1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Samsung S5H1411 VSB/QAM demodulator driver
4
5 Copyright (C) 2008 Steven Toth <stoth@linuxtv.org>
6
7
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/string.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <media/dvb_frontend.h>
17 #include "s5h1411.h"
18
19 struct s5h1411_state {
20
21 struct i2c_adapter *i2c;
22
23 /* configuration settings */
24 const struct s5h1411_config *config;
25
26 struct dvb_frontend frontend;
27
28 enum fe_modulation current_modulation;
29 unsigned int first_tune:1;
30
31 u32 current_frequency;
32 int if_freq;
33
34 u8 inversion;
35 };
36
37 static int debug;
38
39 #define dprintk(arg...) do { \
40 if (debug) \
41 printk(arg); \
42 } while (0)
43
44 /* Register values to initialise the demod, defaults to VSB */
45 static struct init_tab {
46 u8 addr;
47 u8 reg;
48 u16 data;
49 } init_tab[] = {
50 { S5H1411_I2C_TOP_ADDR, 0x00, 0x0071, },
51 { S5H1411_I2C_TOP_ADDR, 0x08, 0x0047, },
52 { S5H1411_I2C_TOP_ADDR, 0x1c, 0x0400, },
53 { S5H1411_I2C_TOP_ADDR, 0x1e, 0x0370, },
54 { S5H1411_I2C_TOP_ADDR, 0x1f, 0x342c, },
55 { S5H1411_I2C_TOP_ADDR, 0x24, 0x0231, },
56 { S5H1411_I2C_TOP_ADDR, 0x25, 0x1011, },
57 { S5H1411_I2C_TOP_ADDR, 0x26, 0x0f07, },
58 { S5H1411_I2C_TOP_ADDR, 0x27, 0x0f04, },
59 { S5H1411_I2C_TOP_ADDR, 0x28, 0x070f, },
60 { S5H1411_I2C_TOP_ADDR, 0x29, 0x2820, },
61 { S5H1411_I2C_TOP_ADDR, 0x2a, 0x102e, },
62 { S5H1411_I2C_TOP_ADDR, 0x2b, 0x0220, },
63 { S5H1411_I2C_TOP_ADDR, 0x2e, 0x0d0e, },
64 { S5H1411_I2C_TOP_ADDR, 0x2f, 0x1013, },
65 { S5H1411_I2C_TOP_ADDR, 0x31, 0x171b, },
66 { S5H1411_I2C_TOP_ADDR, 0x32, 0x0e0f, },
67 { S5H1411_I2C_TOP_ADDR, 0x33, 0x0f10, },
68 { S5H1411_I2C_TOP_ADDR, 0x34, 0x170e, },
69 { S5H1411_I2C_TOP_ADDR, 0x35, 0x4b10, },
70 { S5H1411_I2C_TOP_ADDR, 0x36, 0x0f17, },
71 { S5H1411_I2C_TOP_ADDR, 0x3c, 0x1577, },
72 { S5H1411_I2C_TOP_ADDR, 0x3d, 0x081a, },
73 { S5H1411_I2C_TOP_ADDR, 0x3e, 0x77ee, },
74 { S5H1411_I2C_TOP_ADDR, 0x40, 0x1e09, },
75 { S5H1411_I2C_TOP_ADDR, 0x41, 0x0f0c, },
76 { S5H1411_I2C_TOP_ADDR, 0x42, 0x1f10, },
77 { S5H1411_I2C_TOP_ADDR, 0x4d, 0x0509, },
78 { S5H1411_I2C_TOP_ADDR, 0x4e, 0x0a00, },
79 { S5H1411_I2C_TOP_ADDR, 0x50, 0x0000, },
80 { S5H1411_I2C_TOP_ADDR, 0x5b, 0x0000, },
81 { S5H1411_I2C_TOP_ADDR, 0x5c, 0x0008, },
82 { S5H1411_I2C_TOP_ADDR, 0x57, 0x1101, },
83 { S5H1411_I2C_TOP_ADDR, 0x65, 0x007c, },
84 { S5H1411_I2C_TOP_ADDR, 0x68, 0x0512, },
85 { S5H1411_I2C_TOP_ADDR, 0x69, 0x0258, },
86 { S5H1411_I2C_TOP_ADDR, 0x70, 0x0004, },
87 { S5H1411_I2C_TOP_ADDR, 0x71, 0x0007, },
88 { S5H1411_I2C_TOP_ADDR, 0x76, 0x00a9, },
89 { S5H1411_I2C_TOP_ADDR, 0x78, 0x3141, },
90 { S5H1411_I2C_TOP_ADDR, 0x7a, 0x3141, },
91 { S5H1411_I2C_TOP_ADDR, 0xb3, 0x8003, },
92 { S5H1411_I2C_TOP_ADDR, 0xb5, 0xa6bb, },
93 { S5H1411_I2C_TOP_ADDR, 0xb6, 0x0609, },
94 { S5H1411_I2C_TOP_ADDR, 0xb7, 0x2f06, },
95 { S5H1411_I2C_TOP_ADDR, 0xb8, 0x003f, },
96 { S5H1411_I2C_TOP_ADDR, 0xb9, 0x2700, },
97 { S5H1411_I2C_TOP_ADDR, 0xba, 0xfac8, },
98 { S5H1411_I2C_TOP_ADDR, 0xbe, 0x1003, },
99 { S5H1411_I2C_TOP_ADDR, 0xbf, 0x103f, },
100 { S5H1411_I2C_TOP_ADDR, 0xce, 0x2000, },
101 { S5H1411_I2C_TOP_ADDR, 0xcf, 0x0800, },
102 { S5H1411_I2C_TOP_ADDR, 0xd0, 0x0800, },
103 { S5H1411_I2C_TOP_ADDR, 0xd1, 0x0400, },
104 { S5H1411_I2C_TOP_ADDR, 0xd2, 0x0800, },
105 { S5H1411_I2C_TOP_ADDR, 0xd3, 0x2000, },
106 { S5H1411_I2C_TOP_ADDR, 0xd4, 0x3000, },
107 { S5H1411_I2C_TOP_ADDR, 0xdb, 0x4a9b, },
