1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2023-2024, Qualcomm Innovation Center, Inc. All rights reserved.
5 */
6
7 #define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME
8
9 #include <linux/atomic.h>
10 #include <linux/cpu_pm.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/iopoll.h>
15 #include <linux/kernel.h>
16 #include <linux/ktime.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/notifier.h>
20 #include <linux/of.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_domain.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/wait.h>
29
30 #include <clocksource/arm_arch_timer.h>
31 #include <soc/qcom/cmd-db.h>
32 #include <soc/qcom/tcs.h>
33 #include <dt-bindings/soc/qcom,rpmh-rsc.h>
34
35 #include "rpmh-internal.h"
36
37 #define CREATE_TRACE_POINTS
38 #include "trace-rpmh.h"
39
40
41 #define RSC_DRV_ID 0
42
43 #define MAJOR_VER_MASK 0xFF
44 #define MAJOR_VER_SHIFT 16
45 #define MINOR_VER_MASK 0xFF
46 #define MINOR_VER_SHIFT 8
47
48 enum {
49 RSC_DRV_TCS_OFFSET,
50 RSC_DRV_CMD_OFFSET,
51 DRV_SOLVER_CONFIG,
52 DRV_PRNT_CHLD_CONFIG,
53 RSC_DRV_IRQ_ENABLE,
54 RSC_DRV_IRQ_STATUS,
55 RSC_DRV_IRQ_CLEAR,
56 RSC_DRV_CMD_WAIT_FOR_CMPL,
57 RSC_DRV_CONTROL,
58 RSC_DRV_STATUS,
59 RSC_DRV_CMD_ENABLE,
60 RSC_DRV_CMD_MSGID,
61 RSC_DRV_CMD_ADDR,
62 RSC_DRV_CMD_DATA,
63 RSC_DRV_CMD_STATUS,
64 RSC_DRV_CMD_RESP_DATA,
65 };
66
67 /* DRV HW Solver Configuration Information Register */
68 #define DRV_HW_SOLVER_MASK 1
69 #define DRV_HW_SOLVER_SHIFT 24
70
71 /* DRV TCS Configuration Information Register */
72 #define DRV_NUM_TCS_MASK 0x3F
73 #define DRV_NUM_TCS_SHIFT 6
74 #define DRV_NCPT_MASK 0x1F
75 #define DRV_NCPT_SHIFT 27
76
77 /* Offsets for CONTROL TCS Registers */
78 #define RSC_DRV_CTL_TCS_DATA_HI 0x38
79 #define RSC_DRV_CTL_TCS_DATA_HI_MASK 0xFFFFFF
80 #define RSC_DRV_CTL_TCS_DATA_HI_VALID BIT(31)
81 #define RSC_DRV_CTL_TCS_DATA_LO 0x40
82 #define RSC_DRV_CTL_TCS_DATA_LO_MASK 0xFFFFFFFF
83 #define RSC_DRV_CTL_TCS_DATA_SIZE 32
84
85 #define TCS_AMC_MODE_ENABLE BIT(16)
86 #define TCS_AMC_MODE_TRIGGER BIT(24)
87
88 /* TCS CMD register bit mask */
89 #define CMD_MSGID_LEN 8
90 #define CMD_MSGID_RESP_REQ BIT(8)
91 #define CMD_MSGID_WRITE BIT(16)
92 #define CMD_STATUS_ISSUED BIT(8)
93 #define CMD_STATUS_COMPL BIT(16)
94
95 /*
96 * Here's a high level overview of how all the registers in RPMH work
97 * together:
98 *
99 * - The main rpmh-rsc address is the base of a register space that can
100 * be used to find overall configuration of the hardware
101 * (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
102 * space are all the TCS blocks. The offset of the TCS blocks is
103 * specified in the device tree by "qcom,tcs-offset" and used to
104 * compute tcs_base.
105 * - TCS blocks come one after another. Type, count, and order are
106 * specified by the device tree as "qcom,tcs-config".
107 * - Each TCS block has some registers, then space for up to 16 commands.
108 * Note that though address space is reserved for 16 commands, fewer
109 * might be present. See ncpt (num cmds per TCS).
