1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * MPU3050 gyroscope driver
4 *
5 * Copyright (C) 2016 Linaro Ltd.
6 * Author: Linus Walleij <linus.walleij@linaro.org>
7 *
8 * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
9 * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
10 * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
11 * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
12 *
13 * TODO: add support for setting up the low pass 3dB frequency.
14 */
15
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/iio/buffer.h>
21 #include <linux/iio/iio.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger.h>
24 #include <linux/iio/trigger_consumer.h>
25 #include <linux/iio/triggered_buffer.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/property.h>
30 #include <linux/random.h>
31 #include <linux/slab.h>
32
33 #include "mpu3050.h"
34
35 #define MPU3050_CHIP_ID 0x68
36 #define MPU3050_CHIP_ID_MASK 0x7E
37
38 /*
39 * Register map: anything suffixed *_H is a big-endian high byte and always
40 * followed by the corresponding low byte (*_L) even though these are not
41 * explicitly included in the register definitions.
42 */
43 #define MPU3050_CHIP_ID_REG 0x00
44 #define MPU3050_PRODUCT_ID_REG 0x01
45 #define MPU3050_XG_OFFS_TC 0x05
46 #define MPU3050_YG_OFFS_TC 0x08
47 #define MPU3050_ZG_OFFS_TC 0x0B
48 #define MPU3050_X_OFFS_USR_H 0x0C
49 #define MPU3050_Y_OFFS_USR_H 0x0E
50 #define MPU3050_Z_OFFS_USR_H 0x10
51 #define MPU3050_FIFO_EN 0x12
52 #define MPU3050_AUX_VDDIO 0x13
53 #define MPU3050_SLV_ADDR 0x14
54 #define MPU3050_SMPLRT_DIV 0x15
55 #define MPU3050_DLPF_FS_SYNC 0x16
56 #define MPU3050_INT_CFG 0x17
57 #define MPU3050_AUX_ADDR 0x18
58 #define MPU3050_INT_STATUS 0x1A
59 #define MPU3050_TEMP_H 0x1B
60 #define MPU3050_XOUT_H 0x1D
61 #define MPU3050_YOUT_H 0x1F
62 #define MPU3050_ZOUT_H 0x21
63 #define MPU3050_DMP_CFG1 0x35
64 #define MPU3050_DMP_CFG2 0x36
65 #define MPU3050_BANK_SEL 0x37
66 #define MPU3050_MEM_START_ADDR 0x38
67 #define MPU3050_MEM_R_W 0x39
68 #define MPU3050_FIFO_COUNT_H 0x3A
69 #define MPU3050_FIFO_R 0x3C
70 #define MPU3050_USR_CTRL 0x3D
71 #define MPU3050_PWR_MGM 0x3E
72
73 /* MPU memory bank read options */
74 #define MPU3050_MEM_PRFTCH BIT(5)
75 #define MPU3050_MEM_USER_BANK BIT(4)
76 /* Bits 8-11 select memory bank */
77 #define MPU3050_MEM_RAM_BANK_0 0
78 #define MPU3050_MEM_RAM_BANK_1 1
79 #define MPU3050_MEM_RAM_BANK_2 2
80 #define MPU3050_MEM_RAM_BANK_3 3
81 #define MPU3050_MEM_OTP_BANK_0 4
82
83 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
84
85 /* Register bits */
86
87 /* FIFO Enable */
88 #define MPU3050_FIFO_EN_FOOTER BIT(0)
89 #define MPU3050_FIFO_EN_AUX_ZOUT BIT(1)
90 #define MPU3050_FIFO_EN_AUX_YOUT BIT(2)
91 #define MPU3050_FIFO_EN_AUX_XOUT BIT(3)
92 #define MPU3050_FIFO_EN_GYRO_ZOUT BIT(4)
93 #define MPU3050_FIFO_EN_GYRO_YOUT BIT(5)
94 #define MPU3050_FIFO_EN_GYRO_XOUT BIT(6)
95 #define MPU3050_FIFO_EN_TEMP_OUT BIT(7)
96
97 /*
98 * Digital Low Pass filter (DLPF)
99 * Full Scale (FS)
100 * and Synchronization
101 */
102 #define MPU3050_EXT_SYNC_NONE 0x00
103 #define MPU3050_EXT_SYNC_TEMP 0x20
104 #define MPU3050_EXT_SYNC_GYROX 0x40
105 #define MPU3050_EXT_SYNC_GYROY 0x60
106 #define MPU3050_EXT_SYNC_GYROZ 0x80
107 #define MPU3050_EXT_SYNC_ACCELX 0xA0
108 #define MPU3050_EXT_SYNC_ACCELY 0xC0
109 #define MPU3050_EXT_SYNC_ACCELZ 0xE0
110 #define MPU3050_EXT_SYNC_MASK 0xE0
111 #define MPU3050_EXT_SYNC_SHIFT 5
112
113 #define MPU3050_FS_250DPS 0x00
114 #define MPU3050_FS_500DPS 0x08
115 #define MPU3050_FS_1000DPS 0x10
116 #define MPU3050_FS_2000DPS 0x18
117 #define MPU3050_FS_MASK 0x18
118 #define MPU3050_FS_SHIFT 3
119
120 #define MPU3050_DLPF_CFG_256HZ_NOLPF2 0x00
121 #define MPU3050_DLPF_CFG_188HZ 0x01
122 #define MPU3050_DLPF_CFG_98HZ 0x02
123 #define MPU3050_DLPF_CFG_42HZ 0x03
124 #define MPU3050_DLPF_CFG_20HZ 0x04
125 #define MPU3050_DLPF_CFG_10HZ 0x05
126 #define MPU3050_DLPF_CFG_5HZ 0x06
127 #define MPU3050_DLPF_CFG_2100HZ_NOLPF 0x07
128 #define MPU3050_DLPF_CFG_MASK 0x07
129 #define MPU3050_DLPF_CFG_SHIFT 0
130
131 /* Interrupt config */
132 #define MPU3050_INT_RAW_RDY_EN BIT(0)
133 #define MPU3050_INT_DMP_DONE_EN BIT(1)
134 #define MPU3050_INT_MPU_RDY_EN BIT(2)
135 #define MPU3050_INT_ANYRD_2CLEAR BIT(4)
136 #define MPU3050_INT_LATCH_EN BIT(5)
137 #define MPU3050_INT_OPEN BIT(6)
