1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
10
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/gfp.h>
18 #include <linux/huge_mm.h>
19 #include <linux/iommu.h>
20 #include <linux/iova.h>
21 #include <linux/irq.h>
22 #include <linux/list_sort.h>
23 #include <linux/memremap.h>
24 #include <linux/mm.h>
25 #include <linux/mutex.h>
26 #include <linux/of_iommu.h>
27 #include <linux/pci.h>
28 #include <linux/scatterlist.h>
29 #include <linux/spinlock.h>
30 #include <linux/swiotlb.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/swiotlb.h>
33 #include <trace/hooks/iommu.h>
34
35 #include "dma-iommu.h"
36
37 struct iommu_dma_msi_page {
38 struct list_head list;
39 dma_addr_t iova;
40 phys_addr_t phys;
41 };
42
43 enum iommu_dma_cookie_type {
44 IOMMU_DMA_IOVA_COOKIE,
45 IOMMU_DMA_MSI_COOKIE,
46 };
47
48 struct iommu_dma_cookie {
49 enum iommu_dma_cookie_type type;
50 union {
51 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
52 struct {
53 struct iova_domain iovad;
54
55 struct iova_fq __percpu *fq; /* Flush queue */
56 /* Number of TLB flushes that have been started */
57 atomic64_t fq_flush_start_cnt;
58 /* Number of TLB flushes that have been finished */
59 atomic64_t fq_flush_finish_cnt;
60 /* Timer to regularily empty the flush queues */
61 struct timer_list fq_timer;
62 /* 1 when timer is active, 0 when not */
63 atomic_t fq_timer_on;
64 };
65 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
66 dma_addr_t msi_iova;
67 };
68 struct list_head msi_page_list;
69
70 /* Domain for flush queue callback; NULL if flush queue not in use */
71 struct iommu_domain *fq_domain;
72 struct mutex mutex;
73 };
74
75 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
76 bool iommu_dma_forcedac __read_mostly;
77
iommu_dma_forcedac_setup(char * str)78 static int __init iommu_dma_forcedac_setup(char *str)
79 {
80 int ret = kstrtobool(str, &iommu_dma_forcedac);
81
82 if (!ret && iommu_dma_forcedac)
83 pr_info("Forcing DAC for PCI devices\n");
84 return ret;
85 }
86 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
87
88 /* Number of entries per flush queue */
89 #define IOVA_FQ_SIZE 256
90
91 /* Timeout (in ms) after which entries are flushed from the queue */
92 #define IOVA_FQ_TIMEOUT 10
93
94 /* Flush queue entry for deferred flushing */
95 struct iova_fq_entry {
96 unsigned long iova_pfn;
97 unsigned long pages;
98 struct list_head freelist;
99 u64 counter; /* Flush counter when this entry was added */
100 };
101
102 /* Per-CPU flush queue structure */
103 struct iova_fq {
104 struct iova_fq_entry entries[IOVA_FQ_SIZE];
105 unsigned int head, tail;
106 spinlock_t lock;
107 };
108
109 #define fq_ring_for_each(i, fq) \
110 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
111
fq_full(struct iova_fq * fq)112 static inline bool fq_full(struct iova_fq *fq)
113 {
114 assert_spin_locked(&fq->lock);
115 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
116 }
117
fq_ring_add(struct iova_fq * fq)118 static inline unsigned int fq_ring_add(struct iova_fq *fq)
119 {
120 unsigned int idx = fq->tail;
121
122 assert_spin_locked(&fq->lock);
123
124 fq->tail = (idx + 1) % IOVA_FQ_SIZE;
125
126 return idx;
127 }
128
fq_ring_free(struct iommu_dma_cookie * cookie,struct iova_fq * fq)129 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
130 {
131 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
132 unsigned int idx;
133
134 assert_spin_locked(&fq->lock);
135
136 fq_ring_for_each(idx, fq) {
137
138 if (fq->entries[idx].counter >= counter)
139 break;
140
141 put_pages_list(&fq->entries[idx].freelist);
142 free_iova_fast(&cookie->iovad,
143 fq->entries[idx].iova_pfn,
144 fq->entries[idx].pages);
145
146 fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
147 }
148 }
149
fq_flush_iotlb(struct iommu_dma_cookie * cookie)150 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
151 {
152 atomic64_inc(&cookie->fq_flush_start_cnt);
153 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
154 atomic64_inc(&cookie->fq_flush_finish_cnt);
155 }
156
fq_flush_timeout(struct timer_list * t)157 static void fq_flush_timeout(struct timer_list *t)
158 {
159 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
160 int cpu;
161
162 atomic_set(&cookie->fq_timer_on, 0);
163 fq_flush_iotlb(cookie);
164
165 for_each_possible_cpu(cpu) {
166 unsigned long flags;
167 struct iova_fq *fq;
168
169 fq = per_cpu_ptr(cookie->fq, cpu);
170 spin_lock_irqsave(&fq->lock, flags);
171 fq_ring_free(cookie, fq);
172 spin_unlock_irqrestore(&fq->lock, flags);
173 }
174 }
175
queue_iova(struct iommu_dma_cookie * cookie,unsigned long pfn,unsigned long pages,struct list_head * freelist)176 static void queue_iova(struct iommu_dma_cookie *cookie,
177 unsigned long pfn, unsigned long pages,
178 struct list_head *freelist)
179 {
180 struct iova_fq *fq;
181 unsigned long flags;
182 unsigned int idx;
183
184 /*
185 * Order against the IOMMU driver's pagetable update from unmapping
186 * @pte, to guarantee that fq_flush_iotlb() observes that if called
187 * from a different CPU before we release the lock below. Full barrier
188 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
189 * written fq state here.
190 */
191 smp_mb();
192
193 fq = raw_cpu_ptr(cookie->fq);
194 spin_lock_irqsave(&fq->lock, flags);
195
196 /*
197 * First remove all entries from the flush queue that have already been
198 * flushed out on another CPU. This makes the fq_full() check below less
199 * likely to be true.
