1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Linux network driver for QLogic BR-series Converged Network Adapter.
4 */
5 /*
6 * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
7 * Copyright (c) 2014-2015 QLogic Corporation
8 * All rights reserved
9 * www.qlogic.com
10 */
11 #include <linux/bitops.h>
12 #include <linux/netdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/etherdevice.h>
15 #include <linux/in.h>
16 #include <linux/ethtool.h>
17 #include <linux/if_vlan.h>
18 #include <linux/if_ether.h>
19 #include <linux/ip.h>
20 #include <linux/prefetch.h>
21 #include <linux/module.h>
22
23 #include "bnad.h"
24 #include "bna.h"
25 #include "cna.h"
26
27 static DEFINE_MUTEX(bnad_fwimg_mutex);
28
29 /*
30 * Module params
31 */
32 static uint bnad_msix_disable;
33 module_param(bnad_msix_disable, uint, 0444);
34 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
35
36 static uint bnad_ioc_auto_recover = 1;
37 module_param(bnad_ioc_auto_recover, uint, 0444);
38 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
39
40 static uint bna_debugfs_enable = 1;
41 module_param(bna_debugfs_enable, uint, 0644);
42 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
43 " Range[false:0|true:1]");
44
45 /*
46 * Global variables
47 */
48 static u32 bnad_rxqs_per_cq = 2;
49 static atomic_t bna_id;
50 static const u8 bnad_bcast_addr[] __aligned(2) =
51 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
52
53 /*
54 * Local MACROS
55 */
56 #define BNAD_GET_MBOX_IRQ(_bnad) \
57 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
58 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
59 ((_bnad)->pcidev->irq))
60
61 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size) \
62 do { \
63 (_res_info)->res_type = BNA_RES_T_MEM; \
64 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
65 (_res_info)->res_u.mem_info.num = (_num); \
66 (_res_info)->res_u.mem_info.len = (_size); \
67 } while (0)
68
69 /*
70 * Reinitialize completions in CQ, once Rx is taken down
71 */
72 static void
bnad_cq_cleanup(struct bnad * bnad,struct bna_ccb * ccb)73 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
74 {
75 struct bna_cq_entry *cmpl;
76 int i;
77
78 for (i = 0; i < ccb->q_depth; i++) {
79 cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
80 cmpl->valid = 0;
81 }
82 }
83
84 /* Tx Datapath functions */
85
86
87 /* Caller should ensure that the entry at unmap_q[index] is valid */
88 static u32
bnad_tx_buff_unmap(struct bnad * bnad,struct bnad_tx_unmap * unmap_q,u32 q_depth,u32 index)89 bnad_tx_buff_unmap(struct bnad *bnad,
90 struct bnad_tx_unmap *unmap_q,
91 u32 q_depth, u32 index)
92 {
93 struct bnad_tx_unmap *unmap;
94 struct sk_buff *skb;
95 int vector, nvecs;
96
97 unmap = &unmap_q[index];
98 nvecs = unmap->nvecs;
99
100 skb = unmap->skb;
101 unmap->skb = NULL;
102 unmap->nvecs = 0;
103 dma_unmap_single(&bnad->pcidev->dev,
104 dma_unmap_addr(&unmap->vectors[0], dma_addr),
105 skb_headlen(skb), DMA_TO_DEVICE);
106 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
107 nvecs--;
108
109 vector = 0;
110 while (nvecs) {
111 vector++;
112 if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
113 vector = 0;
114 BNA_QE_INDX_INC(index, q_depth);
115 unmap = &unmap_q[index];
116 }
117
118 dma_unmap_page(&bnad->pcidev->dev,
119 dma_unmap_addr(&unmap->vectors[vector], dma_addr),
120 dma_unmap_len(&unmap->vectors[vector], dma_len),
121 DMA_TO_DEVICE);
122 dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
123 nvecs--;
124 }
125
126 BNA_QE_INDX_INC(index, q_depth);
127
128 return index;
129 }
130
131 /*
132 * Frees all pending Tx Bufs
133 * At this point no activity is expected on the Q,
134 * so DMA unmap & freeing is fine.
135 */
136 static void
bnad_txq_cleanup(struct bnad * bnad,struct bna_tcb * tcb)137 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
138 {
139 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
140 struct sk_buff *skb;
141 int i;
142
143 for (i = 0; i < tcb->q_depth; i++) {
144 skb = unmap_q[i].skb;
145 if (!skb)
146 continue;
147 bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
148
149 dev_kfree_skb_any(skb);
150 }
151 }
152
153 /*
154 * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
155 * Can be called in a) Interrupt context
156 * b) Sending context
157 */
158 static u32
bnad_txcmpl_process(struct bnad * bnad,struct bna_tcb * tcb)159 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
160 {
161 u32 sent_packets = 0, sent_bytes = 0;
162 u32 wis, unmap_wis, hw_cons, cons, q_depth;
163 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
164 struct bnad_tx_unmap *unmap;
165 struct sk_buff *skb;
166
167 /* Just return if TX is stopped */
168 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
169 return 0;
170
171 hw_cons = *(tcb->hw_consumer_index);
172 rmb();
173 cons = tcb->consumer_index;
174 q_depth = tcb->q_depth;
175
176 wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
177 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
178
179 while (wis) {
180 unmap = &unmap_q[cons];
181
182 skb = unmap->skb;
183
184 sent_packets++;
185 sent_bytes += skb->len;
186
187 unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
188 wis -= unmap_wis;
189
190 cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
191 dev_kfree_skb_any(skb);
192 }
193
194 /* Update consumer pointers. */
195 tcb->consumer_index = hw_cons;
196
197 tcb->txq->tx_packets += sent_packets;
198 tcb->txq->tx_bytes += sent_bytes;
199
200 return sent_packets;
201 }
202
203 static u32
bnad_tx_complete(struct bnad * bnad,struct bna_tcb * tcb)204 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
205 {
206 struct net_device *netdev = bnad->netdev;
207 u32 sent = 0;
208
209 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
210 return 0;
211
212 sent = bnad_txcmpl_process(bnad, tcb);
213 if (sent) {
214 if (netif_queue_stopped(netdev) &&
215 netif_carrier_ok(netdev) &&
216 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
217 BNAD_NETIF_WAKE_THRESHOLD) {
218 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
219 netif_wake_queue(netdev);
220 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
221 }
222 }
223 }
224
225 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
226 bna_ib_ack(tcb->i_dbell, sent);
227
228 smp_mb__before_atomic();
229 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
230
231 return sent;
232 }
233
234 /* MSIX Tx Completion Handler */
235 static irqreturn_t
bnad_msix_tx(int irq,void * data)236 bnad_msix_tx(int irq, void *data)
237 {
238 struct bna_tcb *tcb = (struct bna_tcb *)data;
239 struct bnad *bnad = tcb->bnad;
240
241 bnad_tx_complete(bnad, tcb);
242
243 return IRQ_HANDLED;
244 }
245
246 static inline void
bnad_rxq_alloc_uninit(struct bnad * bnad,struct bna_rcb * rcb)247 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
248 {
249 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
250
251 unmap_q->reuse_pi = -1;
252 unmap_q->alloc_order = -1;
253 unmap_q->map_size = 0;
254 unmap_q->type = BNAD_RXBUF_NONE;
255 }
256
257 /* Default is page-based allocation. Multi-buffer support - TBD */
258 static int
bnad_rxq_alloc_init(struct bnad * bnad,struct bna_rcb * rcb)259 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
260 {
261 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
262 int order;
263
264 bnad_rxq_alloc_uninit(bnad, rcb);
265
266 order = get_order(rcb->rxq->buffer_size);
267
268 unmap_q->type = BNAD_RXBUF_PAGE;
269
270 if (bna_is_small_rxq(rcb->id)) {
271 unmap_q->alloc_order = 0;
272 unmap_q->map_size = rcb->rxq->buffer_size;
273 } else {
274 if (rcb->rxq->multi_buffer) {
275 unmap_q->alloc_order = 0;
276 unmap_q->map_size = rcb->rxq->buffer_size;
277 unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
278 } else {
279 unmap_q->alloc_order = order;
280 unmap_q->map_size =
281 (rcb->rxq->buffer_size > 2048) ?
282 PAGE_SIZE << order : 2048;
283 }
284 }
285
286 BUG_ON((PAGE_SIZE << order) % unmap_q->map_size);
287
288 return 0;
289 }
290
291 static inline void
bnad_rxq_cleanup_page(struct bnad * bnad,struct bnad_rx_unmap * unmap)292 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
293 {
294 if (!unmap->page)
295 return;
296
297 dma_unmap_page(&bnad->pcidev->dev,
298 dma_unmap_addr(&unmap->vector, dma_addr),
299 unmap->vector.len, DMA_FROM_DEVICE);
300 put_page(unmap->page);
301 unmap->page = NULL;
302 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
303 unmap->vector.len = 0;
304 }
305
306 static inline void
bnad_rxq_cleanup_skb(struct bnad * bnad,struct bnad_rx_unmap * unmap)307 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
308 {
309 if (!unmap->skb)
310 return;
311
312 dma_unmap_single(&bnad->pcidev->dev,
313 dma_unmap_addr(&unmap->vector, dma_addr),
314 unmap->vector.len, DMA_FROM_DEVICE);
315 dev_kfree_skb_any(unmap->skb);
316 unmap->skb = NULL;
317 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
318 unmap->vector.len = 0;
319 }
320
321 static void
bnad_rxq_cleanup(struct bnad * bnad,struct bna_rcb * rcb)322 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
323 {
324 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
325 int i;
326
327 for (i = 0; i < rcb->q_depth; i++) {
328 struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
329
330 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
331 bnad_rxq_cleanup_skb(bnad, unmap);
332 else
333 bnad_rxq_cleanup_page(bnad, unmap);
334 }
335 bnad_rxq_alloc_uninit(bnad, rcb);
336 }
337
338 static u32
bnad_rxq_refill_page(struct bnad * bnad,struct bna_rcb * rcb,u32 nalloc)339 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
340 {
341 u32 alloced, prod, q_depth;
342 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
343 struct bnad_rx_unmap *unmap, *prev;
344 struct bna_rxq_entry *rxent;
345 struct page *page;
346 u32 page_offset, alloc_size;
347 dma_addr_t dma_addr;
348
349 prod = rcb->producer_index;
350 q_depth = rcb->q_depth;
351
352 alloc_size = PAGE_SIZE << unmap_q->alloc_order;
353 alloced = 0;
354
355 while (nalloc--) {
356 unmap = &unmap_q->unmap[prod];
357
358 if (unmap_q->reuse_pi < 0) {
359 page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
360 unmap_q->alloc_order);
361 page_offset = 0;
362 } else {
363 prev = &unmap_q->unmap[unmap_q->reuse_pi];
364 page = prev->page;
365 page_offset = prev->page_offset + unmap_q->map_size;
366 get_page(page);
367 }
368
369 if (unlikely(!page)) {
370 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
371 rcb->rxq->rxbuf_alloc_failed++;
372 goto finishing;
373 }
374
375 dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
376 unmap_q->map_size, DMA_FROM_DEVICE);
377 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
378 put_page(page);
379 BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
380 rcb->rxq->rxbuf_map_failed++;
381 goto finishing;
382 }
383
384 unmap->page = page;
385 unmap->page_offset = page_offset;
386 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
387 unmap->vector.len = unmap_q->map_size;
388 page_offset += unmap_q->map_size;
389
390 if (page_offset < alloc_size)
391 unmap_q->reuse_pi = prod;
392 else
393 unmap_q->reuse_pi = -1;
394
395 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
396 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
397 BNA_QE_INDX_INC(prod, q_depth);
398 alloced++;
399 }
400
401 finishing:
402 if (likely(alloced)) {
403 rcb->producer_index = prod;
404 smp_mb();
405 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
406 bna_rxq_prod_indx_doorbell(rcb);
407 }
408
409 return alloced;
410 }
411
412 static u32
bnad_rxq_refill_skb(struct bnad * bnad,struct bna_rcb * rcb,u32 nalloc)413 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
414 {
415 u32 alloced, prod, q_depth, buff_sz;
416 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
417 struct bnad_rx_unmap *unmap;
418 struct bna_rxq_entry *rxent;
419 struct sk_buff *skb;
420 dma_addr_t dma_addr;
421
422 buff_sz = rcb->rxq->buffer_size;
423 prod = rcb->producer_index;
424 q_depth = rcb->q_depth;
425
426 alloced = 0;
427 while (nalloc--) {
428 unmap = &unmap_q->unmap[prod];
429
430 skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
431
432 if (unlikely(!skb)) {
433 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
434 rcb->rxq->rxbuf_alloc_failed++;
435 goto finishing;
436 }
437
438 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
439 buff_sz, DMA_FROM_DEVICE);
440 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
441 dev_kfree_skb_any(skb);
442 BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
443 rcb->rxq->rxbuf_map_failed++;
444 goto finishing;
445 }
446
447 unmap->skb = skb;
448 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
449 unmap->vector.len = buff_sz;
450
451 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
452 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
453 BNA_QE_INDX_INC(prod, q_depth);
454 alloced++;
455 }
456
457 finishing:
458 if (likely(alloced)) {
459 rcb->producer_index = prod;
460 smp_mb();
461 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
462 bna_rxq_prod_indx_doorbell(rcb);
463 }
464
465 return alloced;
466 }
467
468 static inline void
bnad_rxq_post(struct bnad * bnad,struct bna_rcb * rcb)469 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
470 {
471 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
472 u32 to_alloc;
473
474 to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
475 if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
476 return;
477
478 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
479 bnad_rxq_refill_skb(bnad, rcb, to_alloc);
480 else
481 bnad_rxq_refill_page(bnad, rcb, to_alloc);
482 }
483
484 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
485 BNA_CQ_EF_IPV6 | \
486 BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
487 BNA_CQ_EF_L4_CKSUM_OK)
488
489 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
490 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
491 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
492 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
493 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
494 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
495 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
496 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
497
498 static void
bnad_cq_drop_packet(struct bnad * bnad,struct bna_rcb * rcb,u32 sop_ci,u32 nvecs)499 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
500 u32 sop_ci, u32 nvecs)
501 {
502 struct bnad_rx_unmap_q *unmap_q;
503 struct bnad_rx_unmap *unmap;
504 u32 ci, vec;
505
506 unmap_q = rcb->unmap_q;
507 for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
508 unmap = &unmap_q->unmap[ci];
509 BNA_QE_INDX_INC(ci, rcb->q_depth);
510
511 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
512 bnad_rxq_cleanup_skb(bnad, unmap);
513 else
514 bnad_rxq_cleanup_page(bnad, unmap);
515 }
516 }
517
518 static void
bnad_cq_setup_skb_frags(struct bna_ccb * ccb,struct sk_buff * skb,u32 nvecs)519 bnad_cq_setup_skb_frags(struct bna_ccb *ccb, struct sk_buff *skb, u32 nvecs)
520 {
521 struct bna_rcb *rcb;
522 struct bnad *bnad;
523 struct bnad_rx_unmap_q *unmap_q;
524 struct bna_cq_entry *cq, *cmpl;
525 u32 ci, pi, totlen = 0;
526
527 cq = ccb->sw_q;
528 pi = ccb->producer_index;
529 cmpl = &cq[pi];
530
531 rcb = bna_is_small_rxq(cmpl->rxq_id) ? ccb->rcb[1] : ccb->rcb[0];
532 unmap_q = rcb->unmap_q;
533 bnad = rcb->bnad;
534 ci = rcb->consumer_index;
535
536 /* prefetch header */
537 prefetch(page_address(unmap_q->unmap[ci].page) +
538 unmap_q->unmap[ci].page_offset);
539
540 while (nvecs--) {
541 struct bnad_rx_unmap *unmap;
542 u32 len;
543
544 unmap = &unmap_q->unmap[ci];
545 BNA_QE_INDX_INC(ci, rcb->q_depth);
546
547 dma_unmap_page(&bnad->pcidev->dev,
548 dma_unmap_addr(&unmap->vector, dma_addr),
549 unmap->vector.len, DMA_FROM_DEVICE);
550
551 len = ntohs(cmpl->length);
552 skb->truesize += unmap->vector.len;
553 totlen += len;
554
555 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
556 unmap->page, unmap->page_offset, len);
557
558 unmap->page = NULL;
559 unmap->vector.len = 0;
560
561 BNA_QE_INDX_INC(pi, ccb->q_depth);
562 cmpl = &cq[pi];
563 }
564
565 skb->len += totlen;
566 skb->data_len += totlen;
567 }
568
569 static inline void
bnad_cq_setup_skb(struct bnad * bnad,struct sk_buff * skb,struct bnad_rx_unmap * unmap,u32 len)570 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
571 struct bnad_rx_unmap *unmap, u32 len)
572 {
573 prefetch(skb->data);
574
575 dma_unmap_single(&bnad->pcidev->dev,
576 dma_unmap_addr(&unmap->vector, dma_addr),
577 unmap->vector.len, DMA_FROM_DEVICE);
578
579 skb_put(skb, len);
580 skb->protocol = eth_type_trans(skb, bnad->netdev);
581
582 unmap->skb = NULL;
583 unmap->vector.len = 0;
584 }
585
586 static u32
bnad_cq_process(struct bnad * bnad,struct bna_ccb * ccb,int budget)587 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
588 {
589 struct bna_cq_entry *cq, *cmpl, *next_cmpl;
590 struct bna_rcb *rcb = NULL;
591 struct bnad_rx_unmap_q *unmap_q;
592 struct bnad_rx_unmap *unmap = NULL;
593 struct sk_buff *skb = NULL;
594 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
595 struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
596 u32 packets = 0, len = 0, totlen = 0;
597 u32 pi, vec, sop_ci = 0, nvecs = 0;
598 u32 flags, masked_flags;
599
600 prefetch(bnad->netdev);
601
602 cq = ccb->sw_q;
603
604 while (packets < budget) {
605 cmpl = &cq[ccb->producer_index];
606 if (!cmpl->valid)
607 break;
608 /* The 'valid' field is set by the adapter, only after writing
609 * the other fields of completion entry. Hence, do not load
610 * other fields of completion entry *before* the 'valid' is
611 * loaded. Adding the rmb() here prevents the compiler and/or
612 * CPU from reordering the reads which would potentially result
613 * in reading stale values in completion entry.