138 #define MPU3050_INT_ACTL BIT(7)
139 /* Interrupt status */
140 #define MPU3050_INT_STATUS_RAW_RDY BIT(0)
141 #define MPU3050_INT_STATUS_DMP_DONE BIT(1)
142 #define MPU3050_INT_STATUS_MPU_RDY BIT(2)
143 #define MPU3050_INT_STATUS_FIFO_OVFLW BIT(7)
144 /* USR_CTRL */
145 #define MPU3050_USR_CTRL_FIFO_EN BIT(6)
146 #define MPU3050_USR_CTRL_AUX_IF_EN BIT(5)
147 #define MPU3050_USR_CTRL_AUX_IF_RST BIT(3)
148 #define MPU3050_USR_CTRL_FIFO_RST BIT(1)
149 #define MPU3050_USR_CTRL_GYRO_RST BIT(0)
150 /* PWR_MGM */
151 #define MPU3050_PWR_MGM_PLL_X 0x01
152 #define MPU3050_PWR_MGM_PLL_Y 0x02
153 #define MPU3050_PWR_MGM_PLL_Z 0x03
154 #define MPU3050_PWR_MGM_CLKSEL_MASK 0x07
155 #define MPU3050_PWR_MGM_STBY_ZG BIT(3)
156 #define MPU3050_PWR_MGM_STBY_YG BIT(4)
157 #define MPU3050_PWR_MGM_STBY_XG BIT(5)
158 #define MPU3050_PWR_MGM_SLEEP BIT(6)
159 #define MPU3050_PWR_MGM_RESET BIT(7)
160 #define MPU3050_PWR_MGM_MASK 0xff
161
162 /*
163 * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
164 * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
165 * in two's complement.
166 */
167 static unsigned int mpu3050_fs_precision[] = {
168 IIO_DEGREE_TO_RAD(250),
169 IIO_DEGREE_TO_RAD(500),
170 IIO_DEGREE_TO_RAD(1000),
171 IIO_DEGREE_TO_RAD(2000)
172 };
173
174 /*
175 * Regulator names
176 */
177 static const char mpu3050_reg_vdd[] = "vdd";
178 static const char mpu3050_reg_vlogic[] = "vlogic";
179
mpu3050_get_freq(struct mpu3050 * mpu3050)180 static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
181 {
182 unsigned int freq;
183
184 if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
185 freq = 8000;
186 else
187 freq = 1000;
188 freq /= (mpu3050->divisor + 1);
189
190 return freq;
191 }
192
mpu3050_start_sampling(struct mpu3050 * mpu3050)193 static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
194 {
195 __be16 raw_val[3];
196 int ret;
197 int i;
198
199 /* Reset */
200 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
201 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
202 if (ret)
203 return ret;
204
205 /* Turn on the Z-axis PLL */
206 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
207 MPU3050_PWR_MGM_CLKSEL_MASK,
208 MPU3050_PWR_MGM_PLL_Z);
209 if (ret)
210 return ret;
211
212 /* Write calibration offset registers */
213 for (i = 0; i < 3; i++)
214 raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
215
216 ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
217 sizeof(raw_val));
218 if (ret)
219 return ret;
220
221 /* Set low pass filter (sample rate), sync and full scale */
222 ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
223 MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
224 mpu3050->fullscale << MPU3050_FS_SHIFT |
225 mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
226 if (ret)
227 return ret;
228
229 /* Set up sampling frequency */
230 ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
231 if (ret)
232 return ret;
233
234 /*
235 * Max 50 ms start-up time after setting DLPF_FS_SYNC
236 * according to the data sheet, then wait for the next sample
237 * at this frequency T = 1000/f ms.
238 */
239 msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
240
241 return 0;
242 }
243
mpu3050_set_8khz_samplerate(struct mpu3050 * mpu3050)244 static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
245 {
246 int ret;
247 u8 divisor;
248 enum mpu3050_lpf lpf;
249
250 lpf = mpu3050->lpf;
251 divisor = mpu3050->divisor;
252
253 mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
254 mpu3050->divisor = 0; /* Divide by 1 */
255 ret = mpu3050_start_sampling(mpu3050);
256
257 mpu3050->lpf = lpf;
258 mpu3050->divisor = divisor;
259
260 return ret;
261 }
262
mpu3050_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)263 static int mpu3050_read_raw(struct iio_dev *indio_dev,
264 struct iio_chan_spec const *chan,
265 int *val, int *val2,
266 long mask)
267 {
268 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
269 int ret;
270 __be16 raw_val;
271
272 switch (mask) {
273 case IIO_CHAN_INFO_OFFSET:
274 switch (chan->type) {
275 case IIO_TEMP:
276 /*
277 * The temperature scaling is (x+23000)/280 Celsius
278 * for the "best fit straight line" temperature range
279 * of -30C..85C. The 23000 includes room temperature
280 * offset of +35C, 280 is the precision scale and x is
281 * the 16-bit signed integer reported by hardware.
