1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * auxtrace.c: AUX area trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "config.h"
30 #include "evlist.h"
31 #include "dso.h"
32 #include "map.h"
33 #include "pmu.h"
34 #include "evsel.h"
35 #include "evsel_config.h"
36 #include "symbol.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "thread_map.h"
40 #include "asm/bug.h"
41 #include "auxtrace.h"
42
43 #include <linux/hash.h>
44
45 #include "event.h"
46 #include "record.h"
47 #include "session.h"
48 #include "debug.h"
49 #include <subcmd/parse-options.h>
50
51 #include "cs-etm.h"
52 #include "intel-pt.h"
53 #include "intel-bts.h"
54 #include "arm-spe.h"
55 #include "hisi-ptt.h"
56 #include "s390-cpumsf.h"
57 #include "util/mmap.h"
58
59 #include <linux/ctype.h>
60 #include "symbol/kallsyms.h"
61 #include <internal/lib.h>
62
63 /*
64 * Make a group from 'leader' to 'last', requiring that the events were not
65 * already grouped to a different leader.
66 */
evlist__regroup(struct evlist * evlist,struct evsel * leader,struct evsel * last)67 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
68 {
69 struct evsel *evsel;
70 bool grp;
71
72 if (!evsel__is_group_leader(leader))
73 return -EINVAL;
74
75 grp = false;
76 evlist__for_each_entry(evlist, evsel) {
77 if (grp) {
78 if (!(evsel__leader(evsel) == leader ||
79 (evsel__leader(evsel) == evsel &&
80 evsel->core.nr_members <= 1)))
81 return -EINVAL;
82 } else if (evsel == leader) {
83 grp = true;
84 }
85 if (evsel == last)
86 break;
87 }
88
89 grp = false;
90 evlist__for_each_entry(evlist, evsel) {
91 if (grp) {
92 if (!evsel__has_leader(evsel, leader)) {
93 evsel__set_leader(evsel, leader);
94 if (leader->core.nr_members < 1)
95 leader->core.nr_members = 1;
96 leader->core.nr_members += 1;
97 }
98 } else if (evsel == leader) {
99 grp = true;
100 }
101 if (evsel == last)
102 break;
103 }
104
105 return 0;
106 }
107
auxtrace__dont_decode(struct perf_session * session)108 static bool auxtrace__dont_decode(struct perf_session *session)
109 {
110 return !session->itrace_synth_opts ||
111 session->itrace_synth_opts->dont_decode;
112 }
113
auxtrace_mmap__mmap(struct auxtrace_mmap * mm,struct auxtrace_mmap_params * mp,void * userpg,int fd)114 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
115 struct auxtrace_mmap_params *mp,
116 void *userpg, int fd)
117 {
118 struct perf_event_mmap_page *pc = userpg;
119
120 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
121
122 mm->userpg = userpg;
123 mm->mask = mp->mask;
124 mm->len = mp->len;
125 mm->prev = 0;
126 mm->idx = mp->idx;
127 mm->tid = mp->tid;
128 mm->cpu = mp->cpu.cpu;
129
130 if (!mp->len || !mp->mmap_needed) {
131 mm->base = NULL;
132 return 0;
133 }
134
135 pc->aux_offset = mp->offset;
136 pc->aux_size = mp->len;
137
138 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
139 if (mm->base == MAP_FAILED) {
140 pr_debug2("failed to mmap AUX area\n");
141 mm->base = NULL;
142 return -1;
143 }
144
145 return 0;
146 }
147
auxtrace_mmap__munmap(struct auxtrace_mmap * mm)148 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
149 {
150 if (mm->base) {
151 munmap(mm->base, mm->len);
152 mm->base = NULL;
153 }
154 }
155
auxtrace_mmap_params__init(struct auxtrace_mmap_params * mp,off_t auxtrace_offset,unsigned int auxtrace_pages,bool auxtrace_overwrite)156 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
157 off_t auxtrace_offset,
158 unsigned int auxtrace_pages,
159 bool auxtrace_overwrite)
160 {
161 if (auxtrace_pages) {
162 mp->offset = auxtrace_offset;
163 mp->len = auxtrace_pages * (size_t)page_size;
164 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
165 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
166 pr_debug2("AUX area mmap length %zu\n", mp->len);
167 } else {
168 mp->len = 0;
169 }
170 }
171
auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params * mp,struct evlist * evlist,struct evsel * evsel,int idx)172 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
173 struct evlist *evlist,
174 struct evsel *evsel, int idx)
175 {
176 bool per_cpu = !perf_cpu_map__empty(evlist->core.user_requested_cpus);
177
178 mp->mmap_needed = evsel->needs_auxtrace_mmap;
179
180 if (!mp->mmap_needed)
181 return;
182
183 mp->idx = idx;
184
185 if (per_cpu) {
186 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
187 if (evlist->core.threads)
188 mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
189 else
190 mp->tid = -1;
191 } else {
192 mp->cpu.cpu = -1;
193 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
194 }
195 }
196
197 #define AUXTRACE_INIT_NR_QUEUES 32
198
auxtrace_alloc_queue_array(unsigned int nr_queues)199 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
200 {
201 struct auxtrace_queue *queue_array;
202 unsigned int max_nr_queues, i;
203
204 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
205 if (nr_queues > max_nr_queues)
206 return NULL;
207
208 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
209 if (!queue_array)
210 return NULL;
211
212 for (i = 0; i < nr_queues; i++) {
213 INIT_LIST_HEAD(&queue_array[i].head);
214 queue_array[i].priv = NULL;
215 }
216
217 return queue_array;
218 }
219
auxtrace_queues__init(struct auxtrace_queues * queues)220 int auxtrace_queues__init(struct auxtrace_queues *queues)
221 {
222 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
223 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
224 if (!queues->queue_array)
225 return -ENOMEM;
226 return 0;
227 }
228
auxtrace_queues__grow(struct auxtrace_queues * queues,unsigned int new_nr_queues)229 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
230 unsigned int new_nr_queues)
231 {
232 unsigned int nr_queues = queues->nr_queues;
233 struct auxtrace_queue *queue_array;
234 unsigned int i;
235
236 if (!nr_queues)
237 nr_queues = AUXTRACE_INIT_NR_QUEUES;
238
239 while (nr_queues && nr_queues < new_nr_queues)
240 nr_queues <<= 1;
241
242 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
243 return -EINVAL;
244
245 queue_array = auxtrace_alloc_queue_array(nr_queues);
246 if (!queue_array)
247 return -ENOMEM;
248
249 for (i = 0; i < queues->nr_queues; i++) {
250 list_splice_tail(&queues->queue_array[i].head,
251 &queue_array[i].head);
252 queue_array[i].tid = queues->queue_array[i].tid;
253 queue_array[i].cpu = queues->queue_array[i].cpu;
254 queue_array[i].set = queues->queue_array[i].set;
255 queue_array[i].priv = queues->queue_array[i].priv;
256 }
257
258 queues->nr_queues = nr_queues;
259 queues->queue_array = queue_array;
260
261 return 0;
262 }
263
auxtrace_copy_data(u64 size,struct perf_session * session)264 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
265 {
266 int fd = perf_data__fd(session->data);
267 void *p;
268 ssize_t ret;
269
270 if (size > SSIZE_MAX)
271 return NULL;
272
273 p = malloc(size);
274 if (!p)
275 return NULL;
276
277 ret = readn(fd, p, size);
278 if (ret != (ssize_t)size) {
279 free(p);
280 return NULL;
281 }
282
283 return p;
284 }
285
auxtrace_queues__queue_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)286 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
287 unsigned int idx,
288 struct auxtrace_buffer *buffer)
289 {
290 struct auxtrace_queue *queue;
291 int err;
292
293 if (idx >= queues->nr_queues) {
294 err = auxtrace_queues__grow(queues, idx + 1);
295 if (err)
296 return err;
297 }
298
299 queue = &queues->queue_array[idx];
300
301 if (!queue->set) {
302 queue->set = true;
303 queue->tid = buffer->tid;
304 queue->cpu = buffer->cpu.cpu;
305 }
306
307 buffer->buffer_nr = queues->next_buffer_nr++;
308
309 list_add_tail(&buffer->list, &queue->head);
310
311 queues->new_data = true;
312 queues->populated = true;
313
314 return 0;
315 }
316
317 /* Limit buffers to 32MiB on 32-bit */
318 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
319
auxtrace_queues__split_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)320 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
321 unsigned int idx,
322 struct auxtrace_buffer *buffer)
323 {
324 u64 sz = buffer->size;
325 bool consecutive = false;
326 struct auxtrace_buffer *b;
327 int err;
328
329 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
330 b = memdup(buffer, sizeof(struct auxtrace_buffer));
331 if (!b)
332 return -ENOMEM;
333 b->size = BUFFER_LIMIT_FOR_32_BIT;
334 b->consecutive = consecutive;
335 err = auxtrace_queues__queue_buffer(queues, idx, b);
336 if (err) {
337 auxtrace_buffer__free(b);
338 return err;
339 }
340 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
341 sz -= BUFFER_LIMIT_FOR_32_BIT;
342 consecutive = true;
343 }
344
345 buffer->size = sz;
346 buffer->consecutive = consecutive;
347
348 return 0;
349 }
350
filter_cpu(struct perf_session * session,struct perf_cpu cpu)351 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
352 {
353 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
354
355 return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
356 }
357
auxtrace_queues__add_buffer(struct auxtrace_queues * queues,struct perf_session * session,unsigned int idx,struct auxtrace_buffer * buffer,struct auxtrace_buffer ** buffer_ptr)358 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
359 struct perf_session *session,
360 unsigned int idx,
361 struct auxtrace_buffer *buffer,
362 struct auxtrace_buffer **buffer_ptr)
363 {
364 int err = -ENOMEM;
365
366 if (filter_cpu(session, buffer->cpu))
367 return 0;
368
369 buffer = memdup(buffer, sizeof(*buffer));
370 if (!buffer)
371 return -ENOMEM;