110 *
111 * Here's a picture:
112 *
113 * +---------------------------------------------------+
114 * |RSC |
115 * | ctrl |
116 * | |
117 * | Drvs: |
118 * | +-----------------------------------------------+ |
119 * | |DRV0 | |
120 * | | ctrl/config | |
121 * | | IRQ | |
122 * | | | |
123 * | | TCSes: | |
124 * | | +------------------------------------------+ | |
125 * | | |TCS0 | | | | | | | | | | | | | | |
126 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
127 * | | | | | | | | | | | | | | | | | |
128 * | | +------------------------------------------+ | |
129 * | | +------------------------------------------+ | |
130 * | | |TCS1 | | | | | | | | | | | | | | |
131 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
132 * | | | | | | | | | | | | | | | | | |
133 * | | +------------------------------------------+ | |
134 * | | +------------------------------------------+ | |
135 * | | |TCS2 | | | | | | | | | | | | | | |
136 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
137 * | | | | | | | | | | | | | | | | | |
138 * | | +------------------------------------------+ | |
139 * | | ...... | |
140 * | +-----------------------------------------------+ |
141 * | +-----------------------------------------------+ |
142 * | |DRV1 | |
143 * | | (same as DRV0) | |
144 * | +-----------------------------------------------+ |
145 * | ...... |
146 * +---------------------------------------------------+
147 */
148
149 #define USECS_TO_CYCLES(time_usecs) \
150 xloops_to_cycles((time_usecs) * 0x10C7UL)
151
xloops_to_cycles(u64 xloops)152 static inline unsigned long xloops_to_cycles(u64 xloops)
153 {
154 return (xloops * loops_per_jiffy * HZ) >> 32;
155 }
156
157 static u32 rpmh_rsc_reg_offset_ver_2_7[] = {
158 [RSC_DRV_TCS_OFFSET] = 672,
159 [RSC_DRV_CMD_OFFSET] = 20,
160 [DRV_SOLVER_CONFIG] = 0x04,
161 [DRV_PRNT_CHLD_CONFIG] = 0x0C,
162 [RSC_DRV_IRQ_ENABLE] = 0x00,
163 [RSC_DRV_IRQ_STATUS] = 0x04,
164 [RSC_DRV_IRQ_CLEAR] = 0x08,
165 [RSC_DRV_CMD_WAIT_FOR_CMPL] = 0x10,
166 [RSC_DRV_CONTROL] = 0x14,
167 [RSC_DRV_STATUS] = 0x18,
168 [RSC_DRV_CMD_ENABLE] = 0x1C,
169 [RSC_DRV_CMD_MSGID] = 0x30,
170 [RSC_DRV_CMD_ADDR] = 0x34,
171 [RSC_DRV_CMD_DATA] = 0x38,
172 [RSC_DRV_CMD_STATUS] = 0x3C,
173 [RSC_DRV_CMD_RESP_DATA] = 0x40,
174 };
175
176 static u32 rpmh_rsc_reg_offset_ver_3_0[] = {
177 [RSC_DRV_TCS_OFFSET] = 672,
178 [RSC_DRV_CMD_OFFSET] = 24,
179 [DRV_SOLVER_CONFIG] = 0x04,
180 [DRV_PRNT_CHLD_CONFIG] = 0x0C,
181 [RSC_DRV_IRQ_ENABLE] = 0x00,
182 [RSC_DRV_IRQ_STATUS] = 0x04,
183 [RSC_DRV_IRQ_CLEAR] = 0x08,
184 [RSC_DRV_CMD_WAIT_FOR_CMPL] = 0x20,
185 [RSC_DRV_CONTROL] = 0x24,
186 [RSC_DRV_STATUS] = 0x28,
187 [RSC_DRV_CMD_ENABLE] = 0x2C,
188 [RSC_DRV_CMD_MSGID] = 0x34,
189 [RSC_DRV_CMD_ADDR] = 0x38,
190 [RSC_DRV_CMD_DATA] = 0x3C,
191 [RSC_DRV_CMD_STATUS] = 0x40,
192 [RSC_DRV_CMD_RESP_DATA] = 0x44,
193 };
194
195 static inline void __iomem *
tcs_reg_addr(const struct rsc_drv * drv,int reg,int tcs_id)196 tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
197 {
198 return drv->tcs_base + drv->regs[RSC_DRV_TCS_OFFSET] * tcs_id + reg;
199 }
200
201 static inline void __iomem *
tcs_cmd_addr(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id)202 tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
203 {
204 return tcs_reg_addr(drv, reg, tcs_id) + drv->regs[RSC_DRV_CMD_OFFSET] * cmd_id;
205 }
206
read_tcs_cmd(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id)207 static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
208 int cmd_id)
209 {
210 return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
211 }
212
read_tcs_reg(const struct rsc_drv * drv,int reg,int tcs_id)213 static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
214 {
215 return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
216 }
217
write_tcs_cmd(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id,u32 data)218 static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
219 int cmd_id, u32 data)
220 {
221 writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
222 }
223
write_tcs_reg(const struct rsc_drv * drv,int reg,int tcs_id,u32 data)224 static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
225 u32 data)
226 {
227 writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id));
228 }
229
write_tcs_reg_sync(const struct rsc_drv * drv,int reg,int tcs_id,u32 data)230 static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
231 u32 data)
232 {
233 int i;
234
235 writel(data, tcs_reg_addr(drv, reg, tcs_id));
236
237 /*
238 * Wait until we read back the same value. Use a counter rather than
239 * ktime for timeout since this may be called after timekeeping stops.
