• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3 
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14 
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26 
27 #include <asm/irq_regs.h>
28 
29 static int armpmu_count_irq_users(const int irq);
30 
31 struct pmu_irq_ops {
32 	void (*enable_pmuirq)(unsigned int irq);
33 	void (*disable_pmuirq)(unsigned int irq);
34 	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36 
armpmu_free_pmuirq(unsigned int irq,int cpu,void __percpu * devid)37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39 	free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41 
42 static const struct pmu_irq_ops pmuirq_ops = {
43 	.enable_pmuirq = enable_irq,
44 	.disable_pmuirq = disable_irq_nosync,
45 	.free_pmuirq = armpmu_free_pmuirq
46 };
47 
armpmu_free_pmunmi(unsigned int irq,int cpu,void __percpu * devid)48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50 	free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52 
53 static const struct pmu_irq_ops pmunmi_ops = {
54 	.enable_pmuirq = enable_nmi,
55 	.disable_pmuirq = disable_nmi_nosync,
56 	.free_pmuirq = armpmu_free_pmunmi
57 };
58 
armpmu_enable_percpu_pmuirq(unsigned int irq)59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63 
armpmu_free_percpu_pmuirq(unsigned int irq,int cpu,void __percpu * devid)64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65 				   void __percpu *devid)
66 {
67 	if (armpmu_count_irq_users(irq) == 1)
68 		free_percpu_irq(irq, devid);
69 }
70 
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 	.enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 	.disable_pmuirq = disable_percpu_irq,
74 	.free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76 
armpmu_enable_percpu_pmunmi(unsigned int irq)77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79 	if (!prepare_percpu_nmi(irq))
80 		enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82 
armpmu_disable_percpu_pmunmi(unsigned int irq)83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85 	disable_percpu_nmi(irq);
86 	teardown_percpu_nmi(irq);
87 }
88 
armpmu_free_percpu_pmunmi(unsigned int irq,int cpu,void __percpu * devid)89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90 				      void __percpu *devid)
91 {
92 	if (armpmu_count_irq_users(irq) == 1)
93 		free_percpu_nmi(irq, devid);
94 }
95 
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 	.enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 	.disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 	.free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101 
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105 
106 static bool has_nmi;
107 
arm_pmu_event_max_period(struct perf_event * event)108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110 	if (event->hw.flags & ARMPMU_EVT_64BIT)
111 		return GENMASK_ULL(63, 0);
112 	else if (event->hw.flags & ARMPMU_EVT_63BIT)
113 		return GENMASK_ULL(62, 0);
114 	else if (event->hw.flags & ARMPMU_EVT_47BIT)
115 		return GENMASK_ULL(46, 0);
116 	else
117 		return GENMASK_ULL(31, 0);
118 }
119 
120 static int
armpmu_map_cache_event(const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u64 config)121 armpmu_map_cache_event(const unsigned (*cache_map)
122 				      [PERF_COUNT_HW_CACHE_MAX]
123 				      [PERF_COUNT_HW_CACHE_OP_MAX]
124 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
125 		       u64 config)
126 {
127 	unsigned int cache_type, cache_op, cache_result, ret;
128 
129 	cache_type = (config >>  0) & 0xff;
130 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
131 		return -EINVAL;
132 
133 	cache_op = (config >>  8) & 0xff;
134 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
135 		return -EINVAL;
136 
137 	cache_result = (config >> 16) & 0xff;
138 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
139 		return -EINVAL;
140 
141 	if (!cache_map)
142 		return -ENOENT;
143 
144 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
145 
146 	if (ret == CACHE_OP_UNSUPPORTED)
147 		return -ENOENT;
148 
149 	return ret;
150 }
151 