614 */
615 rmb();
616
617 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
618
619 if (bna_is_small_rxq(cmpl->rxq_id))
620 rcb = ccb->rcb[1];
621 else
622 rcb = ccb->rcb[0];
623
624 unmap_q = rcb->unmap_q;
625
626 /* start of packet ci */
627 sop_ci = rcb->consumer_index;
628
629 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
630 unmap = &unmap_q->unmap[sop_ci];
631 skb = unmap->skb;
632 } else {
633 skb = napi_get_frags(&rx_ctrl->napi);
634 if (unlikely(!skb))
635 break;
636 }
637 prefetch(skb);
638
639 flags = ntohl(cmpl->flags);
640 len = ntohs(cmpl->length);
641 totlen = len;
642 nvecs = 1;
643
644 /* Check all the completions for this frame.
645 * busy-wait doesn't help much, break here.
646 */
647 if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
648 (flags & BNA_CQ_EF_EOP) == 0) {
649 pi = ccb->producer_index;
650 do {
651 BNA_QE_INDX_INC(pi, ccb->q_depth);
652 next_cmpl = &cq[pi];
653
654 if (!next_cmpl->valid)
655 break;
656 /* The 'valid' field is set by the adapter, only
657 * after writing the other fields of completion
658 * entry. Hence, do not load other fields of
659 * completion entry *before* the 'valid' is
660 * loaded. Adding the rmb() here prevents the
661 * compiler and/or CPU from reordering the reads
662 * which would potentially result in reading
663 * stale values in completion entry.
664 */
665 rmb();
666
667 len = ntohs(next_cmpl->length);
668 flags = ntohl(next_cmpl->flags);
669
670 nvecs++;
671 totlen += len;
672 } while ((flags & BNA_CQ_EF_EOP) == 0);
673
674 if (!next_cmpl->valid)
675 break;
676 }
677 packets++;
678
679 /* TODO: BNA_CQ_EF_LOCAL ? */
680 if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
681 BNA_CQ_EF_FCS_ERROR |
682 BNA_CQ_EF_TOO_LONG))) {
683 bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
684 rcb->rxq->rx_packets_with_error++;
685
686 goto next;
687 }
688
689 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
690 bnad_cq_setup_skb(bnad, skb, unmap, len);
691 else
692 bnad_cq_setup_skb_frags(ccb, skb, nvecs);
693
694 rcb->rxq->rx_packets++;
695 rcb->rxq->rx_bytes += totlen;
696 ccb->bytes_per_intr += totlen;
697
698 masked_flags = flags & flags_cksum_prot_mask;
699
700 if (likely
701 ((bnad->netdev->features & NETIF_F_RXCSUM) &&
702 ((masked_flags == flags_tcp4) ||
703 (masked_flags == flags_udp4) ||
704 (masked_flags == flags_tcp6) ||
705 (masked_flags == flags_udp6))))
706 skb->ip_summed = CHECKSUM_UNNECESSARY;
707 else
708 skb_checksum_none_assert(skb);
709
710 if ((flags & BNA_CQ_EF_VLAN) &&
711 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
712 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
713
714 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
715 netif_receive_skb(skb);
716 else
717 napi_gro_frags(&rx_ctrl->napi);
718
719 next:
720 BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
721 for (vec = 0; vec < nvecs; vec++) {
722 cmpl = &cq[ccb->producer_index];
723 cmpl->valid = 0;
724 BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
725 }
726 }
727
728 napi_gro_flush(&rx_ctrl->napi, false);
729 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
730 bna_ib_ack_disable_irq(ccb->i_dbell, packets);
731
732 bnad_rxq_post(bnad, ccb->rcb[0]);
733 if (ccb->rcb[1])
734 bnad_rxq_post(bnad, ccb->rcb[1]);
735
736 return packets;
737 }
738
739 static void
bnad_netif_rx_schedule_poll(struct bnad * bnad,struct bna_ccb * ccb)740 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
741 {
742 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
743 struct napi_struct *napi = &rx_ctrl->napi;
744
745 if (likely(napi_schedule_prep(napi))) {
746 __napi_schedule(napi);
747 rx_ctrl->rx_schedule++;
748 }
749 }
750
751 /* MSIX Rx Path Handler */
752 static irqreturn_t
bnad_msix_rx(int irq,void * data)753 bnad_msix_rx(int irq, void *data)
754 {
755 struct bna_ccb *ccb = (struct bna_ccb *)data;
756
757 if (ccb) {
758 ((struct bnad_rx_ctrl *)ccb->ctrl)->rx_intr_ctr++;
759 bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
760 }
761
762 return IRQ_HANDLED;
763 }
764
765 /* Interrupt handlers */
766
767 /* Mbox Interrupt Handlers */
768 static irqreturn_t
bnad_msix_mbox_handler(int irq,void * data)769 bnad_msix_mbox_handler(int irq, void *data)
770 {
771 u32 intr_status;
772 unsigned long flags;
773 struct bnad *bnad = (struct bnad *)data;
774
775 spin_lock_irqsave(&bnad->bna_lock, flags);
776 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
777 spin_unlock_irqrestore(&bnad->bna_lock, flags);
778 return IRQ_HANDLED;
779 }
780
781 bna_intr_status_get(&bnad->bna, intr_status);
782
783 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
784 bna_mbox_handler(&bnad->bna, intr_status);
785
786 spin_unlock_irqrestore(&bnad->bna_lock, flags);
787
788 return IRQ_HANDLED;
789 }
790
791 static irqreturn_t
bnad_isr(int irq,void * data)792 bnad_isr(int irq, void *data)
793 {
794 int i, j;
795 u32 intr_status;
796 unsigned long flags;
797 struct bnad *bnad = (struct bnad *)data;
798 struct bnad_rx_info *rx_info;
799 struct bnad_rx_ctrl *rx_ctrl;
800 struct bna_tcb *tcb = NULL;
801
802 spin_lock_irqsave(&bnad->bna_lock, flags);
803 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
804 spin_unlock_irqrestore(&bnad->bna_lock, flags);
805 return IRQ_NONE;
806 }
807
808 bna_intr_status_get(&bnad->bna, intr_status);
809
810 if (unlikely(!intr_status)) {
811 spin_unlock_irqrestore(&bnad->bna_lock, flags);
812 return IRQ_NONE;
813 }
814
815 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
816 bna_mbox_handler(&bnad->bna, intr_status);
817
818 spin_unlock_irqrestore(&bnad->bna_lock, flags);
819
820 if (!BNA_IS_INTX_DATA_INTR(intr_status))
821 return IRQ_HANDLED;
822
823 /* Process data interrupts */
824 /* Tx processing */
825 for (i = 0; i < bnad->num_tx; i++) {
826 for (j = 0; j < bnad->num_txq_per_tx; j++) {
827 tcb = bnad->tx_info[i].tcb[j];
828 if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
829 bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
830 }
831 }
832 /* Rx processing */
833 for (i = 0; i < bnad->num_rx; i++) {
834 rx_info = &bnad->rx_info[i];
835 if (!rx_info->rx)
836 continue;
837 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
838 rx_ctrl = &rx_info->rx_ctrl[j];
839 if (rx_ctrl->ccb)
840 bnad_netif_rx_schedule_poll(bnad,
841 rx_ctrl->ccb);
842 }
843 }
844 return IRQ_HANDLED;
845 }
846
847 /*
848 * Called in interrupt / callback context
849 * with bna_lock held, so cfg_flags access is OK
850 */
851 static void
bnad_enable_mbox_irq(struct bnad * bnad)852 bnad_enable_mbox_irq(struct bnad *bnad)
853 {
854 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
855
856 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
857 }
858
859 /*
860 * Called with bnad->bna_lock held b'cos of
861 * bnad->cfg_flags access.
862 */
863 static void
bnad_disable_mbox_irq(struct bnad * bnad)864 bnad_disable_mbox_irq(struct bnad *bnad)
865 {
866 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
867
868 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
869 }
870
871 static void
bnad_set_netdev_perm_addr(struct bnad * bnad)872 bnad_set_netdev_perm_addr(struct bnad *bnad)
873 {
874 struct net_device *netdev = bnad->netdev;
875
876 ether_addr_copy(netdev->perm_addr, bnad->perm_addr);
877 if (is_zero_ether_addr(netdev->dev_addr))
878 eth_hw_addr_set(netdev, bnad->perm_addr);
879 }
880
881 /* Control Path Handlers */
882
883 /* Callbacks */
884 void
bnad_cb_mbox_intr_enable(struct bnad * bnad)885 bnad_cb_mbox_intr_enable(struct bnad *bnad)
886 {
887 bnad_enable_mbox_irq(bnad);
888 }
889
890 void
bnad_cb_mbox_intr_disable(struct bnad * bnad)891 bnad_cb_mbox_intr_disable(struct bnad *bnad)
892 {
893 bnad_disable_mbox_irq(bnad);
894 }
895
896 void
bnad_cb_ioceth_ready(struct bnad * bnad)897 bnad_cb_ioceth_ready(struct bnad *bnad)
898 {
899 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
900 complete(&bnad->bnad_completions.ioc_comp);
901 }
902
903 void
bnad_cb_ioceth_failed(struct bnad * bnad)904 bnad_cb_ioceth_failed(struct bnad *bnad)
905 {
906 bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
907 complete(&bnad->bnad_completions.ioc_comp);
908 }
909
910 void
bnad_cb_ioceth_disabled(struct bnad * bnad)911 bnad_cb_ioceth_disabled(struct bnad *bnad)
912 {
913 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
914 complete(&bnad->bnad_completions.ioc_comp);
915 }
916
917 static void
bnad_cb_enet_disabled(void * arg)918 bnad_cb_enet_disabled(void *arg)
919 {
920 struct bnad *bnad = (struct bnad *)arg;
921
922 netif_carrier_off(bnad->netdev);
923 complete(&bnad->bnad_completions.enet_comp);
924 }
925
926 void
bnad_cb_ethport_link_status(struct bnad * bnad,enum bna_link_status link_status)927 bnad_cb_ethport_link_status(struct bnad *bnad,
928 enum bna_link_status link_status)
929 {
930 bool link_up = false;
931
932 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
933
934 if (link_status == BNA_CEE_UP) {
935 if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
936 BNAD_UPDATE_CTR(bnad, cee_toggle);
937 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
938 } else {
939 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
940 BNAD_UPDATE_CTR(bnad, cee_toggle);
941 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
942 }
943
944 if (link_up) {
945 if (!netif_carrier_ok(bnad->netdev)) {
946 uint tx_id, tcb_id;
947 netdev_info(bnad->netdev, "link up\n");
948 netif_carrier_on(bnad->netdev);
949 BNAD_UPDATE_CTR(bnad, link_toggle);
950 for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
951 for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
952 tcb_id++) {
953 struct bna_tcb *tcb =
954 bnad->tx_info[tx_id].tcb[tcb_id];
955 u32 txq_id;
956 if (!tcb)
957 continue;
958
959 txq_id = tcb->id;
960
961 if (test_bit(BNAD_TXQ_TX_STARTED,
962 &tcb->flags)) {
963 /*
964 * Force an immediate
965 * Transmit Schedule */
966 netif_wake_subqueue(
967 bnad->netdev,
968 txq_id);
969 BNAD_UPDATE_CTR(bnad,
970 netif_queue_wakeup);
971 } else {
972 netif_stop_subqueue(
973 bnad->netdev,
974 txq_id);
975 BNAD_UPDATE_CTR(bnad,
976 netif_queue_stop);
977 }
978 }
979 }
980 }
981 } else {
982 if (netif_carrier_ok(bnad->netdev)) {
983 netdev_info(bnad->netdev, "link down\n");
984 netif_carrier_off(bnad->netdev);
985 BNAD_UPDATE_CTR(bnad, link_toggle);
986 }
987 }
988 }
989
990 static void
bnad_cb_tx_disabled(void * arg,struct bna_tx * tx)991 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
992 {
993 struct bnad *bnad = (struct bnad *)arg;
994
995 complete(&bnad->bnad_completions.tx_comp);
996 }
997
998 static void
bnad_cb_tcb_setup(struct bnad * bnad,struct bna_tcb * tcb)999 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1000 {
1001 struct bnad_tx_info *tx_info =
1002 (struct bnad_tx_info *)tcb->txq->tx->priv;
1003
1004 tcb->priv = tcb;
1005 tx_info->tcb[tcb->id] = tcb;
1006 }
1007
1008 static void
bnad_cb_tcb_destroy(struct bnad * bnad,struct bna_tcb * tcb)1009 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1010 {
1011 struct bnad_tx_info *tx_info =
1012 (struct bnad_tx_info *)tcb->txq->tx->priv;
1013
1014 tx_info->tcb[tcb->id] = NULL;
1015 tcb->priv = NULL;
1016 }
1017
1018 static void
bnad_cb_ccb_setup(struct bnad * bnad,struct bna_ccb * ccb)1019 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1020 {
1021 struct bnad_rx_info *rx_info =
1022 (struct bnad_rx_info *)ccb->cq->rx->priv;
1023
1024 rx_info->rx_ctrl[ccb->id].ccb = ccb;
1025 ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1026 }
1027
1028 static void
bnad_cb_ccb_destroy(struct bnad * bnad,struct bna_ccb * ccb)1029 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1030 {
1031 struct bnad_rx_info *rx_info =
1032 (struct bnad_rx_info *)ccb->cq->rx->priv;
1033
1034 rx_info->rx_ctrl[ccb->id].ccb = NULL;
1035 }
1036
1037 static void
bnad_cb_tx_stall(struct bnad * bnad,struct bna_tx * tx)1038 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1039 {
1040 struct bnad_tx_info *tx_info = tx->priv;
1041 struct bna_tcb *tcb;
1042 u32 txq_id;
1043 int i;
1044
1045 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1046 tcb = tx_info->tcb[i];
1047 if (!tcb)
1048 continue;
1049 txq_id = tcb->id;
1050 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1051 netif_stop_subqueue(bnad->netdev, txq_id);
1052 }
1053 }
1054
1055 static void
bnad_cb_tx_resume(struct bnad * bnad,struct bna_tx * tx)1056 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1057 {
1058 struct bnad_tx_info *tx_info = tx->priv;
1059 struct bna_tcb *tcb;
1060 u32 txq_id;
1061 int i;
1062
1063 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1064 tcb = tx_info->tcb[i];
1065 if (!tcb)
1066 continue;
1067 txq_id = tcb->id;
1068
1069 BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1070 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1071 BUG_ON(*(tcb->hw_consumer_index) != 0);
1072
1073 if (netif_carrier_ok(bnad->netdev)) {
1074 netif_wake_subqueue(bnad->netdev, txq_id);
1075 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1076 }
1077 }
1078
1079 /*
1080 * Workaround for first ioceth enable failure & we
1081 * get a 0 MAC address. We try to get the MAC address
1082 * again here.