240 */
241 for (i = 0; i < USEC_PER_SEC; i++) {
242 if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data)
243 return;
244 udelay(1);
245 }
246 pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
247 data, tcs_id, reg);
248 }
249
250 /**
251 * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
252 * @drv: The RSC controller.
253 * @type: SLEEP_TCS or WAKE_TCS
254 *
255 * This will clear the "slots" variable of the given tcs_group and also
256 * tell the hardware to forget about all entries.
257 *
258 * The caller must ensure that no other RPMH actions are happening when this
259 * function is called, since otherwise the device may immediately become
260 * used again even before this function exits.
261 */
tcs_invalidate(struct rsc_drv * drv,int type)262 static void tcs_invalidate(struct rsc_drv *drv, int type)
263 {
264 int m;
265 struct tcs_group *tcs = &drv->tcs[type];
266
267 /* Caller ensures nobody else is running so no lock */
268 if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
269 return;
270
271 for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++)
272 write_tcs_reg_sync(drv, drv->regs[RSC_DRV_CMD_ENABLE], m, 0);
273
274 bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
275 }
276
277 /**
278 * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
279 * @drv: The RSC controller.
280 *
281 * The caller must ensure that no other RPMH actions are happening when this
282 * function is called, since otherwise the device may immediately become
283 * used again even before this function exits.
284 */
rpmh_rsc_invalidate(struct rsc_drv * drv)285 void rpmh_rsc_invalidate(struct rsc_drv *drv)
286 {
287 tcs_invalidate(drv, SLEEP_TCS);
288 tcs_invalidate(drv, WAKE_TCS);
289 }
290
291 /**
292 * get_tcs_for_msg() - Get the tcs_group used to send the given message.
293 * @drv: The RSC controller.
294 * @msg: The message we want to send.
295 *
296 * This is normally pretty straightforward except if we are trying to send
297 * an ACTIVE_ONLY message but don't have any active_only TCSes.
298 *
299 * Return: A pointer to a tcs_group or an ERR_PTR.
300 */
get_tcs_for_msg(struct rsc_drv * drv,const struct tcs_request * msg)301 static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
302 const struct tcs_request *msg)
303 {
304 int type;
305 struct tcs_group *tcs;
306
307 switch (msg->state) {
308 case RPMH_ACTIVE_ONLY_STATE:
309 type = ACTIVE_TCS;
310 break;
311 case RPMH_WAKE_ONLY_STATE:
312 type = WAKE_TCS;
313 break;
314 case RPMH_SLEEP_STATE:
315 type = SLEEP_TCS;
316 break;
317 default:
318 return ERR_PTR(-EINVAL);
319 }
320
321 /*
322 * If we are making an active request on a RSC that does not have a
323 * dedicated TCS for active state use, then re-purpose a wake TCS to
324 * send active votes. This is safe because we ensure any active-only
325 * transfers have finished before we use it (maybe by running from
326 * the last CPU in PM code).
327 */
328 tcs = &drv->tcs[type];
329 if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs)
330 tcs = &drv->tcs[WAKE_TCS];
331
332 return tcs;
333 }
334
335 /**
336 * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS.