152 static int
armpmu_map_hw_event(const unsigned (* event_map)[PERF_COUNT_HW_MAX],u64 config)153 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
154 {
155 	int mapping;
156 
157 	if (config >= PERF_COUNT_HW_MAX)
158 		return -EINVAL;
159 
160 	if (!event_map)
161 		return -ENOENT;
162 
163 	mapping = (*event_map)[config];
164 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
165 }
166 
167 static int
armpmu_map_raw_event(u32 raw_event_mask,u64 config)168 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
169 {
170 	return (int)(config & raw_event_mask);
171 }
172 
173 int
armpmu_map_event(struct perf_event * event,const unsigned (* event_map)[PERF_COUNT_HW_MAX],const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u32 raw_event_mask)174 armpmu_map_event(struct perf_event *event,
175 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
176 		 const unsigned (*cache_map)
177 				[PERF_COUNT_HW_CACHE_MAX]
178 				[PERF_COUNT_HW_CACHE_OP_MAX]
179 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
180 		 u32 raw_event_mask)
181 {
182 	u64 config = event->attr.config;
183 	int type = event->attr.type;
184 
185 	if (type == event->pmu->type)
186 		return armpmu_map_raw_event(raw_event_mask, config);
187 
188 	switch (type) {
189 	case PERF_TYPE_HARDWARE:
190 		return armpmu_map_hw_event(event_map, config);
191 	case PERF_TYPE_HW_CACHE:
192 		return armpmu_map_cache_event(cache_map, config);
193 	case PERF_TYPE_RAW:
194 		return armpmu_map_raw_event(raw_event_mask, config);
195 	}
196 
197 	return -ENOENT;
198 }
199 
armpmu_event_set_period(struct perf_event * event)200 int armpmu_event_set_period(struct perf_event *event)
201 {
202 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203 	struct hw_perf_event *hwc = &event->hw;
204 	s64 left = local64_read(&hwc->period_left);
205 	s64 period = hwc->sample_period;
206 	u64 max_period;
207 	int ret = 0;
208 
209 	max_period = arm_pmu_event_max_period(event);
210 	if (unlikely(left <= -period)) {
211 		left = period;
212 		local64_set(&hwc->period_left, left);
213 		hwc->last_period = period;
214 		ret = 1;
215 	}
216 
217 	if (unlikely(left <= 0)) {
218 		left += period;
219 		local64_set(&hwc->period_left, left);
220 		hwc->last_period = period;
221 		ret = 1;
222 	}
223 
224 	/*
225 	 * Limit the maximum period to prevent the counter value
226 	 * from overtaking the one we are about to program. In
227 	 * effect we are reducing max_period to account for
228 	 * interrupt latency (and we are being very conservative).
229 	 */
230 	if (left > (max_period >> 1))
231 		left = (max_period >> 1);
232 
233 	local64_set(&hwc->prev_count, (u64)-left);
234 
235 	armpmu->write_counter(event, (u64)(-left) & max_period);
236 
237 	perf_event_update_userpage(event);
238 
239 	return ret;
240 }
241 
armpmu_event_update(struct perf_event * event)242 u64 armpmu_event_update(struct perf_event *event)
243 {
244 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
245 	struct hw_perf_event *hwc = &event->hw;
246 	u64 delta, prev_raw_count, new_raw_count;
247 	u64 max_period = arm_pmu_event_max_period(event);
248 
249 again:
250 	prev_raw_count = local64_read(&hwc->prev_count);
251 	new_raw_count = armpmu->read_counter(event);
252 
253 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
254 			     new_raw_count) != prev_raw_count)
255 		goto again;
256 
257 	delta = (new_raw_count - prev_raw_count) & max_period;
258 
259 	local64_add(delta, &event->count);
260 	local64_sub(delta, &hwc->period_left);
261 
262 	return new_raw_count;
263 }
264 
265 static void
armpmu_read(struct perf_event * event)266 armpmu_read(struct perf_event *event)
267 {
268 	armpmu_event_update(event);
269 }
270 
271 static void
armpmu_stop(struct perf_event * event,int flags)272 armpmu_stop(struct perf_event *event, int flags)
273 {
274 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
275 	struct hw_perf_event *hwc = &event->hw;
276 
277 	/*
278 	 * ARM pmu always has to update the counter, so ignore
279 	 * PERF_EF_UPDATE, see comments in armpmu_start().
