• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39 
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41 
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46 
47 #define MAX_TIMESTAMP (~0ULL)
48 
49 #define INTEL_PT_CFG_PASS_THRU	BIT_ULL(0)
50 #define INTEL_PT_CFG_PWR_EVT_EN	BIT_ULL(4)
51 #define INTEL_PT_CFG_BRANCH_EN	BIT_ULL(13)
52 #define INTEL_PT_CFG_EVT_EN	BIT_ULL(31)
53 #define INTEL_PT_CFG_TNT_DIS	BIT_ULL(55)
54 
55 struct range {
56 	u64 start;
57 	u64 end;
58 };
59 
60 struct intel_pt {
61 	struct auxtrace auxtrace;
62 	struct auxtrace_queues queues;
63 	struct auxtrace_heap heap;
64 	u32 auxtrace_type;
65 	struct perf_session *session;
66 	struct machine *machine;
67 	struct evsel *switch_evsel;
68 	struct thread *unknown_thread;
69 	bool timeless_decoding;
70 	bool sampling_mode;
71 	bool snapshot_mode;
72 	bool per_cpu_mmaps;
73 	bool have_tsc;
74 	bool data_queued;
75 	bool est_tsc;
76 	bool sync_switch;
77 	bool sync_switch_not_supported;
78 	bool mispred_all;
79 	bool use_thread_stack;
80 	bool callstack;
81 	bool cap_event_trace;
82 	bool have_guest_sideband;
83 	unsigned int br_stack_sz;
84 	unsigned int br_stack_sz_plus;
85 	int have_sched_switch;
86 	u32 pmu_type;
87 	u64 kernel_start;
88 	u64 switch_ip;
89 	u64 ptss_ip;
90 	u64 first_timestamp;
91 
92 	struct perf_tsc_conversion tc;
93 	bool cap_user_time_zero;
94 
95 	struct itrace_synth_opts synth_opts;
96 
97 	bool sample_instructions;
98 	u64 instructions_sample_type;
99 	u64 instructions_id;
100 
101 	bool sample_branches;
102 	u32 branches_filter;
103 	u64 branches_sample_type;
104 	u64 branches_id;
105 
106 	bool sample_transactions;
107 	u64 transactions_sample_type;
108 	u64 transactions_id;
109 
110 	bool sample_ptwrites;
111 	u64 ptwrites_sample_type;
112 	u64 ptwrites_id;
113 
114 	bool sample_pwr_events;
115 	u64 pwr_events_sample_type;
116 	u64 mwait_id;
117 	u64 pwre_id;
118 	u64 exstop_id;
119 	u64 pwrx_id;
120 	u64 cbr_id;
121 	u64 psb_id;
122 
123 	bool single_pebs;
124 	bool sample_pebs;
125 	struct evsel *pebs_evsel;
126 
127 	u64 evt_sample_type;
128 	u64 evt_id;
129 
130 	u64 iflag_chg_sample_type;
131 	u64 iflag_chg_id;
132 
133 	u64 tsc_bit;
134 	u64 mtc_bit;
135 	u64 mtc_freq_bits;
136 	u32 tsc_ctc_ratio_n;
137 	u32 tsc_ctc_ratio_d;
138 	u64 cyc_bit;
139 	u64 noretcomp_bit;
140 	unsigned max_non_turbo_ratio;
141 	unsigned cbr2khz;
142 	int max_loops;
143 
144 	unsigned long num_events;
145 
146 	char *filter;
147 	struct addr_filters filts;
148 
149 	struct range *time_ranges;
150 	unsigned int range_cnt;
151 
152 	struct ip_callchain *chain;
153 	struct branch_stack *br_stack;
154 
155 	u64 dflt_tsc_offset;
156 	struct rb_root vmcs_info;
157 };
158 
159 enum switch_state {
160 	INTEL_PT_SS_NOT_TRACING,
161 	INTEL_PT_SS_UNKNOWN,
162 	INTEL_PT_SS_TRACING,
163 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
164 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
165 };
166 
167 /* applicable_counters is 64-bits */
168 #define INTEL_PT_MAX_PEBS 64
169 
170 struct intel_pt_pebs_event {
171 	struct evsel *evsel;
172 	u64 id;
173 };
174 
175 struct intel_pt_queue {
176 	struct intel_pt *pt;
177 	unsigned int queue_nr;
178 	struct auxtrace_buffer *buffer;
179 	struct auxtrace_buffer *old_buffer;
180 	void *decoder;
181 	const struct intel_pt_state *state;
182 	struct ip_callchain *chain;
183 	struct branch_stack *last_branch;
184 	union perf_event *event_buf;
185 	bool on_heap;
186 	bool stop;
187 	bool step_through_buffers;
188 	bool use_buffer_pid_tid;
189 	bool sync_switch;
190 	bool sample_ipc;
191 	pid_t pid, tid;
192 	int cpu;
193 	int switch_state;
194 	pid_t next_tid;
195 	struct thread *thread;
196 	struct machine *guest_machine;
197 	struct thread *guest_thread;
198 	struct thread *unknown_guest_thread;
199 	pid_t guest_machine_pid;
200 	pid_t guest_pid;
201 	pid_t guest_tid;
202 	int vcpu;
203 	bool exclude_kernel;
204 	bool have_sample;
205 	u64 time;
206 	u64 timestamp;
207 	u64 sel_timestamp;
208 	bool sel_start;
209 	unsigned int sel_idx;
210 	u32 flags;
211 	u16 insn_len;
212 	u64 last_insn_cnt;
213 	u64 ipc_insn_cnt;
214 	u64 ipc_cyc_cnt;
215 	u64 last_in_insn_cnt;
216 	u64 last_in_cyc_cnt;
217 	u64 last_br_insn_cnt;
218 	u64 last_br_cyc_cnt;
219 	unsigned int cbr_seen;
220 	char insn[INTEL_PT_INSN_BUF_SZ];
221 	struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
222 };
223 
intel_pt_dump(struct intel_pt * pt __maybe_unused,unsigned char * buf,size_t len)224 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
225 			  unsigned char *buf, size_t len)
226 {
227 	struct intel_pt_pkt packet;
228 	size_t pos = 0;
229 	int ret, pkt_len, i;
230 	char desc[INTEL_PT_PKT_DESC_MAX];
231 	const char *color = PERF_COLOR_BLUE;
232 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
233 
234 	color_fprintf(stdout, color,
235 		      ". ... Intel Processor Trace data: size %zu bytes\n",
236 		      len);
237 
238 	while (len) {
239 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
240 		if (ret > 0)
241 			pkt_len = ret;
242 		else
243 			pkt_len = 1;
244 		printf(".");
245 		color_fprintf(stdout, color, "  %08x: ", pos);
246 		for (i = 0; i < pkt_len; i++)
247 			color_fprintf(stdout, color, " %02x", buf[i]);
248 		for (; i < 16; i++)
249 			color_fprintf(stdout, color, "   ");
250 		if (ret > 0) {
251 			ret = intel_pt_pkt_desc(&packet, desc,
252 						INTEL_PT_PKT_DESC_MAX);
253 			if (ret > 0)
254 				color_fprintf(stdout, color, " %s\n", desc);
255 		} else {
256 			color_fprintf(stdout, color, " Bad packet!\n");
257 		}
258 		pos += pkt_len;
259 		buf += pkt_len;
260 		len -= pkt_len;
261 	}
262 }
263 
intel_pt_dump_event(struct intel_pt * pt,unsigned char * buf,size_t len)264 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
265 				size_t len)
266 {
267 	printf(".\n");
268 	intel_pt_dump(pt, buf, len);
269 }
270 
intel_pt_log_event(union perf_event * event)271 static void intel_pt_log_event(union perf_event *event)
272 {
273 	FILE *f = intel_pt_log_fp();
274 
275 	if (!intel_pt_enable_logging || !f)
276 		return;
277 
278 	perf_event__fprintf(event, NULL, f);
279 }
280 
intel_pt_dump_sample(struct perf_session * session,struct perf_sample * sample)281 static void intel_pt_dump_sample(struct perf_session *session,
282 				 struct perf_sample *sample)
283 {
284 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
285 					   auxtrace);
286 
287 	printf("\n");
288 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
289 }
290 
intel_pt_log_events(struct intel_pt * pt,u64 tm)291 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
292 {
293 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
294 	int n = pt->synth_opts.range_num;
295 
296 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
297 		return true;
298 
299 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
300 		return false;
301 
302 	/* perf_time__ranges_skip_sample does not work if time is zero */
303 	if (!tm)
304 		tm = 1;
305 
306 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
307 }
308 
intel_pt_findnew_vmcs(struct rb_root * rb_root,u64 vmcs,u64 dflt_tsc_offset)309 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
310 							u64 vmcs,
311 							u64 dflt_tsc_offset)
312 {
313 	struct rb_node **p = &rb_root->rb_node;
314 	struct rb_node *parent = NULL;
315 	struct intel_pt_vmcs_info *v;
316 
317 	while (*p) {
318 		parent = *p;
319 		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
320 
321 		if (v->vmcs == vmcs)
322 			return v;
323 
324 		if (vmcs < v->vmcs)
325 			p = &(*p)->rb_left;
326 		else
327 			p = &(*p)->rb_right;
328 	}
329 
330 	v = zalloc(sizeof(*v));
331 	if (v) {
332 		v->vmcs = vmcs;
333 		v->tsc_offset = dflt_tsc_offset;
334 		v->reliable = dflt_tsc_offset;
335 
336 		rb_link_node(&v->rb_node, parent, p);
337 		rb_insert_color(&v->rb_node, rb_root);
338 	}
339 
340 	return v;
341 }
342 
intel_pt_findnew_vmcs_info(void * data,uint64_t vmcs)343 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
344 {
345 	struct intel_pt_queue *ptq = data;
346 	struct intel_pt *pt = ptq->pt;
347 
348 	if (!vmcs && !pt->dflt_tsc_offset)
349 		return NULL;
350 
351 	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
352 }
353 
intel_pt_free_vmcs_info(struct intel_pt * pt)354 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
355 {
356 	struct intel_pt_vmcs_info *v;
357 	struct rb_node *n;
358 
359 	n = rb_first(&pt->vmcs_info);
360 	while (n) {
361 		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
362 		n = rb_next(n);
363 		rb_erase(&v->rb_node, &pt->vmcs_info);
364 		free(v);
365 	}
366 }
367 
intel_pt_do_fix_overlap(struct intel_pt * pt,struct auxtrace_buffer * a,struct auxtrace_buffer * b)368 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
369 				   struct auxtrace_buffer *b)
370 {
371 	bool consecutive = false;
372 	void *start;
373 
374 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
375 				      pt->have_tsc, &consecutive,
376 				      pt->synth_opts.vm_time_correlation);
377 	if (!start)
378 		return -EINVAL;
379 	/*
380 	 * In the case of vm_time_correlation, the overlap might contain TSC
381 	 * packets that will not be fixed, and that will then no longer work for
382 	 * overlap detection. Avoid that by zeroing out the overlap.
383 	 */
384 	if (pt->synth_opts.vm_time_correlation)
385 		memset(b->data, 0, start - b->data);
386 	b->use_size = b->data + b->size - start;
387 	b->use_data = start;
388 	if (b->use_size && consecutive)
389 		b->consecutive = true;
390 	return 0;
391 }
392 
intel_pt_get_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer,struct auxtrace_buffer * old_buffer,struct intel_pt_buffer * b)393 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
394 			       struct auxtrace_buffer *buffer,
395 			       struct auxtrace_buffer *old_buffer,
396 			       struct intel_pt_buffer *b)
397 {
398 	bool might_overlap;
399 
400 	if (!buffer->data) {
401 		int fd = perf_data__fd(ptq->pt->session->data);
402 
403 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
404 		if (!buffer->data)
405 			return -ENOMEM;
406 	}
407 
408 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
409 	if (might_overlap && !buffer->consecutive && old_buffer &&
410 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
411 		return -ENOMEM;
412 
413 	if (buffer->use_data) {
414 		b->len = buffer->use_size;
415 		b->buf = buffer->use_data;
416 	} else {
417 		b->len = buffer->size;
418 		b->buf = buffer->data;
419 	}
420 	b->ref_timestamp = buffer->reference;
421 
422 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
423 		b->consecutive = false;
424 		b->trace_nr = buffer->buffer_nr + 1;
425 	} else {
426 		b->consecutive = true;
427 	}
428 
429 	return 0;
430 }
431 
432 /* Do not drop buffers with references - refer intel_pt_get_trace() */
intel_pt_lookahead_drop_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer)433 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
434 					   struct auxtrace_buffer *buffer)
435 {
436 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
437 		return;
438 
439 	auxtrace_buffer__drop_data(buffer);
440 }
441 
442 /* Must be serialized with respect to intel_pt_get_trace() */
intel_pt_lookahead(void * data,intel_pt_lookahead_cb_t cb,void * cb_data)443 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
444 			      void *cb_data)
445 {
446 	struct intel_pt_queue *ptq = data;
447 	struct auxtrace_buffer *buffer = ptq->buffer;
448 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
449 	struct auxtrace_queue *queue;
450 	int err = 0;
451 
452 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
453 
454 	while (1) {
455 		struct intel_pt_buffer b = { .len = 0 };
456 
457 		buffer = auxtrace_buffer__next(queue, buffer);
458 		if (!buffer)
459 			break;
460 
461 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
462 		if (err)
463 			break;
464 
465 		if (b.len) {
466 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
467 			old_buffer = buffer;
468 		} else {
469 			intel_pt_lookahead_drop_buffer(ptq, buffer);
470 			continue;
471 		}
472 
473 		err = cb(&b, cb_data);
474 		if (err)
475 			break;
476 	}
477 
478 	if (buffer != old_buffer)
479 		intel_pt_lookahead_drop_buffer(ptq, buffer);
480 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
481 
482 	return err;
483 }
484 
485 /*
486  * This function assumes data is processed sequentially only.
487  * Must be serialized with respect to intel_pt_lookahead()
488  */
intel_pt_get_trace(struct intel_pt_buffer * b,void * data)489 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
490 {
491 	struct intel_pt_queue *ptq = data;
492 	struct auxtrace_buffer *buffer = ptq->buffer;
493 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
494 	struct auxtrace_queue *queue;
495 	int err;
496 
497 	if (ptq->stop) {
498 		b->len = 0;
499 		return 0;
500 	}
501 
502 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
503 
504 	buffer = auxtrace_buffer__next(queue, buffer);
505 	if (!buffer) {
506 		if (old_buffer)
507 			auxtrace_buffer__drop_data(old_buffer);
508 		b->len = 0;
509 		return 0;
510 	}
511 
512 	ptq->buffer = buffer;
513 
514 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
515 	if (err)
516 		return err;
517 
518 	if (ptq->step_through_buffers)
519 		ptq->stop = true;
520 
521 	if (b->len) {
522 		if (old_buffer)
523 			auxtrace_buffer__drop_data(old_buffer);
524 		ptq->old_buffer = buffer;
525 	} else {
526 		auxtrace_buffer__drop_data(buffer);
527 		return intel_pt_get_trace(b, data);
528 	}
529 
530 	return 0;
531 }
532 
533 struct intel_pt_cache_entry {
534 	struct auxtrace_cache_entry	entry;
535 	u64				insn_cnt;
536 	u64				byte_cnt;
537 	enum intel_pt_insn_op		op;
538 	enum intel_pt_insn_branch	branch;
539 	bool				emulated_ptwrite;
540 	int				length;
541 	int32_t				rel;
542 	char				insn[INTEL_PT_INSN_BUF_SZ];
543 };
544 
intel_pt_config_div(const char * var,const char * value,void * data)545 static int intel_pt_config_div(const char *var, const char *value, void *data)
546 {
547 	int *d = data;
548 	long val;
549 
550 	if (!strcmp(var, "intel-pt.cache-divisor")) {
551 		val = strtol(value, NULL, 0);
552 		if (val > 0 && val <= INT_MAX)
553 			*d = val;
554 	}
555 
556 	return 0;
557 }
558 
intel_pt_cache_divisor(void)559 static int intel_pt_cache_divisor(void)
560 {
561 	static int d;
562 
563 	if (d)
564 		return d;
565 
566 	perf_config(intel_pt_config_div, &d);
567 
568 	if (!d)
569 		d = 64;
570 
571 	return d;
572 }
573 
intel_pt_cache_size(struct dso * dso,struct machine * machine)574 static unsigned int intel_pt_cache_size(struct dso *dso,
575 					struct machine *machine)
576 {
577 	off_t size;
578 
579 	size = dso__data_size(dso, machine);
580 	size /= intel_pt_cache_divisor();
581 	if (size < 1000)
582 		return 10;
583 	if (size > (1 << 21))
584 		return 21;
585 	return 32 - __builtin_clz(size);
586 }
587 
intel_pt_cache(struct dso * dso,struct machine * machine)588 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
589 					     struct machine *machine)
590 {
591 	struct auxtrace_cache *c;
592 	unsigned int bits;
593 
594 	if (dso->auxtrace_cache)
595 		return dso->auxtrace_cache;
596 
597 	bits = intel_pt_cache_size(dso, machine);
598 
599 	/* Ignoring cache creation failure */
600 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
601 
602 	dso->auxtrace_cache = c;
603 
604 	return c;
605 }
606 
intel_pt_cache_add(struct dso * dso,struct machine * machine,u64 offset,u64 insn_cnt,u64 byte_cnt,struct intel_pt_insn * intel_pt_insn)607 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
608 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
609 			      struct intel_pt_insn *intel_pt_insn)
610 {
611 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
612 	struct intel_pt_cache_entry *e;
613 	int err;
614 
615 	if (!c)
616 		return -ENOMEM;
617 
618 	e = auxtrace_cache__alloc_entry(c);
619 	if (!e)
620 		return -ENOMEM;
621 
622 	e->insn_cnt = insn_cnt;
623 	e->byte_cnt = byte_cnt;
624 	e->op = intel_pt_insn->op;
625 	e->branch = intel_pt_insn->branch;
626 	e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
627 	e->length = intel_pt_insn->length;
628 	e->rel = intel_pt_insn->rel;
629 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
630 
631 	err = auxtrace_cache__add(c, offset, &e->entry);
632 	if (err)
633 		auxtrace_cache__free_entry(c, e);
634 
635 	return err;
636 }
637 
638 static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso * dso,struct machine * machine,u64 offset)639 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
640 {
641 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
642 
643 	if (!c)
644 		return NULL;
645 
646 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
647 }
648 
intel_pt_cache_invalidate(struct dso * dso,struct machine * machine,u64 offset)649 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
650 				      u64 offset)
651 {
652 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
653 
654 	if (!c)
655 		return;
656 
657 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
658 }
659 
intel_pt_guest_kernel_ip(uint64_t ip)660 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
661 {
662 	/* Assumes 64-bit kernel */
663 	return ip & (1ULL << 63);
664 }
665 
intel_pt_nr_cpumode(struct intel_pt_queue * ptq,uint64_t ip,bool nr)666 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
667 {
668 	if (nr) {
669 		return intel_pt_guest_kernel_ip(ip) ?
