policy: SELinux policy
3998 * @data: binary policy data
3999 * @len: length of data in bytes
4000 *
4001 */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)4002 static int __security_read_policy(struct selinux_policy *policy,
4003 void *data, size_t *len)
4004 {
4005 int rc;
4006 struct policy_file fp;
4007
4008 fp.data = data;
4009 fp.len = *len;
4010
4011 rc = policydb_write(&policy->policydb, &fp);
4012 if (rc)
4013 return rc;
4014
4015 *len = (unsigned long)fp.data - (unsigned long)data;
4016 return 0;
4017 }
4018
4019 /**
4020 * security_read_policy - read the policy.
4021 * @state: selinux_state
4022 * @data: binary policy data
4023 * @len: length of data in bytes
4024 *
4025 */
security_read_policy(struct selinux_state * state,void ** data,size_t * len)4026 int security_read_policy(struct selinux_state *state,
4027 void **data, size_t *len)
4028 {
4029 struct selinux_policy *policy;
4030
4031 policy = rcu_dereference_protected(
4032 state->policy, lockdep_is_held(&state->policy_mutex));
4033 if (!policy)
4034 return -EINVAL;
4035
4036 *len = policy->policydb.len;
4037 *data = vmalloc_user(*len);
4038 if (!*data)
4039 return -ENOMEM;
4040
4041 return __security_read_policy(policy, *data, len);
4042 }
4043
4044 /**
4045 * security_read_state_kernel - read the policy.
4046 * @state: selinux_state
4047 * @data: binary policy data
4048 * @len: length of data in bytes
4049 *
4050 * Allocates kernel memory for reading SELinux policy.
4051 * This function is for internal use only and should not
4052 * be used for returning data to user space.
4053 *
4054 * This function must be called with policy_mutex held.
4055 */
security_read_state_kernel(struct selinux_state * state,void ** data,size_t * len)4056 int security_read_state_kernel(struct selinux_state *state,
4057 void **data, size_t *len)
4058 {
4059 int err;
4060 struct selinux_policy *policy;
4061
4062 policy = rcu_dereference_protected(
4063 state->policy, lockdep_is_held(&state->policy_mutex));
4064 if (!policy)
4065 return -EINVAL;
4066
4067 *len = policy->policydb.len;
4068 *data = vmalloc(*len);
4069 if (!*data)
4070 return -ENOMEM;
4071
4072 err = __security_read_policy(policy, *data, len);
4073 if (err) {
4074 vfree(*data);
4075 *data = NULL;
4076 *len = 0;
4077 }
4078 return err;
4079 }
4080