337 * @drv: The RSC controller.
338 * @tcs_id: The global ID of this TCS.
339 *
340 * For ACTIVE_ONLY transfers we want to call back into the client when the
341 * transfer finishes. To do this we need the "request" that the client
342 * originally provided us. This function grabs the request that we stashed
343 * when we started the transfer.
344 *
345 * This only makes sense for ACTIVE_ONLY transfers since those are the only
346 * ones we track sending (the only ones we enable interrupts for and the only
347 * ones we call back to the client for).
348 *
349 * Return: The stashed request.
350 */
get_req_from_tcs(struct rsc_drv * drv,int tcs_id)351 static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv,
352 int tcs_id)
353 {
354 struct tcs_group *tcs;
355 int i;
356
357 for (i = 0; i < TCS_TYPE_NR; i++) {
358 tcs = &drv->tcs[i];
359 if (tcs->mask & BIT(tcs_id))
360 return tcs->req[tcs_id - tcs->offset];
361 }
362
363 return NULL;
364 }
365
366 /**
367 * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
368 * @drv: The controller.
369 * @tcs_id: The global ID of this TCS.
370 * @trigger: If true then untrigger/retrigger. If false then just untrigger.
371 *
372 * In the normal case we only ever call with "trigger=true" to start a
373 * transfer. That will un-trigger/disable the TCS from the last transfer
374 * then trigger/enable for this transfer.
375 *
376 * If we borrowed a wake TCS for an active-only transfer we'll also call
377 * this function with "trigger=false" to just do the un-trigger/disable
378 * before using the TCS for wake purposes again.
379 *
380 * Note that the AP is only in charge of triggering active-only transfers.
381 * The AP never triggers sleep/wake values using this function.
382 */
__tcs_set_trigger(struct rsc_drv * drv,int tcs_id,bool trigger)383 static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
384 {
385 u32 enable;
386 u32 reg = drv->regs[RSC_DRV_CONTROL];
387
388 /*
389 * HW req: Clear the DRV_CONTROL and enable TCS again
390 * While clearing ensure that the AMC mode trigger is cleared
391 * and then the mode enable is cleared.
392 */
393 enable = read_tcs_reg(drv, reg, tcs_id);
394 enable &= ~TCS_AMC_MODE_TRIGGER;
395 write_tcs_reg_sync(drv, reg, tcs_id, enable);
396 enable &= ~TCS_AMC_MODE_ENABLE;
397 write_tcs_reg_sync(drv, reg, tcs_id, enable);
398
399 if (trigger) {
400 /* Enable the AMC mode on the TCS and then trigger the TCS */
401 enable = TCS_AMC_MODE_ENABLE;
402 write_tcs_reg_sync(drv, reg, tcs_id, enable);
403 enable |= TCS_AMC_MODE_TRIGGER;
404 write_tcs_reg(drv, reg, tcs_id, enable);
405 }
406 }
407
408 /**
409 * enable_tcs_irq() - Enable or disable interrupts on the given TCS.
410 * @drv: The controller.
411 * @tcs_id: The global ID of this TCS.
412 * @enable: If true then enable; if false then disable
413 *
414 * We only ever call this when we borrow a wake TCS for an active-only
415 * transfer. For active-only TCSes interrupts are always left enabled.
416 */
enable_tcs_irq(struct rsc_drv * drv,int tcs_id,bool enable)417 static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable)
418 {
419 u32 data;
420 u32 reg = drv->regs[RSC_DRV_IRQ_ENABLE];
421
422 data = readl_relaxed(drv->tcs_base + reg);
423 if (enable)
424 data |= BIT(tcs_id);
425 else
426 data &= ~BIT(tcs_id);
427 writel_relaxed(data, drv->tcs_base + reg);
428 }
429
430 /**
431 * tcs_tx_done() - TX Done interrupt handler.
432 * @irq: The IRQ number (ignored).
433 * @p: Pointer to "struct rsc_drv".
434 *
435 * Called for ACTIVE_ONLY transfers (those are the only ones we enable the
436 * IRQ for) when a transfer is done.