282 *
283 * Temperature value itself represents temperature of
284 * the sensor die.
285 */
286 *val = 23000;
287 return IIO_VAL_INT;
288 default:
289 return -EINVAL;
290 }
291 case IIO_CHAN_INFO_CALIBBIAS:
292 switch (chan->type) {
293 case IIO_ANGL_VEL:
294 *val = mpu3050->calibration[chan->scan_index-1];
295 return IIO_VAL_INT;
296 default:
297 return -EINVAL;
298 }
299 case IIO_CHAN_INFO_SAMP_FREQ:
300 *val = mpu3050_get_freq(mpu3050);
301 return IIO_VAL_INT;
302 case IIO_CHAN_INFO_SCALE:
303 switch (chan->type) {
304 case IIO_TEMP:
305 /* Millidegrees, see about temperature scaling above */
306 *val = 1000;
307 *val2 = 280;
308 return IIO_VAL_FRACTIONAL;
309 case IIO_ANGL_VEL:
310 /*
311 * Convert to the corresponding full scale in
312 * radians. All 16 bits are used with sign to
313 * span the available scale: to account for the one
314 * missing value if we multiply by 1/S16_MAX, instead
315 * multiply with 2/U16_MAX.
316 */
317 *val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
318 *val2 = U16_MAX;
319 return IIO_VAL_FRACTIONAL;
320 default:
321 return -EINVAL;
322 }
323 case IIO_CHAN_INFO_RAW:
324 /* Resume device */
325 pm_runtime_get_sync(mpu3050->dev);
326 mutex_lock(&mpu3050->lock);
327
328 ret = mpu3050_set_8khz_samplerate(mpu3050);
329 if (ret)
330 goto out_read_raw_unlock;
331
332 switch (chan->type) {
333 case IIO_TEMP:
334 ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
335 &raw_val, sizeof(raw_val));
336 if (ret) {
337 dev_err(mpu3050->dev,
338 "error reading temperature\n");
339 goto out_read_raw_unlock;
340 }
341
342 *val = (s16)be16_to_cpu(raw_val);
343 ret = IIO_VAL_INT;
344
345 goto out_read_raw_unlock;
346 case IIO_ANGL_VEL:
347 ret = regmap_bulk_read(mpu3050->map,
348 MPU3050_AXIS_REGS(chan->scan_index-1),
349 &raw_val,
350 sizeof(raw_val));
351 if (ret) {
352 dev_err(mpu3050->dev,
353 "error reading axis data\n");
354 goto out_read_raw_unlock;
355 }
356
357 *val = be16_to_cpu(raw_val);
358 ret = IIO_VAL_INT;
359
360 goto out_read_raw_unlock;
361 default:
362 ret = -EINVAL;
363 goto out_read_raw_unlock;
364 }
365 default:
366 break;
367 }
368
369 return -EINVAL;
370
371 out_read_raw_unlock:
372 mutex_unlock(&mpu3050->lock);
373 pm_runtime_mark_last_busy(mpu3050->dev);
374 pm_runtime_put_autosuspend(mpu3050->dev);
375
376 return ret;
377 }
378
mpu3050_write_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int val,int val2,long mask)379 static int mpu3050_write_raw(struct iio_dev *indio_dev,
380 const struct iio_chan_spec *chan,
381 int val, int val2, long mask)
382 {
383 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
384 /*
385 * Couldn't figure out a way to precalculate these at compile time.
386 */
387 unsigned int fs250 =
388 DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
389 U16_MAX);
390 unsigned int fs500 =
391 DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
392 U16_MAX);
393 unsigned int fs1000 =
394 DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
395 U16_MAX);
396 unsigned int fs2000 =
397 DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
398 U16_MAX);
399
400 switch (mask) {
401 case IIO_CHAN_INFO_CALIBBIAS:
402 if (chan->type != IIO_ANGL_VEL)
403 return -EINVAL;
404 mpu3050->calibration[chan->scan_index-1] = val;
405 return 0;
406 case IIO_CHAN_INFO_SAMP_FREQ:
407 /*
408 * The max samplerate is 8000 Hz, the minimum
409 * 1000 / 256 ~= 4 Hz
410 */
411 if (val < 4 || val > 8000)
412 return -EINVAL;
413
414 /*
415 * Above 1000 Hz we must turn off the digital low pass filter
416 * so we get a base frequency of 8kHz to the divider
417 */
418 if (val > 1000) {
419 mpu3050->lpf = LPF_256_HZ_NOLPF;
420 mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
421 return 0;
422 }
423
424 mpu3050->lpf = LPF_188_HZ;
425 mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
426 return 0;
427 case IIO_CHAN_INFO_SCALE:
428 if (chan->type != IIO_ANGL_VEL)
429 return -EINVAL;
430 /*
431 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
432 * which means we need to round to the closest radians
433 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
434 * rad/s. The scale is then for the 16 bits used to cover
435 * it 2/(2^16) of that.
436 */
437
438 /* Just too large, set the max range */
439 if (val != 0) {
440 mpu3050->fullscale = FS_2000_DPS;
441 return 0;
442 }
443
444 /*
445 * Now we're dealing with fractions below zero in millirad/s
446 * do some integer interpolation and match with the closest
447 * fullscale in the table.
