1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Renesas RIIC driver
4 *
5 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com>
6 * Copyright (C) 2013 Renesas Solutions Corp.
7 */
8
9 /*
10 * This i2c core has a lot of interrupts, namely 8. We use their chaining as
11 * some kind of state machine.
12 *
13 * 1) The main xfer routine kicks off a transmission by putting the start bit
14 * (or repeated start) on the bus and enabling the transmit interrupt (TIE)
15 * since we need to send the slave address + RW bit in every case.
16 *
17 * 2) TIE sends slave address + RW bit and selects how to continue.
18 *
19 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we
20 * are done, we switch over to the transmission done interrupt (TEIE) and mark
21 * the message as completed (includes sending STOP) there.
22 *
23 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is
24 * needed to start clocking, then we keep receiving until we are done. Note
25 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by
26 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a
27 * message to create the final NACK as sketched in the datasheet. This caused
28 * some subtle races (when byte n was processed and byte n+1 was already
29 * waiting), though, and I started with the safe approach.
30 *
31 * 4) If we got a NACK somewhere, we flag the error and stop the transmission
32 * via NAKIE.
33 *
34 * Also check the comments in the interrupt routines for some gory details.
35 */
36
37 #include <linux/clk.h>
38 #include <linux/completion.h>
39 #include <linux/err.h>
40 #include <linux/i2c.h>
41 #include <linux/interrupt.h>
42 #include <linux/io.h>
43 #include <linux/module.h>
44 #include <linux/of.h>
45 #include <linux/platform_device.h>
46 #include <linux/pm_runtime.h>
47 #include <linux/reset.h>
48
49 #define RIIC_ICCR1 0x00
50 #define RIIC_ICCR2 0x04
51 #define RIIC_ICMR1 0x08
52 #define RIIC_ICMR3 0x10
53 #define RIIC_ICSER 0x18
54 #define RIIC_ICIER 0x1c
55 #define RIIC_ICSR2 0x24
56 #define RIIC_ICBRL 0x34
57 #define RIIC_ICBRH 0x38
58 #define RIIC_ICDRT 0x3c
59 #define RIIC_ICDRR 0x40
60
61 #define ICCR1_ICE 0x80
62 #define ICCR1_IICRST 0x40
63 #define ICCR1_SOWP 0x10
64
65 #define ICCR2_BBSY 0x80
66 #define ICCR2_SP 0x08
67 #define ICCR2_RS 0x04
68 #define ICCR2_ST 0x02
69
70 #define ICMR1_CKS_MASK 0x70
71 #define ICMR1_BCWP 0x08
72 #define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP)
73
74 #define ICMR3_RDRFS 0x20
75 #define ICMR3_ACKWP 0x10
76 #define ICMR3_ACKBT 0x08
77
78 #define ICIER_TIE 0x80
79 #define ICIER_TEIE 0x40
80 #define ICIER_RIE 0x20
81 #define ICIER_NAKIE 0x10
82 #define ICIER_SPIE 0x08
83
84 #define ICSR2_NACKF 0x10
85
86 #define ICBR_RESERVED 0xe0 /* Should be 1 on writes */
87
88 #define RIIC_INIT_MSG -1
89
90 struct riic_dev {
91 void __iomem *base;
92 u8 *buf;
93 struct i2c_msg *msg;
94 int bytes_left;
95 int err;
96 int is_last;
97 struct completion msg_done;
98 struct i2c_adapter adapter;
99 struct clk *clk;
100 };
101
102 struct riic_irq_desc {
103 int res_num;
104 irq_handler_t isr;
105 char *name;
106 };
107
riic_clear_set_bit(struct riic_dev * riic,u8 clear,u8 set,u8 reg)108 static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg)
109 {
110 writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg);
111 }
112