437 *
438 * Return: IRQ_HANDLED
439 */
tcs_tx_done(int irq,void * p)440 static irqreturn_t tcs_tx_done(int irq, void *p)
441 {
442 struct rsc_drv *drv = p;
443 int i;
444 unsigned long irq_status;
445 const struct tcs_request *req;
446
447 irq_status = readl_relaxed(drv->tcs_base + drv->regs[RSC_DRV_IRQ_STATUS]);
448
449 for_each_set_bit(i, &irq_status, BITS_PER_TYPE(u32)) {
450 req = get_req_from_tcs(drv, i);
451 if (WARN_ON(!req))
452 goto skip;
453
454 trace_rpmh_tx_done(drv, i, req);
455
456 /*
457 * If wake tcs was re-purposed for sending active
458 * votes, clear AMC trigger & enable modes and
459 * disable interrupt for this TCS
460 */
461 if (!drv->tcs[ACTIVE_TCS].num_tcs)
462 __tcs_set_trigger(drv, i, false);
463 skip:
464 /* Reclaim the TCS */
465 write_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], i, 0);
466 writel_relaxed(BIT(i), drv->tcs_base + drv->regs[RSC_DRV_IRQ_CLEAR]);
467 spin_lock(&drv->lock);
468 clear_bit(i, drv->tcs_in_use);
469 /*
470 * Disable interrupt for WAKE TCS to avoid being
471 * spammed with interrupts coming when the solver
472 * sends its wake votes.
473 */
474 if (!drv->tcs[ACTIVE_TCS].num_tcs)
475 enable_tcs_irq(drv, i, false);
476 spin_unlock(&drv->lock);
477 wake_up(&drv->tcs_wait);
478 if (req)
479 rpmh_tx_done(req);
480 }
481
482 return IRQ_HANDLED;
483 }
484
485 /**
486 * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
487 * @drv: The controller.
488 * @tcs_id: The global ID of this TCS.
489 * @cmd_id: The index within the TCS to start writing.
490 * @msg: The message we want to send, which will contain several addr/data
491 * pairs to program (but few enough that they all fit in one TCS).
492 *
493 * This is used for all types of transfers (active, sleep, and wake).
494 */
__tcs_buffer_write(struct rsc_drv * drv,int tcs_id,int cmd_id,const struct tcs_request * msg)495 static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
496 const struct tcs_request *msg)
497 {
498 u32 msgid;
499 u32 cmd_msgid = CMD_MSGID_LEN | CMD_MSGID_WRITE;
500 u32 cmd_enable = 0;
501 struct tcs_cmd *cmd;
502 int i, j;
503
504 /* Convert all commands to RR when the request has wait_for_compl set */
505 cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0;
506
507 for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
508 cmd = &msg->cmds[i];
509 cmd_enable |= BIT(j);
510 msgid = cmd_msgid;
511 /*
512 * Additionally, if the cmd->wait is set, make the command
513 * response reqd even if the overall request was fire-n-forget.
514 */
515 msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
516
517 write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_MSGID], tcs_id, j, msgid);
518 write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_ADDR], tcs_id, j, cmd->addr);
519 write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_DATA], tcs_id, j, cmd->data);
520 trace_rpmh_send_msg(drv, tcs_id, msg->state, j, msgid, cmd);
521 }
522
523 cmd_enable |= read_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id);
524 write_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id, cmd_enable);
525 }
526
527 /**
528 * check_for_req_inflight() - Look to see if conflicting cmds are in flight.
529 * @drv: The controller.
530 * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers.
531 * @msg: The message we want to send, which will contain several addr/data
532 * pairs to program (but few enough that they all fit in one TCS).
533 *
534 * This will walk through the TCSes in the group and check if any of them
535 * appear to be sending to addresses referenced in the message. If it finds
536 * one it'll return -EBUSY.
537 *
538 * Only for use for active-only transfers.
539 *
540 * Must be called with the drv->lock held since that protects tcs_in_use.
541 *
542 * Return: 0 if nothing in flight or -EBUSY if we should try again later.
543 * The caller must re-enable interrupts between tries since that's
544 * the only way tcs_in_use will ever be updated and the only way
545 * RSC_DRV_CMD_ENABLE will ever be cleared.