1083 */
1084 if (is_zero_ether_addr(bnad->perm_addr)) {
1085 bna_enet_perm_mac_get(&bnad->bna.enet, bnad->perm_addr);
1086 bnad_set_netdev_perm_addr(bnad);
1087 }
1088 }
1089
1090 /*
1091 * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1092 */
1093 static void
bnad_tx_cleanup(struct delayed_work * work)1094 bnad_tx_cleanup(struct delayed_work *work)
1095 {
1096 struct bnad_tx_info *tx_info =
1097 container_of(work, struct bnad_tx_info, tx_cleanup_work);
1098 struct bnad *bnad = NULL;
1099 struct bna_tcb *tcb;
1100 unsigned long flags;
1101 u32 i, pending = 0;
1102
1103 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1104 tcb = tx_info->tcb[i];
1105 if (!tcb)
1106 continue;
1107
1108 bnad = tcb->bnad;
1109
1110 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1111 pending++;
1112 continue;
1113 }
1114
1115 bnad_txq_cleanup(bnad, tcb);
1116
1117 smp_mb__before_atomic();
1118 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1119 }
1120
1121 if (pending) {
1122 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1123 msecs_to_jiffies(1));
1124 return;
1125 }
1126
1127 spin_lock_irqsave(&bnad->bna_lock, flags);
1128 bna_tx_cleanup_complete(tx_info->tx);
1129 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1130 }
1131
1132 static void
bnad_cb_tx_cleanup(struct bnad * bnad,struct bna_tx * tx)1133 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1134 {
1135 struct bnad_tx_info *tx_info = tx->priv;
1136 struct bna_tcb *tcb;
1137 int i;
1138
1139 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1140 tcb = tx_info->tcb[i];
1141 if (!tcb)
1142 continue;
1143 }
1144
1145 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1146 }
1147
1148 static void
bnad_cb_rx_stall(struct bnad * bnad,struct bna_rx * rx)1149 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1150 {
1151 struct bnad_rx_info *rx_info = rx->priv;
1152 struct bna_ccb *ccb;
1153 struct bnad_rx_ctrl *rx_ctrl;
1154 int i;
1155
1156 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1157 rx_ctrl = &rx_info->rx_ctrl[i];
1158 ccb = rx_ctrl->ccb;
1159 if (!ccb)
1160 continue;
1161
1162 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1163
1164 if (ccb->rcb[1])
1165 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1166 }
1167 }
1168
1169 /*
1170 * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1171 */
1172 static void
bnad_rx_cleanup(void * work)1173 bnad_rx_cleanup(void *work)
1174 {
1175 struct bnad_rx_info *rx_info =
1176 container_of(work, struct bnad_rx_info, rx_cleanup_work);
1177 struct bnad_rx_ctrl *rx_ctrl;
1178 struct bnad *bnad = NULL;
1179 unsigned long flags;
1180 u32 i;
1181
1182 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1183 rx_ctrl = &rx_info->rx_ctrl[i];
1184
1185 if (!rx_ctrl->ccb)
1186 continue;
1187
1188 bnad = rx_ctrl->ccb->bnad;
1189
1190 /*
1191 * Wait till the poll handler has exited
1192 * and nothing can be scheduled anymore
1193 */
1194 napi_disable(&rx_ctrl->napi);
1195
1196 bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1197 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1198 if (rx_ctrl->ccb->rcb[1])
1199 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1200 }
1201
1202 spin_lock_irqsave(&bnad->bna_lock, flags);
1203 bna_rx_cleanup_complete(rx_info->rx);
1204 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1205 }
1206
1207 static void
bnad_cb_rx_cleanup(struct bnad * bnad,struct bna_rx * rx)1208 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1209 {
1210 struct bnad_rx_info *rx_info = rx->priv;
1211 struct bna_ccb *ccb;
1212 struct bnad_rx_ctrl *rx_ctrl;
1213 int i;
1214
1215 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1216 rx_ctrl = &rx_info->rx_ctrl[i];
1217 ccb = rx_ctrl->ccb;
1218 if (!ccb)
1219 continue;
1220
1221 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1222
1223 if (ccb->rcb[1])
1224 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1225 }
1226
1227 queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1228 }
1229
1230 static void
bnad_cb_rx_post(struct bnad * bnad,struct bna_rx * rx)1231 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1232 {
1233 struct bnad_rx_info *rx_info = rx->priv;
1234 struct bna_ccb *ccb;
1235 struct bna_rcb *rcb;
1236 struct bnad_rx_ctrl *rx_ctrl;
1237 int i, j;
1238
1239 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1240 rx_ctrl = &rx_info->rx_ctrl[i];
1241 ccb = rx_ctrl->ccb;
1242 if (!ccb)
1243 continue;
1244
1245 napi_enable(&rx_ctrl->napi);
1246
1247 for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1248 rcb = ccb->rcb[j];
1249 if (!rcb)
1250 continue;
1251
1252 bnad_rxq_alloc_init(bnad, rcb);
1253 set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1254 set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1255 bnad_rxq_post(bnad, rcb);
1256 }
1257 }
1258 }
1259
1260 static void
bnad_cb_rx_disabled(void * arg,struct bna_rx * rx)1261 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1262 {
1263 struct bnad *bnad = (struct bnad *)arg;
1264
1265 complete(&bnad->bnad_completions.rx_comp);
1266 }
1267
1268 static void
bnad_cb_rx_mcast_add(struct bnad * bnad,struct bna_rx * rx)1269 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1270 {
1271 bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1272 complete(&bnad->bnad_completions.mcast_comp);
1273 }
1274
1275 void
bnad_cb_stats_get(struct bnad * bnad,enum bna_cb_status status,struct bna_stats * stats)1276 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1277 struct bna_stats *stats)
1278 {
1279 if (status == BNA_CB_SUCCESS)
1280 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1281
1282 if (!netif_running(bnad->netdev) ||
1283 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1284 return;
1285
1286 mod_timer(&bnad->stats_timer,
1287 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1288 }
1289
1290 static void
bnad_cb_enet_mtu_set(struct bnad * bnad)1291 bnad_cb_enet_mtu_set(struct bnad *bnad)
1292 {
1293 bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1294 complete(&bnad->bnad_completions.mtu_comp);
1295 }
1296
1297 void
bnad_cb_completion(void * arg,enum bfa_status status)1298 bnad_cb_completion(void *arg, enum bfa_status status)
1299 {
1300 struct bnad_iocmd_comp *iocmd_comp =
1301 (struct bnad_iocmd_comp *)arg;
1302
1303 iocmd_comp->comp_status = (u32) status;
1304 complete(&iocmd_comp->comp);
1305 }
1306
1307 /* Resource allocation, free functions */
1308
1309 static void
bnad_mem_free(struct bnad * bnad,struct bna_mem_info * mem_info)1310 bnad_mem_free(struct bnad *bnad,
1311 struct bna_mem_info *mem_info)
1312 {
1313 int i;
1314 dma_addr_t dma_pa;
1315
1316 if (mem_info->mdl == NULL)
1317 return;
1318
1319 for (i = 0; i < mem_info->num; i++) {
1320 if (mem_info->mdl[i].kva != NULL) {
1321 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1322 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1323 dma_pa);
1324 dma_free_coherent(&bnad->pcidev->dev,
1325 mem_info->mdl[i].len,
1326 mem_info->mdl[i].kva, dma_pa);
1327 } else
1328 kfree(mem_info->mdl[i].kva);
1329 }
1330 }
1331 kfree(mem_info->mdl);
1332 mem_info->mdl = NULL;
1333 }
1334
1335 static int
bnad_mem_alloc(struct bnad * bnad,struct bna_mem_info * mem_info)1336 bnad_mem_alloc(struct bnad *bnad,
1337 struct bna_mem_info *mem_info)
1338 {
1339 int i;
1340 dma_addr_t dma_pa;
1341
1342 if ((mem_info->num == 0) || (mem_info->len == 0)) {
1343 mem_info->mdl = NULL;
1344 return 0;
1345 }
1346
1347 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1348 GFP_KERNEL);
1349 if (mem_info->mdl == NULL)
1350 return -ENOMEM;
1351
1352 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1353 for (i = 0; i < mem_info->num; i++) {
1354 mem_info->mdl[i].len = mem_info->len;
1355 mem_info->mdl[i].kva =
1356 dma_alloc_coherent(&bnad->pcidev->dev,
1357 mem_info->len, &dma_pa,
1358 GFP_KERNEL);
1359 if (mem_info->mdl[i].kva == NULL)
1360 goto err_return;
1361
1362 BNA_SET_DMA_ADDR(dma_pa,
1363 &(mem_info->mdl[i].dma));
1364 }
1365 } else {
1366 for (i = 0; i < mem_info->num; i++) {
1367 mem_info->mdl[i].len = mem_info->len;
1368 mem_info->mdl[i].kva = kzalloc(mem_info->len,
1369 GFP_KERNEL);
1370 if (mem_info->mdl[i].kva == NULL)
1371 goto err_return;
1372 }
1373 }
1374
1375 return 0;
1376
1377 err_return:
1378 bnad_mem_free(bnad, mem_info);
1379 return -ENOMEM;
1380 }
1381
1382 /* Free IRQ for Mailbox */
1383 static void
bnad_mbox_irq_free(struct bnad * bnad)1384 bnad_mbox_irq_free(struct bnad *bnad)
1385 {
1386 int irq;
1387 unsigned long flags;
1388
1389 spin_lock_irqsave(&bnad->bna_lock, flags);
1390 bnad_disable_mbox_irq(bnad);
1391 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1392
1393 irq = BNAD_GET_MBOX_IRQ(bnad);
1394 free_irq(irq, bnad);
1395 }
1396
1397 /*
1398 * Allocates IRQ for Mailbox, but keep it disabled
1399 * This will be enabled once we get the mbox enable callback
1400 * from bna
1401 */
1402 static int
bnad_mbox_irq_alloc(struct bnad * bnad)1403 bnad_mbox_irq_alloc(struct bnad *bnad)
1404 {
1405 int err = 0;
1406 unsigned long irq_flags, flags;
1407 u32 irq;
1408 irq_handler_t irq_handler;
1409
1410 spin_lock_irqsave(&bnad->bna_lock, flags);
1411 if (bnad->cfg_flags & BNAD_CF_MSIX) {
1412 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1413 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1414 irq_flags = 0;
1415 } else {
1416 irq_handler = (irq_handler_t)bnad_isr;
1417 irq = bnad->pcidev->irq;
1418 irq_flags = IRQF_SHARED;
1419 }
1420
1421 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1422 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1423
1424 /*
1425 * Set the Mbox IRQ disable flag, so that the IRQ handler
1426 * called from request_irq() for SHARED IRQs do not execute
1427 */
1428 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1429
1430 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1431
1432 err = request_irq(irq, irq_handler, irq_flags,
1433 bnad->mbox_irq_name, bnad);
1434
1435 return err;
1436 }
1437
1438 static void
bnad_txrx_irq_free(struct bnad * bnad,struct bna_intr_info * intr_info)1439 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1440 {
1441 kfree(intr_info->idl);
1442 intr_info->idl = NULL;
1443 }
1444
1445 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1446 static int
bnad_txrx_irq_alloc(struct bnad * bnad,enum bnad_intr_source src,u32 txrx_id,struct bna_intr_info * intr_info)1447 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1448 u32 txrx_id, struct bna_intr_info *intr_info)
1449 {
1450 int i, vector_start = 0;
1451 u32 cfg_flags;
1452 unsigned long flags;
1453
1454 spin_lock_irqsave(&bnad->bna_lock, flags);
1455 cfg_flags = bnad->cfg_flags;
1456 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1457
1458 if (cfg_flags & BNAD_CF_MSIX) {
1459 intr_info->intr_type = BNA_INTR_T_MSIX;
1460 intr_info->idl = kcalloc(intr_info->num,
1461 sizeof(struct bna_intr_descr),
1462 GFP_KERNEL);
1463 if (!intr_info->idl)
1464 return -ENOMEM;
1465
1466 switch (src) {
1467 case BNAD_INTR_TX:
1468 vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1469 break;
1470
1471 case BNAD_INTR_RX:
1472 vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1473 (bnad->num_tx * bnad->num_txq_per_tx) +
1474 txrx_id;
1475 break;
1476
1477 default:
1478 BUG();
1479 }
1480
1481 for (i = 0; i < intr_info->num; i++)
1482 intr_info->idl[i].vector = vector_start + i;
1483 } else {
1484 intr_info->intr_type = BNA_INTR_T_INTX;
1485 intr_info->num = 1;
1486 intr_info->idl = kcalloc(intr_info->num,
1487 sizeof(struct bna_intr_descr),
1488 GFP_KERNEL);
1489 if (!intr_info->idl)
1490 return -ENOMEM;
1491
1492 switch (src) {
1493 case BNAD_INTR_TX:
1494 intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1495 break;
1496
1497 case BNAD_INTR_RX:
1498 intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1499 break;
1500 }
1501 }
1502 return 0;
1503 }
1504
1505 /* NOTE: Should be called for MSIX only
1506 * Unregisters Tx MSIX vector(s) from the kernel
1507 */
1508 static void
bnad_tx_msix_unregister(struct bnad * bnad,struct bnad_tx_info * tx_info,int num_txqs)1509 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1510 int num_txqs)
1511 {
1512 int i;
1513 int vector_num;
1514
1515 for (i = 0; i < num_txqs; i++) {
1516 if (tx_info->tcb[i] == NULL)
1517 continue;
1518
1519 vector_num = tx_info->tcb[i]->intr_vector;
1520 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1521 }
1522 }
1523
1524 /* NOTE: Should be called for MSIX only
1525 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1526 */
1527 static int
bnad_tx_msix_register(struct bnad * bnad,struct bnad_tx_info * tx_info,u32 tx_id,int num_txqs)1528 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1529 u32 tx_id, int num_txqs)
1530 {
1531 int i;
1532 int err;
1533 int vector_num;
1534
1535 for (i = 0; i < num_txqs; i++) {
1536 vector_num = tx_info->tcb[i]->intr_vector;
1537 snprintf(tx_info->tcb[i]->name, BNA_Q_NAME_SIZE, "%s TXQ %d",
1538 bnad->netdev->name,
1539 tx_id + tx_info->tcb[i]->id);
1540 err = request_irq(bnad->msix_table[vector_num].vector,
1541 (irq_handler_t)bnad_msix_tx, 0,
1542 tx_info->tcb[i]->name,
1543 tx_info->tcb[i]);
1544 if (err)
1545 goto err_return;
1546 }
1547
1548 return 0;
1549
1550 err_return:
1551 if (i > 0)
1552 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1553 return -1;
1554 }
1555
1556 /* NOTE: Should be called for MSIX only
1557 * Unregisters Rx MSIX vector(s) from the kernel
1558 */