108 { S5H1411_I2C_TOP_ADDR, 0xdc, 0x1000, },
109 { S5H1411_I2C_TOP_ADDR, 0xde, 0x0001, },
110 { S5H1411_I2C_TOP_ADDR, 0xdf, 0x0000, },
111 { S5H1411_I2C_TOP_ADDR, 0xe3, 0x0301, },
112 { S5H1411_I2C_QAM_ADDR, 0xf3, 0x0000, },
113 { S5H1411_I2C_QAM_ADDR, 0xf3, 0x0001, },
114 { S5H1411_I2C_QAM_ADDR, 0x08, 0x0600, },
115 { S5H1411_I2C_QAM_ADDR, 0x18, 0x4201, },
116 { S5H1411_I2C_QAM_ADDR, 0x1e, 0x6476, },
117 { S5H1411_I2C_QAM_ADDR, 0x21, 0x0830, },
118 { S5H1411_I2C_QAM_ADDR, 0x0c, 0x5679, },
119 { S5H1411_I2C_QAM_ADDR, 0x0d, 0x579b, },
120 { S5H1411_I2C_QAM_ADDR, 0x24, 0x0102, },
121 { S5H1411_I2C_QAM_ADDR, 0x31, 0x7488, },
122 { S5H1411_I2C_QAM_ADDR, 0x32, 0x0a08, },
123 { S5H1411_I2C_QAM_ADDR, 0x3d, 0x8689, },
124 { S5H1411_I2C_QAM_ADDR, 0x49, 0x0048, },
125 { S5H1411_I2C_QAM_ADDR, 0x57, 0x2012, },
126 { S5H1411_I2C_QAM_ADDR, 0x5d, 0x7676, },
127 { S5H1411_I2C_QAM_ADDR, 0x04, 0x0400, },
128 { S5H1411_I2C_QAM_ADDR, 0x58, 0x00c0, },
129 { S5H1411_I2C_QAM_ADDR, 0x5b, 0x0100, },
130 };
131
132 /* VSB SNR lookup table */
133 static struct vsb_snr_tab {
134 u16 val;
135 u16 data;
136 } vsb_snr_tab[] = {
137 { 0x39f, 300, },
138 { 0x39b, 295, },
139 { 0x397, 290, },
140 { 0x394, 285, },
141 { 0x38f, 280, },
142 { 0x38b, 275, },
143 { 0x387, 270, },
144 { 0x382, 265, },
145 { 0x37d, 260, },
146 { 0x377, 255, },
147 { 0x370, 250, },
148 { 0x36a, 245, },
149 { 0x364, 240, },
150 { 0x35b, 235, },
151 { 0x353, 230, },
152 { 0x349, 225, },
153 { 0x340, 220, },
154 { 0x337, 215, },
155 { 0x327, 210, },
156 { 0x31b, 205, },
157 { 0x310, 200, },
158 { 0x302, 195, },
159 { 0x2f3, 190, },
160 { 0x2e4, 185, },
161 { 0x2d7, 180, },
162 { 0x2cd, 175, },
163 { 0x2bb, 170, },
164 { 0x2a9, 165, },
165 { 0x29e, 160, },
166 { 0x284, 155, },
167 { 0x27a, 150, },
168 { 0x260, 145, },
169 { 0x23a, 140, },
170 { 0x224, 135, },
171 { 0x213, 130, },
172 { 0x204, 125, },
173 { 0x1fe, 120, },
174 { 0, 0, },
175 };
176
177 /* QAM64 SNR lookup table */
178 static struct qam64_snr_tab {
179 u16 val;
180 u16 data;
181 } qam64_snr_tab[] = {
182 { 0x0001, 0, },
183 { 0x0af0, 300, },
184 { 0x0d80, 290, },
185 { 0x10a0, 280, },
186 { 0x14b5, 270, },
187 { 0x1590, 268, },
188 { 0x1680, 266, },
189 { 0x17b0, 264, },
190 { 0x18c0, 262, },
191 { 0x19b0, 260, },
192 { 0x1ad0, 258, },
193 { 0x1d00, 256, },
194 { 0x1da0, 254, },
195 { 0x1ef0, 252, },
196 { 0x2050, 250, },
197 { 0x20f0, 249, },
198 { 0x21d0, 248, },
199 { 0x22b0, 247, },
200 { 0x23a0, 246, },
201 { 0x2470, 245, },
202 { 0x24f0, 244, },
203 { 0x25a0, 243, },
204 { 0x26c0, 242, },
205 { 0x27b0, 241, },
206 { 0x28d0, 240, },
207 { 0x29b0, 239, },
208 { 0x2ad0, 238, },
209 { 0x2ba0, 237, },
210 { 0x2c80, 236, },
211 { 0x2d20, 235, },
212 { 0x2e00, 234, },
213 { 0x2f10, 233, },
214 { 0x3050, 232, },
215 { 0x3190, 231, },
216 { 0x3300, 230, },
217 { 0x3340, 229, },
218 { 0x3200, 228, },
219 { 0x3550, 227, },
220 { 0x3610, 226, },
221 { 0x3600, 225, },
222 { 0x3700, 224, },
223 { 0x3800, 223, },
224 { 0x3920, 222, },
225 { 0x3a20, 221, },
226 { 0x3b30, 220, },
227 { 0x3d00, 219, },
228 { 0x3e00, 218, },
229 { 0x4000, 217, },
230 { 0x4100, 216, },
231 { 0x4300, 215, },
232 { 0x4400, 214, },
233 { 0x4600, 213, },
234 { 0x4700, 212, },
235 { 0x4800, 211, },
236 { 0x4a00, 210, },
237 { 0x4b00, 209, },
238 { 0x4d00, 208, },
239 { 0x4f00, 207, },
240 { 0x5050, 206, },
241 { 0x5200, 205, },
242 { 0x53c0, 204, },
243 { 0x5450, 203, },
244 { 0x5650, 202, },
245 { 0x5820, 201, },
