• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/kvm_types.h>
18 #include <linux/hashtable.h>
19 #include <linux/amd-iommu.h>
20 #include <linux/kvm_host.h>
21 
22 #include <asm/irq_remapping.h>
23 
24 #include "trace.h"
25 #include "lapic.h"
26 #include "x86.h"
27 #include "irq.h"
28 #include "svm.h"
29 
30 /*
31  * Encode the arbitrary VM ID and the vCPU's default APIC ID, i.e the vCPU ID,
32  * into the GATag so that KVM can retrieve the correct vCPU from a GALog entry
33  * if an interrupt can't be delivered, e.g. because the vCPU isn't running.
34  *
35  * For the vCPU ID, use however many bits are currently allowed for the max
36  * guest physical APIC ID (limited by the size of the physical ID table), and
37  * use whatever bits remain to assign arbitrary AVIC IDs to VMs.  Note, the
38  * size of the GATag is defined by hardware (32 bits), but is an opaque value
39  * as far as hardware is concerned.
40  */
41 #define AVIC_VCPU_ID_MASK		AVIC_PHYSICAL_MAX_INDEX_MASK
42 
43 #define AVIC_VM_ID_SHIFT		HWEIGHT32(AVIC_PHYSICAL_MAX_INDEX_MASK)
44 #define AVIC_VM_ID_MASK			(GENMASK(31, AVIC_VM_ID_SHIFT) >> AVIC_VM_ID_SHIFT)
45 
46 #define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VM_ID_SHIFT) & AVIC_VM_ID_MASK)
47 #define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
48 
49 #define __AVIC_GATAG(vm_id, vcpu_id)	((((vm_id) & AVIC_VM_ID_MASK) << AVIC_VM_ID_SHIFT) | \
50 					 ((vcpu_id) & AVIC_VCPU_ID_MASK))
51 #define AVIC_GATAG(vm_id, vcpu_id)					\
52 ({									\
53 	u32 ga_tag = __AVIC_GATAG(vm_id, vcpu_id);			\
54 									\
55 	WARN_ON_ONCE(AVIC_GATAG_TO_VCPUID(ga_tag) != (vcpu_id));	\
56 	WARN_ON_ONCE(AVIC_GATAG_TO_VMID(ga_tag) != (vm_id));		\
57 	ga_tag;								\
58 })
59 
60 static_assert(__AVIC_GATAG(AVIC_VM_ID_MASK, AVIC_VCPU_ID_MASK) == -1u);
61 
62 static bool force_avic;
63 module_param_unsafe(force_avic, bool, 0444);
64 
65 /* Note:
66  * This hash table is used to map VM_ID to a struct kvm_svm,
67  * when handling AMD IOMMU GALOG notification to schedule in
68  * a particular vCPU.
69  */
70 #define SVM_VM_DATA_HASH_BITS	8
71 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
72 static u32 next_vm_id = 0;
73 static bool next_vm_id_wrapped = 0;
74 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
75 bool x2avic_enabled;
76 
77 /*
78  * This is a wrapper of struct amd_iommu_ir_data.
79  */
80 struct amd_svm_iommu_ir {
81 	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
82 	void *data;		/* Storing pointer to struct amd_ir_data */
83 };
84 
avic_activate_vmcb(struct vcpu_svm * svm)85 static void avic_activate_vmcb(struct vcpu_svm *svm)
86 {
87 	struct vmcb *vmcb = svm->vmcb01.ptr;
88 
89 	vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
90 	vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
91 
92 	vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
93 
94 	/*
95 	 * Note: KVM supports hybrid-AVIC mode, where KVM emulates x2APIC MSR
96 	 * accesses, while interrupt injection to a running vCPU can be
97 	 * achieved using AVIC doorbell.  KVM disables the APIC access page
98 	 * (deletes the memslot) if any vCPU has x2APIC enabled, thus enabling
99 	 * AVIC in hybrid mode activates only the doorbell mechanism.
100 	 */
101 	if (x2avic_enabled && apic_x2apic_mode(svm->vcpu.arch.apic)) {
102 		vmcb->control.int_ctl |= X2APIC_MODE_MASK;
103 		vmcb->control.avic_physical_id |= X2AVIC_MAX_PHYSICAL_ID;
104 		/* Disabling MSR intercept for x2APIC registers */
105 		svm_set_x2apic_msr_interception(svm, false);
106 	} else {
107 		/*
108 		 * Flush the TLB, the guest may have inserted a non-APIC
109 		 * mapping into the TLB while AVIC was disabled.
110 		 */
111 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, &svm->vcpu);
112 
113 		/* For xAVIC and hybrid-xAVIC modes */
114 		vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID;
115 		/* Enabling MSR intercept for x2APIC registers */
116 		svm_set_x2apic_msr_interception(svm, true);
117 	}
118 }
119 
avic_deactivate_vmcb(struct vcpu_svm * svm)120 static void avic_deactivate_vmcb(struct vcpu_svm *svm)
121 {
122 	struct vmcb *vmcb = svm->vmcb01.ptr;
123 
124 	vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
125 	vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
126 
127 	/*
128 	 * If running nested and the guest uses its own MSR bitmap, there
129 	 * is no need to update L0's msr bitmap
130 	 */
131 	if (is_guest_mode(&svm->vcpu) &&
132 	    vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))
133 		return;
134 
135 	/* Enabling MSR intercept for x2APIC registers */
136 	svm_set_x2apic_msr_interception(svm, true);
137 }
138 
139 /* Note:
140  * This function is called from IOMMU driver to notify
141  * SVM to schedule in a particular vCPU of a particular VM.