670 		       PERF_RECORD_MISC_GUEST_KERNEL :
671 		       PERF_RECORD_MISC_GUEST_USER;
672 	}
673 
674 	return ip >= ptq->pt->kernel_start ?
675 	       PERF_RECORD_MISC_KERNEL :
676 	       PERF_RECORD_MISC_USER;
677 }
678 
intel_pt_cpumode(struct intel_pt_queue * ptq,uint64_t from_ip,uint64_t to_ip)679 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
680 {
681 	/* No support for non-zero CS base */
682 	if (from_ip)
683 		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
684 	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
685 }
686 
intel_pt_get_guest(struct intel_pt_queue * ptq)687 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
688 {
689 	struct machines *machines = &ptq->pt->session->machines;
690 	struct machine *machine;
691 	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
692 
693 	if (ptq->guest_machine && pid == ptq->guest_machine->pid)
694 		return 0;
695 
696 	ptq->guest_machine = NULL;
697 	thread__zput(ptq->unknown_guest_thread);
698 
699 	if (symbol_conf.guest_code) {
700 		thread__zput(ptq->guest_thread);
701 		ptq->guest_thread = machines__findnew_guest_code(machines, pid);
702 	}
703 
704 	machine = machines__find_guest(machines, pid);
705 	if (!machine)
706 		return -1;
707 
708 	ptq->unknown_guest_thread = machine__idle_thread(machine);
709 	if (!ptq->unknown_guest_thread)
710 		return -1;
711 
712 	ptq->guest_machine = machine;
713 
714 	return 0;
715 }
716 
intel_pt_jmp_16(struct intel_pt_insn * intel_pt_insn)717 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
718 {
719 	return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
720 }
721 
722 #define PTWRITE_MAGIC		"\x0f\x0bperf,ptwrite  "
723 #define PTWRITE_MAGIC_LEN	16
724 
intel_pt_emulated_ptwrite(struct dso * dso,struct machine * machine,u64 offset)725 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
726 {
727 	unsigned char buf[PTWRITE_MAGIC_LEN];
728 	ssize_t len;
729 
730 	len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
731 	if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
732 		intel_pt_log("Emulated ptwrite signature found\n");
733 		return true;
734 	}
735 	intel_pt_log("Emulated ptwrite signature not found\n");
736 	return false;
737 }
738 
intel_pt_walk_next_insn(struct intel_pt_insn * intel_pt_insn,uint64_t * insn_cnt_ptr,uint64_t * ip,uint64_t to_ip,uint64_t max_insn_cnt,void * data)739 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
740 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
741 				   uint64_t to_ip, uint64_t max_insn_cnt,
742 				   void *data)
743 {
744 	struct intel_pt_queue *ptq = data;
745 	struct machine *machine = ptq->pt->machine;
746 	struct thread *thread;
747 	struct addr_location al;
748 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
749 	ssize_t len;
750 	int x86_64;
751 	u8 cpumode;
752 	u64 offset, start_offset, start_ip;
753 	u64 insn_cnt = 0;
754 	bool one_map = true;
755 	bool nr;
756 
757 	intel_pt_insn->length = 0;
758 
759 	if (to_ip && *ip == to_ip)
760 		goto out_no_cache;
761 
762 	nr = ptq->state->to_nr;
763 	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
764 
765 	if (nr) {
766 		if (ptq->pt->have_guest_sideband) {
767 			if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
768 				intel_pt_log("ERROR: guest sideband but no guest machine\n");
769 				return -EINVAL;
770 			}
771 		} else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
772 			   intel_pt_get_guest(ptq)) {
773 			intel_pt_log("ERROR: no guest machine\n");
774 			return -EINVAL;
775 		}
776 		machine = ptq->guest_machine;
777 		thread = ptq->guest_thread;
778 		if (!thread) {
779 			if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
780 				intel_pt_log("ERROR: no guest thread\n");
781 				return -EINVAL;
782 			}
783 			thread = ptq->unknown_guest_thread;
784 		}
785 	} else {
786 		thread = ptq->thread;
787 		if (!thread) {
788 			if (cpumode != PERF_RECORD_MISC_KERNEL) {
789 				intel_pt_log("ERROR: no thread\n");
790 				return -EINVAL;
791 			}
792 			thread = ptq->pt->unknown_thread;
793 		}
794 	}
795 
796 	while (1) {
797 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) {
798 			if (al.map)
799 				intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
800 			else
801 				intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
802 			return -EINVAL;
803 		}
804 
805 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
806 		    dso__data_status_seen(al.map->dso,
807 					  DSO_DATA_STATUS_SEEN_ITRACE))
808 			return -ENOENT;
809 
810 		offset = al.map->map_ip(al.map, *ip);
811 
812 		if (!to_ip && one_map) {
813 			struct intel_pt_cache_entry *e;
814 
815 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
816 			if (e &&
817 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
818 				*insn_cnt_ptr = e->insn_cnt;
819 				*ip += e->byte_cnt;
820 				intel_pt_insn->op = e->op;
821 				intel_pt_insn->branch = e->branch;
822 				intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
823 				intel_pt_insn->length = e->length;
824 				intel_pt_insn->rel = e->rel;
825 				memcpy(intel_pt_insn->buf, e->insn,
826 				       INTEL_PT_INSN_BUF_SZ);
827 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
828 				return 0;
829 			}
830 		}
831 
832 		start_offset = offset;
833 		start_ip = *ip;
834 
835 		/* Load maps to ensure dso->is_64_bit has been updated */
836 		map__load(al.map);
837 
838 		x86_64 = al.map->dso->is_64_bit;
839 
840 		while (1) {
841 			len = dso__data_read_offset(al.map->dso, machine,
842 						    offset, buf,
843 						    INTEL_PT_INSN_BUF_SZ);
844 			if (len <= 0) {
845 				intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
846 					     offset);
847 				if (intel_pt_enable_logging)
848 					dso__fprintf(al.map->dso, intel_pt_log_fp());
849 				return -EINVAL;
850 			}
851 
852 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
853 				return -EINVAL;
854 
855 			intel_pt_log_insn(intel_pt_insn, *ip);
856 
857 			insn_cnt += 1;
858 
859 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
860 				bool eptw;
861 				u64 offs;
862 
863 				if (!intel_pt_jmp_16(intel_pt_insn))
864 					goto out;
865 				/* Check for emulated ptwrite */
866 				offs = offset + intel_pt_insn->length;
867 				eptw = intel_pt_emulated_ptwrite(al.map->dso, machine, offs);
868 				intel_pt_insn->emulated_ptwrite = eptw;
869 				goto out;
870 			}
871 
872 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
873 				goto out_no_cache;
874 
875 			*ip += intel_pt_insn->length;
876 
877 			if (to_ip && *ip == to_ip) {
878 				intel_pt_insn->length = 0;
879 				goto out_no_cache;
880 			}
881 
882 			if (*ip >= al.map->end)
883 				break;
884 
885 			offset += intel_pt_insn->length;
886 		}
887 		one_map = false;
888 	}
889 out:
890 	*insn_cnt_ptr = insn_cnt;
891 
892 	if (!one_map)
893 		goto out_no_cache;
894 
895 	/*
896 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
897 	 * entries.
898 	 */
899 	if (to_ip) {
900 		struct intel_pt_cache_entry *e;
901 
902 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
903 		if (e)
904 			return 0;
905 	}
906 
907 	/* Ignore cache errors */
908 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
909 			   *ip - start_ip, intel_pt_insn);
910 
911 	return 0;
912 
913 out_no_cache:
914 	*insn_cnt_ptr = insn_cnt;
915 	return 0;
916 }
917 
intel_pt_match_pgd_ip(struct intel_pt * pt,uint64_t ip,uint64_t offset,const char * filename)918 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
919 				  uint64_t offset, const char *filename)
920 {
921 	struct addr_filter *filt;
922 	bool have_filter   = false;
923 	bool hit_tracestop = false;
924 	bool hit_filter    = false;
925 
926 	list_for_each_entry(filt, &pt->filts.head, list) {
927 		if (filt->start)
928 			have_filter = true;
929 
930 		if ((filename && !filt->filename) ||
931 		    (!filename && filt->filename) ||
932 		    (filename && strcmp(filename, filt->filename)))
933 			continue;
934 
935 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
936 			continue;
937 
938 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
939 			     ip, offset, filename ? filename : "[kernel]",
940 			     filt->start ? "filter" : "stop",
941 			     filt->addr, filt->size);
942 
943 		if (filt->start)
944 			hit_filter = true;
945 		else
946 			hit_tracestop = true;
947 	}
948 
949 	if (!hit_tracestop && !hit_filter)
950 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
951 			     ip, offset, filename ? filename : "[kernel]");
952 
953 	return hit_tracestop || (have_filter && !hit_filter);
954 }
955 
__intel_pt_pgd_ip(uint64_t ip,void * data)956 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
957 {
958 	struct intel_pt_queue *ptq = data;
959 	struct thread *thread;
960 	struct addr_location al;
961 	u8 cpumode;
962 	u64 offset;
963 
964 	if (ptq->state->to_nr) {
965 		if (intel_pt_guest_kernel_ip(ip))
966 			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
967 		/* No support for decoding guest user space */
968 		return -EINVAL;
969 	} else if (ip >= ptq->pt->kernel_start) {
970 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
971 	}
972 
973 	cpumode = PERF_RECORD_MISC_USER;
974 
975 	thread = ptq->thread;
976 	if (!thread)
977 		return -EINVAL;
978 
979 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
980 		return -EINVAL;
981 
982 	offset = al.map->map_ip(al.map, ip);
983 
984 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
985 				     al.map->dso->long_name);
986 }
987 
intel_pt_pgd_ip(uint64_t ip,void * data)988 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
989 {
990 	return __intel_pt_pgd_ip(ip, data) > 0;
991 }
992 
intel_pt_get_config(struct intel_pt * pt,struct perf_event_attr * attr,u64 * config)993 static bool intel_pt_get_config(struct intel_pt *pt,
994 				struct perf_event_attr *attr, u64 *config)
995 {
996 	if (attr->type == pt->pmu_type) {
997 		if (config)
998 			*config = attr->config;
999 		return true;
1000 	}
1001 
1002 	return false;
1003 }
1004 
intel_pt_exclude_kernel(struct intel_pt * pt)1005 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1006 {
1007 	struct evsel *evsel;
1008 
1009 	evlist__for_each_entry(pt->session->evlist, evsel) {
1010 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1011 		    !evsel->core.attr.exclude_kernel)
1012 			return false;
1013 	}
1014 	return true;
1015 }
1016 
intel_pt_return_compression(struct intel_pt * pt)1017 static bool intel_pt_return_compression(struct intel_pt *pt)
1018 {
1019 	struct evsel *evsel;
1020 	u64 config;
1021 
1022 	if (!pt->noretcomp_bit)
1023 		return true;
1024 
1025 	evlist__for_each_entry(pt->session->evlist, evsel) {
1026 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1027 		    (config & pt->noretcomp_bit))
1028 			return false;
1029 	}
1030 	return true;
1031 }
1032 
intel_pt_branch_enable(struct intel_pt * pt)1033 static bool intel_pt_branch_enable(struct intel_pt *pt)
1034 {
1035 	struct evsel *evsel;
1036 	u64 config;
1037 
1038 	evlist__for_each_entry(pt->session->evlist, evsel) {
1039 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1040 		    (config & INTEL_PT_CFG_PASS_THRU) &&
1041 		    !(config & INTEL_PT_CFG_BRANCH_EN))
1042 			return false;
1043 	}
1044 	return true;
1045 }
1046 
intel_pt_disabled_tnt(struct intel_pt * pt)1047 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1048 {
1049 	struct evsel *evsel;
1050 	u64 config;
1051 
1052 	evlist__for_each_entry(pt->session->evlist, evsel) {
1053 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1054 		    config & INTEL_PT_CFG_TNT_DIS)
1055 			return true;
1056 	}
1057 	return false;
1058 }
1059 
intel_pt_mtc_period(struct intel_pt * pt)1060 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1061 {
1062 	struct evsel *evsel;
1063 	unsigned int shift;
1064 	u64 config;
1065 
1066 	if (!pt->mtc_freq_bits)
1067 		return 0;
1068 
1069 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1070 		config >>= 1;
1071 
1072 	evlist__for_each_entry(pt->session->evlist, evsel) {
1073 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1074 			return (config & pt->mtc_freq_bits) >> shift;
1075 	}
1076 	return 0;
1077 }
1078 
intel_pt_timeless_decoding(struct intel_pt * pt)1079 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1080 {
1081 	struct evsel *evsel;
1082 	bool timeless_decoding = true;
1083 	u64 config;
1084 
1085 	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1086 		return true;
1087 
1088 	evlist__for_each_entry(pt->session->evlist, evsel) {
1089 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1090 			return true;
1091 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1092 			if (config & pt->tsc_bit)
1093 				timeless_decoding = false;
1094 			else
1095 				return true;
1096 		}
1097 	}
1098 	return timeless_decoding;
1099 }
1100 
intel_pt_tracing_kernel(struct intel_pt * pt)1101 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1102 {
1103 	struct evsel *evsel;
1104 
1105 	evlist__for_each_entry(pt->session->evlist, evsel) {
1106 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1107 		    !evsel->core.attr.exclude_kernel)
1108 			return true;
1109 	}
1110 	return false;
1111 }
1112 
intel_pt_have_tsc(struct intel_pt * pt)1113 static bool intel_pt_have_tsc(struct intel_pt *pt)
1114 {
1115 	struct evsel *evsel;
1116 	bool have_tsc = false;
1117 	u64 config;
1118 
1119 	if (!pt->tsc_bit)
1120 		return false;
1121 
1122 	evlist__for_each_entry(pt->session->evlist, evsel) {
1123 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1124 			if (config & pt->tsc_bit)
1125 				have_tsc = true;
1126 			else
1127 				return false;
1128 		}
1129 	}
1130 	return have_tsc;
1131 }
1132 
intel_pt_have_mtc(struct intel_pt * pt)1133 static bool intel_pt_have_mtc(struct intel_pt *pt)
1134 {
1135 	struct evsel *evsel;
1136 	u64 config;
1137 
1138 	evlist__for_each_entry(pt->session->evlist, evsel) {
1139 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1140 		    (config & pt->mtc_bit))
1141 			return true;
1142 	}
1143 	return false;
1144 }
1145 
intel_pt_sampling_mode(struct intel_pt * pt)1146 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1147 {
1148 	struct evsel *evsel;
1149 
1150 	evlist__for_each_entry(pt->session->evlist, evsel) {
1151 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1152 		    evsel->core.attr.aux_sample_size)
1153 			return true;
1154 	}
1155 	return false;
1156 }
1157 
intel_pt_ctl(struct intel_pt * pt)1158 static u64 intel_pt_ctl(struct intel_pt *pt)
1159 {
1160 	struct evsel *evsel;
1161 	u64 config;
1162 
1163 	evlist__for_each_entry(pt->session->evlist, evsel) {
1164 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1165 			return config;
1166 	}
1167 	return 0;
1168 }
1169 
intel_pt_ns_to_ticks(const struct intel_pt * pt,u64 ns)1170 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1171 {
1172 	u64 quot, rem;
1173 
1174 	quot = ns / pt->tc.time_mult;
1175 	rem  = ns % pt->tc.time_mult;
1176 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1177 		pt->tc.time_mult;
1178 }
1179 
intel_pt_alloc_chain(struct intel_pt * pt)1180 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1181 {
1182 	size_t sz = sizeof(struct ip_callchain);
1183 
1184 	/* Add 1 to callchain_sz for callchain context */
1185 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1186 	return zalloc(sz);
1187 }
1188 
intel_pt_callchain_init(struct intel_pt * pt)1189 static int intel_pt_callchain_init(struct intel_pt *pt)
1190 {
1191 	struct evsel *evsel;
1192 
1193 	evlist__for_each_entry(pt->session->evlist, evsel) {
1194 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1195 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1196 	}
1197 
1198 	pt->chain = intel_pt_alloc_chain(pt);
1199 	if (!pt->chain)
1200 		return -ENOMEM;
1201 
1202 	return 0;
1203 }
1204 
intel_pt_add_callchain(struct intel_pt * pt,struct perf_sample * sample)1205 static void intel_pt_add_callchain(struct intel_pt *pt,
1206 				   struct perf_sample *sample)
1207 {
1208 	struct thread *thread = machine__findnew_thread(pt->machine,
1209 							sample->pid,
1210 							sample->tid);
1211 
1212 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1213 				  pt->synth_opts.callchain_sz + 1, sample->ip,
1214 				  pt->kernel_start);
1215 
1216 	sample->callchain = pt->chain;
1217 }
1218 
intel_pt_alloc_br_stack(unsigned int entry_cnt)1219 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1220 {
1221 	size_t sz = sizeof(struct branch_stack);
1222 
1223 	sz += entry_cnt * sizeof(struct branch_entry);
1224 	return zalloc(sz);
1225 }
1226 
intel_pt_br_stack_init(struct intel_pt * pt)1227 static int intel_pt_br_stack_init(struct intel_pt *pt)
1228 {
1229 	struct evsel *evsel;
1230 
1231 	evlist__for_each_entry(pt->session->evlist, evsel) {
1232 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1233 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1234 	}