246 { 0x6000, 200, },
247 { 0xffff, 0, },
248 };
249
250 /* QAM256 SNR lookup table */
251 static struct qam256_snr_tab {
252 u16 val;
253 u16 data;
254 } qam256_snr_tab[] = {
255 { 0x0001, 0, },
256 { 0x0970, 400, },
257 { 0x0a90, 390, },
258 { 0x0b90, 380, },
259 { 0x0d90, 370, },
260 { 0x0ff0, 360, },
261 { 0x1240, 350, },
262 { 0x1345, 348, },
263 { 0x13c0, 346, },
264 { 0x14c0, 344, },
265 { 0x1500, 342, },
266 { 0x1610, 340, },
267 { 0x1700, 338, },
268 { 0x1800, 336, },
269 { 0x18b0, 334, },
270 { 0x1900, 332, },
271 { 0x1ab0, 330, },
272 { 0x1bc0, 328, },
273 { 0x1cb0, 326, },
274 { 0x1db0, 324, },
275 { 0x1eb0, 322, },
276 { 0x2030, 320, },
277 { 0x2200, 318, },
278 { 0x2280, 316, },
279 { 0x2410, 314, },
280 { 0x25b0, 312, },
281 { 0x27a0, 310, },
282 { 0x2840, 308, },
283 { 0x29d0, 306, },
284 { 0x2b10, 304, },
285 { 0x2d30, 302, },
286 { 0x2f20, 300, },
287 { 0x30c0, 298, },
288 { 0x3260, 297, },
289 { 0x32c0, 296, },
290 { 0x3300, 295, },
291 { 0x33b0, 294, },
292 { 0x34b0, 293, },
293 { 0x35a0, 292, },
294 { 0x3650, 291, },
295 { 0x3800, 290, },
296 { 0x3900, 289, },
297 { 0x3a50, 288, },
298 { 0x3b30, 287, },
299 { 0x3cb0, 286, },
300 { 0x3e20, 285, },
301 { 0x3fa0, 284, },
302 { 0x40a0, 283, },
303 { 0x41c0, 282, },
304 { 0x42f0, 281, },
305 { 0x44a0, 280, },
306 { 0x4600, 279, },
307 { 0x47b0, 278, },
308 { 0x4900, 277, },
309 { 0x4a00, 276, },
310 { 0x4ba0, 275, },
311 { 0x4d00, 274, },
312 { 0x4f00, 273, },
313 { 0x5000, 272, },
314 { 0x51f0, 272, },
315 { 0x53a0, 270, },
316 { 0x5520, 269, },
317 { 0x5700, 268, },
318 { 0x5800, 267, },
319 { 0x5a00, 266, },
320 { 0x5c00, 265, },
321 { 0x5d00, 264, },
322 { 0x5f00, 263, },
323 { 0x6000, 262, },
324 { 0x6200, 261, },
325 { 0x6400, 260, },
326 { 0xffff, 0, },
327 };
328
329 /* 8 bit registers, 16 bit values */
s5h1411_writereg(struct s5h1411_state * state,u8 addr,u8 reg,u16 data)330 static int s5h1411_writereg(struct s5h1411_state *state,
331 u8 addr, u8 reg, u16 data)
332 {
333 int ret;
334 u8 buf[] = { reg, data >> 8, data & 0xff };
335
336 struct i2c_msg msg = { .addr = addr, .flags = 0, .buf = buf, .len = 3 };
337
338 ret = i2c_transfer(state->i2c, &msg, 1);
339
340 if (ret != 1)
341 printk(KERN_ERR "%s: writereg error 0x%02x 0x%02x 0x%04x, ret == %i)\n",
342 __func__, addr, reg, data, ret);
343
344 return (ret != 1) ? -1 : 0;
345 }
346
s5h1411_readreg(struct s5h1411_state * state,u8 addr,u8 reg)347 static u16 s5h1411_readreg(struct s5h1411_state *state, u8 addr, u8 reg)
348 {
349 int ret;
350 u8 b0[] = { reg };
351 u8 b1[] = { 0, 0 };
352
353 struct i2c_msg msg[] = {
354 { .addr = addr, .flags = 0, .buf = b0, .len = 1 },
355 { .addr = addr, .flags = I2C_M_RD, .buf = b1, .len = 2 } };
356
357 ret = i2c_transfer(state->i2c, msg, 2);
358
359 if (ret != 2)
360 printk(KERN_ERR "%s: readreg error (ret == %i)\n",
361 __func__, ret);
362 return (b1[0] << 8) | b1[1];
363 }
364
s5h1411_softreset(struct dvb_frontend * fe)365 static int s5h1411_softreset(struct dvb_frontend *fe)
366 {
367 struct s5h1411_state *state = fe->demodulator_priv;
368
369 dprintk("%s()\n", __func__);
370
371 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf7, 0);
372 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf7, 1);
373 return 0;
374 }
375
s5h1411_set_if_freq(struct dvb_frontend * fe,int KHz)376 static int s5h1411_set_if_freq(struct dvb_frontend *fe, int KHz)
377 {
378 struct s5h1411_state *state = fe->demodulator_priv;
379
