1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 #include "gem/i915_gem_lmem.h"
7
8 #include "gen8_engine_cs.h"
9 #include "i915_drv.h"
10 #include "i915_perf.h"
11 #include "i915_reg.h"
12 #include "intel_context.h"
13 #include "intel_engine.h"
14 #include "intel_engine_regs.h"
15 #include "intel_gpu_commands.h"
16 #include "intel_gt.h"
17 #include "intel_gt_regs.h"
18 #include "intel_lrc.h"
19 #include "intel_lrc_reg.h"
20 #include "intel_ring.h"
21 #include "shmem_utils.h"
22
23 /*
24 * The per-platform tables are u8-encoded in @data. Decode @data and set the
25 * addresses' offset and commands in @regs. The following encoding is used
26 * for each byte. There are 2 steps: decoding commands and decoding addresses.
27 *
28 * Commands:
29 * [7]: create NOPs - number of NOPs are set in lower bits
30 * [6]: When creating MI_LOAD_REGISTER_IMM command, allow to set
31 * MI_LRI_FORCE_POSTED
32 * [5:0]: Number of NOPs or registers to set values to in case of
33 * MI_LOAD_REGISTER_IMM
34 *
35 * Addresses: these are decoded after a MI_LOAD_REGISTER_IMM command by "count"
36 * number of registers. They are set by using the REG/REG16 macros: the former
37 * is used for offsets smaller than 0x200 while the latter is for values bigger
38 * than that. Those macros already set all the bits documented below correctly:
39 *
40 * [7]: When a register offset needs more than 6 bits, use additional bytes, to
41 * follow, for the lower bits
42 * [6:0]: Register offset, without considering the engine base.
43 *
44 * This function only tweaks the commands and register offsets. Values are not
45 * filled out.
46 */
set_offsets(u32 * regs,const u8 * data,const struct intel_engine_cs * engine,bool close)47 static void set_offsets(u32 *regs,
48 const u8 *data,
49 const struct intel_engine_cs *engine,
50 bool close)
51 #define NOP(x) (BIT(7) | (x))
52 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
53 #define POSTED BIT(0)
54 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
55 #define REG16(x) \
56 (((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
57 (((x) >> 2) & 0x7f)
58 #define END 0
59 {
60 const u32 base = engine->mmio_base;
61
62 while (*data) {
63 u8 count, flags;
64
65 if (*data & BIT(7)) { /* skip */
66 count = *data++ & ~BIT(7);
67 regs += count;
68 continue;
69 }
70
71 count = *data & 0x3f;
72 flags = *data >> 6;
73 data++;
74
75 *regs = MI_LOAD_REGISTER_IMM(count);
76 if (flags & POSTED)
77 *regs |= MI_LRI_FORCE_POSTED;
78 if (GRAPHICS_VER(engine->i915) >= 11)
79 *regs |= MI_LRI_LRM_CS_MMIO;
80 regs++;
81
82 GEM_BUG_ON(!count);
83 do {
84 u32 offset = 0;
85 u8 v;
86
87 do {
88 v = *data++;
89 offset <<= 7;
90 offset |= v & ~BIT(7);
91 } while (v & BIT(7));
92
93 regs[0] = base + (offset << 2);
94 regs += 2;
95 } while (--count);
96 }
97
98 if (close) {
99 /* Close the batch; used mainly by live_lrc_layout() */
100 *regs = MI_BATCH_BUFFER_END;
101 if (GRAPHICS_VER(engine->i915) >= 11)
102 *regs |= BIT(0);
103 }
104 }
105
106 static const u8 gen8_xcs_offsets[] = {
107 NOP(1),
108 LRI(11, 0),
109 REG16(0x244),
110 REG(0x034),
111 REG(0x030),
112 REG(0x038),
113 REG(0x03c),
114 REG(0x168),
115 REG(0x140),
116 REG(0x110),
117 REG(0x11c),
118 REG(0x114),
119 REG(0x118),
120
121 NOP(9),
122 LRI(9, 0),
123 REG16(0x3a8),
124 REG16(0x28c),
125 REG16(0x288),
126 REG16(0x284),
127 REG16(0x280),
128 REG16(0x27c),
129 REG16(0x278),
130 REG16(0x274),
131 REG16(0x270),
132
133 NOP(13),
134 LRI(2, 0),
135 REG16(0x200),
136 REG(0x028),
137
138 END
139 };
140
141 static const u8 gen9_xcs_offsets[] = {
142 NOP(1),
143 LRI(14, POSTED),
144 REG16(0x244),
145 REG(0x034),
146 REG(0x030),
147 REG(0x038),
148 REG(0x03c),
149 REG(0x168),
150 REG(0x140),
151 REG(0x110),
152 REG(0x11c),
153 REG(0x114),
154 REG(0x118),
155 REG(0x1c0),
156 REG(0x1c4),
157 REG(0x1c8),
158
159 NOP(3),
160 LRI(9, POSTED),
161 REG16(0x3a8),
162 REG16(0x28c),
163 REG16(0x288),
164 REG16(0x284),
165 REG16(0x280),
166 REG16(0x27c),
167 REG16(0x278),
168 REG16(0x274),
169 REG16(0x270),
170
171 NOP(13),
172 LRI(1, POSTED),
173 REG16(0x200),
174
175 NOP(13),
176 LRI(44, POSTED),
177 REG(0x028),
178 REG(0x09c),
179 REG(0x0c0),
180 REG(0x178),
181 REG(0x17c),
182 REG16(0x358),
183 REG(0x170),
184 REG(0x150),
185 REG(0x154),
186 REG(0x158),
187 REG16(0x41c),
188 REG16(0x600),
189 REG16(0x604),
190 REG16(0x608),
191 REG16(0x60c),
192 REG16(0x610),
193 REG16(0x614),
194 REG16(0x618),
195 REG16(0x61c),
196 REG16(0x620),
197 REG16(0x624),
198 REG16(0x628),
199 REG16(0x62c),
200 REG16(0x630),
201 REG16(0x634),
202 REG16(0x638),
203 REG16(0x63c),
204 REG16(0x640),
205 REG16(0x644),
206 REG16(0x648),
207 REG16(0x64c),
208 REG16(0x650),
209 REG16(0x654),
210 REG16(0x658),
211 REG16(0x65c),
212 REG16(0x660),
213 REG16(0x664),
214 REG16(0x668),
215 REG16(0x66c),
216 REG16(0x670),
217 REG16(0x674),
218 REG16(0x678),
219 REG16(0x67c),
220 REG(0x068),
221
222 END
223 };
224
225 static const u8 gen12_xcs_offsets[] = {
226 NOP(1),
227 LRI(13, POSTED),
228 REG16(0x244),
229 REG(0x034),
230 REG(0x030),
231 REG(0x038),
232 REG(0x03c),
233 REG(0x168),
234 REG(0x140),
235 REG(0x110),
236 REG(0x1c0),
237 REG(0x1c4),
238 REG(0x1c8),
239 REG(0x180),
240 REG16(0x2b4),
241
242 NOP(5),
243 LRI(9, POSTED),
244 REG16(0x3a8),
245 REG16(0x28c),
246 REG16(0x288),
247 REG16(0x284),
248 REG16(0x280),