200 */
201 fq_ring_free(cookie, fq);
202
203 if (fq_full(fq)) {
204 fq_flush_iotlb(cookie);
205 fq_ring_free(cookie, fq);
206 }
207
208 idx = fq_ring_add(fq);
209
210 fq->entries[idx].iova_pfn = pfn;
211 fq->entries[idx].pages = pages;
212 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt);
213 list_splice(freelist, &fq->entries[idx].freelist);
214
215 spin_unlock_irqrestore(&fq->lock, flags);
216
217 /* Avoid false sharing as much as possible. */
218 if (!atomic_read(&cookie->fq_timer_on) &&
219 !atomic_xchg(&cookie->fq_timer_on, 1))
220 mod_timer(&cookie->fq_timer,
221 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
222 }
223
iommu_dma_free_fq(struct iommu_dma_cookie * cookie)224 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
225 {
226 int cpu, idx;
227
228 if (!cookie->fq)
229 return;
230
231 del_timer_sync(&cookie->fq_timer);
232 /* The IOVAs will be torn down separately, so just free our queued pages */
233 for_each_possible_cpu(cpu) {
234 struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
235
236 fq_ring_for_each(idx, fq)
237 put_pages_list(&fq->entries[idx].freelist);
238 }
239
240 free_percpu(cookie->fq);
241 }
242
243 /* sysfs updates are serialised by the mutex of the group owning @domain */
iommu_dma_init_fq(struct iommu_domain * domain)244 int iommu_dma_init_fq(struct iommu_domain *domain)
245 {
246 struct iommu_dma_cookie *cookie = domain->iova_cookie;
247 struct iova_fq __percpu *queue;
248 int i, cpu;
249
250 if (cookie->fq_domain)
251 return 0;
252
253 atomic64_set(&cookie->fq_flush_start_cnt, 0);
254 atomic64_set(&cookie->fq_flush_finish_cnt, 0);
255
256 queue = alloc_percpu(struct iova_fq);
257 if (!queue) {
258 pr_warn("iova flush queue initialization failed\n");
259 return -ENOMEM;
260 }
261
262 for_each_possible_cpu(cpu) {
263 struct iova_fq *fq = per_cpu_ptr(queue, cpu);
264
265 fq->head = 0;
266 fq->tail = 0;
267
268 spin_lock_init(&fq->lock);
269
270 for (i = 0; i < IOVA_FQ_SIZE; i++)
271 INIT_LIST_HEAD(&fq->entries[i].freelist);
272 }
273
274 cookie->fq = queue;
275
276 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
277 atomic_set(&cookie->fq_timer_on, 0);
278 /*
279 * Prevent incomplete fq state being observable. Pairs with path from
280 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
281 */
282 smp_wmb();
283 WRITE_ONCE(cookie->fq_domain, domain);
284 return 0;
285 }
286
cookie_msi_granule(struct iommu_dma_cookie * cookie)287 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
288 {
289 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
290 return cookie->iovad.granule;
291 return PAGE_SIZE;
292 }
293
cookie_alloc(enum iommu_dma_cookie_type type)294 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
295 {
296 struct iommu_dma_cookie *cookie;
297
298 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
299 if (cookie) {
300 INIT_LIST_HEAD(&cookie->msi_page_list);
301 cookie->type = type;
302 }
303 return cookie;
304 }
305
306 /**
307 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
308 * @domain: IOMMU domain to prepare for DMA-API usage
309 */
iommu_get_dma_cookie(struct iommu_domain * domain)310 int iommu_get_dma_cookie(struct iommu_domain *domain)
311 {
312 if (domain->iova_cookie)
313 return -EEXIST;
314
315 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
316 if (!domain->iova_cookie)
317 return -ENOMEM;
318
319 mutex_init(&domain->iova_cookie->mutex);
320 return 0;
321 }
322
323 /**
324 * iommu_get_msi_cookie - Acquire just MSI remapping resources
325 * @domain: IOMMU domain to prepare
326 * @base: Start address of IOVA region for MSI mappings
327 *
328 * Users who manage their own IOVA allocation and do not want DMA API support,
329 * but would still like to take advantage of automatic MSI remapping, can use
330 * this to initialise their own domain appropriately. Users should reserve a
331 * contiguous IOVA region, starting at @base, large enough to accommodate the
332 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
333 * used by the devices attached to @domain.
334 */
iommu_get_msi_cookie(struct iommu_domain * domain,dma_addr_t base)335 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
336 {
337 struct iommu_dma_cookie *cookie;
338
339 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
340 return -EINVAL;
341
342 if (domain->iova_cookie)
343 return -EEXIST;
344
345 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
346 if (!cookie)
347 return -ENOMEM;
348
349 cookie->msi_iova = base;
350 domain->iova_cookie = cookie;
351 return 0;
352 }
353 EXPORT_SYMBOL(iommu_get_msi_cookie);
354
355 /**
356 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
357 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
358 * iommu_get_msi_cookie()
359 */
iommu_put_dma_cookie(struct iommu_domain * domain)360 void iommu_put_dma_cookie(struct iommu_domain *domain)
361 {
362 struct iommu_dma_cookie *cookie = domain->iova_cookie;
363 struct iommu_dma_msi_page *msi, *tmp;
364
365 if (!cookie)
366 return;
367
368 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
369 iommu_dma_free_fq(cookie);
370 put_iova_domain(&cookie->iovad);
371 }
372
373 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
374 list_del(&msi->list);
375 kfree(msi);
376 }
377 kfree(cookie);
378 domain->iova_cookie = NULL;
379 }
380
381 /**
382 * iommu_dma_get_resv_regions - Reserved region driver helper
383 * @dev: Device from iommu_get_resv_regions()
384 * @list: Reserved region list from iommu_get_resv_regions()
385 *
386 * IOMMU drivers can use this to implement their .get_resv_regions callback
387 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
388 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
389 * reservation.
390 */
iommu_dma_get_resv_regions(struct device * dev,struct list_head * list)391 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
392 {
393
394 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
395 iort_iommu_get_resv_regions(dev, list);
396
397 if (dev->of_node)
398 of_iommu_get_resv_regions(dev, list);
399 }
400 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
401
cookie_init_hw_msi_region(struct iommu_dma_cookie * cookie,phys_addr_t start,phys_addr_t end)402 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
403 phys_addr_t start, phys_addr_t end)
404 {
405 struct iova_domain *iovad = &cookie->iovad;
406 struct iommu_dma_msi_page *msi_page;
407 int i, num_pages;
408
409 start -= iova_offset(iovad, start);
410 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
411
412 for (i = 0; i < num_pages; i++) {
413 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
414 if (!msi_page)
415 return -ENOMEM;
416
417 msi_page->phys = start;
418 msi_page->iova = start;
419 INIT_LIST_HEAD(&msi_page->list);
420 list_add(&msi_page->list, &cookie->msi_page_list);
421 start += iovad->granule;
422 }
423
424 return 0;
425 }
426
iommu_dma_ranges_sort(void * priv,const struct list_head * a,const struct list_head * b)427 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
428 const struct list_head *b)
429 {
430 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
431 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
432
433 return res_a->res->start > res_b->res->start;
434 }
435
iova_reserve_pci_windows(struct pci_dev * dev,struct iova_domain * iovad)436 static int iova_reserve_pci_windows(struct pci_dev *dev,
437 struct iova_domain *iovad)
438 {
439 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
440 struct resource_entry *window;
441 unsigned long lo, hi;
442 phys_addr_t start = 0, end;
443
444 resource_list_for_each_entry(window, &bridge->windows) {