372
373 if (session->one_mmap) {
374 buffer->data = buffer->data_offset - session->one_mmap_offset +
375 session->one_mmap_addr;
376 } else if (perf_data__is_pipe(session->data)) {
377 buffer->data = auxtrace_copy_data(buffer->size, session);
378 if (!buffer->data)
379 goto out_free;
380 buffer->data_needs_freeing = true;
381 } else if (BITS_PER_LONG == 32 &&
382 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
383 err = auxtrace_queues__split_buffer(queues, idx, buffer);
384 if (err)
385 goto out_free;
386 }
387
388 err = auxtrace_queues__queue_buffer(queues, idx, buffer);
389 if (err)
390 goto out_free;
391
392 /* FIXME: Doesn't work for split buffer */
393 if (buffer_ptr)
394 *buffer_ptr = buffer;
395
396 return 0;
397
398 out_free:
399 auxtrace_buffer__free(buffer);
400 return err;
401 }
402
auxtrace_queues__add_event(struct auxtrace_queues * queues,struct perf_session * session,union perf_event * event,off_t data_offset,struct auxtrace_buffer ** buffer_ptr)403 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
404 struct perf_session *session,
405 union perf_event *event, off_t data_offset,
406 struct auxtrace_buffer **buffer_ptr)
407 {
408 struct auxtrace_buffer buffer = {
409 .pid = -1,
410 .tid = event->auxtrace.tid,
411 .cpu = { event->auxtrace.cpu },
412 .data_offset = data_offset,
413 .offset = event->auxtrace.offset,
414 .reference = event->auxtrace.reference,
415 .size = event->auxtrace.size,
416 };
417 unsigned int idx = event->auxtrace.idx;
418
419 return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
420 buffer_ptr);
421 }
422
auxtrace_queues__add_indexed_event(struct auxtrace_queues * queues,struct perf_session * session,off_t file_offset,size_t sz)423 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
424 struct perf_session *session,
425 off_t file_offset, size_t sz)
426 {
427 union perf_event *event;
428 int err;
429 char buf[PERF_SAMPLE_MAX_SIZE];
430
431 err = perf_session__peek_event(session, file_offset, buf,
432 PERF_SAMPLE_MAX_SIZE, &event, NULL);
433 if (err)
434 return err;
435
436 if (event->header.type == PERF_RECORD_AUXTRACE) {
437 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
438 event->header.size != sz) {
439 err = -EINVAL;
440 goto out;
441 }
442 file_offset += event->header.size;
443 err = auxtrace_queues__add_event(queues, session, event,
444 file_offset, NULL);
445 }
446 out:
447 return err;
448 }
449
auxtrace_queues__free(struct auxtrace_queues * queues)450 void auxtrace_queues__free(struct auxtrace_queues *queues)
451 {
452 unsigned int i;
453
454 for (i = 0; i < queues->nr_queues; i++) {
455 while (!list_empty(&queues->queue_array[i].head)) {
456 struct auxtrace_buffer *buffer;
457
458 buffer = list_entry(queues->queue_array[i].head.next,
459 struct auxtrace_buffer, list);
460 list_del_init(&buffer->list);
461 auxtrace_buffer__free(buffer);
462 }
463 }
464
465 zfree(&queues->queue_array);
466 queues->nr_queues = 0;
467 }
468
auxtrace_heapify(struct auxtrace_heap_item * heap_array,unsigned int pos,unsigned int queue_nr,u64 ordinal)469 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
470 unsigned int pos, unsigned int queue_nr,
471 u64 ordinal)
472 {
473 unsigned int parent;
474
475 while (pos) {
476 parent = (pos - 1) >> 1;
477 if (heap_array[parent].ordinal <= ordinal)
478 break;
479 heap_array[pos] = heap_array[parent];
480 pos = parent;
481 }
482 heap_array[pos].queue_nr = queue_nr;
483 heap_array[pos].ordinal = ordinal;
484 }
485
auxtrace_heap__add(struct auxtrace_heap * heap,unsigned int queue_nr,u64 ordinal)486 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
487 u64 ordinal)
488 {
489 struct auxtrace_heap_item *heap_array;
490
491 if (queue_nr >= heap->heap_sz) {
492 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
493
494 while (heap_sz <= queue_nr)
495 heap_sz <<= 1;
496 heap_array = realloc(heap->heap_array,
497 heap_sz * sizeof(struct auxtrace_heap_item));
498 if (!heap_array)
499 return -ENOMEM;
500 heap->heap_array = heap_array;
501 heap->heap_sz = heap_sz;
502 }
503
504 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
505
506 return 0;
507 }
508
auxtrace_heap__free(struct auxtrace_heap * heap)509 void auxtrace_heap__free(struct auxtrace_heap *heap)
510 {
511 zfree(&heap->heap_array);
512 heap->heap_cnt = 0;
513 heap->heap_sz = 0;
514 }
515
auxtrace_heap__pop(struct auxtrace_heap * heap)516 void auxtrace_heap__pop(struct auxtrace_heap *heap)
517 {
518 unsigned int pos, last, heap_cnt = heap->heap_cnt;
519 struct auxtrace_heap_item *heap_array;
520
521 if (!heap_cnt)
522 return;
523
524 heap->heap_cnt -= 1;
525
526 heap_array = heap->heap_array;
527
528 pos = 0;
529 while (1) {
530 unsigned int left, right;
531
532 left = (pos << 1) + 1;
533 if (left >= heap_cnt)
534 break;
535 right = left + 1;
536 if (right >= heap_cnt) {
537 heap_array[pos] = heap_array[left];
538 return;
539 }
540 if (heap_array[left].ordinal < heap_array[right].ordinal) {
541 heap_array[pos] = heap_array[left];
542 pos = left;
543 } else {
544 heap_array[pos] = heap_array[right];
545 pos = right;
546 }
547 }
548
549 last = heap_cnt - 1;
550 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
551 heap_array[last].ordinal);
552 }
553
auxtrace_record__info_priv_size(struct auxtrace_record * itr,struct evlist * evlist)554 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
555 struct evlist *evlist)
556 {
557 if (itr)
558 return itr->info_priv_size(itr, evlist);
559 return 0;
560 }
561
auxtrace_not_supported(void)562 static int auxtrace_not_supported(void)
563 {
564 pr_err("AUX area tracing is not supported on this architecture\n");
565 return -EINVAL;
566 }
567
auxtrace_record__info_fill(struct auxtrace_record * itr,struct perf_session * session,struct perf_record_auxtrace_info * auxtrace_info,size_t priv_size)568 int auxtrace_record__info_fill(struct auxtrace_record *itr,
569 struct perf_session *session,
570 struct perf_record_auxtrace_info *auxtrace_info,
571 size_t priv_size)
572 {
573 if (itr)
574 return itr->info_fill(itr, session, auxtrace_info, priv_size);
575 return auxtrace_not_supported();
576 }
577
auxtrace_record__free(struct auxtrace_record * itr)578 void auxtrace_record__free(struct auxtrace_record *itr)
579 {
580 if (itr)
581 itr->free(itr);
582 }
583
auxtrace_record__snapshot_start(struct auxtrace_record * itr)584 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
585 {
586 if (itr && itr->snapshot_start)
587 return itr->snapshot_start(itr);
588 return 0;
589 }
590
auxtrace_record__snapshot_finish(struct auxtrace_record * itr,bool on_exit)591 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
592 {
593 if (!on_exit && itr && itr->snapshot_finish)
594 return itr->snapshot_finish(itr);
595 return 0;
596 }
597
auxtrace_record__find_snapshot(struct auxtrace_record * itr,int idx,struct auxtrace_mmap * mm,unsigned char * data,u64 * head,u64 * old)598 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
599 struct auxtrace_mmap *mm,
600 unsigned char *data, u64 *head, u64 *old)
601 {
602 if (itr && itr->find_snapshot)
603 return itr->find_snapshot(itr, idx, mm, data, head, old);
604 return 0;
605 }
606
auxtrace_record__options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts)607 int auxtrace_record__options(struct auxtrace_record *itr,
608 struct evlist *evlist,
609 struct record_opts *opts)
610 {
611 if (itr) {
612 itr->evlist = evlist;
613 return itr->recording_options(itr, evlist, opts);
614 }
615 return 0;
616 }
617
auxtrace_record__reference(struct auxtrace_record * itr)618 u64 auxtrace_record__reference(struct auxtrace_record *itr)
619 {
620 if (itr)
621 return itr->reference(itr);
622 return 0;
623 }
624
auxtrace_parse_snapshot_options(struct auxtrace_record * itr,struct record_opts * opts,const char * str)625 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
626 struct record_opts *opts, const char *str)
627 {
628 if (!str)
629 return 0;
630
631 /* PMU-agnostic options */
632 switch (*str) {
633 case 'e':
634 opts->auxtrace_snapshot_on_exit = true;
635 str++;
636 break;
637 default:
638 break;
639 }
640
641 if (itr && itr->parse_snapshot_options)
642 return itr->parse_snapshot_options(itr, opts, str);
643
644 pr_err("No AUX area tracing to snapshot\n");
645 return -EINVAL;
646 }
647
evlist__enable_event_idx(struct evlist * evlist,struct evsel * evsel,int idx)648 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
649 {
650 bool per_cpu_mmaps = !perf_cpu_map__empty(evlist->core.user_requested_cpus);
651
652 if (per_cpu_mmaps) {
653 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
654 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
655
656 if (cpu_map_idx == -1)
657 return -EINVAL;
658 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
659 }
660
661 return perf_evsel__enable_thread(&evsel->core, idx);
662 }
663
auxtrace_record__read_finish(struct auxtrace_record * itr,int idx)664 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
665 {
666 struct evsel *evsel;
667
668 if (!itr->evlist || !itr->pmu)
669 return -EINVAL;
670
671 evlist__for_each_entry(itr->evlist, evsel) {
672 if (evsel->core.attr.type == itr->pmu->type) {
673 if (evsel->disabled)
674 return 0;
675 return evlist__enable_event_idx(itr->evlist, evsel, idx);
676 }
677 }
678 return -EINVAL;
679 }
680
681 /*
682 * Event record size is 16-bit which results in a maximum size of about 64KiB.
683 * Allow about 4KiB for the rest of the sample record, to give a maximum
684 * AUX area sample size of 60KiB.