280 	 */
281 	if (!(hwc->state & PERF_HES_STOPPED)) {
282 		armpmu->disable(event);
283 		armpmu_event_update(event);
284 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
285 	}
286 }
287 
armpmu_start(struct perf_event * event,int flags)288 static void armpmu_start(struct perf_event *event, int flags)
289 {
290 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
291 	struct hw_perf_event *hwc = &event->hw;
292 
293 	/*
294 	 * ARM pmu always has to reprogram the period, so ignore
295 	 * PERF_EF_RELOAD, see the comment below.
296 	 */
297 	if (flags & PERF_EF_RELOAD)
298 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
299 
300 	hwc->state = 0;
301 	/*
302 	 * Set the period again. Some counters can't be stopped, so when we
303 	 * were stopped we simply disabled the IRQ source and the counter
304 	 * may have been left counting. If we don't do this step then we may
305 	 * get an interrupt too soon or *way* too late if the overflow has
306 	 * happened since disabling.
307 	 */
308 	armpmu_event_set_period(event);
309 	armpmu->enable(event);
310 }
311 
312 static void
armpmu_del(struct perf_event * event,int flags)313 armpmu_del(struct perf_event *event, int flags)
314 {
315 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
316 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
317 	struct hw_perf_event *hwc = &event->hw;
318 	int idx = hwc->idx;
319 
320 	armpmu_stop(event, PERF_EF_UPDATE);
321 	hw_events->events[idx] = NULL;
322 	armpmu->clear_event_idx(hw_events, event);
323 	perf_event_update_userpage(event);
324 	/* Clear the allocated counter */
325 	hwc->idx = -1;
326 }
327 
328 static int
armpmu_add(struct perf_event * event,int flags)329 armpmu_add(struct perf_event *event, int flags)
330 {
331 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
332 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
333 	struct hw_perf_event *hwc = &event->hw;
334 	int idx;
335 
336 	/* An event following a process won't be stopped earlier */
337 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
338 		return -ENOENT;
339 
340 	/* If we don't have a space for the counter then finish early. */
341 	idx = armpmu->get_event_idx(hw_events, event);
342 	if (idx < 0)
343 		return idx;
344 
345 	/*
346 	 * If there is an event in the counter we are going to use then make
347 	 * sure it is disabled.
348 	 */
349 	event->hw.idx = idx;
350 	armpmu->disable(event);
351 	hw_events->events[idx] = event;
352 
353 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
354 	if (flags & PERF_EF_START)
355 		armpmu_start(event, PERF_EF_RELOAD);
356 
357 	/* Propagate our changes to the userspace mapping. */
358 	perf_event_update_userpage(event);
359 
360 	return 0;
361 }
362 
363 static int
validate_event(struct pmu * pmu,struct pmu_hw_events * hw_events,struct perf_event * event)364 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
365 			       struct perf_event *event)
366 {
367 	struct arm_pmu *armpmu;
368 
369 	if (is_software_event(event))
370 		return 1;
371 
372 	/*
373 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
374 	 * core perf code won't check that the pmu->ctx == leader->ctx
375 	 * until after pmu->event_init(event).
376 	 */
377 	if (event->pmu != pmu)
378 		return 0;
379 
380 	if (event->state < PERF_EVENT_STATE_OFF)
381 		return 1;
382 
383 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
384 		return 1;
385 
386 	armpmu = to_arm_pmu(event->pmu);
387 	return armpmu->get_event_idx(hw_events, event) >= 0;
388 }
389 
390 static int
validate_group(struct perf_event * event)391 validate_group(struct perf_event *event)
392 {
393 	struct perf_event *sibling, *leader = event->group_leader;
394 	struct pmu_hw_events fake_pmu;
395 
396 	/*
397 	 * Initialise the fake PMU. We only need to populate the
398 	 * used_mask for the purposes of validation.