riic_xfer(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)113 static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
114 {
115 struct riic_dev *riic = i2c_get_adapdata(adap);
116 unsigned long time_left;
117 int i;
118 u8 start_bit;
119
120 pm_runtime_get_sync(adap->dev.parent);
121
122 if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) {
123 riic->err = -EBUSY;
124 goto out;
125 }
126
127 reinit_completion(&riic->msg_done);
128 riic->err = 0;
129
130 writeb(0, riic->base + RIIC_ICSR2);
131
132 for (i = 0, start_bit = ICCR2_ST; i < num; i++) {
133 riic->bytes_left = RIIC_INIT_MSG;
134 riic->buf = msgs[i].buf;
135 riic->msg = &msgs[i];
136 riic->is_last = (i == num - 1);
137
138 writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER);
139
140 writeb(start_bit, riic->base + RIIC_ICCR2);
141
142 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout);
143 if (time_left == 0)
144 riic->err = -ETIMEDOUT;
145
146 if (riic->err)
147 break;
148
149 start_bit = ICCR2_RS;
150 }
151
152 out:
153 pm_runtime_put(adap->dev.parent);
154
155 return riic->err ?: num;
156 }
157
riic_tdre_isr(int irq,void * data)158 static irqreturn_t riic_tdre_isr(int irq, void *data)
159 {
160 struct riic_dev *riic = data;
161 u8 val;
162
163 if (!riic->bytes_left)
164 return IRQ_NONE;
165
166 if (riic->bytes_left == RIIC_INIT_MSG) {
167 if (riic->msg->flags & I2C_M_RD)
168 /* On read, switch over to receive interrupt */
169 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER);
170 else
171 /* On write, initialize length */
172 riic->bytes_left = riic->msg->len;
173
174 val = i2c_8bit_addr_from_msg(riic->msg);
175 } else {
176 val = *riic->buf;
177 riic->buf++;
178 riic->bytes_left--;
179 }
180
181 /*
182 * Switch to transmission ended interrupt when done. Do check here
183 * after bytes_left was initialized to support SMBUS_QUICK (new msg has
184 * 0 length then)
185 */
186 if (riic->bytes_left == 0)
187 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER);
188
189 /*
190 * This acks the TIE interrupt. We get another TIE immediately if our
191 * value could be moved to the shadow shift register right away. So
192 * this must be after updates to ICIER (where we want to disable TIE)!
193 */
194 writeb(val, riic->base + RIIC_ICDRT);
195
196 return IRQ_HANDLED;
197 }
198
riic_tend_isr(int irq,void * data)199 static irqreturn_t riic_tend_isr(int irq, void *data)
200 {
201 struct riic_dev *riic = data;
202
203 if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) {
204 /* We got a NACKIE */
205 readb(riic->base + RIIC_ICDRR); /* dummy read */
206 riic_clear_set_bit(riic, ICSR2_NACKF, 0, RIIC_ICSR2);
207 riic->err = -ENXIO;
208 } else if (riic->bytes_left) {
209 return IRQ_NONE;
210 }
211
212 if (riic->is_last || riic->err) {
213 riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER);
214 writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
215 } else {
216 /* Transfer is complete, but do not send STOP */
217 riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER);
218 complete(&riic->msg_done);
219 }
220
221 return IRQ_HANDLED;
222 }
223
riic_rdrf_isr(int irq,void * data)224 static irqreturn_t riic_rdrf_isr(int irq, void *data)
225 {
226 struct riic_dev *riic = data;
227
228 if (!riic->bytes_left)
229 return IRQ_NONE;
230