380 dprintk("%s(%d KHz)\n", __func__, KHz);
381
382 switch (KHz) {
383 case 3250:
384 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x10d5);
385 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x5342);
386 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x10d9);
387 break;
388 case 3500:
389 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x1225);
390 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x1e96);
391 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x1225);
392 break;
393 case 4000:
394 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x14bc);
395 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0xb53e);
396 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x14bd);
397 break;
398 default:
399 dprintk("%s(%d KHz) Invalid, defaulting to 5380\n",
400 __func__, KHz);
401 fallthrough;
402 case 5380:
403 case 44000:
404 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x1be4);
405 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x3655);
406 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x1be4);
407 break;
408 }
409
410 state->if_freq = KHz;
411
412 return 0;
413 }
414
s5h1411_set_mpeg_timing(struct dvb_frontend * fe,int mode)415 static int s5h1411_set_mpeg_timing(struct dvb_frontend *fe, int mode)
416 {
417 struct s5h1411_state *state = fe->demodulator_priv;
418 u16 val;
419
420 dprintk("%s(%d)\n", __func__, mode);
421
422 val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xbe) & 0xcfff;
423 switch (mode) {
424 case S5H1411_MPEGTIMING_CONTINUOUS_INVERTING_CLOCK:
425 val |= 0x0000;
426 break;
427 case S5H1411_MPEGTIMING_CONTINUOUS_NONINVERTING_CLOCK:
428 dprintk("%s(%d) Mode1 or Defaulting\n", __func__, mode);
429 val |= 0x1000;
430 break;
431 case S5H1411_MPEGTIMING_NONCONTINUOUS_INVERTING_CLOCK:
432 val |= 0x2000;
433 break;
434 case S5H1411_MPEGTIMING_NONCONTINUOUS_NONINVERTING_CLOCK:
435 val |= 0x3000;
436 break;
437 default:
438 return -EINVAL;
439 }
440
441 /* Configure MPEG Signal Timing charactistics */
442 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xbe, val);
443 }
444
s5h1411_set_spectralinversion(struct dvb_frontend * fe,int inversion)445 static int s5h1411_set_spectralinversion(struct dvb_frontend *fe, int inversion)
446 {
447 struct s5h1411_state *state = fe->demodulator_priv;
448 u16 val;
449
450 dprintk("%s(%d)\n", __func__, inversion);
451 val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x24) & ~0x1000;
452
453 if (inversion == 1)
454 val |= 0x1000; /* Inverted */
455
456 state->inversion = inversion;
457 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x24, val);
458 }
459
s5h1411_set_serialmode(struct dvb_frontend * fe,int serial)460 static int s5h1411_set_serialmode(struct dvb_frontend *fe, int serial)
461 {
462 struct s5h1411_state *state = fe->demodulator_priv;
463 u16 val;
464
465 dprintk("%s(%d)\n", __func__, serial);
466 val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xbd) & ~0x100;
467
468 if (serial == 1)
469 val |= 0x100;
470
471 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xbd, val);
472 }
473
s5h1411_enable_modulation(struct dvb_frontend * fe,enum fe_modulation m)474 static int s5h1411_enable_modulation(struct dvb_frontend *fe,
475 enum fe_modulation m)
476 {
477 struct s5h1411_state *state = fe->demodulator_priv;
478
479 dprintk("%s(0x%08x)\n", __func__, m);
480
481 if ((state->first_tune == 0) && (m == state->current_modulation)) {