399 	 */
400 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
401 
402 	if (!validate_event(event->pmu, &fake_pmu, leader))
403 		return -EINVAL;
404 
405 	if (event == leader)
406 		return 0;
407 
408 	for_each_sibling_event(sibling, leader) {
409 		if (!validate_event(event->pmu, &fake_pmu, sibling))
410 			return -EINVAL;
411 	}
412 
413 	if (!validate_event(event->pmu, &fake_pmu, event))
414 		return -EINVAL;
415 
416 	return 0;
417 }
418 
armpmu_dispatch_irq(int irq,void * dev)419 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
420 {
421 	struct arm_pmu *armpmu;
422 	int ret;
423 	u64 start_clock, finish_clock;
424 
425 	/*
426 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
427 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
428 	 * do any necessary shifting, we just need to perform the first
429 	 * dereference.
430 	 */
431 	armpmu = *(void **)dev;
432 	if (WARN_ON_ONCE(!armpmu))
433 		return IRQ_NONE;
434 
435 	start_clock = sched_clock();
436 	ret = armpmu->handle_irq(armpmu);
437 	finish_clock = sched_clock();
438 
439 	perf_sample_event_took(finish_clock - start_clock);
440 	return ret;
441 }
442 
443 static int
__hw_perf_event_init(struct perf_event * event)444 __hw_perf_event_init(struct perf_event *event)
445 {
446 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
447 	struct hw_perf_event *hwc = &event->hw;
448 	int mapping;
449 
450 	hwc->flags = 0;
451 	mapping = armpmu->map_event(event);
452 
453 	if (mapping < 0) {
454 		pr_debug("event %x:%llx not supported\n", event->attr.type,
455 			 event->attr.config);
456 		return mapping;
457 	}
458 
459 	/*
460 	 * We don't assign an index until we actually place the event onto
461 	 * hardware. Use -1 to signify that we haven't decided where to put it
462 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
463 	 * clever allocation or constraints checking at this point.
464 	 */
465 	hwc->idx		= -1;
466 	hwc->config_base	= 0;
467 	hwc->config		= 0;
468 	hwc->event_base		= 0;
469 
470 	/*
471 	 * Check whether we need to exclude the counter from certain modes.
472 	 */
473 	if (armpmu->set_event_filter &&
474 	    armpmu->set_event_filter(hwc, &event->attr)) {
475 		pr_debug("ARM performance counters do not support "
476 			 "mode exclusion\n");
477 		return -EOPNOTSUPP;
478 	}
479 
480 	/*
481 	 * Store the event encoding into the config_base field.
482 	 */
483 	hwc->config_base	    |= (unsigned long)mapping;
484 
485 	if (!is_sampling_event(event)) {
486 		/*
487 		 * For non-sampling runs, limit the sample_period to half
488 		 * of the counter width. That way, the new counter value
489 		 * is far less likely to overtake the previous one unless
490 		 * you have some serious IRQ latency issues.
491 		 */
492 		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
493 		hwc->last_period    = hwc->sample_period;
494 		local64_set(&hwc->period_left, hwc->sample_period);
495 	}
496 
497 	return validate_group(event);
498 }
499 
armpmu_event_init(struct perf_event * event)500 static int armpmu_event_init(struct perf_event *event)
501 {
502 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
503 
504 	/*
505 	 * Reject CPU-affine events for CPUs that are of a different class to
506 	 * that which this PMU handles. Process-following events (where
507 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
508 	 * reject them later (in armpmu_add) if they're scheduled on a
509 	 * different class of CPU.
510 	 */
511 	if (event->cpu != -1 &&
512 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
513 		return -ENOENT;
514 
515 	/* does not support taken branch sampling */
516 	if (has_branch_stack(event))
517 		return -EOPNOTSUPP;
518 
519 	return __hw_perf_event_init(event);
520 }
521 
armpmu_enable(struct pmu * pmu)522 static void armpmu_enable(struct pmu *pmu)
523 {
524 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
525 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
526 	bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
527 
528 	/* For task-bound events we may be called on other CPUs */
529 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
530 		return;
531 
532 	if (enabled)
533 		armpmu->start(armpmu);
534 }
535 
armpmu_disable(struct pmu * pmu)536 static void armpmu_disable(struct pmu *pmu)
537 {
538 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
539 
540 	/* For task-bound events we may be called on other CPUs */
541 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
542 		return;
543 
544 	armpmu->stop(armpmu);
545 }
546 
547 /*
548  * In heterogeneous systems, events are specific to a particular
549  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
550  * the same microarchitecture.