142  */
avic_ga_log_notifier(u32 ga_tag)143 int avic_ga_log_notifier(u32 ga_tag)
144 {
145 	unsigned long flags;
146 	struct kvm_svm *kvm_svm;
147 	struct kvm_vcpu *vcpu = NULL;
148 	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
149 	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
150 
151 	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
152 	trace_kvm_avic_ga_log(vm_id, vcpu_id);
153 
154 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
155 	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
156 		if (kvm_svm->avic_vm_id != vm_id)
157 			continue;
158 		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
159 		break;
160 	}
161 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
162 
163 	/* Note:
164 	 * At this point, the IOMMU should have already set the pending
165 	 * bit in the vAPIC backing page. So, we just need to schedule
166 	 * in the vcpu.
167 	 */
168 	if (vcpu)
169 		kvm_vcpu_wake_up(vcpu);
170 
171 	return 0;
172 }
173 
avic_vm_destroy(struct kvm * kvm)174 void avic_vm_destroy(struct kvm *kvm)
175 {
176 	unsigned long flags;
177 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
178 
179 	if (!enable_apicv)
180 		return;
181 
182 	if (kvm_svm->avic_logical_id_table_page)
183 		__free_page(kvm_svm->avic_logical_id_table_page);
184 	if (kvm_svm->avic_physical_id_table_page)
185 		__free_page(kvm_svm->avic_physical_id_table_page);
186 
187 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
188 	hash_del(&kvm_svm->hnode);
189 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
190 }
191 
avic_vm_init(struct kvm * kvm)192 int avic_vm_init(struct kvm *kvm)
193 {
194 	unsigned long flags;
195 	int err = -ENOMEM;
196 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
197 	struct kvm_svm *k2;
198 	struct page *p_page;
199 	struct page *l_page;
200 	u32 vm_id;
201 
202 	if (!enable_apicv)
203 		return 0;
204 
205 	/* Allocating physical APIC ID table (4KB) */
206 	p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
207 	if (!p_page)
208 		goto free_avic;
209 
210 	kvm_svm->avic_physical_id_table_page = p_page;
211 
212 	/* Allocating logical APIC ID table (4KB) */
213 	l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
214 	if (!l_page)
215 		goto free_avic;
216 
217 	kvm_svm->avic_logical_id_table_page = l_page;
218 
219 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
220  again:
221 	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
222 	if (vm_id == 0) { /* id is 1-based, zero is not okay */
223 		next_vm_id_wrapped = 1;
224 		goto again;
225 	}
226 	/* Is it still in use? Only possible if wrapped at least once */
227 	if (next_vm_id_wrapped) {
228 		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
229 			if (k2->avic_vm_id == vm_id)
230 				goto again;
231 		}
232 	}
233 	kvm_svm->avic_vm_id = vm_id;
234 	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
235 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
236 
237 	return 0;
238 
239 free_avic:
240 	avic_vm_destroy(kvm);
241 	return err;
242 }
243 
avic_init_vmcb(struct vcpu_svm * svm,struct vmcb * vmcb)244 void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
245 {
246 	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
247 	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
248 	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
249 	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
250 
251 	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
252 	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
253 	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
254 	vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
255 
256 	if (kvm_apicv_activated(svm->vcpu.kvm))
257 		avic_activate_vmcb(svm);
258 	else
259 		avic_deactivate_vmcb(svm);
260 }
261 
avic_get_physical_id_entry(struct kvm_vcpu * vcpu,unsigned int index)262 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
263 				       unsigned int index)
264 {
265 	u64 *avic_physical_id_table;
266 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
267 
268 	if ((!x2avic_enabled && index > AVIC_MAX_PHYSICAL_ID) ||
269 	    (index > X2AVIC_MAX_PHYSICAL_ID))
270 		return NULL;
271 
272 	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
273 
274 	return &avic_physical_id_table[index];
275 }
276 
avic_init_backing_page(struct kvm_vcpu * vcpu)277 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
278 {
279 	u64 *entry, new_entry;
280 	int id = vcpu->vcpu_id;
281 	struct vcpu_svm *svm = to_svm(vcpu);
282 
283 	if ((!x2avic_enabled && id > AVIC_MAX_PHYSICAL_ID) ||
284 	    (id > X2AVIC_MAX_PHYSICAL_ID))
285 		return -EINVAL;
286 
287 	if (!vcpu->arch.apic->regs)
288 		return -EINVAL;
289 
290 	if (kvm_apicv_activated(vcpu->kvm)) {
291 		int ret;
292 
293 		/*
294 		 * Note, AVIC hardware walks the nested page table to check
295 		 * permissions, but does not use the SPA address specified in
296 		 * the leaf SPTE since it uses address in the AVIC_BACKING_PAGE
297 		 * pointer field of the VMCB.
298 		 */
299 		ret = kvm_alloc_apic_access_page(vcpu->kvm);
300 		if (ret)
301 			return ret;
302 	}
303 
304 	svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
305 
306 	/* Setting AVIC backing page address in the phy APIC ID table */
307 	entry = avic_get_physical_id_entry(vcpu, id);
308 	if (!entry)
309 		return -EINVAL;
310 
311 	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
312 			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
313 			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
314 	WRITE_ONCE(*entry, new_entry);
315 
316 	svm->avic_physical_id_cache = entry;
317 
318 	return 0;
319 }
320 
avic_ring_doorbell(struct kvm_vcpu * vcpu)321 void avic_ring_doorbell(struct kvm_vcpu *vcpu)
322 {
323 	/*
324 	 * Note, the vCPU could get migrated to a different pCPU at any point,
325 	 * which could result in signalling the wrong/previous pCPU.  But if
326 	 * that happens the vCPU is guaranteed to do a VMRUN (after being
327 	 * migrated) and thus will process pending interrupts, i.e. a doorbell
328 	 * is not needed (and the spurious one is harmless).
