• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Atheros CARL9170 driver
3  *
4  * 802.11 xmit & status routines
5  *
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; see the file COPYING.  If not, see
21  * http://www.gnu.org/licenses/.
22  *
23  * This file incorporates work covered by the following copyright and
24  * permission notice:
25  *    Copyright (c) 2007-2008 Atheros Communications, Inc.
26  *
27  *    Permission to use, copy, modify, and/or distribute this software for any
28  *    purpose with or without fee is hereby granted, provided that the above
29  *    copyright notice and this permission notice appear in all copies.
30  *
31  *    THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32  *    WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33  *    MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34  *    ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35  *    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36  *    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37  *    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
38  */
39 
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 #include <linux/etherdevice.h>
43 #include <net/mac80211.h>
44 #include "carl9170.h"
45 #include "hw.h"
46 #include "cmd.h"
47 
__carl9170_get_queue(struct ar9170 * ar,unsigned int queue)48 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar,
49 						unsigned int queue)
50 {
51 	if (unlikely(modparam_noht)) {
52 		return queue;
53 	} else {
54 		/*
55 		 * This is just another workaround, until
56 		 * someone figures out how to get QoS and
57 		 * AMPDU to play nicely together.
58 		 */
59 
60 		return 2;		/* AC_BE */
61 	}
62 }
63 
carl9170_get_queue(struct ar9170 * ar,struct sk_buff * skb)64 static inline unsigned int carl9170_get_queue(struct ar9170 *ar,
65 					      struct sk_buff *skb)
66 {
67 	return __carl9170_get_queue(ar, skb_get_queue_mapping(skb));
68 }
69 
is_mem_full(struct ar9170 * ar)70 static bool is_mem_full(struct ar9170 *ar)
71 {
72 	return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) >
73 		atomic_read(&ar->mem_free_blocks));
74 }
75 
carl9170_tx_accounting(struct ar9170 * ar,struct sk_buff * skb)76 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb)
77 {
78 	int queue, i;
79 	bool mem_full;
80 
81 	atomic_inc(&ar->tx_total_queued);
82 
83 	queue = skb_get_queue_mapping(skb);
84 	spin_lock_bh(&ar->tx_stats_lock);
85 
86 	/*
87 	 * The driver has to accept the frame, regardless if the queue is
88 	 * full to the brim, or not. We have to do the queuing internally,
89 	 * since mac80211 assumes that a driver which can operate with
90 	 * aggregated frames does not reject frames for this reason.
91 	 */
92 	ar->tx_stats[queue].len++;
93 	ar->tx_stats[queue].count++;
94 
95 	mem_full = is_mem_full(ar);
96 	for (i = 0; i < ar->hw->queues; i++) {
97 		if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) {
98 			ieee80211_stop_queue(ar->hw, i);
99 			ar->queue_stop_timeout[i] = jiffies;
100 		}
101 	}
102 
103 	spin_unlock_bh(&ar->tx_stats_lock);
104 }
105 
106 /* needs rcu_read_lock */
__carl9170_get_tx_sta(struct ar9170 * ar,struct sk_buff * skb)107 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar,
108 						   struct sk_buff *skb)
109 {
110 	struct _carl9170_tx_superframe *super = (void *) skb->data;
111 	struct ieee80211_hdr *hdr = (void *) super->frame_data;
112 	struct ieee80211_vif *vif;
113 	unsigned int vif_id;
114 
115 	vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >>
116 		 CARL9170_TX_SUPER_MISC_VIF_ID_S;
117 
118 	if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC))
119 		return NULL;
120 
121 	vif = rcu_dereference(ar->vif_priv[vif_id].vif);
122 	if (unlikely(!vif))
123 		return NULL;
124 
125 	/*
126 	 * Normally we should use wrappers like ieee80211_get_DA to get
127 	 * the correct peer ieee80211_sta.
128 	 *
129 	 * But there is a problem with indirect traffic (broadcasts, or
130 	 * data which is designated for other stations) in station mode.
131 	 * The frame will be directed to the AP for distribution and not
132 	 * to the actual destination.
133 	 */
134 
135 	return ieee80211_find_sta(vif, hdr->addr1);
136 }
137 
carl9170_tx_ps_unblock(struct ar9170 * ar,struct sk_buff * skb)138 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb)
139 {
140 	struct ieee80211_sta *sta;
141 	struct carl9170_sta_info *sta_info;
142 
143 	rcu_read_lock();
144 	sta = __carl9170_get_tx_sta(ar, skb);
145 	if (unlikely(!sta))
146 		goto out_rcu;
147 
148 	sta_info = (struct carl9170_sta_info *) sta->drv_priv;
149 	if (atomic_dec_return(&sta_info->pending_frames) == 0)
150 		ieee80211_sta_block_awake(ar->hw, sta, false);
151 
152 out_rcu:
153 	rcu_read_unlock();
154 }
155 
carl9170_tx_accounting_free(struct ar9170 * ar,struct sk_buff * skb)156 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb)
157 {
158 	int queue;
159 
160 	queue = skb_get_queue_mapping(skb);
161 
162 	spin_lock_bh(&ar->tx_stats_lock);
163 
164 	ar->tx_stats[queue].len--;
165 
166 	if (!is_mem_full(ar)) {
167 		unsigned int i;
168 		for (i = 0; i < ar->hw->queues; i++) {
169 			if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT)
170 				continue;
171 
172 			if (ieee80211_queue_stopped(ar->hw, i)) {
173 				unsigned long tmp;
174 
175 				tmp = jiffies - ar->queue_stop_timeout[i];
176 				if (tmp > ar->max_queue_stop_timeout[i])
177 					ar->max_queue_stop_timeout[i] = tmp;
178 			}
179 
180 			ieee80211_wake_queue(ar->hw, i);
181 		}
182 	}
183 
184 	spin_unlock_bh(&ar->tx_stats_lock);
185 
186 	if (atomic_dec_and_test(&ar->tx_total_queued))
187 		complete(&ar->tx_flush);
188 }
189 
carl9170_alloc_dev_space(struct ar9170 * ar,struct sk_buff * skb)190 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb)
191 {
192 	struct _carl9170_tx_superframe *super = (void *) skb->data;
193 	unsigned int chunks;
194 	int cookie = -1;
195 
196 	atomic_inc(&ar->mem_allocs);
197 
198 	chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size);
199 	if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) {
200 		atomic_add(chunks, &ar->mem_free_blocks);
201 		return -ENOSPC;
202 	}
203 
204 	spin_lock_bh(&ar->mem_lock);
205 	cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0);
206 	spin_unlock_bh(&ar->mem_lock);
207 
208 	if (unlikely(cookie < 0)) {
209 		atomic_add(chunks, &ar->mem_free_blocks);
210 		return -ENOSPC;
211 	}
212 
213 	super = (void *) skb->data;
214 
215 	/*
216 	 * Cookie #0 serves two special purposes:
217 	 *  1. The firmware might use it generate BlockACK frames
218 	 *     in responds of an incoming BlockAckReqs.
219 	 *
220 	 *  2. Prevent double-free bugs.
221 	 */
222 	super->s.cookie = (u8) cookie + 1;
223 	return 0;
224 }
225 
carl9170_release_dev_space(struct ar9170 * ar,struct sk_buff * skb)226 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb)
227 {
228 	struct _carl9170_tx_superframe *super = (void *) skb->data;
229 	int cookie;
230 
231 	/* make a local copy of the cookie */
232 	cookie = super->s.cookie;
233 	/* invalidate cookie */
234 	super->s.cookie = 0;
235 
236 	/*
237 	 * Do a out-of-bounds check on the cookie:
238 	 *
239 	 *  * cookie "0" is reserved and won't be assigned to any
240 	 *    out-going frame. Internally however, it is used to
241 	 *    mark no longer/un-accounted frames and serves as a
242 	 *    cheap way of preventing frames from being freed
243 	 *    twice by _accident_. NB: There is a tiny race...