249 REG16(0x27c),
250 REG16(0x278),
251 REG16(0x274),
252 REG16(0x270),
253
254 END
255 };
256
257 static const u8 dg2_xcs_offsets[] = {
258 NOP(1),
259 LRI(15, POSTED),
260 REG16(0x244),
261 REG(0x034),
262 REG(0x030),
263 REG(0x038),
264 REG(0x03c),
265 REG(0x168),
266 REG(0x140),
267 REG(0x110),
268 REG(0x1c0),
269 REG(0x1c4),
270 REG(0x1c8),
271 REG(0x180),
272 REG16(0x2b4),
273 REG(0x120),
274 REG(0x124),
275
276 NOP(1),
277 LRI(9, POSTED),
278 REG16(0x3a8),
279 REG16(0x28c),
280 REG16(0x288),
281 REG16(0x284),
282 REG16(0x280),
283 REG16(0x27c),
284 REG16(0x278),
285 REG16(0x274),
286 REG16(0x270),
287
288 END
289 };
290
291 static const u8 gen8_rcs_offsets[] = {
292 NOP(1),
293 LRI(14, POSTED),
294 REG16(0x244),
295 REG(0x034),
296 REG(0x030),
297 REG(0x038),
298 REG(0x03c),
299 REG(0x168),
300 REG(0x140),
301 REG(0x110),
302 REG(0x11c),
303 REG(0x114),
304 REG(0x118),
305 REG(0x1c0),
306 REG(0x1c4),
307 REG(0x1c8),
308
309 NOP(3),
310 LRI(9, POSTED),
311 REG16(0x3a8),
312 REG16(0x28c),
313 REG16(0x288),
314 REG16(0x284),
315 REG16(0x280),
316 REG16(0x27c),
317 REG16(0x278),
318 REG16(0x274),
319 REG16(0x270),
320
321 NOP(13),
322 LRI(1, 0),
323 REG(0x0c8),
324
325 END
326 };
327
328 static const u8 gen9_rcs_offsets[] = {
329 NOP(1),
330 LRI(14, POSTED),
331 REG16(0x244),
332 REG(0x34),
333 REG(0x30),
334 REG(0x38),
335 REG(0x3c),
336 REG(0x168),
337 REG(0x140),
338 REG(0x110),
339 REG(0x11c),
340 REG(0x114),
341 REG(0x118),
342 REG(0x1c0),
343 REG(0x1c4),
344 REG(0x1c8),
345
346 NOP(3),
347 LRI(9, POSTED),
348 REG16(0x3a8),
349 REG16(0x28c),
350 REG16(0x288),
351 REG16(0x284),
352 REG16(0x280),
353 REG16(0x27c),
354 REG16(0x278),
355 REG16(0x274),
356 REG16(0x270),
357
358 NOP(13),
359 LRI(1, 0),
360 REG(0xc8),
361
362 NOP(13),
363 LRI(44, POSTED),
364 REG(0x28),
365 REG(0x9c),
366 REG(0xc0),
367 REG(0x178),
368 REG(0x17c),
369 REG16(0x358),
370 REG(0x170),
371 REG(0x150),
372 REG(0x154),
373 REG(0x158),
374 REG16(0x41c),
375 REG16(0x600),
376 REG16(0x604),
377 REG16(0x608),
378 REG16(0x60c),
379 REG16(0x610),
380 REG16(0x614),
381 REG16(0x618),
382 REG16(0x61c),
383 REG16(0x620),
384 REG16(0x624),
385 REG16(0x628),
386 REG16(0x62c),
387 REG16(0x630),
388 REG16(0x634),
389 REG16(0x638),
390 REG16(0x63c),
391 REG16(0x640),
392 REG16(0x644),
393 REG16(0x648),
394 REG16(0x64c),
395 REG16(0x650),
396 REG16(0x654),
397 REG16(0x658),
398 REG16(0x65c),
399 REG16(0x660),
400 REG16(0x664),
401 REG16(0x668),
402 REG16(0x66c),
403 REG16(0x670),
404 REG16(0x674),
405 REG16(0x678),
406 REG16(0x67c),
407 REG(0x68),
408
409 END
410 };
411
412 static const u8 gen11_rcs_offsets[] = {
413 NOP(1),
414 LRI(15, POSTED),
415 REG16(0x244),
416 REG(0x034),
417 REG(0x030),
418 REG(0x038),
419 REG(0x03c),
420 REG(0x168),
421 REG(0x140),
422 REG(0x110),
423 REG(0x11c),
424 REG(0x114),
425 REG(0x118),
426 REG(0x1c0),
427 REG(0x1c4),
428 REG(0x1c8),
429 REG(0x180),
430
431 NOP(1),
432 LRI(9, POSTED),
433 REG16(0x3a8),
434 REG16(0x28c),
435 REG16(0x288),
436 REG16(0x284),
437 REG16(0x280),
438 REG16(0x27c),
439 REG16(0x278),
440 REG16(0x274),
441 REG16(0x270),
442
443 LRI(1, POSTED),
444 REG(0x1b0),
445
446 NOP(10),
447 LRI(1, 0),
448 REG(0x0c8),
449
450 END
451 };
452
453 static const u8 gen12_rcs_offsets[] = {
454 NOP(1),
455 LRI(13, POSTED),
456 REG16(0x244),
457 REG(0x034),
458 REG(0x030),
459 REG(0x038),
460 REG(0x03c),
461 REG(0x168),
462 REG(0x140),
463 REG(0x110),
464 REG(0x1c0),
465 REG(0x1c4),
466 REG(0x1c8),
467 REG(0x180),
468 REG16(0x2b4),
469
470 NOP(5),
471 LRI(9, POSTED),
472 REG16(0x3a8),
473 REG16(0x28c),
474 REG16(0x288),
475 REG16(0x284),
476 REG16(0x280),
477 REG16(0x27c),
478 REG16(0x278),
479 REG16(0x274),
480 REG16(0x270),
481
482 LRI(3, POSTED),
483 REG(0x1b0),
484 REG16(0x5a8),
485 REG16(0x5ac),
486
487 NOP(6),
488 LRI(1, 0),
489 REG(0x0c8),
490 NOP(3 + 9 + 1),
491
492 LRI(51, POSTED),
493 REG16(0x588),
494 REG16(0x588),
495 REG16(0x588),
496 REG16(0x588),
497 REG16(0x588),
498 REG16(0x588),
499 REG(0x028),
500 REG(0x09c),
501 REG(0x0c0),
502 REG(0x178),
503 REG(0x17c),
504 REG16(0x358),
505 REG(0x170),
506 REG(0x150),
507 REG(0x154),
508 REG(0x158),
509 REG16(0x41c),
510 REG16(0x600),
511 REG16(0x604),
512 REG16(0x608),
513 REG16(0x60c),
514 REG16(0x610),
515 REG16(0x614),
516 REG16(0x618),
517 REG16(0x61c),
518 REG16(0x620),
519 REG16(0x624),
520 REG16(0x628),
521 REG16(0x62c),
522 REG16(0x630),
523 REG16(0x634),
524 REG16(0x638),
525 REG16(0x63c),
526 REG16(0x640),
527 REG16(0x644),
528 REG16(0x648),
529 REG16(0x64c),
530 REG16(0x650),
531 REG16(0x654),
532 REG16(0x658),
533 REG16(0x65c),
534 REG16(0x660),
535 REG16(0x664),
536 REG16(0x668),
537 REG16(0x66c),
538 REG16(0x670),
539 REG16(0x674),
540 REG16(0x678),
541 REG16(0x67c),
542 REG(0x068),
543 REG(0x084),
544 NOP(1),
545
546 END
547 };
548
549 static const u8 xehp_rcs_offsets[] = {
550 NOP(1),
551 LRI(13, POSTED),
552 REG16(0x244),
553 REG(0x034),
554 REG(0x030),
555 REG(0x038),
556 REG(0x03c),
557 REG(0x168),
558 REG(0x140),
559 REG(0x110),
560 REG(0x1c0),
561 REG(0x1c4),
562 REG(0x1c8),
563 REG(0x180),
564 REG16(0x2b4),
565
566 NOP(5),
567 LRI(9, POSTED),
568 REG16(0x3a8),
569 REG16(0x28c),
570 REG16(0x288),
571 REG16(0x284),
572 REG16(0x280),
573 REG16(0x27c),
574 REG16(0x278),
575 REG16(0x274),
576 REG16(0x270),
577
578 LRI(3, POSTED),
579 REG(0x1b0),
580 REG16(0x5a8),