482 dprintk("%s() Already at desired modulation. Skipping...\n",
483 __func__);
484 return 0;
485 }
486
487 switch (m) {
488 case VSB_8:
489 dprintk("%s() VSB_8\n", __func__);
490 s5h1411_set_if_freq(fe, state->config->vsb_if);
491 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x00, 0x71);
492 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf6, 0x00);
493 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xcd, 0xf1);
494 break;
495 case QAM_64:
496 case QAM_256:
497 case QAM_AUTO:
498 dprintk("%s() QAM_AUTO (64/256)\n", __func__);
499 s5h1411_set_if_freq(fe, state->config->qam_if);
500 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x00, 0x0171);
501 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf6, 0x0001);
502 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x16, 0x1101);
503 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xcd, 0x00f0);
504 break;
505 default:
506 dprintk("%s() Invalid modulation\n", __func__);
507 return -EINVAL;
508 }
509
510 state->current_modulation = m;
511 state->first_tune = 0;
512 s5h1411_softreset(fe);
513
514 return 0;
515 }
516
s5h1411_i2c_gate_ctrl(struct dvb_frontend * fe,int enable)517 static int s5h1411_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
518 {
519 struct s5h1411_state *state = fe->demodulator_priv;
520
521 dprintk("%s(%d)\n", __func__, enable);
522
523 if (enable)
524 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 1);
525 else
526 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 0);
527 }
528
s5h1411_set_gpio(struct dvb_frontend * fe,int enable)529 static int s5h1411_set_gpio(struct dvb_frontend *fe, int enable)
530 {
531 struct s5h1411_state *state = fe->demodulator_priv;
532 u16 val;
533
534 dprintk("%s(%d)\n", __func__, enable);
535
536 val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xe0) & ~0x02;
537
538 if (enable)
539 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xe0,
540 val | 0x02);
541 else
542 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xe0, val);
543 }
544
s5h1411_set_powerstate(struct dvb_frontend * fe,int enable)545 static int s5h1411_set_powerstate(struct dvb_frontend *fe, int enable)
546 {
547 struct s5h1411_state *state = fe->demodulator_priv;
548
549 dprintk("%s(%d)\n", __func__, enable);
550
551 if (enable)
552 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf4, 1);
553 else {
554 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf4, 0);
555 s5h1411_softreset(fe);
556 }
557
558 return 0;
559 }
560
s5h1411_sleep(struct dvb_frontend * fe)561 static int s5h1411_sleep(struct dvb_frontend *fe)
562 {
563 return s5h1411_set_powerstate(fe, 1);
564 }
565
s5h1411_register_reset(struct dvb_frontend * fe)566 static int s5h1411_register_reset(struct dvb_frontend *fe)
567 {
568 struct s5h1411_state *state = fe->demodulator_priv;
569
570 dprintk("%s()\n", __func__);
571
572 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf3, 0);
573 }
574
575 /* Talk to the demod, set the FEC, GUARD, QAM settings etc */
s5h1411_set_frontend(struct dvb_frontend * fe)576 static int s5h1411_set_frontend(struct dvb_frontend *fe)
577 {
578 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
579 struct s5h1411_state *state = fe->demodulator_priv;
580
581 dprintk("%s(frequency=%d)\n", __func__, p->frequency);
582
583 s5h1411_softreset(fe);
584
585 state->current_frequency = p->frequency;
586
587 s5h1411_enable_modulation(fe, p->modulation);
588
589 if (fe->ops.tuner_ops.set_params) {