445 if (resource_type(window->res) != IORESOURCE_MEM)
446 continue;
447
448 lo = iova_pfn(iovad, window->res->start - window->offset);
449 hi = iova_pfn(iovad, window->res->end - window->offset);
450 reserve_iova(iovad, lo, hi);
451 }
452
453 /* Get reserved DMA windows from host bridge */
454 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
455 resource_list_for_each_entry(window, &bridge->dma_ranges) {
456 end = window->res->start - window->offset;
457 resv_iova:
458 if (end > start) {
459 lo = iova_pfn(iovad, start);
460 hi = iova_pfn(iovad, end);
461 reserve_iova(iovad, lo, hi);
462 } else if (end < start) {
463 /* DMA ranges should be non-overlapping */
464 dev_err(&dev->dev,
465 "Failed to reserve IOVA [%pa-%pa]\n",
466 &start, &end);
467 return -EINVAL;
468 }
469
470 start = window->res->end - window->offset + 1;
471 /* If window is last entry */
472 if (window->node.next == &bridge->dma_ranges &&
473 end != ~(phys_addr_t)0) {
474 end = ~(phys_addr_t)0;
475 goto resv_iova;
476 }
477 }
478
479 return 0;
480 }
481
iova_reserve_iommu_regions(struct device * dev,struct iommu_domain * domain)482 static int iova_reserve_iommu_regions(struct device *dev,
483 struct iommu_domain *domain)
484 {
485 struct iommu_dma_cookie *cookie = domain->iova_cookie;
486 struct iova_domain *iovad = &cookie->iovad;
487 struct iommu_resv_region *region;
488 LIST_HEAD(resv_regions);
489 int ret = 0;
490
491 if (dev_is_pci(dev)) {
492 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
493 if (ret)
494 return ret;
495 }
496
497 iommu_get_resv_regions(dev, &resv_regions);
498 list_for_each_entry(region, &resv_regions, list) {
499 unsigned long lo, hi;
500
501 /* We ARE the software that manages these! */
502 if (region->type == IOMMU_RESV_SW_MSI)
503 continue;
504
505 lo = iova_pfn(iovad, region->start);
506 hi = iova_pfn(iovad, region->start + region->length - 1);
507 reserve_iova(iovad, lo, hi);
508
509 if (region->type == IOMMU_RESV_MSI)
510 ret = cookie_init_hw_msi_region(cookie, region->start,
511 region->start + region->length);
512 if (ret)
513 break;
514 }
515 iommu_put_resv_regions(dev, &resv_regions);
516
517 return ret;
518 }
519
dev_is_untrusted(struct device * dev)520 static bool dev_is_untrusted(struct device *dev)
521 {
522 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
523 }
524
dev_use_swiotlb(struct device * dev,size_t size,enum dma_data_direction dir)525 static bool dev_use_swiotlb(struct device *dev, size_t size,
526 enum dma_data_direction dir)
527 {
528 return IS_ENABLED(CONFIG_SWIOTLB) &&
529 (dev_is_untrusted(dev) ||
530 dma_kmalloc_needs_bounce(dev, size, dir));
531 }
532
dev_use_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)533 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
534 int nents, enum dma_data_direction dir)
535 {
536 struct scatterlist *s;
537 int i;
538
539 if (!IS_ENABLED(CONFIG_SWIOTLB))
540 return false;
541
542 if (dev_is_untrusted(dev))
543 return true;
544
545 /*
546 * If kmalloc() buffers are not DMA-safe for this device and
547 * direction, check the individual lengths in the sg list. If any
548 * element is deemed unsafe, use the swiotlb for bouncing.
549 */
550 if (!dma_kmalloc_safe(dev, dir)) {
551 for_each_sg(sg, s, nents, i)
552 if (!dma_kmalloc_size_aligned(s->length))
553 return true;
554 }
555
556 return false;
557 }
558
559 /**
560 * iommu_dma_init_domain - Initialise a DMA mapping domain
561 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
562 * @base: IOVA at which the mappable address space starts
563 * @limit: Last address of the IOVA space
564 * @dev: Device the domain is being initialised for
565 *
566 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
567 * avoid rounding surprises. If necessary, we reserve the page at address 0
568 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
569 * any change which could make prior IOVAs invalid will fail.
570 */
iommu_dma_init_domain(struct iommu_domain * domain,dma_addr_t base,dma_addr_t limit,struct device * dev)571 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
572 dma_addr_t limit, struct device *dev)
573 {
574 struct iommu_dma_cookie *cookie = domain->iova_cookie;
575 unsigned long order, base_pfn;
576 struct iova_domain *iovad;
577 int ret;
578
579 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
580 return -EINVAL;
581
582 iovad = &cookie->iovad;
583
584 /* Use the smallest supported page size for IOVA granularity */
585 order = __ffs(domain->pgsize_bitmap);
586 base_pfn = max_t(unsigned long, 1, base >> order);
587
588 /* Check the domain allows at least some access to the device... */
589 if (domain->geometry.force_aperture) {
590 if (base > domain->geometry.aperture_end ||
591 limit < domain->geometry.aperture_start) {
592 pr_warn("specified DMA range outside IOMMU capability\n");
593 return -EFAULT;
594 }
595 /* ...then finally give it a kicking to make sure it fits */
596 base_pfn = max_t(unsigned long, base_pfn,
597 domain->geometry.aperture_start >> order);
598 }
599
600 /* start_pfn is always nonzero for an already-initialised domain */
601 mutex_lock(&cookie->mutex);
602 if (iovad->start_pfn) {
603 if (1UL << order != iovad->granule ||
604 base_pfn != iovad->start_pfn) {
605 pr_warn("Incompatible range for DMA domain\n");
606 ret = -EFAULT;
607 goto done_unlock;
608 }
609
610 ret = 0;
611 goto done_unlock;
612 }
613
614 init_iova_domain(iovad, 1UL << order, base_pfn);
615
616 trace_android_rvh_iommu_iovad_init_alloc_algo(dev, iovad);
617
618 ret = iova_domain_init_rcaches(iovad);
619 if (ret)
620 goto done_unlock;
621
622 /* If the FQ fails we can simply fall back to strict mode */
623 if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
624 (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
625 domain->type = IOMMU_DOMAIN_DMA;
626
627 ret = iova_reserve_iommu_regions(dev, domain);
628
629 done_unlock:
630 mutex_unlock(&cookie->mutex);
631 return ret;
632 }
633
634 /**
635 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
636 * page flags.
637 * @dir: Direction of DMA transfer
638 * @coherent: Is the DMA master cache-coherent?
639 * @attrs: DMA attributes for the mapping
640 *
641 * Return: corresponding IOMMU API page protection flags
642 */
dma_info_to_prot(enum dma_data_direction dir,bool coherent,unsigned long attrs)643 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
644 unsigned long attrs)
645 {
646 int prot = coherent ? IOMMU_CACHE : 0;
647
648 if (attrs & DMA_ATTR_PRIVILEGED)
649 prot |= IOMMU_PRIV;
650
651 trace_android_rvh_iommu_dma_info_to_prot(attrs, &prot);
652
653 switch (dir) {
654 case DMA_BIDIRECTIONAL:
655 return prot | IOMMU_READ | IOMMU_WRITE;
656 case DMA_TO_DEVICE:
657 return prot | IOMMU_READ;
658 case DMA_FROM_DEVICE:
659 return prot | IOMMU_WRITE;
660 default:
661 return 0;
662 }
663 }
664
iommu_dma_alloc_iova(struct iommu_domain * domain,size_t size,u64 dma_limit,struct device * dev)665 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
666 size_t size, u64 dma_limit, struct device *dev)
667 {
668 struct iommu_dma_cookie *cookie = domain->iova_cookie;
669 struct iova_domain *iovad = &cookie->iovad;
670 unsigned long shift, iova_len, iova;
671
672 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
673 cookie->msi_iova += size;
674 return cookie->msi_iova - size;
675 }
676
677 shift = iova_shift(iovad);
678 iova_len = size >> shift;
679
680 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
681
682 if (domain->geometry.force_aperture)
683 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
684
685 /*
686 * Try to use all the 32-bit PCI addresses first. The original SAC vs.