685 */
686 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
687
688 /* Arbitrary default size if no other default provided */
689 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
690
auxtrace_validate_aux_sample_size(struct evlist * evlist,struct record_opts * opts)691 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
692 struct record_opts *opts)
693 {
694 struct evsel *evsel;
695 bool has_aux_leader = false;
696 u32 sz;
697
698 evlist__for_each_entry(evlist, evsel) {
699 sz = evsel->core.attr.aux_sample_size;
700 if (evsel__is_group_leader(evsel)) {
701 has_aux_leader = evsel__is_aux_event(evsel);
702 if (sz) {
703 if (has_aux_leader)
704 pr_err("Cannot add AUX area sampling to an AUX area event\n");
705 else
706 pr_err("Cannot add AUX area sampling to a group leader\n");
707 return -EINVAL;
708 }
709 }
710 if (sz > MAX_AUX_SAMPLE_SIZE) {
711 pr_err("AUX area sample size %u too big, max. %d\n",
712 sz, MAX_AUX_SAMPLE_SIZE);
713 return -EINVAL;
714 }
715 if (sz) {
716 if (!has_aux_leader) {
717 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
718 return -EINVAL;
719 }
720 evsel__set_sample_bit(evsel, AUX);
721 opts->auxtrace_sample_mode = true;
722 } else {
723 evsel__reset_sample_bit(evsel, AUX);
724 }
725 }
726
727 if (!opts->auxtrace_sample_mode) {
728 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
729 return -EINVAL;
730 }
731
732 if (!perf_can_aux_sample()) {
733 pr_err("AUX area sampling is not supported by kernel\n");
734 return -EINVAL;
735 }
736
737 return 0;
738 }
739
auxtrace_parse_sample_options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts,const char * str)740 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
741 struct evlist *evlist,
742 struct record_opts *opts, const char *str)
743 {
744 struct evsel_config_term *term;
745 struct evsel *aux_evsel;
746 bool has_aux_sample_size = false;
747 bool has_aux_leader = false;
748 struct evsel *evsel;
749 char *endptr;
750 unsigned long sz;
751
752 if (!str)
753 goto no_opt;
754
755 if (!itr) {
756 pr_err("No AUX area event to sample\n");
757 return -EINVAL;
758 }
759
760 sz = strtoul(str, &endptr, 0);
761 if (*endptr || sz > UINT_MAX) {
762 pr_err("Bad AUX area sampling option: '%s'\n", str);
763 return -EINVAL;
764 }
765
766 if (!sz)
767 sz = itr->default_aux_sample_size;
768
769 if (!sz)
770 sz = DEFAULT_AUX_SAMPLE_SIZE;
771
772 /* Set aux_sample_size based on --aux-sample option */
773 evlist__for_each_entry(evlist, evsel) {
774 if (evsel__is_group_leader(evsel)) {
775 has_aux_leader = evsel__is_aux_event(evsel);
776 } else if (has_aux_leader) {
777 evsel->core.attr.aux_sample_size = sz;
778 }
779 }
780 no_opt:
781 aux_evsel = NULL;
782 /* Override with aux_sample_size from config term */
783 evlist__for_each_entry(evlist, evsel) {
784 if (evsel__is_aux_event(evsel))
785 aux_evsel = evsel;
786 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
787 if (term) {
788 has_aux_sample_size = true;
789 evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
790 /* If possible, group with the AUX event */
791 if (aux_evsel && evsel->core.attr.aux_sample_size)
792 evlist__regroup(evlist, aux_evsel, evsel);
793 }
794 }
795
796 if (!str && !has_aux_sample_size)
797 return 0;
798
799 if (!itr) {
800 pr_err("No AUX area event to sample\n");
801 return -EINVAL;
802 }
803
804 return auxtrace_validate_aux_sample_size(evlist, opts);
805 }
806
auxtrace_regroup_aux_output(struct evlist * evlist)807 void auxtrace_regroup_aux_output(struct evlist *evlist)
808 {
809 struct evsel *evsel, *aux_evsel = NULL;
810 struct evsel_config_term *term;
811
812 evlist__for_each_entry(evlist, evsel) {
813 if (evsel__is_aux_event(evsel))
814 aux_evsel = evsel;
815 term = evsel__get_config_term(evsel, AUX_OUTPUT);
816 /* If possible, group with the AUX event */
817 if (term && aux_evsel)
818 evlist__regroup(evlist, aux_evsel, evsel);
819 }
820 }
821
822 struct auxtrace_record *__weak
auxtrace_record__init(struct evlist * evlist __maybe_unused,int * err)823 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
824 {
825 *err = 0;
826 return NULL;
827 }
828
auxtrace_index__alloc(struct list_head * head)829 static int auxtrace_index__alloc(struct list_head *head)
830 {
831 struct auxtrace_index *auxtrace_index;
832
833 auxtrace_index = malloc(sizeof(struct auxtrace_index));
834 if (!auxtrace_index)
835 return -ENOMEM;
836
837 auxtrace_index->nr = 0;
838 INIT_LIST_HEAD(&auxtrace_index->list);
839
840 list_add_tail(&auxtrace_index->list, head);
841
842 return 0;
843 }
844
auxtrace_index__free(struct list_head * head)845 void auxtrace_index__free(struct list_head *head)
846 {
847 struct auxtrace_index *auxtrace_index, *n;
848
849 list_for_each_entry_safe(auxtrace_index, n, head, list) {
850 list_del_init(&auxtrace_index->list);
851 free(auxtrace_index);
852 }
853 }
854
auxtrace_index__last(struct list_head * head)855 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
856 {
857 struct auxtrace_index *auxtrace_index;
858 int err;
859
860 if (list_empty(head)) {
861 err = auxtrace_index__alloc(head);
862 if (err)
863 return NULL;
864 }
865
866 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
867
868 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
869 err = auxtrace_index__alloc(head);
870 if (err)
871 return NULL;
872 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
873 list);
874 }
875
876 return auxtrace_index;
877 }
878
auxtrace_index__auxtrace_event(struct list_head * head,union perf_event * event,off_t file_offset)879 int auxtrace_index__auxtrace_event(struct list_head *head,
880 union perf_event *event, off_t file_offset)
881 {
882 struct auxtrace_index *auxtrace_index;
883 size_t nr;
884
885 auxtrace_index = auxtrace_index__last(head);
886 if (!auxtrace_index)
887 return -ENOMEM;
888
889 nr = auxtrace_index->nr;
890 auxtrace_index->entries[nr].file_offset = file_offset;
891 auxtrace_index->entries[nr].sz = event->header.size;
892 auxtrace_index->nr += 1;
893
894 return 0;
895 }
896
auxtrace_index__do_write(int fd,struct auxtrace_index * auxtrace_index)897 static int auxtrace_index__do_write(int fd,
898 struct auxtrace_index *auxtrace_index)
899 {
900 struct auxtrace_index_entry ent;
901 size_t i;
902
903 for (i = 0; i < auxtrace_index->nr; i++) {
904 ent.file_offset = auxtrace_index->entries[i].file_offset;
905 ent.sz = auxtrace_index->entries[i].sz;
906 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
907 return -errno;
908 }
909 return 0;
910 }
911
auxtrace_index__write(int fd,struct list_head * head)912 int auxtrace_index__write(int fd, struct list_head *head)
913 {
914 struct auxtrace_index *auxtrace_index;
915 u64 total = 0;
916 int err;
917
918 list_for_each_entry(auxtrace_index, head, list)
919 total += auxtrace_index->nr;
920
921 if (writen(fd, &total, sizeof(total)) != sizeof(total))
922 return -errno;
923
924 list_for_each_entry(auxtrace_index, head, list) {
925 err = auxtrace_index__do_write(fd, auxtrace_index);
926 if (err)
927 return err;
928 }
929
930 return 0;
931 }
932
auxtrace_index__process_entry(int fd,struct list_head * head,bool needs_swap)933 static int auxtrace_index__process_entry(int fd, struct list_head *head,
934 bool needs_swap)
935 {
936 struct auxtrace_index *auxtrace_index;
937 struct auxtrace_index_entry ent;
938 size_t nr;
939
940 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
941 return -1;
942
943 auxtrace_index = auxtrace_index__last(head);
944 if (!auxtrace_index)
945 return -1;
946
947 nr = auxtrace_index->nr;
948 if (needs_swap) {
949 auxtrace_index->entries[nr].file_offset =
950 bswap_64(ent.file_offset);
951 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
952 } else {
953 auxtrace_index->entries[nr].file_offset = ent.file_offset;
954 auxtrace_index->entries[nr].sz = ent.sz;
955 }
956
957 auxtrace_index->nr = nr + 1;
958
959 return 0;
960 }
961
auxtrace_index__process(int fd,u64 size,struct perf_session * session,bool needs_swap)962 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
963 bool needs_swap)
964 {
965 struct list_head *head = &session->auxtrace_index;
966 u64 nr;
967
968 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
969 return -1;
970
971 if (needs_swap)
972 nr = bswap_64(nr);
973
974 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
975 return -1;
976
977 while (nr--) {
978 int err;
979
980 err = auxtrace_index__process_entry(fd, head, needs_swap);
981 if (err)
982 return -1;
983 }
984
985 return 0;
986 }
987
auxtrace_queues__process_index_entry(struct auxtrace_queues * queues,struct perf_session * session,struct auxtrace_index_entry * ent)988 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
989 struct perf_session *session,
990 struct auxtrace_index_entry *ent)
991 {
992 return auxtrace_queues__add_indexed_event(queues, session,
993 ent->file_offset, ent->sz);
994 }
995
auxtrace_queues__process_index(struct auxtrace_queues * queues,struct perf_session * session)996 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
997 struct perf_session *session)
998 {
999 struct auxtrace_index *auxtrace_index;
1000 struct auxtrace_index_entry *ent;
1001 size_t i;
1002 int err;
1003
1004 if (auxtrace__dont_decode(session))
1005 return 0;
1006
1007 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1008 for (i = 0; i < auxtrace_index->nr; i++) {
1009 ent = &auxtrace_index->entries[i];
1010 err = auxtrace_queues__process_index_entry(queues,
1011 session,
1012 ent);
1013 if (err)
1014 return err;
1015 }
1016 }
1017 return 0;
1018 }
1019
auxtrace_buffer__next(struct auxtrace_queue * queue,struct auxtrace_buffer * buffer)1020 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1021 struct auxtrace_buffer *buffer)
1022 {
1023 if (buffer) {
1024 if (list_is_last(&buffer->list, &queue->head))
1025 return NULL;
1026 return list_entry(buffer->list.next, struct auxtrace_buffer,
1027 list);
1028 } else {
1029 if (list_empty(&queue->head))
1030 return NULL;
1031 return list_entry(queue->head.next, struct auxtrace_buffer,
1032 list);
1033 }
1034 }
1035
auxtrace_queues__sample_queue(struct auxtrace_queues * queues,struct perf_sample * sample,struct perf_session * session)1036 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1037 struct perf_sample *sample,
1038 struct perf_session *session)
1039 {
1040 struct perf_sample_id *sid;
1041 unsigned int idx;
1042 u64 id;
1043
1044 id = sample->id;
1045 if (!id)
1046 return NULL;
1047
1048 sid = evlist__id2sid(session->evlist, id);
1049 if (!sid)
1050 return NULL;
1051
1052 idx = sid->idx;
1053
1054 if (idx >= queues->nr_queues)
1055 return NULL;
1056
1057 return &queues->queue_array[idx];
1058 }
1059
auxtrace_queues__add_sample(struct auxtrace_queues * queues,struct perf_session * session,struct perf_sample * sample,u64 data_offset,u64 reference)1060 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1061 struct perf_session *session,
1062 struct perf_sample *sample, u64 data_offset,
1063 u64 reference)
1064 {
1065 struct auxtrace_buffer buffer = {
1066 .pid = -1,
1067 .data_offset = data_offset,
1068 .reference = reference,
1069 .size = sample->aux_sample.size,
1070 };
1071 struct perf_sample_id *sid;
1072 u64 id = sample->id;
1073 unsigned int idx;
1074
1075 if (!id)
1076 return -EINVAL;
1077
1078 sid = evlist__id2sid(session->evlist, id);
1079 if (!sid)
1080 return -ENOENT;
1081
1082 idx = sid->idx;
1083 buffer.tid = sid->tid;
1084 buffer.cpu = sid->cpu;
1085
1086 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1087 }
1088
1089 struct queue_data {