1559 static void
bnad_rx_msix_unregister(struct bnad * bnad,struct bnad_rx_info * rx_info,int num_rxps)1560 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1561 int num_rxps)
1562 {
1563 int i;
1564 int vector_num;
1565
1566 for (i = 0; i < num_rxps; i++) {
1567 if (rx_info->rx_ctrl[i].ccb == NULL)
1568 continue;
1569
1570 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1571 free_irq(bnad->msix_table[vector_num].vector,
1572 rx_info->rx_ctrl[i].ccb);
1573 }
1574 }
1575
1576 /* NOTE: Should be called for MSIX only
1577 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1578 */
1579 static int
bnad_rx_msix_register(struct bnad * bnad,struct bnad_rx_info * rx_info,u32 rx_id,int num_rxps)1580 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1581 u32 rx_id, int num_rxps)
1582 {
1583 int i;
1584 int err;
1585 int vector_num;
1586
1587 for (i = 0; i < num_rxps; i++) {
1588 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1589 snprintf(rx_info->rx_ctrl[i].ccb->name, BNA_Q_NAME_SIZE,
1590 "%s CQ %d", bnad->netdev->name,
1591 rx_id + rx_info->rx_ctrl[i].ccb->id);
1592 err = request_irq(bnad->msix_table[vector_num].vector,
1593 (irq_handler_t)bnad_msix_rx, 0,
1594 rx_info->rx_ctrl[i].ccb->name,
1595 rx_info->rx_ctrl[i].ccb);
1596 if (err)
1597 goto err_return;
1598 }
1599
1600 return 0;
1601
1602 err_return:
1603 if (i > 0)
1604 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1605 return -1;
1606 }
1607
1608 /* Free Tx object Resources */
1609 static void
bnad_tx_res_free(struct bnad * bnad,struct bna_res_info * res_info)1610 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1611 {
1612 int i;
1613
1614 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1615 if (res_info[i].res_type == BNA_RES_T_MEM)
1616 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1617 else if (res_info[i].res_type == BNA_RES_T_INTR)
1618 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1619 }
1620 }
1621
1622 /* Allocates memory and interrupt resources for Tx object */
1623 static int
bnad_tx_res_alloc(struct bnad * bnad,struct bna_res_info * res_info,u32 tx_id)1624 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1625 u32 tx_id)
1626 {
1627 int i, err = 0;
1628
1629 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1630 if (res_info[i].res_type == BNA_RES_T_MEM)
1631 err = bnad_mem_alloc(bnad,
1632 &res_info[i].res_u.mem_info);
1633 else if (res_info[i].res_type == BNA_RES_T_INTR)
1634 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1635 &res_info[i].res_u.intr_info);
1636 if (err)
1637 goto err_return;
1638 }
1639 return 0;
1640
1641 err_return:
1642 bnad_tx_res_free(bnad, res_info);
1643 return err;
1644 }
1645
1646 /* Free Rx object Resources */
1647 static void
bnad_rx_res_free(struct bnad * bnad,struct bna_res_info * res_info)1648 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1649 {
1650 int i;
1651
1652 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1653 if (res_info[i].res_type == BNA_RES_T_MEM)
1654 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1655 else if (res_info[i].res_type == BNA_RES_T_INTR)
1656 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1657 }
1658 }
1659
1660 /* Allocates memory and interrupt resources for Rx object */
1661 static int
bnad_rx_res_alloc(struct bnad * bnad,struct bna_res_info * res_info,uint rx_id)1662 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1663 uint rx_id)
1664 {
1665 int i, err = 0;
1666
1667 /* All memory needs to be allocated before setup_ccbs */
1668 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1669 if (res_info[i].res_type == BNA_RES_T_MEM)
1670 err = bnad_mem_alloc(bnad,
1671 &res_info[i].res_u.mem_info);
1672 else if (res_info[i].res_type == BNA_RES_T_INTR)
1673 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1674 &res_info[i].res_u.intr_info);
1675 if (err)
1676 goto err_return;
1677 }
1678 return 0;
1679
1680 err_return:
1681 bnad_rx_res_free(bnad, res_info);
1682 return err;
1683 }
1684
1685 /* Timer callbacks */
1686 /* a) IOC timer */
1687 static void
bnad_ioc_timeout(struct timer_list * t)1688 bnad_ioc_timeout(struct timer_list *t)
1689 {
1690 struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.ioc_timer);
1691 unsigned long flags;
1692
1693 spin_lock_irqsave(&bnad->bna_lock, flags);
1694 bfa_nw_ioc_timeout(&bnad->bna.ioceth.ioc);
1695 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1696 }
1697
1698 static void
bnad_ioc_hb_check(struct timer_list * t)1699 bnad_ioc_hb_check(struct timer_list *t)
1700 {
1701 struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.hb_timer);
1702 unsigned long flags;
1703
1704 spin_lock_irqsave(&bnad->bna_lock, flags);
1705 bfa_nw_ioc_hb_check(&bnad->bna.ioceth.ioc);
1706 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1707 }
1708
1709 static void
bnad_iocpf_timeout(struct timer_list * t)1710 bnad_iocpf_timeout(struct timer_list *t)
1711 {
1712 struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.iocpf_timer);
1713 unsigned long flags;
1714
1715 spin_lock_irqsave(&bnad->bna_lock, flags);
1716 bfa_nw_iocpf_timeout(&bnad->bna.ioceth.ioc);
1717 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1718 }
1719
1720 static void
bnad_iocpf_sem_timeout(struct timer_list * t)1721 bnad_iocpf_sem_timeout(struct timer_list *t)
1722 {
1723 struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.sem_timer);
1724 unsigned long flags;
1725
1726 spin_lock_irqsave(&bnad->bna_lock, flags);
1727 bfa_nw_iocpf_sem_timeout(&bnad->bna.ioceth.ioc);
1728 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1729 }
1730
1731 /*
1732 * All timer routines use bnad->bna_lock to protect against
1733 * the following race, which may occur in case of no locking:
1734 * Time CPU m CPU n
1735 * 0 1 = test_bit
1736 * 1 clear_bit
1737 * 2 del_timer_sync
1738 * 3 mod_timer
1739 */
1740
1741 /* b) Dynamic Interrupt Moderation Timer */
1742 static void
bnad_dim_timeout(struct timer_list * t)1743 bnad_dim_timeout(struct timer_list *t)
1744 {
1745 struct bnad *bnad = from_timer(bnad, t, dim_timer);
1746 struct bnad_rx_info *rx_info;
1747 struct bnad_rx_ctrl *rx_ctrl;
1748 int i, j;
1749 unsigned long flags;
1750
1751 if (!netif_carrier_ok(bnad->netdev))
1752 return;
1753
1754 spin_lock_irqsave(&bnad->bna_lock, flags);
1755 for (i = 0; i < bnad->num_rx; i++) {
1756 rx_info = &bnad->rx_info[i];
1757 if (!rx_info->rx)
1758 continue;
1759 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1760 rx_ctrl = &rx_info->rx_ctrl[j];
1761 if (!rx_ctrl->ccb)
1762 continue;
1763 bna_rx_dim_update(rx_ctrl->ccb);
1764 }
1765 }
1766
1767 /* Check for BNAD_CF_DIM_ENABLED, does not eliminate a race */
1768 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1769 mod_timer(&bnad->dim_timer,
1770 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1771 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1772 }
1773
1774 /* c) Statistics Timer */
1775 static void
bnad_stats_timeout(struct timer_list * t)1776 bnad_stats_timeout(struct timer_list *t)
1777 {
1778 struct bnad *bnad = from_timer(bnad, t, stats_timer);
1779 unsigned long flags;
1780
1781 if (!netif_running(bnad->netdev) ||
1782 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1783 return;
1784
1785 spin_lock_irqsave(&bnad->bna_lock, flags);
1786 bna_hw_stats_get(&bnad->bna);
1787 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1788 }
1789
1790 /*
1791 * Set up timer for DIM
1792 * Called with bnad->bna_lock held
1793 */
1794 void
bnad_dim_timer_start(struct bnad * bnad)1795 bnad_dim_timer_start(struct bnad *bnad)
1796 {
1797 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1798 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1799 timer_setup(&bnad->dim_timer, bnad_dim_timeout, 0);
1800 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1801 mod_timer(&bnad->dim_timer,
1802 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1803 }
1804 }
1805
1806 /*
1807 * Set up timer for statistics
1808 * Called with mutex_lock(&bnad->conf_mutex) held
1809 */
1810 static void
bnad_stats_timer_start(struct bnad * bnad)1811 bnad_stats_timer_start(struct bnad *bnad)
1812 {
1813 unsigned long flags;
1814
1815 spin_lock_irqsave(&bnad->bna_lock, flags);
1816 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1817 timer_setup(&bnad->stats_timer, bnad_stats_timeout, 0);
1818 mod_timer(&bnad->stats_timer,
1819 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1820 }
1821 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1822 }
1823
1824 /*
1825 * Stops the stats timer
1826 * Called with mutex_lock(&bnad->conf_mutex) held
1827 */
1828 static void
bnad_stats_timer_stop(struct bnad * bnad)1829 bnad_stats_timer_stop(struct bnad *bnad)
1830 {
1831 int to_del = 0;
1832 unsigned long flags;
1833
1834 spin_lock_irqsave(&bnad->bna_lock, flags);
1835 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1836 to_del = 1;
1837 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1838 if (to_del)
1839 del_timer_sync(&bnad->stats_timer);
1840 }
1841
1842 /* Utilities */
1843
1844 static void
bnad_netdev_mc_list_get(struct net_device * netdev,u8 * mc_list)1845 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1846 {
1847 int i = 1; /* Index 0 has broadcast address */
1848 struct netdev_hw_addr *mc_addr;
1849
1850 netdev_for_each_mc_addr(mc_addr, netdev) {
1851 ether_addr_copy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0]);
1852 i++;
1853 }
1854 }
1855
1856 static int
bnad_napi_poll_rx(struct napi_struct * napi,int budget)1857 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1858 {
1859 struct bnad_rx_ctrl *rx_ctrl =
1860 container_of(napi, struct bnad_rx_ctrl, napi);
1861 struct bnad *bnad = rx_ctrl->bnad;
1862 int rcvd = 0;
1863
1864 rx_ctrl->rx_poll_ctr++;
1865
1866 if (!netif_carrier_ok(bnad->netdev))
1867 goto poll_exit;
1868
1869 rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1870 if (rcvd >= budget)
1871 return rcvd;
1872
1873 poll_exit:
1874 napi_complete_done(napi, rcvd);
1875
1876 rx_ctrl->rx_complete++;
1877
1878 if (rx_ctrl->ccb)
1879 bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1880
1881 return rcvd;
1882 }
1883
1884 static void
bnad_napi_add(struct bnad * bnad,u32 rx_id)1885 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1886 {
1887 struct bnad_rx_ctrl *rx_ctrl;
1888 int i;
1889
1890 /* Initialize & enable NAPI */
1891 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1892 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1893 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1894 bnad_napi_poll_rx);
1895 }
1896 }
1897
1898 static void
bnad_napi_delete(struct bnad * bnad,u32 rx_id)1899 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1900 {
1901 int i;
1902
1903 /* First disable and then clean up */
1904 for (i = 0; i < bnad->num_rxp_per_rx; i++)
1905 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1906 }
1907
1908 /* Should be held with conf_lock held */
1909 void
bnad_destroy_tx(struct bnad * bnad,u32 tx_id)1910 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1911 {
1912 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1913 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1914 unsigned long flags;
1915
1916 if (!tx_info->tx)
1917 return;
1918
1919 init_completion(&bnad->bnad_completions.tx_comp);
1920 spin_lock_irqsave(&bnad->bna_lock, flags);
1921 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1922 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1923 wait_for_completion(&bnad->bnad_completions.tx_comp);
1924
1925 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1926 bnad_tx_msix_unregister(bnad, tx_info,
1927 bnad->num_txq_per_tx);
1928
1929 spin_lock_irqsave(&bnad->bna_lock, flags);
1930 bna_tx_destroy(tx_info->tx);
1931 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1932
1933 tx_info->tx = NULL;
1934 tx_info->tx_id = 0;
1935
1936 bnad_tx_res_free(bnad, res_info);
1937 }
1938
1939 /* Should be held with conf_lock held */
1940 int
bnad_setup_tx(struct bnad * bnad,u32 tx_id)1941 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1942 {
1943 int err;
1944 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1945 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1946 struct bna_intr_info *intr_info =
1947 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1948 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1949 static const struct bna_tx_event_cbfn tx_cbfn = {
1950 .tcb_setup_cbfn = bnad_cb_tcb_setup,
1951 .tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1952 .tx_stall_cbfn = bnad_cb_tx_stall,
1953 .tx_resume_cbfn = bnad_cb_tx_resume,
1954 .tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1955 };
1956
1957 struct bna_tx *tx;
1958 unsigned long flags;
1959
1960 tx_info->tx_id = tx_id;
1961
1962 /* Initialize the Tx object configuration */
1963 tx_config->num_txq = bnad->num_txq_per_tx;
1964 tx_config->txq_depth = bnad->txq_depth;
1965 tx_config->tx_type = BNA_TX_T_REGULAR;
1966 tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1967
1968 /* Get BNA's resource requirement for one tx object */
1969 spin_lock_irqsave(&bnad->bna_lock, flags);
1970 bna_tx_res_req(bnad->num_txq_per_tx,
1971 bnad->txq_depth, res_info);
1972 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1973
1974 /* Fill Unmap Q memory requirements */
1975 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1976 bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1977 bnad->txq_depth));