244 	 *
245 	 *  * obviously, cookie number is limited by the amount
246 	 *    of available memory blocks, so the number can
247 	 *    never execeed the mem_blocks count.
248 	 */
249 	if (WARN_ON_ONCE(cookie == 0) ||
250 	    WARN_ON_ONCE(cookie > ar->fw.mem_blocks))
251 		return;
252 
253 	atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size),
254 		   &ar->mem_free_blocks);
255 
256 	spin_lock_bh(&ar->mem_lock);
257 	bitmap_release_region(ar->mem_bitmap, cookie - 1, 0);
258 	spin_unlock_bh(&ar->mem_lock);
259 }
260 
261 /* Called from any context */
carl9170_tx_release(struct kref * ref)262 static void carl9170_tx_release(struct kref *ref)
263 {
264 	struct ar9170 *ar;
265 	struct carl9170_tx_info *arinfo;
266 	struct ieee80211_tx_info *txinfo;
267 	struct sk_buff *skb;
268 
269 	arinfo = container_of(ref, struct carl9170_tx_info, ref);
270 	txinfo = container_of((void *) arinfo, struct ieee80211_tx_info,
271 			      rate_driver_data);
272 	skb = container_of((void *) txinfo, struct sk_buff, cb);
273 
274 	ar = arinfo->ar;
275 	if (WARN_ON_ONCE(!ar))
276 		return;
277 
278 	/*
279 	 * This does not call ieee80211_tx_info_clear_status() because
280 	 * carl9170_tx_fill_rateinfo() has filled the rate information
281 	 * before we get to this point.
282 	 */
283 	memset(&txinfo->pad, 0, sizeof(txinfo->pad));
284 	memset(&txinfo->rate_driver_data, 0, sizeof(txinfo->rate_driver_data));
285 
286 	if (atomic_read(&ar->tx_total_queued))
287 		ar->tx_schedule = true;
288 
289 	if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) {
290 		if (!atomic_read(&ar->tx_ampdu_upload))
291 			ar->tx_ampdu_schedule = true;
292 
293 		if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) {
294 			struct _carl9170_tx_superframe *super;
295 
296 			super = (void *)skb->data;
297 			txinfo->status.ampdu_len = super->s.rix;
298 			txinfo->status.ampdu_ack_len = super->s.cnt;
299 		} else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) &&
300 			   !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) {
301 			/*
302 			 * drop redundant tx_status reports:
303 			 *
304 			 * 1. ampdu_ack_len of the final tx_status does
305 			 *    include the feedback of this particular frame.
306 			 *
307 			 * 2. tx_status_irqsafe only queues up to 128
308 			 *    tx feedback reports and discards the rest.
309 			 *
310 			 * 3. minstrel_ht is picky, it only accepts
311 			 *    reports of frames with the TX_STATUS_AMPDU flag.
312 			 *
313 			 * 4. mac80211 is not particularly interested in
314 			 *    feedback either [CTL_REQ_TX_STATUS not set]
315 			 */
316 
317 			ieee80211_free_txskb(ar->hw, skb);
318 			return;
319 		} else {
320 			/*
321 			 * Either the frame transmission has failed or
322 			 * mac80211 requested tx status.
323 			 */
324 		}
325 	}
326 
327 	skb_pull(skb, sizeof(struct _carl9170_tx_superframe));
328 	ieee80211_tx_status_irqsafe(ar->hw, skb);
329 }
330 
carl9170_tx_get_skb(struct sk_buff * skb)331 void carl9170_tx_get_skb(struct sk_buff *skb)
332 {
333 	struct carl9170_tx_info *arinfo = (void *)
334 		(IEEE80211_SKB_CB(skb))->rate_driver_data;
335 	kref_get(&arinfo->ref);
336 }
337 
carl9170_tx_put_skb(struct sk_buff * skb)338 int carl9170_tx_put_skb(struct sk_buff *skb)
339 {
340 	struct carl9170_tx_info *arinfo = (void *)
341 		(IEEE80211_SKB_CB(skb))->rate_driver_data;
342 
343 	return kref_put(&arinfo->ref, carl9170_tx_release);
344 }
345 
346 /* Caller must hold the tid_info->lock & rcu_read_lock */
carl9170_tx_shift_bm(struct ar9170 * ar,struct carl9170_sta_tid * tid_info,u16 seq)347 static void carl9170_tx_shift_bm(struct ar9170 *ar,
348 	struct carl9170_sta_tid *tid_info, u16 seq)
349 {
350 	u16 off;
351 
352 	off = SEQ_DIFF(seq, tid_info->bsn);
353 
354 	if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
355 		return;
356 
357 	/*
358 	 * Sanity check. For each MPDU we set the bit in bitmap and
359 	 * clear it once we received the tx_status.
360 	 * But if the bit is already cleared then we've been bitten
361 	 * by a bug.
362 	 */
363 	WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap));
364 
365 	off = SEQ_DIFF(tid_info->snx, tid_info->bsn);
366 	if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
367 		return;
368 
369 	if (!bitmap_empty(tid_info->bitmap, off))
370 		off = find_first_bit(tid_info->bitmap, off);
371 
372 	tid_info->bsn += off;
373 	tid_info->bsn &= 0x0fff;
374 
375 	bitmap_shift_right(tid_info->bitmap, tid_info->bitmap,
376 			   off, CARL9170_BAW_BITS);
377 }
378 
carl9170_tx_status_process_ampdu(struct ar9170 * ar,struct sk_buff * skb,struct ieee80211_tx_info * txinfo)379 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar,
380 	struct sk_buff *skb, struct ieee80211_tx_info *txinfo)
381 {
382 	struct _carl9170_tx_superframe *super = (void *) skb->data;
383 	struct ieee80211_hdr *hdr = (void *) super->frame_data;
384 	struct ieee80211_sta *sta;
385 	struct carl9170_sta_info *sta_info;
386 	struct carl9170_sta_tid *tid_info;
387 	u8 tid;
388 
389 	if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) ||
390 	    txinfo->flags & IEEE80211_TX_CTL_INJECTED)
391 		return;
392 
393 	rcu_read_lock();
394 	sta = __carl9170_get_tx_sta(ar, skb);
395 	if (unlikely(!sta))
396 		goto out_rcu;
397 
398 	tid = ieee80211_get_tid(hdr);
399 
400 	sta_info = (void *) sta->drv_priv;
401 	tid_info = rcu_dereference(sta_info->agg[tid]);
402 	if (!tid_info)
403 		goto out_rcu;
404 
405 	spin_lock_bh(&tid_info->lock);
406 	if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE))
407 		carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr));
408 
409 	if (sta_info->stats[tid].clear) {
410 		sta_info->stats[tid].clear = false;
411 		sta_info->stats[tid].req = false;
412 		sta_info->stats[tid].ampdu_len = 0;
413 		sta_info->stats[tid].ampdu_ack_len = 0;
414 	}
415 
416 	sta_info->stats[tid].ampdu_len++;
417 	if (txinfo->status.rates[0].count == 1)
418 		sta_info->stats[tid].ampdu_ack_len++;
419 
420 	if (!(txinfo->flags & IEEE80211_TX_STAT_ACK))
421 		sta_info->stats[tid].req = true;
422 
423 	if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) {
424 		super->s.rix = sta_info->stats[tid].ampdu_len;
425 		super->s.cnt = sta_info->stats[tid].ampdu_ack_len;
426 		txinfo->flags |= IEEE80211_TX_STAT_AMPDU;
427 		if (sta_info->stats[tid].req)
428 			txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
429 
430 		sta_info->stats[tid].clear = true;
431 	}
432 	spin_unlock_bh(&tid_info->lock);
433 
434 out_rcu:
435 	rcu_read_unlock();
436 }
437 
carl9170_tx_bar_status(struct ar9170 * ar,struct sk_buff * skb,struct ieee80211_tx_info * tx_info)438 static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb,
439 	struct ieee80211_tx_info *tx_info)
440 {
441 	struct _carl9170_tx_superframe *super = (void *) skb->data;
442 	struct ieee80211_bar *bar = (void *) super->frame_data;
443 
444 	/*
445 	 * Unlike all other frames, the status report for BARs does
446 	 * not directly come from the hardware as it is incapable of
447 	 * matching a BA to a previously send BAR.