551  */
armpmu_filter(struct pmu * pmu,int cpu)552 static bool armpmu_filter(struct pmu *pmu, int cpu)
553 {
554 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
555 	return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
556 }
557 
cpus_show(struct device * dev,struct device_attribute * attr,char * buf)558 static ssize_t cpus_show(struct device *dev,
559 			 struct device_attribute *attr, char *buf)
560 {
561 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
562 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
563 }
564 
565 static DEVICE_ATTR_RO(cpus);
566 
567 static struct attribute *armpmu_common_attrs[] = {
568 	&dev_attr_cpus.attr,
569 	NULL,
570 };
571 
572 static const struct attribute_group armpmu_common_attr_group = {
573 	.attrs = armpmu_common_attrs,
574 };
575 
armpmu_count_irq_users(const int irq)576 static int armpmu_count_irq_users(const int irq)
577 {
578 	int cpu, count = 0;
579 
580 	for_each_possible_cpu(cpu) {
581 		if (per_cpu(cpu_irq, cpu) == irq)
582 			count++;
583 	}
584 
585 	return count;
586 }
587 
armpmu_find_irq_ops(int irq)588 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
589 {
590 	const struct pmu_irq_ops *ops = NULL;
591 	int cpu;
592 
593 	for_each_possible_cpu(cpu) {
594 		if (per_cpu(cpu_irq, cpu) != irq)
595 			continue;
596 
597 		ops = per_cpu(cpu_irq_ops, cpu);
598 		if (ops)
599 			break;
600 	}
601 
602 	return ops;
603 }
604 
armpmu_free_irq(int irq,int cpu)605 void armpmu_free_irq(int irq, int cpu)
606 {
607 	if (per_cpu(cpu_irq, cpu) == 0)
608 		return;
609 	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
610 		return;
611 
612 	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
613 
614 	per_cpu(cpu_irq, cpu) = 0;
615 	per_cpu(cpu_irq_ops, cpu) = NULL;
616 }
617 
armpmu_request_irq(int irq,int cpu)618 int armpmu_request_irq(int irq, int cpu)
619 {
620 	int err = 0;
621 	const irq_handler_t handler = armpmu_dispatch_irq;
622 	const struct pmu_irq_ops *irq_ops;
623 
624 	if (!irq)
625 		return 0;
626 
627 	if (!irq_is_percpu_devid(irq)) {
628 		unsigned long irq_flags;
629 
630 		err = irq_force_affinity(irq, cpumask_of(cpu));
631 
632 		if (err && num_possible_cpus() > 1) {
633 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
634 				irq, cpu);
635 			goto err_out;
636 		}
637 
638 		irq_flags = IRQF_PERCPU |
639 			    IRQF_NOBALANCING | IRQF_NO_AUTOEN |
640 			    IRQF_NO_THREAD;
641 
642 		err = request_nmi(irq, handler, irq_flags, "arm-pmu",
643 				  per_cpu_ptr(&cpu_armpmu, cpu));
644 
645 		/* If cannot get an NMI, get a normal interrupt */
646 		if (err) {
647 			err = request_irq(irq, handler, irq_flags, "arm-pmu",
648 					  per_cpu_ptr(&cpu_armpmu, cpu));
649 			irq_ops = &pmuirq_ops;
650 		} else {
651 			has_nmi = true;
652 			irq_ops = &pmunmi_ops;
653 		}
654 	} else if (armpmu_count_irq_users(irq) == 0) {
655 		err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
656 
657 		/* If cannot get an NMI, get a normal interrupt */
658 		if (err) {
659 			err = request_percpu_irq(irq, handler, "arm-pmu",
660 						 &cpu_armpmu);
661 			irq_ops = &percpu_pmuirq_ops;
662 		} else {
663 			has_nmi = true;
664 			irq_ops = &percpu_pmunmi_ops;
665 		}
666 	} else {
667 		/* Per cpudevid irq was already requested by another CPU */
668 		irq_ops = armpmu_find_irq_ops(irq);
669 
670 		if (WARN_ON(!irq_ops))
671 			err = -EINVAL;
672 	}
673 
674 	if (err)
675 		goto err_out;
676 
677 	per_cpu(cpu_irq, cpu) = irq;
678 	per_cpu(cpu_irq_ops, cpu) = irq_ops;
679 	return 0;
680 
681 err_out:
682 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
683 	return err;
684 }
685 
armpmu_get_cpu_irq(struct arm_pmu * pmu,int cpu)686 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
687 {
688 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
689 	return per_cpu(hw_events->irq, cpu);
690 }
691 
arm_pmu_irq_is_nmi(void)692 bool arm_pmu_irq_is_nmi(void)
693 {
694 	return has_nmi;
695 }
696 
697 /*
698  * PMU hardware loses all context when a CPU goes offline.
