1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of_address.h>
12 #include <linux/of_device.h>
13 #include <linux/pinctrl/consumer.h>
14 #include <linux/pm_qos.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17 #include <linux/slab.h>
18 #include <linux/time.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
24
25 #include "fsl_sai.h"
26 #include "fsl_utils.h"
27 #include "imx-pcm.h"
28
29 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
30 FSL_SAI_CSR_FEIE)
31
32 static const unsigned int fsl_sai_rates[] = {
33 8000, 11025, 12000, 16000, 22050,
34 24000, 32000, 44100, 48000, 64000,
35 88200, 96000, 176400, 192000, 352800,
36 384000, 705600, 768000, 1411200, 2822400,
37 };
38
39 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
40 .count = ARRAY_SIZE(fsl_sai_rates),
41 .list = fsl_sai_rates,
42 };
43
44 /**
45 * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
46 *
47 * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
48 * or Receiver's for both streams. This function is used to check if clocks of
49 * the stream's are synced by the opposite stream.
50 *
51 * @sai: SAI context
52 * @dir: stream direction
53 */
fsl_sai_dir_is_synced(struct fsl_sai * sai,int dir)54 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
55 {
56 int adir = (dir == TX) ? RX : TX;
57
58 /* current dir in async mode while opposite dir in sync mode */
59 return !sai->synchronous[dir] && sai->synchronous[adir];
60 }
61
fsl_sai_get_pins_state(struct fsl_sai * sai,u32 bclk)62 static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk)
63 {
64 struct pinctrl_state *state = NULL;
65
66 if (sai->is_pdm_mode) {
67 /* DSD512@44.1kHz, DSD512@48kHz */
68 if (bclk >= 22579200)
69 state = pinctrl_lookup_state(sai->pinctrl, "dsd512");
70
71 /* Get default DSD state */
72 if (IS_ERR_OR_NULL(state))
73 state = pinctrl_lookup_state(sai->pinctrl, "dsd");
74 } else {
75 /* 706k32b2c, 768k32b2c, etc */
76 if (bclk >= 45158400)
77 state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m");
78 }
79
80 /* Get default state */
81 if (IS_ERR_OR_NULL(state))
82 state = pinctrl_lookup_state(sai->pinctrl, "default");
83
84 return state;
85 }
86
fsl_sai_isr(int irq,void * devid)87 static irqreturn_t fsl_sai_isr(int irq, void *devid)
88 {
89 struct fsl_sai *sai = (struct fsl_sai *)devid;
90 unsigned int ofs = sai->soc_data->reg_offset;
91 struct device *dev = &sai->pdev->dev;
92 u32 flags, xcsr, mask;
93 irqreturn_t iret = IRQ_NONE;
94
95 /*
96 * Both IRQ status bits and IRQ mask bits are in the xCSR but
97 * different shifts. And we here create a mask only for those
98 * IRQs that we activated.
99 */
100 mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
101
102 /* Tx IRQ */
103 regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
104 flags = xcsr & mask;
105
106 if (flags)
107 iret = IRQ_HANDLED;
108 else
109 goto irq_rx;
110
111 if (flags & FSL_SAI_CSR_WSF)
112 dev_dbg(dev, "isr: Start of Tx word detected\n");
113
114 if (flags & FSL_SAI_CSR_SEF)
115 dev_dbg(dev, "isr: Tx Frame sync error detected\n");
116
117 if (flags & FSL_SAI_CSR_FEF)
118 dev_dbg(dev, "isr: Transmit underrun detected\n");
119
120 if (flags & FSL_SAI_CSR_FWF)
121 dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
122
123 if (flags & FSL_SAI_CSR_FRF)
124 dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
125
126 flags &= FSL_SAI_CSR_xF_W_MASK;
127 xcsr &= ~FSL_SAI_CSR_xF_MASK;
128
129 if (flags)
130 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
131
132 irq_rx:
133 /* Rx IRQ */
134 regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
135 flags = xcsr & mask;
136
137 if (flags)
138 iret = IRQ_HANDLED;
139 else
140 goto out;
141
142 if (flags & FSL_SAI_CSR_WSF)
143 dev_dbg(dev, "isr: Start of Rx word detected\n");
144
145 if (flags & FSL_SAI_CSR_SEF)
146 dev_dbg(dev, "isr: Rx Frame sync error detected\n");
147
148 if (flags & FSL_SAI_CSR_FEF)
149 dev_dbg(dev, "isr: Receive overflow detected\n");
150
151 if (flags & FSL_SAI_CSR_FWF)
152 dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
153
154 if (flags & FSL_SAI_CSR_FRF)
155 dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
156
157 flags &= FSL_SAI_CSR_xF_W_MASK;
158 xcsr &= ~FSL_SAI_CSR_xF_MASK;
159
160 if (flags)
161 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
162
163 out:
164 return iret;
165 }
166
fsl_sai_set_dai_tdm_slot(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)167 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
168 u32 rx_mask, int slots, int slot_width)
169 {
170 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
171
172 sai->slots = slots;
173 sai->slot_width = slot_width;
174
175 return 0;
176 }
177
fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai * dai,unsigned int ratio)178 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
179 unsigned int ratio)
180 {
181 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
182
183 sai->bclk_ratio = ratio;
184
185 return 0;
186 }
187
fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,bool tx)188 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
189 int clk_id, unsigned int freq, bool tx)
190 {
191 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
192 unsigned int ofs = sai->soc_data->reg_offset;
193 u32 val_cr2 = 0;
194
195 switch (clk_id) {
196 case FSL_SAI_CLK_BUS:
197 val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
198 break;
199 case FSL_SAI_CLK_MAST1:
200 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
201 break;
202 case FSL_SAI_CLK_MAST2:
203 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
204 break;
205 case FSL_SAI_CLK_MAST3:
206 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
207 break;
208 default:
209 return -EINVAL;
210 }
211
212 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
213 FSL_SAI_CR2_MSEL_MASK, val_cr2);
214
215 return 0;
216 }
217
fsl_sai_set_mclk_rate(struct snd_soc_dai * dai,int clk_id,unsigned int freq)218 static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq)
219 {
220 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
221 int ret;
222
223 fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id],
224 sai->pll8k_clk, sai->pll11k_clk, freq);
225
226 ret = clk_set_rate(sai->mclk_clk[clk_id], freq);
227 if (ret < 0)
228 dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret);
229
230 return ret;
231 }
232
fsl_sai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)233 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
234 int clk_id, unsigned int freq, int dir)
235 {
236 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
237 int ret;
238
239 if (dir == SND_SOC_CLOCK_IN)
240 return 0;
241
242 if (freq > 0 && clk_id != FSL_SAI_CLK_BUS) {
243 if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) {
244 dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id);
245 return -EINVAL;
246 }
247
248 if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) {
249 dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id);
250 return -EINVAL;
251 }
252
253 if (sai->mclk_streams == 0) {
254 ret = fsl_sai_set_mclk_rate(cpu_dai, clk_id, freq);
255 if (ret < 0)
256 return ret;
257 }
258 }
259
260 ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
261 if (ret) {
262 dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
263 return ret;
264 }
265
266 ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
267 if (ret)
268 dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
269
270 return ret;
271 }
272
fsl_sai_set_dai_fmt_tr(struct snd_soc_dai * cpu_dai,unsigned int fmt,bool tx)273 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
274 unsigned int fmt, bool tx)
275 {
276 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
277 unsigned int ofs = sai->soc_data->reg_offset;
278 u32 val_cr2 = 0, val_cr4 = 0;
279
280 if (!sai->is_lsb_first)
281 val_cr4 |= FSL_SAI_CR4_MF;
282
283 sai->is_pdm_mode = false;
284 sai->is_dsp_mode = false;
285 /* DAI mode */
286 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
287 case SND_SOC_DAIFMT_I2S:
288 /*
289 * Frame low, 1clk before data, one word length for frame sync,
290 * frame sync starts one serial clock cycle earlier,
291 * that is, together with the last bit of the previous
292 * data word.