1090 bool samples;
1091 bool events;
1092 };
1093
auxtrace_queue_data_cb(struct perf_session * session,union perf_event * event,u64 offset,void * data)1094 static int auxtrace_queue_data_cb(struct perf_session *session,
1095 union perf_event *event, u64 offset,
1096 void *data)
1097 {
1098 struct queue_data *qd = data;
1099 struct perf_sample sample;
1100 int err;
1101
1102 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1103 if (event->header.size < sizeof(struct perf_record_auxtrace))
1104 return -EINVAL;
1105 offset += event->header.size;
1106 return session->auxtrace->queue_data(session, NULL, event,
1107 offset);
1108 }
1109
1110 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1111 return 0;
1112
1113 err = evlist__parse_sample(session->evlist, event, &sample);
1114 if (err)
1115 return err;
1116
1117 if (!sample.aux_sample.size)
1118 return 0;
1119
1120 offset += sample.aux_sample.data - (void *)event;
1121
1122 return session->auxtrace->queue_data(session, &sample, NULL, offset);
1123 }
1124
auxtrace_queue_data(struct perf_session * session,bool samples,bool events)1125 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1126 {
1127 struct queue_data qd = {
1128 .samples = samples,
1129 .events = events,
1130 };
1131
1132 if (auxtrace__dont_decode(session))
1133 return 0;
1134
1135 if (perf_data__is_pipe(session->data))
1136 return 0;
1137
1138 if (!session->auxtrace || !session->auxtrace->queue_data)
1139 return -EINVAL;
1140
1141 return perf_session__peek_events(session, session->header.data_offset,
1142 session->header.data_size,
1143 auxtrace_queue_data_cb, &qd);
1144 }
1145
auxtrace_buffer__get_data_rw(struct auxtrace_buffer * buffer,int fd,bool rw)1146 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1147 {
1148 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1149 size_t adj = buffer->data_offset & (page_size - 1);
1150 size_t size = buffer->size + adj;
1151 off_t file_offset = buffer->data_offset - adj;
1152 void *addr;
1153
1154 if (buffer->data)
1155 return buffer->data;
1156
1157 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1158 if (addr == MAP_FAILED)
1159 return NULL;
1160
1161 buffer->mmap_addr = addr;
1162 buffer->mmap_size = size;
1163
1164 buffer->data = addr + adj;
1165
1166 return buffer->data;
1167 }
1168
auxtrace_buffer__put_data(struct auxtrace_buffer * buffer)1169 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1170 {
1171 if (!buffer->data || !buffer->mmap_addr)
1172 return;
1173 munmap(buffer->mmap_addr, buffer->mmap_size);
1174 buffer->mmap_addr = NULL;
1175 buffer->mmap_size = 0;
1176 buffer->data = NULL;
1177 buffer->use_data = NULL;
1178 }
1179
auxtrace_buffer__drop_data(struct auxtrace_buffer * buffer)1180 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1181 {
1182 auxtrace_buffer__put_data(buffer);
1183 if (buffer->data_needs_freeing) {
1184 buffer->data_needs_freeing = false;
1185 zfree(&buffer->data);
1186 buffer->use_data = NULL;
1187 buffer->size = 0;
1188 }
1189 }
1190
auxtrace_buffer__free(struct auxtrace_buffer * buffer)1191 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1192 {
1193 auxtrace_buffer__drop_data(buffer);
1194 free(buffer);
1195 }
1196
auxtrace_synth_guest_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp,pid_t machine_pid,int vcpu)1197 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1198 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1199 const char *msg, u64 timestamp,
1200 pid_t machine_pid, int vcpu)
1201 {
1202 size_t size;
1203
1204 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1205
1206 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1207 auxtrace_error->type = type;
1208 auxtrace_error->code = code;
1209 auxtrace_error->cpu = cpu;
1210 auxtrace_error->pid = pid;
1211 auxtrace_error->tid = tid;
1212 auxtrace_error->fmt = 1;
1213 auxtrace_error->ip = ip;
1214 auxtrace_error->time = timestamp;
1215 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1216 if (machine_pid) {
1217 auxtrace_error->fmt = 2;
1218 auxtrace_error->machine_pid = machine_pid;
1219 auxtrace_error->vcpu = vcpu;
1220 size = sizeof(*auxtrace_error);
1221 } else {
1222 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1223 strlen(auxtrace_error->msg) + 1;
1224 }
1225 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1226 }
1227
auxtrace_synth_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp)1228 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1229 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1230 const char *msg, u64 timestamp)
1231 {
1232 auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1233 ip, msg, timestamp, 0, -1);
1234 }
1235
perf_event__synthesize_auxtrace_info(struct auxtrace_record * itr,struct perf_tool * tool,struct perf_session * session,perf_event__handler_t process)1236 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1237 struct perf_tool *tool,
1238 struct perf_session *session,
1239 perf_event__handler_t process)
1240 {
1241 union perf_event *ev;
1242 size_t priv_size;
1243 int err;
1244
1245 pr_debug2("Synthesizing auxtrace information\n");
1246 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1247 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1248 if (!ev)
1249 return -ENOMEM;
1250
1251 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1252 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1253 priv_size;
1254 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1255 priv_size);
1256 if (err)
1257 goto out_free;
1258
1259 err = process(tool, ev, NULL, NULL);
1260 out_free:
1261 free(ev);
1262 return err;
1263 }
1264
unleader_evsel(struct evlist * evlist,struct evsel * leader)1265 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1266 {
1267 struct evsel *new_leader = NULL;
1268 struct evsel *evsel;
1269
1270 /* Find new leader for the group */
1271 evlist__for_each_entry(evlist, evsel) {
1272 if (!evsel__has_leader(evsel, leader) || evsel == leader)
1273 continue;
1274 if (!new_leader)
1275 new_leader = evsel;
1276 evsel__set_leader(evsel, new_leader);
1277 }
1278
1279 /* Update group information */
1280 if (new_leader) {
1281 zfree(&new_leader->group_name);
1282 new_leader->group_name = leader->group_name;
1283 leader->group_name = NULL;
1284
1285 new_leader->core.nr_members = leader->core.nr_members - 1;
1286 leader->core.nr_members = 1;
1287 }
1288 }
1289
unleader_auxtrace(struct perf_session * session)1290 static void unleader_auxtrace(struct perf_session *session)
1291 {
1292 struct evsel *evsel;
1293
1294 evlist__for_each_entry(session->evlist, evsel) {
1295 if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1296 evsel__is_group_leader(evsel)) {
1297 unleader_evsel(session->evlist, evsel);
1298 }
1299 }
1300 }
1301
perf_event__process_auxtrace_info(struct perf_session * session,union perf_event * event)1302 int perf_event__process_auxtrace_info(struct perf_session *session,
1303 union perf_event *event)
1304 {
1305 enum auxtrace_type type = event->auxtrace_info.type;
1306 int err;
1307
1308 if (dump_trace)
1309 fprintf(stdout, " type: %u\n", type);
1310
1311 switch (type) {
1312 case PERF_AUXTRACE_INTEL_PT:
1313 err = intel_pt_process_auxtrace_info(event, session);
1314 break;
1315 case PERF_AUXTRACE_INTEL_BTS:
1316 err = intel_bts_process_auxtrace_info(event, session);
1317 break;
1318 case PERF_AUXTRACE_ARM_SPE:
1319 err = arm_spe_process_auxtrace_info(event, session);
1320 break;
1321 case PERF_AUXTRACE_CS_ETM:
1322 err = cs_etm__process_auxtrace_info(event, session);
1323 break;
1324 case PERF_AUXTRACE_S390_CPUMSF:
1325 err = s390_cpumsf_process_auxtrace_info(event, session);
1326 break;
1327 case PERF_AUXTRACE_HISI_PTT:
1328 err = hisi_ptt_process_auxtrace_info(event, session);
1329 break;
1330 case PERF_AUXTRACE_UNKNOWN:
1331 default:
1332 return -EINVAL;
1333 }
1334
1335 if (err)
1336 return err;
1337
1338 unleader_auxtrace(session);
1339
1340 return 0;
1341 }
1342
perf_event__process_auxtrace(struct perf_session * session,union perf_event * event)1343 s64 perf_event__process_auxtrace(struct perf_session *session,
1344 union perf_event *event)
1345 {
1346 s64 err;
1347
1348 if (dump_trace)
1349 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n",
1350 event->auxtrace.size, event->auxtrace.offset,
1351 event->auxtrace.reference, event->auxtrace.idx,
1352 event->auxtrace.tid, event->auxtrace.cpu);
1353
1354 if (auxtrace__dont_decode(session))
1355 return event->auxtrace.size;
1356
1357 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1358 return -EINVAL;
1359
1360 err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1361 if (err < 0)
1362 return err;
1363
1364 return event->auxtrace.size;
1365 }
1366
1367 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
1368 #define PERF_ITRACE_DEFAULT_PERIOD 100000
1369 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
1370 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
1371 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
1372 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
1373
itrace_synth_opts__set_default(struct itrace_synth_opts * synth_opts,bool no_sample)1374 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1375 bool no_sample)
1376 {
1377 synth_opts->branches = true;
1378 synth_opts->transactions = true;
1379 synth_opts->ptwrites = true;
1380 synth_opts->pwr_events = true;
1381 synth_opts->other_events = true;
1382 synth_opts->intr_events = true;
1383 synth_opts->errors = true;
1384 synth_opts->flc = true;
1385 synth_opts->llc = true;
1386 synth_opts->tlb = true;
1387 synth_opts->mem = true;
1388 synth_opts->remote_access = true;
1389
1390 if (no_sample) {
1391 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1392 synth_opts->period = 1;
1393 synth_opts->calls = true;
1394 } else {
1395 synth_opts->instructions = true;
1396 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1397 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1398 }
1399 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1400 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1401 synth_opts->initial_skip = 0;
1402 }
1403
get_flag(const char ** ptr,unsigned int * flags)1404 static int get_flag(const char **ptr, unsigned int *flags)
1405 {
1406 while (1) {
1407 char c = **ptr;
1408
1409 if (c >= 'a' && c <= 'z') {
1410 *flags |= 1 << (c - 'a');
1411 ++*ptr;
1412 return 0;
1413 } else if (c == ' ') {
1414 ++*ptr;
1415 continue;
1416 } else {
1417 return -1;
1418 }
1419 }
1420 }
1421
get_flags(const char ** ptr,unsigned int * plus_flags,unsigned int * minus_flags)1422 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1423 {
1424 while (1) {
1425 switch (**ptr) {
1426 case '+':
1427 ++*ptr;
1428 if (get_flag(ptr, plus_flags))
1429 return -1;
1430 break;
1431 case '-':
1432 ++*ptr;
1433 if (get_flag(ptr, minus_flags))
1434 return -1;
1435 break;
1436 case ' ':
1437 ++*ptr;
1438 break;
1439 default:
1440 return 0;
1441 }
1442 }
1443 }
1444
1445 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1446
itrace_log_on_error_size(void)1447 static unsigned int itrace_log_on_error_size(void)
1448 {
1449 unsigned int sz = 0;
1450
1451 perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1452 return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1453 }
1454
1455 /*
1456 * Please check tools/perf/Documentation/perf-script.txt for information
1457 * about the options parsed here, which is introduced after this cset,
1458 * when support in 'perf script' for these options is introduced.