687 * DAC reasoning loses relevance with PCIe, but enough hardware and
688 * firmware bugs are still lurking out there that it's safest not to
689 * venture into the 64-bit space until necessary.
690 *
691 * If your device goes wrong after seeing the notice then likely either
692 * its driver is not setting DMA masks accurately, the hardware has
693 * some inherent bug in handling >32-bit addresses, or not all the
694 * expected address bits are wired up between the device and the IOMMU.
695 */
696 if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
697 iova = alloc_iova_fast(iovad, iova_len,
698 DMA_BIT_MASK(32) >> shift, false);
699 if (iova)
700 goto done;
701
702 dev->iommu->pci_32bit_workaround = false;
703 dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
704 }
705
706 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true);
707 done:
708 trace_android_vh_iommu_iovad_alloc_iova(dev, iovad, (dma_addr_t)iova << shift, size);
709 return (dma_addr_t)iova << shift;
710 }
711
iommu_dma_free_iova(struct iommu_dma_cookie * cookie,dma_addr_t iova,size_t size,struct iommu_iotlb_gather * gather)712 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
713 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
714 {
715 struct iova_domain *iovad = &cookie->iovad;
716
717 /* The MSI case is only ever cleaning up its most recent allocation */
718 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
719 cookie->msi_iova -= size;
720 else if (gather && gather->queued)
721 queue_iova(cookie, iova_pfn(iovad, iova),
722 size >> iova_shift(iovad),
723 &gather->freelist);
724 else
725 free_iova_fast(iovad, iova_pfn(iovad, iova),
726 size >> iova_shift(iovad));
727
728 trace_android_vh_iommu_iovad_free_iova(iovad, iova, size);
729 }
730
__iommu_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t size)731 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
732 size_t size)
733 {
734 struct iommu_domain *domain = iommu_get_dma_domain(dev);
735 struct iommu_dma_cookie *cookie = domain->iova_cookie;
736 struct iova_domain *iovad = &cookie->iovad;
737 size_t iova_off = iova_offset(iovad, dma_addr);
738 struct iommu_iotlb_gather iotlb_gather;
739 size_t unmapped;
740
741 dma_addr -= iova_off;
742 size = iova_align(iovad, size + iova_off);
743 iommu_iotlb_gather_init(&iotlb_gather);
744 iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
745
746 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
747 WARN_ON(unmapped != size);
748
749 if (!iotlb_gather.queued)
750 iommu_iotlb_sync(domain, &iotlb_gather);
751 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
752 }
753
__iommu_dma_map(struct device * dev,phys_addr_t phys,size_t size,int prot,u64 dma_mask)754 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
755 size_t size, int prot, u64 dma_mask)
756 {
757 struct iommu_domain *domain = iommu_get_dma_domain(dev);
758 struct iommu_dma_cookie *cookie = domain->iova_cookie;
759 struct iova_domain *iovad = &cookie->iovad;
760 size_t iova_off = iova_offset(iovad, phys);
761 dma_addr_t iova;
762
763 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
764 iommu_deferred_attach(dev, domain))
765 return DMA_MAPPING_ERROR;
766
767 size = iova_align(iovad, size + iova_off);
768
769 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
770 if (!iova)
771 return DMA_MAPPING_ERROR;
772
773 if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
774 iommu_dma_free_iova(cookie, iova, size, NULL);
775 return DMA_MAPPING_ERROR;
776 }
777 return iova + iova_off;
778 }
779
__iommu_dma_free_pages(struct page ** pages,int count)780 static void __iommu_dma_free_pages(struct page **pages, int count)
781 {
782 while (count--)
783 __free_page(pages[count]);
784 kvfree(pages);
785 }
786
__iommu_dma_alloc_pages(struct device * dev,unsigned int count,unsigned long order_mask,gfp_t gfp)787 static struct page **__iommu_dma_alloc_pages(struct device *dev,
788 unsigned int count, unsigned long order_mask, gfp_t gfp)
789 {
790 struct page **pages;
791 unsigned int i = 0, nid = dev_to_node(dev);
792
793 order_mask &= GENMASK(MAX_ORDER, 0);
794 if (!order_mask)
795 return NULL;
796
797 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
798 if (!pages)
799 return NULL;
800
801 /* IOMMU can map any pages, so himem can also be used here */
802 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
803
804 while (count) {
805 struct page *page = NULL;
806 unsigned int order_size;
807
808 /*
809 * Higher-order allocations are a convenience rather
810 * than a necessity, hence using __GFP_NORETRY until
811 * falling back to minimum-order allocations.
812 */
813 for (order_mask &= GENMASK(__fls(count), 0);
814 order_mask; order_mask &= ~order_size) {
815 unsigned int order = __fls(order_mask);
816 gfp_t alloc_flags = gfp;
817
818 order_size = 1U << order;
819 if (order_mask > order_size)
820 alloc_flags |= __GFP_NORETRY;
821 trace_android_vh_adjust_alloc_flags(order, &alloc_flags);
822 page = alloc_pages_node(nid, alloc_flags, order);
823 if (!page)
824 continue;
825 if (order)
826 split_page(page, order);
827 break;
828 }
829 if (!page) {
830 __iommu_dma_free_pages(pages, i);
831 return NULL;
832 }
833 count -= order_size;
834 while (order_size--)
835 pages[i++] = page++;
836 }
837 return pages;
838 }
839
840 /*
841 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
842 * but an IOMMU which supports smaller pages might not map the whole thing.
843 */
__iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,gfp_t gfp,pgprot_t prot,unsigned long attrs)844 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
845 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
846 unsigned long attrs)
847 {
848 struct iommu_domain *domain = iommu_get_dma_domain(dev);
849 struct iommu_dma_cookie *cookie = domain->iova_cookie;
850 struct iova_domain *iovad = &cookie->iovad;
851 bool coherent = dev_is_dma_coherent(dev);
852 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
853 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
854 struct page **pages;
855 dma_addr_t iova;
856 ssize_t ret;
857
858 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
859 iommu_deferred_attach(dev, domain))
860 return NULL;
861
862 min_size = alloc_sizes & -alloc_sizes;
863 if (min_size < PAGE_SIZE) {
864 min_size = PAGE_SIZE;
865 alloc_sizes |= PAGE_SIZE;
866 } else {
867 size = ALIGN(size, min_size);
868 }
869 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
870 alloc_sizes = min_size;
871
872 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
873 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
874 gfp);
875 if (!pages)
876 return NULL;
877
878 size = iova_align(iovad, size);
879 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
880 if (!iova)
881 goto out_free_pages;
882
883 /*
884 * Remove the zone/policy flags from the GFP - these are applied to the
885 * __iommu_dma_alloc_pages() but are not used for the supporting
886 * internal allocations that follow.