448 	 * Instead the RX-path will scan for incoming BAs and set the
449 	 * IEEE80211_TX_STAT_ACK if it sees one that was likely
450 	 * caused by a BAR from us.
451 	 */
452 
453 	if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
454 	   !(tx_info->flags & IEEE80211_TX_STAT_ACK)) {
455 		struct carl9170_bar_list_entry *entry;
456 		int queue = skb_get_queue_mapping(skb);
457 
458 		rcu_read_lock();
459 		list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) {
460 			if (entry->skb == skb) {
461 				spin_lock_bh(&ar->bar_list_lock[queue]);
462 				list_del_rcu(&entry->list);
463 				spin_unlock_bh(&ar->bar_list_lock[queue]);
464 				kfree_rcu(entry, head);
465 				goto out;
466 			}
467 		}
468 
469 		WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n",
470 		       queue, bar->ra, bar->ta, bar->control,
471 			bar->start_seq_num);
472 out:
473 		rcu_read_unlock();
474 	}
475 }
476 
carl9170_tx_status(struct ar9170 * ar,struct sk_buff * skb,const bool success)477 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb,
478 			const bool success)
479 {
480 	struct ieee80211_tx_info *txinfo;
481 
482 	carl9170_tx_accounting_free(ar, skb);
483 
484 	txinfo = IEEE80211_SKB_CB(skb);
485 
486 	carl9170_tx_bar_status(ar, skb, txinfo);
487 
488 	if (success)
489 		txinfo->flags |= IEEE80211_TX_STAT_ACK;
490 	else
491 		ar->tx_ack_failures++;
492 
493 	if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
494 		carl9170_tx_status_process_ampdu(ar, skb, txinfo);
495 
496 	carl9170_tx_ps_unblock(ar, skb);
497 	carl9170_tx_put_skb(skb);
498 }
499 
500 /* This function may be called form any context */
carl9170_tx_callback(struct ar9170 * ar,struct sk_buff * skb)501 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb)
502 {
503 	struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb);
504 
505 	atomic_dec(&ar->tx_total_pending);
506 
507 	if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
508 		atomic_dec(&ar->tx_ampdu_upload);
509 
510 	if (carl9170_tx_put_skb(skb))
511 		tasklet_hi_schedule(&ar->usb_tasklet);
512 }
513 
carl9170_get_queued_skb(struct ar9170 * ar,u8 cookie,struct sk_buff_head * queue)514 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie,
515 					       struct sk_buff_head *queue)
516 {
517 	struct sk_buff *skb;
518 
519 	spin_lock_bh(&queue->lock);
520 	skb_queue_walk(queue, skb) {
521 		struct _carl9170_tx_superframe *txc = (void *) skb->data;
522 
523 		if (txc->s.cookie != cookie)
524 			continue;
525 
526 		__skb_unlink(skb, queue);
527 		spin_unlock_bh(&queue->lock);
528 
529 		carl9170_release_dev_space(ar, skb);
530 		return skb;
531 	}
532 	spin_unlock_bh(&queue->lock);
533 
534 	return NULL;
535 }
536 
carl9170_tx_fill_rateinfo(struct ar9170 * ar,unsigned int rix,unsigned int tries,struct ieee80211_tx_info * txinfo)537 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix,
538 	unsigned int tries, struct ieee80211_tx_info *txinfo)
539 {
540 	unsigned int i;
541 
542 	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
543 		if (txinfo->status.rates[i].idx < 0)
544 			break;
545 
546 		if (i == rix) {
547 			txinfo->status.rates[i].count = tries;
548 			i++;
549 			break;
550 		}
551 	}
552 
553 	for (; i < IEEE80211_TX_MAX_RATES; i++) {
554 		txinfo->status.rates[i].idx = -1;
555 		txinfo->status.rates[i].count = 0;
556 	}
557 }
558 
carl9170_check_queue_stop_timeout(struct ar9170 * ar)559 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar)
560 {
561 	int i;
562 	struct sk_buff *skb;
563 	struct ieee80211_tx_info *txinfo;
564 	struct carl9170_tx_info *arinfo;
565 	bool restart = false;
566 
567 	for (i = 0; i < ar->hw->queues; i++) {
568 		spin_lock_bh(&ar->tx_status[i].lock);
569 
570 		skb = skb_peek(&ar->tx_status[i]);
571 
572 		if (!skb)
573 			goto next;
574 
575 		txinfo = IEEE80211_SKB_CB(skb);
576 		arinfo = (void *) txinfo->rate_driver_data;
577 
578 		if (time_is_before_jiffies(arinfo->timeout +
579 		    msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true)
580 			restart = true;
581 
582 next:
583 		spin_unlock_bh(&ar->tx_status[i].lock);
584 	}
585 
586 	if (restart) {
587 		/*
588 		 * At least one queue has been stuck for long enough.
589 		 * Give the device a kick and hope it gets back to
590 		 * work.
591 		 *
592 		 * possible reasons may include:
593 		 *  - frames got lost/corrupted (bad connection to the device)
594 		 *  - stalled rx processing/usb controller hiccups
595 		 *  - firmware errors/bugs
596 		 *  - every bug you can think of.
597 		 *  - all bugs you can't...
598 		 *  - ...
599 		 */
600 		carl9170_restart(ar, CARL9170_RR_STUCK_TX);
601 	}
602 }
603 
carl9170_tx_ampdu_timeout(struct ar9170 * ar)604 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar)
605 {
606 	struct carl9170_sta_tid *iter;
607 	struct sk_buff *skb;
608 	struct ieee80211_tx_info *txinfo;
609 	struct carl9170_tx_info *arinfo;
610 	struct ieee80211_sta *sta;
611 
612 	rcu_read_lock();
613 	list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) {
614 		if (iter->state < CARL9170_TID_STATE_IDLE)
615 			continue;
616 
617 		spin_lock_bh(&iter->lock);
618 		skb = skb_peek(&iter->queue);
619 		if (!skb)
620 			goto unlock;
621 
622 		txinfo = IEEE80211_SKB_CB(skb);
623 		arinfo = (void *)txinfo->rate_driver_data;
624 		if (time_is_after_jiffies(arinfo->timeout +
625 		    msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT)))
626 			goto unlock;
627 
628 		sta = iter->sta;
629 		if (WARN_ON(!sta))
630 			goto unlock;
631 
632 		ieee80211_stop_tx_ba_session(sta, iter->tid);
633 unlock:
634 		spin_unlock_bh(&iter->lock);
635 
636 	}
637 	rcu_read_unlock();
638 }
639 
carl9170_tx_janitor(struct work_struct * work)640 void carl9170_tx_janitor(struct work_struct *work)
641 {
642 	struct ar9170 *ar = container_of(work, struct ar9170,
643 					 tx_janitor.work);
644 	if (!IS_STARTED(ar))
645 		return;
646 
647 	ar->tx_janitor_last_run = jiffies;
648 
649 	carl9170_check_queue_stop_timeout(ar);
650 	carl9170_tx_ampdu_timeout(ar);
651 
652 	if (!atomic_read(&ar->tx_total_queued))
653 		return;
654 
655 	ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
656 		msecs_to_jiffies(CARL9170_TX_TIMEOUT));
657 }
658 
__carl9170_tx_process_status(struct ar9170 * ar,const uint8_t cookie,const uint8_t info)659 static void __carl9170_tx_process_status(struct ar9170 *ar,
660 	const uint8_t cookie, const uint8_t info)
661 {
662 	struct sk_buff *skb;
663 	struct ieee80211_tx_info *txinfo;
664 	unsigned int r, t, q;
665 	bool success = true;
666 
667 	q = ar9170_qmap(info & CARL9170_TX_STATUS_QUEUE);
668 
669 	skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]);
670 	if (!skb) {
671 		/*
672 		 * We have lost the race to another thread.