1235 
1236 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1237 	if (!pt->br_stack)
1238 		return -ENOMEM;
1239 
1240 	return 0;
1241 }
1242 
intel_pt_add_br_stack(struct intel_pt * pt,struct perf_sample * sample)1243 static void intel_pt_add_br_stack(struct intel_pt *pt,
1244 				  struct perf_sample *sample)
1245 {
1246 	struct thread *thread = machine__findnew_thread(pt->machine,
1247 							sample->pid,
1248 							sample->tid);
1249 
1250 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1251 				     pt->br_stack_sz, sample->ip,
1252 				     pt->kernel_start);
1253 
1254 	sample->branch_stack = pt->br_stack;
1255 }
1256 
1257 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1258 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1259 
intel_pt_alloc_queue(struct intel_pt * pt,unsigned int queue_nr)1260 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1261 						   unsigned int queue_nr)
1262 {
1263 	struct intel_pt_params params = { .get_trace = 0, };
1264 	struct perf_env *env = pt->machine->env;
1265 	struct intel_pt_queue *ptq;
1266 
1267 	ptq = zalloc(sizeof(struct intel_pt_queue));
1268 	if (!ptq)
1269 		return NULL;
1270 
1271 	if (pt->synth_opts.callchain) {
1272 		ptq->chain = intel_pt_alloc_chain(pt);
1273 		if (!ptq->chain)
1274 			goto out_free;
1275 	}
1276 
1277 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1278 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1279 
1280 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1281 		if (!ptq->last_branch)
1282 			goto out_free;
1283 	}
1284 
1285 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1286 	if (!ptq->event_buf)
1287 		goto out_free;
1288 
1289 	ptq->pt = pt;
1290 	ptq->queue_nr = queue_nr;
1291 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1292 	ptq->pid = -1;
1293 	ptq->tid = -1;
1294 	ptq->cpu = -1;
1295 	ptq->next_tid = -1;
1296 
1297 	params.get_trace = intel_pt_get_trace;
1298 	params.walk_insn = intel_pt_walk_next_insn;
1299 	params.lookahead = intel_pt_lookahead;
1300 	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1301 	params.data = ptq;
1302 	params.return_compression = intel_pt_return_compression(pt);
1303 	params.branch_enable = intel_pt_branch_enable(pt);
1304 	params.ctl = intel_pt_ctl(pt);
1305 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1306 	params.mtc_period = intel_pt_mtc_period(pt);
1307 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1308 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1309 	params.quick = pt->synth_opts.quick;
1310 	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1311 	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1312 	params.first_timestamp = pt->first_timestamp;
1313 	params.max_loops = pt->max_loops;
1314 
1315 	/* Cannot walk code without TNT, so force 'quick' mode */
1316 	if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1317 		params.quick = 1;
1318 
1319 	if (pt->filts.cnt > 0)
1320 		params.pgd_ip = intel_pt_pgd_ip;
1321 
1322 	if (pt->synth_opts.instructions) {
1323 		if (pt->synth_opts.period) {
1324 			switch (pt->synth_opts.period_type) {
1325 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1326 				params.period_type =
1327 						INTEL_PT_PERIOD_INSTRUCTIONS;
1328 				params.period = pt->synth_opts.period;
1329 				break;
1330 			case PERF_ITRACE_PERIOD_TICKS:
1331 				params.period_type = INTEL_PT_PERIOD_TICKS;
1332 				params.period = pt->synth_opts.period;
1333 				break;
1334 			case PERF_ITRACE_PERIOD_NANOSECS:
1335 				params.period_type = INTEL_PT_PERIOD_TICKS;
1336 				params.period = intel_pt_ns_to_ticks(pt,
1337 							pt->synth_opts.period);
1338 				break;
1339 			default:
1340 				break;
1341 			}
1342 		}
1343 
1344 		if (!params.period) {
1345 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1346 			params.period = 1;
1347 		}
1348 	}
1349 
1350 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1351 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1352 
1353 	ptq->decoder = intel_pt_decoder_new(&params);
1354 	if (!ptq->decoder)
1355 		goto out_free;
1356 
1357 	return ptq;
1358 
1359 out_free:
1360 	zfree(&ptq->event_buf);
1361 	zfree(&ptq->last_branch);
1362 	zfree(&ptq->chain);
1363 	free(ptq);
1364 	return NULL;
1365 }
1366 
intel_pt_free_queue(void * priv)1367 static void intel_pt_free_queue(void *priv)
1368 {
1369 	struct intel_pt_queue *ptq = priv;
1370 
1371 	if (!ptq)
1372 		return;
1373 	thread__zput(ptq->thread);
1374 	thread__zput(ptq->guest_thread);
1375 	thread__zput(ptq->unknown_guest_thread);
1376 	intel_pt_decoder_free(ptq->decoder);
1377 	zfree(&ptq->event_buf);
1378 	zfree(&ptq->last_branch);
1379 	zfree(&ptq->chain);
1380 	free(ptq);
1381 }
1382 
intel_pt_first_timestamp(struct intel_pt * pt,u64 timestamp)1383 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1384 {
1385 	unsigned int i;
1386 
1387 	pt->first_timestamp = timestamp;
1388 
1389 	for (i = 0; i < pt->queues.nr_queues; i++) {
1390 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1391 		struct intel_pt_queue *ptq = queue->priv;
1392 
1393 		if (ptq && ptq->decoder)
1394 			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1395 	}
1396 }
1397 
intel_pt_get_guest_from_sideband(struct intel_pt_queue * ptq)1398 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1399 {
1400 	struct machines *machines = &ptq->pt->session->machines;
1401 	struct machine *machine;
1402 	pid_t machine_pid = ptq->pid;
1403 	pid_t tid;
1404 	int vcpu;
1405 
1406 	if (machine_pid <= 0)
1407 		return 0; /* Not a guest machine */
1408 
1409 	machine = machines__find(machines, machine_pid);
1410 	if (!machine)
1411 		return 0; /* Not a guest machine */
1412 
1413 	if (ptq->guest_machine != machine) {
1414 		ptq->guest_machine = NULL;
1415 		thread__zput(ptq->guest_thread);
1416 		thread__zput(ptq->unknown_guest_thread);
1417 
1418 		ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1419 		if (!ptq->unknown_guest_thread)
1420 			return -1;
1421 		ptq->guest_machine = machine;
1422 	}
1423 
1424 	vcpu = ptq->thread ? ptq->thread->guest_cpu : -1;
1425 	if (vcpu < 0)
1426 		return -1;
1427 
1428 	tid = machine__get_current_tid(machine, vcpu);
1429 
1430 	if (ptq->guest_thread && ptq->guest_thread->tid != tid)
1431 		thread__zput(ptq->guest_thread);
1432 
1433 	if (!ptq->guest_thread) {
1434 		ptq->guest_thread = machine__find_thread(machine, -1, tid);
1435 		if (!ptq->guest_thread)
1436 			return -1;
1437 	}
1438 
1439 	ptq->guest_machine_pid = machine_pid;
1440 	ptq->guest_pid = ptq->guest_thread->pid_;
1441 	ptq->guest_tid = tid;
1442 	ptq->vcpu = vcpu;
1443 
1444 	return 0;
1445 }
1446 
intel_pt_set_pid_tid_cpu(struct intel_pt * pt,struct auxtrace_queue * queue)1447 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1448 				     struct auxtrace_queue *queue)
1449 {
1450 	struct intel_pt_queue *ptq = queue->priv;
1451 
1452 	if (queue->tid == -1 || pt->have_sched_switch) {
1453 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1454 		if (ptq->tid == -1)
1455 			ptq->pid = -1;
1456 		thread__zput(ptq->thread);
1457 	}
1458 
1459 	if (!ptq->thread && ptq->tid != -1)
1460 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1461 
1462 	if (ptq->thread) {
1463 		ptq->pid = ptq->thread->pid_;
1464 		if (queue->cpu == -1)
1465 			ptq->cpu = ptq->thread->cpu;
1466 	}
1467 
1468 	if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1469 		ptq->guest_machine_pid = 0;
1470 		ptq->guest_pid = -1;
1471 		ptq->guest_tid = -1;
1472 		ptq->vcpu = -1;
1473 	}
1474 }
1475 
intel_pt_sample_flags(struct intel_pt_queue * ptq)1476 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1477 {
1478 	struct intel_pt *pt = ptq->pt;
1479 
1480 	ptq->insn_len = 0;
1481 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1482 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1483 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1484 		if (!ptq->state->to_ip)
1485 			ptq->flags = PERF_IP_FLAG_BRANCH |
1486 				     PERF_IP_FLAG_ASYNC |
1487 				     PERF_IP_FLAG_TRACE_END;
1488 		else if (ptq->state->from_nr && !ptq->state->to_nr)
1489 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1490 				     PERF_IP_FLAG_ASYNC |
1491 				     PERF_IP_FLAG_VMEXIT;
1492 		else
1493 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1494 				     PERF_IP_FLAG_ASYNC |
1495 				     PERF_IP_FLAG_INTERRUPT;
1496 	} else {
1497 		if (ptq->state->from_ip)
1498 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1499 		else
1500 			ptq->flags = PERF_IP_FLAG_BRANCH |
1501 				     PERF_IP_FLAG_TRACE_BEGIN;
1502 		if (ptq->state->flags & INTEL_PT_IN_TX)
1503 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1504 		ptq->insn_len = ptq->state->insn_len;
1505 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1506 	}
1507 
1508 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1509 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1510 	if (ptq->state->type & INTEL_PT_TRACE_END)
1511 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1512 
1513 	if (pt->cap_event_trace) {
1514 		if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1515 			if (!ptq->state->from_iflag)
1516 				ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1517 			if (ptq->state->from_iflag != ptq->state->to_iflag)
1518 				ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1519 		} else if (!ptq->state->to_iflag) {
1520 			ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1521 		}
1522 	}
1523 }
1524 
intel_pt_setup_time_range(struct intel_pt * pt,struct intel_pt_queue * ptq)1525 static void intel_pt_setup_time_range(struct intel_pt *pt,
1526 				      struct intel_pt_queue *ptq)
1527 {
1528 	if (!pt->range_cnt)
1529 		return;
1530 
1531 	ptq->sel_timestamp = pt->time_ranges[0].start;
1532 	ptq->sel_idx = 0;
1533 
1534 	if (ptq->sel_timestamp) {
1535 		ptq->sel_start = true;
1536 	} else {
1537 		ptq->sel_timestamp = pt->time_ranges[0].end;
1538 		ptq->sel_start = false;
1539 	}
1540 }
1541 
intel_pt_setup_queue(struct intel_pt * pt,struct auxtrace_queue * queue,unsigned int queue_nr)1542 static int intel_pt_setup_queue(struct intel_pt *pt,
1543 				struct auxtrace_queue *queue,
1544 				unsigned int queue_nr)
1545 {
1546 	struct intel_pt_queue *ptq = queue->priv;
1547 
1548 	if (list_empty(&queue->head))
1549 		return 0;
1550 
1551 	if (!ptq) {
1552 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1553 		if (!ptq)
1554 			return -ENOMEM;
1555 		queue->priv = ptq;
1556 
1557 		if (queue->cpu != -1)
1558 			ptq->cpu = queue->cpu;
1559 		ptq->tid = queue->tid;
1560 
1561 		ptq->cbr_seen = UINT_MAX;
1562 
1563 		if (pt->sampling_mode && !pt->snapshot_mode &&
1564 		    pt->timeless_decoding)
1565 			ptq->step_through_buffers = true;
1566 
1567 		ptq->sync_switch = pt->sync_switch;
1568 
1569 		intel_pt_setup_time_range(pt, ptq);
1570 	}
1571 
1572 	if (!ptq->on_heap &&
1573 	    (!ptq->sync_switch ||
1574 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1575 		const struct intel_pt_state *state;
1576 		int ret;
1577 
1578 		if (pt->timeless_decoding)
1579 			return 0;
1580 
1581 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1582 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1583 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1584 
1585 		if (ptq->sel_start && ptq->sel_timestamp) {
1586 			ret = intel_pt_fast_forward(ptq->decoder,
1587 						    ptq->sel_timestamp);
1588 			if (ret)
1589 				return ret;
1590 		}
1591 
1592 		while (1) {
1593 			state = intel_pt_decode(ptq->decoder);
1594 			if (state->err) {
1595 				if (state->err == INTEL_PT_ERR_NODATA) {
1596 					intel_pt_log("queue %u has no timestamp\n",
1597 						     queue_nr);
1598 					return 0;
1599 				}
1600 				continue;
1601 			}
1602 			if (state->timestamp)
1603 				break;
1604 		}
1605 
1606 		ptq->timestamp = state->timestamp;
1607 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1608 			     queue_nr, ptq->timestamp);
1609 		ptq->state = state;
1610 		ptq->have_sample = true;
1611 		if (ptq->sel_start && ptq->sel_timestamp &&
1612 		    ptq->timestamp < ptq->sel_timestamp)
1613 			ptq->have_sample = false;
1614 		intel_pt_sample_flags(ptq);
1615 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1616 		if (ret)
1617 			return ret;
1618 		ptq->on_heap = true;
1619 	}
1620 
1621 	return 0;
1622 }
1623 
intel_pt_setup_queues(struct intel_pt * pt)1624 static int intel_pt_setup_queues(struct intel_pt *pt)
1625 {
1626 	unsigned int i;
1627 	int ret;
1628 
1629 	for (i = 0; i < pt->queues.nr_queues; i++) {
1630 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1631 		if (ret)
1632 			return ret;
1633 	}
1634 	return 0;
1635 }
1636 
intel_pt_skip_event(struct intel_pt * pt)1637 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1638 {
1639 	return pt->synth_opts.initial_skip &&
1640 	       pt->num_events++ < pt->synth_opts.initial_skip;
1641 }
1642 
1643 /*
1644  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1645  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1646  * from this decoder state.
1647  */
intel_pt_skip_cbr_event(struct intel_pt * pt)1648 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1649 {
1650 	return pt->synth_opts.initial_skip &&
1651 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1652 }
1653 
intel_pt_prep_a_sample(struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1654 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1655 				   union perf_event *event,
1656 				   struct perf_sample *sample)
1657 {
1658 	event->sample.header.type = PERF_RECORD_SAMPLE;
1659 	event->sample.header.size = sizeof(struct perf_event_header);
1660 
1661 	sample->pid = ptq->pid;
1662 	sample->tid = ptq->tid;
1663 
1664 	if (ptq->pt->have_guest_sideband) {
1665 		if ((ptq->state->from_ip && ptq->state->from_nr) ||
1666 		    (ptq->state->to_ip && ptq->state->to_nr)) {
1667 			sample->pid = ptq->guest_pid;
1668 			sample->tid = ptq->guest_tid;
1669 			sample->machine_pid = ptq->guest_machine_pid;
1670 			sample->vcpu = ptq->vcpu;
1671 		}
1672 	}
1673 
1674 	sample->cpu = ptq->cpu;
1675 	sample->insn_len = ptq->insn_len;
1676 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1677 }
1678 
intel_pt_prep_b_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1679 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1680 				   struct intel_pt_queue *ptq,
1681 				   union perf_event *event,
1682 				   struct perf_sample *sample)
1683 {
1684 	intel_pt_prep_a_sample(ptq, event, sample);
1685 
1686 	if (!pt->timeless_decoding)
1687 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1688 
1689 	sample->ip = ptq->state->from_ip;
1690 	sample->addr = ptq->state->to_ip;
1691 	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1692 	sample->period = 1;
1693 	sample->flags = ptq->flags;
1694 
1695 	event->sample.header.misc = sample->cpumode;
1696 }
1697 
intel_pt_inject_event(union perf_event * event,struct perf_sample * sample,u64 type)1698 static int intel_pt_inject_event(union perf_event *event,
1699 				 struct perf_sample *sample, u64 type)
1700 {
1701 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1702 	return perf_event__synthesize_sample(event, type, 0, sample);
1703 }
1704 
intel_pt_opt_inject(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1705 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1706 				      union perf_event *event,
1707 				      struct perf_sample *sample, u64 type)
1708 {
1709 	if (!pt->synth_opts.inject)
1710 		return 0;
1711 
1712 	return intel_pt_inject_event(event, sample, type);
1713 }
1714 
intel_pt_deliver_synth_event(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1715 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1716 					union perf_event *event,
1717 					struct perf_sample *sample, u64 type)
1718 {
1719 	int ret;
1720 
1721 	ret = intel_pt_opt_inject(pt, event, sample, type);
1722 	if (ret)
1723 		return ret;
1724 
1725 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1726 	if (ret)
1727 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1728 
1729 	return ret;
1730 }
1731 
intel_pt_synth_branch_sample(struct intel_pt_queue * ptq)1732 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1733 {
1734 	struct intel_pt *pt = ptq->pt;
1735 	union perf_event *event = ptq->event_buf;
1736 	struct perf_sample sample = { .ip = 0, };
1737 	struct dummy_branch_stack {
1738 		u64			nr;
1739 		u64			hw_idx;
1740 		struct branch_entry	entries;
1741 	} dummy_bs;
1742 
1743 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1744 		return 0;
1745 
1746 	if (intel_pt_skip_event(pt))
1747 		return 0;
1748 
1749 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1750 
1751 	sample.id = ptq->pt->branches_id;
1752 	sample.stream_id = ptq->pt->branches_id;
1753 
1754 	/*
1755 	 * perf report cannot handle events without a branch stack when using
1756 	 * SORT_MODE__BRANCH so make a dummy one.