329 	 */
330 	int cpu = READ_ONCE(vcpu->cpu);
331 
332 	if (cpu != get_cpu()) {
333 		wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
334 		trace_kvm_avic_doorbell(vcpu->vcpu_id, kvm_cpu_get_apicid(cpu));
335 	}
336 	put_cpu();
337 }
338 
339 
avic_kick_vcpu(struct kvm_vcpu * vcpu,u32 icrl)340 static void avic_kick_vcpu(struct kvm_vcpu *vcpu, u32 icrl)
341 {
342 	vcpu->arch.apic->irr_pending = true;
343 	svm_complete_interrupt_delivery(vcpu,
344 					icrl & APIC_MODE_MASK,
345 					icrl & APIC_INT_LEVELTRIG,
346 					icrl & APIC_VECTOR_MASK);
347 }
348 
avic_kick_vcpu_by_physical_id(struct kvm * kvm,u32 physical_id,u32 icrl)349 static void avic_kick_vcpu_by_physical_id(struct kvm *kvm, u32 physical_id,
350 					  u32 icrl)
351 {
352 	/*
353 	 * KVM inhibits AVIC if any vCPU ID diverges from the vCPUs APIC ID,
354 	 * i.e. APIC ID == vCPU ID.
355 	 */
356 	struct kvm_vcpu *target_vcpu = kvm_get_vcpu_by_id(kvm, physical_id);
357 
358 	/* Once again, nothing to do if the target vCPU doesn't exist. */
359 	if (unlikely(!target_vcpu))
360 		return;
361 
362 	avic_kick_vcpu(target_vcpu, icrl);
363 }
364 
avic_kick_vcpu_by_logical_id(struct kvm * kvm,u32 * avic_logical_id_table,u32 logid_index,u32 icrl)365 static void avic_kick_vcpu_by_logical_id(struct kvm *kvm, u32 *avic_logical_id_table,
366 					 u32 logid_index, u32 icrl)
367 {
368 	u32 physical_id;
369 
370 	if (avic_logical_id_table) {
371 		u32 logid_entry = avic_logical_id_table[logid_index];
372 
373 		/* Nothing to do if the logical destination is invalid. */
374 		if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK)))
375 			return;
376 
377 		physical_id = logid_entry &
378 			      AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
379 	} else {
380 		/*
381 		 * For x2APIC, the logical APIC ID is a read-only value that is
382 		 * derived from the x2APIC ID, thus the x2APIC ID can be found
383 		 * by reversing the calculation (stored in logid_index).  Note,
384 		 * bits 31:20 of the x2APIC ID aren't propagated to the logical
385 		 * ID, but KVM limits the x2APIC ID limited to KVM_MAX_VCPU_IDS.
386 		 */
387 		physical_id = logid_index;
388 	}
389 
390 	avic_kick_vcpu_by_physical_id(kvm, physical_id, icrl);
391 }
392 
393 /*
394  * A fast-path version of avic_kick_target_vcpus(), which attempts to match
395  * destination APIC ID to vCPU without looping through all vCPUs.
396  */
avic_kick_target_vcpus_fast(struct kvm * kvm,struct kvm_lapic * source,u32 icrl,u32 icrh,u32 index)397 static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source,
398 				       u32 icrl, u32 icrh, u32 index)
399 {
400 	int dest_mode = icrl & APIC_DEST_MASK;
401 	int shorthand = icrl & APIC_SHORT_MASK;
402 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
403 	u32 dest;
404 
405 	if (shorthand != APIC_DEST_NOSHORT)
406 		return -EINVAL;
407 
408 	if (apic_x2apic_mode(source))
409 		dest = icrh;
410 	else
411 		dest = GET_XAPIC_DEST_FIELD(icrh);
412 
413 	if (dest_mode == APIC_DEST_PHYSICAL) {
414 		/* broadcast destination, use slow path */
415 		if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST)
416 			return -EINVAL;
417 		if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST)
418 			return -EINVAL;
419 
420 		if (WARN_ON_ONCE(dest != index))
421 			return -EINVAL;
422 
423 		avic_kick_vcpu_by_physical_id(kvm, dest, icrl);
424 	} else {
425 		u32 *avic_logical_id_table;
426 		unsigned long bitmap, i;
427 		u32 cluster;
428 
429 		if (apic_x2apic_mode(source)) {
430 			/* 16 bit dest mask, 16 bit cluster id */
431 			bitmap = dest & 0xFFFF;
432 			cluster = (dest >> 16) << 4;
433 		} else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) {
434 			/* 8 bit dest mask*/
435 			bitmap = dest;
436 			cluster = 0;
437 		} else {
438 			/* 4 bit desk mask, 4 bit cluster id */
439 			bitmap = dest & 0xF;
440 			cluster = (dest >> 4) << 2;
441 		}
442 
443 		/* Nothing to do if there are no destinations in the cluster. */
444 		if (unlikely(!bitmap))
445 			return 0;
446 
447 		if (apic_x2apic_mode(source))
448 			avic_logical_id_table = NULL;
449 		else
450 			avic_logical_id_table = page_address(kvm_svm->avic_logical_id_table_page);
451 
452 		/*
453 		 * AVIC is inhibited if vCPUs aren't mapped 1:1 with logical
454 		 * IDs, thus each bit in the destination is guaranteed to map
455 		 * to at most one vCPU.