1978
1979 /* Allocate resources */
1980 err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1981 if (err)
1982 return err;
1983
1984 /* Ask BNA to create one Tx object, supplying required resources */
1985 spin_lock_irqsave(&bnad->bna_lock, flags);
1986 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1987 tx_info);
1988 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1989 if (!tx) {
1990 err = -ENOMEM;
1991 goto err_return;
1992 }
1993 tx_info->tx = tx;
1994
1995 INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
1996 (work_func_t)bnad_tx_cleanup);
1997
1998 /* Register ISR for the Tx object */
1999 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2000 err = bnad_tx_msix_register(bnad, tx_info,
2001 tx_id, bnad->num_txq_per_tx);
2002 if (err)
2003 goto cleanup_tx;
2004 }
2005
2006 spin_lock_irqsave(&bnad->bna_lock, flags);
2007 bna_tx_enable(tx);
2008 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2009
2010 return 0;
2011
2012 cleanup_tx:
2013 spin_lock_irqsave(&bnad->bna_lock, flags);
2014 bna_tx_destroy(tx_info->tx);
2015 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2016 tx_info->tx = NULL;
2017 tx_info->tx_id = 0;
2018 err_return:
2019 bnad_tx_res_free(bnad, res_info);
2020 return err;
2021 }
2022
2023 /* Setup the rx config for bna_rx_create */
2024 /* bnad decides the configuration */
2025 static void
bnad_init_rx_config(struct bnad * bnad,struct bna_rx_config * rx_config)2026 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2027 {
2028 memset(rx_config, 0, sizeof(*rx_config));
2029 rx_config->rx_type = BNA_RX_T_REGULAR;
2030 rx_config->num_paths = bnad->num_rxp_per_rx;
2031 rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2032
2033 if (bnad->num_rxp_per_rx > 1) {
2034 rx_config->rss_status = BNA_STATUS_T_ENABLED;
2035 rx_config->rss_config.hash_type =
2036 (BFI_ENET_RSS_IPV6 |
2037 BFI_ENET_RSS_IPV6_TCP |
2038 BFI_ENET_RSS_IPV4 |
2039 BFI_ENET_RSS_IPV4_TCP);
2040 rx_config->rss_config.hash_mask =
2041 bnad->num_rxp_per_rx - 1;
2042 netdev_rss_key_fill(rx_config->rss_config.toeplitz_hash_key,
2043 sizeof(rx_config->rss_config.toeplitz_hash_key));
2044 } else {
2045 rx_config->rss_status = BNA_STATUS_T_DISABLED;
2046 memset(&rx_config->rss_config, 0,
2047 sizeof(rx_config->rss_config));
2048 }
2049
2050 rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2051 rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2052
2053 /* BNA_RXP_SINGLE - one data-buffer queue
2054 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2055 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2056 */
2057 /* TODO: configurable param for queue type */
2058 rx_config->rxp_type = BNA_RXP_SLR;
2059
2060 if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2061 rx_config->frame_size > 4096) {
2062 /* though size_routing_enable is set in SLR,
2063 * small packets may get routed to same rxq.
2064 * set buf_size to 2048 instead of PAGE_SIZE.
2065 */
2066 rx_config->q0_buf_size = 2048;
2067 /* this should be in multiples of 2 */
2068 rx_config->q0_num_vecs = 4;
2069 rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2070 rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2071 } else {
2072 rx_config->q0_buf_size = rx_config->frame_size;
2073 rx_config->q0_num_vecs = 1;
2074 rx_config->q0_depth = bnad->rxq_depth;
2075 }
2076
2077 /* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2078 if (rx_config->rxp_type == BNA_RXP_SLR) {
2079 rx_config->q1_depth = bnad->rxq_depth;
2080 rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2081 }
2082
2083 rx_config->vlan_strip_status =
2084 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
2085 BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
2086 }
2087
2088 static void
bnad_rx_ctrl_init(struct bnad * bnad,u32 rx_id)2089 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2090 {
2091 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2092 int i;
2093
2094 for (i = 0; i < bnad->num_rxp_per_rx; i++)
2095 rx_info->rx_ctrl[i].bnad = bnad;
2096 }
2097
2098 /* Called with mutex_lock(&bnad->conf_mutex) held */
2099 static u32
bnad_reinit_rx(struct bnad * bnad)2100 bnad_reinit_rx(struct bnad *bnad)
2101 {
2102 struct net_device *netdev = bnad->netdev;
2103 u32 err = 0, current_err = 0;
2104 u32 rx_id = 0, count = 0;
2105 unsigned long flags;
2106
2107 /* destroy and create new rx objects */
2108 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2109 if (!bnad->rx_info[rx_id].rx)
2110 continue;
2111 bnad_destroy_rx(bnad, rx_id);
2112 }
2113
2114 spin_lock_irqsave(&bnad->bna_lock, flags);
2115 bna_enet_mtu_set(&bnad->bna.enet,
2116 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2117 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2118
2119 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2120 count++;
2121 current_err = bnad_setup_rx(bnad, rx_id);
2122 if (current_err && !err) {
2123 err = current_err;
2124 netdev_err(netdev, "RXQ:%u setup failed\n", rx_id);
2125 }
2126 }
2127
2128 /* restore rx configuration */
2129 if (bnad->rx_info[0].rx && !err) {
2130 bnad_restore_vlans(bnad, 0);
2131 bnad_enable_default_bcast(bnad);
2132 spin_lock_irqsave(&bnad->bna_lock, flags);
2133 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2134 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2135 bnad_set_rx_mode(netdev);
2136 }
2137
2138 return count;
2139 }
2140
2141 /* Called with bnad_conf_lock() held */
2142 void
bnad_destroy_rx(struct bnad * bnad,u32 rx_id)2143 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2144 {
2145 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2146 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2147 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2148 unsigned long flags;
2149 int to_del = 0;
2150
2151 if (!rx_info->rx)
2152 return;
2153
2154 if (0 == rx_id) {
2155 spin_lock_irqsave(&bnad->bna_lock, flags);
2156 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2157 test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2158 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2159 to_del = 1;
2160 }
2161 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2162 if (to_del)
2163 del_timer_sync(&bnad->dim_timer);
2164 }
2165
2166 init_completion(&bnad->bnad_completions.rx_comp);
2167 spin_lock_irqsave(&bnad->bna_lock, flags);
2168 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2169 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2170 wait_for_completion(&bnad->bnad_completions.rx_comp);
2171
2172 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2173 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2174
2175 bnad_napi_delete(bnad, rx_id);
2176
2177 spin_lock_irqsave(&bnad->bna_lock, flags);
2178 bna_rx_destroy(rx_info->rx);
2179
2180 rx_info->rx = NULL;
2181 rx_info->rx_id = 0;
2182 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2183
2184 bnad_rx_res_free(bnad, res_info);
2185 }
2186
2187 /* Called with mutex_lock(&bnad->conf_mutex) held */
2188 int
bnad_setup_rx(struct bnad * bnad,u32 rx_id)2189 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2190 {
2191 int err;
2192 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2193 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2194 struct bna_intr_info *intr_info =
2195 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2196 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2197 static const struct bna_rx_event_cbfn rx_cbfn = {
2198 .rcb_setup_cbfn = NULL,
2199 .rcb_destroy_cbfn = NULL,
2200 .ccb_setup_cbfn = bnad_cb_ccb_setup,
2201 .ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2202 .rx_stall_cbfn = bnad_cb_rx_stall,
2203 .rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2204 .rx_post_cbfn = bnad_cb_rx_post,
2205 };
2206 struct bna_rx *rx;
2207 unsigned long flags;
2208
2209 rx_info->rx_id = rx_id;
2210
2211 /* Initialize the Rx object configuration */
2212 bnad_init_rx_config(bnad, rx_config);
2213
2214 /* Get BNA's resource requirement for one Rx object */
2215 spin_lock_irqsave(&bnad->bna_lock, flags);
2216 bna_rx_res_req(rx_config, res_info);
2217 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2218
2219 /* Fill Unmap Q memory requirements */
2220 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2221 rx_config->num_paths,
2222 (rx_config->q0_depth *
2223 sizeof(struct bnad_rx_unmap)) +
2224 sizeof(struct bnad_rx_unmap_q));
2225
2226 if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2227 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2228 rx_config->num_paths,
2229 (rx_config->q1_depth *
2230 sizeof(struct bnad_rx_unmap) +
2231 sizeof(struct bnad_rx_unmap_q)));
2232 }
2233 /* Allocate resource */
2234 err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2235 if (err)
2236 return err;
2237
2238 bnad_rx_ctrl_init(bnad, rx_id);
2239
2240 /* Ask BNA to create one Rx object, supplying required resources */
2241 spin_lock_irqsave(&bnad->bna_lock, flags);
2242 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2243 rx_info);
2244 if (!rx) {
2245 err = -ENOMEM;
2246 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2247 goto err_return;
2248 }
2249 rx_info->rx = rx;
2250 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2251
2252 INIT_WORK(&rx_info->rx_cleanup_work,
2253 (work_func_t)(bnad_rx_cleanup));
2254
2255 /*
2256 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2257 * so that IRQ handler cannot schedule NAPI at this point.
2258 */
2259 bnad_napi_add(bnad, rx_id);
2260
2261 /* Register ISR for the Rx object */
2262 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2263 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2264 rx_config->num_paths);
2265 if (err)
2266 goto err_return;
2267 }
2268
2269 spin_lock_irqsave(&bnad->bna_lock, flags);
2270 if (0 == rx_id) {
2271 /* Set up Dynamic Interrupt Moderation Vector */
2272 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2273 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2274
2275 /* Enable VLAN filtering only on the default Rx */
2276 bna_rx_vlanfilter_enable(rx);
2277
2278 /* Start the DIM timer */
2279 bnad_dim_timer_start(bnad);
2280 }
2281
2282 bna_rx_enable(rx);
2283 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2284
2285 return 0;
2286
2287 err_return:
2288 bnad_destroy_rx(bnad, rx_id);
2289 return err;
2290 }
2291
2292 /* Called with conf_lock & bnad->bna_lock held */
2293 void
bnad_tx_coalescing_timeo_set(struct bnad * bnad)2294 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2295 {
2296 struct bnad_tx_info *tx_info;
2297
2298 tx_info = &bnad->tx_info[0];
2299 if (!tx_info->tx)
2300 return;
2301
2302 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2303 }
2304
2305 /* Called with conf_lock & bnad->bna_lock held */
2306 void
bnad_rx_coalescing_timeo_set(struct bnad * bnad)2307 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2308 {
2309 struct bnad_rx_info *rx_info;
2310 int i;
2311
2312 for (i = 0; i < bnad->num_rx; i++) {
2313 rx_info = &bnad->rx_info[i];
2314 if (!rx_info->rx)
2315 continue;
2316 bna_rx_coalescing_timeo_set(rx_info->rx,
2317 bnad->rx_coalescing_timeo);
2318 }
2319 }
2320
2321 /*
2322 * Called with bnad->bna_lock held
2323 */
2324 int
bnad_mac_addr_set_locked(struct bnad * bnad,const u8 * mac_addr)2325 bnad_mac_addr_set_locked(struct bnad *bnad, const u8 *mac_addr)
2326 {
2327 int ret;
2328
2329 if (!is_valid_ether_addr(mac_addr))
2330 return -EADDRNOTAVAIL;
2331
2332 /* If datapath is down, pretend everything went through */
2333 if (!bnad->rx_info[0].rx)
2334 return 0;
2335
2336 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr);
2337 if (ret != BNA_CB_SUCCESS)
2338 return -EADDRNOTAVAIL;
2339
2340 return 0;
2341 }
2342
2343 /* Should be called with conf_lock held */
2344 int
bnad_enable_default_bcast(struct bnad * bnad)2345 bnad_enable_default_bcast(struct bnad *bnad)
2346 {
2347 struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2348 int ret;
2349 unsigned long flags;
2350
2351 init_completion(&bnad->bnad_completions.mcast_comp);
2352
2353 spin_lock_irqsave(&bnad->bna_lock, flags);
2354 ret = bna_rx_mcast_add(rx_info->rx, bnad_bcast_addr,
2355 bnad_cb_rx_mcast_add);
2356 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2357
2358 if (ret == BNA_CB_SUCCESS)
2359 wait_for_completion(&bnad->bnad_completions.mcast_comp);
2360 else
2361 return -ENODEV;
2362
2363 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2364 return -ENODEV;
2365
2366 return 0;
2367 }
2368
2369 /* Called with mutex_lock(&bnad->conf_mutex) held */
2370 void
bnad_restore_vlans(struct bnad * bnad,u32 rx_id)2371 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2372 {
2373 u16 vid;
2374 unsigned long flags;
2375
2376 for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2377 spin_lock_irqsave(&bnad->bna_lock, flags);
2378 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2379 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2380 }
2381 }
2382
2383 /* Statistics utilities */
2384 void
bnad_netdev_qstats_fill(struct bnad * bnad,struct rtnl_link_stats64 * stats)2385 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2386 {
2387 int i, j;
2388
2389 for (i = 0; i < bnad->num_rx; i++) {
2390 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2391 if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2392 stats->rx_packets += bnad->rx_info[i].
2393 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2394 stats->rx_bytes += bnad->rx_info[i].