1459 */
itrace_do_parse_synth_opts(struct itrace_synth_opts * synth_opts,const char * str,int unset)1460 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1461 const char *str, int unset)
1462 {
1463 const char *p;
1464 char *endptr;
1465 bool period_type_set = false;
1466 bool period_set = false;
1467
1468 synth_opts->set = true;
1469
1470 if (unset) {
1471 synth_opts->dont_decode = true;
1472 return 0;
1473 }
1474
1475 if (!str) {
1476 itrace_synth_opts__set_default(synth_opts,
1477 synth_opts->default_no_sample);
1478 return 0;
1479 }
1480
1481 for (p = str; *p;) {
1482 switch (*p++) {
1483 case 'i':
1484 synth_opts->instructions = true;
1485 while (*p == ' ' || *p == ',')
1486 p += 1;
1487 if (isdigit(*p)) {
1488 synth_opts->period = strtoull(p, &endptr, 10);
1489 period_set = true;
1490 p = endptr;
1491 while (*p == ' ' || *p == ',')
1492 p += 1;
1493 switch (*p++) {
1494 case 'i':
1495 synth_opts->period_type =
1496 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1497 period_type_set = true;
1498 break;
1499 case 't':
1500 synth_opts->period_type =
1501 PERF_ITRACE_PERIOD_TICKS;
1502 period_type_set = true;
1503 break;
1504 case 'm':
1505 synth_opts->period *= 1000;
1506 /* Fall through */
1507 case 'u':
1508 synth_opts->period *= 1000;
1509 /* Fall through */
1510 case 'n':
1511 if (*p++ != 's')
1512 goto out_err;
1513 synth_opts->period_type =
1514 PERF_ITRACE_PERIOD_NANOSECS;
1515 period_type_set = true;
1516 break;
1517 case '\0':
1518 goto out;
1519 default:
1520 goto out_err;
1521 }
1522 }
1523 break;
1524 case 'b':
1525 synth_opts->branches = true;
1526 break;
1527 case 'x':
1528 synth_opts->transactions = true;
1529 break;
1530 case 'w':
1531 synth_opts->ptwrites = true;
1532 break;
1533 case 'p':
1534 synth_opts->pwr_events = true;
1535 break;
1536 case 'o':
1537 synth_opts->other_events = true;
1538 break;
1539 case 'I':
1540 synth_opts->intr_events = true;
1541 break;
1542 case 'e':
1543 synth_opts->errors = true;
1544 if (get_flags(&p, &synth_opts->error_plus_flags,
1545 &synth_opts->error_minus_flags))
1546 goto out_err;
1547 break;
1548 case 'd':
1549 synth_opts->log = true;
1550 if (get_flags(&p, &synth_opts->log_plus_flags,
1551 &synth_opts->log_minus_flags))
1552 goto out_err;
1553 if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1554 synth_opts->log_on_error_size = itrace_log_on_error_size();
1555 break;
1556 case 'c':
1557 synth_opts->branches = true;
1558 synth_opts->calls = true;
1559 break;
1560 case 'r':
1561 synth_opts->branches = true;
1562 synth_opts->returns = true;
1563 break;
1564 case 'G':
1565 case 'g':
1566 if (p[-1] == 'G')
1567 synth_opts->add_callchain = true;
1568 else
1569 synth_opts->callchain = true;
1570 synth_opts->callchain_sz =
1571 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1572 while (*p == ' ' || *p == ',')
1573 p += 1;
1574 if (isdigit(*p)) {
1575 unsigned int val;
1576
1577 val = strtoul(p, &endptr, 10);
1578 p = endptr;
1579 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1580 goto out_err;
1581 synth_opts->callchain_sz = val;
1582 }
1583 break;
1584 case 'L':
1585 case 'l':
1586 if (p[-1] == 'L')
1587 synth_opts->add_last_branch = true;
1588 else
1589 synth_opts->last_branch = true;
1590 synth_opts->last_branch_sz =
1591 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1592 while (*p == ' ' || *p == ',')
1593 p += 1;
1594 if (isdigit(*p)) {
1595 unsigned int val;
1596
1597 val = strtoul(p, &endptr, 10);
1598 p = endptr;
1599 if (!val ||
1600 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1601 goto out_err;
1602 synth_opts->last_branch_sz = val;
1603 }
1604 break;
1605 case 's':
1606 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1607 if (p == endptr)
1608 goto out_err;
1609 p = endptr;
1610 break;
1611 case 'f':
1612 synth_opts->flc = true;
1613 break;
1614 case 'm':
1615 synth_opts->llc = true;
1616 break;
1617 case 't':
1618 synth_opts->tlb = true;
1619 break;
1620 case 'a':
1621 synth_opts->remote_access = true;
1622 break;
1623 case 'M':
1624 synth_opts->mem = true;
1625 break;
1626 case 'q':
1627 synth_opts->quick += 1;
1628 break;
1629 case 'A':
1630 synth_opts->approx_ipc = true;
1631 break;
1632 case 'Z':
1633 synth_opts->timeless_decoding = true;
1634 break;
1635 case ' ':
1636 case ',':
1637 break;
1638 default:
1639 goto out_err;
1640 }
1641 }
1642 out:
1643 if (synth_opts->instructions) {
1644 if (!period_type_set)
1645 synth_opts->period_type =
1646 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1647 if (!period_set)
1648 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1649 }
1650
1651 return 0;
1652
1653 out_err:
1654 pr_err("Bad Instruction Tracing options '%s'\n", str);
1655 return -EINVAL;
1656 }
1657
itrace_parse_synth_opts(const struct option * opt,const char * str,int unset)1658 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1659 {
1660 return itrace_do_parse_synth_opts(opt->value, str, unset);
1661 }
1662
1663 static const char * const auxtrace_error_type_name[] = {
1664 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1665 };
1666
auxtrace_error_name(int type)1667 static const char *auxtrace_error_name(int type)
1668 {
1669 const char *error_type_name = NULL;
1670
1671 if (type < PERF_AUXTRACE_ERROR_MAX)
1672 error_type_name = auxtrace_error_type_name[type];
1673 if (!error_type_name)
1674 error_type_name = "unknown AUX";
1675 return error_type_name;
1676 }
1677
perf_event__fprintf_auxtrace_error(union perf_event * event,FILE * fp)1678 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1679 {
1680 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1681 unsigned long long nsecs = e->time;
1682 const char *msg = e->msg;
1683 int ret;
1684
1685 ret = fprintf(fp, " %s error type %u",
1686 auxtrace_error_name(e->type), e->type);
1687
1688 if (e->fmt && nsecs) {
1689 unsigned long secs = nsecs / NSEC_PER_SEC;
1690
1691 nsecs -= secs * NSEC_PER_SEC;
1692 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1693 } else {
1694 ret += fprintf(fp, " time 0");
1695 }
1696
1697 if (!e->fmt)
1698 msg = (const char *)&e->time;
1699
1700 if (e->fmt >= 2 && e->machine_pid)
1701 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1702
1703 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1704 e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1705 return ret;
1706 }
1707
perf_session__auxtrace_error_inc(struct perf_session * session,union perf_event * event)1708 void perf_session__auxtrace_error_inc(struct perf_session *session,
1709 union perf_event *event)
1710 {
1711 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1712
1713 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1714 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1715 }
1716
events_stats__auxtrace_error_warn(const struct events_stats * stats)1717 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1718 {
1719 int i;
1720
1721 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1722 if (!stats->nr_auxtrace_errors[i])
1723 continue;
1724 ui__warning("%u %s errors\n",
1725 stats->nr_auxtrace_errors[i],
1726 auxtrace_error_name(i));
1727 }
1728 }
1729
perf_event__process_auxtrace_error(struct perf_session * session,union perf_event * event)1730 int perf_event__process_auxtrace_error(struct perf_session *session,
1731 union perf_event *event)
1732 {
1733 if (auxtrace__dont_decode(session))
1734 return 0;
1735
1736 perf_event__fprintf_auxtrace_error(event, stdout);
1737 return 0;
1738 }
1739
1740 /*
1741 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1742 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1743 * the issues caused by the below sequence on multiple CPUs: when perf tool
1744 * accesses either the load operation or the store operation for 64-bit value,
1745 * on some architectures the operation is divided into two instructions, one
1746 * is for accessing the low 32-bit value and another is for the high 32-bit;
1747 * thus these two user operations can give the kernel chances to access the
1748 * 64-bit value, and thus leads to the unexpected load values.
1749 *
1750 * kernel (64-bit) user (32-bit)
1751 *
1752 * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo
1753 * STORE $aux_data | ,--->
1754 * FLUSH $aux_data | | LOAD ->aux_head_hi
1755 * STORE ->aux_head --|-------` smp_rmb()
1756 * } | LOAD $data
1757 * | smp_mb()
1758 * | STORE ->aux_tail_lo
1759 * `----------->
1760 * STORE ->aux_tail_hi
1761 *
1762 * For this reason, it's impossible for the perf tool to work correctly when
1763 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1764 * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1765 * the pointers can be increased monotonically, whatever the buffer size it is,
1766 * at the end the head and tail can be bigger than 4GB and carry out to the
1767 * high 32-bit.
1768 *
1769 * To mitigate the issues and improve the user experience, we can allow the
1770 * perf tool working in certain conditions and bail out with error if detect
1771 * any overflow cannot be handled.