673 		 */
674 
675 		return ;
676 	}
677 
678 	txinfo = IEEE80211_SKB_CB(skb);
679 
680 	if (!(info & CARL9170_TX_STATUS_SUCCESS))
681 		success = false;
682 
683 	r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S;
684 	t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S;
685 
686 	carl9170_tx_fill_rateinfo(ar, r, t, txinfo);
687 	carl9170_tx_status(ar, skb, success);
688 }
689 
carl9170_tx_process_status(struct ar9170 * ar,const struct carl9170_rsp * cmd)690 void carl9170_tx_process_status(struct ar9170 *ar,
691 				const struct carl9170_rsp *cmd)
692 {
693 	unsigned int i;
694 
695 	for (i = 0;  i < cmd->hdr.ext; i++) {
696 		if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) {
697 			print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE,
698 					     (void *) cmd, cmd->hdr.len + 4);
699 			break;
700 		}
701 
702 		__carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie,
703 					     cmd->_tx_status[i].info);
704 	}
705 }
706 
carl9170_tx_rate_tpc_chains(struct ar9170 * ar,struct ieee80211_tx_info * info,struct ieee80211_tx_rate * txrate,unsigned int * phyrate,unsigned int * tpc,unsigned int * chains)707 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar,
708 	struct ieee80211_tx_info *info,	struct ieee80211_tx_rate *txrate,
709 	unsigned int *phyrate, unsigned int *tpc, unsigned int *chains)
710 {
711 	struct ieee80211_rate *rate = NULL;
712 	u8 *txpower;
713 	unsigned int idx;
714 
715 	idx = txrate->idx;
716 	*tpc = 0;
717 	*phyrate = 0;
718 
719 	if (txrate->flags & IEEE80211_TX_RC_MCS) {
720 		if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
721 			/* +1 dBm for HT40 */
722 			*tpc += 2;
723 
724 			if (info->band == NL80211_BAND_2GHZ)
725 				txpower = ar->power_2G_ht40;
726 			else
727 				txpower = ar->power_5G_ht40;
728 		} else {
729 			if (info->band == NL80211_BAND_2GHZ)
730 				txpower = ar->power_2G_ht20;
731 			else
732 				txpower = ar->power_5G_ht20;
733 		}
734 
735 		*phyrate = txrate->idx;
736 		*tpc += txpower[idx & 7];
737 	} else {
738 		if (info->band == NL80211_BAND_2GHZ) {
739 			if (idx < 4)
740 				txpower = ar->power_2G_cck;
741 			else
742 				txpower = ar->power_2G_ofdm;
743 		} else {
744 			txpower = ar->power_5G_leg;
745 			idx += 4;
746 		}
747 
748 		rate = &__carl9170_ratetable[idx];
749 		*tpc += txpower[(rate->hw_value & 0x30) >> 4];
750 		*phyrate = rate->hw_value & 0xf;
751 	}
752 
753 	if (ar->eeprom.tx_mask == 1) {
754 		*chains = AR9170_TX_PHY_TXCHAIN_1;
755 	} else {
756 		if (!(txrate->flags & IEEE80211_TX_RC_MCS) &&
757 		    rate && rate->bitrate >= 360)
758 			*chains = AR9170_TX_PHY_TXCHAIN_1;
759 		else
760 			*chains = AR9170_TX_PHY_TXCHAIN_2;
761 	}
762 
763 	*tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2);
764 }
765 
carl9170_tx_physet(struct ar9170 * ar,struct ieee80211_tx_info * info,struct ieee80211_tx_rate * txrate)766 static __le32 carl9170_tx_physet(struct ar9170 *ar,
767 	struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate)
768 {
769 	unsigned int power = 0, chains = 0, phyrate = 0;
770 	__le32 tmp;
771 
772 	tmp = cpu_to_le32(0);
773 
774 	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
775 		tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ <<
776 			AR9170_TX_PHY_BW_S);
777 	/* this works because 40 MHz is 2 and dup is 3 */
778 	if (txrate->flags & IEEE80211_TX_RC_DUP_DATA)
779 		tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP <<
780 			AR9170_TX_PHY_BW_S);
781 
782 	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
783 		tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI);
784 
785 	if (txrate->flags & IEEE80211_TX_RC_MCS) {
786 		SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx);
787 
788 		/* heavy clip control */
789 		tmp |= cpu_to_le32((txrate->idx & 0x7) <<
790 			AR9170_TX_PHY_TX_HEAVY_CLIP_S);
791 
792 		tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT);
793 
794 		/*
795 		 * green field preamble does not work.
796 		 *
797 		 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
798 		 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD);
799 		 */
800 	} else {
801 		if (info->band == NL80211_BAND_2GHZ) {
802 			if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M)
803 				tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK);
804 			else
805 				tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
806 		} else {
807 			tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
808 		}
809 
810 		/*
811 		 * short preamble seems to be broken too.
812 		 *
813 		 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
814 		 *	tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE);
815 		 */
816 	}
817 	carl9170_tx_rate_tpc_chains(ar, info, txrate,
818 				    &phyrate, &power, &chains);
819 
820 	tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate));
821 	tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power));
822 	tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains));
823 	return tmp;
824 }
825 
carl9170_tx_rts_check(struct ar9170 * ar,struct ieee80211_tx_rate * rate,bool ampdu,bool multi)826 static bool carl9170_tx_rts_check(struct ar9170 *ar,
827 				  struct ieee80211_tx_rate *rate,
828 				  bool ampdu, bool multi)
829 {
830 	switch (ar->erp_mode) {
831 	case CARL9170_ERP_AUTO:
832 		if (ampdu)
833 			break;
834 		fallthrough;
835 
836 	case CARL9170_ERP_MAC80211:
837 		if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS))
838 			break;
839 		fallthrough;
840 
841 	case CARL9170_ERP_RTS:
842 		if (likely(!multi))
843 			return true;
844 		break;
845 
846 	default:
847 		break;
848 	}
849 
850 	return false;
851 }
852 
carl9170_tx_cts_check(struct ar9170 * ar,struct ieee80211_tx_rate * rate)853 static bool carl9170_tx_cts_check(struct ar9170 *ar,
854 				  struct ieee80211_tx_rate *rate)
855 {
856 	switch (ar->erp_mode) {
857 	case CARL9170_ERP_AUTO:
858 	case CARL9170_ERP_MAC80211:
859 		if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
860 			break;
861 		fallthrough;
862 
863 	case CARL9170_ERP_CTS:
864 		return true;
865 
866 	default:
867 		break;
868 	}
869 
870 	return false;
871 }
872 
carl9170_tx_get_rates(struct ar9170 * ar,struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct sk_buff * skb)873 static void carl9170_tx_get_rates(struct ar9170 *ar,
874 				  struct ieee80211_vif *vif,
875 				  struct ieee80211_sta *sta,
876 				  struct sk_buff *skb)
877 {
878 	struct ieee80211_tx_info *info;
879 
880 	BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES);
881 	BUILD_BUG_ON(IEEE80211_TX_MAX_RATES > IEEE80211_TX_RATE_TABLE_SIZE);
882 
883 	info = IEEE80211_SKB_CB(skb);
884 
885 	ieee80211_get_tx_rates(vif, sta, skb,
886 			       info->control.rates,
887 			       IEEE80211_TX_MAX_RATES);
888 }
889 
carl9170_tx_apply_rateset(struct ar9170 * ar,struct ieee80211_tx_info * sinfo,struct sk_buff * skb)890 static void carl9170_tx_apply_rateset(struct ar9170 *ar,
891 				      struct ieee80211_tx_info *sinfo,
892 				      struct sk_buff *skb)
893 {
894 	struct ieee80211_tx_rate *txrate;
895 	struct ieee80211_tx_info *info;
896 	struct _carl9170_tx_superframe *txc = (void *) skb->data;
897 	int i;
898 	bool ampdu;
899 	bool no_ack;
900 
901 	info = IEEE80211_SKB_CB(skb);
902 	ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU);
903 	no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK);
904 
905 	/* Set the rate control probe flag for all (sub-) frames.