2395 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2396 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2397 bnad->rx_info[i].rx_ctrl[j].ccb->
2398 rcb[1]->rxq) {
2399 stats->rx_packets +=
2400 bnad->rx_info[i].rx_ctrl[j].
2401 ccb->rcb[1]->rxq->rx_packets;
2402 stats->rx_bytes +=
2403 bnad->rx_info[i].rx_ctrl[j].
2404 ccb->rcb[1]->rxq->rx_bytes;
2405 }
2406 }
2407 }
2408 }
2409 for (i = 0; i < bnad->num_tx; i++) {
2410 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2411 if (bnad->tx_info[i].tcb[j]) {
2412 stats->tx_packets +=
2413 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2414 stats->tx_bytes +=
2415 bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2416 }
2417 }
2418 }
2419 }
2420
2421 /*
2422 * Must be called with the bna_lock held.
2423 */
2424 void
bnad_netdev_hwstats_fill(struct bnad * bnad,struct rtnl_link_stats64 * stats)2425 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2426 {
2427 struct bfi_enet_stats_mac *mac_stats;
2428 u32 bmap;
2429 int i;
2430
2431 mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2432 stats->rx_errors =
2433 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2434 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2435 mac_stats->rx_undersize;
2436 stats->tx_errors = mac_stats->tx_fcs_error +
2437 mac_stats->tx_undersize;
2438 stats->rx_dropped = mac_stats->rx_drop;
2439 stats->tx_dropped = mac_stats->tx_drop;
2440 stats->multicast = mac_stats->rx_multicast;
2441 stats->collisions = mac_stats->tx_total_collision;
2442
2443 stats->rx_length_errors = mac_stats->rx_frame_length_error;
2444
2445 /* receive ring buffer overflow ?? */
2446
2447 stats->rx_crc_errors = mac_stats->rx_fcs_error;
2448 stats->rx_frame_errors = mac_stats->rx_alignment_error;
2449 /* recv'r fifo overrun */
2450 bmap = bna_rx_rid_mask(&bnad->bna);
2451 for (i = 0; bmap; i++) {
2452 if (bmap & 1) {
2453 stats->rx_fifo_errors +=
2454 bnad->stats.bna_stats->
2455 hw_stats.rxf_stats[i].frame_drops;
2456 break;
2457 }
2458 bmap >>= 1;
2459 }
2460 }
2461
2462 static void
bnad_mbox_irq_sync(struct bnad * bnad)2463 bnad_mbox_irq_sync(struct bnad *bnad)
2464 {
2465 u32 irq;
2466 unsigned long flags;
2467
2468 spin_lock_irqsave(&bnad->bna_lock, flags);
2469 if (bnad->cfg_flags & BNAD_CF_MSIX)
2470 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2471 else
2472 irq = bnad->pcidev->irq;
2473 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2474
2475 synchronize_irq(irq);
2476 }
2477
2478 /* Utility used by bnad_start_xmit, for doing TSO */
2479 static int
bnad_tso_prepare(struct bnad * bnad,struct sk_buff * skb)2480 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2481 {
2482 int err;
2483
2484 err = skb_cow_head(skb, 0);
2485 if (err < 0) {
2486 BNAD_UPDATE_CTR(bnad, tso_err);
2487 return err;
2488 }
2489
2490 /*
2491 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2492 * excluding the length field.
2493 */
2494 if (vlan_get_protocol(skb) == htons(ETH_P_IP)) {
2495 struct iphdr *iph = ip_hdr(skb);
2496
2497 /* Do we really need these? */
2498 iph->tot_len = 0;
2499 iph->check = 0;
2500
2501 tcp_hdr(skb)->check =
2502 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2503 IPPROTO_TCP, 0);
2504 BNAD_UPDATE_CTR(bnad, tso4);
2505 } else {
2506 tcp_v6_gso_csum_prep(skb);
2507 BNAD_UPDATE_CTR(bnad, tso6);
2508 }
2509
2510 return 0;
2511 }
2512
2513 /*
2514 * Initialize Q numbers depending on Rx Paths
2515 * Called with bnad->bna_lock held, because of cfg_flags
2516 * access.
2517 */
2518 static void
bnad_q_num_init(struct bnad * bnad)2519 bnad_q_num_init(struct bnad *bnad)
2520 {
2521 int rxps;
2522
2523 rxps = min((uint)num_online_cpus(),
2524 (uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2525
2526 if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2527 rxps = 1; /* INTx */
2528
2529 bnad->num_rx = 1;
2530 bnad->num_tx = 1;
2531 bnad->num_rxp_per_rx = rxps;
2532 bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2533 }
2534
2535 /*
2536 * Adjusts the Q numbers, given a number of msix vectors
2537 * Give preference to RSS as opposed to Tx priority Queues,
2538 * in such a case, just use 1 Tx Q
2539 * Called with bnad->bna_lock held b'cos of cfg_flags access
2540 */
2541 static void
bnad_q_num_adjust(struct bnad * bnad,int msix_vectors,int temp)2542 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2543 {
2544 bnad->num_txq_per_tx = 1;
2545 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) +
2546 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2547 (bnad->cfg_flags & BNAD_CF_MSIX)) {
2548 bnad->num_rxp_per_rx = msix_vectors -
2549 (bnad->num_tx * bnad->num_txq_per_tx) -
2550 BNAD_MAILBOX_MSIX_VECTORS;
2551 } else
2552 bnad->num_rxp_per_rx = 1;
2553 }
2554
2555 /* Enable / disable ioceth */
2556 static int
bnad_ioceth_disable(struct bnad * bnad)2557 bnad_ioceth_disable(struct bnad *bnad)
2558 {
2559 unsigned long flags;
2560 int err = 0;
2561
2562 spin_lock_irqsave(&bnad->bna_lock, flags);
2563 init_completion(&bnad->bnad_completions.ioc_comp);
2564 bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2565 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2566
2567 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2568 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2569
2570 err = bnad->bnad_completions.ioc_comp_status;
2571 return err;
2572 }
2573
2574 static int
bnad_ioceth_enable(struct bnad * bnad)2575 bnad_ioceth_enable(struct bnad *bnad)
2576 {
2577 int err = 0;
2578 unsigned long flags;
2579
2580 spin_lock_irqsave(&bnad->bna_lock, flags);
2581 init_completion(&bnad->bnad_completions.ioc_comp);
2582 bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2583 bna_ioceth_enable(&bnad->bna.ioceth);
2584 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2585
2586 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2587 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2588
2589 err = bnad->bnad_completions.ioc_comp_status;
2590
2591 return err;
2592 }
2593
2594 /* Free BNA resources */
2595 static void
bnad_res_free(struct bnad * bnad,struct bna_res_info * res_info,u32 res_val_max)2596 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2597 u32 res_val_max)
2598 {
2599 int i;
2600
2601 for (i = 0; i < res_val_max; i++)
2602 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2603 }
2604
2605 /* Allocates memory and interrupt resources for BNA */
2606 static int
bnad_res_alloc(struct bnad * bnad,struct bna_res_info * res_info,u32 res_val_max)2607 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2608 u32 res_val_max)
2609 {
2610 int i, err;
2611
2612 for (i = 0; i < res_val_max; i++) {
2613 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2614 if (err)
2615 goto err_return;
2616 }
2617 return 0;
2618
2619 err_return:
2620 bnad_res_free(bnad, res_info, res_val_max);
2621 return err;
2622 }
2623
2624 /* Interrupt enable / disable */
2625 static void
bnad_enable_msix(struct bnad * bnad)2626 bnad_enable_msix(struct bnad *bnad)
2627 {
2628 int i, ret;
2629 unsigned long flags;
2630
2631 spin_lock_irqsave(&bnad->bna_lock, flags);
2632 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2633 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2634 return;
2635 }
2636 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2637
2638 if (bnad->msix_table)
2639 return;
2640
2641 bnad->msix_table =
2642 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2643
2644 if (!bnad->msix_table)
2645 goto intx_mode;
2646
2647 for (i = 0; i < bnad->msix_num; i++)
2648 bnad->msix_table[i].entry = i;
2649
2650 ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
2651 1, bnad->msix_num);
2652 if (ret < 0) {
2653 goto intx_mode;
2654 } else if (ret < bnad->msix_num) {
2655 dev_warn(&bnad->pcidev->dev,
2656 "%d MSI-X vectors allocated < %d requested\n",
2657 ret, bnad->msix_num);
2658
2659 spin_lock_irqsave(&bnad->bna_lock, flags);
2660 /* ret = #of vectors that we got */
2661 bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2662 (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2663 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2664
2665 bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2666 BNAD_MAILBOX_MSIX_VECTORS;
2667
2668 if (bnad->msix_num > ret) {
2669 pci_disable_msix(bnad->pcidev);
2670 goto intx_mode;
2671 }
2672 }
2673
2674 pci_intx(bnad->pcidev, 0);
2675
2676 return;
2677
2678 intx_mode:
2679 dev_warn(&bnad->pcidev->dev,
2680 "MSI-X enable failed - operating in INTx mode\n");
2681
2682 kfree(bnad->msix_table);
2683 bnad->msix_table = NULL;
2684 bnad->msix_num = 0;
2685 spin_lock_irqsave(&bnad->bna_lock, flags);
2686 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2687 bnad_q_num_init(bnad);
2688 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2689 }
2690
2691 static void
bnad_disable_msix(struct bnad * bnad)2692 bnad_disable_msix(struct bnad *bnad)
2693 {
2694 u32 cfg_flags;
2695 unsigned long flags;
2696
2697 spin_lock_irqsave(&bnad->bna_lock, flags);
2698 cfg_flags = bnad->cfg_flags;
2699 if (bnad->cfg_flags & BNAD_CF_MSIX)
2700 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2701 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2702
2703 if (cfg_flags & BNAD_CF_MSIX) {
2704 pci_disable_msix(bnad->pcidev);
2705 kfree(bnad->msix_table);
2706 bnad->msix_table = NULL;
2707 }
2708 }
2709
2710 /* Netdev entry points */
2711 static int
bnad_open(struct net_device * netdev)2712 bnad_open(struct net_device *netdev)
2713 {
2714 int err;
2715 struct bnad *bnad = netdev_priv(netdev);
2716 struct bna_pause_config pause_config;
2717 unsigned long flags;
2718
2719 mutex_lock(&bnad->conf_mutex);
2720
2721 /* Tx */
2722 err = bnad_setup_tx(bnad, 0);
2723 if (err)
2724 goto err_return;
2725
2726 /* Rx */
2727 err = bnad_setup_rx(bnad, 0);
2728 if (err)
2729 goto cleanup_tx;
2730
2731 /* Port */
2732 pause_config.tx_pause = 0;
2733 pause_config.rx_pause = 0;
2734
2735 spin_lock_irqsave(&bnad->bna_lock, flags);
2736 bna_enet_mtu_set(&bnad->bna.enet,
2737 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2738 bna_enet_pause_config(&bnad->bna.enet, &pause_config);
2739 bna_enet_enable(&bnad->bna.enet);
2740 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2741
2742 /* Enable broadcast */
2743 bnad_enable_default_bcast(bnad);
2744
2745 /* Restore VLANs, if any */
2746 bnad_restore_vlans(bnad, 0);
2747
2748 /* Set the UCAST address */
2749 spin_lock_irqsave(&bnad->bna_lock, flags);
2750 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2751 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2752
2753 /* Start the stats timer */
2754 bnad_stats_timer_start(bnad);
2755
2756 mutex_unlock(&bnad->conf_mutex);
2757
2758 return 0;
2759
2760 cleanup_tx:
2761 bnad_destroy_tx(bnad, 0);
2762
2763 err_return:
2764 mutex_unlock(&bnad->conf_mutex);
2765 return err;
2766 }
2767
2768 static int
bnad_stop(struct net_device * netdev)2769 bnad_stop(struct net_device *netdev)
2770 {
2771 struct bnad *bnad = netdev_priv(netdev);
2772 unsigned long flags;
2773
2774 mutex_lock(&bnad->conf_mutex);
2775
2776 /* Stop the stats timer */
2777 bnad_stats_timer_stop(bnad);
2778
2779 init_completion(&bnad->bnad_completions.enet_comp);
2780
2781 spin_lock_irqsave(&bnad->bna_lock, flags);
2782 bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2783 bnad_cb_enet_disabled);
2784 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2785
2786 wait_for_completion(&bnad->bnad_completions.enet_comp);
2787
2788 bnad_destroy_tx(bnad, 0);
2789 bnad_destroy_rx(bnad, 0);
2790
2791 /* Synchronize mailbox IRQ */
2792 bnad_mbox_irq_sync(bnad);
2793
2794 mutex_unlock(&bnad->conf_mutex);
2795
2796 return 0;
2797 }
2798
2799 /* TX */
2800 /* Returns 0 for success */
2801 static int
bnad_txq_wi_prepare(struct bnad * bnad,struct bna_tcb * tcb,struct sk_buff * skb,struct bna_txq_entry * txqent)2802 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2803 struct sk_buff *skb, struct bna_txq_entry *txqent)
2804 {
2805 u16 flags = 0;
2806 u32 gso_size;
2807 u16 vlan_tag = 0;
2808
2809 if (skb_vlan_tag_present(skb)) {
2810 vlan_tag = (u16)skb_vlan_tag_get(skb);
2811 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2812 }
2813 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2814 vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2815 | (vlan_tag & 0x1fff);
2816 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2817 }
2818 txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2819
2820 if (skb_is_gso(skb)) {
2821 gso_size = skb_shinfo(skb)->gso_size;
2822 if (unlikely(gso_size > bnad->netdev->mtu)) {
2823 BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2824 return -EINVAL;
2825 }
2826 if (unlikely((gso_size + skb_tcp_all_headers(skb)) >= skb->len)) {
2827 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2828 txqent->hdr.wi.lso_mss = 0;
2829 BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2830 } else {
2831 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
2832 txqent->hdr.wi.lso_mss = htons(gso_size);
2833 }
2834
2835 if (bnad_tso_prepare(bnad, skb)) {
2836 BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2837 return -EINVAL;
2838 }
2839
2840 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2841 txqent->hdr.wi.l4_hdr_size_n_offset =
2842 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2843 tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2844 } else {
2845 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2846 txqent->hdr.wi.lso_mss = 0;
2847
2848 if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) {
2849 BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2850 return -EINVAL;
2851 }
2852
2853 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2854 __be16 net_proto = vlan_get_protocol(skb);
2855 u8 proto = 0;
2856
2857 if (net_proto == htons(ETH_P_IP))
2858 proto = ip_hdr(skb)->protocol;
2859 #ifdef NETIF_F_IPV6_CSUM
2860 else if (net_proto == htons(ETH_P_IPV6)) {
2861 /* nexthdr may not be TCP immediately. */
2862 proto = ipv6_hdr(skb)->nexthdr;
2863 }
2864 #endif
2865 if (proto == IPPROTO_TCP) {
2866 flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2867 txqent->hdr.wi.l4_hdr_size_n_offset =
2868 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2869 (0, skb_transport_offset(skb)));
2870
2871 BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2872
2873 if (unlikely(skb_headlen(skb) <
2874 skb_tcp_all_headers(skb))) {
2875 BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2876 return -EINVAL;
2877 }
2878 } else if (proto == IPPROTO_UDP) {
2879 flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2880 txqent->hdr.wi.l4_hdr_size_n_offset =
2881 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2882 (0, skb_transport_offset(skb)));
2883
2884 BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2885 if (unlikely(skb_headlen(skb) <
2886 skb_transport_offset(skb) +
2887 sizeof(struct udphdr))) {
2888 BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2889 return -EINVAL;
2890 }
2891 } else {
2892
2893 BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2894 return -EINVAL;
2895 }
2896 } else
2897 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2898 }
2899
2900 txqent->hdr.wi.flags = htons(flags);
2901 txqent->hdr.wi.frame_length = htonl(skb->len);
2902
2903 return 0;
2904 }
2905
2906 /*
2907 * bnad_start_xmit : Netdev entry point for Transmit
2908 * Called under lock held by net_device
2909 */
2910 static netdev_tx_t
bnad_start_xmit(struct sk_buff * skb,struct net_device * netdev)2911 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2912 {
2913 struct bnad *bnad = netdev_priv(netdev);
2914 u32 txq_id = 0;
2915 struct bna_tcb *tcb = NULL;
2916 struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2917 u32 prod, q_depth, vect_id;
2918 u32 wis, vectors, len;
2919 int i;
2920 dma_addr_t dma_addr;
2921 struct bna_txq_entry *txqent;
2922
2923 len = skb_headlen(skb);
2924
2925 /* Sanity checks for the skb */
2926
2927 if (unlikely(skb->len <= ETH_HLEN)) {
2928 dev_kfree_skb_any(skb);
2929 BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2930 return NETDEV_TX_OK;
2931 }
2932 if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2933 dev_kfree_skb_any(skb);
2934 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2935 return NETDEV_TX_OK;
2936 }
2937 if (unlikely(len == 0)) {
2938 dev_kfree_skb_any(skb);
2939 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2940 return NETDEV_TX_OK;
2941 }
2942
2943 tcb = bnad->tx_info[0].tcb[txq_id];
2944
2945 /*
2946 * Takes care of the Tx that is scheduled between clearing the flag
2947 * and the netif_tx_stop_all_queues() call.