590 if (fe->ops.i2c_gate_ctrl)
591 fe->ops.i2c_gate_ctrl(fe, 1);
592
593 fe->ops.tuner_ops.set_params(fe);
594
595 if (fe->ops.i2c_gate_ctrl)
596 fe->ops.i2c_gate_ctrl(fe, 0);
597 }
598
599 /* Issue a reset to the demod so it knows to resync against the
600 newly tuned frequency */
601 s5h1411_softreset(fe);
602
603 return 0;
604 }
605
606 /* Reset the demod hardware and reset all of the configuration registers
607 to a default state. */
s5h1411_init(struct dvb_frontend * fe)608 static int s5h1411_init(struct dvb_frontend *fe)
609 {
610 struct s5h1411_state *state = fe->demodulator_priv;
611 int i;
612
613 dprintk("%s()\n", __func__);
614
615 s5h1411_set_powerstate(fe, 0);
616 s5h1411_register_reset(fe);
617
618 for (i = 0; i < ARRAY_SIZE(init_tab); i++)
619 s5h1411_writereg(state, init_tab[i].addr,
620 init_tab[i].reg,
621 init_tab[i].data);
622
623 /* The datasheet says that after initialisation, VSB is default */
624 state->current_modulation = VSB_8;
625
626 /* Although the datasheet says it's in VSB, empirical evidence
627 shows problems getting lock on the first tuning request. Make
628 sure we call enable_modulation the first time around */
629 state->first_tune = 1;
630
631 if (state->config->output_mode == S5H1411_SERIAL_OUTPUT)
632 /* Serial */
633 s5h1411_set_serialmode(fe, 1);
634 else
635 /* Parallel */
636 s5h1411_set_serialmode(fe, 0);
637
638 s5h1411_set_spectralinversion(fe, state->config->inversion);
639 s5h1411_set_if_freq(fe, state->config->vsb_if);
640 s5h1411_set_gpio(fe, state->config->gpio);
641 s5h1411_set_mpeg_timing(fe, state->config->mpeg_timing);
642 s5h1411_softreset(fe);
643
644 /* Note: Leaving the I2C gate closed. */
645 s5h1411_i2c_gate_ctrl(fe, 0);
646
647 return 0;
648 }
649
s5h1411_read_status(struct dvb_frontend * fe,enum fe_status * status)650 static int s5h1411_read_status(struct dvb_frontend *fe, enum fe_status *status)
651 {
652 struct s5h1411_state *state = fe->demodulator_priv;
653 u16 reg;
654 u32 tuner_status = 0;
655
656 *status = 0;
657
658 /* Register F2 bit 15 = Master Lock, removed */
659
660 switch (state->current_modulation) {
661 case QAM_64:
662 case QAM_256:
663 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf0);
664 if (reg & 0x10) /* QAM FEC Lock */
665 *status |= FE_HAS_SYNC | FE_HAS_LOCK;
666 if (reg & 0x100) /* QAM EQ Lock */
667 *status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL;
668
669 break;
670 case VSB_8:
671 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf2);
672 if (reg & 0x1000) /* FEC Lock */
673 *status |= FE_HAS_SYNC | FE_HAS_LOCK;
674 if (reg & 0x2000) /* EQ Lock */
675 *status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL;
676
677 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x53);
678 if (reg & 0x1) /* AFC Lock */
679 *status |= FE_HAS_SIGNAL;
680
681 break;
682 default:
683 return -EINVAL;
684 }
685
686 switch (state->config->status_mode) {
687 case S5H1411_DEMODLOCKING:
688 if (*status & FE_HAS_VITERBI)
689 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
690 break;
691 case S5H1411_TUNERLOCKING:
692 /* Get the tuner status */
693 if (fe->ops.tuner_ops.get_status) {
694 if (fe->ops.i2c_gate_ctrl)
695 fe->ops.i2c_gate_ctrl(fe, 1);
696
697 fe->ops.tuner_ops.get_status(fe, &tuner_status);
698
699 if (fe->ops.i2c_gate_ctrl)
700 fe->ops.i2c_gate_ctrl(fe, 0);
701 }
702 if (tuner_status)
703 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
704 break;
705 }
706