887 */
888 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
889
890 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
891 goto out_free_iova;
892
893 if (!(ioprot & IOMMU_CACHE)) {
894 struct scatterlist *sg;
895 int i;
896
897 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
898 arch_dma_prep_coherent(sg_page(sg), sg->length);
899 }
900
901 ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
902 gfp);
903 if (ret < 0 || ret < size)
904 goto out_free_sg;
905
906 sgt->sgl->dma_address = iova;
907 sgt->sgl->dma_length = size;
908 return pages;
909
910 out_free_sg:
911 sg_free_table(sgt);
912 out_free_iova:
913 iommu_dma_free_iova(cookie, iova, size, NULL);
914 out_free_pages:
915 __iommu_dma_free_pages(pages, count);
916 return NULL;
917 }
918
iommu_dma_alloc_remap(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,pgprot_t prot,unsigned long attrs)919 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
920 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
921 unsigned long attrs)
922 {
923 struct page **pages;
924 struct sg_table sgt;
925 void *vaddr;
926
927 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
928 attrs);
929 if (!pages)
930 return NULL;
931 *dma_handle = sgt.sgl->dma_address;
932 sg_free_table(&sgt);
933 vaddr = dma_common_pages_remap(pages, size, prot,
934 __builtin_return_address(0));
935 if (!vaddr)
936 goto out_unmap;
937 return vaddr;
938
939 out_unmap:
940 __iommu_dma_unmap(dev, *dma_handle, size);
941 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
942 return NULL;
943 }
944
iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)945 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
946 size_t size, enum dma_data_direction dir, gfp_t gfp,
947 unsigned long attrs)
948 {
949 struct dma_sgt_handle *sh;
950
951 sh = kmalloc(sizeof(*sh), gfp);
952 if (!sh)
953 return NULL;
954
955 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
956 PAGE_KERNEL, attrs);
957 if (!sh->pages) {
958 kfree(sh);
959 return NULL;
960 }
961 return &sh->sgt;
962 }
963
iommu_dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)964 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
965 struct sg_table *sgt, enum dma_data_direction dir)
966 {
967 struct dma_sgt_handle *sh = sgt_handle(sgt);
968
969 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
970 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
971 sg_free_table(&sh->sgt);
972 kfree(sh);
973 }
974
iommu_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)975 static void iommu_dma_sync_single_for_cpu(struct device *dev,
976 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
977 {
978 phys_addr_t phys;
979
980 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
981 return;
982
983 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
984 if (!dev_is_dma_coherent(dev))
985 arch_sync_dma_for_cpu(phys, size, dir);
986
987 if (is_swiotlb_buffer(dev, phys))
988 swiotlb_sync_single_for_cpu(dev, phys, size, dir);
989 }
990
iommu_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)991 static void iommu_dma_sync_single_for_device(struct device *dev,
992 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
993 {
994 phys_addr_t phys;
995
996 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
997 return;
998
999 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
1000 if (is_swiotlb_buffer(dev, phys))
1001 swiotlb_sync_single_for_device(dev, phys, size, dir);
1002
1003 if (!dev_is_dma_coherent(dev))
1004 arch_sync_dma_for_device(phys, size, dir);
1005 }
1006
iommu_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)1007 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
1008 struct scatterlist *sgl, int nelems,
1009 enum dma_data_direction dir)
1010 {
1011 struct scatterlist *sg;
1012 int i;
1013
1014 if (sg_dma_is_swiotlb(sgl))
1015 for_each_sg(sgl, sg, nelems, i)
1016 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
1017 sg->length, dir);
1018 else if (!dev_is_dma_coherent(dev))
1019 for_each_sg(sgl, sg, nelems, i)
1020 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
1021 }
1022
iommu_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)1023 static void iommu_dma_sync_sg_for_device(struct device *dev,
1024 struct scatterlist *sgl, int nelems,
1025 enum dma_data_direction dir)
1026 {
1027 struct scatterlist *sg;
1028 int i;
1029
1030 if (sg_dma_is_swiotlb(sgl))
1031 for_each_sg(sgl, sg, nelems, i)
1032 iommu_dma_sync_single_for_device(dev,
1033 sg_dma_address(sg),
1034 sg->length, dir);
1035 else if (!dev_is_dma_coherent(dev))
1036 for_each_sg(sgl, sg, nelems, i)
1037 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
1038 }
1039
iommu_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1040 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
1041 unsigned long offset, size_t size, enum dma_data_direction dir,
1042 unsigned long attrs)
1043 {
1044 phys_addr_t phys = page_to_phys(page) + offset;
1045 bool coherent = dev_is_dma_coherent(dev);
1046 int prot = dma_info_to_prot(dir, coherent, attrs);
1047 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1048 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1049 struct iova_domain *iovad = &cookie->iovad;
1050 dma_addr_t iova, dma_mask = dma_get_mask(dev);
1051
1052 /*
1053 * If both the physical buffer start address and size are
1054 * page aligned, we don't need to use a bounce page.
1055 */
1056 if (dev_use_swiotlb(dev, size, dir) &&
1057 iova_offset(iovad, phys | size)) {
1058 void *padding_start;
1059 size_t padding_size, aligned_size;
1060
1061 if (!is_swiotlb_active(dev)) {
1062 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1063 return DMA_MAPPING_ERROR;
1064 }
1065
1066 trace_swiotlb_bounced(dev, phys, size);
1067
1068 aligned_size = iova_align(iovad, size);
1069 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
1070 iova_mask(iovad), dir, attrs);
1071
1072 if (phys == DMA_MAPPING_ERROR)
1073 return DMA_MAPPING_ERROR;
1074
1075 /* Cleanup the padding area. */
1076 padding_start = phys_to_virt(phys);
1077 padding_size = aligned_size;
1078
1079 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1080 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1081 padding_start += size;
1082 padding_size -= size;
1083 }
1084
1085 memset(padding_start, 0, padding_size);
1086 }
1087
1088 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1089 arch_sync_dma_for_device(phys, size, dir);
1090
1091 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1092 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1093 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1094 return iova;
1095 }
1096
iommu_dma_unmap_page(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1097 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1098 size_t size, enum dma_data_direction dir, unsigned long attrs)
1099 {
1100 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1101 phys_addr_t phys;
1102
1103 phys = iommu_iova_to_phys(domain, dma_handle);
1104 if (WARN_ON(!phys))
1105 return;
1106
1107 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1108 arch_sync_dma_for_cpu(phys, size, dir);
1109
1110 __iommu_dma_unmap(dev, dma_handle, size);
1111
1112 if (unlikely(is_swiotlb_buffer(dev, phys)))
1113 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1114 }
1115
1116 /*
1117 * Prepare a successfully-mapped scatterlist to give back to the caller.
1118 *
1119 * At this point the segments are already laid out by iommu_dma_map_sg() to
1120 * avoid individually crossing any boundaries, so we merely need to check a
1121 * segment's start address to avoid concatenating across one.
