• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <linux/random.h>
9 #include <linux/memblock.h>
10 #include <asm/alternative.h>
11 #include <asm/debug-monitors.h>
12 #include <asm/insn.h>
13 #include <asm/kvm_mmu.h>
14 #include <asm/memory.h>
15 #include <asm/patching.h>
16 
17 /*
18  * The LSB of the HYP VA tag
19  */
20 static u8 tag_lsb;
21 /*
22  * The HYP VA tag value with the region bit
23  */
24 static u64 tag_val;
25 static u64 va_mask;
26 
27 /*
28  * Compute HYP VA by using the same computation as kern_hyp_va().
29  */
__early_kern_hyp_va(u64 addr)30 static u64 __early_kern_hyp_va(u64 addr)
31 {
32 	addr &= va_mask;
33 	addr |= tag_val << tag_lsb;
34 	return addr;
35 }
36 
37 /*
38  * Store a hyp VA <-> PA offset into a EL2-owned variable.
39  */
init_hyp_physvirt_offset(void)40 static void init_hyp_physvirt_offset(void)
41 {
42 	u64 kern_va, hyp_va;
43 
44 	/* Compute the offset from the hyp VA and PA of a random symbol. */
45 	kern_va = (u64)lm_alias(__hyp_text_start);
46 	hyp_va = __early_kern_hyp_va(kern_va);
47 	hyp_physvirt_offset = (s64)__pa(kern_va) - (s64)hyp_va;
48 }
49 
50 /*
51  * We want to generate a hyp VA with the following format (with V ==
52  * vabits_actual):
53  *
54  *  63 ... V |     V-1    | V-2 .. tag_lsb | tag_lsb - 1 .. 0
55  *  ---------------------------------------------------------
56  * | 0000000 | hyp_va_msb |   random tag   |  kern linear VA |
57  *           |--------- tag_val -----------|----- va_mask ---|
58  *
59  * which does not conflict with the idmap regions.
60  */
kvm_compute_layout(void)61 __init void kvm_compute_layout(void)
62 {
63 	phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
64 	u64 hyp_va_msb;
65 
66 	/* Where is my RAM region? */
67 	hyp_va_msb  = idmap_addr & BIT(vabits_actual - 1);
68 	hyp_va_msb ^= BIT(vabits_actual - 1);
69 
70 	tag_lsb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^
71 			(u64)(high_memory - 1));
72 
73 	va_mask = GENMASK_ULL(tag_lsb - 1, 0);
74 	tag_val = hyp_va_msb;
75 
76 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && tag_lsb != (vabits_actual - 1)) {
77 		/* We have some free bits to insert a random tag. */
78 		tag_val |= get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb);
79 	}
80 	tag_val >>= tag_lsb;
81 
82 	init_hyp_physvirt_offset();
83 }
84 
85 /*
86  * The .hyp.reloc ELF section contains a list of kimg positions that
87  * contains kimg VAs but will be accessed only in hyp execution context.
88  * Convert them to hyp VAs. See gen-hyprel.c for more details.
89  */
kvm_apply_hyp_relocations(void)90 __init void kvm_apply_hyp_relocations(void)
91 {
92 	int32_t *rel;
93 	int32_t *begin = (int32_t *)__hyp_reloc_begin;
94 	int32_t *end = (int32_t *)__hyp_reloc_end;
95 
96 	for (rel = begin; rel < end; ++rel) {
97 		uintptr_t *ptr, kimg_va;
98 
99 		/*
100 		 * Each entry contains a 32-bit relative offset from itself
101 		 * to a kimg VA position.
102 		 */
103 		ptr = (uintptr_t *)lm_alias((char *)rel + *rel);
104 
105 		/* Read the kimg VA value at the relocation address. */
106 		kimg_va = *ptr;
107 
108 		/* Convert to hyp VA and store back to the relocation address. */
109 		*ptr = __early_kern_hyp_va((uintptr_t)lm_alias(kimg_va));
110 	}
111 }
112 
kvm_apply_hyp_module_relocations(void * mod_start,void * hyp_va,kvm_nvhe_reloc_t * begin,kvm_nvhe_reloc_t * end)113 void kvm_apply_hyp_module_relocations(void *mod_start, void *hyp_va,
114 				      kvm_nvhe_reloc_t *begin,
115 				      kvm_nvhe_reloc_t *end)
116 {
117 	kvm_nvhe_reloc_t *rel;
118 
119 	for (rel = begin; rel < end; ++rel) {
120 		u32 **ptr, *va;
121 
122 		/*
123 		 * Each entry contains a 32-bit relative offset from itself
124 		 * to a VA position in the module area.