448 */
449 if (val2 <= fs250 ||
450 val2 < ((fs500 + fs250) / 2))
451 mpu3050->fullscale = FS_250_DPS;
452 else if (val2 <= fs500 ||
453 val2 < ((fs1000 + fs500) / 2))
454 mpu3050->fullscale = FS_500_DPS;
455 else if (val2 <= fs1000 ||
456 val2 < ((fs2000 + fs1000) / 2))
457 mpu3050->fullscale = FS_1000_DPS;
458 else
459 /* Catch-all */
460 mpu3050->fullscale = FS_2000_DPS;
461 return 0;
462 default:
463 break;
464 }
465
466 return -EINVAL;
467 }
468
mpu3050_trigger_handler(int irq,void * p)469 static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
470 {
471 const struct iio_poll_func *pf = p;
472 struct iio_dev *indio_dev = pf->indio_dev;
473 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
474 int ret;
475 struct {
476 __be16 chans[4];
477 s64 timestamp __aligned(8);
478 } scan;
479 s64 timestamp;
480 unsigned int datums_from_fifo = 0;
481
482 /*
483 * If we're using the hardware trigger, get the precise timestamp from
484 * the top half of the threaded IRQ handler. Otherwise get the
485 * timestamp here so it will be close in time to the actual values
486 * read from the registers.
487 */
488 if (iio_trigger_using_own(indio_dev))
489 timestamp = mpu3050->hw_timestamp;
490 else
491 timestamp = iio_get_time_ns(indio_dev);
492
493 mutex_lock(&mpu3050->lock);
494
495 /* Using the hardware IRQ trigger? Check the buffer then. */
496 if (mpu3050->hw_irq_trigger) {
497 __be16 raw_fifocnt;
498 u16 fifocnt;
499 /* X, Y, Z + temperature */
500 unsigned int bytes_per_datum = 8;
501 bool fifo_overflow = false;
502
503 ret = regmap_bulk_read(mpu3050->map,
504 MPU3050_FIFO_COUNT_H,
505 &raw_fifocnt,
506 sizeof(raw_fifocnt));
507 if (ret)
508 goto out_trigger_unlock;
509 fifocnt = be16_to_cpu(raw_fifocnt);
510
511 if (fifocnt == 512) {
512 dev_info(mpu3050->dev,
513 "FIFO overflow! Emptying and resetting FIFO\n");
514 fifo_overflow = true;
515 /* Reset and enable the FIFO */
516 ret = regmap_update_bits(mpu3050->map,
517 MPU3050_USR_CTRL,
518 MPU3050_USR_CTRL_FIFO_EN |
519 MPU3050_USR_CTRL_FIFO_RST,
520 MPU3050_USR_CTRL_FIFO_EN |
521 MPU3050_USR_CTRL_FIFO_RST);
522 if (ret) {
523 dev_info(mpu3050->dev, "error resetting FIFO\n");
524 goto out_trigger_unlock;
525 }
526 mpu3050->pending_fifo_footer = false;
527 }
528
529 if (fifocnt)
530 dev_dbg(mpu3050->dev,
531 "%d bytes in the FIFO\n",
532 fifocnt);
533
534 while (!fifo_overflow && fifocnt > bytes_per_datum) {
535 unsigned int toread;
536 unsigned int offset;
537 __be16 fifo_values[5];
538
539 /*
540 * If there is a FIFO footer in the pipe, first clear
541 * that out. This follows the complex algorithm in the
542 * datasheet that states that you may never leave the
543 * FIFO empty after the first reading: you have to
544 * always leave two footer bytes in it. The footer is
545 * in practice just two zero bytes.
546 */
547 if (mpu3050->pending_fifo_footer) {
548 toread = bytes_per_datum + 2;
549 offset = 0;
550 } else {
551 toread = bytes_per_datum;
552 offset = 1;
553 /* Put in some dummy value */
554 fifo_values[0] = cpu_to_be16(0xAAAA);
555 }
556
557 ret = regmap_bulk_read(mpu3050->map,
558 MPU3050_FIFO_R,
559 &fifo_values[offset],
560 toread);
561 if (ret)
562 goto out_trigger_unlock;
563
564 dev_dbg(mpu3050->dev,
565 "%04x %04x %04x %04x %04x\n",
566 fifo_values[0],
567 fifo_values[1],
568 fifo_values[2],
569 fifo_values[3],
570 fifo_values[4]);
571
572 /* Index past the footer (fifo_values[0]) and push */
573 iio_push_to_buffers_with_ts_unaligned(indio_dev,
574 &fifo_values[1],
575 sizeof(__be16) * 4,
576 timestamp);
577
578 fifocnt -= toread;
579 datums_from_fifo++;
580 mpu3050->pending_fifo_footer = true;
581
582 /*
583 * If we're emptying the FIFO, just make sure to
584 * check if something new appeared.
585 */
586 if (fifocnt < bytes_per_datum) {
587 ret = regmap_bulk_read(mpu3050->map,
588 MPU3050_FIFO_COUNT_H,
589 &raw_fifocnt,
590 sizeof(raw_fifocnt));
591 if (ret)
592 goto out_trigger_unlock;
593 fifocnt = be16_to_cpu(raw_fifocnt);
594 }
595
596 if (fifocnt < bytes_per_datum)
597 dev_dbg(mpu3050->dev,
598 "%d bytes left in the FIFO\n",
599 fifocnt);
600
601 /*
602 * At this point, the timestamp that triggered the
603 * hardware interrupt is no longer valid for what
604 * we are reading (the interrupt likely fired for
605 * the value on the top of the FIFO), so set the
606 * timestamp to zero and let userspace deal with it.
607 */
608 timestamp = 0;
609 }
610 }
611
612 /*
613 * If we picked some datums from the FIFO that's enough, else
614 * fall through and just read from the current value registers.
615 * This happens in two cases:
616 *
617 * - We are using some other trigger (external, like an HRTimer)
618 * than the sensor's own sample generator. In this case the
619 * sensor is just set to the max sampling frequency and we give
620 * the trigger a copy of the latest value every time we get here.