581 REG16(0x5ac),
582
583 NOP(6),
584 LRI(1, 0),
585 REG(0x0c8),
586
587 END
588 };
589
590 static const u8 dg2_rcs_offsets[] = {
591 NOP(1),
592 LRI(15, POSTED),
593 REG16(0x244),
594 REG(0x034),
595 REG(0x030),
596 REG(0x038),
597 REG(0x03c),
598 REG(0x168),
599 REG(0x140),
600 REG(0x110),
601 REG(0x1c0),
602 REG(0x1c4),
603 REG(0x1c8),
604 REG(0x180),
605 REG16(0x2b4),
606 REG(0x120),
607 REG(0x124),
608
609 NOP(1),
610 LRI(9, POSTED),
611 REG16(0x3a8),
612 REG16(0x28c),
613 REG16(0x288),
614 REG16(0x284),
615 REG16(0x280),
616 REG16(0x27c),
617 REG16(0x278),
618 REG16(0x274),
619 REG16(0x270),
620
621 LRI(3, POSTED),
622 REG(0x1b0),
623 REG16(0x5a8),
624 REG16(0x5ac),
625
626 NOP(6),
627 LRI(1, 0),
628 REG(0x0c8),
629
630 END
631 };
632
633 static const u8 mtl_rcs_offsets[] = {
634 NOP(1),
635 LRI(15, POSTED),
636 REG16(0x244),
637 REG(0x034),
638 REG(0x030),
639 REG(0x038),
640 REG(0x03c),
641 REG(0x168),
642 REG(0x140),
643 REG(0x110),
644 REG(0x1c0),
645 REG(0x1c4),
646 REG(0x1c8),
647 REG(0x180),
648 REG16(0x2b4),
649 REG(0x120),
650 REG(0x124),
651
652 NOP(1),
653 LRI(9, POSTED),
654 REG16(0x3a8),
655 REG16(0x28c),
656 REG16(0x288),
657 REG16(0x284),
658 REG16(0x280),
659 REG16(0x27c),
660 REG16(0x278),
661 REG16(0x274),
662 REG16(0x270),
663
664 NOP(2),
665 LRI(2, POSTED),
666 REG16(0x5a8),
667 REG16(0x5ac),
668
669 NOP(6),
670 LRI(1, 0),
671 REG(0x0c8),
672
673 END
674 };
675
676 #undef END
677 #undef REG16
678 #undef REG
679 #undef LRI
680 #undef NOP
681
reg_offsets(const struct intel_engine_cs * engine)682 static const u8 *reg_offsets(const struct intel_engine_cs *engine)
683 {
684 /*
685 * The gen12+ lists only have the registers we program in the basic
686 * default state. We rely on the context image using relative
687 * addressing to automatic fixup the register state between the
688 * physical engines for virtual engine.
689 */
690 GEM_BUG_ON(GRAPHICS_VER(engine->i915) >= 12 &&
691 !intel_engine_has_relative_mmio(engine));
692
693 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) {
694 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70))
695 return mtl_rcs_offsets;
696 else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
697 return dg2_rcs_offsets;
698 else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
699 return xehp_rcs_offsets;
700 else if (GRAPHICS_VER(engine->i915) >= 12)
701 return gen12_rcs_offsets;
702 else if (GRAPHICS_VER(engine->i915) >= 11)
703 return gen11_rcs_offsets;
704 else if (GRAPHICS_VER(engine->i915) >= 9)
705 return gen9_rcs_offsets;
706 else
707 return gen8_rcs_offsets;
708 } else {
709 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
710 return dg2_xcs_offsets;
711 else if (GRAPHICS_VER(engine->i915) >= 12)
712 return gen12_xcs_offsets;
713 else if (GRAPHICS_VER(engine->i915) >= 9)
714 return gen9_xcs_offsets;
715 else
716 return gen8_xcs_offsets;
717 }
718 }
719
lrc_ring_mi_mode(const struct intel_engine_cs * engine)720 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
721 {
722 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
723 return 0x70;
724 else if (GRAPHICS_VER(engine->i915) >= 12)
725 return 0x60;
726 else if (GRAPHICS_VER(engine->i915) >= 9)
727 return 0x54;
728 else if (engine->class == RENDER_CLASS)
729 return 0x58;
730 else
731 return -1;
732 }
733
lrc_ring_bb_offset(const struct intel_engine_cs * engine)734 static int lrc_ring_bb_offset(const struct intel_engine_cs *engine)
735 {
736 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
737 return 0x80;
738 else if (GRAPHICS_VER(engine->i915) >= 12)
739 return 0x70;
740 else if (GRAPHICS_VER(engine->i915) >= 9)
741 return 0x64;
742 else if (GRAPHICS_VER(engine->i915) >= 8 &&
743 engine->class == RENDER_CLASS)
744 return 0xc4;
745 else
746 return -1;
747 }
748
lrc_ring_gpr0(const struct intel_engine_cs * engine)749 static int lrc_ring_gpr0(const struct intel_engine_cs *engine)
750 {
751 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
752 return 0x84;
753 else if (GRAPHICS_VER(engine->i915) >= 12)
754 return 0x74;
755 else if (GRAPHICS_VER(engine->i915) >= 9)
756 return 0x68;
757 else if (engine->class == RENDER_CLASS)
758 return 0xd8;
759 else
760 return -1;
761 }
762
lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs * engine)763 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine)
764 {
765 if (GRAPHICS_VER(engine->i915) >= 12)
766 return 0x12;
767 else if (GRAPHICS_VER(engine->i915) >= 9 || engine->class == RENDER_CLASS)
768 return 0x18;
769 else
770 return -1;
771 }
772
lrc_ring_indirect_ptr(const struct intel_engine_cs * engine)773 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine)
774 {
775 int x;
776
777 x = lrc_ring_wa_bb_per_ctx(engine);
778 if (x < 0)
779 return x;
780
781 return x + 2;
782 }
783
lrc_ring_indirect_offset(const struct intel_engine_cs * engine)784 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine)
785 {
786 int x;
787
788 x = lrc_ring_indirect_ptr(engine);
789 if (x < 0)
790 return x;
791
792 return x + 2;
793 }
794
lrc_ring_cmd_buf_cctl(const struct intel_engine_cs * engine)795 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine)
796 {
797
798 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
799 /*
800 * Note that the CSFE context has a dummy slot for CMD_BUF_CCTL
801 * simply to match the RCS context image layout.