1122 */
__finalise_sg(struct device * dev,struct scatterlist * sg,int nents,dma_addr_t dma_addr)1123 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1124 dma_addr_t dma_addr)
1125 {
1126 struct scatterlist *s, *cur = sg;
1127 unsigned long seg_mask = dma_get_seg_boundary(dev);
1128 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1129 int i, count = 0;
1130
1131 for_each_sg(sg, s, nents, i) {
1132 /* Restore this segment's original unaligned fields first */
1133 dma_addr_t s_dma_addr = sg_dma_address(s);
1134 unsigned int s_iova_off = sg_dma_address(s);
1135 unsigned int s_length = sg_dma_len(s);
1136 unsigned int s_iova_len = s->length;
1137
1138 sg_dma_address(s) = DMA_MAPPING_ERROR;
1139 sg_dma_len(s) = 0;
1140
1141 if (sg_dma_is_bus_address(s)) {
1142 if (i > 0)
1143 cur = sg_next(cur);
1144
1145 sg_dma_unmark_bus_address(s);
1146 sg_dma_address(cur) = s_dma_addr;
1147 sg_dma_len(cur) = s_length;
1148 sg_dma_mark_bus_address(cur);
1149 count++;
1150 cur_len = 0;
1151 continue;
1152 }
1153
1154 s->offset += s_iova_off;
1155 s->length = s_length;
1156
1157 /*
1158 * Now fill in the real DMA data. If...
1159 * - there is a valid output segment to append to
1160 * - and this segment starts on an IOVA page boundary
1161 * - but doesn't fall at a segment boundary
1162 * - and wouldn't make the resulting output segment too long
1163 */
1164 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1165 (max_len - cur_len >= s_length)) {
1166 /* ...then concatenate it with the previous one */
1167 cur_len += s_length;
1168 } else {
1169 /* Otherwise start the next output segment */
1170 if (i > 0)
1171 cur = sg_next(cur);
1172 cur_len = s_length;
1173 count++;
1174
1175 sg_dma_address(cur) = dma_addr + s_iova_off;
1176 }
1177
1178 sg_dma_len(cur) = cur_len;
1179 dma_addr += s_iova_len;
1180
1181 if (s_length + s_iova_off < s_iova_len)
1182 cur_len = 0;
1183 }
1184 return count;
1185 }
1186
1187 /*
1188 * If mapping failed, then just restore the original list,
1189 * but making sure the DMA fields are invalidated.
1190 */
__invalidate_sg(struct scatterlist * sg,int nents)1191 static void __invalidate_sg(struct scatterlist *sg, int nents)
1192 {
1193 struct scatterlist *s;
1194 int i;
1195
1196 for_each_sg(sg, s, nents, i) {
1197 if (sg_dma_is_bus_address(s)) {
1198 sg_dma_unmark_bus_address(s);
1199 } else {
1200 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1201 s->offset += sg_dma_address(s);
1202 if (sg_dma_len(s))
1203 s->length = sg_dma_len(s);
1204 }
1205 sg_dma_address(s) = DMA_MAPPING_ERROR;
1206 sg_dma_len(s) = 0;
1207 }
1208 }
1209
iommu_dma_unmap_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1210 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1211 int nents, enum dma_data_direction dir, unsigned long attrs)
1212 {
1213 struct scatterlist *s;
1214 int i;
1215
1216 for_each_sg(sg, s, nents, i)
1217 iommu_dma_unmap_page(dev, sg_dma_address(s),
1218 sg_dma_len(s), dir, attrs);
1219 }
1220
iommu_dma_map_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1221 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1222 int nents, enum dma_data_direction dir, unsigned long attrs)
1223 {
1224 struct scatterlist *s;
1225 int i;
1226
1227 sg_dma_mark_swiotlb(sg);
1228
1229 for_each_sg(sg, s, nents, i) {
1230 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1231 s->offset, s->length, dir, attrs);
1232 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1233 goto out_unmap;
1234 sg_dma_len(s) = s->length;
1235 }
1236
1237 return nents;
1238
1239 out_unmap:
1240 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1241 return -EIO;
1242 }
1243
1244 /*
1245 * The DMA API client is passing in a scatterlist which could describe
1246 * any old buffer layout, but the IOMMU API requires everything to be
1247 * aligned to IOMMU pages. Hence the need for this complicated bit of
1248 * impedance-matching, to be able to hand off a suitably-aligned list,
1249 * but still preserve the original offsets and sizes for the caller.
1250 */
iommu_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1251 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1252 int nents, enum dma_data_direction dir, unsigned long attrs)
1253 {
1254 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1255 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1256 struct iova_domain *iovad = &cookie->iovad;
1257 struct scatterlist *s, *prev = NULL;
1258 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1259 struct pci_p2pdma_map_state p2pdma_state = {};
1260 enum pci_p2pdma_map_type map;
1261 dma_addr_t iova;
1262 size_t iova_len = 0;
1263 unsigned long mask = dma_get_seg_boundary(dev);
1264 ssize_t ret;
1265 int i;
1266
1267 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1268 ret = iommu_deferred_attach(dev, domain);
1269 if (ret)
1270 goto out;
1271 }
1272
1273 if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1274 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1275
1276 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1277 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1278
1279 /*
1280 * Work out how much IOVA space we need, and align the segments to
1281 * IOVA granules for the IOMMU driver to handle. With some clever
1282 * trickery we can modify the list in-place, but reversibly, by
1283 * stashing the unaligned parts in the as-yet-unused DMA fields.
1284 */
1285 for_each_sg(sg, s, nents, i) {
1286 size_t s_iova_off = iova_offset(iovad, s->offset);
1287 size_t s_length = s->length;
1288 size_t pad_len = (mask - iova_len + 1) & mask;
1289
1290 if (is_pci_p2pdma_page(sg_page(s))) {
1291 map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1292 switch (map) {
1293 case PCI_P2PDMA_MAP_BUS_ADDR:
1294 /*
1295 * iommu_map_sg() will skip this segment as
1296 * it is marked as a bus address,
1297 * __finalise_sg() will copy the dma address
1298 * into the output segment.
1299 */
1300 continue;
1301 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1302 /*
1303 * Mapping through host bridge should be
1304 * mapped with regular IOVAs, thus we
1305 * do nothing here and continue below.
1306 */
1307 break;
1308 default:
1309 ret = -EREMOTEIO;
1310 goto out_restore_sg;
1311 }
1312 }
1313
1314 sg_dma_address(s) = s_iova_off;
1315 sg_dma_len(s) = s_length;
1316 s->offset -= s_iova_off;
1317 s_length = iova_align(iovad, s_length + s_iova_off);
1318 s->length = s_length;
1319
1320 /*
1321 * Due to the alignment of our single IOVA allocation, we can
1322 * depend on these assumptions about the segment boundary mask:
1323 * - If mask size >= IOVA size, then the IOVA range cannot
1324 * possibly fall across a boundary, so we don't care.
1325 * - If mask size < IOVA size, then the IOVA range must start
1326 * exactly on a boundary, therefore we can lay things out
1327 * based purely on segment lengths without needing to know
1328 * the actual addresses beforehand.