1772 *
1773 * For reading the AUX head, it reads out the values for three times, and
1774 * compares the high 4 bytes of the values between the first time and the last
1775 * time, if there has no change for high 4 bytes injected by the kernel during
1776 * the user reading sequence, it's safe for use the second value.
1777 *
1778 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1779 * 32 bits, it means there have two store operations in user space and it cannot
1780 * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1781 * the caller an overflow error has happened.
1782 */
compat_auxtrace_mmap__read_head(struct auxtrace_mmap * mm)1783 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1784 {
1785 struct perf_event_mmap_page *pc = mm->userpg;
1786 u64 first, second, last;
1787 u64 mask = (u64)(UINT32_MAX) << 32;
1788
1789 do {
1790 first = READ_ONCE(pc->aux_head);
1791 /* Ensure all reads are done after we read the head */
1792 smp_rmb();
1793 second = READ_ONCE(pc->aux_head);
1794 /* Ensure all reads are done after we read the head */
1795 smp_rmb();
1796 last = READ_ONCE(pc->aux_head);
1797 } while ((first & mask) != (last & mask));
1798
1799 return second;
1800 }
1801
compat_auxtrace_mmap__write_tail(struct auxtrace_mmap * mm,u64 tail)1802 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1803 {
1804 struct perf_event_mmap_page *pc = mm->userpg;
1805 u64 mask = (u64)(UINT32_MAX) << 32;
1806
1807 if (tail & mask)
1808 return -1;
1809
1810 /* Ensure all reads are done before we write the tail out */
1811 smp_mb();
1812 WRITE_ONCE(pc->aux_tail, tail);
1813 return 0;
1814 }
1815
__auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn,bool snapshot,size_t snapshot_size)1816 static int __auxtrace_mmap__read(struct mmap *map,
1817 struct auxtrace_record *itr,
1818 struct perf_tool *tool, process_auxtrace_t fn,
1819 bool snapshot, size_t snapshot_size)
1820 {
1821 struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1822 u64 head, old = mm->prev, offset, ref;
1823 unsigned char *data = mm->base;
1824 size_t size, head_off, old_off, len1, len2, padding;
1825 union perf_event ev;
1826 void *data1, *data2;
1827 int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1828
1829 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1830
1831 if (snapshot &&
1832 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1833 return -1;
1834
1835 if (old == head)
1836 return 0;
1837
1838 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1839 mm->idx, old, head, head - old);
1840
1841 if (mm->mask) {
1842 head_off = head & mm->mask;
1843 old_off = old & mm->mask;
1844 } else {
1845 head_off = head % mm->len;
1846 old_off = old % mm->len;
1847 }
1848
1849 if (head_off > old_off)
1850 size = head_off - old_off;
1851 else
1852 size = mm->len - (old_off - head_off);
1853
1854 if (snapshot && size > snapshot_size)
1855 size = snapshot_size;
1856
1857 ref = auxtrace_record__reference(itr);
1858
1859 if (head > old || size <= head || mm->mask) {
1860 offset = head - size;
1861 } else {
1862 /*
1863 * When the buffer size is not a power of 2, 'head' wraps at the
1864 * highest multiple of the buffer size, so we have to subtract
1865 * the remainder here.
1866 */
1867 u64 rem = (0ULL - mm->len) % mm->len;
1868
1869 offset = head - size - rem;
1870 }
1871
1872 if (size > head_off) {
1873 len1 = size - head_off;
1874 data1 = &data[mm->len - len1];
1875 len2 = head_off;
1876 data2 = &data[0];
1877 } else {
1878 len1 = size;
1879 data1 = &data[head_off - len1];
1880 len2 = 0;
1881 data2 = NULL;
1882 }
1883
1884 if (itr->alignment) {
1885 unsigned int unwanted = len1 % itr->alignment;
1886
1887 len1 -= unwanted;
1888 size -= unwanted;
1889 }
1890
1891 /* padding must be written by fn() e.g. record__process_auxtrace() */
1892 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1893 if (padding)
1894 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1895
1896 memset(&ev, 0, sizeof(ev));
1897 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1898 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1899 ev.auxtrace.size = size + padding;
1900 ev.auxtrace.offset = offset;
1901 ev.auxtrace.reference = ref;
1902 ev.auxtrace.idx = mm->idx;
1903 ev.auxtrace.tid = mm->tid;
1904 ev.auxtrace.cpu = mm->cpu;
1905
1906 if (fn(tool, map, &ev, data1, len1, data2, len2))
1907 return -1;
1908
1909 mm->prev = head;
1910
1911 if (!snapshot) {
1912 int err;
1913
1914 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1915 if (err < 0)
1916 return err;
1917
1918 if (itr->read_finish) {
1919 err = itr->read_finish(itr, mm->idx);
1920 if (err < 0)
1921 return err;
1922 }
1923 }
1924
1925 return 1;
1926 }
1927
auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn)1928 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1929 struct perf_tool *tool, process_auxtrace_t fn)
1930 {
1931 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1932 }
1933
auxtrace_mmap__read_snapshot(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn,size_t snapshot_size)1934 int auxtrace_mmap__read_snapshot(struct mmap *map,
1935 struct auxtrace_record *itr,
1936 struct perf_tool *tool, process_auxtrace_t fn,
1937 size_t snapshot_size)
1938 {
1939 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1940 }
1941
1942 /**
1943 * struct auxtrace_cache - hash table to implement a cache
1944 * @hashtable: the hashtable
1945 * @sz: hashtable size (number of hlists)
1946 * @entry_size: size of an entry
1947 * @limit: limit the number of entries to this maximum, when reached the cache
1948 * is dropped and caching begins again with an empty cache
1949 * @cnt: current number of entries
1950 * @bits: hashtable size (@sz = 2^@bits)
1951 */
1952 struct auxtrace_cache {
1953 struct hlist_head *hashtable;
1954 size_t sz;
1955 size_t entry_size;
1956 size_t limit;
1957 size_t cnt;
1958 unsigned int bits;
1959 };
1960
auxtrace_cache__new(unsigned int bits,size_t entry_size,unsigned int limit_percent)1961 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1962 unsigned int limit_percent)
1963 {
1964 struct auxtrace_cache *c;
1965 struct hlist_head *ht;
1966 size_t sz, i;
1967
1968 c = zalloc(sizeof(struct auxtrace_cache));
1969 if (!c)
1970 return NULL;
1971
1972 sz = 1UL << bits;
1973
1974 ht = calloc(sz, sizeof(struct hlist_head));
1975 if (!ht)
1976 goto out_free;
1977
1978 for (i = 0; i < sz; i++)
1979 INIT_HLIST_HEAD(&ht[i]);
1980
1981 c->hashtable = ht;
1982 c->sz = sz;
1983 c->entry_size = entry_size;
1984 c->limit = (c->sz * limit_percent) / 100;
1985 c->bits = bits;
1986
1987 return c;
1988
1989 out_free:
1990 free(c);
1991 return NULL;
1992 }
1993
auxtrace_cache__drop(struct auxtrace_cache * c)1994 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1995 {
1996 struct auxtrace_cache_entry *entry;
1997 struct hlist_node *tmp;
1998 size_t i;
1999
2000 if (!c)
2001 return;
2002
2003 for (i = 0; i < c->sz; i++) {
2004 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
2005 hlist_del(&entry->hash);
2006 auxtrace_cache__free_entry(c, entry);
2007 }
2008 }
2009
2010 c->cnt = 0;
2011 }
2012
auxtrace_cache__free(struct auxtrace_cache * c)2013 void auxtrace_cache__free(struct auxtrace_cache *c)
2014 {
2015 if (!c)
2016 return;
2017
2018 auxtrace_cache__drop(c);
2019 zfree(&c->hashtable);
2020 free(c);
2021 }
2022
auxtrace_cache__alloc_entry(struct auxtrace_cache * c)2023 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2024 {
2025 return malloc(c->entry_size);
2026 }
2027
auxtrace_cache__free_entry(struct auxtrace_cache * c __maybe_unused,void * entry)2028 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2029 void *entry)
2030 {
2031 free(entry);
2032 }
2033
auxtrace_cache__add(struct auxtrace_cache * c,u32 key,struct auxtrace_cache_entry * entry)2034 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2035 struct auxtrace_cache_entry *entry)
2036 {
2037 if (c->limit && ++c->cnt > c->limit)
2038 auxtrace_cache__drop(c);
2039
2040 entry->key = key;
2041 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2042
2043 return 0;
2044 }
2045
auxtrace_cache__rm(struct auxtrace_cache * c,u32 key)2046 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2047 u32 key)
2048 {
2049 struct auxtrace_cache_entry *entry;
2050 struct hlist_head *hlist;
2051 struct hlist_node *n;
2052
2053 if (!c)
2054 return NULL;
2055
2056 hlist = &c->hashtable[hash_32(key, c->bits)];
2057 hlist_for_each_entry_safe(entry, n, hlist, hash) {
2058 if (entry->key == key) {
2059 hlist_del(&entry->hash);
2060 return entry;
2061 }
2062 }
2063
2064 return NULL;
2065 }
2066
auxtrace_cache__remove(struct auxtrace_cache * c,u32 key)2067 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2068 {
2069 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2070
2071 auxtrace_cache__free_entry(c, entry);
2072 }
2073
auxtrace_cache__lookup(struct auxtrace_cache * c,u32 key)2074 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2075 {
2076 struct auxtrace_cache_entry *entry;
2077 struct hlist_head *hlist;
2078
2079 if (!c)
2080 return NULL;
2081
2082 hlist = &c->hashtable[hash_32(key, c->bits)];
2083 hlist_for_each_entry(entry, hlist, hash) {
2084 if (entry->key == key)
2085 return entry;
2086 }
2087
2088 return NULL;
2089 }
2090
addr_filter__free_str(struct addr_filter * filt)2091 static void addr_filter__free_str(struct addr_filter *filt)
2092 {
2093 zfree(&filt->str);
2094 filt->action = NULL;
2095 filt->sym_from = NULL;
2096 filt->sym_to = NULL;
2097 filt->filename = NULL;
2098 }
2099
addr_filter__new(void)2100 static struct addr_filter *addr_filter__new(void)
2101 {
2102 struct addr_filter *filt = zalloc(sizeof(*filt));
2103
2104 if (filt)
2105 INIT_LIST_HEAD(&filt->list);
2106
2107 return filt;
2108 }
2109
addr_filter__free(struct addr_filter * filt)2110 static void addr_filter__free(struct addr_filter *filt)
2111 {
2112 if (filt)
2113 addr_filter__free_str(filt);
2114 free(filt);
