1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * DMABUF CMA heap exporter
4 *
5 * Copyright (C) 2012, 2019, 2020 Linaro Ltd.
6 * Author: <benjamin.gaignard@linaro.org> for ST-Ericsson.
7 *
8 * Also utilizing parts of Andrew Davis' SRAM heap:
9 * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
10 * Andrew F. Davis <afd@ti.com>
11 */
12 #include <linux/cma.h>
13 #include <linux/dma-buf.h>
14 #include <linux/dma-heap.h>
15 #include <linux/dma-map-ops.h>
16 #include <linux/err.h>
17 #include <linux/highmem.h>
18 #include <linux/io.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/scatterlist.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24
25
26 struct cma_heap {
27 struct dma_heap *heap;
28 struct cma *cma;
29 };
30
31 struct cma_heap_buffer {
32 struct cma_heap *heap;
33 struct list_head attachments;
34 struct mutex lock;
35 unsigned long len;
36 struct page *cma_pages;
37 struct page **pages;
38 pgoff_t pagecount;
39 int vmap_cnt;
40 void *vaddr;
41 };
42
43 struct dma_heap_attachment {
44 struct device *dev;
45 struct sg_table table;
46 struct list_head list;
47 bool mapped;
48 };
49
cma_heap_attach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)50 static int cma_heap_attach(struct dma_buf *dmabuf,
51 struct dma_buf_attachment *attachment)
52 {
53 struct cma_heap_buffer *buffer = dmabuf->priv;
54 struct dma_heap_attachment *a;
55 int ret;
56
57 a = kzalloc(sizeof(*a), GFP_KERNEL);
58 if (!a)
59 return -ENOMEM;
60
61 ret = sg_alloc_table_from_pages(&a->table, buffer->pages,
62 buffer->pagecount, 0,
63 buffer->pagecount << PAGE_SHIFT,
64 GFP_KERNEL);
65 if (ret) {
66 kfree(a);
67 return ret;
68 }
69
70 a->dev = attachment->dev;
71 INIT_LIST_HEAD(&a->list);
72 a->mapped = false;
73
74 attachment->priv = a;
75
76 mutex_lock(&buffer->lock);
77 list_add(&a->list, &buffer->attachments);
78 mutex_unlock(&buffer->lock);
79
80 return 0;
81 }
82
cma_heap_detach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)83 static void cma_heap_detach(struct dma_buf *dmabuf,
84 struct dma_buf_attachment *attachment)
85 {
86 struct cma_heap_buffer *buffer = dmabuf->priv;
87 struct dma_heap_attachment *a = attachment->priv;
88
89 mutex_lock(&buffer->lock);
90 list_del(&a->list);
91 mutex_unlock(&buffer->lock);
92
93 sg_free_table(&a->table);
94 kfree(a);
95 }
96
cma_heap_map_dma_buf(struct dma_buf_attachment * attachment,enum dma_data_direction direction)97 static struct sg_table *cma_heap_map_dma_buf(struct dma_buf_attachment *attachment,
98 enum dma_data_direction direction)
99 {
100 struct dma_heap_attachment *a = attachment->priv;
101 struct sg_table *table = &a->table;
102 int attrs = attachment->dma_map_attrs;
103 int ret;
104
105 ret = dma_map_sgtable(attachment->dev, table, direction, attrs);
106 if (ret)
107 return ERR_PTR(-ENOMEM);
108 a->mapped = true;
109 return table;
110 }
111
cma_heap_unmap_dma_buf(struct dma_buf_attachment * attachment,struct sg_table * table,enum dma_data_direction direction)112 static void cma_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
113 struct sg_table *table,
114 enum dma_data_direction direction)
115 {
116 struct dma_heap_attachment *a = attachment->priv;
117 int attrs = attachment->dma_map_attrs;
118
119 a->mapped = false;
120 dma_unmap_sgtable(attachment->dev, table, direction, attrs);
121 }
122
cma_heap_dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)123 static int cma_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
124 enum dma_data_direction direction)
125 {
126 struct cma_heap_buffer *buffer = dmabuf->priv;
127 struct dma_heap_attachment *a;
128
129 mutex_lock(&buffer->lock);
130
131 if (buffer->vmap_cnt)
132 invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
133
134 list_for_each_entry(a, &buffer->attachments, list) {
135 if (!a->mapped)