456 		 */
457 		for_each_set_bit(i, &bitmap, 16)
458 			avic_kick_vcpu_by_logical_id(kvm, avic_logical_id_table,
459 						     cluster + i, icrl);
460 	}
461 
462 	return 0;
463 }
464 
avic_kick_target_vcpus(struct kvm * kvm,struct kvm_lapic * source,u32 icrl,u32 icrh,u32 index)465 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
466 				   u32 icrl, u32 icrh, u32 index)
467 {
468 	u32 dest = apic_x2apic_mode(source) ? icrh : GET_XAPIC_DEST_FIELD(icrh);
469 	unsigned long i;
470 	struct kvm_vcpu *vcpu;
471 
472 	if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index))
473 		return;
474 
475 	trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index);
476 
477 	/*
478 	 * Wake any target vCPUs that are blocking, i.e. waiting for a wake
479 	 * event.  There's no need to signal doorbells, as hardware has handled
480 	 * vCPUs that were in guest at the time of the IPI, and vCPUs that have
481 	 * since entered the guest will have processed pending IRQs at VMRUN.
482 	 */
483 	kvm_for_each_vcpu(i, vcpu, kvm) {
484 		if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK,
485 					dest, icrl & APIC_DEST_MASK))
486 			avic_kick_vcpu(vcpu, icrl);
487 	}
488 }
489 
avic_incomplete_ipi_interception(struct kvm_vcpu * vcpu)490 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
491 {
492 	struct vcpu_svm *svm = to_svm(vcpu);
493 	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
494 	u32 icrl = svm->vmcb->control.exit_info_1;
495 	u32 id = svm->vmcb->control.exit_info_2 >> 32;
496 	u32 index = svm->vmcb->control.exit_info_2 & 0x1FF;
497 	struct kvm_lapic *apic = vcpu->arch.apic;
498 
499 	trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
500 
501 	switch (id) {
502 	case AVIC_IPI_FAILURE_INVALID_TARGET:
503 	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
504 		/*
505 		 * Emulate IPIs that are not handled by AVIC hardware, which
506 		 * only virtualizes Fixed, Edge-Triggered INTRs, and falls over
507 		 * if _any_ targets are invalid, e.g. if the logical mode mask
508 		 * is a superset of running vCPUs.
509 		 *
510 		 * The exit is a trap, e.g. ICR holds the correct value and RIP
511 		 * has been advanced, KVM is responsible only for emulating the
512 		 * IPI.  Sadly, hardware may sometimes leave the BUSY flag set,
513 		 * in which case KVM needs to emulate the ICR write as well in
514 		 * order to clear the BUSY flag.
515 		 */
516 		if (icrl & APIC_ICR_BUSY)
517 			kvm_apic_write_nodecode(vcpu, APIC_ICR);
518 		else
519 			kvm_apic_send_ipi(apic, icrl, icrh);
520 		break;
521 	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
522 		/*
523 		 * At this point, we expect that the AVIC HW has already
524 		 * set the appropriate IRR bits on the valid target
525 		 * vcpus. So, we just need to kick the appropriate vcpu.
526 		 */
527 		avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index);
528 		break;
529 	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
530 		WARN_ONCE(1, "Invalid backing page\n");
531 		break;
532 	case AVIC_IPI_FAILURE_INVALID_IPI_VECTOR:
533 		/* Invalid IPI with vector < 16 */
534 		break;
535 	default:
536 		vcpu_unimpl(vcpu, "Unknown avic incomplete IPI interception\n");
537 	}
538 
539 	return 1;
540 }
541 
avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu * vcpu)542 unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu)
543 {
544 	if (is_guest_mode(vcpu))
545 		return APICV_INHIBIT_REASON_NESTED;
546 	return 0;
547 }
548 
avic_get_logical_id_entry(struct kvm_vcpu * vcpu,u32 ldr,bool flat)549 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
550 {
551 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
552 	u32 *logical_apic_id_table;
553 	u32 cluster, index;
554 
555 	ldr = GET_APIC_LOGICAL_ID(ldr);
556 
557 	if (flat) {
558 		cluster = 0;
559 	} else {
560 		cluster = (ldr >> 4);
561 		if (cluster >= 0xf)
562 			return NULL;
563 		ldr &= 0xf;
564 	}
565 	if (!ldr || !is_power_of_2(ldr))
566 		return NULL;
567 
568 	index = __ffs(ldr);
569 	if (WARN_ON_ONCE(index > 7))
570 		return NULL;
571 	index += (cluster << 2);
572 
573 	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
574 
575 	return &logical_apic_id_table[index];
576 }
577 
avic_ldr_write(struct kvm_vcpu * vcpu,u8 g_physical_id,u32 ldr)578 static void avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
579 {
580 	bool flat;
581 	u32 *entry, new_entry;
582 
583 	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
584 	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
585 	if (!entry)
586 		return;
587 
588 	new_entry = READ_ONCE(*entry);
589 	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
590 	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
591 	new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