906 	 * This is because the TX_STATS_AMPDU flag is only set on
907 	 * the last frame, so it has to be inherited.
908 	 */
909 	info->flags |= (sinfo->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
910 
911 	/* NOTE: For the first rate, the ERP & AMPDU flags are directly
912 	 * taken from mac_control. For all fallback rate, the firmware
913 	 * updates the mac_control flags from the rate info field.
914 	 */
915 	for (i = 0; i < CARL9170_TX_MAX_RATES; i++) {
916 		__le32 phy_set;
917 
918 		txrate = &sinfo->control.rates[i];
919 		if (txrate->idx < 0)
920 			break;
921 
922 		phy_set = carl9170_tx_physet(ar, info, txrate);
923 		if (i == 0) {
924 			__le16 mac_tmp = cpu_to_le16(0);
925 
926 			/* first rate - part of the hw's frame header */
927 			txc->f.phy_control = phy_set;
928 
929 			if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS)
930 				mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR);
931 
932 			if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
933 				mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS);
934 			else if (carl9170_tx_cts_check(ar, txrate))
935 				mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS);
936 
937 			txc->f.mac_control |= mac_tmp;
938 		} else {
939 			/* fallback rates are stored in the firmware's
940 			 * retry rate set array.
941 			 */
942 			txc->s.rr[i - 1] = phy_set;
943 		}
944 
945 		SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i],
946 			txrate->count);
947 
948 		if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
949 			txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS <<
950 				CARL9170_TX_SUPER_RI_ERP_PROT_S);
951 		else if (carl9170_tx_cts_check(ar, txrate))
952 			txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS <<
953 				CARL9170_TX_SUPER_RI_ERP_PROT_S);
954 
955 		if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS))
956 			txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU;
957 	}
958 }
959 
carl9170_tx_prepare(struct ar9170 * ar,struct ieee80211_sta * sta,struct sk_buff * skb)960 static int carl9170_tx_prepare(struct ar9170 *ar,
961 			       struct ieee80211_sta *sta,
962 			       struct sk_buff *skb)
963 {
964 	struct ieee80211_hdr *hdr;
965 	struct _carl9170_tx_superframe *txc;
966 	struct carl9170_vif_info *cvif;
967 	struct ieee80211_tx_info *info;
968 	struct carl9170_tx_info *arinfo;
969 	unsigned int hw_queue;
970 	__le16 mac_tmp;
971 	u16 len;
972 
973 	BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
974 	BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) !=
975 		     CARL9170_TX_SUPERDESC_LEN);
976 
977 	BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) !=
978 		     AR9170_TX_HWDESC_LEN);
979 
980 	BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC >
981 		((CARL9170_TX_SUPER_MISC_VIF_ID >>
982 		 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1));
983 
984 	hw_queue = ar9170_qmap(carl9170_get_queue(ar, skb));
985 
986 	hdr = (void *)skb->data;
987 	info = IEEE80211_SKB_CB(skb);
988 	len = skb->len;
989 
990 	/*
991 	 * Note: If the frame was sent through a monitor interface,
992 	 * the ieee80211_vif pointer can be NULL.
993 	 */
994 	if (likely(info->control.vif))
995 		cvif = (void *) info->control.vif->drv_priv;
996 	else
997 		cvif = NULL;
998 
999 	txc = skb_push(skb, sizeof(*txc));
1000 	memset(txc, 0, sizeof(*txc));
1001 
1002 	SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue);
1003 
1004 	if (likely(cvif))
1005 		SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id);
1006 
1007 	if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM))
1008 		txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB;
1009 
1010 	if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
1011 		txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ;
1012 
1013 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control)))
1014 		txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF;
1015 
1016 	mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION |
1017 			      AR9170_TX_MAC_BACKOFF);
1018 	mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) &
1019 			       AR9170_TX_MAC_QOS);
1020 
1021 	if (unlikely(info->flags & IEEE80211_TX_CTL_NO_ACK))
1022 		mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK);
1023 
1024 	if (info->control.hw_key) {
1025 		len += info->control.hw_key->icv_len;
1026 
1027 		switch (info->control.hw_key->cipher) {
1028 		case WLAN_CIPHER_SUITE_WEP40:
1029 		case WLAN_CIPHER_SUITE_WEP104:
1030 		case WLAN_CIPHER_SUITE_TKIP:
1031 			mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4);
1032 			break;
1033 		case WLAN_CIPHER_SUITE_CCMP:
1034 			mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES);
1035 			break;
1036 		default:
1037 			WARN_ON(1);
1038 			goto err_out;
1039 		}
1040 	}
1041 
1042 	if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1043 		unsigned int density, factor;
1044 
1045 		if (unlikely(!sta || !cvif))
1046 			goto err_out;
1047 
1048 		factor = min_t(unsigned int, 1u,
1049 			       sta->deflink.ht_cap.ampdu_factor);
1050 		density = sta->deflink.ht_cap.ampdu_density;
1051 
1052 		if (density) {
1053 			/*
1054 			 * Watch out!
1055 			 *
1056 			 * Otus uses slightly different density values than
1057 			 * those from the 802.11n spec.
1058 			 */
1059 
1060 			density = max_t(unsigned int, density + 1, 7u);
1061 		}
1062 
1063 		SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY,
1064 			txc->s.ampdu_settings, density);
1065 
1066 		SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR,
1067 			txc->s.ampdu_settings, factor);
1068 	}
1069 
1070 	txc->s.len = cpu_to_le16(skb->len);
1071 	txc->f.length = cpu_to_le16(len + FCS_LEN);
1072 	txc->f.mac_control = mac_tmp;
1073 
1074 	arinfo = (void *)info->rate_driver_data;
1075 	arinfo->timeout = jiffies;
1076 	arinfo->ar = ar;
1077 	kref_init(&arinfo->ref);
1078 	return 0;
1079 
1080 err_out:
1081 	skb_pull(skb, sizeof(*txc));
1082 	return -EINVAL;
1083 }
1084 
carl9170_set_immba(struct ar9170 * ar,struct sk_buff * skb)1085 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb)
1086 {
1087 	struct _carl9170_tx_superframe *super;
1088 
1089 	super = (void *) skb->data;
1090 	super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA);
1091 }
1092 
carl9170_set_ampdu_params(struct ar9170 * ar,struct sk_buff * skb)1093 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb)
1094 {
1095 	struct _carl9170_tx_superframe *super;
1096 	int tmp;
1097 
1098 	super = (void *) skb->data;
1099 
1100 	tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) <<
1101 		CARL9170_TX_SUPER_AMPDU_DENSITY_S;
1102 
1103 	/*
1104 	 * If you haven't noticed carl9170_tx_prepare has already filled
1105 	 * in all ampdu spacing & factor parameters.
