• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 #define pr_fmt(fmt) "kprobes: " fmt
4 
5 #include <linux/kprobes.h>
6 #include <linux/extable.h>
7 #include <linux/slab.h>
8 #include <linux/stop_machine.h>
9 #include <asm/ptrace.h>
10 #include <linux/uaccess.h>
11 #include <asm/sections.h>
12 #include <asm/cacheflush.h>
13 #include <asm/bug.h>
14 #include <asm/patch.h>
15 
16 #include "decode-insn.h"
17 
18 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
19 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
20 
21 static void __kprobes
22 post_kprobe_handler(struct kprobe *, struct kprobe_ctlblk *, struct pt_regs *);
23 
arch_prepare_ss_slot(struct kprobe * p)24 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
25 {
26 	u32 insn = __BUG_INSN_32;
27 	unsigned long offset = GET_INSN_LENGTH(p->opcode);
28 
29 	p->ainsn.api.restore = (unsigned long)p->addr + offset;
30 
31 	patch_text(p->ainsn.api.insn, &p->opcode, 1);
32 	patch_text((void *)((unsigned long)(p->ainsn.api.insn) + offset),
33 		   &insn, 1);
34 }
35 
arch_prepare_simulate(struct kprobe * p)36 static void __kprobes arch_prepare_simulate(struct kprobe *p)
37 {
38 	p->ainsn.api.restore = 0;
39 }
40 
arch_simulate_insn(struct kprobe * p,struct pt_regs * regs)41 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
42 {
43 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
44 
45 	if (p->ainsn.api.handler)
46 		p->ainsn.api.handler((u32)p->opcode,
47 					(unsigned long)p->addr, regs);
48 
49 	post_kprobe_handler(p, kcb, regs);
50 }
51 
arch_check_kprobe(struct kprobe * p)52 static bool __kprobes arch_check_kprobe(struct kprobe *p)
53 {
54 	unsigned long tmp  = (unsigned long)p->addr - p->offset;
55 	unsigned long addr = (unsigned long)p->addr;
56 
57 	while (tmp <= addr) {
58 		if (tmp == addr)
59 			return true;
60 
61 		tmp += GET_INSN_LENGTH(*(u16 *)tmp);
62 	}
63 
64 	return false;
65 }
66 
arch_prepare_kprobe(struct kprobe * p)67 int __kprobes arch_prepare_kprobe(struct kprobe *p)
68 {
69 	u16 *insn = (u16 *)p->addr;
70 
71 	if ((unsigned long)insn & 0x1)
72 		return -EILSEQ;
73 
74 	if (!arch_check_kprobe(p))
75 		return -EILSEQ;
76 
77 	/* copy instruction */
78 	p->opcode = (kprobe_opcode_t)(*insn++);
79 	if (GET_INSN_LENGTH(p->opcode) == 4)
80 		p->opcode |= (kprobe_opcode_t)(*insn) << 16;
81 
82 	/* decode instruction */
83 	switch (riscv_probe_decode_insn(p->addr, &p->ainsn.api)) {
84 	case INSN_REJECTED:	/* insn not supported */
85 		return -EINVAL;
86 
87 	case INSN_GOOD_NO_SLOT:	/* insn need simulation */
88 		p->ainsn.api.insn = NULL;
89 		break;
90 
91 	case INSN_GOOD:	/* instruction uses slot */
92 		p->ainsn.api.insn = get_insn_slot();
93 		if (!p->ainsn.api.insn)
94 			return -ENOMEM;
95 		break;
96 	}
97 
98 	/* prepare the instruction */
99 	if (p->ainsn.api.insn)
100 		arch_prepare_ss_slot(p);
101 	else
102 		arch_prepare_simulate(p);
103 
104 	return 0;
105 }
106 
107 #ifdef CONFIG_MMU
alloc_insn_page(void)108 void *alloc_insn_page(void)
109 {
110 	return  __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, VMALLOC_END,
111 				     GFP_KERNEL, PAGE_KERNEL_READ_EXEC,
112 				     VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
113 				     __builtin_return_address(0));
114 }
115 #endif
116 
117 /* install breakpoint in text */
arch_arm_kprobe(struct kprobe * p)118 void __kprobes arch_arm_kprobe(struct kprobe *p)
119 {
120 	u32 insn = (p->opcode & __INSN_LENGTH_MASK) == __INSN_LENGTH_32 ?