592 	WRITE_ONCE(*entry, new_entry);
593 }
594 
avic_invalidate_logical_id_entry(struct kvm_vcpu * vcpu)595 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
596 {
597 	struct vcpu_svm *svm = to_svm(vcpu);
598 	bool flat = svm->dfr_reg == APIC_DFR_FLAT;
599 	u32 *entry;
600 
601 	/* Note: x2AVIC does not use logical APIC ID table */
602 	if (apic_x2apic_mode(vcpu->arch.apic))
603 		return;
604 
605 	entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
606 	if (entry)
607 		clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
608 }
609 
avic_handle_ldr_update(struct kvm_vcpu * vcpu)610 static void avic_handle_ldr_update(struct kvm_vcpu *vcpu)
611 {
612 	struct vcpu_svm *svm = to_svm(vcpu);
613 	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
614 	u32 id = kvm_xapic_id(vcpu->arch.apic);
615 
616 	/* AVIC does not support LDR update for x2APIC */
617 	if (apic_x2apic_mode(vcpu->arch.apic))
618 		return;
619 
620 	if (ldr == svm->ldr_reg)
621 		return;
622 
623 	avic_invalidate_logical_id_entry(vcpu);
624 
625 	svm->ldr_reg = ldr;
626 	avic_ldr_write(vcpu, id, ldr);
627 }
628 
avic_handle_dfr_update(struct kvm_vcpu * vcpu)629 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
630 {
631 	struct vcpu_svm *svm = to_svm(vcpu);
632 	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
633 
634 	if (svm->dfr_reg == dfr)
635 		return;
636 
637 	avic_invalidate_logical_id_entry(vcpu);
638 	svm->dfr_reg = dfr;
639 }
640 
avic_unaccel_trap_write(struct kvm_vcpu * vcpu)641 static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu)
642 {
643 	u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 &
644 				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
645 
646 	switch (offset) {
647 	case APIC_LDR:
648 		avic_handle_ldr_update(vcpu);
649 		break;
650 	case APIC_DFR:
651 		avic_handle_dfr_update(vcpu);
652 		break;
653 	case APIC_RRR:
654 		/* Ignore writes to Read Remote Data, it's read-only. */
655 		return 1;
656 	default:
657 		break;
658 	}
659 
660 	kvm_apic_write_nodecode(vcpu, offset);
661 	return 1;
662 }
663 
is_avic_unaccelerated_access_trap(u32 offset)664 static bool is_avic_unaccelerated_access_trap(u32 offset)
665 {
666 	bool ret = false;
667 
668 	switch (offset) {
669 	case APIC_ID:
670 	case APIC_EOI:
671 	case APIC_RRR:
672 	case APIC_LDR:
673 	case APIC_DFR:
674 	case APIC_SPIV:
675 	case APIC_ESR:
676 	case APIC_ICR:
677 	case APIC_LVTT:
678 	case APIC_LVTTHMR:
679 	case APIC_LVTPC:
680 	case APIC_LVT0:
681 	case APIC_LVT1:
682 	case APIC_LVTERR:
683 	case APIC_TMICT:
684 	case APIC_TDCR:
685 		ret = true;
686 		break;
687 	default:
688 		break;
689 	}
690 	return ret;
691 }
692 
avic_unaccelerated_access_interception(struct kvm_vcpu * vcpu)693 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
694 {
695 	struct vcpu_svm *svm = to_svm(vcpu);
696 	int ret = 0;
697 	u32 offset = svm->vmcb->control.exit_info_1 &
698 		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
699 	u32 vector = svm->vmcb->control.exit_info_2 &
700 		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
701 	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
702 		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
703 	bool trap = is_avic_unaccelerated_access_trap(offset);
704 
705 	trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
706 					    trap, write, vector);
707 	if (trap) {
708 		/* Handling Trap */
709 		WARN_ONCE(!write, "svm: Handling trap read.\n");
710 		ret = avic_unaccel_trap_write(vcpu);
711 	} else {
712 		/* Handling Fault */
713 		ret = kvm_emulate_instruction(vcpu, 0);
714 	}
715 
716 	return ret;
717 }
718 
avic_init_vcpu(struct vcpu_svm * svm)719 int avic_init_vcpu(struct vcpu_svm *svm)
720 {
721 	int ret;
722 	struct kvm_vcpu *vcpu = &svm->vcpu;
723 
724 	if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
725 		return 0;
726 
727 	ret = avic_init_backing_page(vcpu);
728 	if (ret)
729 		return ret;
730 
731 	INIT_LIST_HEAD(&svm->ir_list);
732 	spin_lock_init(&svm->ir_list_lock);
733 	svm->dfr_reg = APIC_DFR_FLAT;
734 
735 	return ret;
736 }
737 
avic_apicv_post_state_restore(struct kvm_vcpu * vcpu)738 void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
739 {
740 	avic_handle_dfr_update(vcpu);
741 	avic_handle_ldr_update(vcpu);
742 }
743 
avic_set_pi_irte_mode(struct kvm_vcpu * vcpu,bool activate)744 static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
745 {
746 	int ret = 0;
747 	unsigned long flags;
748 	struct amd_svm_iommu_ir *ir;
749 	struct vcpu_svm *svm = to_svm(vcpu);
750 
751 	if (!kvm_arch_has_assigned_device(vcpu->kvm))
752 		return 0;
753 
754 	/*
755 	 * Here, we go through the per-vcpu ir_list to update all existing
756 	 * interrupt remapping table entry targeting this vcpu.