546 */
check_for_req_inflight(struct rsc_drv * drv,struct tcs_group * tcs,const struct tcs_request * msg)547 static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs,
548 const struct tcs_request *msg)
549 {
550 unsigned long curr_enabled;
551 u32 addr;
552 int j, k;
553 int i = tcs->offset;
554
555 for_each_set_bit_from(i, drv->tcs_in_use, tcs->offset + tcs->num_tcs) {
556 curr_enabled = read_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], i);
557
558 for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) {
559 addr = read_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_ADDR], i, j);
560 for (k = 0; k < msg->num_cmds; k++) {
561 if (cmd_db_match_resource_addr(msg->cmds[k].addr, addr))
562 return -EBUSY;
563 }
564 }
565 }
566
567 return 0;
568 }
569
570 /**
571 * find_free_tcs() - Find free tcs in the given tcs_group; only for active.
572 * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if
573 * we borrowed it because there are zero active-only ones).
574 *
575 * Must be called with the drv->lock held since that protects tcs_in_use.
576 *
577 * Return: The first tcs that's free or -EBUSY if all in use.
578 */
find_free_tcs(struct tcs_group * tcs)579 static int find_free_tcs(struct tcs_group *tcs)
580 {
581 const struct rsc_drv *drv = tcs->drv;
582 unsigned long i;
583 unsigned long max = tcs->offset + tcs->num_tcs;
584
585 i = find_next_zero_bit(drv->tcs_in_use, max, tcs->offset);
586 if (i >= max)
587 return -EBUSY;
588
589 return i;
590 }
591
592 /**
593 * claim_tcs_for_req() - Claim a tcs in the given tcs_group; only for active.
594 * @drv: The controller.
595 * @tcs: The tcs_group used for ACTIVE_ONLY transfers.
596 * @msg: The data to be sent.
597 *
598 * Claims a tcs in the given tcs_group while making sure that no existing cmd
599 * is in flight that would conflict with the one in @msg.
600 *
601 * Context: Must be called with the drv->lock held since that protects
602 * tcs_in_use.
603 *
604 * Return: The id of the claimed tcs or -EBUSY if a matching msg is in flight
605 * or the tcs_group is full.
606 */
claim_tcs_for_req(struct rsc_drv * drv,struct tcs_group * tcs,const struct tcs_request * msg)607 static int claim_tcs_for_req(struct rsc_drv *drv, struct tcs_group *tcs,
608 const struct tcs_request *msg)
609 {
610 int ret;
611
612 /*
613 * The h/w does not like if we send a request to the same address,
614 * when one is already in-flight or being processed.
615 */
616 ret = check_for_req_inflight(drv, tcs, msg);
617 if (ret)
618 return ret;
619
620 return find_free_tcs(tcs);
621 }
622
623 /**
624 * rpmh_rsc_send_data() - Write / trigger active-only message.
625 * @drv: The controller.
626 * @msg: The data to be sent.
627 *
628 * NOTES:
629 * - This is only used for "ACTIVE_ONLY" since the limitations of this
630 * function don't make sense for sleep/wake cases.
631 * - To do the transfer, we will grab a whole TCS for ourselves--we don't
632 * try to share. If there are none available we'll wait indefinitely
633 * for a free one.
634 * - This function will not wait for the commands to be finished, only for
635 * data to be programmed into the RPMh. See rpmh_tx_done() which will
636 * be called when the transfer is fully complete.
637 * - This function must be called with interrupts enabled. If the hardware
638 * is busy doing someone else's transfer we need that transfer to fully
639 * finish so that we can have the hardware, and to fully finish it needs
640 * the interrupt handler to run. If the interrupts is set to run on the
641 * active CPU this can never happen if interrupts are disabled.
642 *
643 * Return: 0 on success, -EINVAL on error.