231 if (riic->bytes_left == RIIC_INIT_MSG) {
232 riic->bytes_left = riic->msg->len;
233 readb(riic->base + RIIC_ICDRR); /* dummy read */
234 return IRQ_HANDLED;
235 }
236
237 if (riic->bytes_left == 1) {
238 /* STOP must come before we set ACKBT! */
239 if (riic->is_last) {
240 riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER);
241 writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
242 }
243
244 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3);
245
246 } else {
247 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3);
248 }
249
250 /* Reading acks the RIE interrupt */
251 *riic->buf = readb(riic->base + RIIC_ICDRR);
252 riic->buf++;
253 riic->bytes_left--;
254
255 return IRQ_HANDLED;
256 }
257
riic_stop_isr(int irq,void * data)258 static irqreturn_t riic_stop_isr(int irq, void *data)
259 {
260 struct riic_dev *riic = data;
261
262 /* read back registers to confirm writes have fully propagated */
263 writeb(0, riic->base + RIIC_ICSR2);
264 readb(riic->base + RIIC_ICSR2);
265 writeb(0, riic->base + RIIC_ICIER);
266 readb(riic->base + RIIC_ICIER);
267
268 complete(&riic->msg_done);
269
270 return IRQ_HANDLED;
271 }
272
riic_func(struct i2c_adapter * adap)273 static u32 riic_func(struct i2c_adapter *adap)
274 {
275 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
276 }
277
278 static const struct i2c_algorithm riic_algo = {
279 .master_xfer = riic_xfer,
280 .functionality = riic_func,
281 };
282
riic_init_hw(struct riic_dev * riic,struct i2c_timings * t)283 static int riic_init_hw(struct riic_dev *riic, struct i2c_timings *t)
284 {
285 int ret = 0;
286 unsigned long rate;
287 int total_ticks, cks, brl, brh;
288
289 pm_runtime_get_sync(riic->adapter.dev.parent);
290
291 if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ) {
292 dev_err(&riic->adapter.dev,
293 "unsupported bus speed (%dHz). %d max\n",
294 t->bus_freq_hz, I2C_MAX_FAST_MODE_FREQ);
295 ret = -EINVAL;
296 goto out;
297 }
298
299 rate = clk_get_rate(riic->clk);
300
301 /*
302 * Assume the default register settings:
303 * FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles)
304 * FER.NFE = 1 (noise circuit enabled)
305 * MR3.NF = 0 (1 cycle of noise filtered out)
306 *
307 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1)
308 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1)
309 */
310
311 /*
312 * Determine reference clock rate. We must be able to get the desired
313 * frequency with only 62 clock ticks max (31 high, 31 low).
314 * Aim for a duty of 60% LOW, 40% HIGH.
315 */
316 total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz ?: 1);
317
318 for (cks = 0; cks < 7; cks++) {
319 /*
320 * 60% low time must be less than BRL + 2 + 1
321 * BRL max register value is 0x1F.
322 */
323 brl = ((total_ticks * 6) / 10);
324 if (brl <= (0x1F + 3))
325 break;
326
327 total_ticks /= 2;
328 rate /= 2;
329 }
330
331 if (brl > (0x1F + 3)) {
332 dev_err(&riic->adapter.dev, "invalid speed (%lu). Too slow.\n",
333 (unsigned long)t->bus_freq_hz);
334 ret = -EINVAL;
335 goto out;
336 }
337
338 brh = total_ticks - brl;
339
340 /* Remove automatic clock ticks for sync circuit and NF */
341 if (cks == 0) {
342 brl -= 4;
343 brh -= 4;
344 } else {
345 brl -= 3;
346 brh -= 3;
347 }
348
349 /*
350 * Remove clock ticks for rise and fall times. Convert ns to clock
351 * ticks.