293 */
294 val_cr2 |= FSL_SAI_CR2_BCP;
295 val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
296 break;
297 case SND_SOC_DAIFMT_LEFT_J:
298 /*
299 * Frame high, one word length for frame sync,
300 * frame sync asserts with the first bit of the frame.
301 */
302 val_cr2 |= FSL_SAI_CR2_BCP;
303 break;
304 case SND_SOC_DAIFMT_DSP_A:
305 /*
306 * Frame high, 1clk before data, one bit for frame sync,
307 * frame sync starts one serial clock cycle earlier,
308 * that is, together with the last bit of the previous
309 * data word.
310 */
311 val_cr2 |= FSL_SAI_CR2_BCP;
312 val_cr4 |= FSL_SAI_CR4_FSE;
313 sai->is_dsp_mode = true;
314 break;
315 case SND_SOC_DAIFMT_DSP_B:
316 /*
317 * Frame high, one bit for frame sync,
318 * frame sync asserts with the first bit of the frame.
319 */
320 val_cr2 |= FSL_SAI_CR2_BCP;
321 sai->is_dsp_mode = true;
322 break;
323 case SND_SOC_DAIFMT_PDM:
324 val_cr2 |= FSL_SAI_CR2_BCP;
325 val_cr4 &= ~FSL_SAI_CR4_MF;
326 sai->is_pdm_mode = true;
327 break;
328 case SND_SOC_DAIFMT_RIGHT_J:
329 /* To be done */
330 default:
331 return -EINVAL;
332 }
333
334 /* DAI clock inversion */
335 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
336 case SND_SOC_DAIFMT_IB_IF:
337 /* Invert both clocks */
338 val_cr2 ^= FSL_SAI_CR2_BCP;
339 val_cr4 ^= FSL_SAI_CR4_FSP;
340 break;
341 case SND_SOC_DAIFMT_IB_NF:
342 /* Invert bit clock */
343 val_cr2 ^= FSL_SAI_CR2_BCP;
344 break;
345 case SND_SOC_DAIFMT_NB_IF:
346 /* Invert frame clock */
347 val_cr4 ^= FSL_SAI_CR4_FSP;
348 break;
349 case SND_SOC_DAIFMT_NB_NF:
350 /* Nothing to do for both normal cases */
351 break;
352 default:
353 return -EINVAL;
354 }
355
356 /* DAI clock provider masks */
357 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
358 case SND_SOC_DAIFMT_BP_FP:
359 val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
360 val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
361 sai->is_consumer_mode = false;
362 break;
363 case SND_SOC_DAIFMT_BC_FC:
364 sai->is_consumer_mode = true;
365 break;
366 case SND_SOC_DAIFMT_BP_FC:
367 val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
368 sai->is_consumer_mode = false;
369 break;
370 case SND_SOC_DAIFMT_BC_FP:
371 val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
372 sai->is_consumer_mode = true;
373 break;
374 default:
375 return -EINVAL;
376 }
377
378 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
379 FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
380 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
381 FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
382 FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
383
384 return 0;
385 }
386
fsl_sai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)387 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
388 {
389 int ret;
390
391 ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
392 if (ret) {
393 dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
394 return ret;
395 }
396
397 ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
398 if (ret)
399 dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
400
401 return ret;
402 }
403
fsl_sai_set_bclk(struct snd_soc_dai * dai,bool tx,u32 freq)404 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
405 {
406 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
407 unsigned int reg, ofs = sai->soc_data->reg_offset;
408 unsigned long clk_rate;
409 u32 savediv = 0, ratio, bestdiff = freq;
410 int adir = tx ? RX : TX;
411 int dir = tx ? TX : RX;
412 u32 id;
413 bool support_1_1_ratio = sai->verid.version >= 0x0301;
414
415 /* Don't apply to consumer mode */
416 if (sai->is_consumer_mode)
417 return 0;
418
419 /*
420 * There is no point in polling MCLK0 if it is identical to MCLK1.
421 * And given that MQS use case has to use MCLK1 though two clocks
422 * are the same, we simply skip MCLK0 and start to find from MCLK1.
423 */
424 id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
425
426 for (; id < FSL_SAI_MCLK_MAX; id++) {
427 int diff;
428
429 clk_rate = clk_get_rate(sai->mclk_clk[id]);
430 if (!clk_rate)
431 continue;
432
433 ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
434 if (!ratio || ratio > 512)
435 continue;
436 if (ratio == 1 && !support_1_1_ratio)
437 continue;
438 if ((ratio & 1) && ratio > 1)
439 continue;
440
441 diff = abs((long)clk_rate - ratio * freq);
442
443 /*
444 * Drop the source that can not be
445 * divided into the required rate.
446 */
447 if (diff != 0 && clk_rate / diff < 1000)
448 continue;
449
450 dev_dbg(dai->dev,
451 "ratio %d for freq %dHz based on clock %ldHz\n",
452 ratio, freq, clk_rate);
453
454
455 if (diff < bestdiff) {
456 savediv = ratio;
457 sai->mclk_id[tx] = id;
458 bestdiff = diff;
459 }
460
461 if (diff == 0)
462 break;
463 }
464
465 if (savediv == 0) {
466 dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
467 tx ? 'T' : 'R', freq);
468 return -EINVAL;
469 }
470
471 dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
472 sai->mclk_id[tx], savediv, bestdiff);
473
474 /*
475 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
476 * set TCR2 register for playback.
477 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
478 * and capture.
479 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
480 * and capture.
481 * 4) For Tx and Rx are both Synchronous with another SAI, we just
482 * ignore it.