621 *
622 * - The hardware trigger is active but unused and we actually use
623 * another trigger which calls here with a frequency higher
624 * than what the device provides data. We will then just read
625 * duplicate values directly from the hardware registers.
626 */
627 if (datums_from_fifo) {
628 dev_dbg(mpu3050->dev,
629 "read %d datums from the FIFO\n",
630 datums_from_fifo);
631 goto out_trigger_unlock;
632 }
633
634 ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, scan.chans,
635 sizeof(scan.chans));
636 if (ret) {
637 dev_err(mpu3050->dev,
638 "error reading axis data\n");
639 goto out_trigger_unlock;
640 }
641
642 iio_push_to_buffers_with_timestamp(indio_dev, &scan, timestamp);
643
644 out_trigger_unlock:
645 mutex_unlock(&mpu3050->lock);
646 iio_trigger_notify_done(indio_dev->trig);
647
648 return IRQ_HANDLED;
649 }
650
mpu3050_buffer_preenable(struct iio_dev * indio_dev)651 static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
652 {
653 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
654
655 pm_runtime_get_sync(mpu3050->dev);
656
657 /* Unless we have OUR trigger active, run at full speed */
658 if (!mpu3050->hw_irq_trigger)
659 return mpu3050_set_8khz_samplerate(mpu3050);
660
661 return 0;
662 }
663
mpu3050_buffer_postdisable(struct iio_dev * indio_dev)664 static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
665 {
666 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
667
668 pm_runtime_mark_last_busy(mpu3050->dev);
669 pm_runtime_put_autosuspend(mpu3050->dev);
670
671 return 0;
672 }
673
674 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
675 .preenable = mpu3050_buffer_preenable,
676 .postdisable = mpu3050_buffer_postdisable,
677 };
678
679 static const struct iio_mount_matrix *
mpu3050_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)680 mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
681 const struct iio_chan_spec *chan)
682 {
683 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
684
685 return &mpu3050->orientation;
686 }
687
688 static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
689 IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
690 { },
691 };
692
693 #define MPU3050_AXIS_CHANNEL(axis, index) \
694 { \
695 .type = IIO_ANGL_VEL, \
696 .modified = 1, \
697 .channel2 = IIO_MOD_##axis, \
698 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
699 BIT(IIO_CHAN_INFO_CALIBBIAS), \
700 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
701 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
702 .ext_info = mpu3050_ext_info, \
703 .scan_index = index, \
704 .scan_type = { \
705 .sign = 's', \
706 .realbits = 16, \
707 .storagebits = 16, \
708 .endianness = IIO_BE, \
709 }, \
710 }
711
712 static const struct iio_chan_spec mpu3050_channels[] = {
713 {
714 .type = IIO_TEMP,
715 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
716 BIT(IIO_CHAN_INFO_SCALE) |
717 BIT(IIO_CHAN_INFO_OFFSET),
718 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
719 .scan_index = 0,
720 .scan_type = {
721 .sign = 's',
722 .realbits = 16,
723 .storagebits = 16,
724 .endianness = IIO_BE,
725 },
726 },
727 MPU3050_AXIS_CHANNEL(X, 1),
728 MPU3050_AXIS_CHANNEL(Y, 2),
729 MPU3050_AXIS_CHANNEL(Z, 3),
730 IIO_CHAN_SOFT_TIMESTAMP(4),
731 };
732
733 /* Four channels apart from timestamp, scan mask = 0x0f */
734 static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
735
736 /*
737 * These are just the hardcoded factors resulting from the more elaborate
738 * calculations done with fractions in the scale raw get/set functions.
739 */
740 static IIO_CONST_ATTR(anglevel_scale_available,
741 "0.000122070 "
742 "0.000274658 "
743 "0.000518798 "
744 "0.001068115");
745
746 static struct attribute *mpu3050_attributes[] = {
747 &iio_const_attr_anglevel_scale_available.dev_attr.attr,
748 NULL,
749 };
750
751 static const struct attribute_group mpu3050_attribute_group = {
752 .attrs = mpu3050_attributes,
753 };
754
755 static const struct iio_info mpu3050_info = {
756 .read_raw = mpu3050_read_raw,
757 .write_raw = mpu3050_write_raw,
758 .attrs = &mpu3050_attribute_group,
759 };
760
761 /**
762 * mpu3050_read_mem() - read MPU-3050 internal memory
763 * @mpu3050: device to read from
764 * @bank: target bank
765 * @addr: target address
766 * @len: number of bytes
767 * @buf: the buffer to store the read bytes in
768 */
mpu3050_read_mem(struct mpu3050 * mpu3050,u8 bank,u8 addr,u8 len,u8 * buf)769 static int mpu3050_read_mem(struct mpu3050 *mpu3050,
770 u8 bank,
771 u8 addr,
772 u8 len,
773 u8 *buf)
774 {
775 int ret;
776