1757 	 */
1758 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1759 		dummy_bs = (struct dummy_branch_stack){
1760 			.nr = 1,
1761 			.hw_idx = -1ULL,
1762 			.entries = {
1763 				.from = sample.ip,
1764 				.to = sample.addr,
1765 			},
1766 		};
1767 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1768 	}
1769 
1770 	if (ptq->sample_ipc)
1771 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1772 	if (sample.cyc_cnt) {
1773 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1774 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1775 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1776 	}
1777 
1778 	return intel_pt_deliver_synth_event(pt, event, &sample,
1779 					    pt->branches_sample_type);
1780 }
1781 
intel_pt_prep_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1782 static void intel_pt_prep_sample(struct intel_pt *pt,
1783 				 struct intel_pt_queue *ptq,
1784 				 union perf_event *event,
1785 				 struct perf_sample *sample)
1786 {
1787 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1788 
1789 	if (pt->synth_opts.callchain) {
1790 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1791 				     pt->synth_opts.callchain_sz + 1,
1792 				     sample->ip, pt->kernel_start);
1793 		sample->callchain = ptq->chain;
1794 	}
1795 
1796 	if (pt->synth_opts.last_branch) {
1797 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1798 					pt->br_stack_sz);
1799 		sample->branch_stack = ptq->last_branch;
1800 	}
1801 }
1802 
intel_pt_synth_instruction_sample(struct intel_pt_queue * ptq)1803 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1804 {
1805 	struct intel_pt *pt = ptq->pt;
1806 	union perf_event *event = ptq->event_buf;
1807 	struct perf_sample sample = { .ip = 0, };
1808 
1809 	if (intel_pt_skip_event(pt))
1810 		return 0;
1811 
1812 	intel_pt_prep_sample(pt, ptq, event, &sample);
1813 
1814 	sample.id = ptq->pt->instructions_id;
1815 	sample.stream_id = ptq->pt->instructions_id;
1816 	if (pt->synth_opts.quick)
1817 		sample.period = 1;
1818 	else
1819 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1820 
1821 	if (ptq->sample_ipc)
1822 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1823 	if (sample.cyc_cnt) {
1824 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1825 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1826 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1827 	}
1828 
1829 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1830 
1831 	return intel_pt_deliver_synth_event(pt, event, &sample,
1832 					    pt->instructions_sample_type);
1833 }
1834 
intel_pt_synth_transaction_sample(struct intel_pt_queue * ptq)1835 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1836 {
1837 	struct intel_pt *pt = ptq->pt;
1838 	union perf_event *event = ptq->event_buf;
1839 	struct perf_sample sample = { .ip = 0, };
1840 
1841 	if (intel_pt_skip_event(pt))
1842 		return 0;
1843 
1844 	intel_pt_prep_sample(pt, ptq, event, &sample);
1845 
1846 	sample.id = ptq->pt->transactions_id;
1847 	sample.stream_id = ptq->pt->transactions_id;
1848 
1849 	return intel_pt_deliver_synth_event(pt, event, &sample,
1850 					    pt->transactions_sample_type);
1851 }
1852 
intel_pt_prep_p_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1853 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1854 				   struct intel_pt_queue *ptq,
1855 				   union perf_event *event,
1856 				   struct perf_sample *sample)
1857 {
1858 	intel_pt_prep_sample(pt, ptq, event, sample);
1859 
1860 	/*
1861 	 * Zero IP is used to mean "trace start" but that is not the case for
1862 	 * power or PTWRITE events with no IP, so clear the flags.
1863 	 */
1864 	if (!sample->ip)
1865 		sample->flags = 0;
1866 }
1867 
intel_pt_synth_ptwrite_sample(struct intel_pt_queue * ptq)1868 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1869 {
1870 	struct intel_pt *pt = ptq->pt;
1871 	union perf_event *event = ptq->event_buf;
1872 	struct perf_sample sample = { .ip = 0, };
1873 	struct perf_synth_intel_ptwrite raw;
1874 
1875 	if (intel_pt_skip_event(pt))
1876 		return 0;
1877 
1878 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1879 
1880 	sample.id = ptq->pt->ptwrites_id;
1881 	sample.stream_id = ptq->pt->ptwrites_id;
1882 
1883 	raw.flags = 0;
1884 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1885 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1886 
1887 	sample.raw_size = perf_synth__raw_size(raw);
1888 	sample.raw_data = perf_synth__raw_data(&raw);
1889 
1890 	return intel_pt_deliver_synth_event(pt, event, &sample,
1891 					    pt->ptwrites_sample_type);
1892 }
1893 
intel_pt_synth_cbr_sample(struct intel_pt_queue * ptq)1894 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1895 {
1896 	struct intel_pt *pt = ptq->pt;
1897 	union perf_event *event = ptq->event_buf;
1898 	struct perf_sample sample = { .ip = 0, };
1899 	struct perf_synth_intel_cbr raw;
1900 	u32 flags;
1901 
1902 	if (intel_pt_skip_cbr_event(pt))
1903 		return 0;
1904 
1905 	ptq->cbr_seen = ptq->state->cbr;
1906 
1907 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1908 
1909 	sample.id = ptq->pt->cbr_id;
1910 	sample.stream_id = ptq->pt->cbr_id;
1911 
1912 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1913 	raw.flags = cpu_to_le32(flags);
1914 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1915 	raw.reserved3 = 0;
1916 
1917 	sample.raw_size = perf_synth__raw_size(raw);
1918 	sample.raw_data = perf_synth__raw_data(&raw);
1919 
1920 	return intel_pt_deliver_synth_event(pt, event, &sample,
1921 					    pt->pwr_events_sample_type);
1922 }
1923 
intel_pt_synth_psb_sample(struct intel_pt_queue * ptq)1924 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1925 {
1926 	struct intel_pt *pt = ptq->pt;
1927 	union perf_event *event = ptq->event_buf;
1928 	struct perf_sample sample = { .ip = 0, };
1929 	struct perf_synth_intel_psb raw;
1930 
1931 	if (intel_pt_skip_event(pt))
1932 		return 0;
1933 
1934 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1935 
1936 	sample.id = ptq->pt->psb_id;
1937 	sample.stream_id = ptq->pt->psb_id;
1938 	sample.flags = 0;
1939 
1940 	raw.reserved = 0;
1941 	raw.offset = ptq->state->psb_offset;
1942 
1943 	sample.raw_size = perf_synth__raw_size(raw);
1944 	sample.raw_data = perf_synth__raw_data(&raw);
1945 
1946 	return intel_pt_deliver_synth_event(pt, event, &sample,
1947 					    pt->pwr_events_sample_type);
1948 }
1949 
intel_pt_synth_mwait_sample(struct intel_pt_queue * ptq)1950 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1951 {
1952 	struct intel_pt *pt = ptq->pt;
1953 	union perf_event *event = ptq->event_buf;
1954 	struct perf_sample sample = { .ip = 0, };
1955 	struct perf_synth_intel_mwait raw;
1956 
1957 	if (intel_pt_skip_event(pt))
1958 		return 0;
1959 
1960 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1961 
1962 	sample.id = ptq->pt->mwait_id;
1963 	sample.stream_id = ptq->pt->mwait_id;
1964 
1965 	raw.reserved = 0;
1966 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1967 
1968 	sample.raw_size = perf_synth__raw_size(raw);
1969 	sample.raw_data = perf_synth__raw_data(&raw);
1970 
1971 	return intel_pt_deliver_synth_event(pt, event, &sample,
1972 					    pt->pwr_events_sample_type);
1973 }
1974 
intel_pt_synth_pwre_sample(struct intel_pt_queue * ptq)1975 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1976 {
1977 	struct intel_pt *pt = ptq->pt;
1978 	union perf_event *event = ptq->event_buf;
1979 	struct perf_sample sample = { .ip = 0, };
1980 	struct perf_synth_intel_pwre raw;
1981 
1982 	if (intel_pt_skip_event(pt))
1983 		return 0;
1984 
1985 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1986 
1987 	sample.id = ptq->pt->pwre_id;
1988 	sample.stream_id = ptq->pt->pwre_id;
1989 
1990 	raw.reserved = 0;
1991 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1992 
1993 	sample.raw_size = perf_synth__raw_size(raw);
1994 	sample.raw_data = perf_synth__raw_data(&raw);
1995 
1996 	return intel_pt_deliver_synth_event(pt, event, &sample,
1997 					    pt->pwr_events_sample_type);
1998 }
1999 
intel_pt_synth_exstop_sample(struct intel_pt_queue * ptq)2000 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
2001 {
2002 	struct intel_pt *pt = ptq->pt;
2003 	union perf_event *event = ptq->event_buf;
2004 	struct perf_sample sample = { .ip = 0, };
2005 	struct perf_synth_intel_exstop raw;
2006 
2007 	if (intel_pt_skip_event(pt))
2008 		return 0;
2009 
2010 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2011 
2012 	sample.id = ptq->pt->exstop_id;
2013 	sample.stream_id = ptq->pt->exstop_id;
2014 
2015 	raw.flags = 0;
2016 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2017 
2018 	sample.raw_size = perf_synth__raw_size(raw);
2019 	sample.raw_data = perf_synth__raw_data(&raw);
2020 
2021 	return intel_pt_deliver_synth_event(pt, event, &sample,
2022 					    pt->pwr_events_sample_type);
2023 }
2024 
intel_pt_synth_pwrx_sample(struct intel_pt_queue * ptq)2025 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2026 {
2027 	struct intel_pt *pt = ptq->pt;
2028 	union perf_event *event = ptq->event_buf;
2029 	struct perf_sample sample = { .ip = 0, };
2030 	struct perf_synth_intel_pwrx raw;
2031 
2032 	if (intel_pt_skip_event(pt))
2033 		return 0;
2034 
2035 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2036 
2037 	sample.id = ptq->pt->pwrx_id;
2038 	sample.stream_id = ptq->pt->pwrx_id;
2039 
2040 	raw.reserved = 0;
2041 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2042 
2043 	sample.raw_size = perf_synth__raw_size(raw);
2044 	sample.raw_data = perf_synth__raw_data(&raw);
2045 
2046 	return intel_pt_deliver_synth_event(pt, event, &sample,
2047 					    pt->pwr_events_sample_type);
2048 }
2049 
2050 /*
2051  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2052  * intel_pt_add_gp_regs().
2053  */
2054 static const int pebs_gp_regs[] = {
2055 	[PERF_REG_X86_FLAGS]	= 1,
2056 	[PERF_REG_X86_IP]	= 2,
2057 	[PERF_REG_X86_AX]	= 3,
2058 	[PERF_REG_X86_CX]	= 4,
2059 	[PERF_REG_X86_DX]	= 5,
2060 	[PERF_REG_X86_BX]	= 6,
2061 	[PERF_REG_X86_SP]	= 7,
2062 	[PERF_REG_X86_BP]	= 8,
2063 	[PERF_REG_X86_SI]	= 9,
2064 	[PERF_REG_X86_DI]	= 10,
2065 	[PERF_REG_X86_R8]	= 11,
2066 	[PERF_REG_X86_R9]	= 12,
2067 	[PERF_REG_X86_R10]	= 13,
2068 	[PERF_REG_X86_R11]	= 14,
2069 	[PERF_REG_X86_R12]	= 15,
2070 	[PERF_REG_X86_R13]	= 16,
2071 	[PERF_REG_X86_R14]	= 17,
2072 	[PERF_REG_X86_R15]	= 18,
2073 };
2074 
intel_pt_add_gp_regs(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)2075 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2076 				 const struct intel_pt_blk_items *items,
2077 				 u64 regs_mask)
2078 {
2079 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2080 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2081 	u32 bit;
2082 	int i;
2083 
2084 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2085 		/* Get the PEBS gp_regs array index */
2086 		int n = pebs_gp_regs[i] - 1;
2087 
2088 		if (n < 0)
2089 			continue;
2090 		/*
2091 		 * Add only registers that were requested (i.e. 'regs_mask') and
2092 		 * that were provided (i.e. 'mask'), and update the resulting
2093 		 * mask (i.e. 'intr_regs->mask') accordingly.
2094 		 */
2095 		if (mask & 1 << n && regs_mask & bit) {
2096 			intr_regs->mask |= bit;
2097 			*pos++ = gp_regs[n];
2098 		}
2099 	}
2100 
2101 	return pos;
2102 }
2103 
2104 #ifndef PERF_REG_X86_XMM0
2105 #define PERF_REG_X86_XMM0 32
2106 #endif
2107 
intel_pt_add_xmm(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)2108 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2109 			     const struct intel_pt_blk_items *items,
2110 			     u64 regs_mask)
2111 {
2112 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2113 	const u64 *xmm = items->xmm;
2114 
2115 	/*
2116 	 * If there are any XMM registers, then there should be all of them.
2117 	 * Nevertheless, follow the logic to add only registers that were
2118 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2119 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2120 	 */
2121 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2122 
2123 	for (; mask; mask >>= 1, xmm++) {
2124 		if (mask & 1)
2125 			*pos++ = *xmm;
2126 	}
2127 }
2128 
2129 #define LBR_INFO_MISPRED	(1ULL << 63)
2130 #define LBR_INFO_IN_TX		(1ULL << 62)
2131 #define LBR_INFO_ABORT		(1ULL << 61)
2132 #define LBR_INFO_CYCLES		0xffff
2133 
2134 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
intel_pt_lbr_flags(u64 info)2135 static u64 intel_pt_lbr_flags(u64 info)
2136 {
2137 	union {
2138 		struct branch_flags flags;
2139 		u64 result;
2140 	} u;
2141 
2142 	u.result	  = 0;
2143 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
2144 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
2145 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
2146 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
2147 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
2148 
2149 	return u.result;
2150 }
2151 
intel_pt_add_lbrs(struct branch_stack * br_stack,const struct intel_pt_blk_items * items)2152 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2153 			      const struct intel_pt_blk_items *items)
2154 {
2155 	u64 *to;
2156 	int i;
2157 
2158 	br_stack->nr = 0;
2159 
2160 	to = &br_stack->entries[0].from;
2161 
2162 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2163 		u32 mask = items->mask[i];
2164 		const u64 *from = items->val[i];
2165 
2166 		for (; mask; mask >>= 3, from += 3) {
2167 			if ((mask & 7) == 7) {
2168 				*to++ = from[0];
2169 				*to++ = from[1];
2170 				*to++ = intel_pt_lbr_flags(from[2]);
2171 				br_stack->nr += 1;
2172 			}
2173 		}
2174 	}
2175 }
2176 
intel_pt_do_synth_pebs_sample(struct intel_pt_queue * ptq,struct evsel * evsel,u64 id)2177 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2178 {
2179 	const struct intel_pt_blk_items *items = &ptq->state->items;
2180 	struct perf_sample sample = { .ip = 0, };
2181 	union perf_event *event = ptq->event_buf;
2182 	struct intel_pt *pt = ptq->pt;
2183 	u64 sample_type = evsel->core.attr.sample_type;
2184 	u8 cpumode;
2185 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
2186 
2187 	if (intel_pt_skip_event(pt))
2188 		return 0;
2189 
2190 	intel_pt_prep_a_sample(ptq, event, &sample);
2191 
2192 	sample.id = id;
2193 	sample.stream_id = id;
2194 
2195 	if (!evsel->core.attr.freq)
2196 		sample.period = evsel->core.attr.sample_period;
2197 
2198 	/* No support for non-zero CS base */
2199 	if (items->has_ip)
2200 		sample.ip = items->ip;
2201 	else if (items->has_rip)
2202 		sample.ip = items->rip;
2203 	else
2204 		sample.ip = ptq->state->from_ip;
2205 
2206 	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2207 
2208 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2209 
2210 	sample.cpumode = cpumode;
2211 
2212 	if (sample_type & PERF_SAMPLE_TIME) {
2213 		u64 timestamp = 0;
2214 
2215 		if (items->has_timestamp)
2216 			timestamp = items->timestamp;
2217 		else if (!pt->timeless_decoding)
2218 			timestamp = ptq->timestamp;
2219 		if (timestamp)
2220 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2221 	}
2222 
2223 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2224 	    pt->synth_opts.callchain) {
2225 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2226 				     pt->synth_opts.callchain_sz, sample.ip,
2227 				     pt->kernel_start);
2228 		sample.callchain = ptq->chain;
2229 	}
2230 
2231 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2232 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2233 	     items->mask[INTEL_PT_XMM_POS])) {
2234 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2235 		u64 *pos;
2236 
2237 		sample.intr_regs.abi = items->is_32_bit ?