644 */
rpmh_rsc_send_data(struct rsc_drv * drv,const struct tcs_request * msg)645 int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
646 {
647 struct tcs_group *tcs;
648 int tcs_id;
649
650 might_sleep();
651
652 tcs = get_tcs_for_msg(drv, msg);
653 if (IS_ERR(tcs))
654 return PTR_ERR(tcs);
655
656 spin_lock_irq(&drv->lock);
657
658 /* Wait forever for a free tcs. It better be there eventually! */
659 wait_event_lock_irq(drv->tcs_wait,
660 (tcs_id = claim_tcs_for_req(drv, tcs, msg)) >= 0,
661 drv->lock);
662
663 tcs->req[tcs_id - tcs->offset] = msg;
664 set_bit(tcs_id, drv->tcs_in_use);
665 if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
666 /*
667 * Clear previously programmed WAKE commands in selected
668 * repurposed TCS to avoid triggering them. tcs->slots will be
669 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
670 */
671 write_tcs_reg_sync(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id, 0);
672 enable_tcs_irq(drv, tcs_id, true);
673 }
674 spin_unlock_irq(&drv->lock);
675
676 /*
677 * These two can be done after the lock is released because:
678 * - We marked "tcs_in_use" under lock.
679 * - Once "tcs_in_use" has been marked nobody else could be writing
680 * to these registers until the interrupt goes off.
681 * - The interrupt can't go off until we trigger w/ the last line
682 * of __tcs_set_trigger() below.
683 */
684 __tcs_buffer_write(drv, tcs_id, 0, msg);
685 __tcs_set_trigger(drv, tcs_id, true);
686
687 return 0;
688 }
689
690 /**
691 * find_slots() - Find a place to write the given message.
692 * @tcs: The tcs group to search.
693 * @msg: The message we want to find room for.
694 * @tcs_id: If we return 0 from the function, we return the global ID of the
695 * TCS to write to here.
696 * @cmd_id: If we return 0 from the function, we return the index of
697 * the command array of the returned TCS where the client should
698 * start writing the message.
699 *
700 * Only for use on sleep/wake TCSes since those are the only ones we maintain
701 * tcs->slots for.
702 *
703 * Return: -ENOMEM if there was no room, else 0.
704 */
find_slots(struct tcs_group * tcs,const struct tcs_request * msg,int * tcs_id,int * cmd_id)705 static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg,
706 int *tcs_id, int *cmd_id)
707 {
708 int slot, offset;
709 int i = 0;
710
711 /* Do over, until we can fit the full payload in a single TCS */
712 do {
713 slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS,
714 i, msg->num_cmds, 0);
715 if (slot >= tcs->num_tcs * tcs->ncpt)
716 return -ENOMEM;
717 i += tcs->ncpt;
718 } while (slot + msg->num_cmds - 1 >= i);
719
720 bitmap_set(tcs->slots, slot, msg->num_cmds);
721
722 offset = slot / tcs->ncpt;
723 *tcs_id = offset + tcs->offset;
724 *cmd_id = slot % tcs->ncpt;
725
726 return 0;
727 }
728
729 /**
730 * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger.
731 * @drv: The controller.
732 * @msg: The data to be written to the controller.
733 *
734 * This should only be called for sleep/wake state, never active-only
735 * state.
736 *
737 * The caller must ensure that no other RPMH actions are happening and the
738 * controller is idle when this function is called since it runs lockless.
739 *
740 * Return: 0 if no error; else -error.
741 */
rpmh_rsc_write_ctrl_data(struct rsc_drv * drv,const struct tcs_request * msg)742 int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
743 {
744 struct tcs_group *tcs;
745 int tcs_id = 0, cmd_id = 0;
746 int ret;
747
748 tcs = get_tcs_for_msg(drv, msg);
749 if (IS_ERR(tcs))
750 return PTR_ERR(tcs);
751
752 /* find the TCS id and the command in the TCS to write to */
753 ret = find_slots(tcs, msg, &tcs_id, &cmd_id);
754 if (!ret)
755 __tcs_buffer_write(drv, tcs_id, cmd_id, msg);
756
757 return ret;
758 }
759
760 /**
761 * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy.
762 * @drv: The controller
763 *
764 * Checks if any of the AMCs are busy in handling ACTIVE sets.
765 * This is called from the last cpu powering down before flushing
766 * SLEEP and WAKE sets. If AMCs are busy, controller can not enter
767 * power collapse, so deny from the last cpu's pm notification.
768 *
769 * Context: Must be called with the drv->lock held.
770 *
771 * Return:
772 * * False - AMCs are idle
773 * * True - AMCs are busy
774 */
rpmh_rsc_ctrlr_is_busy(struct rsc_drv * drv)775 static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
776 {
777 unsigned long set;
778 const struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS];
779 unsigned long max;
780
781 /*
782 * If we made an active request on a RSC that does not have a
783 * dedicated TCS for active state use, then re-purposed wake TCSes
784 * should be checked for not busy, because we used wake TCSes for
785 * active requests in this case.