483 */
484 if (fsl_sai_dir_is_synced(sai, adir))
485 reg = FSL_SAI_xCR2(!tx, ofs);
486 else if (!sai->synchronous[dir])
487 reg = FSL_SAI_xCR2(tx, ofs);
488 else
489 return 0;
490
491 regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
492 FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
493
494 if (savediv == 1) {
495 regmap_update_bits(sai->regmap, reg,
496 FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
497 FSL_SAI_CR2_BYP);
498 if (fsl_sai_dir_is_synced(sai, adir))
499 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
500 FSL_SAI_CR2_BCI, FSL_SAI_CR2_BCI);
501 else
502 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
503 FSL_SAI_CR2_BCI, 0);
504 } else {
505 regmap_update_bits(sai->regmap, reg,
506 FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
507 savediv / 2 - 1);
508 }
509
510 return 0;
511 }
512
fsl_sai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)513 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
514 struct snd_pcm_hw_params *params,
515 struct snd_soc_dai *cpu_dai)
516 {
517 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
518 unsigned int ofs = sai->soc_data->reg_offset;
519 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
520 unsigned int channels = params_channels(params);
521 struct snd_dmaengine_dai_dma_data *dma_params;
522 struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg;
523 u32 word_width = params_width(params);
524 int trce_mask = 0, dl_cfg_idx = 0;
525 int dl_cfg_cnt = sai->dl_cfg_cnt;
526 u32 dl_type = FSL_SAI_DL_I2S;
527 u32 val_cr4 = 0, val_cr5 = 0;
528 u32 slots = (channels == 1) ? 2 : channels;
529 u32 slot_width = word_width;
530 int adir = tx ? RX : TX;
531 u32 pins, bclk;
532 u32 watermark;
533 int ret, i;
534
535 if (sai->slot_width)
536 slot_width = sai->slot_width;
537
538 if (sai->slots)
539 slots = sai->slots;
540 else if (sai->bclk_ratio)
541 slots = sai->bclk_ratio / slot_width;
542
543 pins = DIV_ROUND_UP(channels, slots);
544
545 /*
546 * PDM mode, channels are independent
547 * each channels are on one dataline/FIFO.
548 */
549 if (sai->is_pdm_mode) {
550 pins = channels;
551 dl_type = FSL_SAI_DL_PDM;
552 }
553
554 for (i = 0; i < dl_cfg_cnt; i++) {
555 if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) {
556 dl_cfg_idx = i;
557 break;
558 }
559 }
560
561 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) {
562 dev_err(cpu_dai->dev, "channel not supported\n");
563 return -EINVAL;
564 }
565
566 bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width);
567
568 if (!IS_ERR_OR_NULL(sai->pinctrl)) {
569 sai->pins_state = fsl_sai_get_pins_state(sai, bclk);
570 if (!IS_ERR_OR_NULL(sai->pins_state)) {
571 ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
572 if (ret) {
573 dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret);
574 return ret;
575 }
576 }
577 }
578
579 if (!sai->is_consumer_mode) {
580 ret = fsl_sai_set_bclk(cpu_dai, tx, bclk);
581 if (ret)
582 return ret;
583
584 /* Do not enable the clock if it is already enabled */
585 if (!(sai->mclk_streams & BIT(substream->stream))) {
586 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
587 if (ret)
588 return ret;
589
590 sai->mclk_streams |= BIT(substream->stream);
591 }
592 }
593
594 if (!sai->is_dsp_mode && !sai->is_pdm_mode)
595 val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
596
597 val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
598 val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
599
600 if (sai->is_lsb_first || sai->is_pdm_mode)
601 val_cr5 |= FSL_SAI_CR5_FBT(0);
602 else
603 val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
604
605 val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
606
607 /* Set to output mode to avoid tri-stated data pins */
608 if (tx)
609 val_cr4 |= FSL_SAI_CR4_CHMOD;
610
611 /*
612 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
613 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
614 * RCR5(TCR5) for playback(capture), or there will be sync error.
615 */
616
617 if (!sai->is_consumer_mode && fsl_sai_dir_is_synced(sai, adir)) {
618 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
619 FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
620 FSL_SAI_CR4_CHMOD_MASK,
621 val_cr4);
622 regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
623 FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
624 FSL_SAI_CR5_FBT_MASK, val_cr5);
625 }
626
627 /*
628 * Combine mode has limation:
629 * - Can't used for singel dataline/FIFO case except the FIFO0
630 * - Can't used for multi dataline/FIFO case except the enabled FIFOs
631 * are successive and start from FIFO0
632 *
633 * So for common usage, all multi fifo case disable the combine mode.
634 */
635 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1 || sai->is_multi_fifo_dma)
636 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
637 FSL_SAI_CR4_FCOMB_MASK, 0);
638 else
639 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
640 FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);
641
642 dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx;
643 dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) +
644 dl_cfg[dl_cfg_idx].start_off[tx] * 0x4;
645
646 if (sai->is_multi_fifo_dma) {
647 sai->audio_config[tx].words_per_fifo = min(slots, channels);
648 if (tx) {
649 sai->audio_config[tx].n_fifos_dst = pins;
650 sai->audio_config[tx].stride_fifos_dst = dl_cfg[dl_cfg_idx].next_off[tx];
651 } else {
652 sai->audio_config[tx].n_fifos_src = pins;
653 sai->audio_config[tx].stride_fifos_src = dl_cfg[dl_cfg_idx].next_off[tx];
654 }
655 dma_params->maxburst = sai->audio_config[tx].words_per_fifo * pins;
656 dma_params->peripheral_config = &sai->audio_config[tx];
657 dma_params->peripheral_size = sizeof(sai->audio_config[tx]);
658
659 watermark = tx ? (sai->soc_data->fifo_depth - dma_params->maxburst) :
660 (dma_params->maxburst - 1);
661 regmap_update_bits(sai->regmap, FSL_SAI_xCR1(tx, ofs),
662 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
663 watermark);
664 }
665
666 /* Find a proper tcre setting */
667 for (i = 0; i < sai->soc_data->pins; i++) {
668 trce_mask = (1 << (i + 1)) - 1;
669 if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins)
670 break;
671 }
672
673 regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
674 FSL_SAI_CR3_TRCE_MASK,
675 FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask)));
676
677 /*
678 * When the TERE and FSD_MSTR enabled before configuring the word width
679 * There will be no frame sync clock issue, because word width impact
680 * the generation of frame sync clock.
681 *
682 * TERE enabled earlier only for i.MX8MP case for the hardware limitation,
683 * We need to disable FSD_MSTR before configuring word width, then enable
684 * FSD_MSTR bit for this specific case.