2948 */
2949 if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2950 dev_kfree_skb_any(skb);
2951 BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2952 return NETDEV_TX_OK;
2953 }
2954
2955 q_depth = tcb->q_depth;
2956 prod = tcb->producer_index;
2957 unmap_q = tcb->unmap_q;
2958
2959 vectors = 1 + skb_shinfo(skb)->nr_frags;
2960 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */
2961
2962 if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2963 dev_kfree_skb_any(skb);
2964 BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2965 return NETDEV_TX_OK;
2966 }
2967
2968 /* Check for available TxQ resources */
2969 if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2970 if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2971 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2972 u32 sent;
2973 sent = bnad_txcmpl_process(bnad, tcb);
2974 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2975 bna_ib_ack(tcb->i_dbell, sent);
2976 smp_mb__before_atomic();
2977 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2978 } else {
2979 netif_stop_queue(netdev);
2980 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2981 }
2982
2983 smp_mb();
2984 /*
2985 * Check again to deal with race condition between
2986 * netif_stop_queue here, and netif_wake_queue in
2987 * interrupt handler which is not inside netif tx lock.
2988 */
2989 if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2990 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2991 return NETDEV_TX_BUSY;
2992 } else {
2993 netif_wake_queue(netdev);
2994 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2995 }
2996 }
2997
2998 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
2999 head_unmap = &unmap_q[prod];
3000
3001 /* Program the opcode, flags, frame_len, num_vectors in WI */
3002 if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3003 dev_kfree_skb_any(skb);
3004 return NETDEV_TX_OK;
3005 }
3006 txqent->hdr.wi.reserved = 0;
3007 txqent->hdr.wi.num_vectors = vectors;
3008
3009 head_unmap->skb = skb;
3010 head_unmap->nvecs = 0;
3011
3012 /* Program the vectors */
3013 unmap = head_unmap;
3014 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3015 len, DMA_TO_DEVICE);
3016 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3017 dev_kfree_skb_any(skb);
3018 BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3019 return NETDEV_TX_OK;
3020 }
3021 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3022 txqent->vector[0].length = htons(len);
3023 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3024 head_unmap->nvecs++;
3025
3026 for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3027 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3028 u32 size = skb_frag_size(frag);
3029
3030 if (unlikely(size == 0)) {
3031 /* Undo the changes starting at tcb->producer_index */
3032 bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3033 tcb->producer_index);
3034 dev_kfree_skb_any(skb);
3035 BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3036 return NETDEV_TX_OK;
3037 }
3038
3039 len += size;
3040
3041 vect_id++;
3042 if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3043 vect_id = 0;
3044 BNA_QE_INDX_INC(prod, q_depth);
3045 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3046 txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
3047 unmap = &unmap_q[prod];
3048 }
3049
3050 dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3051 0, size, DMA_TO_DEVICE);
3052 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3053 /* Undo the changes starting at tcb->producer_index */
3054 bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3055 tcb->producer_index);
3056 dev_kfree_skb_any(skb);
3057 BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3058 return NETDEV_TX_OK;
3059 }
3060
3061 dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3062 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3063 txqent->vector[vect_id].length = htons(size);
3064 dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3065 dma_addr);
3066 head_unmap->nvecs++;
3067 }
3068
3069 if (unlikely(len != skb->len)) {
3070 /* Undo the changes starting at tcb->producer_index */
3071 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3072 dev_kfree_skb_any(skb);
3073 BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3074 return NETDEV_TX_OK;
3075 }
3076
3077 BNA_QE_INDX_INC(prod, q_depth);
3078 tcb->producer_index = prod;
3079
3080 wmb();
3081
3082 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3083 return NETDEV_TX_OK;
3084
3085 skb_tx_timestamp(skb);
3086
3087 bna_txq_prod_indx_doorbell(tcb);
3088
3089 return NETDEV_TX_OK;
3090 }
3091
3092 /*
3093 * Used spin_lock to synchronize reading of stats structures, which
3094 * is written by BNA under the same lock.
3095 */
3096 static void
bnad_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)3097 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3098 {
3099 struct bnad *bnad = netdev_priv(netdev);
3100 unsigned long flags;
3101
3102 spin_lock_irqsave(&bnad->bna_lock, flags);
3103
3104 bnad_netdev_qstats_fill(bnad, stats);
3105 bnad_netdev_hwstats_fill(bnad, stats);
3106
3107 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3108 }
3109
3110 static void
bnad_set_rx_ucast_fltr(struct bnad * bnad)3111 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3112 {
3113 struct net_device *netdev = bnad->netdev;
3114 int uc_count = netdev_uc_count(netdev);
3115 enum bna_cb_status ret;
3116 u8 *mac_list;
3117 struct netdev_hw_addr *ha;
3118 int entry;
3119
3120 if (netdev_uc_empty(bnad->netdev)) {
3121 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3122 return;
3123 }
3124
3125 if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3126 goto mode_default;
3127
3128 mac_list = kcalloc(ETH_ALEN, uc_count, GFP_ATOMIC);
3129 if (mac_list == NULL)
3130 goto mode_default;
3131
3132 entry = 0;
3133 netdev_for_each_uc_addr(ha, netdev) {
3134 ether_addr_copy(&mac_list[entry * ETH_ALEN], &ha->addr[0]);
3135 entry++;
3136 }
3137
3138 ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry, mac_list);
3139 kfree(mac_list);
3140
3141 if (ret != BNA_CB_SUCCESS)
3142 goto mode_default;
3143
3144 return;
3145
3146 /* ucast packets not in UCAM are routed to default function */
3147 mode_default:
3148 bnad->cfg_flags |= BNAD_CF_DEFAULT;
3149 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3150 }
3151
3152 static void
bnad_set_rx_mcast_fltr(struct bnad * bnad)3153 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3154 {
3155 struct net_device *netdev = bnad->netdev;
3156 int mc_count = netdev_mc_count(netdev);
3157 enum bna_cb_status ret;
3158 u8 *mac_list;
3159
3160 if (netdev->flags & IFF_ALLMULTI)
3161 goto mode_allmulti;
3162
3163 if (netdev_mc_empty(netdev))
3164 return;
3165
3166 if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3167 goto mode_allmulti;
3168
3169 mac_list = kcalloc(mc_count + 1, ETH_ALEN, GFP_ATOMIC);
3170
3171 if (mac_list == NULL)
3172 goto mode_allmulti;
3173
3174 ether_addr_copy(&mac_list[0], &bnad_bcast_addr[0]);
3175
3176 /* copy rest of the MCAST addresses */
3177 bnad_netdev_mc_list_get(netdev, mac_list);
3178 ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1, mac_list);
3179 kfree(mac_list);
3180
3181 if (ret != BNA_CB_SUCCESS)
3182 goto mode_allmulti;
3183
3184 return;
3185
3186 mode_allmulti:
3187 bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3188 bna_rx_mcast_delall(bnad->rx_info[0].rx);
3189 }
3190
3191 void
bnad_set_rx_mode(struct net_device * netdev)3192 bnad_set_rx_mode(struct net_device *netdev)
3193 {
3194 struct bnad *bnad = netdev_priv(netdev);
3195 enum bna_rxmode new_mode, mode_mask;
3196 unsigned long flags;
3197
3198 spin_lock_irqsave(&bnad->bna_lock, flags);
3199
3200 if (bnad->rx_info[0].rx == NULL) {
3201 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3202 return;
3203 }
3204
3205 /* clear bnad flags to update it with new settings */
3206 bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3207 BNAD_CF_ALLMULTI);
3208
3209 new_mode = 0;
3210 if (netdev->flags & IFF_PROMISC) {
3211 new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3212 bnad->cfg_flags |= BNAD_CF_PROMISC;
3213 } else {
3214 bnad_set_rx_mcast_fltr(bnad);
3215
3216 if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3217 new_mode |= BNA_RXMODE_ALLMULTI;
3218
3219 bnad_set_rx_ucast_fltr(bnad);
3220
3221 if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3222 new_mode |= BNA_RXMODE_DEFAULT;
3223 }
3224
3225 mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3226 BNA_RXMODE_ALLMULTI;
3227 bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask);
3228
3229 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3230 }
3231
3232 /*
3233 * bna_lock is used to sync writes to netdev->addr
3234 * conf_lock cannot be used since this call may be made
3235 * in a non-blocking context.
3236 */
3237 static int
bnad_set_mac_address(struct net_device * netdev,void * addr)3238 bnad_set_mac_address(struct net_device *netdev, void *addr)
3239 {
3240 int err;
3241 struct bnad *bnad = netdev_priv(netdev);
3242 struct sockaddr *sa = (struct sockaddr *)addr;
3243 unsigned long flags;
3244
3245 spin_lock_irqsave(&bnad->bna_lock, flags);
3246
3247 err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3248 if (!err)
3249 eth_hw_addr_set(netdev, sa->sa_data);
3250
3251 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3252
3253 return err;
3254 }
3255
3256 static int
bnad_mtu_set(struct bnad * bnad,int frame_size)3257 bnad_mtu_set(struct bnad *bnad, int frame_size)
3258 {
3259 unsigned long flags;
3260
3261 init_completion(&bnad->bnad_completions.mtu_comp);
3262
3263 spin_lock_irqsave(&bnad->bna_lock, flags);
3264 bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3265 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3266
3267 wait_for_completion(&bnad->bnad_completions.mtu_comp);
3268
3269 return bnad->bnad_completions.mtu_comp_status;
3270 }
3271
3272 static int
bnad_change_mtu(struct net_device * netdev,int new_mtu)3273 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3274 {
3275 int err, mtu;
3276 struct bnad *bnad = netdev_priv(netdev);
3277 u32 frame, new_frame;
3278
3279 mutex_lock(&bnad->conf_mutex);
3280
3281 mtu = netdev->mtu;
3282 netdev->mtu = new_mtu;
3283
3284 frame = BNAD_FRAME_SIZE(mtu);
3285 new_frame = BNAD_FRAME_SIZE(new_mtu);
3286
3287 /* check if multi-buffer needs to be enabled */
3288 if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3289 netif_running(bnad->netdev)) {
3290 /* only when transition is over 4K */
3291 if ((frame <= 4096 && new_frame > 4096) ||
3292 (frame > 4096 && new_frame <= 4096))
3293 bnad_reinit_rx(bnad);
3294 }
3295
3296 err = bnad_mtu_set(bnad, new_frame);
3297 if (err)
3298 err = -EBUSY;
3299
3300 mutex_unlock(&bnad->conf_mutex);
3301 return err;
3302 }
3303
3304 static int
bnad_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3305 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3306 {
3307 struct bnad *bnad = netdev_priv(netdev);
3308 unsigned long flags;
3309
3310 if (!bnad->rx_info[0].rx)
3311 return 0;
3312
3313 mutex_lock(&bnad->conf_mutex);
3314
3315 spin_lock_irqsave(&bnad->bna_lock, flags);
3316 bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3317 set_bit(vid, bnad->active_vlans);
3318 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3319
3320 mutex_unlock(&bnad->conf_mutex);
3321
3322 return 0;
3323 }
3324
3325 static int
bnad_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3326 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3327 {
3328 struct bnad *bnad = netdev_priv(netdev);
3329 unsigned long flags;
3330
3331 if (!bnad->rx_info[0].rx)
3332 return 0;
3333
3334 mutex_lock(&bnad->conf_mutex);
3335
3336 spin_lock_irqsave(&bnad->bna_lock, flags);
3337 clear_bit(vid, bnad->active_vlans);
3338 bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3339 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3340
3341 mutex_unlock(&bnad->conf_mutex);
3342
3343 return 0;
3344 }
3345
bnad_set_features(struct net_device * dev,netdev_features_t features)3346 static int bnad_set_features(struct net_device *dev, netdev_features_t features)
3347 {
3348 struct bnad *bnad = netdev_priv(dev);
3349 netdev_features_t changed = features ^ dev->features;
3350
3351 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
3352 unsigned long flags;
3353
3354 spin_lock_irqsave(&bnad->bna_lock, flags);
3355
3356 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3357 bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3358 else
3359 bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3360
3361 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3362 }
3363
3364 return 0;
3365 }
3366
3367 #ifdef CONFIG_NET_POLL_CONTROLLER
3368 static void
bnad_netpoll(struct net_device * netdev)3369 bnad_netpoll(struct net_device *netdev)
3370 {
3371 struct bnad *bnad = netdev_priv(netdev);
3372 struct bnad_rx_info *rx_info;
3373 struct bnad_rx_ctrl *rx_ctrl;
3374 u32 curr_mask;
3375 int i, j;
3376
3377 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3378 bna_intx_disable(&bnad->bna, curr_mask);
3379 bnad_isr(bnad->pcidev->irq, netdev);
3380 bna_intx_enable(&bnad->bna, curr_mask);
3381 } else {
3382 /*
3383 * Tx processing may happen in sending context, so no need
3384 * to explicitly process completions here
3385 */
3386
3387 /* Rx processing */
3388 for (i = 0; i < bnad->num_rx; i++) {
3389 rx_info = &bnad->rx_info[i];
3390 if (!rx_info->rx)
3391 continue;
3392 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3393 rx_ctrl = &rx_info->rx_ctrl[j];
3394 if (rx_ctrl->ccb)
3395 bnad_netif_rx_schedule_poll(bnad,
3396 rx_ctrl->ccb);
3397 }
3398 }
3399 }
3400 }
3401 #endif
3402
3403 static const struct net_device_ops bnad_netdev_ops = {
3404 .ndo_open = bnad_open,
3405 .ndo_stop = bnad_stop,
3406 .ndo_start_xmit = bnad_start_xmit,
3407 .ndo_get_stats64 = bnad_get_stats64,
3408 .ndo_set_rx_mode = bnad_set_rx_mode,
3409 .ndo_validate_addr = eth_validate_addr,
3410 .ndo_set_mac_address = bnad_set_mac_address,
3411 .ndo_change_mtu = bnad_change_mtu,
3412 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid,
3413 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid,
3414 .ndo_set_features = bnad_set_features,
3415 #ifdef CONFIG_NET_POLL_CONTROLLER
3416 .ndo_poll_controller = bnad_netpoll
3417 #endif
3418 };
3419
3420 static void
bnad_netdev_init(struct bnad * bnad)3421 bnad_netdev_init(struct bnad *bnad)
3422 {
3423 struct net_device *netdev = bnad->netdev;
3424
3425 netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3426 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3427 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
3428 NETIF_F_HW_VLAN_CTAG_RX;
3429
3430 netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3431 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3432 NETIF_F_TSO | NETIF_F_TSO6;
3433
3434 netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER |
3435 NETIF_F_HIGHDMA;
3436
3437 netdev->mem_start = bnad->mmio_start;
3438 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3439
3440 /* MTU range: 46 - 9000 */
3441 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
3442 netdev->max_mtu = BNAD_JUMBO_MTU;
3443
3444 netdev->netdev_ops = &bnad_netdev_ops;
3445 bnad_set_ethtool_ops(netdev);
3446 }
3447
3448 /*
3449 * 1. Initialize the bnad structure
3450 * 2. Setup netdev pointer in pci_dev
3451 * 3. Initialize no. of TxQ & CQs & MSIX vectors
3452 * 4. Initialize work queue.