352 */
353 brl -= t->scl_fall_ns / (1000000000 / rate);
354 brh -= t->scl_rise_ns / (1000000000 / rate);
355
356 /* Adjust for min register values for when SCLE=1 and NFE=1 */
357 if (brl < 1)
358 brl = 1;
359 if (brh < 1)
360 brh = 1;
361
362 pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n",
363 rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6),
364 t->scl_fall_ns / (1000000000 / rate),
365 t->scl_rise_ns / (1000000000 / rate), cks, brl, brh);
366
367 /* Changing the order of accessing IICRST and ICE may break things! */
368 writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1);
369 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1);
370
371 writeb(ICMR1_CKS(cks), riic->base + RIIC_ICMR1);
372 writeb(brh | ICBR_RESERVED, riic->base + RIIC_ICBRH);
373 writeb(brl | ICBR_RESERVED, riic->base + RIIC_ICBRL);
374
375 writeb(0, riic->base + RIIC_ICSER);
376 writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3);
377
378 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1);
379
380 out:
381 pm_runtime_put(riic->adapter.dev.parent);
382 return ret;
383 }
384
385 static struct riic_irq_desc riic_irqs[] = {
386 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" },
387 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" },
388 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" },
389 { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" },
390 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" },
391 };
392
riic_reset_control_assert(void * data)393 static void riic_reset_control_assert(void *data)
394 {
395 reset_control_assert(data);
396 }
397
riic_i2c_probe(struct platform_device * pdev)398 static int riic_i2c_probe(struct platform_device *pdev)
399 {
400 struct riic_dev *riic;
401 struct i2c_adapter *adap;
402 struct i2c_timings i2c_t;
403 struct reset_control *rstc;
404 int i, ret;
405
406 riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL);
407 if (!riic)
408 return -ENOMEM;
409
410 riic->base = devm_platform_ioremap_resource(pdev, 0);
411 if (IS_ERR(riic->base))
412 return PTR_ERR(riic->base);
413
414 riic->clk = devm_clk_get(&pdev->dev, NULL);
415 if (IS_ERR(riic->clk)) {
416 dev_err(&pdev->dev, "missing controller clock");
417 return PTR_ERR(riic->clk);
418 }
419
420 rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
421 if (IS_ERR(rstc))
422 return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
423 "Error: missing reset ctrl\n");
424
425 ret = reset_control_deassert(rstc);
426 if (ret)
427 return ret;
428
429 ret = devm_add_action_or_reset(&pdev->dev, riic_reset_control_assert, rstc);
430 if (ret)
431 return ret;
432
433 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) {
434 ret = platform_get_irq(pdev, riic_irqs[i].res_num);
435 if (ret < 0)
436 return ret;
437
438 ret = devm_request_irq(&pdev->dev, ret, riic_irqs[i].isr,
439 0, riic_irqs[i].name, riic);
440 if (ret) {
441 dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name);
442 return ret;
443 }
444 }
445
446 adap = &riic->adapter;
447 i2c_set_adapdata(adap, riic);
448 strscpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name));
449 adap->owner = THIS_MODULE;
450 adap->algo = &riic_algo;
451 adap->dev.parent = &pdev->dev;
452 adap->dev.of_node = pdev->dev.of_node;
453
454 init_completion(&riic->msg_done);
455
456 i2c_parse_fw_timings(&pdev->dev, &i2c_t, true);
457
458 pm_runtime_enable(&pdev->dev);
459
460 ret = riic_init_hw(riic, &i2c_t);
461 if (ret)
462 goto out;
463
464 ret = i2c_add_adapter(adap);
465 if (ret)
466 goto out;
467
468 platform_set_drvdata(pdev, riic);
469
470 dev_info(&pdev->dev, "registered with %dHz bus speed\n",
471 i2c_t.bus_freq_hz);
472 return 0;
473
474 out:
475 pm_runtime_disable(&pdev->dev);
476 return ret;
477 }
478
riic_i2c_remove(struct platform_device * pdev)479 static void riic_i2c_remove(struct platform_device *pdev)
480 {
481 struct riic_dev *riic = platform_get_drvdata(pdev);
482
483 pm_runtime_get_sync(&pdev->dev);
484 writeb(0, riic->base + RIIC_ICIER);
485 pm_runtime_put(&pdev->dev);
486 i2c_del_adapter(&riic->adapter);
487 pm_runtime_disable(&pdev->dev);
488 }
489
490 static const struct of_device_id riic_i2c_dt_ids[] = {
491 { .compatible = "renesas,riic-rz", },
492 { /* Sentinel */ },
493 };
494
495 static struct platform_driver riic_i2c_driver = {
496 .probe = riic_i2c_probe,
497 .remove_new = riic_i2c_remove,
498 .driver = {
499 .name = "i2c-riic",
500 .of_match_table = riic_i2c_dt_ids,
501 },
502 };
503
504 module_platform_driver(riic_i2c_driver);
505
506 MODULE_DESCRIPTION("Renesas RIIC adapter");
507 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>");
508 MODULE_LICENSE("GPL v2");
509 MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids);
510