1106 	 * Now it's the time to check whenever the settings have to be
1107 	 * updated by the firmware, or if everything is still the same.
1108 	 *
1109 	 * There's no sane way to handle different density values with
1110 	 * this hardware, so we may as well just do the compare in the
1111 	 * driver.
1112 	 */
1113 
1114 	if (tmp != ar->current_density) {
1115 		ar->current_density = tmp;
1116 		super->s.ampdu_settings |=
1117 			CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY;
1118 	}
1119 
1120 	tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) <<
1121 		CARL9170_TX_SUPER_AMPDU_FACTOR_S;
1122 
1123 	if (tmp != ar->current_factor) {
1124 		ar->current_factor = tmp;
1125 		super->s.ampdu_settings |=
1126 			CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR;
1127 	}
1128 }
1129 
carl9170_tx_ampdu(struct ar9170 * ar)1130 static void carl9170_tx_ampdu(struct ar9170 *ar)
1131 {
1132 	struct sk_buff_head agg;
1133 	struct carl9170_sta_tid *tid_info;
1134 	struct sk_buff *skb, *first;
1135 	struct ieee80211_tx_info *tx_info_first;
1136 	unsigned int i = 0, done_ampdus = 0;
1137 	u16 seq, queue, tmpssn;
1138 
1139 	atomic_inc(&ar->tx_ampdu_scheduler);
1140 	ar->tx_ampdu_schedule = false;
1141 
1142 	if (atomic_read(&ar->tx_ampdu_upload))
1143 		return;
1144 
1145 	if (!ar->tx_ampdu_list_len)
1146 		return;
1147 
1148 	__skb_queue_head_init(&agg);
1149 
1150 	rcu_read_lock();
1151 	tid_info = rcu_dereference(ar->tx_ampdu_iter);
1152 	if (WARN_ON_ONCE(!tid_info)) {
1153 		rcu_read_unlock();
1154 		return;
1155 	}
1156 
1157 retry:
1158 	list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) {
1159 		i++;
1160 
1161 		if (tid_info->state < CARL9170_TID_STATE_PROGRESS)
1162 			continue;
1163 
1164 		queue = TID_TO_WME_AC(tid_info->tid);
1165 
1166 		spin_lock_bh(&tid_info->lock);
1167 		if (tid_info->state != CARL9170_TID_STATE_XMIT)
1168 			goto processed;
1169 
1170 		tid_info->counter++;
1171 		first = skb_peek(&tid_info->queue);
1172 		tmpssn = carl9170_get_seq(first);
1173 		seq = tid_info->snx;
1174 
1175 		if (unlikely(tmpssn != seq)) {
1176 			tid_info->state = CARL9170_TID_STATE_IDLE;
1177 
1178 			goto processed;
1179 		}
1180 
1181 		tx_info_first = NULL;
1182 		while ((skb = skb_peek(&tid_info->queue))) {
1183 			/* strict 0, 1, ..., n - 1, n frame sequence order */
1184 			if (unlikely(carl9170_get_seq(skb) != seq))
1185 				break;
1186 
1187 			/* don't upload more than AMPDU FACTOR allows. */
1188 			if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >=
1189 			    (tid_info->max - 1)))
1190 				break;
1191 
1192 			if (!tx_info_first) {
1193 				carl9170_tx_get_rates(ar, tid_info->vif,
1194 						      tid_info->sta, first);
1195 				tx_info_first = IEEE80211_SKB_CB(first);
1196 			}
1197 
1198 			carl9170_tx_apply_rateset(ar, tx_info_first, skb);
1199 
1200 			atomic_inc(&ar->tx_ampdu_upload);
1201 			tid_info->snx = seq = SEQ_NEXT(seq);
1202 			__skb_unlink(skb, &tid_info->queue);
1203 
1204 			__skb_queue_tail(&agg, skb);
1205 
1206 			if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX)
1207 				break;
1208 		}
1209 
1210 		if (skb_queue_empty(&tid_info->queue) ||
1211 		    carl9170_get_seq(skb_peek(&tid_info->queue)) !=
1212 		    tid_info->snx) {
1213 			/* stop TID, if A-MPDU frames are still missing,
1214 			 * or whenever the queue is empty.
1215 			 */
1216 
1217 			tid_info->state = CARL9170_TID_STATE_IDLE;
1218 		}
1219 		done_ampdus++;
1220 
1221 processed:
1222 		spin_unlock_bh(&tid_info->lock);
1223 
1224 		if (skb_queue_empty(&agg))
1225 			continue;
1226 
1227 		/* apply ampdu spacing & factor settings */
1228 		carl9170_set_ampdu_params(ar, skb_peek(&agg));
1229 
1230 		/* set aggregation push bit */
1231 		carl9170_set_immba(ar, skb_peek_tail(&agg));
1232 
1233 		spin_lock_bh(&ar->tx_pending[queue].lock);
1234 		skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]);
1235 		spin_unlock_bh(&ar->tx_pending[queue].lock);
1236 		ar->tx_schedule = true;
1237 	}
1238 	if ((done_ampdus++ == 0) && (i++ == 0))
1239 		goto retry;
1240 
1241 	rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
1242 	rcu_read_unlock();
1243 }
1244 
carl9170_tx_pick_skb(struct ar9170 * ar,struct sk_buff_head * queue)1245 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar,
1246 					    struct sk_buff_head *queue)
1247 {
1248 	struct sk_buff *skb;
1249 	struct ieee80211_tx_info *info;
1250 	struct carl9170_tx_info *arinfo;
1251 
1252 	BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
1253 
1254 	spin_lock_bh(&queue->lock);
1255 	skb = skb_peek(queue);
1256 	if (unlikely(!skb))
1257 		goto err_unlock;
1258 
1259 	if (carl9170_alloc_dev_space(ar, skb))
1260 		goto err_unlock;
1261 
1262 	__skb_unlink(skb, queue);
1263 	spin_unlock_bh(&queue->lock);
1264 
1265 	info = IEEE80211_SKB_CB(skb);
1266 	arinfo = (void *) info->rate_driver_data;
1267 
1268 	arinfo->timeout = jiffies;
1269 	return skb;
1270 
1271 err_unlock:
1272 	spin_unlock_bh(&queue->lock);
1273 	return NULL;
1274 }
1275 
carl9170_tx_drop(struct ar9170 * ar,struct sk_buff * skb)1276 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb)
1277 {
1278 	struct _carl9170_tx_superframe *super;
1279 	uint8_t q = 0;
1280 
1281 	ar->tx_dropped++;
1282 
1283 	super = (void *)skb->data;
1284 	SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q,
1285 		ar9170_qmap(carl9170_get_queue(ar, skb)));
1286 	__carl9170_tx_process_status(ar, super->s.cookie, q);
1287 }
1288 
carl9170_tx_ps_drop(struct ar9170 * ar,struct sk_buff * skb)1289 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb)
1290 {
1291 	struct ieee80211_sta *sta;
1292 	struct carl9170_sta_info *sta_info;
1293 	struct ieee80211_tx_info *tx_info;
1294 
1295 	rcu_read_lock();
1296 	sta = __carl9170_get_tx_sta(ar, skb);
1297 	if (!sta)
1298 		goto out_rcu;
1299 
1300 	sta_info = (void *) sta->drv_priv;
1301 	tx_info = IEEE80211_SKB_CB(skb);
1302 
1303 	if (unlikely(sta_info->sleeping) &&
1304 	    !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER |
1305 				IEEE80211_TX_CTL_CLEAR_PS_FILT))) {
1306 		rcu_read_unlock();
1307 
1308 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1309 			atomic_dec(&ar->tx_ampdu_upload);