2115 }
2116
addr_filters__add(struct addr_filters * filts,struct addr_filter * filt)2117 static void addr_filters__add(struct addr_filters *filts,
2118 struct addr_filter *filt)
2119 {
2120 list_add_tail(&filt->list, &filts->head);
2121 filts->cnt += 1;
2122 }
2123
addr_filters__del(struct addr_filters * filts,struct addr_filter * filt)2124 static void addr_filters__del(struct addr_filters *filts,
2125 struct addr_filter *filt)
2126 {
2127 list_del_init(&filt->list);
2128 filts->cnt -= 1;
2129 }
2130
addr_filters__init(struct addr_filters * filts)2131 void addr_filters__init(struct addr_filters *filts)
2132 {
2133 INIT_LIST_HEAD(&filts->head);
2134 filts->cnt = 0;
2135 }
2136
addr_filters__exit(struct addr_filters * filts)2137 void addr_filters__exit(struct addr_filters *filts)
2138 {
2139 struct addr_filter *filt, *n;
2140
2141 list_for_each_entry_safe(filt, n, &filts->head, list) {
2142 addr_filters__del(filts, filt);
2143 addr_filter__free(filt);
2144 }
2145 }
2146
parse_num_or_str(char ** inp,u64 * num,const char ** str,const char * str_delim)2147 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2148 const char *str_delim)
2149 {
2150 *inp += strspn(*inp, " ");
2151
2152 if (isdigit(**inp)) {
2153 char *endptr;
2154
2155 if (!num)
2156 return -EINVAL;
2157 errno = 0;
2158 *num = strtoull(*inp, &endptr, 0);
2159 if (errno)
2160 return -errno;
2161 if (endptr == *inp)
2162 return -EINVAL;
2163 *inp = endptr;
2164 } else {
2165 size_t n;
2166
2167 if (!str)
2168 return -EINVAL;
2169 *inp += strspn(*inp, " ");
2170 *str = *inp;
2171 n = strcspn(*inp, str_delim);
2172 if (!n)
2173 return -EINVAL;
2174 *inp += n;
2175 if (**inp) {
2176 **inp = '\0';
2177 *inp += 1;
2178 }
2179 }
2180 return 0;
2181 }
2182
parse_action(struct addr_filter * filt)2183 static int parse_action(struct addr_filter *filt)
2184 {
2185 if (!strcmp(filt->action, "filter")) {
2186 filt->start = true;
2187 filt->range = true;
2188 } else if (!strcmp(filt->action, "start")) {
2189 filt->start = true;
2190 } else if (!strcmp(filt->action, "stop")) {
2191 filt->start = false;
2192 } else if (!strcmp(filt->action, "tracestop")) {
2193 filt->start = false;
2194 filt->range = true;
2195 filt->action += 5; /* Change 'tracestop' to 'stop' */
2196 } else {
2197 return -EINVAL;
2198 }
2199 return 0;
2200 }
2201
parse_sym_idx(char ** inp,int * idx)2202 static int parse_sym_idx(char **inp, int *idx)
2203 {
2204 *idx = -1;
2205
2206 *inp += strspn(*inp, " ");
2207
2208 if (**inp != '#')
2209 return 0;
2210
2211 *inp += 1;
2212
2213 if (**inp == 'g' || **inp == 'G') {
2214 *inp += 1;
2215 *idx = 0;
2216 } else {
2217 unsigned long num;
2218 char *endptr;
2219
2220 errno = 0;
2221 num = strtoul(*inp, &endptr, 0);
2222 if (errno)
2223 return -errno;
2224 if (endptr == *inp || num > INT_MAX)
2225 return -EINVAL;
2226 *inp = endptr;
2227 *idx = num;
2228 }
2229
2230 return 0;
2231 }
2232
parse_addr_size(char ** inp,u64 * num,const char ** str,int * idx)2233 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2234 {
2235 int err = parse_num_or_str(inp, num, str, " ");
2236
2237 if (!err && *str)
2238 err = parse_sym_idx(inp, idx);
2239
2240 return err;
2241 }
2242
parse_one_filter(struct addr_filter * filt,const char ** filter_inp)2243 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2244 {
2245 char *fstr;
2246 int err;
2247
2248 filt->str = fstr = strdup(*filter_inp);
2249 if (!fstr)
2250 return -ENOMEM;
2251
2252 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2253 if (err)
2254 goto out_err;
2255
2256 err = parse_action(filt);
2257 if (err)
2258 goto out_err;
2259
2260 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2261 &filt->sym_from_idx);
2262 if (err)
2263 goto out_err;
2264
2265 fstr += strspn(fstr, " ");
2266
2267 if (*fstr == '/') {
2268 fstr += 1;
2269 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2270 &filt->sym_to_idx);
2271 if (err)
2272 goto out_err;
2273 filt->range = true;
2274 }
2275
2276 fstr += strspn(fstr, " ");
2277
2278 if (*fstr == '@') {
2279 fstr += 1;
2280 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2281 if (err)
2282 goto out_err;
2283 }
2284
2285 fstr += strspn(fstr, " ,");
2286
2287 *filter_inp += fstr - filt->str;
2288
2289 return 0;
2290
2291 out_err:
2292 addr_filter__free_str(filt);
2293
2294 return err;
2295 }
2296
addr_filters__parse_bare_filter(struct addr_filters * filts,const char * filter)2297 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2298 const char *filter)
2299 {
2300 struct addr_filter *filt;
2301 const char *fstr = filter;
2302 int err;
2303
2304 while (*fstr) {
2305 filt = addr_filter__new();
2306 err = parse_one_filter(filt, &fstr);
2307 if (err) {
2308 addr_filter__free(filt);
2309 addr_filters__exit(filts);
2310 return err;
2311 }
2312 addr_filters__add(filts, filt);
2313 }
2314
2315 return 0;
2316 }
2317
2318 struct sym_args {
2319 const char *name;
2320 u64 start;
2321 u64 size;
2322 int idx;
2323 int cnt;
2324 bool started;
2325 bool global;
2326 bool selected;
2327 bool duplicate;
2328 bool near;
2329 };
2330
kern_sym_name_match(const char * kname,const char * name)2331 static bool kern_sym_name_match(const char *kname, const char *name)
2332 {
2333 size_t n = strlen(name);
2334
2335 return !strcmp(kname, name) ||
2336 (!strncmp(kname, name, n) && kname[n] == '\t');
2337 }
2338
kern_sym_match(struct sym_args * args,const char * name,char type)2339 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2340 {
2341 /* A function with the same name, and global or the n'th found or any */
2342 return kallsyms__is_function(type) &&
2343 kern_sym_name_match(name, args->name) &&
2344 ((args->global && isupper(type)) ||
2345 (args->selected && ++(args->cnt) == args->idx) ||
2346 (!args->global && !args->selected));
2347 }
2348
find_kern_sym_cb(void * arg,const char * name,char type,u64 start)2349 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2350 {
2351 struct sym_args *args = arg;
2352
2353 if (args->started) {
2354 if (!args->size)
2355 args->size = start - args->start;
2356 if (args->selected) {
2357 if (args->size)
2358 return 1;
2359 } else if (kern_sym_match(args, name, type)) {
2360 args->duplicate = true;
2361 return 1;
2362 }
2363 } else if (kern_sym_match(args, name, type)) {
2364 args->started = true;
2365 args->start = start;
2366 }
2367
2368 return 0;
2369 }
2370
print_kern_sym_cb(void * arg,const char * name,char type,u64 start)2371 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2372 {
2373 struct sym_args *args = arg;
2374
2375 if (kern_sym_match(args, name, type)) {
2376 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2377 ++args->cnt, start, type, name);
2378 args->near = true;
2379 } else if (args->near) {
2380 args->near = false;
2381 pr_err("\t\twhich is near\t\t%s\n", name);
2382 }
2383
2384 return 0;
2385 }
2386
sym_not_found_error(const char * sym_name,int idx)2387 static int sym_not_found_error(const char *sym_name, int idx)
2388 {
2389 if (idx > 0) {
2390 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2391 idx, sym_name);
2392 } else if (!idx) {
2393 pr_err("Global symbol '%s' not found.\n", sym_name);
2394 } else {
2395 pr_err("Symbol '%s' not found.\n", sym_name);
2396 }
2397 pr_err("Note that symbols must be functions.\n");
2398
2399 return -EINVAL;
2400 }
2401
find_kern_sym(const char * sym_name,u64 * start,u64 * size,int idx)2402 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2403 {
2404 struct sym_args args = {
2405 .name = sym_name,
2406 .idx = idx,
2407 .global = !idx,
2408 .selected = idx > 0,
2409 };
2410 int err;
2411
2412 *start = 0;
2413 *size = 0;
2414
2415 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2416 if (err < 0) {
2417 pr_err("Failed to parse /proc/kallsyms\n");
2418 return err;
2419 }
2420
2421 if (args.duplicate) {
2422 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2423 args.cnt = 0;
2424 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2425 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2426 sym_name);
2427 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2428 return -EINVAL;
2429 }
2430
2431 if (!args.started) {
2432 pr_err("Kernel symbol lookup: ");
2433 return sym_not_found_error(sym_name, idx);
2434 }
2435
2436 *start = args.start;
2437 *size = args.size;
2438
2439 return 0;
2440 }
2441
find_entire_kern_cb(void * arg,const char * name __maybe_unused,char type,u64 start)2442 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2443 char type, u64 start)
2444 {
2445 struct sym_args *args = arg;
2446 u64 size;
2447
2448 if (!kallsyms__is_function(type))
2449 return 0;
2450
2451 if (!args->started) {
2452 args->started = true;
2453 args->start = start;
2454 }
2455 /* Don't know exactly where the kernel ends, so we add a page */
2456 size = round_up(start, page_size) + page_size - args->start;
2457 if (size > args->size)
2458 args->size = size;
2459
2460 return 0;
2461 }
2462
addr_filter__entire_kernel(struct addr_filter * filt)2463 static int addr_filter__entire_kernel(struct addr_filter *filt)
2464 {
2465 struct sym_args args = { .started = false };
2466 int err;
2467
2468 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2469 if (err < 0 || !args.started) {
2470 pr_err("Failed to parse /proc/kallsyms\n");
2471 return err;
2472 }
2473
2474 filt->addr = args.start;
2475 filt->size = args.size;
2476
2477 return 0;
2478 }
2479
check_end_after_start(struct addr_filter * filt,u64 start,u64 size)2480 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2481 {
2482 if (start + size >= filt->addr)
2483 return 0;
2484
2485 if (filt->sym_from) {
2486 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2487 filt->sym_to, start, filt->sym_from, filt->addr);
2488 } else {
2489 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2490 filt->sym_to, start, filt->addr);
2491 }
2492
2493 return -EINVAL;
2494 }
2495