685 */
686 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
687 !sai->is_consumer_mode)
688 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
689 FSL_SAI_CR4_FSD_MSTR, 0);
690
691 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
692 FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
693 FSL_SAI_CR4_CHMOD_MASK,
694 val_cr4);
695 regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
696 FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
697 FSL_SAI_CR5_FBT_MASK, val_cr5);
698
699 /* Enable FSD_MSTR after configuring word width */
700 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
701 !sai->is_consumer_mode)
702 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
703 FSL_SAI_CR4_FSD_MSTR, FSL_SAI_CR4_FSD_MSTR);
704
705 regmap_write(sai->regmap, FSL_SAI_xMR(tx),
706 ~0UL - ((1 << min(channels, slots)) - 1));
707
708 return 0;
709 }
710
fsl_sai_hw_free(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)711 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
712 struct snd_soc_dai *cpu_dai)
713 {
714 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
715 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
716 unsigned int ofs = sai->soc_data->reg_offset;
717
718 /* Clear xMR to avoid channel swap with mclk_with_tere enabled case */
719 regmap_write(sai->regmap, FSL_SAI_xMR(tx), 0);
720
721 regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
722 FSL_SAI_CR3_TRCE_MASK, 0);
723
724 if (!sai->is_consumer_mode &&
725 sai->mclk_streams & BIT(substream->stream)) {
726 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
727 sai->mclk_streams &= ~BIT(substream->stream);
728 }
729
730 return 0;
731 }
732
fsl_sai_config_disable(struct fsl_sai * sai,int dir)733 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
734 {
735 unsigned int ofs = sai->soc_data->reg_offset;
736 bool tx = dir == TX;
737 u32 xcsr, count = 100, mask;
738
739 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
740 mask = FSL_SAI_CSR_TERE;
741 else
742 mask = FSL_SAI_CSR_TERE | FSL_SAI_CSR_BCE;
743
744 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
745 mask, 0);
746
747 /* TERE will remain set till the end of current frame */
748 do {
749 udelay(10);
750 regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
751 } while (--count && xcsr & FSL_SAI_CSR_TERE);
752
753 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
754 FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
755
756 /*
757 * For sai master mode, after several open/close sai,
758 * there will be no frame clock, and can't recover
759 * anymore. Add software reset to fix this issue.
760 * This is a hardware bug, and will be fix in the
761 * next sai version.
762 */
763 if (!sai->is_consumer_mode) {
764 /* Software Reset */
765 regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
766 /* Clear SR bit to finish the reset */
767 regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
768 }
769 }
770
fsl_sai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)771 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
772 struct snd_soc_dai *cpu_dai)
773 {
774 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
775 unsigned int ofs = sai->soc_data->reg_offset;
776
777 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
778 int adir = tx ? RX : TX;
779 int dir = tx ? TX : RX;
780 u32 xcsr;
781
782 /*
783 * Asynchronous mode: Clear SYNC for both Tx and Rx.
784 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
785 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
786 */
787 regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
788 sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
789 regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
790 sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
791
792 /*
793 * It is recommended that the transmitter is the last enabled
794 * and the first disabled.
795 */
796 switch (cmd) {
797 case SNDRV_PCM_TRIGGER_START:
798 case SNDRV_PCM_TRIGGER_RESUME:
799 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
800 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
801 FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
802
803 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
804 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
805 /*
806 * Enable the opposite direction for synchronous mode
807 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
808 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
809 *
810 * RM recommends to enable RE after TE for case 1 and to enable
811 * TE after RE for case 2, but we here may not always guarantee
812 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
813 * TE after RE, which is against what RM recommends but should
814 * be safe to do, judging by years of testing results.
815 */
816 if (fsl_sai_dir_is_synced(sai, adir))
817 regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
818 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
819
820 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
821 FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
822 break;
823 case SNDRV_PCM_TRIGGER_STOP:
824 case SNDRV_PCM_TRIGGER_SUSPEND:
825 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
826 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
827 FSL_SAI_CSR_FRDE, 0);
828 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
829 FSL_SAI_CSR_xIE_MASK, 0);
830
831 /* Check if the opposite FRDE is also disabled */
832 regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
833
834 /*
835 * If opposite stream provides clocks for synchronous mode and
836 * it is inactive, disable it before disabling the current one
837 */
838 if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
839 fsl_sai_config_disable(sai, adir);
840
841 /*
842 * Disable current stream if either of:
843 * 1. current stream doesn't provide clocks for synchronous mode
844 * 2. current stream provides clocks for synchronous mode but no
845 * more stream is active.
846 */
847 if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
848 fsl_sai_config_disable(sai, dir);
849
850 break;
851 default:
852 return -EINVAL;
853 }
854
855 return 0;
856 }
857
fsl_sai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)858 static int fsl_sai_startup(struct snd_pcm_substream *substream,
859 struct snd_soc_dai *cpu_dai)
860 {
861 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
862 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
863 int ret;
864
865 /*
866 * EDMA controller needs period size to be a multiple of
867 * tx/rx maxburst
868 */