757 	 */
758 	spin_lock_irqsave(&svm->ir_list_lock, flags);
759 
760 	if (list_empty(&svm->ir_list))
761 		goto out;
762 
763 	list_for_each_entry(ir, &svm->ir_list, node) {
764 		if (activate)
765 			ret = amd_iommu_activate_guest_mode(ir->data);
766 		else
767 			ret = amd_iommu_deactivate_guest_mode(ir->data);
768 		if (ret)
769 			break;
770 	}
771 out:
772 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
773 	return ret;
774 }
775 
svm_ir_list_del(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)776 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
777 {
778 	unsigned long flags;
779 	struct amd_svm_iommu_ir *cur;
780 
781 	spin_lock_irqsave(&svm->ir_list_lock, flags);
782 	list_for_each_entry(cur, &svm->ir_list, node) {
783 		if (cur->data != pi->ir_data)
784 			continue;
785 		list_del(&cur->node);
786 		kfree(cur);
787 		break;
788 	}
789 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
790 }
791 
svm_ir_list_add(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)792 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
793 {
794 	int ret = 0;
795 	unsigned long flags;
796 	struct amd_svm_iommu_ir *ir;
797 	u64 entry;
798 
799 	/**
800 	 * In some cases, the existing irte is updated and re-set,
801 	 * so we need to check here if it's already been * added
802 	 * to the ir_list.
803 	 */
804 	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
805 		struct kvm *kvm = svm->vcpu.kvm;
806 		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
807 		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
808 		struct vcpu_svm *prev_svm;
809 
810 		if (!prev_vcpu) {
811 			ret = -EINVAL;
812 			goto out;
813 		}
814 
815 		prev_svm = to_svm(prev_vcpu);
816 		svm_ir_list_del(prev_svm, pi);
817 	}
818 
819 	/**
820 	 * Allocating new amd_iommu_pi_data, which will get
821 	 * add to the per-vcpu ir_list.
822 	 */
823 	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
824 	if (!ir) {
825 		ret = -ENOMEM;
826 		goto out;
827 	}
828 	ir->data = pi->ir_data;
829 
830 	spin_lock_irqsave(&svm->ir_list_lock, flags);
831 
832 	/*
833 	 * Update the target pCPU for IOMMU doorbells if the vCPU is running.
834 	 * If the vCPU is NOT running, i.e. is blocking or scheduled out, KVM
835 	 * will update the pCPU info when the vCPU awkened and/or scheduled in.
836 	 * See also avic_vcpu_load().
837 	 */
838 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
839 	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
840 		amd_iommu_update_ga(entry & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK,
841 				    true, pi->ir_data);
842 
843 	list_add(&ir->node, &svm->ir_list);
844 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
845 out:
846 	return ret;
847 }
848 
849 /*
850  * Note:
851  * The HW cannot support posting multicast/broadcast
852  * interrupts to a vCPU. So, we still use legacy interrupt
853  * remapping for these kind of interrupts.
854  *
855  * For lowest-priority interrupts, we only support
856  * those with single CPU as the destination, e.g. user
857  * configures the interrupts via /proc/irq or uses
858  * irqbalance to make the interrupts single-CPU.
859  */
860 static int
get_pi_vcpu_info(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,struct vcpu_data * vcpu_info,struct vcpu_svm ** svm)861 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
862 		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
863 {
864 	struct kvm_lapic_irq irq;
865 	struct kvm_vcpu *vcpu = NULL;
866 
867 	kvm_set_msi_irq(kvm, e, &irq);
868 
869 	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
870 	    !kvm_irq_is_postable(&irq)) {
871 		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
872 			 __func__, irq.vector);
873 		return -1;
874 	}
875 
876 	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
877 		 irq.vector);
878 	*svm = to_svm(vcpu);
879 	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
880 	vcpu_info->vector = irq.vector;
881 
882 	return 0;
883 }
884 
885 /*
886  * avic_pi_update_irte - set IRTE for Posted-Interrupts
887  *
888  * @kvm: kvm
889  * @host_irq: host irq of the interrupt
890  * @guest_irq: gsi of the interrupt
891  * @set: set or unset PI
892  * returns 0 on success, < 0 on failure
893  */
avic_pi_update_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)894 int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
895 			uint32_t guest_irq, bool set)
896 {
897 	struct kvm_kernel_irq_routing_entry *e;
898 	struct kvm_irq_routing_table *irq_rt;
899 	int idx, ret = 0;
900 
901 	if (!kvm_arch_has_assigned_device(kvm) ||
902 	    !irq_remapping_cap(IRQ_POSTING_CAP))
903 		return 0;
904 
905 	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
906 		 __func__, host_irq, guest_irq, set);
907 
908 	idx = srcu_read_lock(&kvm->irq_srcu);
909 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
910 
911 	if (guest_irq >= irq_rt->nr_rt_entries ||
912 		hlist_empty(&irq_rt->map[guest_irq])) {
913 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
914 			     guest_irq, irq_rt->nr_rt_entries);
915 		goto out;
916 	}
917 
918 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
919 		struct vcpu_data vcpu_info;
920 		struct vcpu_svm *svm = NULL;
921 
922 		if (e->type != KVM_IRQ_ROUTING_MSI)
923 			continue;
924 
925 		/**
926 		 * Here, we setup with legacy mode in the following cases:
927 		 * 1. When cannot target interrupt to a specific vcpu.
928 		 * 2. Unsetting posted interrupt.
929 		 * 3. APIC virtualization is disabled for the vcpu.