2238 				       PERF_SAMPLE_REGS_ABI_32 :
2239 				       PERF_SAMPLE_REGS_ABI_64;
2240 		sample.intr_regs.regs = regs;
2241 
2242 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2243 
2244 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2245 	}
2246 
2247 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2248 		if (items->mask[INTEL_PT_LBR_0_POS] ||
2249 		    items->mask[INTEL_PT_LBR_1_POS] ||
2250 		    items->mask[INTEL_PT_LBR_2_POS]) {
2251 			intel_pt_add_lbrs(ptq->last_branch, items);
2252 		} else if (pt->synth_opts.last_branch) {
2253 			thread_stack__br_sample(ptq->thread, ptq->cpu,
2254 						ptq->last_branch,
2255 						pt->br_stack_sz);
2256 		} else {
2257 			ptq->last_branch->nr = 0;
2258 		}
2259 		sample.branch_stack = ptq->last_branch;
2260 	}
2261 
2262 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2263 		sample.addr = items->mem_access_address;
2264 
2265 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2266 		/*
2267 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2268 		 * intel_hsw_weight().
2269 		 */
2270 		if (items->has_mem_access_latency) {
2271 			u64 weight = items->mem_access_latency >> 32;
2272 
2273 			/*
2274 			 * Starts from SPR, the mem access latency field
2275 			 * contains both cache latency [47:32] and instruction
2276 			 * latency [15:0]. The cache latency is the same as the
2277 			 * mem access latency on previous platforms.
2278 			 *
2279 			 * In practice, no memory access could last than 4G
2280 			 * cycles. Use latency >> 32 to distinguish the
2281 			 * different format of the mem access latency field.
2282 			 */
2283 			if (weight > 0) {
2284 				sample.weight = weight & 0xffff;
2285 				sample.ins_lat = items->mem_access_latency & 0xffff;
2286 			} else
2287 				sample.weight = items->mem_access_latency;
2288 		}
2289 		if (!sample.weight && items->has_tsx_aux_info) {
2290 			/* Cycles last block */
2291 			sample.weight = (u32)items->tsx_aux_info;
2292 		}
2293 	}
2294 
2295 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2296 		u64 ax = items->has_rax ? items->rax : 0;
2297 		/* Refer kernel's intel_hsw_transaction() */
2298 		u64 txn = (u8)(items->tsx_aux_info >> 32);
2299 
2300 		/* For RTM XABORTs also log the abort code from AX */
2301 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2302 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2303 		sample.transaction = txn;
2304 	}
2305 
2306 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2307 }
2308 
intel_pt_synth_single_pebs_sample(struct intel_pt_queue * ptq)2309 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2310 {
2311 	struct intel_pt *pt = ptq->pt;
2312 	struct evsel *evsel = pt->pebs_evsel;
2313 	u64 id = evsel->core.id[0];
2314 
2315 	return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2316 }
2317 
intel_pt_synth_pebs_sample(struct intel_pt_queue * ptq)2318 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2319 {
2320 	const struct intel_pt_blk_items *items = &ptq->state->items;
2321 	struct intel_pt_pebs_event *pe;
2322 	struct intel_pt *pt = ptq->pt;
2323 	int err = -EINVAL;
2324 	int hw_id;
2325 
2326 	if (!items->has_applicable_counters || !items->applicable_counters) {
2327 		if (!pt->single_pebs)
2328 			pr_err("PEBS-via-PT record with no applicable_counters\n");
2329 		return intel_pt_synth_single_pebs_sample(ptq);
2330 	}
2331 
2332 	for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2333 		pe = &ptq->pebs[hw_id];
2334 		if (!pe->evsel) {
2335 			if (!pt->single_pebs)
2336 				pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2337 				       hw_id);
2338 			return intel_pt_synth_single_pebs_sample(ptq);
2339 		}
2340 		err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2341 		if (err)
2342 			return err;
2343 	}
2344 
2345 	return err;
2346 }
2347 
intel_pt_synth_events_sample(struct intel_pt_queue * ptq)2348 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2349 {
2350 	struct intel_pt *pt = ptq->pt;
2351 	union perf_event *event = ptq->event_buf;
2352 	struct perf_sample sample = { .ip = 0, };
2353 	struct {
2354 		struct perf_synth_intel_evt cfe;
2355 		struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2356 	} raw;
2357 	int i;
2358 
2359 	if (intel_pt_skip_event(pt))
2360 		return 0;
2361 
2362 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2363 
2364 	sample.id        = ptq->pt->evt_id;
2365 	sample.stream_id = ptq->pt->evt_id;
2366 
2367 	raw.cfe.type     = ptq->state->cfe_type;
2368 	raw.cfe.reserved = 0;
2369 	raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2370 	raw.cfe.vector   = ptq->state->cfe_vector;
2371 	raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2372 
2373 	for (i = 0; i < ptq->state->evd_cnt; i++) {
2374 		raw.evd[i].et       = 0;
2375 		raw.evd[i].evd_type = ptq->state->evd[i].type;
2376 		raw.evd[i].payload  = ptq->state->evd[i].payload;
2377 	}
2378 
2379 	sample.raw_size = perf_synth__raw_size(raw) +
2380 			  ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2381 	sample.raw_data = perf_synth__raw_data(&raw);
2382 
2383 	return intel_pt_deliver_synth_event(pt, event, &sample,
2384 					    pt->evt_sample_type);
2385 }
2386 
intel_pt_synth_iflag_chg_sample(struct intel_pt_queue * ptq)2387 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2388 {
2389 	struct intel_pt *pt = ptq->pt;
2390 	union perf_event *event = ptq->event_buf;
2391 	struct perf_sample sample = { .ip = 0, };
2392 	struct perf_synth_intel_iflag_chg raw;
2393 
2394 	if (intel_pt_skip_event(pt))
2395 		return 0;
2396 
2397 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2398 
2399 	sample.id = ptq->pt->iflag_chg_id;
2400 	sample.stream_id = ptq->pt->iflag_chg_id;
2401 
2402 	raw.flags = 0;
2403 	raw.iflag = ptq->state->to_iflag;
2404 
2405 	if (ptq->state->type & INTEL_PT_BRANCH) {
2406 		raw.via_branch = 1;
2407 		raw.branch_ip = ptq->state->to_ip;
2408 	} else {
2409 		sample.addr = 0;
2410 	}
2411 	sample.flags = ptq->flags;
2412 
2413 	sample.raw_size = perf_synth__raw_size(raw);
2414 	sample.raw_data = perf_synth__raw_data(&raw);
2415 
2416 	return intel_pt_deliver_synth_event(pt, event, &sample,
2417 					    pt->iflag_chg_sample_type);
2418 }
2419 
intel_pt_synth_error(struct intel_pt * pt,int code,int cpu,pid_t pid,pid_t tid,u64 ip,u64 timestamp,pid_t machine_pid,int vcpu)2420 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2421 				pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2422 				pid_t machine_pid, int vcpu)
2423 {
2424 	bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2425 	bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2426 	union perf_event event;
2427 	char msg[MAX_AUXTRACE_ERROR_MSG];
2428 	int err;
2429 
2430 	if (pt->synth_opts.error_minus_flags) {
2431 		if (code == INTEL_PT_ERR_OVR &&
2432 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2433 			return 0;
2434 		if (code == INTEL_PT_ERR_LOST &&
2435 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2436 			return 0;
2437 	}
2438 
2439 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2440 
2441 	auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2442 				   code, cpu, pid, tid, ip, msg, timestamp,
2443 				   machine_pid, vcpu);
2444 
2445 	if (intel_pt_enable_logging && !log_on_stdout) {
2446 		FILE *fp = intel_pt_log_fp();
2447 
2448 		if (fp)
2449 			perf_event__fprintf_auxtrace_error(&event, fp);
2450 	}
2451 
2452 	if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2453 		intel_pt_log_dump_buf();
2454 
2455 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2456 	if (err)
2457 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2458 		       err);
2459 
2460 	return err;
2461 }
2462 
intel_ptq_synth_error(struct intel_pt_queue * ptq,const struct intel_pt_state * state)2463 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2464 				 const struct intel_pt_state *state)
2465 {
2466 	struct intel_pt *pt = ptq->pt;
2467 	u64 tm = ptq->timestamp;
2468 	pid_t machine_pid = 0;
2469 	pid_t pid = ptq->pid;
2470 	pid_t tid = ptq->tid;
2471 	int vcpu = -1;
2472 
2473 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2474 
2475 	if (pt->have_guest_sideband && state->from_nr) {
2476 		machine_pid = ptq->guest_machine_pid;
2477 		vcpu = ptq->vcpu;
2478 		pid = ptq->guest_pid;
2479 		tid = ptq->guest_tid;
2480 	}
2481 
2482 	return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2483 				    state->from_ip, tm, machine_pid, vcpu);
2484 }
2485 
intel_pt_next_tid(struct intel_pt * pt,struct intel_pt_queue * ptq)2486 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2487 {
2488 	struct auxtrace_queue *queue;
2489 	pid_t tid = ptq->next_tid;
2490 	int err;
2491 
2492 	if (tid == -1)
2493 		return 0;
2494 
2495 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2496 
2497 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2498 
2499 	queue = &pt->queues.queue_array[ptq->queue_nr];
2500 	intel_pt_set_pid_tid_cpu(pt, queue);
2501 
2502 	ptq->next_tid = -1;
2503 
2504 	return err;
2505 }
2506 
intel_pt_is_switch_ip(struct intel_pt_queue * ptq,u64 ip)2507 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2508 {
2509 	struct intel_pt *pt = ptq->pt;
2510 
2511 	return ip == pt->switch_ip &&
2512 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2513 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2514 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2515 }
2516 
2517 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2518 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2519 
intel_pt_sample(struct intel_pt_queue * ptq)2520 static int intel_pt_sample(struct intel_pt_queue *ptq)
2521 {
2522 	const struct intel_pt_state *state = ptq->state;
2523 	struct intel_pt *pt = ptq->pt;
2524 	int err;
2525 
2526 	if (!ptq->have_sample)
2527 		return 0;
2528 
2529 	ptq->have_sample = false;
2530 
2531 	if (pt->synth_opts.approx_ipc) {
2532 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2533 		ptq->ipc_cyc_cnt = ptq->state->cycles;
2534 		ptq->sample_ipc = true;
2535 	} else {
2536 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2537 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2538 		ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2539 	}
2540 
2541 	/* Ensure guest code maps are set up */
2542 	if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2543 		intel_pt_get_guest(ptq);
2544 
2545 	/*
2546 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2547 	 * precedes the current timestamp.
2548 	 */
2549 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2550 		err = intel_pt_synth_pebs_sample(ptq);
2551 		if (err)
2552 			return err;
2553 	}
2554 
2555 	if (pt->synth_opts.intr_events) {
2556 		if (state->type & INTEL_PT_EVT) {
2557 			err = intel_pt_synth_events_sample(ptq);
2558 			if (err)
2559 				return err;
2560 		}
2561 		if (state->type & INTEL_PT_IFLAG_CHG) {
2562 			err = intel_pt_synth_iflag_chg_sample(ptq);
2563 			if (err)
2564 				return err;
2565 		}
2566 	}
2567 
2568 	if (pt->sample_pwr_events) {
2569 		if (state->type & INTEL_PT_PSB_EVT) {
2570 			err = intel_pt_synth_psb_sample(ptq);
2571 			if (err)
2572 				return err;
2573 		}
2574 		if (ptq->state->cbr != ptq->cbr_seen) {
2575 			err = intel_pt_synth_cbr_sample(ptq);
2576 			if (err)
2577 				return err;
2578 		}
2579 		if (state->type & INTEL_PT_PWR_EVT) {
2580 			if (state->type & INTEL_PT_MWAIT_OP) {
2581 				err = intel_pt_synth_mwait_sample(ptq);
2582 				if (err)
2583 					return err;
2584 			}
2585 			if (state->type & INTEL_PT_PWR_ENTRY) {
2586 				err = intel_pt_synth_pwre_sample(ptq);
2587 				if (err)
2588 					return err;
2589 			}
2590 			if (state->type & INTEL_PT_EX_STOP) {
2591 				err = intel_pt_synth_exstop_sample(ptq);
2592 				if (err)
2593 					return err;
2594 			}
2595 			if (state->type & INTEL_PT_PWR_EXIT) {
2596 				err = intel_pt_synth_pwrx_sample(ptq);
2597 				if (err)
2598 					return err;
2599 			}
2600 		}
2601 	}
2602 
2603 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2604 		err = intel_pt_synth_instruction_sample(ptq);
2605 		if (err)
2606 			return err;
2607 	}
2608 
2609 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2610 		err = intel_pt_synth_transaction_sample(ptq);
2611 		if (err)
2612 			return err;
2613 	}
2614 
2615 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2616 		err = intel_pt_synth_ptwrite_sample(ptq);
2617 		if (err)
2618 			return err;
2619 	}
2620 
2621 	if (!(state->type & INTEL_PT_BRANCH))
2622 		return 0;
2623 
2624 	if (pt->use_thread_stack) {
2625 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2626 				    state->from_ip, state->to_ip, ptq->insn_len,
2627 				    state->trace_nr, pt->callstack,
2628 				    pt->br_stack_sz_plus,
2629 				    pt->mispred_all);
2630 	} else {
2631 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2632 	}
2633 
2634 	if (pt->sample_branches) {
2635 		if (state->from_nr != state->to_nr &&
2636 		    state->from_ip && state->to_ip) {
2637 			struct intel_pt_state *st = (struct intel_pt_state *)state;
2638 			u64 to_ip = st->to_ip;
2639 			u64 from_ip = st->from_ip;
2640 
2641 			/*
2642 			 * perf cannot handle having different machines for ip
2643 			 * and addr, so create 2 branches.
2644 			 */
2645 			st->to_ip = 0;
2646 			err = intel_pt_synth_branch_sample(ptq);
2647 			if (err)
2648 				return err;
2649 			st->from_ip = 0;
2650 			st->to_ip = to_ip;
2651 			err = intel_pt_synth_branch_sample(ptq);
2652 			st->from_ip = from_ip;
2653 		} else {
2654 			err = intel_pt_synth_branch_sample(ptq);
2655 		}
2656 		if (err)
2657 			return err;
2658 	}
2659 
2660 	if (!ptq->sync_switch)
2661 		return 0;
2662 
2663 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2664 		switch (ptq->switch_state) {
2665 		case INTEL_PT_SS_NOT_TRACING:
2666 		case INTEL_PT_SS_UNKNOWN:
2667 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2668 			err = intel_pt_next_tid(pt, ptq);
2669 			if (err)
2670 				return err;
2671 			ptq->switch_state = INTEL_PT_SS_TRACING;
2672 			break;
2673 		default:
2674 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2675 			return 1;
2676 		}
2677 	} else if (!state->to_ip) {
2678 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2679 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2680 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2681 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2682 		   state->to_ip == pt->ptss_ip &&
2683 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2684 		ptq->switch_state = INTEL_PT_SS_TRACING;
2685 	}
2686 
2687 	return 0;
2688 }
2689 
intel_pt_switch_ip(struct intel_pt * pt,u64 * ptss_ip)2690 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2691 {
2692 	struct machine *machine = pt->machine;
2693 	struct map *map;
2694 	struct symbol *sym, *start;
2695 	u64 ip, switch_ip = 0;
2696 	const char *ptss;
2697 
2698 	if (ptss_ip)
2699 		*ptss_ip = 0;
2700 
2701 	map = machine__kernel_map(machine);
2702 	if (!map)
2703 		return 0;
2704 
2705 	if (map__load(map))
2706 		return 0;
2707 
2708 	start = dso__first_symbol(map->dso);
2709 
2710 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2711 		if (sym->binding == STB_GLOBAL &&
2712 		    !strcmp(sym->name, "__switch_to")) {
2713 			ip = map->unmap_ip(map, sym->start);
2714 			if (ip >= map->start && ip < map->end) {
2715 				switch_ip = ip;
2716 				break;
2717 			}
2718 		}
2719 	}
2720 
2721 	if (!switch_ip || !ptss_ip)
2722 		return 0;
2723 
2724 	if (pt->have_sched_switch == 1)
2725 		ptss = "perf_trace_sched_switch";
2726 	else
2727 		ptss = "__perf_event_task_sched_out";
2728 
2729 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2730 		if (!strcmp(sym->name, ptss)) {
2731 			ip = map->unmap_ip(map, sym->start);
2732 			if (ip >= map->start && ip < map->end) {
2733 				*ptss_ip = ip;
2734 				break;
2735 			}
2736 		}
2737 	}
2738 
2739 	return switch_ip;
2740 }
2741 
intel_pt_enable_sync_switch(struct intel_pt * pt)2742 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2743 {
2744 	unsigned int i;
2745 
2746 	if (pt->sync_switch_not_supported)
2747 		return;
2748 
2749 	pt->sync_switch = true;
2750 
2751 	for (i = 0; i < pt->queues.nr_queues; i++) {
2752 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2753 		struct intel_pt_queue *ptq = queue->priv;
2754 
2755 		if (ptq)
2756 			ptq->sync_switch = true;
2757 	}
2758 }
2759 
intel_pt_disable_sync_switch(struct intel_pt * pt)2760 static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2761 {
2762 	unsigned int i;
2763 
2764 	pt->sync_switch = false;
2765 
2766 	for (i = 0; i < pt->queues.nr_queues; i++) {
2767 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2768 		struct intel_pt_queue *ptq = queue->priv;
2769 
2770 		if (ptq) {
2771 			ptq->sync_switch = false;
2772 			intel_pt_next_tid(pt, ptq);
2773 		}
2774 	}
2775 }
2776 
2777 /*
2778  * To filter against time ranges, it is only necessary to look at the next start
2779  * or end time.