802 */
803 return 0xc6;
804 else if (engine->class != RENDER_CLASS)
805 return -1;
806 else if (GRAPHICS_VER(engine->i915) >= 12)
807 return 0xb6;
808 else if (GRAPHICS_VER(engine->i915) >= 11)
809 return 0xaa;
810 else
811 return -1;
812 }
813
814 static u32
lrc_ring_indirect_offset_default(const struct intel_engine_cs * engine)815 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine)
816 {
817 if (GRAPHICS_VER(engine->i915) >= 12)
818 return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
819 else if (GRAPHICS_VER(engine->i915) >= 11)
820 return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
821 else if (GRAPHICS_VER(engine->i915) >= 9)
822 return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
823 else if (GRAPHICS_VER(engine->i915) >= 8)
824 return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
825
826 GEM_BUG_ON(GRAPHICS_VER(engine->i915) < 8);
827
828 return 0;
829 }
830
831 static void
lrc_setup_indirect_ctx(u32 * regs,const struct intel_engine_cs * engine,u32 ctx_bb_ggtt_addr,u32 size)832 lrc_setup_indirect_ctx(u32 *regs,
833 const struct intel_engine_cs *engine,
834 u32 ctx_bb_ggtt_addr,
835 u32 size)
836 {
837 GEM_BUG_ON(!size);
838 GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES));
839 GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1);
840 regs[lrc_ring_indirect_ptr(engine) + 1] =
841 ctx_bb_ggtt_addr | (size / CACHELINE_BYTES);
842
843 GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1);
844 regs[lrc_ring_indirect_offset(engine) + 1] =
845 lrc_ring_indirect_offset_default(engine) << 6;
846 }
847
init_common_regs(u32 * const regs,const struct intel_context * ce,const struct intel_engine_cs * engine,bool inhibit)848 static void init_common_regs(u32 * const regs,
849 const struct intel_context *ce,
850 const struct intel_engine_cs *engine,
851 bool inhibit)
852 {
853 u32 ctl;
854 int loc;
855
856 ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
857 ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
858 if (inhibit)
859 ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
860 if (GRAPHICS_VER(engine->i915) < 11)
861 ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
862 CTX_CTRL_RS_CTX_ENABLE);
863 regs[CTX_CONTEXT_CONTROL] = ctl;
864
865 regs[CTX_TIMESTAMP] = ce->stats.runtime.last;
866
867 loc = lrc_ring_bb_offset(engine);
868 if (loc != -1)
869 regs[loc + 1] = 0;
870 }
871
init_wa_bb_regs(u32 * const regs,const struct intel_engine_cs * engine)872 static void init_wa_bb_regs(u32 * const regs,
873 const struct intel_engine_cs *engine)
874 {
875 const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
876
877 if (wa_ctx->per_ctx.size) {
878 const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
879
880 GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
881 regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
882 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
883 }
884
885 if (wa_ctx->indirect_ctx.size) {
886 lrc_setup_indirect_ctx(regs, engine,
887 i915_ggtt_offset(wa_ctx->vma) +
888 wa_ctx->indirect_ctx.offset,
889 wa_ctx->indirect_ctx.size);
890 }
891 }
892
init_ppgtt_regs(u32 * regs,const struct i915_ppgtt * ppgtt)893 static void init_ppgtt_regs(u32 *regs, const struct i915_ppgtt *ppgtt)
894 {
895 if (i915_vm_is_4lvl(&ppgtt->vm)) {
896 /* 64b PPGTT (48bit canonical)
897 * PDP0_DESCRIPTOR contains the base address to PML4 and
898 * other PDP Descriptors are ignored.
899 */
900 ASSIGN_CTX_PML4(ppgtt, regs);
901 } else {
902 ASSIGN_CTX_PDP(ppgtt, regs, 3);
903 ASSIGN_CTX_PDP(ppgtt, regs, 2);
904 ASSIGN_CTX_PDP(ppgtt, regs, 1);
905 ASSIGN_CTX_PDP(ppgtt, regs, 0);
906 }
907 }
908
vm_alias(struct i915_address_space * vm)909 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
910 {
911 if (i915_is_ggtt(vm))
912 return i915_vm_to_ggtt(vm)->alias;
913 else
914 return i915_vm_to_ppgtt(vm);
915 }
916
__reset_stop_ring(u32 * regs,const struct intel_engine_cs * engine)917 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
918 {
919 int x;
920
921 x = lrc_ring_mi_mode(engine);
922 if (x != -1) {
923 regs[x + 1] &= ~STOP_RING;
924 regs[x + 1] |= STOP_RING << 16;
925 }
926 }
927
__lrc_init_regs(u32 * regs,const struct intel_context * ce,const struct intel_engine_cs * engine,bool inhibit)928 static void __lrc_init_regs(u32 *regs,
929 const struct intel_context *ce,
930 const struct intel_engine_cs *engine,
931 bool inhibit)
932 {
933 /*
934 * A context is actually a big batch buffer with several
935 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
936 * values we are setting here are only for the first context restore:
937 * on a subsequent save, the GPU will recreate this batchbuffer with new
938 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
939 * we are not initializing here).
940 *
941 * Must keep consistent with virtual_update_register_offsets().
942 */
943
944 if (inhibit)
945 memset(regs, 0, PAGE_SIZE);
946
947 set_offsets(regs, reg_offsets(engine), engine, inhibit);
948
949 init_common_regs(regs, ce, engine, inhibit);
950 init_ppgtt_regs(regs, vm_alias(ce->vm));
951
952 init_wa_bb_regs(regs, engine);
953
954 __reset_stop_ring(regs, engine);
955 }
956
lrc_init_regs(const struct intel_context * ce,const struct intel_engine_cs * engine,bool inhibit)957 void lrc_init_regs(const struct intel_context *ce,
958 const struct intel_engine_cs *engine,
959 bool inhibit)
960 {
961 __lrc_init_regs(ce->lrc_reg_state, ce, engine, inhibit);
962 }
963
lrc_reset_regs(const struct intel_context * ce,const struct intel_engine_cs * engine)964 void lrc_reset_regs(const struct intel_context *ce,
965 const struct intel_engine_cs *engine)
966 {
967 __reset_stop_ring(ce->lrc_reg_state, engine);
968 }
969
970 static void
set_redzone(void * vaddr,const struct intel_engine_cs * engine)971 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
972 {
973 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
974 return;
975
976 vaddr += engine->context_size;
977
978 memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
979 }
980
981 static void
check_redzone(const void * vaddr,const struct intel_engine_cs * engine)982 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
983 {
984 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
985 return;
986
987 vaddr += engine->context_size;
988
989 if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
990 drm_err_once(&engine->i915->drm,
991 "%s context redzone overwritten!\n",
992 engine->name);
993 }
994
context_wa_bb_offset(const struct intel_context * ce)995 static u32 context_wa_bb_offset(const struct intel_context *ce)
996 {
997 return PAGE_SIZE * ce->wa_bb_page;
998 }
999
context_indirect_bb(const struct intel_context * ce)1000 static u32 *context_indirect_bb(const struct intel_context *ce)
1001 {
1002 void *ptr;
1003
1004 GEM_BUG_ON(!ce->wa_bb_page);
1005
1006 ptr = ce->lrc_reg_state;
1007 ptr -= LRC_STATE_OFFSET; /* back to start of context image */
1008 ptr += context_wa_bb_offset(ce);
1009
1010 return ptr;
1011 }
1012
lrc_init_state(struct intel_context * ce,struct intel_engine_cs * engine,void * state)1013 void lrc_init_state(struct intel_context *ce,
1014 struct intel_engine_cs *engine,
1015 void *state)
1016 {
1017 bool inhibit = true;
1018
1019 set_redzone(state, engine);
1020
1021 if (engine->default_state) {
1022 shmem_read(engine->default_state, 0,
1023 state, engine->context_size);
1024 __set_bit(CONTEXT_VALID_BIT, &ce->flags);
1025 inhibit = false;
1026 }
1027
1028 /* Clear the ppHWSP (inc. per-context counters) */
1029 memset(state, 0, PAGE_SIZE);
1030
1031 /* Clear the indirect wa and storage */
1032 if (ce->wa_bb_page)
1033 memset(state + context_wa_bb_offset(ce), 0, PAGE_SIZE);
1034
1035 /*
1036 * The second page of the context object contains some registers which
1037 * must be set up prior to the first execution.