707 dprintk("%s() status 0x%08x\n", __func__, *status);
708
709 return 0;
710 }
711
s5h1411_qam256_lookup_snr(struct dvb_frontend * fe,u16 * snr,u16 v)712 static int s5h1411_qam256_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
713 {
714 int i, ret = -EINVAL;
715 dprintk("%s()\n", __func__);
716
717 for (i = 0; i < ARRAY_SIZE(qam256_snr_tab); i++) {
718 if (v < qam256_snr_tab[i].val) {
719 *snr = qam256_snr_tab[i].data;
720 ret = 0;
721 break;
722 }
723 }
724 return ret;
725 }
726
s5h1411_qam64_lookup_snr(struct dvb_frontend * fe,u16 * snr,u16 v)727 static int s5h1411_qam64_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
728 {
729 int i, ret = -EINVAL;
730 dprintk("%s()\n", __func__);
731
732 for (i = 0; i < ARRAY_SIZE(qam64_snr_tab); i++) {
733 if (v < qam64_snr_tab[i].val) {
734 *snr = qam64_snr_tab[i].data;
735 ret = 0;
736 break;
737 }
738 }
739 return ret;
740 }
741
s5h1411_vsb_lookup_snr(struct dvb_frontend * fe,u16 * snr,u16 v)742 static int s5h1411_vsb_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
743 {
744 int i, ret = -EINVAL;
745 dprintk("%s()\n", __func__);
746
747 for (i = 0; i < ARRAY_SIZE(vsb_snr_tab); i++) {
748 if (v > vsb_snr_tab[i].val) {
749 *snr = vsb_snr_tab[i].data;
750 ret = 0;
751 break;
752 }
753 }
754 dprintk("%s() snr=%d\n", __func__, *snr);
755 return ret;
756 }
757
s5h1411_read_snr(struct dvb_frontend * fe,u16 * snr)758 static int s5h1411_read_snr(struct dvb_frontend *fe, u16 *snr)
759 {
760 struct s5h1411_state *state = fe->demodulator_priv;
761 u16 reg;
762 dprintk("%s()\n", __func__);
763
764 switch (state->current_modulation) {
765 case QAM_64:
766 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf1);
767 return s5h1411_qam64_lookup_snr(fe, snr, reg);
768 case QAM_256:
769 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf1);
770 return s5h1411_qam256_lookup_snr(fe, snr, reg);
771 case VSB_8:
772 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR,
773 0xf2) & 0x3ff;
774 return s5h1411_vsb_lookup_snr(fe, snr, reg);
775 default:
776 break;
777 }
778
779 return -EINVAL;
780 }
781
s5h1411_read_signal_strength(struct dvb_frontend * fe,u16 * signal_strength)782 static int s5h1411_read_signal_strength(struct dvb_frontend *fe,
783 u16 *signal_strength)
784 {
785 /* borrowed from lgdt330x.c
786 *
787 * Calculate strength from SNR up to 35dB
788 * Even though the SNR can go higher than 35dB,
789 * there is some comfort factor in having a range of
790 * strong signals that can show at 100%
791 */
792 u16 snr;
793 u32 tmp;
794 int ret = s5h1411_read_snr(fe, &snr);
795
796 *signal_strength = 0;
797
798 if (0 == ret) {
799 /* The following calculation method was chosen
800 * purely for the sake of code re-use from the
801 * other demod drivers that use this method */
802
803 /* Convert from SNR in dB * 10 to 8.24 fixed-point */
804 tmp = (snr * ((1 << 24) / 10));
805
806 /* Convert from 8.24 fixed-point to
807 * scale the range 0 - 35*2^24 into 0 - 65535*/
808 if (tmp >= 8960 * 0x10000)
809 *signal_strength = 0xffff;
810 else
811 *signal_strength = tmp / 8960;
812 }
813
814 return ret;
815 }
816
s5h1411_read_ucblocks(struct dvb_frontend * fe,u32 * ucblocks)817 static int s5h1411_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
818 {
819 struct s5h1411_state *state = fe->demodulator_priv;
820
821 *ucblocks = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xc9);
822
823 return 0;
824 }
825