930 		 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
931 		 */
932 		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
933 		    kvm_vcpu_apicv_active(&svm->vcpu)) {
934 			struct amd_iommu_pi_data pi;
935 
936 			/* Try to enable guest_mode in IRTE */
937 			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
938 					    AVIC_HPA_MASK);
939 			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
940 						     svm->vcpu.vcpu_id);
941 			pi.is_guest_mode = true;
942 			pi.vcpu_data = &vcpu_info;
943 			ret = irq_set_vcpu_affinity(host_irq, &pi);
944 
945 			/**
946 			 * Here, we successfully setting up vcpu affinity in
947 			 * IOMMU guest mode. Now, we need to store the posted
948 			 * interrupt information in a per-vcpu ir_list so that
949 			 * we can reference to them directly when we update vcpu
950 			 * scheduling information in IOMMU irte.
951 			 */
952 			if (!ret && pi.is_guest_mode)
953 				svm_ir_list_add(svm, &pi);
954 		} else {
955 			/* Use legacy mode in IRTE */
956 			struct amd_iommu_pi_data pi;
957 
958 			/**
959 			 * Here, pi is used to:
960 			 * - Tell IOMMU to use legacy mode for this interrupt.
961 			 * - Retrieve ga_tag of prior interrupt remapping data.
962 			 */
963 			pi.prev_ga_tag = 0;
964 			pi.is_guest_mode = false;
965 			ret = irq_set_vcpu_affinity(host_irq, &pi);
966 
967 			/**
968 			 * Check if the posted interrupt was previously
969 			 * setup with the guest_mode by checking if the ga_tag
970 			 * was cached. If so, we need to clean up the per-vcpu
971 			 * ir_list.
972 			 */
973 			if (!ret && pi.prev_ga_tag) {
974 				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
975 				struct kvm_vcpu *vcpu;
976 
977 				vcpu = kvm_get_vcpu_by_id(kvm, id);
978 				if (vcpu)
979 					svm_ir_list_del(to_svm(vcpu), &pi);
980 			}
981 		}
982 
983 		if (!ret && svm) {
984 			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
985 						 e->gsi, vcpu_info.vector,
986 						 vcpu_info.pi_desc_addr, set);
987 		}
988 
989 		if (ret < 0) {
990 			pr_err("%s: failed to update PI IRTE\n", __func__);
991 			goto out;
992 		}
993 	}
994 
995 	ret = 0;
996 out:
997 	srcu_read_unlock(&kvm->irq_srcu, idx);
998 	return ret;
999 }
1000 
1001 static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu * vcpu,int cpu,bool r)1002 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1003 {
1004 	int ret = 0;
1005 	struct amd_svm_iommu_ir *ir;
1006 	struct vcpu_svm *svm = to_svm(vcpu);
1007 
1008 	lockdep_assert_held(&svm->ir_list_lock);
1009 
1010 	if (!kvm_arch_has_assigned_device(vcpu->kvm))
1011 		return 0;
1012 
1013 	/*
1014 	 * Here, we go through the per-vcpu ir_list to update all existing
1015 	 * interrupt remapping table entry targeting this vcpu.
1016 	 */
1017 	if (list_empty(&svm->ir_list))
1018 		return 0;
1019 
1020 	list_for_each_entry(ir, &svm->ir_list, node) {
1021 		ret = amd_iommu_update_ga(cpu, r, ir->data);
1022 		if (ret)
1023 			return ret;
1024 	}
1025 	return 0;
1026 }
1027 
avic_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1028 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1029 {
1030 	u64 entry;
1031 	int h_physical_id = kvm_cpu_get_apicid(cpu);
1032 	struct vcpu_svm *svm = to_svm(vcpu);
1033 	unsigned long flags;
1034 
1035 	lockdep_assert_preemption_disabled();
1036 
1037 	if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
1038 		return;
1039 
1040 	/*
1041 	 * No need to update anything if the vCPU is blocking, i.e. if the vCPU
1042 	 * is being scheduled in after being preempted.  The CPU entries in the
1043 	 * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
1044 	 * If the vCPU was migrated, its new CPU value will be stuffed when the
1045 	 * vCPU unblocks.
1046 	 */
1047 	if (kvm_vcpu_is_blocking(vcpu))
1048 		return;
1049 
1050 	/*
1051 	 * Grab the per-vCPU interrupt remapping lock even if the VM doesn't
1052 	 * _currently_ have assigned devices, as that can change.  Holding
1053 	 * ir_list_lock ensures that either svm_ir_list_add() will consume
1054 	 * up-to-date entry information, or that this task will wait until
1055 	 * svm_ir_list_add() completes to set the new target pCPU.
1056 	 */
1057 	spin_lock_irqsave(&svm->ir_list_lock, flags);
1058 
1059 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
1060 	WARN_ON_ONCE(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1061 
1062 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1063 	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1064 	entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1065 
1066 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1067 	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);
1068 
1069 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1070 }
1071 
avic_vcpu_put(struct kvm_vcpu * vcpu)1072 void avic_vcpu_put(struct kvm_vcpu *vcpu)
1073 {
1074 	u64 entry;
1075 	struct vcpu_svm *svm = to_svm(vcpu);
1076 	unsigned long flags;
1077 
1078 	lockdep_assert_preemption_disabled();
1079 
1080 	/*
1081 	 * Note, reading the Physical ID entry outside of ir_list_lock is safe
1082 	 * as only the pCPU that has loaded (or is loading) the vCPU is allowed
1083 	 * to modify the entry, and preemption is disabled.  I.e. the vCPU
1084 	 * can't be scheduled out and thus avic_vcpu_{put,load}() can't run
1085 	 * recursively.