2780  */
intel_pt_next_time(struct intel_pt_queue * ptq)2781 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2782 {
2783 	struct intel_pt *pt = ptq->pt;
2784 
2785 	if (ptq->sel_start) {
2786 		/* Next time is an end time */
2787 		ptq->sel_start = false;
2788 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2789 		return true;
2790 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2791 		/* Next time is a start time */
2792 		ptq->sel_start = true;
2793 		ptq->sel_idx += 1;
2794 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2795 		return true;
2796 	}
2797 
2798 	/* No next time */
2799 	return false;
2800 }
2801 
intel_pt_time_filter(struct intel_pt_queue * ptq,u64 * ff_timestamp)2802 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2803 {
2804 	int err;
2805 
2806 	while (1) {
2807 		if (ptq->sel_start) {
2808 			if (ptq->timestamp >= ptq->sel_timestamp) {
2809 				/* After start time, so consider next time */
2810 				intel_pt_next_time(ptq);
2811 				if (!ptq->sel_timestamp) {
2812 					/* No end time */
2813 					return 0;
2814 				}
2815 				/* Check against end time */
2816 				continue;
2817 			}
2818 			/* Before start time, so fast forward */
2819 			ptq->have_sample = false;
2820 			if (ptq->sel_timestamp > *ff_timestamp) {
2821 				if (ptq->sync_switch) {
2822 					intel_pt_next_tid(ptq->pt, ptq);
2823 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2824 				}
2825 				*ff_timestamp = ptq->sel_timestamp;
2826 				err = intel_pt_fast_forward(ptq->decoder,
2827 							    ptq->sel_timestamp);
2828 				if (err)
2829 					return err;
2830 			}
2831 			return 0;
2832 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2833 			/* After end time, so consider next time */
2834 			if (!intel_pt_next_time(ptq)) {
2835 				/* No next time range, so stop decoding */
2836 				ptq->have_sample = false;
2837 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2838 				return 1;
2839 			}
2840 			/* Check against next start time */
2841 			continue;
2842 		} else {
2843 			/* Before end time */
2844 			return 0;
2845 		}
2846 	}
2847 }
2848 
intel_pt_run_decoder(struct intel_pt_queue * ptq,u64 * timestamp)2849 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2850 {
2851 	const struct intel_pt_state *state = ptq->state;
2852 	struct intel_pt *pt = ptq->pt;
2853 	u64 ff_timestamp = 0;
2854 	int err;
2855 
2856 	if (!pt->kernel_start) {
2857 		pt->kernel_start = machine__kernel_start(pt->machine);
2858 		if (pt->per_cpu_mmaps &&
2859 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2860 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2861 		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2862 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2863 			if (pt->switch_ip) {
2864 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2865 					     pt->switch_ip, pt->ptss_ip);
2866 				intel_pt_enable_sync_switch(pt);
2867 			}
2868 		}
2869 	}
2870 
2871 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2872 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2873 	while (1) {
2874 		err = intel_pt_sample(ptq);
2875 		if (err)
2876 			return err;
2877 
2878 		state = intel_pt_decode(ptq->decoder);
2879 		if (state->err) {
2880 			if (state->err == INTEL_PT_ERR_NODATA)
2881 				return 1;
2882 			if (ptq->sync_switch &&
2883 			    state->from_ip >= pt->kernel_start) {
2884 				ptq->sync_switch = false;
2885 				intel_pt_next_tid(pt, ptq);
2886 			}
2887 			ptq->timestamp = state->est_timestamp;
2888 			if (pt->synth_opts.errors) {
2889 				err = intel_ptq_synth_error(ptq, state);
2890 				if (err)
2891 					return err;
2892 			}
2893 			continue;
2894 		}
2895 
2896 		ptq->state = state;
2897 		ptq->have_sample = true;
2898 		intel_pt_sample_flags(ptq);
2899 
2900 		/* Use estimated TSC upon return to user space */
2901 		if (pt->est_tsc &&
2902 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2903 		    state->to_ip && state->to_ip < pt->kernel_start) {
2904 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2905 				     state->timestamp, state->est_timestamp);
2906 			ptq->timestamp = state->est_timestamp;
2907 		/* Use estimated TSC in unknown switch state */
2908 		} else if (ptq->sync_switch &&
2909 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2910 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2911 			   ptq->next_tid == -1) {
2912 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2913 				     state->timestamp, state->est_timestamp);
2914 			ptq->timestamp = state->est_timestamp;
2915 		} else if (state->timestamp > ptq->timestamp) {
2916 			ptq->timestamp = state->timestamp;
2917 		}
2918 
2919 		if (ptq->sel_timestamp) {
2920 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2921 			if (err)
2922 				return err;
2923 		}
2924 
2925 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2926 			*timestamp = ptq->timestamp;
2927 			return 0;
2928 		}
2929 	}
2930 	return 0;
2931 }
2932 
intel_pt_update_queues(struct intel_pt * pt)2933 static inline int intel_pt_update_queues(struct intel_pt *pt)
2934 {
2935 	if (pt->queues.new_data) {
2936 		pt->queues.new_data = false;
2937 		return intel_pt_setup_queues(pt);
2938 	}
2939 	return 0;
2940 }
2941 
intel_pt_process_queues(struct intel_pt * pt,u64 timestamp)2942 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2943 {
2944 	unsigned int queue_nr;
2945 	u64 ts;
2946 	int ret;
2947 
2948 	while (1) {
2949 		struct auxtrace_queue *queue;
2950 		struct intel_pt_queue *ptq;
2951 
2952 		if (!pt->heap.heap_cnt)
2953 			return 0;
2954 
2955 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2956 			return 0;
2957 
2958 		queue_nr = pt->heap.heap_array[0].queue_nr;
2959 		queue = &pt->queues.queue_array[queue_nr];
2960 		ptq = queue->priv;
2961 
2962 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2963 			     queue_nr, pt->heap.heap_array[0].ordinal,
2964 			     timestamp);
2965 
2966 		auxtrace_heap__pop(&pt->heap);
2967 
2968 		if (pt->heap.heap_cnt) {
2969 			ts = pt->heap.heap_array[0].ordinal + 1;
2970 			if (ts > timestamp)
2971 				ts = timestamp;
2972 		} else {
2973 			ts = timestamp;
2974 		}
2975 
2976 		intel_pt_set_pid_tid_cpu(pt, queue);
2977 
2978 		ret = intel_pt_run_decoder(ptq, &ts);
2979 
2980 		if (ret < 0) {
2981 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2982 			return ret;
2983 		}
2984 
2985 		if (!ret) {
2986 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2987 			if (ret < 0)
2988 				return ret;
2989 		} else {
2990 			ptq->on_heap = false;
2991 		}
2992 	}
2993 
2994 	return 0;
2995 }
2996 
intel_pt_process_timeless_queues(struct intel_pt * pt,pid_t tid,u64 time_)2997 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2998 					    u64 time_)
2999 {
3000 	struct auxtrace_queues *queues = &pt->queues;
3001 	unsigned int i;
3002 	u64 ts = 0;
3003 
3004 	for (i = 0; i < queues->nr_queues; i++) {
3005 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3006 		struct intel_pt_queue *ptq = queue->priv;
3007 
3008 		if (ptq && (tid == -1 || ptq->tid == tid)) {
3009 			ptq->time = time_;
3010 			intel_pt_set_pid_tid_cpu(pt, queue);
3011 			intel_pt_run_decoder(ptq, &ts);
3012 		}
3013 	}
3014 	return 0;
3015 }
3016 
intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue * ptq,struct auxtrace_queue * queue,struct perf_sample * sample)3017 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3018 					    struct auxtrace_queue *queue,
3019 					    struct perf_sample *sample)
3020 {
3021 	struct machine *m = ptq->pt->machine;
3022 
3023 	ptq->pid = sample->pid;
3024 	ptq->tid = sample->tid;
3025 	ptq->cpu = queue->cpu;
3026 
3027 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3028 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3029 
3030 	thread__zput(ptq->thread);
3031 
3032 	if (ptq->tid == -1)
3033 		return;
3034 
3035 	if (ptq->pid == -1) {
3036 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
3037 		if (ptq->thread)
3038 			ptq->pid = ptq->thread->pid_;
3039 		return;
3040 	}
3041 
3042 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3043 }
3044 
intel_pt_process_timeless_sample(struct intel_pt * pt,struct perf_sample * sample)3045 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3046 					    struct perf_sample *sample)
3047 {
3048 	struct auxtrace_queue *queue;
3049 	struct intel_pt_queue *ptq;
3050 	u64 ts = 0;
3051 
3052 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3053 	if (!queue)
3054 		return -EINVAL;
3055 
3056 	ptq = queue->priv;
3057 	if (!ptq)
3058 		return 0;
3059 
3060 	ptq->stop = false;
3061 	ptq->time = sample->time;
3062 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3063 	intel_pt_run_decoder(ptq, &ts);
3064 	return 0;
3065 }
3066 
intel_pt_lost(struct intel_pt * pt,struct perf_sample * sample)3067 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3068 {
3069 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3070 				    sample->pid, sample->tid, 0, sample->time,
3071 				    sample->machine_pid, sample->vcpu);
3072 }
3073 
intel_pt_cpu_to_ptq(struct intel_pt * pt,int cpu)3074 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3075 {
3076 	unsigned i, j;
3077 
3078 	if (cpu < 0 || !pt->queues.nr_queues)
3079 		return NULL;
3080 
3081 	if ((unsigned)cpu >= pt->queues.nr_queues)
3082 		i = pt->queues.nr_queues - 1;
3083 	else
3084 		i = cpu;
3085 
3086 	if (pt->queues.queue_array[i].cpu == cpu)
3087 		return pt->queues.queue_array[i].priv;
3088 
3089 	for (j = 0; i > 0; j++) {
3090 		if (pt->queues.queue_array[--i].cpu == cpu)
3091 			return pt->queues.queue_array[i].priv;
3092 	}
3093 
3094 	for (; j < pt->queues.nr_queues; j++) {
3095 		if (pt->queues.queue_array[j].cpu == cpu)
3096 			return pt->queues.queue_array[j].priv;
3097 	}
3098 
3099 	return NULL;
3100 }
3101 
intel_pt_sync_switch(struct intel_pt * pt,int cpu,pid_t tid,u64 timestamp)3102 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3103 				u64 timestamp)
3104 {
3105 	struct intel_pt_queue *ptq;
3106 	int err;
3107 
3108 	if (!pt->sync_switch)
3109 		return 1;
3110 
3111 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
3112 	if (!ptq || !ptq->sync_switch)
3113 		return 1;
3114 
3115 	switch (ptq->switch_state) {
3116 	case INTEL_PT_SS_NOT_TRACING:
3117 		break;
3118 	case INTEL_PT_SS_UNKNOWN:
3119 	case INTEL_PT_SS_TRACING:
3120 		ptq->next_tid = tid;
3121 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3122 		return 0;
3123 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3124 		if (!ptq->on_heap) {
3125 			ptq->timestamp = perf_time_to_tsc(timestamp,
3126 							  &pt->tc);
3127 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3128 						 ptq->timestamp);
3129 			if (err)
3130 				return err;
3131 			ptq->on_heap = true;
3132 		}
3133 		ptq->switch_state = INTEL_PT_SS_TRACING;
3134 		break;
3135 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3136 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3137 		break;
3138 	default:
3139 		break;
3140 	}
3141 
3142 	ptq->next_tid = -1;
3143 
3144 	return 1;
3145 }
3146 
intel_pt_process_switch(struct intel_pt * pt,struct perf_sample * sample)3147 static int intel_pt_process_switch(struct intel_pt *pt,
3148 				   struct perf_sample *sample)
3149 {
3150 	pid_t tid;
3151 	int cpu, ret;
3152 	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3153 
3154 	if (evsel != pt->switch_evsel)
3155 		return 0;
3156 
3157 	tid = evsel__intval(evsel, sample, "next_pid");
3158 	cpu = sample->cpu;
3159 
3160 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3161 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3162 		     &pt->tc));
3163 
3164 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3165 	if (ret <= 0)
3166 		return ret;
3167 
3168 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
3169 }
3170 
intel_pt_context_switch_in(struct intel_pt * pt,struct perf_sample * sample)3171 static int intel_pt_context_switch_in(struct intel_pt *pt,
3172 				      struct perf_sample *sample)
3173 {
3174 	pid_t pid = sample->pid;
3175 	pid_t tid = sample->tid;
3176 	int cpu = sample->cpu;
3177 
3178 	if (pt->sync_switch) {
3179 		struct intel_pt_queue *ptq;
3180 
3181 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
3182 		if (ptq && ptq->sync_switch) {
3183 			ptq->next_tid = -1;
3184 			switch (ptq->switch_state) {
3185 			case INTEL_PT_SS_NOT_TRACING:
3186 			case INTEL_PT_SS_UNKNOWN:
3187 			case INTEL_PT_SS_TRACING:
3188 				break;
3189 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3190 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3191 				ptq->switch_state = INTEL_PT_SS_TRACING;
3192 				break;
3193 			default:
3194 				break;
3195 			}
3196 		}
3197 	}
3198 
3199 	/*
3200 	 * If the current tid has not been updated yet, ensure it is now that
3201 	 * a "switch in" event has occurred.
3202 	 */
3203 	if (machine__get_current_tid(pt->machine, cpu) == tid)
3204 		return 0;
3205 
3206 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3207 }
3208 
intel_pt_guest_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3209 static int intel_pt_guest_context_switch(struct intel_pt *pt,
3210 					 union perf_event *event,
3211 					 struct perf_sample *sample)
3212 {
3213 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3214 	struct machines *machines = &pt->session->machines;
3215 	struct machine *machine = machines__find(machines, sample->machine_pid);
3216 
3217 	pt->have_guest_sideband = true;
3218 
3219 	/*
3220 	 * sync_switch cannot handle guest machines at present, so just disable
3221 	 * it.
3222 	 */
3223 	pt->sync_switch_not_supported = true;
3224 	if (pt->sync_switch)
3225 		intel_pt_disable_sync_switch(pt);
3226 
3227 	if (out)
3228 		return 0;
3229 
3230 	if (!machine)
3231 		return -EINVAL;
3232 
3233 	return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3234 }
3235 
intel_pt_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3236 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3237 				   struct perf_sample *sample)
3238 {
3239 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3240 	pid_t pid, tid;
3241 	int cpu, ret;
3242 
3243 	if (perf_event__is_guest(event))
3244 		return intel_pt_guest_context_switch(pt, event, sample);
3245 
3246 	cpu = sample->cpu;
3247 
3248 	if (pt->have_sched_switch == 3) {
3249 		if (!out)
3250 			return intel_pt_context_switch_in(pt, sample);
3251 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3252 			pr_err("Expecting CPU-wide context switch event\n");
3253 			return -EINVAL;
3254 		}
3255 		pid = event->context_switch.next_prev_pid;
3256 		tid = event->context_switch.next_prev_tid;
3257 	} else {
3258 		if (out)
3259 			return 0;
3260 		pid = sample->pid;
3261 		tid = sample->tid;
3262 	}
3263 
3264 	if (tid == -1)
3265 		intel_pt_log("context_switch event has no tid\n");
3266 
3267 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3268 	if (ret <= 0)
3269 		return ret;
3270 
3271 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3272 }
3273 
intel_pt_process_itrace_start(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3274 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3275 					 union perf_event *event,
3276 					 struct perf_sample *sample)
3277 {
3278 	if (!pt->per_cpu_mmaps)
3279 		return 0;
3280 
3281 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3282 		     sample->cpu, event->itrace_start.pid,
3283 		     event->itrace_start.tid, sample->time,
3284 		     perf_time_to_tsc(sample->time, &pt->tc));
3285 
3286 	return machine__set_current_tid(pt->machine, sample->cpu,
3287 					event->itrace_start.pid,
3288 					event->itrace_start.tid);
3289 }
3290 
intel_pt_process_aux_output_hw_id(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3291 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3292 					     union perf_event *event,
3293 					     struct perf_sample *sample)
3294 {
3295 	u64 hw_id = event->aux_output_hw_id.hw_id;
3296 	struct auxtrace_queue *queue;
3297 	struct intel_pt_queue *ptq;
3298 	struct evsel *evsel;
3299 
3300 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3301 	evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3302 	if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3303 		pr_err("Bad AUX output hardware ID\n");
3304 		return -EINVAL;
3305 	}
3306 
3307 	ptq = queue->priv;
3308 
3309 	ptq->pebs[hw_id].evsel = evsel;
3310 	ptq->pebs[hw_id].id = sample->id;
3311 
3312 	return 0;
3313 }
3314 
intel_pt_find_map(struct thread * thread,u8 cpumode,u64 addr,struct addr_location * al)3315 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3316 			     struct addr_location *al)
3317 {
3318 	if (!al->map || addr < al->map->start || addr >= al->map->end) {
3319 		if (!thread__find_map(thread, cpumode, addr, al))
3320 			return -1;
3321 	}
3322 
3323 	return 0;
3324 }
3325 
3326 /* Invalidate all instruction cache entries that overlap the text poke */
intel_pt_text_poke(struct intel_pt * pt,union perf_event * event)3327 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3328 {
3329 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3330 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3331 	/* Assume text poke begins in a basic block no more than 4096 bytes */
3332 	int cnt = 4096 + event->text_poke.new_len;
3333 	struct thread *thread = pt->unknown_thread;
3334 	struct addr_location al = { .map = NULL };
3335 	struct machine *machine = pt->machine;
3336 	struct intel_pt_cache_entry *e;
3337 	u64 offset;
3338 
3339 	if (!event->text_poke.new_len)
3340 		return 0;
3341 
3342 	for (; cnt; cnt--, addr--) {
3343 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3344 			if (addr < event->text_poke.addr)
3345 				return 0;
3346 			continue;
3347 		}
3348 
3349 		if (!al.map->dso || !al.map->dso->auxtrace_cache)
3350 			continue;
3351 
3352 		offset = al.map->map_ip(al.map, addr);
3353 
3354 		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
3355 		if (!e)
3356 			continue;
3357 
3358 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3359 			/*
3360 			 * No overlap. Working backwards there cannot be another
3361 			 * basic block that overlaps the text poke if there is a
3362 			 * branch instruction before the text poke address.