1038 */
1039 __lrc_init_regs(state + LRC_STATE_OFFSET, ce, engine, inhibit);
1040 }
1041
lrc_indirect_bb(const struct intel_context * ce)1042 u32 lrc_indirect_bb(const struct intel_context *ce)
1043 {
1044 return i915_ggtt_offset(ce->state) + context_wa_bb_offset(ce);
1045 }
1046
setup_predicate_disable_wa(const struct intel_context * ce,u32 * cs)1047 static u32 *setup_predicate_disable_wa(const struct intel_context *ce, u32 *cs)
1048 {
1049 /* If predication is active, this will be noop'ed */
1050 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2);
1051 *cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA;
1052 *cs++ = 0;
1053 *cs++ = 0; /* No predication */
1054
1055 /* predicated end, only terminates if SET_PREDICATE_RESULT:0 is clear */
1056 *cs++ = MI_BATCH_BUFFER_END | BIT(15);
1057 *cs++ = MI_SET_PREDICATE | MI_SET_PREDICATE_DISABLE;
1058
1059 /* Instructions are no longer predicated (disabled), we can proceed */
1060 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2);
1061 *cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA;
1062 *cs++ = 0;
1063 *cs++ = 1; /* enable predication before the next BB */
1064
1065 *cs++ = MI_BATCH_BUFFER_END;
1066 GEM_BUG_ON(offset_in_page(cs) > DG2_PREDICATE_RESULT_WA);
1067
1068 return cs;
1069 }
1070
1071 static struct i915_vma *
__lrc_alloc_state(struct intel_context * ce,struct intel_engine_cs * engine)1072 __lrc_alloc_state(struct intel_context *ce, struct intel_engine_cs *engine)
1073 {
1074 struct drm_i915_gem_object *obj;
1075 struct i915_vma *vma;
1076 u32 context_size;
1077
1078 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
1079
1080 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1081 context_size += I915_GTT_PAGE_SIZE; /* for redzone */
1082
1083 if (GRAPHICS_VER(engine->i915) >= 12) {
1084 ce->wa_bb_page = context_size / PAGE_SIZE;
1085 context_size += PAGE_SIZE;
1086 }
1087
1088 if (intel_context_is_parent(ce) && intel_engine_uses_guc(engine)) {
1089 ce->parallel.guc.parent_page = context_size / PAGE_SIZE;
1090 context_size += PARENT_SCRATCH_SIZE;
1091 }
1092
1093 obj = i915_gem_object_create_lmem(engine->i915, context_size,
1094 I915_BO_ALLOC_PM_VOLATILE);
1095 if (IS_ERR(obj)) {
1096 obj = i915_gem_object_create_shmem(engine->i915, context_size);
1097 if (IS_ERR(obj))
1098 return ERR_CAST(obj);
1099
1100 /*
1101 * Wa_22016122933: For Media version 13.0, all Media GT shared
1102 * memory needs to be mapped as WC on CPU side and UC (PAT
1103 * index 2) on GPU side.
1104 */
1105 if (intel_gt_needs_wa_22016122933(engine->gt))
1106 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
1107 }
1108
1109 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1110 if (IS_ERR(vma)) {
1111 i915_gem_object_put(obj);
1112 return vma;
1113 }
1114
1115 return vma;
1116 }
1117
1118 static struct intel_timeline *
pinned_timeline(struct intel_context * ce,struct intel_engine_cs * engine)1119 pinned_timeline(struct intel_context *ce, struct intel_engine_cs *engine)
1120 {
1121 struct intel_timeline *tl = fetch_and_zero(&ce->timeline);
1122
1123 return intel_timeline_create_from_engine(engine, page_unmask_bits(tl));
1124 }
1125
lrc_alloc(struct intel_context * ce,struct intel_engine_cs * engine)1126 int lrc_alloc(struct intel_context *ce, struct intel_engine_cs *engine)
1127 {
1128 struct intel_ring *ring;
1129 struct i915_vma *vma;
1130 int err;
1131
1132 GEM_BUG_ON(ce->state);
1133
1134 vma = __lrc_alloc_state(ce, engine);
1135 if (IS_ERR(vma))
1136 return PTR_ERR(vma);
1137
1138 ring = intel_engine_create_ring(engine, ce->ring_size);
1139 if (IS_ERR(ring)) {
1140 err = PTR_ERR(ring);
1141 goto err_vma;
1142 }
1143
1144 if (!page_mask_bits(ce->timeline)) {
1145 struct intel_timeline *tl;
1146
1147 /*
1148 * Use the static global HWSP for the kernel context, and
1149 * a dynamically allocated cacheline for everyone else.
1150 */
1151 if (unlikely(ce->timeline))
1152 tl = pinned_timeline(ce, engine);
1153 else
1154 tl = intel_timeline_create(engine->gt);
1155 if (IS_ERR(tl)) {
1156 err = PTR_ERR(tl);
1157 goto err_ring;
1158 }
1159
1160 ce->timeline = tl;
1161 }
1162
1163 ce->ring = ring;
1164 ce->state = vma;
1165
1166 return 0;
1167
1168 err_ring:
1169 intel_ring_put(ring);
1170 err_vma:
1171 i915_vma_put(vma);
1172 return err;
1173 }
1174
lrc_reset(struct intel_context * ce)1175 void lrc_reset(struct intel_context *ce)
1176 {
1177 GEM_BUG_ON(!intel_context_is_pinned(ce));
1178
1179 intel_ring_reset(ce->ring, ce->ring->emit);
1180
1181 /* Scrub away the garbage */
1182 lrc_init_regs(ce, ce->engine, true);
1183 ce->lrc.lrca = lrc_update_regs(ce, ce->engine, ce->ring->tail);
1184 }
1185
1186 int
lrc_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)1187 lrc_pre_pin(struct intel_context *ce,
1188 struct intel_engine_cs *engine,
1189 struct i915_gem_ww_ctx *ww,
1190 void **vaddr)
1191 {
1192 GEM_BUG_ON(!ce->state);
1193 GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1194
1195 *vaddr = i915_gem_object_pin_map(ce->state->obj,
1196 intel_gt_coherent_map_type(ce->engine->gt,
1197 ce->state->obj,
1198 false) |
1199 I915_MAP_OVERRIDE);
1200
1201 return PTR_ERR_OR_ZERO(*vaddr);
1202 }
1203
1204 int
lrc_pin(struct intel_context * ce,struct intel_engine_cs * engine,void * vaddr)1205 lrc_pin(struct intel_context *ce,
1206 struct intel_engine_cs *engine,
1207 void *vaddr)
1208 {
1209 ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET;
1210
1211 if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags))
1212 lrc_init_state(ce, engine, vaddr);
1213
1214 ce->lrc.lrca = lrc_update_regs(ce, engine, ce->ring->tail);
1215 return 0;
1216 }
1217
lrc_unpin(struct intel_context * ce)1218 void lrc_unpin(struct intel_context *ce)
1219 {
1220 if (unlikely(ce->parallel.last_rq)) {
1221 i915_request_put(ce->parallel.last_rq);
1222 ce->parallel.last_rq = NULL;
1223 }
1224 check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET,
1225 ce->engine);
1226 }
1227
lrc_post_unpin(struct intel_context * ce)1228 void lrc_post_unpin(struct intel_context *ce)
1229 {
1230 i915_gem_object_unpin_map(ce->state->obj);
1231 }
1232
lrc_fini(struct intel_context * ce)1233 void lrc_fini(struct intel_context *ce)
1234 {
1235 if (!ce->state)
1236 return;
1237
1238 intel_ring_put(fetch_and_zero(&ce->ring));
1239 i915_vma_put(fetch_and_zero(&ce->state));
1240 }
1241
lrc_destroy(struct kref * kref)1242 void lrc_destroy(struct kref *kref)
1243 {
1244 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1245
1246 GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1247 GEM_BUG_ON(intel_context_is_pinned(ce));