addr_filter__resolve_kernel_syms(struct addr_filter * filt)2496 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2497 {
2498 bool no_size = false;
2499 u64 start, size;
2500 int err;
2501
2502 if (symbol_conf.kptr_restrict) {
2503 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2504 return -EINVAL;
2505 }
2506
2507 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2508 return addr_filter__entire_kernel(filt);
2509
2510 if (filt->sym_from) {
2511 err = find_kern_sym(filt->sym_from, &start, &size,
2512 filt->sym_from_idx);
2513 if (err)
2514 return err;
2515 filt->addr = start;
2516 if (filt->range && !filt->size && !filt->sym_to) {
2517 filt->size = size;
2518 no_size = !size;
2519 }
2520 }
2521
2522 if (filt->sym_to) {
2523 err = find_kern_sym(filt->sym_to, &start, &size,
2524 filt->sym_to_idx);
2525 if (err)
2526 return err;
2527
2528 err = check_end_after_start(filt, start, size);
2529 if (err)
2530 return err;
2531 filt->size = start + size - filt->addr;
2532 no_size = !size;
2533 }
2534
2535 /* The very last symbol in kallsyms does not imply a particular size */
2536 if (no_size) {
2537 pr_err("Cannot determine size of symbol '%s'\n",
2538 filt->sym_to ? filt->sym_to : filt->sym_from);
2539 return -EINVAL;
2540 }
2541
2542 return 0;
2543 }
2544
load_dso(const char * name)2545 static struct dso *load_dso(const char *name)
2546 {
2547 struct map *map;
2548 struct dso *dso;
2549
2550 map = dso__new_map(name);
2551 if (!map)
2552 return NULL;
2553
2554 if (map__load(map) < 0)
2555 pr_err("File '%s' not found or has no symbols.\n", name);
2556
2557 dso = dso__get(map->dso);
2558
2559 map__put(map);
2560
2561 return dso;
2562 }
2563
dso_sym_match(struct symbol * sym,const char * name,int * cnt,int idx)2564 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2565 int idx)
2566 {
2567 /* Same name, and global or the n'th found or any */
2568 return !arch__compare_symbol_names(name, sym->name) &&
2569 ((!idx && sym->binding == STB_GLOBAL) ||
2570 (idx > 0 && ++*cnt == idx) ||
2571 idx < 0);
2572 }
2573
print_duplicate_syms(struct dso * dso,const char * sym_name)2574 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2575 {
2576 struct symbol *sym;
2577 bool near = false;
2578 int cnt = 0;
2579
2580 pr_err("Multiple symbols with name '%s'\n", sym_name);
2581
2582 sym = dso__first_symbol(dso);
2583 while (sym) {
2584 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2585 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2586 ++cnt, sym->start,
2587 sym->binding == STB_GLOBAL ? 'g' :
2588 sym->binding == STB_LOCAL ? 'l' : 'w',
2589 sym->name);
2590 near = true;
2591 } else if (near) {
2592 near = false;
2593 pr_err("\t\twhich is near\t\t%s\n", sym->name);
2594 }
2595 sym = dso__next_symbol(sym);
2596 }
2597
2598 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2599 sym_name);
2600 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2601 }
2602
find_dso_sym(struct dso * dso,const char * sym_name,u64 * start,u64 * size,int idx)2603 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2604 u64 *size, int idx)
2605 {
2606 struct symbol *sym;
2607 int cnt = 0;
2608
2609 *start = 0;
2610 *size = 0;
2611
2612 sym = dso__first_symbol(dso);
2613 while (sym) {
2614 if (*start) {
2615 if (!*size)
2616 *size = sym->start - *start;
2617 if (idx > 0) {
2618 if (*size)
2619 return 0;
2620 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2621 print_duplicate_syms(dso, sym_name);
2622 return -EINVAL;
2623 }
2624 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2625 *start = sym->start;
2626 *size = sym->end - sym->start;
2627 }
2628 sym = dso__next_symbol(sym);
2629 }
2630
2631 if (!*start)
2632 return sym_not_found_error(sym_name, idx);
2633
2634 return 0;
2635 }
2636
addr_filter__entire_dso(struct addr_filter * filt,struct dso * dso)2637 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2638 {
2639 if (dso__data_file_size(dso, NULL)) {
2640 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2641 filt->filename);
2642 return -EINVAL;
2643 }
2644
2645 filt->addr = 0;
2646 filt->size = dso->data.file_size;
2647
2648 return 0;
2649 }
2650
addr_filter__resolve_syms(struct addr_filter * filt)2651 static int addr_filter__resolve_syms(struct addr_filter *filt)
2652 {
2653 u64 start, size;
2654 struct dso *dso;
2655 int err = 0;
2656
2657 if (!filt->sym_from && !filt->sym_to)
2658 return 0;
2659
2660 if (!filt->filename)
2661 return addr_filter__resolve_kernel_syms(filt);
2662
2663 dso = load_dso(filt->filename);
2664 if (!dso) {
2665 pr_err("Failed to load symbols from: %s\n", filt->filename);
2666 return -EINVAL;
2667 }
2668
2669 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2670 err = addr_filter__entire_dso(filt, dso);
2671 goto put_dso;
2672 }
2673
2674 if (filt->sym_from) {
2675 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2676 filt->sym_from_idx);
2677 if (err)
2678 goto put_dso;
2679 filt->addr = start;
2680 if (filt->range && !filt->size && !filt->sym_to)
2681 filt->size = size;
2682 }
2683
2684 if (filt->sym_to) {
2685 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2686 filt->sym_to_idx);
2687 if (err)
2688 goto put_dso;
2689
2690 err = check_end_after_start(filt, start, size);
2691 if (err)
2692 return err;
2693
2694 filt->size = start + size - filt->addr;
2695 }
2696
2697 put_dso:
2698 dso__put(dso);
2699
2700 return err;
2701 }
2702
addr_filter__to_str(struct addr_filter * filt)2703 static char *addr_filter__to_str(struct addr_filter *filt)
2704 {
2705 char filename_buf[PATH_MAX];
2706 const char *at = "";
2707 const char *fn = "";
2708 char *filter;
2709 int err;
2710
2711 if (filt->filename) {
2712 at = "@";
2713 fn = realpath(filt->filename, filename_buf);
2714 if (!fn)
2715 return NULL;
2716 }
2717
2718 if (filt->range) {
2719 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2720 filt->action, filt->addr, filt->size, at, fn);
2721 } else {
2722 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2723 filt->action, filt->addr, at, fn);
2724 }
2725
2726 return err < 0 ? NULL : filter;
2727 }
2728
parse_addr_filter(struct evsel * evsel,const char * filter,int max_nr)2729 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2730 int max_nr)
2731 {
2732 struct addr_filters filts;
2733 struct addr_filter *filt;
2734 int err;
2735
2736 addr_filters__init(&filts);
2737
2738 err = addr_filters__parse_bare_filter(&filts, filter);
2739 if (err)
2740 goto out_exit;
2741
2742 if (filts.cnt > max_nr) {
2743 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2744 filts.cnt, max_nr);
2745 err = -EINVAL;
2746 goto out_exit;
2747 }
2748
2749 list_for_each_entry(filt, &filts.head, list) {
2750 char *new_filter;
2751
2752 err = addr_filter__resolve_syms(filt);
2753 if (err)
2754 goto out_exit;
2755
2756 new_filter = addr_filter__to_str(filt);
2757 if (!new_filter) {
2758 err = -ENOMEM;
2759 goto out_exit;
2760 }
2761
2762 if (evsel__append_addr_filter(evsel, new_filter)) {
2763 err = -ENOMEM;
2764 goto out_exit;
2765 }
2766 }
2767
2768 out_exit:
2769 addr_filters__exit(&filts);
2770
2771 if (err) {
2772 pr_err("Failed to parse address filter: '%s'\n", filter);
2773 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2774 pr_err("Where multiple filters are separated by space or comma.\n");
2775 }
2776
2777 return err;
2778 }
2779
evsel__nr_addr_filter(struct evsel * evsel)2780 static int evsel__nr_addr_filter(struct evsel *evsel)
2781 {
2782 struct perf_pmu *pmu = evsel__find_pmu(evsel);
2783 int nr_addr_filters = 0;
2784
2785 if (!pmu)
2786 return 0;
2787
2788 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2789
2790 return nr_addr_filters;
2791 }
2792
auxtrace_parse_filters(struct evlist * evlist)2793 int auxtrace_parse_filters(struct evlist *evlist)
2794 {
2795 struct evsel *evsel;
2796 char *filter;
2797 int err, max_nr;
2798
2799 evlist__for_each_entry(evlist, evsel) {
2800 filter = evsel->filter;
2801 max_nr = evsel__nr_addr_filter(evsel);
2802 if (!filter || !max_nr)
2803 continue;
2804 evsel->filter = NULL;
2805 err = parse_addr_filter(evsel, filter, max_nr);
2806 free(filter);
2807 if (err)
2808 return err;
2809 pr_debug("Address filter: %s\n", evsel->filter);
2810 }
2811
2812 return 0;
2813 }
2814
auxtrace__process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)2815 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2816 struct perf_sample *sample, struct perf_tool *tool)
2817 {
2818 if (!session->auxtrace)
2819 return 0;
2820
2821 return session->auxtrace->process_event(session, event, sample, tool);
2822 }
2823
auxtrace__dump_auxtrace_sample(struct perf_session * session,struct perf_sample * sample)2824 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2825 struct perf_sample *sample)
2826 {
2827 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2828 auxtrace__dont_decode(session))
2829 return;
2830
2831 session->auxtrace->dump_auxtrace_sample(session, sample);
2832 }
2833
auxtrace__flush_events(struct perf_session * session,struct perf_tool * tool)2834 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2835 {
2836 if (!session->auxtrace)
2837 return 0;
2838
2839 return session->auxtrace->flush_events(session, tool);
2840 }
2841
auxtrace__free_events(struct perf_session * session)2842 void auxtrace__free_events(struct perf_session *session)
2843 {
2844 if (!session->auxtrace)
2845 return;
2846
2847 return session->auxtrace->free_events(session);
2848 }
2849
auxtrace__free(struct perf_session * session)2850 void auxtrace__free(struct perf_session *session)
2851 {
2852 if (!session->auxtrace)
2853 return;
2854
2855 return session->auxtrace->free(session);
2856 }
2857
auxtrace__evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)2858 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2859 struct evsel *evsel)
2860 {
2861 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2862 return false;
2863
2864 return session->auxtrace->evsel_is_auxtrace(session, evsel);
2865 }
2866