3363 			 */
3364 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
3365 				return 0;
3366 		} else {
3367 			intel_pt_cache_invalidate(al.map->dso, machine, offset);
3368 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3369 				     al.map->dso->long_name, addr);
3370 		}
3371 	}
3372 
3373 	return 0;
3374 }
3375 
intel_pt_process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)3376 static int intel_pt_process_event(struct perf_session *session,
3377 				  union perf_event *event,
3378 				  struct perf_sample *sample,
3379 				  struct perf_tool *tool)
3380 {
3381 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3382 					   auxtrace);
3383 	u64 timestamp;
3384 	int err = 0;
3385 
3386 	if (dump_trace)
3387 		return 0;
3388 
3389 	if (!tool->ordered_events) {
3390 		pr_err("Intel Processor Trace requires ordered events\n");
3391 		return -EINVAL;
3392 	}
3393 
3394 	if (sample->time && sample->time != (u64)-1)
3395 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3396 	else
3397 		timestamp = 0;
3398 
3399 	if (timestamp || pt->timeless_decoding) {
3400 		err = intel_pt_update_queues(pt);
3401 		if (err)
3402 			return err;
3403 	}
3404 
3405 	if (pt->timeless_decoding) {
3406 		if (pt->sampling_mode) {
3407 			if (sample->aux_sample.size)
3408 				err = intel_pt_process_timeless_sample(pt,
3409 								       sample);
3410 		} else if (event->header.type == PERF_RECORD_EXIT) {
3411 			err = intel_pt_process_timeless_queues(pt,
3412 							       event->fork.tid,
3413 							       sample->time);
3414 		}
3415 	} else if (timestamp) {
3416 		if (!pt->first_timestamp)
3417 			intel_pt_first_timestamp(pt, timestamp);
3418 		err = intel_pt_process_queues(pt, timestamp);
3419 	}
3420 	if (err)
3421 		return err;
3422 
3423 	if (event->header.type == PERF_RECORD_SAMPLE) {
3424 		if (pt->synth_opts.add_callchain && !sample->callchain)
3425 			intel_pt_add_callchain(pt, sample);
3426 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3427 			intel_pt_add_br_stack(pt, sample);
3428 	}
3429 
3430 	if (event->header.type == PERF_RECORD_AUX &&
3431 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3432 	    pt->synth_opts.errors) {
3433 		err = intel_pt_lost(pt, sample);
3434 		if (err)
3435 			return err;
3436 	}
3437 
3438 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3439 		err = intel_pt_process_switch(pt, sample);
3440 	else if (event->header.type == PERF_RECORD_ITRACE_START)
3441 		err = intel_pt_process_itrace_start(pt, event, sample);
3442 	else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3443 		err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3444 	else if (event->header.type == PERF_RECORD_SWITCH ||
3445 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3446 		err = intel_pt_context_switch(pt, event, sample);
3447 
3448 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3449 		err = intel_pt_text_poke(pt, event);
3450 
3451 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3452 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3453 			     event->header.type, sample->cpu, sample->time, timestamp);
3454 		intel_pt_log_event(event);
3455 	}
3456 
3457 	return err;
3458 }
3459 
intel_pt_flush(struct perf_session * session,struct perf_tool * tool)3460 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3461 {
3462 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3463 					   auxtrace);
3464 	int ret;
3465 
3466 	if (dump_trace)
3467 		return 0;
3468 
3469 	if (!tool->ordered_events)
3470 		return -EINVAL;
3471 
3472 	ret = intel_pt_update_queues(pt);
3473 	if (ret < 0)
3474 		return ret;
3475 
3476 	if (pt->timeless_decoding)
3477 		return intel_pt_process_timeless_queues(pt, -1,
3478 							MAX_TIMESTAMP - 1);
3479 
3480 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3481 }
3482 
intel_pt_free_events(struct perf_session * session)3483 static void intel_pt_free_events(struct perf_session *session)
3484 {
3485 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3486 					   auxtrace);
3487 	struct auxtrace_queues *queues = &pt->queues;
3488 	unsigned int i;
3489 
3490 	for (i = 0; i < queues->nr_queues; i++) {
3491 		intel_pt_free_queue(queues->queue_array[i].priv);
3492 		queues->queue_array[i].priv = NULL;
3493 	}
3494 	intel_pt_log_disable();
3495 	auxtrace_queues__free(queues);
3496 }
3497 
intel_pt_free(struct perf_session * session)3498 static void intel_pt_free(struct perf_session *session)
3499 {
3500 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3501 					   auxtrace);
3502 
3503 	auxtrace_heap__free(&pt->heap);
3504 	intel_pt_free_events(session);
3505 	session->auxtrace = NULL;
3506 	intel_pt_free_vmcs_info(pt);
3507 	thread__put(pt->unknown_thread);
3508 	addr_filters__exit(&pt->filts);
3509 	zfree(&pt->chain);
3510 	zfree(&pt->filter);
3511 	zfree(&pt->time_ranges);
3512 	free(pt);
3513 }
3514 
intel_pt_evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)3515 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3516 				       struct evsel *evsel)
3517 {
3518 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3519 					   auxtrace);
3520 
3521 	return evsel->core.attr.type == pt->pmu_type;
3522 }
3523 
intel_pt_process_auxtrace_event(struct perf_session * session,union perf_event * event,struct perf_tool * tool __maybe_unused)3524 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3525 					   union perf_event *event,
3526 					   struct perf_tool *tool __maybe_unused)
3527 {
3528 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3529 					   auxtrace);
3530 
3531 	if (!pt->data_queued) {
3532 		struct auxtrace_buffer *buffer;
3533 		off_t data_offset;
3534 		int fd = perf_data__fd(session->data);
3535 		int err;
3536 
3537 		if (perf_data__is_pipe(session->data)) {
3538 			data_offset = 0;
3539 		} else {
3540 			data_offset = lseek(fd, 0, SEEK_CUR);
3541 			if (data_offset == -1)
3542 				return -errno;
3543 		}
3544 
3545 		err = auxtrace_queues__add_event(&pt->queues, session, event,
3546 						 data_offset, &buffer);
3547 		if (err)
3548 			return err;
3549 
3550 		/* Dump here now we have copied a piped trace out of the pipe */
3551 		if (dump_trace) {
3552 			if (auxtrace_buffer__get_data(buffer, fd)) {
3553 				intel_pt_dump_event(pt, buffer->data,
3554 						    buffer->size);
3555 				auxtrace_buffer__put_data(buffer);
3556 			}
3557 		}
3558 	}
3559 
3560 	return 0;
3561 }
3562 
intel_pt_queue_data(struct perf_session * session,struct perf_sample * sample,union perf_event * event,u64 data_offset)3563 static int intel_pt_queue_data(struct perf_session *session,
3564 			       struct perf_sample *sample,
3565 			       union perf_event *event, u64 data_offset)
3566 {
3567 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3568 					   auxtrace);
3569 	u64 timestamp;
3570 
3571 	if (event) {
3572 		return auxtrace_queues__add_event(&pt->queues, session, event,
3573 						  data_offset, NULL);
3574 	}
3575 
3576 	if (sample->time && sample->time != (u64)-1)
3577 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3578 	else
3579 		timestamp = 0;
3580 
3581 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3582 					   data_offset, timestamp);
3583 }
3584 
3585 struct intel_pt_synth {
3586 	struct perf_tool dummy_tool;
3587 	struct perf_session *session;
3588 };
3589 
intel_pt_event_synth(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)3590 static int intel_pt_event_synth(struct perf_tool *tool,
3591 				union perf_event *event,
3592 				struct perf_sample *sample __maybe_unused,
3593 				struct machine *machine __maybe_unused)
3594 {
3595 	struct intel_pt_synth *intel_pt_synth =
3596 			container_of(tool, struct intel_pt_synth, dummy_tool);
3597 
3598 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3599 						 NULL);
3600 }
3601 
intel_pt_synth_event(struct perf_session * session,const char * name,struct perf_event_attr * attr,u64 id)3602 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3603 				struct perf_event_attr *attr, u64 id)
3604 {
3605 	struct intel_pt_synth intel_pt_synth;
3606 	int err;
3607 
3608 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3609 		 name, id, (u64)attr->sample_type);
3610 
3611 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3612 	intel_pt_synth.session = session;
3613 
3614 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3615 					  &id, intel_pt_event_synth);
3616 	if (err)
3617 		pr_err("%s: failed to synthesize '%s' event type\n",
3618 		       __func__, name);
3619 
3620 	return err;
3621 }
3622 
intel_pt_set_event_name(struct evlist * evlist,u64 id,const char * name)3623 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3624 				    const char *name)
3625 {
3626 	struct evsel *evsel;
3627 
3628 	evlist__for_each_entry(evlist, evsel) {
3629 		if (evsel->core.id && evsel->core.id[0] == id) {
3630 			if (evsel->name)
3631 				zfree(&evsel->name);
3632 			evsel->name = strdup(name);
3633 			break;
3634 		}
3635 	}
3636 }
3637 
intel_pt_evsel(struct intel_pt * pt,struct evlist * evlist)3638 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3639 					 struct evlist *evlist)
3640 {
3641 	struct evsel *evsel;
3642 
3643 	evlist__for_each_entry(evlist, evsel) {
3644 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3645 			return evsel;
3646 	}
3647 
3648 	return NULL;
3649 }
3650 
intel_pt_synth_events(struct intel_pt * pt,struct perf_session * session)3651 static int intel_pt_synth_events(struct intel_pt *pt,
3652 				 struct perf_session *session)
3653 {
3654 	struct evlist *evlist = session->evlist;
3655 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3656 	struct perf_event_attr attr;
3657 	u64 id;
3658 	int err;
3659 
3660 	if (!evsel) {
3661 		pr_debug("There are no selected events with Intel Processor Trace data\n");
3662 		return 0;
3663 	}
3664 
3665 	memset(&attr, 0, sizeof(struct perf_event_attr));
3666 	attr.size = sizeof(struct perf_event_attr);
3667 	attr.type = PERF_TYPE_HARDWARE;
3668 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3669 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3670 			    PERF_SAMPLE_PERIOD;
3671 	if (pt->timeless_decoding)
3672 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3673 	else
3674 		attr.sample_type |= PERF_SAMPLE_TIME;
3675 	if (!pt->per_cpu_mmaps)
3676 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3677 	attr.exclude_user = evsel->core.attr.exclude_user;
3678 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3679 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3680 	attr.exclude_host = evsel->core.attr.exclude_host;
3681 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3682 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3683 	attr.read_format = evsel->core.attr.read_format;
3684 
3685 	id = evsel->core.id[0] + 1000000000;
3686 	if (!id)
3687 		id = 1;
3688 
3689 	if (pt->synth_opts.branches) {
3690 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3691 		attr.sample_period = 1;
3692 		attr.sample_type |= PERF_SAMPLE_ADDR;
3693 		err = intel_pt_synth_event(session, "branches", &attr, id);
3694 		if (err)
3695 			return err;
3696 		pt->sample_branches = true;
3697 		pt->branches_sample_type = attr.sample_type;
3698 		pt->branches_id = id;
3699 		id += 1;
3700 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3701 	}
3702 
3703 	if (pt->synth_opts.callchain)
3704 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3705 	if (pt->synth_opts.last_branch) {
3706 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3707 		/*
3708 		 * We don't use the hardware index, but the sample generation
3709 		 * code uses the new format branch_stack with this field,
3710 		 * so the event attributes must indicate that it's present.
3711 		 */
3712 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3713 	}
3714 
3715 	if (pt->synth_opts.instructions) {
3716 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3717 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3718 			attr.sample_period =
3719 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3720 		else
3721 			attr.sample_period = pt->synth_opts.period;
3722 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3723 		if (err)
3724 			return err;
3725 		pt->sample_instructions = true;
3726 		pt->instructions_sample_type = attr.sample_type;
3727 		pt->instructions_id = id;
3728 		id += 1;
3729 	}
3730 
3731 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3732 	attr.sample_period = 1;
3733 
3734 	if (pt->synth_opts.transactions) {
3735 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3736 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3737 		if (err)
3738 			return err;
3739 		pt->sample_transactions = true;
3740 		pt->transactions_sample_type = attr.sample_type;
3741 		pt->transactions_id = id;
3742 		intel_pt_set_event_name(evlist, id, "transactions");
3743 		id += 1;
3744 	}
3745 
3746 	attr.type = PERF_TYPE_SYNTH;
3747 	attr.sample_type |= PERF_SAMPLE_RAW;
3748 
3749 	if (pt->synth_opts.ptwrites) {
3750 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3751 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3752 		if (err)
3753 			return err;
3754 		pt->sample_ptwrites = true;
3755 		pt->ptwrites_sample_type = attr.sample_type;
3756 		pt->ptwrites_id = id;
3757 		intel_pt_set_event_name(evlist, id, "ptwrite");
3758 		id += 1;
3759 	}
3760 
3761 	if (pt->synth_opts.pwr_events) {
3762 		pt->sample_pwr_events = true;
3763 		pt->pwr_events_sample_type = attr.sample_type;
3764 
3765 		attr.config = PERF_SYNTH_INTEL_CBR;
3766 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3767 		if (err)
3768 			return err;
3769 		pt->cbr_id = id;
3770 		intel_pt_set_event_name(evlist, id, "cbr");
3771 		id += 1;
3772 
3773 		attr.config = PERF_SYNTH_INTEL_PSB;
3774 		err = intel_pt_synth_event(session, "psb", &attr, id);
3775 		if (err)
3776 			return err;
3777 		pt->psb_id = id;
3778 		intel_pt_set_event_name(evlist, id, "psb");
3779 		id += 1;
3780 	}
3781 
3782 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3783 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3784 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3785 		if (err)
3786 			return err;
3787 		pt->mwait_id = id;
3788 		intel_pt_set_event_name(evlist, id, "mwait");
3789 		id += 1;
3790 
3791 		attr.config = PERF_SYNTH_INTEL_PWRE;
3792 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3793 		if (err)
3794 			return err;
3795 		pt->pwre_id = id;
3796 		intel_pt_set_event_name(evlist, id, "pwre");
3797 		id += 1;
3798 
3799 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3800 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3801 		if (err)
3802 			return err;
3803 		pt->exstop_id = id;
3804 		intel_pt_set_event_name(evlist, id, "exstop");
3805 		id += 1;
3806 
3807 		attr.config = PERF_SYNTH_INTEL_PWRX;
3808 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3809 		if (err)
3810 			return err;
3811 		pt->pwrx_id = id;
3812 		intel_pt_set_event_name(evlist, id, "pwrx");
3813 		id += 1;
3814 	}
3815 
3816 	if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3817 		attr.config = PERF_SYNTH_INTEL_EVT;
3818 		err = intel_pt_synth_event(session, "evt", &attr, id);
3819 		if (err)
3820 			return err;
3821 		pt->evt_sample_type = attr.sample_type;
3822 		pt->evt_id = id;
3823 		intel_pt_set_event_name(evlist, id, "evt");
3824 		id += 1;
3825 	}
3826 
3827 	if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3828 		attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3829 		err = intel_pt_synth_event(session, "iflag", &attr, id);
3830 		if (err)
3831 			return err;
3832 		pt->iflag_chg_sample_type = attr.sample_type;
3833 		pt->iflag_chg_id = id;
3834 		intel_pt_set_event_name(evlist, id, "iflag");
3835 		id += 1;
3836 	}
3837 
3838 	return 0;
3839 }
3840 
intel_pt_setup_pebs_events(struct intel_pt * pt)3841 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3842 {
3843 	struct evsel *evsel;
3844 
3845 	if (!pt->synth_opts.other_events)
3846 		return;
3847 
3848 	evlist__for_each_entry(pt->session->evlist, evsel) {
3849 		if (evsel->core.attr.aux_output && evsel->core.id) {
3850 			if (pt->single_pebs) {
3851 				pt->single_pebs = false;
3852 				return;
3853 			}
3854 			pt->single_pebs = true;
3855 			pt->sample_pebs = true;
3856 			pt->pebs_evsel = evsel;
3857 		}
3858 	}
3859 }
3860 
intel_pt_find_sched_switch(struct evlist * evlist)3861 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3862 {
3863 	struct evsel *evsel;
3864 
3865 	evlist__for_each_entry_reverse(evlist, evsel) {
3866 		const char *name = evsel__name(evsel);
3867 
3868 		if (!strcmp(name, "sched:sched_switch"))
3869 			return evsel;
3870 	}
3871 
3872 	return NULL;
3873 }
3874 
intel_pt_find_switch(struct evlist * evlist)3875 static bool intel_pt_find_switch(struct evlist *evlist)
3876 {
3877 	struct evsel *evsel;
3878 
3879 	evlist__for_each_entry(evlist, evsel) {
3880 		if (evsel->core.attr.context_switch)
3881 			return true;
3882 	}
3883 
3884 	return false;
3885 }
3886 
intel_pt_perf_config(const char * var,const char * value,void * data)3887 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3888 {
3889 	struct intel_pt *pt = data;
3890 
3891 	if (!strcmp(var, "intel-pt.mispred-all"))
3892 		pt->mispred_all = perf_config_bool(var, value);
3893 
3894 	if (!strcmp(var, "intel-pt.max-loops"))
3895 		perf_config_int(&pt->max_loops, var, value);
3896 
3897 	return 0;
3898 }
3899 
3900 /* Find least TSC which converts to ns or later */
intel_pt_tsc_start(u64 ns,struct intel_pt * pt)3901 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3902 {
3903 	u64 tsc, tm;
3904 
3905 	tsc = perf_time_to_tsc(ns, &pt->tc);
3906 
3907 	while (1) {
3908 		tm = tsc_to_perf_time(tsc, &pt->tc);
3909 		if (tm < ns)
3910 			break;
3911 		tsc -= 1;
3912 	}
3913 
3914 	while (tm < ns)
3915 		tm = tsc_to_perf_time(++tsc, &pt->tc);
3916 
3917 	return tsc;
3918 }
3919 
3920 /* Find greatest TSC which converts to ns or earlier */
intel_pt_tsc_end(u64 ns,struct intel_pt * pt)3921 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3922 {
3923 	u64 tsc, tm;
3924 
3925 	tsc = perf_time_to_tsc(ns, &pt->tc);
3926 
3927 	while (1) {
3928 		tm = tsc_to_perf_time(tsc, &pt->tc);
3929 		if (tm > ns)
3930 			break;
3931 		tsc += 1;
3932 	}
3933 
3934 	while (tm > ns)
3935 		tm = tsc_to_perf_time(--tsc, &pt->tc);
3936 
3937 	return tsc;
3938 }
3939 
intel_pt_setup_time_ranges(struct intel_pt * pt,struct itrace_synth_opts * opts)3940 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3941 				      struct itrace_synth_opts *opts)
3942 {
3943 	struct perf_time_interval *p = opts->ptime_range;
3944 	int n = opts->range_num;
3945 	int i;
3946 
3947 	if (!n || !p || pt->timeless_decoding)
3948 		return 0;
3949 
3950 	pt->time_ranges = calloc(n, sizeof(struct range));
3951 	if (!pt->time_ranges)
3952 		return -ENOMEM;
3953 
3954 	pt->range_cnt = n;
3955 
3956 	intel_pt_log("%s: %u range(s)\n", __func__, n);
3957 
3958 	for (i = 0; i < n; i++) {
3959 		struct range *r = &pt->time_ranges[i];
3960 		u64 ts = p[i].start;
3961 		u64 te = p[i].end;
3962 
3963 		/*
3964 		 * Take care to ensure the TSC range matches the perf-time range
3965 		 * when converted back to perf-time.