777 ret = regmap_write(mpu3050->map,
778 MPU3050_BANK_SEL,
779 bank);
780 if (ret)
781 return ret;
782
783 ret = regmap_write(mpu3050->map,
784 MPU3050_MEM_START_ADDR,
785 addr);
786 if (ret)
787 return ret;
788
789 return regmap_bulk_read(mpu3050->map,
790 MPU3050_MEM_R_W,
791 buf,
792 len);
793 }
794
mpu3050_hw_init(struct mpu3050 * mpu3050)795 static int mpu3050_hw_init(struct mpu3050 *mpu3050)
796 {
797 int ret;
798 __le64 otp_le;
799 u64 otp;
800
801 /* Reset */
802 ret = regmap_update_bits(mpu3050->map,
803 MPU3050_PWR_MGM,
804 MPU3050_PWR_MGM_RESET,
805 MPU3050_PWR_MGM_RESET);
806 if (ret)
807 return ret;
808
809 /* Turn on the PLL */
810 ret = regmap_update_bits(mpu3050->map,
811 MPU3050_PWR_MGM,
812 MPU3050_PWR_MGM_CLKSEL_MASK,
813 MPU3050_PWR_MGM_PLL_Z);
814 if (ret)
815 return ret;
816
817 /* Disable IRQs */
818 ret = regmap_write(mpu3050->map,
819 MPU3050_INT_CFG,
820 0);
821 if (ret)
822 return ret;
823
824 /* Read out the 8 bytes of OTP (one-time-programmable) memory */
825 ret = mpu3050_read_mem(mpu3050,
826 (MPU3050_MEM_PRFTCH |
827 MPU3050_MEM_USER_BANK |
828 MPU3050_MEM_OTP_BANK_0),
829 0,
830 sizeof(otp_le),
831 (u8 *)&otp_le);
832 if (ret)
833 return ret;
834
835 /* This is device-unique data so it goes into the entropy pool */
836 add_device_randomness(&otp_le, sizeof(otp_le));
837
838 otp = le64_to_cpu(otp_le);
839
840 dev_info(mpu3050->dev,
841 "die ID: %04llX, wafer ID: %02llX, A lot ID: %04llX, "
842 "W lot ID: %03llX, WP ID: %01llX, rev ID: %02llX\n",
843 /* Die ID, bits 0-12 */
844 FIELD_GET(GENMASK_ULL(12, 0), otp),
845 /* Wafer ID, bits 13-17 */
846 FIELD_GET(GENMASK_ULL(17, 13), otp),
847 /* A lot ID, bits 18-33 */
848 FIELD_GET(GENMASK_ULL(33, 18), otp),
849 /* W lot ID, bits 34-45 */
850 FIELD_GET(GENMASK_ULL(45, 34), otp),
851 /* WP ID, bits 47-49 */
852 FIELD_GET(GENMASK_ULL(49, 47), otp),
853 /* rev ID, bits 50-55 */
854 FIELD_GET(GENMASK_ULL(55, 50), otp));
855
856 return 0;
857 }
858
mpu3050_power_up(struct mpu3050 * mpu3050)859 static int mpu3050_power_up(struct mpu3050 *mpu3050)
860 {
861 int ret;
862
863 ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
864 if (ret) {
865 dev_err(mpu3050->dev, "cannot enable regulators\n");
866 return ret;
867 }
868 /*
869 * 20-100 ms start-up time for register read/write according to
870 * the datasheet, be on the safe side and wait 200 ms.
871 */
872 msleep(200);
873
874 /* Take device out of sleep mode */
875 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
876 MPU3050_PWR_MGM_SLEEP, 0);
877 if (ret) {
878 regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
879 dev_err(mpu3050->dev, "error setting power mode\n");
880 return ret;
881 }
882 usleep_range(10000, 20000);
883
884 return 0;
885 }
886
mpu3050_power_down(struct mpu3050 * mpu3050)887 static int mpu3050_power_down(struct mpu3050 *mpu3050)
888 {
889 int ret;
890
891 /*
892 * Put MPU-3050 into sleep mode before cutting regulators.
893 * This is important, because we may not be the sole user
894 * of the regulator so the power may stay on after this, and
895 * then we would be wasting power unless we go to sleep mode
896 * first.
897 */
898 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
899 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
900 if (ret)
901 dev_err(mpu3050->dev, "error putting to sleep\n");
902
903 ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
904 if (ret)
905 dev_err(mpu3050->dev, "error disabling regulators\n");
906
907 return 0;
908 }
909
mpu3050_irq_handler(int irq,void * p)910 static irqreturn_t mpu3050_irq_handler(int irq, void *p)
911 {
912 struct iio_trigger *trig = p;
913 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
914 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
915
916 if (!mpu3050->hw_irq_trigger)
917 return IRQ_NONE;
918
919 /* Get the time stamp as close in time as possible */
920 mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
921
922 return IRQ_WAKE_THREAD;
923 }
924
mpu3050_irq_thread(int irq,void * p)925 static irqreturn_t mpu3050_irq_thread(int irq, void *p)
926 {
927 struct iio_trigger *trig = p;
928 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
929 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
930 unsigned int val;
931 int ret;
932
933 /* ACK IRQ and check if it was from us */
934 ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
935 if (ret) {
936 dev_err(mpu3050->dev, "error reading IRQ status\n");
937 return IRQ_HANDLED;
938 }
939 if (!(val & MPU3050_INT_STATUS_RAW_RDY))
940 return IRQ_NONE;
941
942 iio_trigger_poll_nested(p);