699  * When a CPU is hotplugged back in, since some hardware registers are
700  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
701  * junk values out of them.
702  */
arm_perf_starting_cpu(unsigned int cpu,struct hlist_node * node)703 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
704 {
705 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
706 	int irq;
707 
708 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
709 		return 0;
710 	if (pmu->reset)
711 		pmu->reset(pmu);
712 
713 	per_cpu(cpu_armpmu, cpu) = pmu;
714 
715 	irq = armpmu_get_cpu_irq(pmu, cpu);
716 	if (irq)
717 		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
718 
719 	return 0;
720 }
721 
arm_perf_teardown_cpu(unsigned int cpu,struct hlist_node * node)722 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
723 {
724 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
725 	int irq;
726 
727 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
728 		return 0;
729 
730 	irq = armpmu_get_cpu_irq(pmu, cpu);
731 	if (irq)
732 		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
733 
734 	per_cpu(cpu_armpmu, cpu) = NULL;
735 
736 	return 0;
737 }
738 
739 #ifdef CONFIG_CPU_PM
cpu_pm_pmu_setup(struct arm_pmu * armpmu,unsigned long cmd)740 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
741 {
742 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
743 	struct perf_event *event;
744 	int idx;
745 
746 	for (idx = 0; idx < armpmu->num_events; idx++) {
747 		event = hw_events->events[idx];
748 		if (!event)
749 			continue;
750 
751 		switch (cmd) {
752 		case CPU_PM_ENTER:
753 			/*
754 			 * Stop and update the counter
755 			 */
756 			armpmu_stop(event, PERF_EF_UPDATE);
757 			break;
758 		case CPU_PM_EXIT:
759 		case CPU_PM_ENTER_FAILED:
760 			 /*
761 			  * Restore and enable the counter.
762 			  */
763 			armpmu_start(event, PERF_EF_RELOAD);
764 			break;
765 		default:
766 			break;
767 		}
768 	}
769 }
770 
cpu_pm_pmu_notify(struct notifier_block * b,unsigned long cmd,void * v)771 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
772 			     void *v)
773 {
774 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
775 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
776 	bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
777 
778 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
779 		return NOTIFY_DONE;
780 
781 	/*
782 	 * Always reset the PMU registers on power-up even if
783 	 * there are no events running.