3966 		 */
3967 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3968 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3969 
3970 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3971 			     i, ts, te);
3972 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3973 			     i, r->start, r->end);
3974 	}
3975 
3976 	return 0;
3977 }
3978 
intel_pt_parse_vm_tm_corr_arg(struct intel_pt * pt,char ** args)3979 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3980 {
3981 	struct intel_pt_vmcs_info *vmcs_info;
3982 	u64 tsc_offset, vmcs;
3983 	char *p = *args;
3984 
3985 	errno = 0;
3986 
3987 	p = skip_spaces(p);
3988 	if (!*p)
3989 		return 1;
3990 
3991 	tsc_offset = strtoull(p, &p, 0);
3992 	if (errno)
3993 		return -errno;
3994 	p = skip_spaces(p);
3995 	if (*p != ':') {
3996 		pt->dflt_tsc_offset = tsc_offset;
3997 		*args = p;
3998 		return 0;
3999 	}
4000 	p += 1;
4001 	while (1) {
4002 		vmcs = strtoull(p, &p, 0);
4003 		if (errno)
4004 			return -errno;
4005 		if (!vmcs)
4006 			return -EINVAL;
4007 		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4008 		if (!vmcs_info)
4009 			return -ENOMEM;
4010 		p = skip_spaces(p);
4011 		if (*p != ',')
4012 			break;
4013 		p += 1;
4014 	}
4015 	*args = p;
4016 	return 0;
4017 }
4018 
intel_pt_parse_vm_tm_corr_args(struct intel_pt * pt)4019 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4020 {
4021 	char *args = pt->synth_opts.vm_tm_corr_args;
4022 	int ret;
4023 
4024 	if (!args)
4025 		return 0;
4026 
4027 	do {
4028 		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4029 	} while (!ret);
4030 
4031 	if (ret < 0) {
4032 		pr_err("Failed to parse VM Time Correlation options\n");
4033 		return ret;
4034 	}
4035 
4036 	return 0;
4037 }
4038 
4039 static const char * const intel_pt_info_fmts[] = {
4040 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
4041 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
4042 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
4043 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
4044 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
4045 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
4046 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
4047 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
4048 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
4049 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
4050 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
4051 	[INTEL_PT_MTC_FREQ_BITS]	= "  MTC freq bits       %#"PRIx64"\n",
4052 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
4053 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
4054 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
4055 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
4056 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
4057 };
4058 
intel_pt_print_info(__u64 * arr,int start,int finish)4059 static void intel_pt_print_info(__u64 *arr, int start, int finish)
4060 {
4061 	int i;
4062 
4063 	if (!dump_trace)
4064 		return;
4065 
4066 	for (i = start; i <= finish; i++) {
4067 		const char *fmt = intel_pt_info_fmts[i];
4068 
4069 		if (fmt)
4070 			fprintf(stdout, fmt, arr[i]);
4071 	}
4072 }
4073 
intel_pt_print_info_str(const char * name,const char * str)4074 static void intel_pt_print_info_str(const char *name, const char *str)
4075 {
4076 	if (!dump_trace)
4077 		return;
4078 
4079 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
4080 }
4081 
intel_pt_has(struct perf_record_auxtrace_info * auxtrace_info,int pos)4082 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4083 {
4084 	return auxtrace_info->header.size >=
4085 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4086 }
4087 
intel_pt_process_auxtrace_info(union perf_event * event,struct perf_session * session)4088 int intel_pt_process_auxtrace_info(union perf_event *event,
4089 				   struct perf_session *session)
4090 {
4091 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4092 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4093 	struct intel_pt *pt;
4094 	void *info_end;
4095 	__u64 *info;
4096 	int err;
4097 
4098 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4099 					min_sz)
4100 		return -EINVAL;
4101 
4102 	pt = zalloc(sizeof(struct intel_pt));
4103 	if (!pt)
4104 		return -ENOMEM;
4105 
4106 	pt->vmcs_info = RB_ROOT;
4107 
4108 	addr_filters__init(&pt->filts);
4109 
4110 	err = perf_config(intel_pt_perf_config, pt);
4111 	if (err)
4112 		goto err_free;
4113 
4114 	err = auxtrace_queues__init(&pt->queues);
4115 	if (err)
4116 		goto err_free;
4117 
4118 	if (session->itrace_synth_opts->set) {
4119 		pt->synth_opts = *session->itrace_synth_opts;
4120 	} else {
4121 		struct itrace_synth_opts *opts = session->itrace_synth_opts;
4122 
4123 		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4124 		if (!opts->default_no_sample && !opts->inject) {
4125 			pt->synth_opts.branches = false;
4126 			pt->synth_opts.callchain = true;
4127 			pt->synth_opts.add_callchain = true;
4128 		}
4129 		pt->synth_opts.thread_stack = opts->thread_stack;
4130 	}
4131 
4132 	if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4133 		intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4134 
4135 	pt->session = session;
4136 	pt->machine = &session->machines.host; /* No kvm support */
4137 	pt->auxtrace_type = auxtrace_info->type;
4138 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4139 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4140 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4141 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4142 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4143 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4144 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4145 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4146 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4147 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4148 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4149 			    INTEL_PT_PER_CPU_MMAPS);
4150 
4151 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4152 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4153 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4154 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4155 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4156 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4157 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4158 				    INTEL_PT_CYC_BIT);
4159 	}
4160 
4161 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4162 		pt->max_non_turbo_ratio =
4163 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4164 		intel_pt_print_info(&auxtrace_info->priv[0],
4165 				    INTEL_PT_MAX_NONTURBO_RATIO,
4166 				    INTEL_PT_MAX_NONTURBO_RATIO);
4167 	}
4168 
4169 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4170 	info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4171 
4172 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4173 		size_t len;
4174 
4175 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4176 		intel_pt_print_info(&auxtrace_info->priv[0],
4177 				    INTEL_PT_FILTER_STR_LEN,
4178 				    INTEL_PT_FILTER_STR_LEN);
4179 		if (len) {
4180 			const char *filter = (const char *)info;
4181 
4182 			len = roundup(len + 1, 8);
4183 			info += len >> 3;
4184 			if ((void *)info > info_end) {
4185 				pr_err("%s: bad filter string length\n", __func__);
4186 				err = -EINVAL;
4187 				goto err_free_queues;
4188 			}
4189 			pt->filter = memdup(filter, len);
4190 			if (!pt->filter) {
4191 				err = -ENOMEM;
4192 				goto err_free_queues;
4193 			}
4194 			if (session->header.needs_swap)
4195 				mem_bswap_64(pt->filter, len);
4196 			if (pt->filter[len - 1]) {
4197 				pr_err("%s: filter string not null terminated\n", __func__);
4198 				err = -EINVAL;
4199 				goto err_free_queues;
4200 			}
4201 			err = addr_filters__parse_bare_filter(&pt->filts,
4202 							      filter);
4203 			if (err)
4204 				goto err_free_queues;
4205 		}
4206 		intel_pt_print_info_str("Filter string", pt->filter);
4207 	}
4208 
4209 	if ((void *)info < info_end) {
4210 		pt->cap_event_trace = *info++;
4211 		if (dump_trace)
4212 			fprintf(stdout, "  Cap Event Trace     %d\n",
4213 				pt->cap_event_trace);
4214 	}
4215 
4216 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4217 	if (pt->timeless_decoding && !pt->tc.time_mult)
4218 		pt->tc.time_mult = 1;
4219 	pt->have_tsc = intel_pt_have_tsc(pt);
4220 	pt->sampling_mode = intel_pt_sampling_mode(pt);
4221 	pt->est_tsc = !pt->timeless_decoding;
4222 
4223 	if (pt->synth_opts.vm_time_correlation) {
4224 		if (pt->timeless_decoding) {
4225 			pr_err("Intel PT has no time information for VM Time Correlation\n");
4226 			err = -EINVAL;
4227 			goto err_free_queues;
4228 		}
4229 		if (session->itrace_synth_opts->ptime_range) {
4230 			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4231 			err = -EINVAL;
4232 			goto err_free_queues;
4233 		}
4234 		/* Currently TSC Offset is calculated using MTC packets */
4235 		if (!intel_pt_have_mtc(pt)) {
4236 			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4237 			err = -EINVAL;
4238 			goto err_free_queues;
4239 		}
4240 		err = intel_pt_parse_vm_tm_corr_args(pt);
4241 		if (err)
4242 			goto err_free_queues;
4243 	}
4244 
4245 	pt->unknown_thread = thread__new(999999999, 999999999);
4246 	if (!pt->unknown_thread) {
4247 		err = -ENOMEM;
4248 		goto err_free_queues;
4249 	}
4250 
4251 	/*
4252 	 * Since this thread will not be kept in any rbtree not in a
4253 	 * list, initialize its list node so that at thread__put() the
4254 	 * current thread lifetime assumption is kept and we don't segfault
4255 	 * at list_del_init().
4256 	 */
4257 	INIT_LIST_HEAD(&pt->unknown_thread->node);
4258 
4259 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4260 	if (err)
4261 		goto err_delete_thread;
4262 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4263 		err = -ENOMEM;
4264 		goto err_delete_thread;
4265 	}
4266 
4267 	pt->auxtrace.process_event = intel_pt_process_event;
4268 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4269 	pt->auxtrace.queue_data = intel_pt_queue_data;
4270 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4271 	pt->auxtrace.flush_events = intel_pt_flush;
4272 	pt->auxtrace.free_events = intel_pt_free_events;
4273 	pt->auxtrace.free = intel_pt_free;
4274 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4275 	session->auxtrace = &pt->auxtrace;
4276 
4277 	if (dump_trace)
4278 		return 0;
4279 
4280 	if (pt->have_sched_switch == 1) {
4281 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4282 		if (!pt->switch_evsel) {
4283 			pr_err("%s: missing sched_switch event\n", __func__);
4284 			err = -EINVAL;
4285 			goto err_delete_thread;
4286 		}
4287 	} else if (pt->have_sched_switch == 2 &&
4288 		   !intel_pt_find_switch(session->evlist)) {
4289 		pr_err("%s: missing context_switch attribute flag\n", __func__);
4290 		err = -EINVAL;
4291 		goto err_delete_thread;
4292 	}
4293 
4294 	if (pt->synth_opts.log) {
4295 		bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4296 		unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
4297 
4298 		intel_pt_log_enable(log_on_error, log_on_error_size);
4299 	}
4300 
4301 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
4302 	if (pt->tc.time_mult) {
4303 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4304 
4305 		if (!pt->max_non_turbo_ratio)
4306 			pt->max_non_turbo_ratio =
4307 					(tsc_freq + 50000000) / 100000000;
4308 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4309 		intel_pt_log("Maximum non-turbo ratio %u\n",
4310 			     pt->max_non_turbo_ratio);
4311 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4312 	}
4313 
4314 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4315 	if (err)
4316 		goto err_delete_thread;
4317 
4318 	if (pt->synth_opts.calls)
4319 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4320 				       PERF_IP_FLAG_TRACE_END;
4321 	if (pt->synth_opts.returns)
4322 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
4323 				       PERF_IP_FLAG_TRACE_BEGIN;
4324 
4325 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4326 	    !symbol_conf.use_callchain) {
4327 		symbol_conf.use_callchain = true;
4328 		if (callchain_register_param(&callchain_param) < 0) {
4329 			symbol_conf.use_callchain = false;
4330 			pt->synth_opts.callchain = false;
4331 			pt->synth_opts.add_callchain = false;
4332 		}
4333 	}
4334 
4335 	if (pt->synth_opts.add_callchain) {
4336 		err = intel_pt_callchain_init(pt);
4337 		if (err)
4338 			goto err_delete_thread;
4339 	}
4340 
4341 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4342 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4343 		pt->br_stack_sz_plus = pt->br_stack_sz;
4344 	}
4345 
4346 	if (pt->synth_opts.add_last_branch) {
4347 		err = intel_pt_br_stack_init(pt);
4348 		if (err)
4349 			goto err_delete_thread;
4350 		/*
4351 		 * Additional branch stack size to cater for tracing from the
4352 		 * actual sample ip to where the sample time is recorded.
4353 		 * Measured at about 200 branches, but generously set to 1024.
4354 		 * If kernel space is not being traced, then add just 1 for the
4355 		 * branch to kernel space.
4356 		 */
4357 		if (intel_pt_tracing_kernel(pt))
4358 			pt->br_stack_sz_plus += 1024;
4359 		else
4360 			pt->br_stack_sz_plus += 1;
4361 	}
4362 
4363 	pt->use_thread_stack = pt->synth_opts.callchain ||
4364 			       pt->synth_opts.add_callchain ||
4365 			       pt->synth_opts.thread_stack ||
4366 			       pt->synth_opts.last_branch ||
4367 			       pt->synth_opts.add_last_branch;
4368 
4369 	pt->callstack = pt->synth_opts.callchain ||
4370 			pt->synth_opts.add_callchain ||
4371 			pt->synth_opts.thread_stack;
4372 
4373 	err = intel_pt_synth_events(pt, session);
4374 	if (err)
4375 		goto err_delete_thread;
4376 
4377 	intel_pt_setup_pebs_events(pt);
4378 
4379 	if (perf_data__is_pipe(session->data)) {
4380 		pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n"
4381 			   "         The output cannot relied upon.  In particular,\n"
4382 			   "         timestamps and the order of events may be incorrect.\n");
4383 	}
4384 
4385 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4386 		err = auxtrace_queue_data(session, true, true);
4387 	else
4388 		err = auxtrace_queues__process_index(&pt->queues, session);
4389 	if (err)
4390 		goto err_delete_thread;
4391 
4392 	if (pt->queues.populated)
4393 		pt->data_queued = true;
4394 
4395 	if (pt->timeless_decoding)
4396 		pr_debug2("Intel PT decoding without timestamps\n");
4397 
4398 	return 0;
4399 
4400 err_delete_thread:
4401 	zfree(&pt->chain);
4402 	thread__zput(pt->unknown_thread);
4403 err_free_queues:
4404 	intel_pt_log_disable();
4405 	auxtrace_queues__free(&pt->queues);
4406 	session->auxtrace = NULL;
4407 err_free:
4408 	addr_filters__exit(&pt->filts);
4409 	zfree(&pt->filter);
4410 	zfree(&pt->time_ranges);
4411 	free(pt);
4412 	return err;
4413 }
4414