121 		   __BUG_INSN_32 : __BUG_INSN_16;
122 
123 	patch_text(p->addr, &insn, 1);
124 }
125 
126 /* remove breakpoint from text */
arch_disarm_kprobe(struct kprobe * p)127 void __kprobes arch_disarm_kprobe(struct kprobe *p)
128 {
129 	patch_text(p->addr, &p->opcode, 1);
130 }
131 
arch_remove_kprobe(struct kprobe * p)132 void __kprobes arch_remove_kprobe(struct kprobe *p)
133 {
134 }
135 
save_previous_kprobe(struct kprobe_ctlblk * kcb)136 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
137 {
138 	kcb->prev_kprobe.kp = kprobe_running();
139 	kcb->prev_kprobe.status = kcb->kprobe_status;
140 }
141 
restore_previous_kprobe(struct kprobe_ctlblk * kcb)142 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
143 {
144 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
145 	kcb->kprobe_status = kcb->prev_kprobe.status;
146 }
147 
set_current_kprobe(struct kprobe * p)148 static void __kprobes set_current_kprobe(struct kprobe *p)
149 {
150 	__this_cpu_write(current_kprobe, p);
151 }
152 
153 /*
154  * Interrupts need to be disabled before single-step mode is set, and not
155  * reenabled until after single-step mode ends.
156  * Without disabling interrupt on local CPU, there is a chance of
157  * interrupt occurrence in the period of exception return and  start of
158  * out-of-line single-step, that result in wrongly single stepping
159  * into the interrupt handler.
160  */
kprobes_save_local_irqflag(struct kprobe_ctlblk * kcb,struct pt_regs * regs)161 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
162 						struct pt_regs *regs)
163 {
164 	kcb->saved_status = regs->status;
165 	regs->status &= ~SR_SPIE;
166 }
167 
kprobes_restore_local_irqflag(struct kprobe_ctlblk * kcb,struct pt_regs * regs)168 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
169 						struct pt_regs *regs)
170 {
171 	regs->status = kcb->saved_status;
172 }
173 
setup_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb,int reenter)174 static void __kprobes setup_singlestep(struct kprobe *p,
175 				       struct pt_regs *regs,
176 				       struct kprobe_ctlblk *kcb, int reenter)
177 {
178 	unsigned long slot;
179 
180 	if (reenter) {
181 		save_previous_kprobe(kcb);
182 		set_current_kprobe(p);
183 		kcb->kprobe_status = KPROBE_REENTER;
184 	} else {
185 		kcb->kprobe_status = KPROBE_HIT_SS;
186 	}
187 
188 	if (p->ainsn.api.insn) {
189 		/* prepare for single stepping */
190 		slot = (unsigned long)p->ainsn.api.insn;
191 
192 		/* IRQs and single stepping do not mix well. */
193 		kprobes_save_local_irqflag(kcb, regs);
194 
195 		instruction_pointer_set(regs, slot);
196 	} else {
197 		/* insn simulation */
198 		arch_simulate_insn(p, regs);
199 	}
200 }
201 
reenter_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)202 static int __kprobes reenter_kprobe(struct kprobe *p,
203 				    struct pt_regs *regs,
204 				    struct kprobe_ctlblk *kcb)
205 {
206 	switch (kcb->kprobe_status) {
207 	case KPROBE_HIT_SSDONE:
208 	case KPROBE_HIT_ACTIVE:
209 		kprobes_inc_nmissed_count(p);
210 		setup_singlestep(p, regs, kcb, 1);
211 		break;
212 	case KPROBE_HIT_SS:
213 	case KPROBE_REENTER:
214 		pr_warn("Failed to recover from reentered kprobes.\n");
215 		dump_kprobe(p);
216 		BUG();
217 		break;
218 	default:
219 		WARN_ON(1);
220 		return 0;
221 	}
222 
223 	return 1;
224 }
225 
226 static void __kprobes
post_kprobe_handler(struct kprobe * cur,struct kprobe_ctlblk * kcb,struct pt_regs * regs)227 post_kprobe_handler(struct kprobe *cur, struct kprobe_ctlblk *kcb, struct pt_regs *regs)
228 {
229 	/* return addr restore if non-branching insn */
230 	if (cur->ainsn.api.restore != 0)
231 		regs->epc = cur->ainsn.api.restore;
232 
233 	/* restore back original saved kprobe variables and continue */
234 	if (kcb->kprobe_status == KPROBE_REENTER) {
235 		restore_previous_kprobe(kcb);
236 		return;
237 	}
238 
239 	/* call post handler */
240 	kcb->kprobe_status = KPROBE_HIT_SSDONE;
241 	if (cur->post_handler)	{
242 		/* post_handler can hit breakpoint and single step
243 		 * again, so we enable D-flag for recursive exception.