1310 
1311 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1312 		carl9170_release_dev_space(ar, skb);
1313 		carl9170_tx_status(ar, skb, false);
1314 		return true;
1315 	}
1316 
1317 out_rcu:
1318 	rcu_read_unlock();
1319 	return false;
1320 }
1321 
carl9170_bar_check(struct ar9170 * ar,struct sk_buff * skb)1322 static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb)
1323 {
1324 	struct _carl9170_tx_superframe *super = (void *) skb->data;
1325 	struct ieee80211_bar *bar = (void *) super->frame_data;
1326 
1327 	if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
1328 	    skb->len >= sizeof(struct ieee80211_bar)) {
1329 		struct carl9170_bar_list_entry *entry;
1330 		unsigned int queue = skb_get_queue_mapping(skb);
1331 
1332 		entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
1333 		if (!WARN_ON_ONCE(!entry)) {
1334 			entry->skb = skb;
1335 			spin_lock_bh(&ar->bar_list_lock[queue]);
1336 			list_add_tail_rcu(&entry->list, &ar->bar_list[queue]);
1337 			spin_unlock_bh(&ar->bar_list_lock[queue]);
1338 		}
1339 	}
1340 }
1341 
carl9170_tx(struct ar9170 * ar)1342 static void carl9170_tx(struct ar9170 *ar)
1343 {
1344 	struct sk_buff *skb;
1345 	unsigned int i, q;
1346 	bool schedule_garbagecollector = false;
1347 
1348 	ar->tx_schedule = false;
1349 
1350 	if (unlikely(!IS_STARTED(ar)))
1351 		return;
1352 
1353 	carl9170_usb_handle_tx_err(ar);
1354 
1355 	for (i = 0; i < ar->hw->queues; i++) {
1356 		while (!skb_queue_empty(&ar->tx_pending[i])) {
1357 			skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]);
1358 			if (unlikely(!skb))
1359 				break;
1360 
1361 			if (unlikely(carl9170_tx_ps_drop(ar, skb)))
1362 				continue;
1363 
1364 			carl9170_bar_check(ar, skb);
1365 
1366 			atomic_inc(&ar->tx_total_pending);
1367 
1368 			q = __carl9170_get_queue(ar, i);
1369 			/*
1370 			 * NB: tx_status[i] vs. tx_status[q],
1371 			 * TODO: Move into pick_skb or alloc_dev_space.
1372 			 */
1373 			skb_queue_tail(&ar->tx_status[q], skb);
1374 
1375 			/*
1376 			 * increase ref count to "2".
1377 			 * Ref counting is the easiest way to solve the
1378 			 * race between the urb's completion routine:
1379 			 *	carl9170_tx_callback
1380 			 * and wlan tx status functions:
1381 			 *	carl9170_tx_status/janitor.
1382 			 */
1383 			carl9170_tx_get_skb(skb);
1384 
1385 			carl9170_usb_tx(ar, skb);
1386 			schedule_garbagecollector = true;
1387 		}
1388 	}
1389 
1390 	if (!schedule_garbagecollector)
1391 		return;
1392 
1393 	ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
1394 		msecs_to_jiffies(CARL9170_TX_TIMEOUT));
1395 }
1396 
carl9170_tx_ampdu_queue(struct ar9170 * ar,struct ieee80211_sta * sta,struct sk_buff * skb,struct ieee80211_tx_info * txinfo)1397 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar,
1398 	struct ieee80211_sta *sta, struct sk_buff *skb,
1399 	struct ieee80211_tx_info *txinfo)
1400 {
1401 	struct carl9170_sta_info *sta_info;
1402 	struct carl9170_sta_tid *agg;
1403 	struct sk_buff *iter;
1404 	u16 tid, seq, qseq, off;
1405 	bool run = false;
1406 
1407 	tid = carl9170_get_tid(skb);
1408 	seq = carl9170_get_seq(skb);
1409 	sta_info = (void *) sta->drv_priv;
1410 
1411 	rcu_read_lock();
1412 	agg = rcu_dereference(sta_info->agg[tid]);
1413 
1414 	if (!agg)
1415 		goto err_unlock_rcu;
1416 
1417 	spin_lock_bh(&agg->lock);
1418 	if (unlikely(agg->state < CARL9170_TID_STATE_IDLE))
1419 		goto err_unlock;
1420 
1421 	/* check if sequence is within the BA window */
1422 	if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq)))
1423 		goto err_unlock;
1424 
1425 	if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq)))
1426 		goto err_unlock;
1427 
1428 	off = SEQ_DIFF(seq, agg->bsn);
1429 	if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap)))
1430 		goto err_unlock;
1431 
1432 	if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) {
1433 		__skb_queue_tail(&agg->queue, skb);
1434 		agg->hsn = seq;
1435 		goto queued;
1436 	}
1437 
1438 	skb_queue_reverse_walk(&agg->queue, iter) {
1439 		qseq = carl9170_get_seq(iter);
1440 
1441 		if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) {
1442 			__skb_queue_after(&agg->queue, iter, skb);
1443 			goto queued;
1444 		}
1445 	}
1446 
1447 	__skb_queue_head(&agg->queue, skb);
1448 queued:
1449 
1450 	if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) {
1451 		if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) {
1452 			agg->state = CARL9170_TID_STATE_XMIT;
1453 			run = true;
1454 		}
1455 	}
1456 
1457 	spin_unlock_bh(&agg->lock);
1458 	rcu_read_unlock();
1459 
1460 	return run;
1461 
1462 err_unlock:
1463 	spin_unlock_bh(&agg->lock);
1464 
1465 err_unlock_rcu:
1466 	rcu_read_unlock();
1467 	txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU;
1468 	carl9170_tx_status(ar, skb, false);
1469 	ar->tx_dropped++;
1470 	return false;
1471 }
1472 
carl9170_op_tx(struct ieee80211_hw * hw,struct ieee80211_tx_control * control,struct sk_buff * skb)1473 void carl9170_op_tx(struct ieee80211_hw *hw,
1474 		    struct ieee80211_tx_control *control,
1475 		    struct sk_buff *skb)
1476 {
1477 	struct ar9170 *ar = hw->priv;
1478 	struct ieee80211_tx_info *info;
1479 	struct ieee80211_sta *sta = control->sta;
1480 	struct ieee80211_vif *vif;
1481 	bool run;
1482 
1483 	if (unlikely(!IS_STARTED(ar)))
1484 		goto err_free;
1485 
1486 	info = IEEE80211_SKB_CB(skb);
1487 	vif = info->control.vif;
1488 
1489 	if (unlikely(carl9170_tx_prepare(ar, sta, skb)))
1490 		goto err_free;
1491 
1492 	carl9170_tx_accounting(ar, skb);
1493 	/*
1494 	 * from now on, one has to use carl9170_tx_status to free
1495 	 * all ressouces which are associated with the frame.
1496 	 */
1497 
1498 	if (sta) {
1499 		struct carl9170_sta_info *stai = (void *) sta->drv_priv;
1500 		atomic_inc(&stai->pending_frames);
1501 	}
1502 
1503 	if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1504 		/* to static code analyzers and reviewers:
1505 		 * mac80211 guarantees that a valid "sta"
1506 		 * reference is present, if a frame is to
1507 		 * be part of an ampdu. Hence any extra
1508 		 * sta == NULL checks are redundant in this
1509 		 * special case.