784 	 */
785 	if (cmd == CPU_PM_EXIT && armpmu->reset)
786 		armpmu->reset(armpmu);
787 
788 	if (!enabled)
789 		return NOTIFY_OK;
790 
791 	switch (cmd) {
792 	case CPU_PM_ENTER:
793 		armpmu->stop(armpmu);
794 		cpu_pm_pmu_setup(armpmu, cmd);
795 		break;
796 	case CPU_PM_EXIT:
797 	case CPU_PM_ENTER_FAILED:
798 		cpu_pm_pmu_setup(armpmu, cmd);
799 		armpmu->start(armpmu);
800 		break;
801 	default:
802 		return NOTIFY_DONE;
803 	}
804 
805 	return NOTIFY_OK;
806 }
807 
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)808 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
809 {
810 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
811 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
812 }
813 
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)814 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
815 {
816 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
817 }
818 #else
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)819 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)820 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
821 #endif
822 
cpu_pmu_init(struct arm_pmu * cpu_pmu)823 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
824 {
825 	int err;
826 
827 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
828 				       &cpu_pmu->node);
829 	if (err)
830 		goto out;
831 
832 	err = cpu_pm_pmu_register(cpu_pmu);
833 	if (err)
834 		goto out_unregister;
835 
836 	return 0;
837 
838 out_unregister:
839 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
840 					    &cpu_pmu->node);
841 out:
842 	return err;
843 }
844 
cpu_pmu_destroy(struct arm_pmu * cpu_pmu)845 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
846 {
847 	cpu_pm_pmu_unregister(cpu_pmu);
848 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
849 					    &cpu_pmu->node);
850 }
851 
armpmu_alloc(void)852 struct arm_pmu *armpmu_alloc(void)
853 {
854 	struct arm_pmu *pmu;
855 	int cpu;
856 
857 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
858 	if (!pmu)
859 		goto out;
860 
861 	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
862 	if (!pmu->hw_events) {
863 		pr_info("failed to allocate per-cpu PMU data.\n");
864 		goto out_free_pmu;
865 	}
866 
867 	pmu->pmu = (struct pmu) {
868 		.pmu_enable	= armpmu_enable,
869 		.pmu_disable	= armpmu_disable,
870 		.event_init	= armpmu_event_init,
871 		.add		= armpmu_add,
872 		.del		= armpmu_del,
873 		.start		= armpmu_start,
874 		.stop		= armpmu_stop,
875 		.read		= armpmu_read,
876 		.filter		= armpmu_filter,
877 		.attr_groups	= pmu->attr_groups,
878 		/*
879 		 * This is a CPU PMU potentially in a heterogeneous
880 		 * configuration (e.g. big.LITTLE) so
881 		 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
882 		 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
883 		 * specific PMU.
884 		 */
885 		.capabilities	= PERF_PMU_CAP_EXTENDED_REGS |
886 				  PERF_PMU_CAP_EXTENDED_HW_TYPE,
887 	};
888 
889 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
890 		&armpmu_common_attr_group;
891 
892 	for_each_possible_cpu(cpu) {
893 		struct pmu_hw_events *events;
894 
895 		events = per_cpu_ptr(pmu->hw_events, cpu);
896 		raw_spin_lock_init(&events->pmu_lock);
897 		events->percpu_pmu = pmu;
898 	}
899 
900 	return pmu;
901 
902 out_free_pmu:
903 	kfree(pmu);
904 out:
905 	return NULL;
906 }
907 
armpmu_free(struct arm_pmu * pmu)908 void armpmu_free(struct arm_pmu *pmu)
909 {
910 	free_percpu(pmu->hw_events);
911 	kfree(pmu);
912 }
913 
armpmu_register(struct arm_pmu * pmu)914 int armpmu_register(struct arm_pmu *pmu)
915 {
916 	int ret;
917 
918 	ret = cpu_pmu_init(pmu);
919 	if (ret)
920 		return ret;
921 
922 	if (!pmu->set_event_filter)
923 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
924 
925 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
926 	if (ret)
927 		goto out_destroy;
928 
929 	pr_info("enabled with %s PMU driver, %d counters available%s\n",
930 		pmu->name, pmu->num_events,
931 		has_nmi ? ", using NMIs" : "");
932 
933 	kvm_host_pmu_init(pmu);
934 
935 	return 0;
936 
937 out_destroy:
938 	cpu_pmu_destroy(pmu);
939 	return ret;
940 }
941 
arm_pmu_hp_init(void)942 static int arm_pmu_hp_init(void)
943 {
944 	int ret;
945 
946 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
947 				      "perf/arm/pmu:starting",
948 				      arm_perf_starting_cpu,
949 				      arm_perf_teardown_cpu);
950 	if (ret)
951 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
952 		       ret);
953 	return ret;
954 }
955 subsys_initcall(arm_pmu_hp_init);
956