125 		 */
126 		ptr = (u32 **)((char *)rel + *rel);
127 
128 		/* Read the module VA value at the relocation address. */
129 		va = *ptr;
130 
131 		/* Convert the module VA of the reloc to a hyp VA */
132 		WARN_ON(aarch64_insn_write_literal_u64(ptr,
133 					(u64)(((void *)va - mod_start) + hyp_va)));
134 	}
135 }
136 
compute_instruction(int n,u32 rd,u32 rn)137 static u32 compute_instruction(int n, u32 rd, u32 rn)
138 {
139 	u32 insn = AARCH64_BREAK_FAULT;
140 
141 	switch (n) {
142 	case 0:
143 		insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND,
144 							  AARCH64_INSN_VARIANT_64BIT,
145 							  rn, rd, va_mask);
146 		break;
147 
148 	case 1:
149 		/* ROR is a variant of EXTR with Rm = Rn */
150 		insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
151 					     rn, rn, rd,
152 					     tag_lsb);
153 		break;
154 
155 	case 2:
156 		insn = aarch64_insn_gen_add_sub_imm(rd, rn,
157 						    tag_val & GENMASK(11, 0),
158 						    AARCH64_INSN_VARIANT_64BIT,
159 						    AARCH64_INSN_ADSB_ADD);
160 		break;
161 
162 	case 3:
163 		insn = aarch64_insn_gen_add_sub_imm(rd, rn,
164 						    tag_val & GENMASK(23, 12),
165 						    AARCH64_INSN_VARIANT_64BIT,
166 						    AARCH64_INSN_ADSB_ADD);
167 		break;
168 
169 	case 4:
170 		/* ROR is a variant of EXTR with Rm = Rn */
171 		insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
172 					     rn, rn, rd, 64 - tag_lsb);
173 		break;
174 	}
175 
176 	return insn;
177 }
178 
kvm_update_va_mask(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)179 void __init kvm_update_va_mask(struct alt_instr *alt,
180 			       __le32 *origptr, __le32 *updptr, int nr_inst)
181 {
182 	int i;
183 
184 	BUG_ON(nr_inst != 5);
185 
186 	for (i = 0; i < nr_inst; i++) {
187 		u32 rd, rn, insn, oinsn;
188 
189 		/*
190 		 * VHE doesn't need any address translation, let's NOP
191 		 * everything.
192 		 *
193 		 * Alternatively, if the tag is zero (because the layout
194 		 * dictates it and we don't have any spare bits in the
195 		 * address), NOP everything after masking the kernel VA.
196 		 */
197 		if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN) || (!tag_val && i > 0)) {
198 			updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
199 			continue;
200 		}
201 
202 		oinsn = le32_to_cpu(origptr[i]);
203 		rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
204 		rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn);
205 
206 		insn = compute_instruction(i, rd, rn);
207 		BUG_ON(insn == AARCH64_BREAK_FAULT);
208 
209 		updptr[i] = cpu_to_le32(insn);
210 	}
211 }
212 
kvm_patch_vector_branch(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)213 void kvm_patch_vector_branch(struct alt_instr *alt,
214 			     __le32 *origptr, __le32 *updptr, int nr_inst)
215 {
216 	u64 addr;
217 	u32 insn;
218 
219 	BUG_ON(nr_inst != 4);
220 
221 	if (!cpus_have_cap(ARM64_SPECTRE_V3A) ||
222 	    WARN_ON_ONCE(cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN)))
223 		return;
224 
225 	/*
226 	 * Compute HYP VA by using the same computation as kern_hyp_va()
227 	 */
228 	addr = __early_kern_hyp_va((u64)kvm_ksym_ref(__kvm_hyp_vector));
229 
230 	/* Use PC[10:7] to branch to the same vector in KVM */
231 	addr |= ((u64)origptr & GENMASK_ULL(10, 7));
232 
233 	/*
234 	 * Branch over the preamble in order to avoid the initial store on
235 	 * the stack (which we already perform in the hardening vectors).