1510 		 */
1511 		run = carl9170_tx_ampdu_queue(ar, sta, skb, info);
1512 		if (run)
1513 			carl9170_tx_ampdu(ar);
1514 
1515 	} else {
1516 		unsigned int queue = skb_get_queue_mapping(skb);
1517 
1518 		carl9170_tx_get_rates(ar, vif, sta, skb);
1519 		carl9170_tx_apply_rateset(ar, info, skb);
1520 		skb_queue_tail(&ar->tx_pending[queue], skb);
1521 	}
1522 
1523 	carl9170_tx(ar);
1524 	return;
1525 
1526 err_free:
1527 	ar->tx_dropped++;
1528 	ieee80211_free_txskb(ar->hw, skb);
1529 }
1530 
carl9170_tx_scheduler(struct ar9170 * ar)1531 void carl9170_tx_scheduler(struct ar9170 *ar)
1532 {
1533 
1534 	if (ar->tx_ampdu_schedule)
1535 		carl9170_tx_ampdu(ar);
1536 
1537 	if (ar->tx_schedule)
1538 		carl9170_tx(ar);
1539 }
1540 
1541 /* caller has to take rcu_read_lock */
carl9170_pick_beaconing_vif(struct ar9170 * ar)1542 static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar)
1543 {
1544 	struct carl9170_vif_info *cvif;
1545 	int i = 1;
1546 
1547 	/* The AR9170 hardware has no fancy beacon queue or some
1548 	 * other scheduling mechanism. So, the driver has to make
1549 	 * due by setting the two beacon timers (pretbtt and tbtt)
1550 	 * once and then swapping the beacon address in the HW's
1551 	 * register file each time the pretbtt fires.
1552 	 */
1553 
1554 	cvif = rcu_dereference(ar->beacon_iter);
1555 	if (ar->vifs > 0 && cvif) {
1556 		do {
1557 			list_for_each_entry_continue_rcu(cvif, &ar->vif_list,
1558 							 list) {
1559 				if (cvif->active && cvif->enable_beacon)
1560 					goto out;
1561 			}
1562 		} while (ar->beacon_enabled && i--);
1563 
1564 		/* no entry found in list */
1565 		return NULL;
1566 	}
1567 
1568 out:
1569 	RCU_INIT_POINTER(ar->beacon_iter, cvif);
1570 	return cvif;
1571 }
1572 
carl9170_tx_beacon_physet(struct ar9170 * ar,struct sk_buff * skb,u32 * ht1,u32 * plcp)1573 static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb,
1574 				      u32 *ht1, u32 *plcp)
1575 {
1576 	struct ieee80211_tx_info *txinfo;
1577 	struct ieee80211_tx_rate *rate;
1578 	unsigned int power, chains;
1579 	bool ht_rate;
1580 
1581 	txinfo = IEEE80211_SKB_CB(skb);
1582 	rate = &txinfo->control.rates[0];
1583 	ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS);
1584 	carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains);
1585 
1586 	*ht1 = AR9170_MAC_BCN_HT1_TX_ANT0;
1587 	if (chains == AR9170_TX_PHY_TXCHAIN_2)
1588 		*ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1;
1589 	SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7);
1590 	SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power);
1591 	SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains);
1592 
1593 	if (ht_rate) {
1594 		*ht1 |= AR9170_MAC_BCN_HT1_HT_EN;
1595 		if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1596 			*plcp |= AR9170_MAC_BCN_HT2_SGI;
1597 
1598 		if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1599 			*ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED;
1600 			*plcp |= AR9170_MAC_BCN_HT2_BW40;
1601 		} else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) {
1602 			*ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP;
1603 			*plcp |= AR9170_MAC_BCN_HT2_BW40;
1604 		}
1605 
1606 		SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN);
1607 	} else {
1608 		if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M)
1609 			*plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400;
1610 		else
1611 			*plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010;
1612 	}
1613 
1614 	return ht_rate;
1615 }
1616 
carl9170_update_beacon(struct ar9170 * ar,const bool submit)1617 int carl9170_update_beacon(struct ar9170 *ar, const bool submit)
1618 {
1619 	struct sk_buff *skb = NULL;
1620 	struct carl9170_vif_info *cvif;
1621 	__le32 *data, *old = NULL;
1622 	u32 word, ht1, plcp, off, addr, len;
1623 	int i = 0, err = 0;
1624 	bool ht_rate;
1625 
1626 	rcu_read_lock();
1627 	cvif = carl9170_pick_beaconing_vif(ar);
1628 	if (!cvif)
1629 		goto out_unlock;
1630 
1631 	skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif),
1632 				       NULL, NULL, 0);
1633 
1634 	if (!skb) {
1635 		err = -ENOMEM;
1636 		goto err_free;
1637 	}
1638 
1639 	spin_lock_bh(&ar->beacon_lock);
1640 	data = (__le32 *)skb->data;
1641 	if (cvif->beacon)
1642 		old = (__le32 *)cvif->beacon->data;
1643 
1644 	off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX;
1645 	addr = ar->fw.beacon_addr + off;
1646 	len = roundup(skb->len + FCS_LEN, 4);
1647 
1648 	if ((off + len) > ar->fw.beacon_max_len) {
1649 		if (net_ratelimit()) {
1650 			wiphy_err(ar->hw->wiphy, "beacon does not "
1651 				  "fit into device memory!\n");
1652 		}
1653 		err = -EINVAL;
1654 		goto err_unlock;
1655 	}
1656 
1657 	if (len > AR9170_MAC_BCN_LENGTH_MAX) {
1658 		if (net_ratelimit()) {
1659 			wiphy_err(ar->hw->wiphy, "no support for beacons "
1660 				"bigger than %d (yours:%d).\n",
1661 				 AR9170_MAC_BCN_LENGTH_MAX, len);
1662 		}
1663 
1664 		err = -EMSGSIZE;
1665 		goto err_unlock;
1666 	}
1667 
1668 	ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp);
1669 
1670 	carl9170_async_regwrite_begin(ar);
1671 	carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1);
1672 	if (ht_rate)
1673 		carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp);
1674 	else
1675 		carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp);
1676 
1677 	for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) {
1678 		/*
1679 		 * XXX: This accesses beyond skb data for up
1680 		 *	to the last 3 bytes!!
1681 		 */
1682 
1683 		if (old && (data[i] == old[i]))
1684 			continue;
1685 
1686 		word = le32_to_cpu(data[i]);
1687 		carl9170_async_regwrite(addr + 4 * i, word);
1688 	}
1689 	carl9170_async_regwrite_finish();
1690 
1691 	dev_kfree_skb_any(cvif->beacon);
1692 	cvif->beacon = NULL;
1693 
1694 	err = carl9170_async_regwrite_result();
1695 	if (!err)
1696 		cvif->beacon = skb;
1697 	spin_unlock_bh(&ar->beacon_lock);
1698 	if (err)
1699 		goto err_free;
1700 
1701 	if (submit) {
1702 		err = carl9170_bcn_ctrl(ar, cvif->id,
1703 					CARL9170_BCN_CTRL_CAB_TRIGGER,
1704 					addr, skb->len + FCS_LEN);
1705 
1706 		if (err)
1707 			goto err_free;
1708 	}
1709 out_unlock:
1710 	rcu_read_unlock();
1711 	return 0;
1712 
1713 err_unlock:
1714 	spin_unlock_bh(&ar->beacon_lock);
1715 
1716 err_free:
1717 	rcu_read_unlock();
1718 	dev_kfree_skb_any(skb);
1719 	return err;
1720 }
1721