s5h1411_read_ber(struct dvb_frontend * fe,u32 * ber)826 static int s5h1411_read_ber(struct dvb_frontend *fe, u32 *ber)
827 {
828 return s5h1411_read_ucblocks(fe, ber);
829 }
830
s5h1411_get_frontend(struct dvb_frontend * fe,struct dtv_frontend_properties * p)831 static int s5h1411_get_frontend(struct dvb_frontend *fe,
832 struct dtv_frontend_properties *p)
833 {
834 struct s5h1411_state *state = fe->demodulator_priv;
835
836 p->frequency = state->current_frequency;
837 p->modulation = state->current_modulation;
838
839 return 0;
840 }
841
s5h1411_get_tune_settings(struct dvb_frontend * fe,struct dvb_frontend_tune_settings * tune)842 static int s5h1411_get_tune_settings(struct dvb_frontend *fe,
843 struct dvb_frontend_tune_settings *tune)
844 {
845 tune->min_delay_ms = 1000;
846 return 0;
847 }
848
s5h1411_release(struct dvb_frontend * fe)849 static void s5h1411_release(struct dvb_frontend *fe)
850 {
851 struct s5h1411_state *state = fe->demodulator_priv;
852 kfree(state);
853 }
854
855 static const struct dvb_frontend_ops s5h1411_ops;
856
s5h1411_attach(const struct s5h1411_config * config,struct i2c_adapter * i2c)857 struct dvb_frontend *s5h1411_attach(const struct s5h1411_config *config,
858 struct i2c_adapter *i2c)
859 {
860 struct s5h1411_state *state = NULL;
861 u16 reg;
862
863 /* allocate memory for the internal state */
864 state = kzalloc(sizeof(struct s5h1411_state), GFP_KERNEL);
865 if (state == NULL)
866 goto error;
867
868 /* setup the state */
869 state->config = config;
870 state->i2c = i2c;
871 state->current_modulation = VSB_8;
872 state->inversion = state->config->inversion;
873
874 /* check if the demod exists */
875 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x05);
876 if (reg != 0x0066)
877 goto error;
878
879 /* create dvb_frontend */
880 memcpy(&state->frontend.ops, &s5h1411_ops,
881 sizeof(struct dvb_frontend_ops));
882
883 state->frontend.demodulator_priv = state;
884
885 if (s5h1411_init(&state->frontend) != 0) {
886 printk(KERN_ERR "%s: Failed to initialize correctly\n",
887 __func__);
888 goto error;
889 }
890
891 /* Note: Leaving the I2C gate open here. */
892 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 1);
893
894 /* Put the device into low-power mode until first use */
895 s5h1411_set_powerstate(&state->frontend, 1);
896
897 return &state->frontend;
898
899 error:
900 kfree(state);
901 return NULL;
902 }
903 EXPORT_SYMBOL_GPL(s5h1411_attach);
904
905 static const struct dvb_frontend_ops s5h1411_ops = {
906 .delsys = { SYS_ATSC, SYS_DVBC_ANNEX_B },
907 .info = {
908 .name = "Samsung S5H1411 QAM/8VSB Frontend",
909 .frequency_min_hz = 54 * MHz,
910 .frequency_max_hz = 858 * MHz,
911 .frequency_stepsize_hz = 62500,
912 .caps = FE_CAN_QAM_64 | FE_CAN_QAM_256 | FE_CAN_8VSB
913 },
914
915 .init = s5h1411_init,
916 .sleep = s5h1411_sleep,
917 .i2c_gate_ctrl = s5h1411_i2c_gate_ctrl,
918 .set_frontend = s5h1411_set_frontend,
919 .get_frontend = s5h1411_get_frontend,
920 .get_tune_settings = s5h1411_get_tune_settings,
921 .read_status = s5h1411_read_status,
922 .read_ber = s5h1411_read_ber,
923 .read_signal_strength = s5h1411_read_signal_strength,
924 .read_snr = s5h1411_read_snr,
925 .read_ucblocks = s5h1411_read_ucblocks,
926 .release = s5h1411_release,
927 };
928
929 module_param(debug, int, 0644);
930 MODULE_PARM_DESC(debug, "Enable verbose debug messages");
931
932 MODULE_DESCRIPTION("Samsung S5H1411 QAM-B/ATSC Demodulator driver");
933 MODULE_AUTHOR("Steven Toth");
934 MODULE_LICENSE("GPL");
935