869 if (sai->soc_data->use_edma)
870 snd_pcm_hw_constraint_step(substream->runtime, 0,
871 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
872 tx ? sai->dma_params_tx.maxburst :
873 sai->dma_params_rx.maxburst);
874
875 ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
876 SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
877
878 return ret;
879 }
880
881 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
882 .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio,
883 .set_sysclk = fsl_sai_set_dai_sysclk,
884 .set_fmt = fsl_sai_set_dai_fmt,
885 .set_tdm_slot = fsl_sai_set_dai_tdm_slot,
886 .hw_params = fsl_sai_hw_params,
887 .hw_free = fsl_sai_hw_free,
888 .trigger = fsl_sai_trigger,
889 .startup = fsl_sai_startup,
890 };
891
fsl_sai_dai_probe(struct snd_soc_dai * cpu_dai)892 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
893 {
894 struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
895 unsigned int ofs = sai->soc_data->reg_offset;
896
897 /* Software Reset for both Tx and Rx */
898 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
899 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
900 /* Clear SR bit to finish the reset */
901 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
902 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
903
904 regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
905 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
906 sai->soc_data->fifo_depth - FSL_SAI_MAXBURST_TX);
907 regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
908 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
909 FSL_SAI_MAXBURST_RX - 1);
910
911 snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
912 &sai->dma_params_rx);
913
914 return 0;
915 }
916
fsl_sai_dai_resume(struct snd_soc_component * component)917 static int fsl_sai_dai_resume(struct snd_soc_component *component)
918 {
919 struct fsl_sai *sai = snd_soc_component_get_drvdata(component);
920 struct device *dev = &sai->pdev->dev;
921 int ret;
922
923 if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) {
924 ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
925 if (ret) {
926 dev_err(dev, "failed to set proper pins state: %d\n", ret);
927 return ret;
928 }
929 }
930
931 return 0;
932 }
933
934 static struct snd_soc_dai_driver fsl_sai_dai_template = {
935 .probe = fsl_sai_dai_probe,
936 .playback = {
937 .stream_name = "CPU-Playback",
938 .channels_min = 1,
939 .channels_max = 32,
940 .rate_min = 8000,
941 .rate_max = 2822400,
942 .rates = SNDRV_PCM_RATE_KNOT,
943 .formats = FSL_SAI_FORMATS,
944 },
945 .capture = {
946 .stream_name = "CPU-Capture",
947 .channels_min = 1,
948 .channels_max = 32,
949 .rate_min = 8000,
950 .rate_max = 2822400,
951 .rates = SNDRV_PCM_RATE_KNOT,
952 .formats = FSL_SAI_FORMATS,
953 },
954 .ops = &fsl_sai_pcm_dai_ops,
955 };
956
957 static const struct snd_soc_component_driver fsl_component = {
958 .name = "fsl-sai",
959 .resume = fsl_sai_dai_resume,
960 .legacy_dai_naming = 1,
961 };
962
963 static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
964 {FSL_SAI_TCR1(0), 0},
965 {FSL_SAI_TCR2(0), 0},
966 {FSL_SAI_TCR3(0), 0},
967 {FSL_SAI_TCR4(0), 0},
968 {FSL_SAI_TCR5(0), 0},
969 {FSL_SAI_TDR0, 0},
970 {FSL_SAI_TDR1, 0},
971 {FSL_SAI_TDR2, 0},
972 {FSL_SAI_TDR3, 0},
973 {FSL_SAI_TDR4, 0},
974 {FSL_SAI_TDR5, 0},
975 {FSL_SAI_TDR6, 0},
976 {FSL_SAI_TDR7, 0},
977 {FSL_SAI_TMR, 0},
978 {FSL_SAI_RCR1(0), 0},
979 {FSL_SAI_RCR2(0), 0},
980 {FSL_SAI_RCR3(0), 0},
981 {FSL_SAI_RCR4(0), 0},
982 {FSL_SAI_RCR5(0), 0},
983 {FSL_SAI_RMR, 0},
984 };
985
986 static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
987 {FSL_SAI_TCR1(8), 0},
988 {FSL_SAI_TCR2(8), 0},
989 {FSL_SAI_TCR3(8), 0},
990 {FSL_SAI_TCR4(8), 0},
991 {FSL_SAI_TCR5(8), 0},
992 {FSL_SAI_TDR0, 0},
993 {FSL_SAI_TDR1, 0},
994 {FSL_SAI_TDR2, 0},
995 {FSL_SAI_TDR3, 0},
996 {FSL_SAI_TDR4, 0},
997 {FSL_SAI_TDR5, 0},
998 {FSL_SAI_TDR6, 0},
999 {FSL_SAI_TDR7, 0},
1000 {FSL_SAI_TMR, 0},
1001 {FSL_SAI_RCR1(8), 0},
1002 {FSL_SAI_RCR2(8), 0},
1003 {FSL_SAI_RCR3(8), 0},
1004 {FSL_SAI_RCR4(8), 0},
1005 {FSL_SAI_RCR5(8), 0},
1006 {FSL_SAI_RMR, 0},
1007 {FSL_SAI_MCTL, 0},
1008 {FSL_SAI_MDIV, 0},
1009 };
1010
fsl_sai_readable_reg(struct device * dev,unsigned int reg)1011 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
1012 {
1013 struct fsl_sai *sai = dev_get_drvdata(dev);
1014 unsigned int ofs = sai->soc_data->reg_offset;
1015
1016 if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1017 return true;
1018
1019 if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1020 return true;
1021
1022 switch (reg) {
1023 case FSL_SAI_TFR0:
1024 case FSL_SAI_TFR1:
1025 case FSL_SAI_TFR2:
1026 case FSL_SAI_TFR3:
1027 case FSL_SAI_TFR4:
1028 case FSL_SAI_TFR5:
1029 case FSL_SAI_TFR6:
1030 case FSL_SAI_TFR7:
1031 case FSL_SAI_TMR:
1032 case FSL_SAI_RDR0:
1033 case FSL_SAI_RDR1:
1034 case FSL_SAI_RDR2:
1035 case FSL_SAI_RDR3:
1036 case FSL_SAI_RDR4:
1037 case FSL_SAI_RDR5:
1038 case FSL_SAI_RDR6:
1039 case FSL_SAI_RDR7:
1040 case FSL_SAI_RFR0:
1041 case FSL_SAI_RFR1:
1042 case FSL_SAI_RFR2:
1043 case FSL_SAI_RFR3:
1044 case FSL_SAI_RFR4:
1045 case FSL_SAI_RFR5:
1046 case FSL_SAI_RFR6:
1047 case FSL_SAI_RFR7:
1048 case FSL_SAI_RMR:
1049 case FSL_SAI_MCTL:
1050 case FSL_SAI_MDIV:
1051 case FSL_SAI_VERID:
1052 case FSL_SAI_PARAM:
1053 case FSL_SAI_TTCTN:
1054 case FSL_SAI_RTCTN:
1055 case FSL_SAI_TTCTL:
1056 case FSL_SAI_TBCTN:
1057 case FSL_SAI_TTCAP:
1058 case FSL_SAI_RTCTL:
1059 case FSL_SAI_RBCTN:
1060 case FSL_SAI_RTCAP:
1061 return true;
1062 default:
1063 return false;
1064 }
1065 }
1066
fsl_sai_volatile_reg(struct device * dev,unsigned int reg)1067 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
1068 {
1069 struct fsl_sai *sai = dev_get_drvdata(dev);
1070 unsigned int ofs = sai->soc_data->reg_offset;
1071
1072 if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
1073 return true;
1074
1075 /* Set VERID and PARAM be volatile for reading value in probe */
1076 if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
1077 return true;
1078
1079 switch (reg) {
1080 case FSL_SAI_TFR0:
1081 case FSL_SAI_TFR1:
1082 case FSL_SAI_TFR2:
1083 case FSL_SAI_TFR3:
1084 case FSL_SAI_TFR4:
1085 case FSL_SAI_TFR5:
1086 case FSL_SAI_TFR6:
1087 case FSL_SAI_TFR7:
1088 case FSL_SAI_RFR0:
1089 case FSL_SAI_RFR1:
1090 case FSL_SAI_RFR2:
1091 case FSL_SAI_RFR3:
1092 case FSL_SAI_RFR4:
1093 case FSL_SAI_RFR5:
1094 case FSL_SAI_RFR6:
1095 case FSL_SAI_RFR7:
1096 case FSL_SAI_RDR0:
1097 case FSL_SAI_RDR1:
1098 case FSL_SAI_RDR2:
1099 case FSL_SAI_RDR3:
1100 case FSL_SAI_RDR4:
1101 case FSL_SAI_RDR5:
1102 case FSL_SAI_RDR6:
1103 case FSL_SAI_RDR7:
1104 return true;
1105 default:
1106 return false;
1107 }
1108 }
1109
fsl_sai_writeable_reg(struct device * dev,unsigned int reg)1110 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
1111 {
1112 struct fsl_sai *sai = dev_get_drvdata(dev);
1113 unsigned int ofs = sai->soc_data->reg_offset;
1114
1115 if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1116 return true;
1117
1118 if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1119 return true;
1120
1121 switch (reg) {
1122 case FSL_SAI_TDR0:
1123 case FSL_SAI_TDR1:
1124 case FSL_SAI_TDR2:
1125 case FSL_SAI_TDR3:
1126 case FSL_SAI_TDR4:
1127 case FSL_SAI_TDR5:
1128 case FSL_SAI_TDR6:
1129 case FSL_SAI_TDR7:
1130 case FSL_SAI_TMR:
1131 case FSL_SAI_RMR:
1132 case FSL_SAI_MCTL:
1133 case FSL_SAI_MDIV:
1134 case FSL_SAI_TTCTL:
1135 case FSL_SAI_RTCTL:
1136 return true;
1137 default:
1138 return false;
1139 }
1140 }
1141
1142 static struct regmap_config fsl_sai_regmap_config = {
1143 .reg_bits = 32,
1144 .reg_stride = 4,
1145 .val_bits = 32,
1146 .fast_io = true,
1147
1148 .max_register = FSL_SAI_RMR,
1149 .reg_defaults = fsl_sai_reg_defaults_ofs0,
1150 .num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
1151 .readable_reg = fsl_sai_readable_reg,
1152 .volatile_reg = fsl_sai_volatile_reg,
1153 .writeable_reg = fsl_sai_writeable_reg,
1154 .cache_type = REGCACHE_FLAT,
1155 };
1156
fsl_sai_check_version(struct device * dev)1157 static int fsl_sai_check_version(struct device *dev)
1158 {
1159 struct fsl_sai *sai = dev_get_drvdata(dev);
1160 unsigned char ofs = sai->soc_data->reg_offset;
1161 unsigned int val;
1162 int ret;
1163
1164 if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
1165 return 0;
1166
1167 ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
1168 if (ret < 0)
1169 return ret;
1170
1171 dev_dbg(dev, "VERID: 0x%016X\n", val);
1172
1173 sai->verid.version = val &
1174 (FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
1175 sai->verid.version >>= FSL_SAI_VERID_MINOR_SHIFT;
1176 sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
1177
1178 ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
1179 if (ret < 0)
1180 return ret;
1181
1182 dev_dbg(dev, "PARAM: 0x%016X\n", val);
1183
1184 /* Max slots per frame, power of 2 */
1185 sai->param.slot_num = 1 <<
1186 ((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
1187
1188 /* Words per fifo, power of 2 */
1189 sai->param.fifo_depth = 1 <<
1190 ((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
1191
1192 /* Number of datalines implemented */
1193 sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
1194
1195 return 0;
1196 }
1197
1198 /*
1199 * Calculate the offset between first two datalines, don't
1200 * different offset in one case.
1201 */
fsl_sai_calc_dl_off(unsigned long dl_mask)1202 static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask)
1203 {
1204 int fbidx, nbidx, offset;
1205
1206 fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1207 nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1);
1208 offset = nbidx - fbidx - 1;
1209
1210 return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset);
1211 }
1212
1213 /*
1214 * read the fsl,dataline property from dts file.
1215 * It has 3 value for each configuration, first one means the type:
1216 * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is
1217 * dataline mask for 'tx'. for example
1218 *
1219 * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>,
1220 *
1221 * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type
1222 * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled).
1223 *
1224 */
fsl_sai_read_dlcfg(struct fsl_sai * sai)1225 static int fsl_sai_read_dlcfg(struct fsl_sai *sai)
1226 {
1227 struct platform_device *pdev = sai->pdev;
1228 struct device_node *np = pdev->dev.of_node;
1229 struct device *dev = &pdev->dev;
1230 int ret, elems, i, index, num_cfg;
1231 char *propname = "fsl,dataline";
1232 struct fsl_sai_dl_cfg *cfg;
1233 unsigned long dl_mask;
1234 unsigned int soc_dl;
1235 u32 rx, tx, type;
1236
1237 elems = of_property_count_u32_elems(np, propname);
1238
1239 if (elems <= 0) {
1240 elems = 0;
1241 } else if (elems % 3) {
1242 dev_err(dev, "Number of elements must be divisible to 3.\n");
1243 return -EINVAL;
1244 }
1245
1246 num_cfg = elems / 3;
1247 /* Add one more for default value */
1248 cfg = devm_kzalloc(&pdev->dev, (num_cfg + 1) * sizeof(*cfg), GFP_KERNEL);
1249 if (!cfg)
1250 return -ENOMEM;
1251
1252 /* Consider default value "0 0xFF 0xFF" if property is missing */
1253 soc_dl = BIT(sai->soc_data->pins) - 1;
1254 cfg[0].type = FSL_SAI_DL_DEFAULT;
1255 cfg[0].pins[0] = sai->soc_data->pins;
1256 cfg[0].mask[0] = soc_dl;
1257 cfg[0].start_off[0] = 0;
1258 cfg[0].next_off[0] = 0;
1259
1260 cfg[0].pins[1] = sai->soc_data->pins;
1261 cfg[0].mask[1] = soc_dl;
1262 cfg[0].start_off[1] = 0;
1263 cfg[0].next_off[1] = 0;
1264 for (i = 1, index = 0; i < num_cfg + 1; i++) {
1265 /*
1266 * type of dataline
1267 * 0 means default mode
1268 * 1 means I2S mode
1269 * 2 means PDM mode
1270 */
1271 ret = of_property_read_u32_index(np, propname, index++, &type);
1272 if (ret)
1273 return -EINVAL;
1274
1275 ret = of_property_read_u32_index(np, propname, index++, &rx);
1276 if (ret)
1277 return -EINVAL;
1278
1279 ret = of_property_read_u32_index(np, propname, index++, &tx);
1280 if (ret)
1281 return -EINVAL;
1282
1283 if ((rx & ~soc_dl) || (tx & ~soc_dl)) {
1284 dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl);
1285 return -EINVAL;
1286 }
1287
1288 rx = rx & soc_dl;
1289 tx = tx & soc_dl;
1290
1291 cfg[i].type = type;
1292 cfg[i].pins[0] = hweight8(rx);
1293 cfg[i].mask[0] = rx;
1294 dl_mask = rx;
1295 cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1296 cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx);
1297
1298 cfg[i].pins[1] = hweight8(tx);
1299 cfg[i].mask[1] = tx;
1300 dl_mask = tx;
1301 cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1302 cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx);
1303 }
1304
1305 sai->dl_cfg = cfg;
1306 sai->dl_cfg_cnt = num_cfg + 1;
1307 return 0;
1308 }
1309
1310 static int fsl_sai_runtime_suspend(struct device *dev);
1311 static int fsl_sai_runtime_resume(struct device *dev);
1312
fsl_sai_probe(struct platform_device * pdev)1313 static int fsl_sai_probe(struct platform_device *pdev)
1314 {
1315 struct device_node *np = pdev->dev.of_node;
1316 struct device *dev = &pdev->dev;