244 		 */
245 		cur->post_handler(cur, regs, 0);
246 	}
247 
248 	reset_current_kprobe();
249 }
250 
kprobe_fault_handler(struct pt_regs * regs,unsigned int trapnr)251 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr)
252 {
253 	struct kprobe *cur = kprobe_running();
254 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
255 
256 	switch (kcb->kprobe_status) {
257 	case KPROBE_HIT_SS:
258 	case KPROBE_REENTER:
259 		/*
260 		 * We are here because the instruction being single
261 		 * stepped caused a page fault. We reset the current
262 		 * kprobe and the ip points back to the probe address
263 		 * and allow the page fault handler to continue as a
264 		 * normal page fault.
265 		 */
266 		regs->epc = (unsigned long) cur->addr;
267 		BUG_ON(!instruction_pointer(regs));
268 
269 		if (kcb->kprobe_status == KPROBE_REENTER)
270 			restore_previous_kprobe(kcb);
271 		else {
272 			kprobes_restore_local_irqflag(kcb, regs);
273 			reset_current_kprobe();
274 		}
275 
276 		break;
277 	case KPROBE_HIT_ACTIVE:
278 	case KPROBE_HIT_SSDONE:
279 		/*
280 		 * In case the user-specified fault handler returned
281 		 * zero, try to fix up.
282 		 */
283 		if (fixup_exception(regs))
284 			return 1;
285 	}
286 	return 0;
287 }
288 
289 bool __kprobes
kprobe_breakpoint_handler(struct pt_regs * regs)290 kprobe_breakpoint_handler(struct pt_regs *regs)
291 {
292 	struct kprobe *p, *cur_kprobe;
293 	struct kprobe_ctlblk *kcb;
294 	unsigned long addr = instruction_pointer(regs);
295 
296 	kcb = get_kprobe_ctlblk();
297 	cur_kprobe = kprobe_running();
298 
299 	p = get_kprobe((kprobe_opcode_t *) addr);
300 
301 	if (p) {
302 		if (cur_kprobe) {
303 			if (reenter_kprobe(p, regs, kcb))
304 				return true;
305 		} else {
306 			/* Probe hit */
307 			set_current_kprobe(p);
308 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
309 
310 			/*
311 			 * If we have no pre-handler or it returned 0, we
312 			 * continue with normal processing.  If we have a
313 			 * pre-handler and it returned non-zero, it will
314 			 * modify the execution path and no need to single
315 			 * stepping. Let's just reset current kprobe and exit.
316 			 *
317 			 * pre_handler can hit a breakpoint and can step thru
318 			 * before return.
319 			 */
320 			if (!p->pre_handler || !p->pre_handler(p, regs))
321 				setup_singlestep(p, regs, kcb, 0);
322 			else
323 				reset_current_kprobe();
324 		}
325 		return true;
326 	}
327 
328 	/*
329 	 * The breakpoint instruction was removed right
330 	 * after we hit it.  Another cpu has removed
331 	 * either a probepoint or a debugger breakpoint
332 	 * at this address.  In either case, no further
333 	 * handling of this interrupt is appropriate.
334 	 * Return back to original instruction, and continue.
335 	 */
336 	return false;
337 }
338 
339 bool __kprobes
kprobe_single_step_handler(struct pt_regs * regs)340 kprobe_single_step_handler(struct pt_regs *regs)
341 {
342 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
343 	unsigned long addr = instruction_pointer(regs);
344 	struct kprobe *cur = kprobe_running();
345 
346 	if (cur && (kcb->kprobe_status & (KPROBE_HIT_SS | KPROBE_REENTER)) &&
347 	    ((unsigned long)&cur->ainsn.api.insn[0] + GET_INSN_LENGTH(cur->opcode) == addr)) {
348 		kprobes_restore_local_irqflag(kcb, regs);
349 		post_kprobe_handler(cur, kcb, regs);
350 		return true;
351 	}
352 	/* not ours, kprobes should ignore it */
353 	return false;
354 }
355 
356 /*
357  * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
358  * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
359  */
arch_populate_kprobe_blacklist(void)360 int __init arch_populate_kprobe_blacklist(void)
361 {
362 	int ret;
363 
364 	ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
365 					(unsigned long)__irqentry_text_end);
366 	return ret;
367 }
368 
arch_trampoline_kprobe(struct kprobe * p)369 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
370 {
371 	return 0;
372 }
373 
arch_init_kprobes(void)374 int __init arch_init_kprobes(void)
375 {
376 	return 0;
377 }
378