136 continue;
137 dma_sync_sgtable_for_cpu(a->dev, &a->table, direction);
138 }
139 mutex_unlock(&buffer->lock);
140
141 return 0;
142 }
143
cma_heap_dma_buf_end_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)144 static int cma_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
145 enum dma_data_direction direction)
146 {
147 struct cma_heap_buffer *buffer = dmabuf->priv;
148 struct dma_heap_attachment *a;
149
150 mutex_lock(&buffer->lock);
151
152 if (buffer->vmap_cnt)
153 flush_kernel_vmap_range(buffer->vaddr, buffer->len);
154
155 list_for_each_entry(a, &buffer->attachments, list) {
156 if (!a->mapped)
157 continue;
158 dma_sync_sgtable_for_device(a->dev, &a->table, direction);
159 }
160 mutex_unlock(&buffer->lock);
161
162 return 0;
163 }
164
cma_heap_vm_fault(struct vm_fault * vmf)165 static vm_fault_t cma_heap_vm_fault(struct vm_fault *vmf)
166 {
167 struct vm_area_struct *vma = vmf->vma;
168 struct cma_heap_buffer *buffer = vma->vm_private_data;
169
170 if (vmf->pgoff > buffer->pagecount)
171 return VM_FAULT_SIGBUS;
172
173 return vmf_insert_pfn(vma, vmf->address, page_to_pfn(buffer->pages[vmf->pgoff]));
174 }
175
176 static const struct vm_operations_struct dma_heap_vm_ops = {
177 .fault = cma_heap_vm_fault,
178 };
179
cma_heap_mmap(struct dma_buf * dmabuf,struct vm_area_struct * vma)180 static int cma_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
181 {
182 struct cma_heap_buffer *buffer = dmabuf->priv;
183
184 if ((vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) == 0)
185 return -EINVAL;
186
187 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
188
189 vma->vm_ops = &dma_heap_vm_ops;
190 vma->vm_private_data = buffer;
191
192 return 0;
193 }
194
cma_heap_do_vmap(struct cma_heap_buffer * buffer)195 static void *cma_heap_do_vmap(struct cma_heap_buffer *buffer)
196 {
197 void *vaddr;
198
199 vaddr = vmap(buffer->pages, buffer->pagecount, VM_MAP, PAGE_KERNEL);
200 if (!vaddr)
201 return ERR_PTR(-ENOMEM);
202
203 return vaddr;
204 }
205
cma_heap_vmap(struct dma_buf * dmabuf,struct iosys_map * map)206 static int cma_heap_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
207 {
208 struct cma_heap_buffer *buffer = dmabuf->priv;
209 void *vaddr;
210 int ret = 0;
211
212 mutex_lock(&buffer->lock);
213 if (buffer->vmap_cnt) {
214 buffer->vmap_cnt++;
215 iosys_map_set_vaddr(map, buffer->vaddr);
216 goto out;
217 }
218
219 vaddr = cma_heap_do_vmap(buffer);
220 if (IS_ERR(vaddr)) {
221 ret = PTR_ERR(vaddr);
222 goto out;
223 }
224 buffer->vaddr = vaddr;
225 buffer->vmap_cnt++;
226 iosys_map_set_vaddr(map, buffer->vaddr);
227 out:
228 mutex_unlock(&buffer->lock);
229
230 return ret;
231 }
232
cma_heap_vunmap(struct dma_buf * dmabuf,struct iosys_map * map)233 static void cma_heap_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
234 {
235 struct cma_heap_buffer *buffer = dmabuf->priv;
236
237 mutex_lock(&buffer->lock);
238 if (!--buffer->vmap_cnt) {
239 vunmap(buffer->vaddr);
240 buffer->vaddr = NULL;
241 }
242 mutex_unlock(&buffer->lock);
243 iosys_map_clear(map);
244 }
245
cma_heap_dma_buf_release(struct dma_buf * dmabuf)246 static void cma_heap_dma_buf_release(struct dma_buf *dmabuf)
247 {
248 struct cma_heap_buffer *buffer = dmabuf->priv;
249 struct cma_heap *cma_heap = buffer->heap;
250
251 if (buffer->vmap_cnt > 0) {
252 WARN(1, "%s: buffer still mapped in the kernel\n", __func__);
253 vunmap(buffer->vaddr);
254 buffer->vaddr = NULL;
255 }
256
257 /* free page list */
258 kfree(buffer->pages);
259 /* release memory */
260 cma_release(cma_heap->cma, buffer->cma_pages, buffer->pagecount);
261 kfree(buffer);
262 }
263
264 static const struct dma_buf_ops cma_heap_buf_ops = {
265 .attach = cma_heap_attach,
266 .detach = cma_heap_detach,
267 .map_dma_buf = cma_heap_map_dma_buf,
268 .unmap_dma_buf = cma_heap_unmap_dma_buf,