1329 * - The mask must be a power of 2, so pad_len == 0 if
1330 * iova_len == 0, thus we cannot dereference prev the first
1331 * time through here (i.e. before it has a meaningful value).
1332 */
1333 if (pad_len && pad_len < s_length - 1) {
1334 prev->length += pad_len;
1335 iova_len += pad_len;
1336 }
1337
1338 iova_len += s_length;
1339 prev = s;
1340 }
1341
1342 if (!iova_len)
1343 return __finalise_sg(dev, sg, nents, 0);
1344
1345 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1346 if (!iova) {
1347 ret = -ENOMEM;
1348 goto out_restore_sg;
1349 }
1350
1351 /*
1352 * We'll leave any physical concatenation to the IOMMU driver's
1353 * implementation - it knows better than we do.
1354 */
1355 ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1356 if (ret < 0 || ret < iova_len)
1357 goto out_free_iova;
1358
1359 return __finalise_sg(dev, sg, nents, iova);
1360
1361 out_free_iova:
1362 iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1363 out_restore_sg:
1364 __invalidate_sg(sg, nents);
1365 out:
1366 if (ret != -ENOMEM && ret != -EREMOTEIO)
1367 return -EINVAL;
1368 return ret;
1369 }
1370
iommu_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1371 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1372 int nents, enum dma_data_direction dir, unsigned long attrs)
1373 {
1374 dma_addr_t end = 0, start;
1375 struct scatterlist *tmp;
1376 int i;
1377
1378 if (sg_dma_is_swiotlb(sg)) {
1379 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1380 return;
1381 }
1382
1383 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1384 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1385
1386 /*
1387 * The scatterlist segments are mapped into a single
1388 * contiguous IOVA allocation, the start and end points
1389 * just have to be determined.
1390 */
1391 for_each_sg(sg, tmp, nents, i) {
1392 if (sg_dma_is_bus_address(tmp)) {
1393 sg_dma_unmark_bus_address(tmp);
1394 continue;
1395 }
1396
1397 if (sg_dma_len(tmp) == 0)
1398 break;
1399
1400 start = sg_dma_address(tmp);
1401 break;
1402 }
1403
1404 nents -= i;
1405 for_each_sg(tmp, tmp, nents, i) {
1406 if (sg_dma_is_bus_address(tmp)) {
1407 sg_dma_unmark_bus_address(tmp);
1408 continue;
1409 }
1410
1411 if (sg_dma_len(tmp) == 0)
1412 break;
1413
1414 end = sg_dma_address(tmp) + sg_dma_len(tmp);
1415 }
1416
1417 if (end)
1418 __iommu_dma_unmap(dev, start, end - start);
1419 }
1420
iommu_dma_map_resource(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1421 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1422 size_t size, enum dma_data_direction dir, unsigned long attrs)
1423 {
1424 return __iommu_dma_map(dev, phys, size,
1425 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1426 dma_get_mask(dev));
1427 }
1428
iommu_dma_unmap_resource(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1429 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1430 size_t size, enum dma_data_direction dir, unsigned long attrs)
1431 {
1432 __iommu_dma_unmap(dev, handle, size);
1433 }
1434
__iommu_dma_free(struct device * dev,size_t size,void * cpu_addr)1435 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1436 {
1437 size_t alloc_size = PAGE_ALIGN(size);
1438 int count = alloc_size >> PAGE_SHIFT;
1439 struct page *page = NULL, **pages = NULL;
1440
1441 /* Non-coherent atomic allocation? Easy */
1442 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1443 dma_free_from_pool(dev, cpu_addr, alloc_size))
1444 return;
1445
1446 if (is_vmalloc_addr(cpu_addr)) {
1447 /*
1448 * If it the address is remapped, then it's either non-coherent
1449 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1450 */
1451 pages = dma_common_find_pages(cpu_addr);
1452 if (!pages)
1453 page = vmalloc_to_page(cpu_addr);
1454 dma_common_free_remap(cpu_addr, alloc_size);
1455 } else {
1456 /* Lowmem means a coherent atomic or CMA allocation */
1457 page = virt_to_page(cpu_addr);
1458 }
1459
1460 if (pages)
1461 __iommu_dma_free_pages(pages, count);
1462 if (page)
1463 dma_free_contiguous(dev, page, alloc_size);
1464 }
1465
iommu_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1466 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1467 dma_addr_t handle, unsigned long attrs)
1468 {
1469 __iommu_dma_unmap(dev, handle, size);
1470 __iommu_dma_free(dev, size, cpu_addr);
1471 }
1472
iommu_dma_alloc_pages(struct device * dev,size_t size,struct page ** pagep,gfp_t gfp,unsigned long attrs)1473 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1474 struct page **pagep, gfp_t gfp, unsigned long attrs)
1475 {
1476 bool coherent = dev_is_dma_coherent(dev);
1477 size_t alloc_size = PAGE_ALIGN(size);
1478 int node = dev_to_node(dev);
1479 struct page *page = NULL;
1480 void *cpu_addr;
1481
1482 page = dma_alloc_contiguous(dev, alloc_size, gfp);
1483 if (!page)
1484 page = alloc_pages_node(node, gfp, get_order(alloc_size));
1485 if (!page)
1486 return NULL;
1487
1488 if (!coherent || PageHighMem(page)) {
1489 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1490
1491 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1492 prot, __builtin_return_address(0));
1493 if (!cpu_addr)
1494 goto out_free_pages;
1495
1496 if (!coherent)
1497 arch_dma_prep_coherent(page, size);
1498 } else {
1499 cpu_addr = page_address(page);
1500 }
1501
1502 *pagep = page;
1503 memset(cpu_addr, 0, alloc_size);
1504 return cpu_addr;
1505 out_free_pages:
1506 dma_free_contiguous(dev, page, alloc_size);
1507 return NULL;
1508 }
1509
iommu_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1510 static void *iommu_dma_alloc(struct device *dev, size_t size,
1511 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1512 {
1513 bool coherent = dev_is_dma_coherent(dev);
1514 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1515 struct page *page = NULL;
1516 void *cpu_addr;
1517
1518 gfp |= __GFP_ZERO;
1519
1520 if (gfpflags_allow_blocking(gfp) &&
1521 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1522 return iommu_dma_alloc_remap(dev, size, handle, gfp,
1523 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1524 }
1525
1526 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1527 !gfpflags_allow_blocking(gfp) && !coherent)
1528 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1529 gfp, NULL);
1530 else
1531 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1532 if (!cpu_addr)
1533 return NULL;
1534
1535 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1536 dev->coherent_dma_mask);
1537 if (*handle == DMA_MAPPING_ERROR) {
1538 __iommu_dma_free(dev, size, cpu_addr);
1539 return NULL;
1540 }
1541
1542 return cpu_addr;
1543 }
1544
iommu_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1545 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1546 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1547 unsigned long attrs)
1548 {
1549 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1550 unsigned long pfn, off = vma->vm_pgoff;
1551 int ret;
1552
1553 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1554
1555 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1556 return ret;
1557
1558 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1559 return -ENXIO;
1560
1561 if (is_vmalloc_addr(cpu_addr)) {