1248
1249 lrc_fini(ce);
1250
1251 intel_context_fini(ce);
1252 intel_context_free(ce);
1253 }
1254
1255 static u32 *
gen12_emit_timestamp_wa(const struct intel_context * ce,u32 * cs)1256 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs)
1257 {
1258 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1259 MI_SRM_LRM_GLOBAL_GTT |
1260 MI_LRI_LRM_CS_MMIO;
1261 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1262 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1263 CTX_TIMESTAMP * sizeof(u32);
1264 *cs++ = 0;
1265
1266 *cs++ = MI_LOAD_REGISTER_REG |
1267 MI_LRR_SOURCE_CS_MMIO |
1268 MI_LRI_LRM_CS_MMIO;
1269 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1270 *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1271
1272 *cs++ = MI_LOAD_REGISTER_REG |
1273 MI_LRR_SOURCE_CS_MMIO |
1274 MI_LRI_LRM_CS_MMIO;
1275 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1276 *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1277
1278 return cs;
1279 }
1280
1281 static u32 *
gen12_emit_restore_scratch(const struct intel_context * ce,u32 * cs)1282 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs)
1283 {
1284 GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1);
1285
1286 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1287 MI_SRM_LRM_GLOBAL_GTT |
1288 MI_LRI_LRM_CS_MMIO;
1289 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1290 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1291 (lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32);
1292 *cs++ = 0;
1293
1294 return cs;
1295 }
1296
1297 static u32 *
gen12_emit_cmd_buf_wa(const struct intel_context * ce,u32 * cs)1298 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs)
1299 {
1300 GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1);
1301
1302 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1303 MI_SRM_LRM_GLOBAL_GTT |
1304 MI_LRI_LRM_CS_MMIO;
1305 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1306 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1307 (lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32);
1308 *cs++ = 0;
1309
1310 *cs++ = MI_LOAD_REGISTER_REG |
1311 MI_LRR_SOURCE_CS_MMIO |
1312 MI_LRI_LRM_CS_MMIO;
1313 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1314 *cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0));
1315
1316 return cs;
1317 }
1318
1319 /*
1320 * The bspec's tuning guide asks us to program a vertical watermark value of
1321 * 0x3FF. However this register is not saved/restored properly by the
1322 * hardware, so we're required to apply the desired value via INDIRECT_CTX
1323 * batch buffer to ensure the value takes effect properly. All other bits
1324 * in this register should remain at 0 (the hardware default).
1325 */
1326 static u32 *
dg2_emit_draw_watermark_setting(u32 * cs)1327 dg2_emit_draw_watermark_setting(u32 *cs)
1328 {
1329 *cs++ = MI_LOAD_REGISTER_IMM(1);
1330 *cs++ = i915_mmio_reg_offset(DRAW_WATERMARK);
1331 *cs++ = REG_FIELD_PREP(VERT_WM_VAL, 0x3FF);
1332
1333 return cs;
1334 }
1335
1336 static u32 *
gen12_emit_indirect_ctx_rcs(const struct intel_context * ce,u32 * cs)1337 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs)
1338 {
1339 cs = gen12_emit_timestamp_wa(ce, cs);
1340 cs = gen12_emit_cmd_buf_wa(ce, cs);
1341 cs = gen12_emit_restore_scratch(ce, cs);
1342
1343 /* Wa_16013000631:dg2 */
1344 if (IS_DG2_G11(ce->engine->i915))
1345 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 0);
1346
1347 cs = gen12_emit_aux_table_inv(ce->engine, cs);
1348
1349 /* Wa_16014892111 */
1350 if (IS_GFX_GT_IP_STEP(ce->engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1351 IS_GFX_GT_IP_STEP(ce->engine->gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
1352 IS_DG2(ce->engine->i915))
1353 cs = dg2_emit_draw_watermark_setting(cs);
1354
1355 return cs;
1356 }
1357
1358 static u32 *
gen12_emit_indirect_ctx_xcs(const struct intel_context * ce,u32 * cs)1359 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs)
1360 {
1361 cs = gen12_emit_timestamp_wa(ce, cs);
1362 cs = gen12_emit_restore_scratch(ce, cs);
1363
1364 /* Wa_16013000631:dg2 */
1365 if (IS_DG2_G11(ce->engine->i915))
1366 if (ce->engine->class == COMPUTE_CLASS)
1367 cs = gen8_emit_pipe_control(cs,
1368 PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE,
1369 0);
1370
1371 return gen12_emit_aux_table_inv(ce->engine, cs);
1372 }
1373
1374 static void
setup_indirect_ctx_bb(const struct intel_context * ce,const struct intel_engine_cs * engine,u32 * (* emit)(const struct intel_context *,u32 *))1375 setup_indirect_ctx_bb(const struct intel_context *ce,
1376 const struct intel_engine_cs *engine,
1377 u32 *(*emit)(const struct intel_context *, u32 *))
1378 {
1379 u32 * const start = context_indirect_bb(ce);
1380 u32 *cs;
1381
1382 cs = emit(ce, start);
1383 GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
1384 while ((unsigned long)cs % CACHELINE_BYTES)
1385 *cs++ = MI_NOOP;
1386
1387 GEM_BUG_ON(cs - start > DG2_PREDICATE_RESULT_BB / sizeof(*start));
1388 setup_predicate_disable_wa(ce, start + DG2_PREDICATE_RESULT_BB / sizeof(*start));
1389
1390 lrc_setup_indirect_ctx(ce->lrc_reg_state, engine,
1391 lrc_indirect_bb(ce),
1392 (cs - start) * sizeof(*cs));
1393 }
1394
1395 /*
1396 * The context descriptor encodes various attributes of a context,
1397 * including its GTT address and some flags. Because it's fairly
1398 * expensive to calculate, we'll just do it once and cache the result,
1399 * which remains valid until the context is unpinned.
1400 *
1401 * This is what a descriptor looks like, from LSB to MSB::
1402 *
1403 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
1404 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
1405 * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC)
1406 * bits 53-54: mbz, reserved for use by hardware
1407 * bits 55-63: group ID, currently unused and set to 0
1408 *
1409 * Starting from Gen11, the upper dword of the descriptor has a new format:
1410 *
1411 * bits 32-36: reserved
1412 * bits 37-47: SW context ID
1413 * bits 48:53: engine instance
1414 * bit 54: mbz, reserved for use by hardware
1415 * bits 55-60: SW counter
1416 * bits 61-63: engine class
1417 *
1418 * On Xe_HP, the upper dword of the descriptor has a new format:
1419 *
1420 * bits 32-37: virtual function number
1421 * bit 38: mbz, reserved for use by hardware
1422 * bits 39-54: SW context ID
1423 * bits 55-57: reserved
1424 * bits 58-63: SW counter
1425 *
1426 * engine info, SW context ID and SW counter need to form a unique number
1427 * (Context ID) per lrc.