1317 struct fsl_sai *sai;
1318 struct regmap *gpr;
1319 void __iomem *base;
1320 char tmp[8];
1321 int irq, ret, i;
1322 int index;
1323 u32 dmas[4];
1324
1325 sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL);
1326 if (!sai)
1327 return -ENOMEM;
1328
1329 sai->pdev = pdev;
1330 sai->soc_data = of_device_get_match_data(dev);
1331
1332 sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1333
1334 base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res);
1335 if (IS_ERR(base))
1336 return PTR_ERR(base);
1337
1338 if (sai->soc_data->reg_offset == 8) {
1339 fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1340 fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1341 fsl_sai_regmap_config.num_reg_defaults =
1342 ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1343 }
1344
1345 sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config);
1346 if (IS_ERR(sai->regmap)) {
1347 dev_err(dev, "regmap init failed\n");
1348 return PTR_ERR(sai->regmap);
1349 }
1350
1351 sai->bus_clk = devm_clk_get(dev, "bus");
1352 /* Compatible with old DTB cases */
1353 if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1354 sai->bus_clk = devm_clk_get(dev, "sai");
1355 if (IS_ERR(sai->bus_clk)) {
1356 dev_err(dev, "failed to get bus clock: %ld\n",
1357 PTR_ERR(sai->bus_clk));
1358 /* -EPROBE_DEFER */
1359 return PTR_ERR(sai->bus_clk);
1360 }
1361
1362 for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1363 sprintf(tmp, "mclk%d", i);
1364 sai->mclk_clk[i] = devm_clk_get(dev, tmp);
1365 if (IS_ERR(sai->mclk_clk[i])) {
1366 dev_err(dev, "failed to get mclk%d clock: %ld\n",
1367 i, PTR_ERR(sai->mclk_clk[i]));
1368 sai->mclk_clk[i] = NULL;
1369 }
1370 }
1371
1372 if (sai->soc_data->mclk0_is_mclk1)
1373 sai->mclk_clk[0] = sai->mclk_clk[1];
1374 else
1375 sai->mclk_clk[0] = sai->bus_clk;
1376
1377 fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk,
1378 &sai->pll11k_clk);
1379
1380 /* Use Multi FIFO mode depending on the support from SDMA script */
1381 ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1382 if (!sai->soc_data->use_edma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1383 sai->is_multi_fifo_dma = true;
1384
1385 /* read dataline mask for rx and tx*/
1386 ret = fsl_sai_read_dlcfg(sai);
1387 if (ret < 0) {
1388 dev_err(dev, "failed to read dlcfg %d\n", ret);
1389 return ret;
1390 }
1391
1392 irq = platform_get_irq(pdev, 0);
1393 if (irq < 0)
1394 return irq;
1395
1396 ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED,
1397 np->name, sai);
1398 if (ret) {
1399 dev_err(dev, "failed to claim irq %u\n", irq);
1400 return ret;
1401 }
1402
1403 memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
1404 sizeof(fsl_sai_dai_template));
1405
1406 /* Sync Tx with Rx as default by following old DT binding */
1407 sai->synchronous[RX] = true;
1408 sai->synchronous[TX] = false;
1409 sai->cpu_dai_drv.symmetric_rate = 1;
1410 sai->cpu_dai_drv.symmetric_channels = 1;
1411 sai->cpu_dai_drv.symmetric_sample_bits = 1;
1412
1413 if (of_property_read_bool(np, "fsl,sai-synchronous-rx") &&
1414 of_property_read_bool(np, "fsl,sai-asynchronous")) {
1415 /* error out if both synchronous and asynchronous are present */
1416 dev_err(dev, "invalid binding for synchronous mode\n");
1417 return -EINVAL;
1418 }
1419
1420 if (of_property_read_bool(np, "fsl,sai-synchronous-rx")) {
1421 /* Sync Rx with Tx */
1422 sai->synchronous[RX] = false;
1423 sai->synchronous[TX] = true;
1424 } else if (of_property_read_bool(np, "fsl,sai-asynchronous")) {
1425 /* Discard all settings for asynchronous mode */
1426 sai->synchronous[RX] = false;
1427 sai->synchronous[TX] = false;
1428 sai->cpu_dai_drv.symmetric_rate = 0;
1429 sai->cpu_dai_drv.symmetric_channels = 0;
1430 sai->cpu_dai_drv.symmetric_sample_bits = 0;
1431 }
1432
1433 sai->mclk_direction_output = of_property_read_bool(np, "fsl,sai-mclk-direction-output");
1434
1435 if (sai->mclk_direction_output &&
1436 of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1437 gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1438 if (IS_ERR(gpr)) {
1439 dev_err(dev, "cannot find iomuxc registers\n");
1440 return PTR_ERR(gpr);
1441 }
1442
1443 index = of_alias_get_id(np, "sai");
1444 if (index < 0)
1445 return index;
1446
1447 regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1448 MCLK_DIR(index));
1449 }
1450
1451 sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0;
1452 sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0;
1453 sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
1454 sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;
1455
1456 sai->pinctrl = devm_pinctrl_get(&pdev->dev);
1457
1458 platform_set_drvdata(pdev, sai);
1459 pm_runtime_enable(dev);
1460 if (!pm_runtime_enabled(dev)) {
1461 ret = fsl_sai_runtime_resume(dev);
1462 if (ret)
1463 goto err_pm_disable;
1464 }
1465
1466 ret = pm_runtime_resume_and_get(dev);
1467 if (ret < 0)
1468 goto err_pm_get_sync;
1469
1470 /* Get sai version */
1471 ret = fsl_sai_check_version(dev);
1472 if (ret < 0)
1473 dev_warn(dev, "Error reading SAI version: %d\n", ret);
1474
1475 /* Select MCLK direction */
1476 if (sai->mclk_direction_output &&
1477 sai->soc_data->max_register >= FSL_SAI_MCTL) {
1478 regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1479 FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1480 }
1481
1482 ret = pm_runtime_put_sync(dev);
1483 if (ret < 0 && ret != -ENOSYS)
1484 goto err_pm_get_sync;
1485
1486 /*
1487 * Register platform component before registering cpu dai for there
1488 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1489 */
1490 if (sai->soc_data->use_imx_pcm) {
1491 ret = imx_pcm_dma_init(pdev);
1492 if (ret) {
1493 if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA))
1494 dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n");
1495 goto err_pm_get_sync;
1496 }
1497 } else {
1498 ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
1499 if (ret)
1500 goto err_pm_get_sync;
1501 }
1502
1503 ret = devm_snd_soc_register_component(dev, &fsl_component,
1504 &sai->cpu_dai_drv, 1);
1505 if (ret)
1506 goto err_pm_get_sync;
1507
1508 return ret;
1509
1510 err_pm_get_sync:
1511 if (!pm_runtime_status_suspended(dev))
1512 fsl_sai_runtime_suspend(dev);
1513 err_pm_disable:
1514 pm_runtime_disable(dev);
1515
1516 return ret;
1517 }
1518
fsl_sai_remove(struct platform_device * pdev)1519 static int fsl_sai_remove(struct platform_device *pdev)
1520 {
1521 pm_runtime_disable(&pdev->dev);
1522 if (!pm_runtime_status_suspended(&pdev->dev))