236 	 */
237 	addr += KVM_VECTOR_PREAMBLE;
238 
239 	/* movz x0, #(addr & 0xffff) */
240 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
241 					 (u16)addr,
242 					 0,
243 					 AARCH64_INSN_VARIANT_64BIT,
244 					 AARCH64_INSN_MOVEWIDE_ZERO);
245 	*updptr++ = cpu_to_le32(insn);
246 
247 	/* movk x0, #((addr >> 16) & 0xffff), lsl #16 */
248 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
249 					 (u16)(addr >> 16),
250 					 16,
251 					 AARCH64_INSN_VARIANT_64BIT,
252 					 AARCH64_INSN_MOVEWIDE_KEEP);
253 	*updptr++ = cpu_to_le32(insn);
254 
255 	/* movk x0, #((addr >> 32) & 0xffff), lsl #32 */
256 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
257 					 (u16)(addr >> 32),
258 					 32,
259 					 AARCH64_INSN_VARIANT_64BIT,
260 					 AARCH64_INSN_MOVEWIDE_KEEP);
261 	*updptr++ = cpu_to_le32(insn);
262 
263 	/* br x0 */
264 	insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0,
265 					   AARCH64_INSN_BRANCH_NOLINK);
266 	*updptr++ = cpu_to_le32(insn);
267 }
268 
generate_mov_q(u64 val,__le32 * origptr,__le32 * updptr,int nr_inst)269 static void generate_mov_q(u64 val, __le32 *origptr, __le32 *updptr, int nr_inst)
270 {
271 	u32 insn, oinsn, rd;
272 
273 	BUG_ON(nr_inst != 4);
274 
275 	/* Compute target register */
276 	oinsn = le32_to_cpu(*origptr);
277 	rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
278 
279 	/* movz rd, #(val & 0xffff) */
280 	insn = aarch64_insn_gen_movewide(rd,
281 					 (u16)val,
282 					 0,
283 					 AARCH64_INSN_VARIANT_64BIT,
284 					 AARCH64_INSN_MOVEWIDE_ZERO);
285 	*updptr++ = cpu_to_le32(insn);
286 
287 	/* movk rd, #((val >> 16) & 0xffff), lsl #16 */
288 	insn = aarch64_insn_gen_movewide(rd,
289 					 (u16)(val >> 16),
290 					 16,
291 					 AARCH64_INSN_VARIANT_64BIT,
292 					 AARCH64_INSN_MOVEWIDE_KEEP);
293 	*updptr++ = cpu_to_le32(insn);
294 
295 	/* movk rd, #((val >> 32) & 0xffff), lsl #32 */
296 	insn = aarch64_insn_gen_movewide(rd,
297 					 (u16)(val >> 32),
298 					 32,
299 					 AARCH64_INSN_VARIANT_64BIT,
300 					 AARCH64_INSN_MOVEWIDE_KEEP);
301 	*updptr++ = cpu_to_le32(insn);
302 
303 	/* movk rd, #((val >> 48) & 0xffff), lsl #48 */
304 	insn = aarch64_insn_gen_movewide(rd,
305 					 (u16)(val >> 48),
306 					 48,
307 					 AARCH64_INSN_VARIANT_64BIT,
308 					 AARCH64_INSN_MOVEWIDE_KEEP);
309 	*updptr++ = cpu_to_le32(insn);
310 }
311 
kvm_get_kimage_voffset(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)312 void kvm_get_kimage_voffset(struct alt_instr *alt,
313 			    __le32 *origptr, __le32 *updptr, int nr_inst)
314 {
315 	generate_mov_q(kimage_voffset, origptr, updptr, nr_inst);
316 }
317 
kvm_compute_final_ctr_el0(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)318 void kvm_compute_final_ctr_el0(struct alt_instr *alt,
319 			       __le32 *origptr, __le32 *updptr, int nr_inst)
320 {
321 	generate_mov_q(read_sanitised_ftr_reg(SYS_CTR_EL0),
322 		       origptr, updptr, nr_inst);
323 }
324