1428 */
lrc_descriptor(const struct intel_context * ce)1429 static u32 lrc_descriptor(const struct intel_context *ce)
1430 {
1431 u32 desc;
1432
1433 desc = INTEL_LEGACY_32B_CONTEXT;
1434 if (i915_vm_is_4lvl(ce->vm))
1435 desc = INTEL_LEGACY_64B_CONTEXT;
1436 desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
1437
1438 desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
1439 if (GRAPHICS_VER(ce->vm->i915) == 8)
1440 desc |= GEN8_CTX_L3LLC_COHERENT;
1441
1442 return i915_ggtt_offset(ce->state) | desc;
1443 }
1444
lrc_update_regs(const struct intel_context * ce,const struct intel_engine_cs * engine,u32 head)1445 u32 lrc_update_regs(const struct intel_context *ce,
1446 const struct intel_engine_cs *engine,
1447 u32 head)
1448 {
1449 struct intel_ring *ring = ce->ring;
1450 u32 *regs = ce->lrc_reg_state;
1451
1452 GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
1453 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1454
1455 regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1456 regs[CTX_RING_HEAD] = head;
1457 regs[CTX_RING_TAIL] = ring->tail;
1458 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1459
1460 /* RPCS */
1461 if (engine->class == RENDER_CLASS) {
1462 regs[CTX_R_PWR_CLK_STATE] =
1463 intel_sseu_make_rpcs(engine->gt, &ce->sseu);
1464
1465 i915_oa_init_reg_state(ce, engine);
1466 }
1467
1468 if (ce->wa_bb_page) {
1469 u32 *(*fn)(const struct intel_context *ce, u32 *cs);
1470
1471 fn = gen12_emit_indirect_ctx_xcs;
1472 if (ce->engine->class == RENDER_CLASS)
1473 fn = gen12_emit_indirect_ctx_rcs;
1474
1475 /* Mutually exclusive wrt to global indirect bb */
1476 GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size);
1477 setup_indirect_ctx_bb(ce, engine, fn);
1478 }
1479
1480 return lrc_descriptor(ce) | CTX_DESC_FORCE_RESTORE;
1481 }
1482
lrc_update_offsets(struct intel_context * ce,struct intel_engine_cs * engine)1483 void lrc_update_offsets(struct intel_context *ce,
1484 struct intel_engine_cs *engine)
1485 {
1486 set_offsets(ce->lrc_reg_state, reg_offsets(engine), engine, false);
1487 }
1488
lrc_check_regs(const struct intel_context * ce,const struct intel_engine_cs * engine,const char * when)1489 void lrc_check_regs(const struct intel_context *ce,
1490 const struct intel_engine_cs *engine,
1491 const char *when)
1492 {
1493 const struct intel_ring *ring = ce->ring;
1494 u32 *regs = ce->lrc_reg_state;
1495 bool valid = true;
1496 int x;
1497
1498 if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
1499 pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
1500 engine->name,
1501 regs[CTX_RING_START],
1502 i915_ggtt_offset(ring->vma));
1503 regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1504 valid = false;
1505 }
1506
1507 if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
1508 (RING_CTL_SIZE(ring->size) | RING_VALID)) {
1509 pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
1510 engine->name,
1511 regs[CTX_RING_CTL],
1512 (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
1513 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1514 valid = false;
1515 }
1516
1517 x = lrc_ring_mi_mode(engine);
1518 if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
1519 pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
1520 engine->name, regs[x + 1]);
1521 regs[x + 1] &= ~STOP_RING;
1522 regs[x + 1] |= STOP_RING << 16;
1523 valid = false;
1524 }
1525
1526 WARN_ONCE(!valid, "Invalid lrc state found %s submission\n", when);
1527 }
1528
1529 /*
1530 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1531 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1532 * but there is a slight complication as this is applied in WA batch where the
1533 * values are only initialized once so we cannot take register value at the
1534 * beginning and reuse it further; hence we save its value to memory, upload a
1535 * constant value with bit21 set and then we restore it back with the saved value.
1536 * To simplify the WA, a constant value is formed by using the default value
1537 * of this register. This shouldn't be a problem because we are only modifying
1538 * it for a short period and this batch in non-premptible. We can ofcourse
1539 * use additional instructions that read the actual value of the register
1540 * at that time and set our bit of interest but it makes the WA complicated.
1541 *
1542 * This WA is also required for Gen9 so extracting as a function avoids
1543 * code duplication.
1544 */
1545 static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs * engine,u32 * batch)1546 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1547 {
1548 /* NB no one else is allowed to scribble over scratch + 256! */
1549 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1550 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1551 *batch++ = intel_gt_scratch_offset(engine->gt,
1552 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1553 *batch++ = 0;
1554
1555 *batch++ = MI_LOAD_REGISTER_IMM(1);
1556 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1557 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1558
1559 batch = gen8_emit_pipe_control(batch,
1560 PIPE_CONTROL_CS_STALL |
1561 PIPE_CONTROL_DC_FLUSH_ENABLE,
1562 0);
1563
1564 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1565 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1566 *batch++ = intel_gt_scratch_offset(engine->gt,
1567 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1568 *batch++ = 0;
1569
1570 return batch;
1571 }
1572
1573 /*
1574 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1575 * initialized at the beginning and shared across all contexts but this field
1576 * helps us to have multiple batches at different offsets and select them based
1577 * on a criteria. At the moment this batch always start at the beginning of the page
1578 * and at this point we don't have multiple wa_ctx batch buffers.
1579 *
1580 * The number of WA applied are not known at the beginning; we use this field
1581 * to return the no of DWORDS written.
1582 *
1583 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1584 * so it adds NOOPs as padding to make it cacheline aligned.
1585 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1586 * makes a complete batch buffer.
1587 */
gen8_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)1588 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1589 {
1590 /* WaDisableCtxRestoreArbitration:bdw,chv */
1591 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1592
1593 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1594 if (IS_BROADWELL(engine->i915))
1595 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1596
1597 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1598 /* Actual scratch location is at 128 bytes offset */
1599 batch = gen8_emit_pipe_control(batch,
1600 PIPE_CONTROL_FLUSH_L3 |
1601 PIPE_CONTROL_STORE_DATA_INDEX |
1602 PIPE_CONTROL_CS_STALL |
1603 PIPE_CONTROL_QW_WRITE,
1604 LRC_PPHWSP_SCRATCH_ADDR);
1605
1606 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1607
1608 /* Pad to end of cacheline */
1609 while ((unsigned long)batch % CACHELINE_BYTES)
1610 *batch++ = MI_NOOP;
1611
1612 /*
1613 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1614 * execution depends on the length specified in terms of cache lines
1615 * in the register CTX_RCS_INDIRECT_CTX
1616 */
1617
1618 return batch;
1619 }
1620
1621 struct lri {
1622 i915_reg_t reg;
1623 u32 value;
1624 };
1625
emit_lri(u32 * batch,const struct lri * lri,unsigned int count)1626 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1627 {
1628 GEM_BUG_ON(!count || count > 63);
1629
1630 *batch++ = MI_LOAD_REGISTER_IMM(count);
1631 do {
1632 *batch++ = i915_mmio_reg_offset(lri->reg);
1633 *batch++ = lri->value;
1634 } while (lri++, --count);
1635 *batch++ = MI_NOOP;
1636
1637 return batch;
1638 }
1639
gen9_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)1640 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1641 {
1642 static const struct lri lri[] = {
1643 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1644 {
1645 COMMON_SLICE_CHICKEN2,
1646 __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1647 0),
1648 },
1649
1650 /* BSpec: 11391 */
1651 {
1652 FF_SLICE_CHICKEN,
1653 __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1654 FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1655 },
1656
1657 /* BSpec: 11299 */
1658 {
1659 _3D_CHICKEN3,
1660 __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1661 _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1662 }
1663 };
1664
1665 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1666
1667 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1668 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1669
1670 /* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
1671 batch = gen8_emit_pipe_control(batch,
1672 PIPE_CONTROL_FLUSH_L3 |
1673 PIPE_CONTROL_STORE_DATA_INDEX |
1674 PIPE_CONTROL_CS_STALL |
1675 PIPE_CONTROL_QW_WRITE,
1676 LRC_PPHWSP_SCRATCH_ADDR);
1677
1678 batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1679
1680 /* WaMediaPoolStateCmdInWABB:bxt,glk */
1681 if (HAS_POOLED_EU(engine->i915)) {
1682 /*
1683 * EU pool configuration is setup along with golden context
1684 * during context initialization. This value depends on
1685 * device type (2x6 or 3x6) and needs to be updated based
1686 * on which subslice is disabled especially for 2x6
1687 * devices, however it is safe to load default
1688 * configuration of 3x6 device instead of masking off
1689 * corresponding bits because HW ignores bits of a disabled
1690 * subslice and drops down to appropriate config. Please
1691 * see render_state_setup() in i915_gem_render_state.c for
1692 * possible configurations, to avoid duplication they are
1693 * not shown here again.