1562 struct page **pages = dma_common_find_pages(cpu_addr);
1563
1564 if (pages)
1565 return vm_map_pages(vma, pages, nr_pages);
1566 pfn = vmalloc_to_pfn(cpu_addr);
1567 } else {
1568 pfn = page_to_pfn(virt_to_page(cpu_addr));
1569 }
1570
1571 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1572 vma->vm_end - vma->vm_start,
1573 vma->vm_page_prot);
1574 }
1575
iommu_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1576 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1577 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1578 unsigned long attrs)
1579 {
1580 struct page *page;
1581 int ret;
1582
1583 if (is_vmalloc_addr(cpu_addr)) {
1584 struct page **pages = dma_common_find_pages(cpu_addr);
1585
1586 if (pages) {
1587 return sg_alloc_table_from_pages(sgt, pages,
1588 PAGE_ALIGN(size) >> PAGE_SHIFT,
1589 0, size, GFP_KERNEL);
1590 }
1591
1592 page = vmalloc_to_page(cpu_addr);
1593 } else {
1594 page = virt_to_page(cpu_addr);
1595 }
1596
1597 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1598 if (!ret)
1599 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1600 return ret;
1601 }
1602
iommu_dma_get_merge_boundary(struct device * dev)1603 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1604 {
1605 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1606
1607 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1608 }
1609
iommu_dma_opt_mapping_size(void)1610 static size_t iommu_dma_opt_mapping_size(void)
1611 {
1612 return iova_rcache_range();
1613 }
1614
iommu_dma_max_mapping_size(struct device * dev)1615 static size_t iommu_dma_max_mapping_size(struct device *dev)
1616 {
1617 if (dev_is_untrusted(dev))
1618 return swiotlb_max_mapping_size(dev);
1619
1620 return SIZE_MAX;
1621 }
1622
1623 static const struct dma_map_ops iommu_dma_ops = {
1624 .flags = DMA_F_PCI_P2PDMA_SUPPORTED,
1625 .alloc = iommu_dma_alloc,
1626 .free = iommu_dma_free,
1627 .alloc_pages = dma_common_alloc_pages,
1628 .free_pages = dma_common_free_pages,
1629 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
1630 .free_noncontiguous = iommu_dma_free_noncontiguous,
1631 .mmap = iommu_dma_mmap,
1632 .get_sgtable = iommu_dma_get_sgtable,
1633 .map_page = iommu_dma_map_page,
1634 .unmap_page = iommu_dma_unmap_page,
1635 .map_sg = iommu_dma_map_sg,
1636 .unmap_sg = iommu_dma_unmap_sg,
1637 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1638 .sync_single_for_device = iommu_dma_sync_single_for_device,
1639 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1640 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1641 .map_resource = iommu_dma_map_resource,
1642 .unmap_resource = iommu_dma_unmap_resource,
1643 .get_merge_boundary = iommu_dma_get_merge_boundary,
1644 .opt_mapping_size = iommu_dma_opt_mapping_size,
1645 .max_mapping_size = iommu_dma_max_mapping_size,
1646 };
1647
1648 /*
1649 * The IOMMU core code allocates the default DMA domain, which the underlying
1650 * IOMMU driver needs to support via the dma-iommu layer.
1651 */
iommu_setup_dma_ops(struct device * dev,u64 dma_base,u64 dma_limit)1652 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1653 {
1654 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1655
1656 if (!domain)
1657 goto out_err;
1658
1659 /*
1660 * The IOMMU core code allocates the default DMA domain, which the
1661 * underlying IOMMU driver needs to support via the dma-iommu layer.
1662 */
1663 if (iommu_is_dma_domain(domain)) {
1664 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1665 goto out_err;
1666 dev->dma_ops = &iommu_dma_ops;
1667 }
1668
1669 return;
1670 out_err:
1671 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1672 dev_name(dev));
1673 }
1674 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1675
iommu_dma_get_msi_page(struct device * dev,phys_addr_t msi_addr,struct iommu_domain * domain)1676 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1677 phys_addr_t msi_addr, struct iommu_domain *domain)
1678 {
1679 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1680 struct iommu_dma_msi_page *msi_page;
1681 dma_addr_t iova;
1682 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1683 size_t size = cookie_msi_granule(cookie);
1684
1685 msi_addr &= ~(phys_addr_t)(size - 1);
1686 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1687 if (msi_page->phys == msi_addr)
1688 return msi_page;
1689
1690 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1691 if (!msi_page)
1692 return NULL;
1693
1694 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1695 if (!iova)
1696 goto out_free_page;
1697
1698 if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
1699 goto out_free_iova;
1700
1701 INIT_LIST_HEAD(&msi_page->list);
1702 msi_page->phys = msi_addr;
1703 msi_page->iova = iova;
1704 list_add(&msi_page->list, &cookie->msi_page_list);
1705 return msi_page;
1706
1707 out_free_iova:
1708 iommu_dma_free_iova(cookie, iova, size, NULL);
1709 out_free_page:
1710 kfree(msi_page);
1711 return NULL;
1712 }
1713
1714 /**
1715 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1716 * @desc: MSI descriptor, will store the MSI page
1717 * @msi_addr: MSI target address to be mapped
1718 *
1719 * Return: 0 on success or negative error code if the mapping failed.
1720 */
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)1721 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1722 {
1723 struct device *dev = msi_desc_to_dev(desc);
1724 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1725 struct iommu_dma_msi_page *msi_page;
1726 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1727
1728 if (!domain || !domain->iova_cookie) {
1729 desc->iommu_cookie = NULL;
1730 return 0;
1731 }
1732
1733 /*
1734 * In fact the whole prepare operation should already be serialised by
1735 * irq_domain_mutex further up the callchain, but that's pretty subtle
1736 * on its own, so consider this locking as failsafe documentation...
1737 */
1738 mutex_lock(&msi_prepare_lock);
1739 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1740 mutex_unlock(&msi_prepare_lock);
1741
1742 msi_desc_set_iommu_cookie(desc, msi_page);
1743
1744 if (!msi_page)
1745 return -ENOMEM;
1746 return 0;
1747 }
1748
1749 /**
1750 * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1751 * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1752 * @msg: MSI message containing target physical address
1753 */
iommu_dma_compose_msi_msg(struct msi_desc * desc,struct msi_msg * msg)1754 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1755 {
1756 struct device *dev = msi_desc_to_dev(desc);
1757 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1758 const struct iommu_dma_msi_page *msi_page;
1759
1760 msi_page = msi_desc_get_iommu_cookie(desc);
1761
1762 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1763 return;
1764
1765 msg->address_hi = upper_32_bits(msi_page->iova);
1766 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1767 msg->address_lo += lower_32_bits(msi_page->iova);
1768 }
1769
iommu_dma_init(void)1770 static int iommu_dma_init(void)
1771 {
1772 if (is_kdump_kernel())
1773 static_branch_enable(&iommu_deferred_attach_enabled);
1774
1775 return iova_cache_get();
1776 }
1777 arch_initcall(iommu_dma_init);
1778