943
944 return IRQ_HANDLED;
945 }
946
947 /**
948 * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
949 * @trig: trigger instance
950 * @enable: true if trigger should be enabled, false to disable
951 */
mpu3050_drdy_trigger_set_state(struct iio_trigger * trig,bool enable)952 static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
953 bool enable)
954 {
955 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
956 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
957 unsigned int val;
958 int ret;
959
960 /* Disabling trigger: disable interrupt and return */
961 if (!enable) {
962 /* Disable all interrupts */
963 ret = regmap_write(mpu3050->map,
964 MPU3050_INT_CFG,
965 0);
966 if (ret)
967 dev_err(mpu3050->dev, "error disabling IRQ\n");
968
969 /* Clear IRQ flag */
970 ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
971 if (ret)
972 dev_err(mpu3050->dev, "error clearing IRQ status\n");
973
974 /* Disable all things in the FIFO and reset it */
975 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
976 if (ret)
977 dev_err(mpu3050->dev, "error disabling FIFO\n");
978
979 ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
980 MPU3050_USR_CTRL_FIFO_RST);
981 if (ret)
982 dev_err(mpu3050->dev, "error resetting FIFO\n");
983
984 pm_runtime_mark_last_busy(mpu3050->dev);
985 pm_runtime_put_autosuspend(mpu3050->dev);
986 mpu3050->hw_irq_trigger = false;
987
988 return 0;
989 } else {
990 /* Else we're enabling the trigger from this point */
991 pm_runtime_get_sync(mpu3050->dev);
992 mpu3050->hw_irq_trigger = true;
993
994 /* Disable all things in the FIFO */
995 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
996 if (ret)
997 return ret;
998
999 /* Reset and enable the FIFO */
1000 ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
1001 MPU3050_USR_CTRL_FIFO_EN |
1002 MPU3050_USR_CTRL_FIFO_RST,
1003 MPU3050_USR_CTRL_FIFO_EN |
1004 MPU3050_USR_CTRL_FIFO_RST);
1005 if (ret)
1006 return ret;
1007
1008 mpu3050->pending_fifo_footer = false;
1009
1010 /* Turn on the FIFO for temp+X+Y+Z */
1011 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
1012 MPU3050_FIFO_EN_TEMP_OUT |
1013 MPU3050_FIFO_EN_GYRO_XOUT |
1014 MPU3050_FIFO_EN_GYRO_YOUT |
1015 MPU3050_FIFO_EN_GYRO_ZOUT |
1016 MPU3050_FIFO_EN_FOOTER);
1017 if (ret)
1018 return ret;
1019
1020 /* Configure the sample engine */
1021 ret = mpu3050_start_sampling(mpu3050);
1022 if (ret)
1023 return ret;
1024
1025 /* Clear IRQ flag */
1026 ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1027 if (ret)
1028 dev_err(mpu3050->dev, "error clearing IRQ status\n");
1029
1030 /* Give us interrupts whenever there is new data ready */
1031 val = MPU3050_INT_RAW_RDY_EN;
1032
1033 if (mpu3050->irq_actl)
1034 val |= MPU3050_INT_ACTL;
1035 if (mpu3050->irq_latch)
1036 val |= MPU3050_INT_LATCH_EN;
1037 if (mpu3050->irq_opendrain)
1038 val |= MPU3050_INT_OPEN;
1039
1040 ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1041 if (ret)
1042 return ret;
1043 }
1044
1045 return 0;
1046 }
1047
1048 static const struct iio_trigger_ops mpu3050_trigger_ops = {
1049 .set_trigger_state = mpu3050_drdy_trigger_set_state,
1050 };
1051
mpu3050_trigger_probe(struct iio_dev * indio_dev,int irq)1052 static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1053 {
1054 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1055 struct device *dev = mpu3050->dev;
1056 unsigned long irq_trig;
1057 int ret;
1058
1059 mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1060 "%s-dev%d",
1061 indio_dev->name,
1062 iio_device_id(indio_dev));
1063 if (!mpu3050->trig)
1064 return -ENOMEM;
1065
1066 /* Check if IRQ is open drain */
1067 mpu3050->irq_opendrain = device_property_read_bool(dev, "drive-open-drain");
1068
1069 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1070 /*
1071 * Configure the interrupt generator hardware to supply whatever
1072 * the interrupt is configured for, edges low/high level low/high,
1073 * we can provide it all.
1074 */
1075 switch (irq_trig) {
1076 case IRQF_TRIGGER_RISING:
1077 dev_info(&indio_dev->dev,
1078 "pulse interrupts on the rising edge\n");
1079 break;
1080 case IRQF_TRIGGER_FALLING:
1081 mpu3050->irq_actl = true;
1082 dev_info(&indio_dev->dev,
1083 "pulse interrupts on the falling edge\n");
1084 break;
1085 case IRQF_TRIGGER_HIGH:
1086 mpu3050->irq_latch = true;
1087 dev_info(&indio_dev->dev,
1088 "interrupts active high level\n");
1089 /*
1090 * With level IRQs, we mask the IRQ until it is processed,
1091 * but with edge IRQs (pulses) we can queue several interrupts
1092 * in the top half.