1694 */
1695 *batch++ = GEN9_MEDIA_POOL_STATE;
1696 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1697 *batch++ = 0x00777000;
1698 *batch++ = 0;
1699 *batch++ = 0;
1700 *batch++ = 0;
1701 }
1702
1703 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1704
1705 /* Pad to end of cacheline */
1706 while ((unsigned long)batch % CACHELINE_BYTES)
1707 *batch++ = MI_NOOP;
1708
1709 return batch;
1710 }
1711
1712 #define CTX_WA_BB_SIZE (PAGE_SIZE)
1713
lrc_create_wa_ctx(struct intel_engine_cs * engine)1714 static int lrc_create_wa_ctx(struct intel_engine_cs *engine)
1715 {
1716 struct drm_i915_gem_object *obj;
1717 struct i915_vma *vma;
1718 int err;
1719
1720 obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_SIZE);
1721 if (IS_ERR(obj))
1722 return PTR_ERR(obj);
1723
1724 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1725 if (IS_ERR(vma)) {
1726 err = PTR_ERR(vma);
1727 goto err;
1728 }
1729
1730 engine->wa_ctx.vma = vma;
1731 return 0;
1732
1733 err:
1734 i915_gem_object_put(obj);
1735 return err;
1736 }
1737
lrc_fini_wa_ctx(struct intel_engine_cs * engine)1738 void lrc_fini_wa_ctx(struct intel_engine_cs *engine)
1739 {
1740 i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1741 }
1742
1743 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1744
lrc_init_wa_ctx(struct intel_engine_cs * engine)1745 void lrc_init_wa_ctx(struct intel_engine_cs *engine)
1746 {
1747 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1748 struct i915_wa_ctx_bb *wa_bb[] = {
1749 &wa_ctx->indirect_ctx, &wa_ctx->per_ctx
1750 };
1751 wa_bb_func_t wa_bb_fn[ARRAY_SIZE(wa_bb)];
1752 struct i915_gem_ww_ctx ww;
1753 void *batch, *batch_ptr;
1754 unsigned int i;
1755 int err;
1756
1757 if (GRAPHICS_VER(engine->i915) >= 11 ||
1758 !(engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
1759 return;
1760
1761 if (GRAPHICS_VER(engine->i915) == 9) {
1762 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1763 wa_bb_fn[1] = NULL;
1764 } else if (GRAPHICS_VER(engine->i915) == 8) {
1765 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1766 wa_bb_fn[1] = NULL;
1767 }
1768
1769 err = lrc_create_wa_ctx(engine);
1770 if (err) {
1771 /*
1772 * We continue even if we fail to initialize WA batch
1773 * because we only expect rare glitches but nothing
1774 * critical to prevent us from using GPU
1775 */
1776 drm_err(&engine->i915->drm,
1777 "Ignoring context switch w/a allocation error:%d\n",
1778 err);
1779 return;
1780 }
1781
1782 if (!engine->wa_ctx.vma)
1783 return;
1784
1785 i915_gem_ww_ctx_init(&ww, true);
1786 retry:
1787 err = i915_gem_object_lock(wa_ctx->vma->obj, &ww);
1788 if (!err)
1789 err = i915_ggtt_pin(wa_ctx->vma, &ww, 0, PIN_HIGH);
1790 if (err)
1791 goto err;
1792
1793 batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB);
1794 if (IS_ERR(batch)) {
1795 err = PTR_ERR(batch);
1796 goto err_unpin;
1797 }
1798
1799 /*
1800 * Emit the two workaround batch buffers, recording the offset from the
1801 * start of the workaround batch buffer object for each and their
1802 * respective sizes.
1803 */
1804 batch_ptr = batch;
1805 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1806 wa_bb[i]->offset = batch_ptr - batch;
1807 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1808 CACHELINE_BYTES))) {
1809 err = -EINVAL;
1810 break;
1811 }
1812 if (wa_bb_fn[i])
1813 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1814 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1815 }
1816 GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_SIZE);
1817
1818 __i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch);
1819 __i915_gem_object_release_map(wa_ctx->vma->obj);
1820
1821 /* Verify that we can handle failure to setup the wa_ctx */
1822 if (!err)
1823 err = i915_inject_probe_error(engine->i915, -ENODEV);
1824
1825 err_unpin:
1826 if (err)
1827 i915_vma_unpin(wa_ctx->vma);
1828 err:
1829 if (err == -EDEADLK) {
1830 err = i915_gem_ww_ctx_backoff(&ww);
1831 if (!err)
1832 goto retry;
1833 }
1834 i915_gem_ww_ctx_fini(&ww);
1835
1836 if (err) {
1837 i915_vma_put(engine->wa_ctx.vma);
1838
1839 /* Clear all flags to prevent further use */
1840 memset(wa_ctx, 0, sizeof(*wa_ctx));
1841 }
1842 }
1843
st_runtime_underflow(struct intel_context_stats * stats,s32 dt)1844 static void st_runtime_underflow(struct intel_context_stats *stats, s32 dt)
1845 {
1846 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1847 stats->runtime.num_underflow++;
1848 stats->runtime.max_underflow =
1849 max_t(u32, stats->runtime.max_underflow, -dt);
1850 #endif
1851 }
1852
lrc_get_runtime(const struct intel_context * ce)1853 static u32 lrc_get_runtime(const struct intel_context *ce)
1854 {
1855 /*
1856 * We can use either ppHWSP[16] which is recorded before the context
1857 * switch (and so excludes the cost of context switches) or use the
1858 * value from the context image itself, which is saved/restored earlier
1859 * and so includes the cost of the save.
1860 */
1861 return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
1862 }
1863
lrc_update_runtime(struct intel_context * ce)1864 void lrc_update_runtime(struct intel_context *ce)
1865 {
1866 struct intel_context_stats *stats = &ce->stats;
1867 u32 old;
1868 s32 dt;
1869
1870 old = stats->runtime.last;
1871 stats->runtime.last = lrc_get_runtime(ce);
1872 dt = stats->runtime.last - old;
1873 if (!dt)
1874 return;
1875
1876 if (unlikely(dt < 0)) {
1877 CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
1878 old, stats->runtime.last, dt);
1879 st_runtime_underflow(stats, dt);
1880 return;
1881 }
1882
1883 ewma_runtime_add(&stats->runtime.avg, dt);
1884 stats->runtime.total += dt;
1885 }
1886
1887 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1888 #include "selftest_lrc.c"
1889 #endif
1890