1086 	 */
1087 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
1088 
1089 	/* Nothing to do if IsRunning == '0' due to vCPU blocking. */
1090 	if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
1091 		return;
1092 
1093 	/*
1094 	 * Take and hold the per-vCPU interrupt remapping lock while updating
1095 	 * the Physical ID entry even though the lock doesn't protect against
1096 	 * multiple writers (see above).  Holding ir_list_lock ensures that
1097 	 * either svm_ir_list_add() will consume up-to-date entry information,
1098 	 * or that this task will wait until svm_ir_list_add() completes to
1099 	 * mark the vCPU as not running.
1100 	 */
1101 	spin_lock_irqsave(&svm->ir_list_lock, flags);
1102 
1103 	avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1104 
1105 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1106 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1107 
1108 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1109 
1110 }
1111 
avic_refresh_virtual_apic_mode(struct kvm_vcpu * vcpu)1112 void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu)
1113 {
1114 	struct vcpu_svm *svm = to_svm(vcpu);
1115 	struct vmcb *vmcb = svm->vmcb01.ptr;
1116 
1117 	if (!lapic_in_kernel(vcpu) || !enable_apicv)
1118 		return;
1119 
1120 	if (kvm_vcpu_apicv_active(vcpu)) {
1121 		/**
1122 		 * During AVIC temporary deactivation, guest could update
1123 		 * APIC ID, DFR and LDR registers, which would not be trapped
1124 		 * by avic_unaccelerated_access_interception(). In this case,
1125 		 * we need to check and update the AVIC logical APIC ID table
1126 		 * accordingly before re-activating.
1127 		 */
1128 		avic_apicv_post_state_restore(vcpu);
1129 		avic_activate_vmcb(svm);
1130 	} else {
1131 		avic_deactivate_vmcb(svm);
1132 	}
1133 	vmcb_mark_dirty(vmcb, VMCB_AVIC);
1134 }
1135 
avic_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)1136 void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
1137 {
1138 	bool activated = kvm_vcpu_apicv_active(vcpu);
1139 
1140 	if (!enable_apicv)
1141 		return;
1142 
1143 	avic_refresh_virtual_apic_mode(vcpu);
1144 
1145 	if (activated)
1146 		avic_vcpu_load(vcpu, vcpu->cpu);
1147 	else
1148 		avic_vcpu_put(vcpu);
1149 
1150 	avic_set_pi_irte_mode(vcpu, activated);
1151 }
1152 
avic_vcpu_blocking(struct kvm_vcpu * vcpu)1153 void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
1154 {
1155 	if (!kvm_vcpu_apicv_active(vcpu))
1156 		return;
1157 
1158        /*
1159         * Unload the AVIC when the vCPU is about to block, _before_
1160         * the vCPU actually blocks.
1161         *
1162         * Any IRQs that arrive before IsRunning=0 will not cause an
1163         * incomplete IPI vmexit on the source, therefore vIRR will also
1164         * be checked by kvm_vcpu_check_block() before blocking.  The
1165         * memory barrier implicit in set_current_state orders writing
1166         * IsRunning=0 before reading the vIRR.  The processor needs a
1167         * matching memory barrier on interrupt delivery between writing
1168         * IRR and reading IsRunning; the lack of this barrier might be
1169         * the cause of errata #1235).
1170         */
1171 	avic_vcpu_put(vcpu);
1172 }
1173 
avic_vcpu_unblocking(struct kvm_vcpu * vcpu)1174 void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
1175 {
1176 	if (!kvm_vcpu_apicv_active(vcpu))
1177 		return;
1178 
1179 	avic_vcpu_load(vcpu, vcpu->cpu);
1180 }
1181 
1182 /*
1183  * Note:
1184  * - The module param avic enable both xAPIC and x2APIC mode.
1185  * - Hypervisor can support both xAVIC and x2AVIC in the same guest.
1186  * - The mode can be switched at run-time.
1187  */
avic_hardware_setup(void)1188 bool avic_hardware_setup(void)
1189 {
1190 	if (!npt_enabled)
1191 		return false;
1192 
1193 	/* AVIC is a prerequisite for x2AVIC. */
1194 	if (!boot_cpu_has(X86_FEATURE_AVIC) && !force_avic) {
1195 		if (boot_cpu_has(X86_FEATURE_X2AVIC)) {
1196 			pr_warn(FW_BUG "Cannot support x2AVIC due to AVIC is disabled");
1197 			pr_warn(FW_BUG "Try enable AVIC using force_avic option");
1198 		}
1199 		return false;
1200 	}
1201 
1202 	if (boot_cpu_has(X86_FEATURE_AVIC)) {
1203 		pr_info("AVIC enabled\n");
1204 	} else if (force_avic) {
1205 		/*
1206 		 * Some older systems does not advertise AVIC support.
1207 		 * See Revision Guide for specific AMD processor for more detail.
1208 		 */
1209 		pr_warn("AVIC is not supported in CPUID but force enabled");
1210 		pr_warn("Your system might crash and burn");
1211 	}
1212 
1213 	/* AVIC is a prerequisite for x2AVIC. */
1214 	x2avic_enabled = boot_cpu_has(X86_FEATURE_X2AVIC);
1215 	if (x2avic_enabled)
1216 		pr_info("x2AVIC enabled\n");
1217 
1218 	amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1219 
1220 	return true;
1221 }
1222