3453 */
3454 static int
bnad_init(struct bnad * bnad,struct pci_dev * pdev,struct net_device * netdev)3455 bnad_init(struct bnad *bnad,
3456 struct pci_dev *pdev, struct net_device *netdev)
3457 {
3458 unsigned long flags;
3459
3460 SET_NETDEV_DEV(netdev, &pdev->dev);
3461 pci_set_drvdata(pdev, netdev);
3462
3463 bnad->netdev = netdev;
3464 bnad->pcidev = pdev;
3465 bnad->mmio_start = pci_resource_start(pdev, 0);
3466 bnad->mmio_len = pci_resource_len(pdev, 0);
3467 bnad->bar0 = ioremap(bnad->mmio_start, bnad->mmio_len);
3468 if (!bnad->bar0) {
3469 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3470 return -ENOMEM;
3471 }
3472 dev_info(&pdev->dev, "bar0 mapped to %p, len %llu\n", bnad->bar0,
3473 (unsigned long long) bnad->mmio_len);
3474
3475 spin_lock_irqsave(&bnad->bna_lock, flags);
3476 if (!bnad_msix_disable)
3477 bnad->cfg_flags = BNAD_CF_MSIX;
3478
3479 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3480
3481 bnad_q_num_init(bnad);
3482 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3483
3484 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3485 (bnad->num_rx * bnad->num_rxp_per_rx) +
3486 BNAD_MAILBOX_MSIX_VECTORS;
3487
3488 bnad->txq_depth = BNAD_TXQ_DEPTH;
3489 bnad->rxq_depth = BNAD_RXQ_DEPTH;
3490
3491 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3492 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3493
3494 sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3495 bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3496 if (!bnad->work_q) {
3497 iounmap(bnad->bar0);
3498 return -ENOMEM;
3499 }
3500
3501 return 0;
3502 }
3503
3504 /*
3505 * Must be called after bnad_pci_uninit()
3506 * so that iounmap() and pci_set_drvdata(NULL)
3507 * happens only after PCI uninitialization.
3508 */
3509 static void
bnad_uninit(struct bnad * bnad)3510 bnad_uninit(struct bnad *bnad)
3511 {
3512 if (bnad->work_q) {
3513 destroy_workqueue(bnad->work_q);
3514 bnad->work_q = NULL;
3515 }
3516
3517 if (bnad->bar0)
3518 iounmap(bnad->bar0);
3519 }
3520
3521 /*
3522 * Initialize locks
3523 a) Per ioceth mutes used for serializing configuration
3524 changes from OS interface
3525 b) spin lock used to protect bna state machine
3526 */
3527 static void
bnad_lock_init(struct bnad * bnad)3528 bnad_lock_init(struct bnad *bnad)
3529 {
3530 spin_lock_init(&bnad->bna_lock);
3531 mutex_init(&bnad->conf_mutex);
3532 }
3533
3534 static void
bnad_lock_uninit(struct bnad * bnad)3535 bnad_lock_uninit(struct bnad *bnad)
3536 {
3537 mutex_destroy(&bnad->conf_mutex);
3538 }
3539
3540 /* PCI Initialization */
3541 static int
bnad_pci_init(struct bnad * bnad,struct pci_dev * pdev)3542 bnad_pci_init(struct bnad *bnad, struct pci_dev *pdev)
3543 {
3544 int err;
3545
3546 err = pci_enable_device(pdev);
3547 if (err)
3548 return err;
3549 err = pci_request_regions(pdev, BNAD_NAME);
3550 if (err)
3551 goto disable_device;
3552 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3553 if (err)
3554 goto release_regions;
3555 pci_set_master(pdev);
3556 return 0;
3557
3558 release_regions:
3559 pci_release_regions(pdev);
3560 disable_device:
3561 pci_disable_device(pdev);
3562
3563 return err;
3564 }
3565
3566 static void
bnad_pci_uninit(struct pci_dev * pdev)3567 bnad_pci_uninit(struct pci_dev *pdev)
3568 {
3569 pci_release_regions(pdev);
3570 pci_disable_device(pdev);
3571 }
3572
3573 static int
bnad_pci_probe(struct pci_dev * pdev,const struct pci_device_id * pcidev_id)3574 bnad_pci_probe(struct pci_dev *pdev,
3575 const struct pci_device_id *pcidev_id)
3576 {
3577 int err;
3578 struct bnad *bnad;
3579 struct bna *bna;
3580 struct net_device *netdev;
3581 struct bfa_pcidev pcidev_info;
3582 unsigned long flags;
3583
3584 mutex_lock(&bnad_fwimg_mutex);
3585 if (!cna_get_firmware_buf(pdev)) {
3586 mutex_unlock(&bnad_fwimg_mutex);
3587 dev_err(&pdev->dev, "failed to load firmware image!\n");
3588 return -ENODEV;
3589 }
3590 mutex_unlock(&bnad_fwimg_mutex);
3591
3592 /*
3593 * Allocates sizeof(struct net_device + struct bnad)
3594 * bnad = netdev->priv
3595 */
3596 netdev = alloc_etherdev(sizeof(struct bnad));
3597 if (!netdev) {
3598 err = -ENOMEM;
3599 return err;
3600 }
3601 bnad = netdev_priv(netdev);
3602 bnad_lock_init(bnad);
3603 bnad->id = atomic_inc_return(&bna_id) - 1;
3604
3605 mutex_lock(&bnad->conf_mutex);
3606 /* PCI initialization */
3607 err = bnad_pci_init(bnad, pdev);
3608 if (err)
3609 goto unlock_mutex;
3610
3611 /*
3612 * Initialize bnad structure
3613 * Setup relation between pci_dev & netdev
3614 */
3615 err = bnad_init(bnad, pdev, netdev);
3616 if (err)
3617 goto pci_uninit;
3618
3619 /* Initialize netdev structure, set up ethtool ops */
3620 bnad_netdev_init(bnad);
3621
3622 /* Set link to down state */
3623 netif_carrier_off(netdev);
3624
3625 /* Setup the debugfs node for this bfad */
3626 if (bna_debugfs_enable)
3627 bnad_debugfs_init(bnad);
3628
3629 /* Get resource requirement form bna */
3630 spin_lock_irqsave(&bnad->bna_lock, flags);
3631 bna_res_req(&bnad->res_info[0]);
3632 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3633
3634 /* Allocate resources from bna */
3635 err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3636 if (err)
3637 goto drv_uninit;
3638
3639 bna = &bnad->bna;
3640
3641 /* Setup pcidev_info for bna_init() */
3642 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3643 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3644 pcidev_info.device_id = bnad->pcidev->device;
3645 pcidev_info.pci_bar_kva = bnad->bar0;
3646
3647 spin_lock_irqsave(&bnad->bna_lock, flags);
3648 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3649 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3650
3651 bnad->stats.bna_stats = &bna->stats;
3652
3653 bnad_enable_msix(bnad);
3654 err = bnad_mbox_irq_alloc(bnad);
3655 if (err)
3656 goto res_free;
3657
3658 /* Set up timers */
3659 timer_setup(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout, 0);
3660 timer_setup(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check, 0);
3661 timer_setup(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout, 0);
3662 timer_setup(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3663 0);
3664
3665 /*
3666 * Start the chip
3667 * If the call back comes with error, we bail out.
3668 * This is a catastrophic error.
3669 */
3670 err = bnad_ioceth_enable(bnad);
3671 if (err) {
3672 dev_err(&pdev->dev, "initialization failed err=%d\n", err);
3673 goto probe_success;
3674 }
3675
3676 spin_lock_irqsave(&bnad->bna_lock, flags);
3677 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3678 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3679 bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3680 bna_attr(bna)->num_rxp - 1);
3681 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3682 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3683 err = -EIO;
3684 }
3685 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3686 if (err)
3687 goto disable_ioceth;
3688
3689 spin_lock_irqsave(&bnad->bna_lock, flags);
3690 bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3691 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3692
3693 err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3694 if (err) {
3695 err = -EIO;
3696 goto disable_ioceth;
3697 }
3698
3699 spin_lock_irqsave(&bnad->bna_lock, flags);
3700 bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3701 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3702
3703 /* Get the burnt-in mac */
3704 spin_lock_irqsave(&bnad->bna_lock, flags);
3705 bna_enet_perm_mac_get(&bna->enet, bnad->perm_addr);
3706 bnad_set_netdev_perm_addr(bnad);
3707 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3708
3709 mutex_unlock(&bnad->conf_mutex);
3710
3711 /* Finally, reguister with net_device layer */
3712 err = register_netdev(netdev);
3713 if (err) {
3714 dev_err(&pdev->dev, "registering net device failed\n");
3715 goto probe_uninit;
3716 }
3717 set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3718
3719 return 0;
3720
3721 probe_success:
3722 mutex_unlock(&bnad->conf_mutex);
3723 return 0;
3724
3725 probe_uninit:
3726 mutex_lock(&bnad->conf_mutex);
3727 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3728 disable_ioceth:
3729 bnad_ioceth_disable(bnad);
3730 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3731 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3732 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3733 spin_lock_irqsave(&bnad->bna_lock, flags);
3734 bna_uninit(bna);
3735 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3736 bnad_mbox_irq_free(bnad);
3737 bnad_disable_msix(bnad);
3738 res_free:
3739 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3740 drv_uninit:
3741 /* Remove the debugfs node for this bnad */
3742 kfree(bnad->regdata);
3743 bnad_debugfs_uninit(bnad);
3744 bnad_uninit(bnad);
3745 pci_uninit:
3746 bnad_pci_uninit(pdev);
3747 unlock_mutex:
3748 mutex_unlock(&bnad->conf_mutex);
3749 bnad_lock_uninit(bnad);
3750 free_netdev(netdev);
3751 return err;
3752 }
3753
3754 static void
bnad_pci_remove(struct pci_dev * pdev)3755 bnad_pci_remove(struct pci_dev *pdev)
3756 {
3757 struct net_device *netdev = pci_get_drvdata(pdev);
3758 struct bnad *bnad;
3759 struct bna *bna;
3760 unsigned long flags;
3761
3762 if (!netdev)
3763 return;
3764
3765 bnad = netdev_priv(netdev);
3766 bna = &bnad->bna;
3767
3768 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3769 unregister_netdev(netdev);
3770
3771 mutex_lock(&bnad->conf_mutex);
3772 bnad_ioceth_disable(bnad);
3773 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3774 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3775 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3776 spin_lock_irqsave(&bnad->bna_lock, flags);
3777 bna_uninit(bna);
3778 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3779
3780 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3781 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3782 bnad_mbox_irq_free(bnad);
3783 bnad_disable_msix(bnad);
3784 bnad_pci_uninit(pdev);
3785 mutex_unlock(&bnad->conf_mutex);
3786 bnad_lock_uninit(bnad);
3787 /* Remove the debugfs node for this bnad */
3788 kfree(bnad->regdata);
3789 bnad_debugfs_uninit(bnad);
3790 bnad_uninit(bnad);
3791 free_netdev(netdev);
3792 }
3793
3794 static const struct pci_device_id bnad_pci_id_table[] = {
3795 {
3796 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3797 PCI_DEVICE_ID_BROCADE_CT),
3798 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3799 .class_mask = 0xffff00
3800 },
3801 {
3802 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3803 BFA_PCI_DEVICE_ID_CT2),
3804 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3805 .class_mask = 0xffff00
3806 },
3807 {0, },
3808 };
3809
3810 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3811
3812 static struct pci_driver bnad_pci_driver = {
3813 .name = BNAD_NAME,
3814 .id_table = bnad_pci_id_table,
3815 .probe = bnad_pci_probe,
3816 .remove = bnad_pci_remove,
3817 };
3818
3819 static int __init
bnad_module_init(void)3820 bnad_module_init(void)
3821 {
3822 int err;
3823
3824 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3825
3826 err = pci_register_driver(&bnad_pci_driver);
3827 if (err < 0) {
3828 pr_err("bna: PCI driver registration failed err=%d\n", err);
3829 return err;
3830 }
3831
3832 return 0;
3833 }
3834
3835 static void __exit
bnad_module_exit(void)3836 bnad_module_exit(void)
3837 {
3838 pci_unregister_driver(&bnad_pci_driver);
3839 release_firmware(bfi_fw);
3840 }
3841
3842 module_init(bnad_module_init);
3843 module_exit(bnad_module_exit);
3844
3845 MODULE_AUTHOR("Brocade");
3846 MODULE_LICENSE("GPL");
3847 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver");
3848 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3849 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
3850