269 .begin_cpu_access = cma_heap_dma_buf_begin_cpu_access,
270 .end_cpu_access = cma_heap_dma_buf_end_cpu_access,
271 .mmap = cma_heap_mmap,
272 .vmap = cma_heap_vmap,
273 .vunmap = cma_heap_vunmap,
274 .release = cma_heap_dma_buf_release,
275 };
276
cma_heap_allocate(struct dma_heap * heap,unsigned long len,u32 fd_flags,u64 heap_flags)277 static struct dma_buf *cma_heap_allocate(struct dma_heap *heap,
278 unsigned long len,
279 u32 fd_flags,
280 u64 heap_flags)
281 {
282 struct cma_heap *cma_heap = dma_heap_get_drvdata(heap);
283 struct cma_heap_buffer *buffer;
284 DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
285 size_t size = PAGE_ALIGN(len);
286 pgoff_t pagecount = size >> PAGE_SHIFT;
287 unsigned long align = get_order(size);
288 struct page *cma_pages;
289 struct dma_buf *dmabuf;
290 int ret = -ENOMEM;
291 pgoff_t pg;
292
293 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
294 if (!buffer)
295 return ERR_PTR(-ENOMEM);
296
297 INIT_LIST_HEAD(&buffer->attachments);
298 mutex_init(&buffer->lock);
299 buffer->len = size;
300
301 if (align > CONFIG_CMA_ALIGNMENT)
302 align = CONFIG_CMA_ALIGNMENT;
303
304 cma_pages = cma_alloc(cma_heap->cma, pagecount, align, false);
305 if (!cma_pages)
306 goto free_buffer;
307
308 /* Clear the cma pages */
309 if (PageHighMem(cma_pages)) {
310 unsigned long nr_clear_pages = pagecount;
311 struct page *page = cma_pages;
312
313 while (nr_clear_pages > 0) {
314 void *vaddr = kmap_atomic(page);
315
316 memset(vaddr, 0, PAGE_SIZE);
317 kunmap_atomic(vaddr);
318 /*
319 * Avoid wasting time zeroing memory if the process
320 * has been killed by by SIGKILL
321 */
322 if (fatal_signal_pending(current))
323 goto free_cma;
324 page++;
325 nr_clear_pages--;
326 }
327 } else {
328 memset(page_address(cma_pages), 0, size);
329 }
330
331 buffer->pages = kmalloc_array(pagecount, sizeof(*buffer->pages), GFP_KERNEL);
332 if (!buffer->pages) {
333 ret = -ENOMEM;
334 goto free_cma;
335 }
336
337 for (pg = 0; pg < pagecount; pg++)
338 buffer->pages[pg] = &cma_pages[pg];
339
340 buffer->cma_pages = cma_pages;
341 buffer->heap = cma_heap;
342 buffer->pagecount = pagecount;
343
344 /* create the dmabuf */
345 exp_info.exp_name = dma_heap_get_name(heap);
346 exp_info.ops = &cma_heap_buf_ops;
347 exp_info.size = buffer->len;
348 exp_info.flags = fd_flags;
349 exp_info.priv = buffer;
350 dmabuf = dma_buf_export(&exp_info);
351 if (IS_ERR(dmabuf)) {
352 ret = PTR_ERR(dmabuf);
353 goto free_pages;
354 }
355 return dmabuf;
356
357 free_pages:
358 kfree(buffer->pages);
359 free_cma:
360 cma_release(cma_heap->cma, cma_pages, pagecount);
361 free_buffer:
362 kfree(buffer);
363
364 return ERR_PTR(ret);
365 }
366
367 static const struct dma_heap_ops cma_heap_ops = {
368 .allocate = cma_heap_allocate,
369 };
370
__add_cma_heap(struct cma * cma,void * data)371 static int __add_cma_heap(struct cma *cma, void *data)
372 {
373 struct cma_heap *cma_heap;
374 struct dma_heap_export_info exp_info;
375
376 cma_heap = kzalloc(sizeof(*cma_heap), GFP_KERNEL);
377 if (!cma_heap)
378 return -ENOMEM;
379 cma_heap->cma = cma;
380
381 exp_info.name = cma_get_name(cma);
382 exp_info.ops = &cma_heap_ops;
383 exp_info.priv = cma_heap;
384
385 cma_heap->heap = dma_heap_add(&exp_info);
386 if (IS_ERR(cma_heap->heap)) {
387 int ret = PTR_ERR(cma_heap->heap);
388
389 kfree(cma_heap);
390 return ret;
391 }
392
393 return 0;
394 }
395
add_default_cma_heap(void)396 static int add_default_cma_heap(void)
397 {
398 struct cma *default_cma = dev_get_cma_area(NULL);
399 int ret = 0;
400
401 if (default_cma)
402 ret = __add_cma_heap(default_cma, NULL);
403
404 return ret;
405 }
406 module_init(add_default_cma_heap);
407 MODULE_DESCRIPTION("DMA-BUF CMA Heap");
408 MODULE_LICENSE("GPL v2");
409 MODULE_IMPORT_NS(DMA_BUF);
410