1523 fsl_sai_runtime_suspend(&pdev->dev);
1524
1525 return 0;
1526 }
1527
1528 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1529 .use_imx_pcm = false,
1530 .use_edma = false,
1531 .fifo_depth = 32,
1532 .pins = 1,
1533 .reg_offset = 0,
1534 .mclk0_is_mclk1 = false,
1535 .flags = 0,
1536 .max_register = FSL_SAI_RMR,
1537 };
1538
1539 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1540 .use_imx_pcm = true,
1541 .use_edma = false,
1542 .fifo_depth = 32,
1543 .pins = 1,
1544 .reg_offset = 0,
1545 .mclk0_is_mclk1 = true,
1546 .flags = 0,
1547 .max_register = FSL_SAI_RMR,
1548 };
1549
1550 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1551 .use_imx_pcm = true,
1552 .use_edma = false,
1553 .fifo_depth = 16,
1554 .pins = 2,
1555 .reg_offset = 8,
1556 .mclk0_is_mclk1 = false,
1557 .flags = PMQOS_CPU_LATENCY,
1558 .max_register = FSL_SAI_RMR,
1559 };
1560
1561 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1562 .use_imx_pcm = true,
1563 .use_edma = false,
1564 .fifo_depth = 128,
1565 .pins = 8,
1566 .reg_offset = 8,
1567 .mclk0_is_mclk1 = false,
1568 .flags = 0,
1569 .max_register = FSL_SAI_RMR,
1570 };
1571
1572 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1573 .use_imx_pcm = true,
1574 .use_edma = true,
1575 .fifo_depth = 64,
1576 .pins = 4,
1577 .reg_offset = 0,
1578 .mclk0_is_mclk1 = false,
1579 .flags = 0,
1580 .max_register = FSL_SAI_RMR,
1581 };
1582
1583 static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
1584 .use_imx_pcm = true,
1585 .use_edma = false,
1586 .fifo_depth = 128,
1587 .reg_offset = 8,
1588 .mclk0_is_mclk1 = false,
1589 .pins = 8,
1590 .flags = 0,
1591 .max_register = FSL_SAI_MCTL,
1592 };
1593
1594 static const struct fsl_sai_soc_data fsl_sai_imx8mn_data = {
1595 .use_imx_pcm = true,
1596 .use_edma = false,
1597 .fifo_depth = 128,
1598 .reg_offset = 8,
1599 .mclk0_is_mclk1 = false,
1600 .pins = 8,
1601 .flags = 0,
1602 .max_register = FSL_SAI_MDIV,
1603 };
1604
1605 static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
1606 .use_imx_pcm = true,
1607 .use_edma = false,
1608 .fifo_depth = 128,
1609 .reg_offset = 8,
1610 .mclk0_is_mclk1 = false,
1611 .pins = 8,
1612 .flags = 0,
1613 .max_register = FSL_SAI_MDIV,
1614 .mclk_with_tere = true,
1615 };
1616
1617 static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
1618 .use_imx_pcm = true,
1619 .use_edma = true,
1620 .fifo_depth = 16,
1621 .reg_offset = 8,
1622 .mclk0_is_mclk1 = false,
1623 .pins = 4,
1624 .flags = PMQOS_CPU_LATENCY,
1625 .max_register = FSL_SAI_RTCAP,
1626 };
1627
1628 static const struct of_device_id fsl_sai_ids[] = {
1629 { .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1630 { .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1631 { .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1632 { .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1633 { .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1634 { .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1635 { .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
1636 { .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
1637 { .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
1638 { .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mn_data },
1639 { /* sentinel */ }
1640 };
1641 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1642
fsl_sai_runtime_suspend(struct device * dev)1643 static int fsl_sai_runtime_suspend(struct device *dev)
1644 {
1645 struct fsl_sai *sai = dev_get_drvdata(dev);
1646
1647 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1648 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1649
1650 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1651 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1652
1653 clk_disable_unprepare(sai->bus_clk);
1654
1655 if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1656 cpu_latency_qos_remove_request(&sai->pm_qos_req);
1657
1658 regcache_cache_only(sai->regmap, true);
1659
1660 return 0;
1661 }
1662
fsl_sai_runtime_resume(struct device * dev)1663 static int fsl_sai_runtime_resume(struct device *dev)
1664 {
1665 struct fsl_sai *sai = dev_get_drvdata(dev);
1666 unsigned int ofs = sai->soc_data->reg_offset;
1667 int ret;
1668
1669 ret = clk_prepare_enable(sai->bus_clk);
1670 if (ret) {
1671 dev_err(dev, "failed to enable bus clock: %d\n", ret);
1672 return ret;
1673 }
1674
1675 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1676 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1677 if (ret)
1678 goto disable_bus_clk;
1679 }
1680
1681 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1682 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1683 if (ret)
1684 goto disable_tx_clk;
1685 }
1686
1687 if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1688 cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1689
1690 regcache_cache_only(sai->regmap, false);
1691 regcache_mark_dirty(sai->regmap);
1692 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
1693 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1694 usleep_range(1000, 2000);
1695 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
1696 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1697
1698 ret = regcache_sync(sai->regmap);
1699 if (ret)
1700 goto disable_rx_clk;
1701
1702 if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
1703 regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs),
1704 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
1705
1706 return 0;
1707
1708 disable_rx_clk:
1709 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1710 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1711 disable_tx_clk:
1712 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1713 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1714 disable_bus_clk:
1715 clk_disable_unprepare(sai->bus_clk);
1716
1717 return ret;
1718 }
1719
1720 static const struct dev_pm_ops fsl_sai_pm_ops = {
1721 SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
1722 fsl_sai_runtime_resume, NULL)
1723 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1724 pm_runtime_force_resume)
1725 };
1726
1727 static struct platform_driver fsl_sai_driver = {
1728 .probe = fsl_sai_probe,
1729 .remove = fsl_sai_remove,
1730 .driver = {
1731 .name = "fsl-sai",
1732 .pm = &fsl_sai_pm_ops,
1733 .of_match_table = fsl_sai_ids,
1734 },
1735 };
1736 module_platform_driver(fsl_sai_driver);
1737
1738 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1739 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1740 MODULE_ALIAS("platform:fsl-sai");
1741 MODULE_LICENSE("GPL");
1742