1093 */
1094 irq_trig |= IRQF_ONESHOT;
1095 break;
1096 case IRQF_TRIGGER_LOW:
1097 mpu3050->irq_latch = true;
1098 mpu3050->irq_actl = true;
1099 irq_trig |= IRQF_ONESHOT;
1100 dev_info(&indio_dev->dev,
1101 "interrupts active low level\n");
1102 break;
1103 default:
1104 /* This is the most preferred mode, if possible */
1105 dev_err(&indio_dev->dev,
1106 "unsupported IRQ trigger specified (%lx), enforce "
1107 "rising edge\n", irq_trig);
1108 irq_trig = IRQF_TRIGGER_RISING;
1109 break;
1110 }
1111
1112 /* An open drain line can be shared with several devices */
1113 if (mpu3050->irq_opendrain)
1114 irq_trig |= IRQF_SHARED;
1115
1116 ret = request_threaded_irq(irq,
1117 mpu3050_irq_handler,
1118 mpu3050_irq_thread,
1119 irq_trig,
1120 mpu3050->trig->name,
1121 mpu3050->trig);
1122 if (ret) {
1123 dev_err(dev, "can't get IRQ %d, error %d\n", irq, ret);
1124 return ret;
1125 }
1126
1127 mpu3050->irq = irq;
1128 mpu3050->trig->dev.parent = dev;
1129 mpu3050->trig->ops = &mpu3050_trigger_ops;
1130 iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1131
1132 ret = iio_trigger_register(mpu3050->trig);
1133 if (ret)
1134 return ret;
1135
1136 indio_dev->trig = iio_trigger_get(mpu3050->trig);
1137
1138 return 0;
1139 }
1140
mpu3050_common_probe(struct device * dev,struct regmap * map,int irq,const char * name)1141 int mpu3050_common_probe(struct device *dev,
1142 struct regmap *map,
1143 int irq,
1144 const char *name)
1145 {
1146 struct iio_dev *indio_dev;
1147 struct mpu3050 *mpu3050;
1148 unsigned int val;
1149 int ret;
1150
1151 indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1152 if (!indio_dev)
1153 return -ENOMEM;
1154 mpu3050 = iio_priv(indio_dev);
1155
1156 mpu3050->dev = dev;
1157 mpu3050->map = map;
1158 mutex_init(&mpu3050->lock);
1159 /* Default fullscale: 2000 degrees per second */
1160 mpu3050->fullscale = FS_2000_DPS;
1161 /* 1 kHz, divide by 100, default frequency = 10 Hz */
1162 mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1163 mpu3050->divisor = 99;
1164
1165 /* Read the mounting matrix, if present */
1166 ret = iio_read_mount_matrix(dev, &mpu3050->orientation);
1167 if (ret)
1168 return ret;
1169
1170 /* Fetch and turn on regulators */
1171 mpu3050->regs[0].supply = mpu3050_reg_vdd;
1172 mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1173 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1174 mpu3050->regs);
1175 if (ret) {
1176 dev_err(dev, "Cannot get regulators\n");
1177 return ret;
1178 }
1179
1180 ret = mpu3050_power_up(mpu3050);
1181 if (ret)
1182 return ret;
1183
1184 ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1185 if (ret) {
1186 dev_err(dev, "could not read device ID\n");
1187 ret = -ENODEV;
1188
1189 goto err_power_down;
1190 }
1191
1192 if ((val & MPU3050_CHIP_ID_MASK) != MPU3050_CHIP_ID) {
1193 dev_err(dev, "unsupported chip id %02x\n",
1194 (u8)(val & MPU3050_CHIP_ID_MASK));
1195 ret = -ENODEV;
1196 goto err_power_down;
1197 }
1198
1199 ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1200 if (ret) {
1201 dev_err(dev, "could not read device ID\n");
1202 ret = -ENODEV;
1203
1204 goto err_power_down;
1205 }
1206 dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1207 ((val >> 4) & 0xf), (val & 0xf));
1208
1209 ret = mpu3050_hw_init(mpu3050);
1210 if (ret)
1211 goto err_power_down;
1212
1213 indio_dev->channels = mpu3050_channels;
1214 indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1215 indio_dev->info = &mpu3050_info;
1216 indio_dev->available_scan_masks = mpu3050_scan_masks;
1217 indio_dev->modes = INDIO_DIRECT_MODE;
1218 indio_dev->name = name;
1219
1220 ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1221 mpu3050_trigger_handler,
1222 &mpu3050_buffer_setup_ops);
1223 if (ret) {
1224 dev_err(dev, "triggered buffer setup failed\n");
1225 goto err_power_down;
1226 }
1227
1228 ret = iio_device_register(indio_dev);
1229 if (ret) {
1230 dev_err(dev, "device register failed\n");
1231 goto err_cleanup_buffer;
1232 }
1233
1234 dev_set_drvdata(dev, indio_dev);
1235
1236 /* Check if we have an assigned IRQ to use as trigger */
1237 if (irq) {
1238 ret = mpu3050_trigger_probe(indio_dev, irq);
1239 if (ret)
1240 dev_err(dev, "failed to register trigger\n");
1241 }
1242
1243 /* Enable runtime PM */
1244 pm_runtime_get_noresume(dev);
1245 pm_runtime_set_active(dev);
1246 pm_runtime_enable(dev);
1247 /*
1248 * Set autosuspend to two orders of magnitude larger than the
1249 * start-up time. 100ms start-up time means 10000ms autosuspend,
1250 * i.e. 10 seconds.
1251 */
1252 pm_runtime_set_autosuspend_delay(dev, 10000);
1253 pm_runtime_use_autosuspend(dev);
1254 pm_runtime_put(dev);
1255
1256 return 0;
1257
1258 err_cleanup_buffer:
1259 iio_triggered_buffer_cleanup(indio_dev);
1260 err_power_down:
1261 mpu3050_power_down(mpu3050);
1262
1263 return ret;
1264 }
1265
mpu3050_common_remove(struct device * dev)1266 void mpu3050_common_remove(struct device *dev)
1267 {
1268 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1269 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1270
1271 pm_runtime_get_sync(dev);
1272 pm_runtime_put_noidle(dev);
1273 pm_runtime_disable(dev);
1274 iio_triggered_buffer_cleanup(indio_dev);
1275 if (mpu3050->irq)
1276 free_irq(mpu3050->irq, mpu3050);
1277 iio_device_unregister(indio_dev);
1278 mpu3050_power_down(mpu3050);
1279 }
1280
mpu3050_runtime_suspend(struct device * dev)1281 static int mpu3050_runtime_suspend(struct device *dev)
1282 {
1283 return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1284 }
1285
mpu3050_runtime_resume(struct device * dev)1286 static int mpu3050_runtime_resume(struct device *dev)
1287 {
1288 return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1289 }
1290
1291 DEFINE_RUNTIME_DEV_PM_OPS(mpu3050_dev_pm_ops, mpu3050_runtime_suspend,
1292 mpu3050_runtime_resume, NULL);
1293 MODULE_AUTHOR("Linus Walleij");
1294 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1295 MODULE_LICENSE("GPL");
1296