786 */
787 if (!tcs->num_tcs)
788 tcs = &drv->tcs[WAKE_TCS];
789
790 max = tcs->offset + tcs->num_tcs;
791 set = find_next_bit(drv->tcs_in_use, max, tcs->offset);
792
793 return set < max;
794 }
795
796 /**
797 * rpmh_rsc_write_next_wakeup() - Write next wakeup in CONTROL_TCS.
798 * @drv: The controller
799 *
800 * Writes maximum wakeup cycles when called from suspend.
801 * Writes earliest hrtimer wakeup when called from idle.
802 */
rpmh_rsc_write_next_wakeup(struct rsc_drv * drv)803 void rpmh_rsc_write_next_wakeup(struct rsc_drv *drv)
804 {
805 ktime_t now, wakeup;
806 u64 wakeup_us, wakeup_cycles = ~0;
807 u32 lo, hi;
808
809 if (!drv->tcs[CONTROL_TCS].num_tcs || !drv->genpd_nb.notifier_call)
810 return;
811
812 /* Set highest time when system (timekeeping) is suspended */
813 if (system_state == SYSTEM_SUSPEND)
814 goto exit;
815
816 /* Find the earliest hrtimer wakeup from online cpus */
817 wakeup = dev_pm_genpd_get_next_hrtimer(drv->dev);
818
819 /* Find the relative wakeup in kernel time scale */
820 now = ktime_get();
821 wakeup = ktime_sub(wakeup, now);
822 wakeup_us = ktime_to_us(wakeup);
823
824 /* Convert the wakeup to arch timer scale */
825 wakeup_cycles = USECS_TO_CYCLES(wakeup_us);
826 wakeup_cycles += arch_timer_read_counter();
827
828 exit:
829 lo = wakeup_cycles & RSC_DRV_CTL_TCS_DATA_LO_MASK;
830 hi = wakeup_cycles >> RSC_DRV_CTL_TCS_DATA_SIZE;
831 hi &= RSC_DRV_CTL_TCS_DATA_HI_MASK;
832 hi |= RSC_DRV_CTL_TCS_DATA_HI_VALID;
833
834 writel_relaxed(lo, drv->base + RSC_DRV_CTL_TCS_DATA_LO);
835 writel_relaxed(hi, drv->base + RSC_DRV_CTL_TCS_DATA_HI);
836 }
837
838 /**
839 * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy.
840 * @nfb: Pointer to the notifier block in struct rsc_drv.
841 * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT.
842 * @v: Unused
843 *
844 * This function is given to cpu_pm_register_notifier so we can be informed
845 * about when CPUs go down. When all CPUs go down we know no more active
846 * transfers will be started so we write sleep/wake sets. This function gets
847 * called from cpuidle code paths and also at system suspend time.
848 *
849 * If its last CPU going down and AMCs are not busy then writes cached sleep
850 * and wake messages to TCSes. The firmware then takes care of triggering
851 * them when entering deepest low power modes.
852 *
853 * Return: See cpu_pm_register_notifier()
854 */
rpmh_rsc_cpu_pm_callback(struct notifier_block * nfb,unsigned long action,void * v)855 static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
856 unsigned long action, void *v)
857 {
858 struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
859 int ret = NOTIFY_OK;
860 int cpus_in_pm;
861
862 switch (action) {
863 case CPU_PM_ENTER:
864 cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
865 /*
866 * NOTE: comments for num_online_cpus() point out that it's
867 * only a snapshot so we need to be careful. It should be OK
868 * for us to use, though. It's important for us not to miss
869 * if we're the last CPU going down so it would only be a
870 * problem if a CPU went offline right after we did the check
871 * AND that CPU was not idle AND that CPU was the last non-idle
872 * CPU. That can't happen. CPUs would have to come out of idle
873 * before the CPU could go offline.
874 */
875 if (cpus_in_pm < num_online_cpus())
876 return NOTIFY_OK;
877 break;
878 case CPU_PM_ENTER_FAILED:
879 case CPU_PM_EXIT:
880 atomic_dec(&drv->cpus_in_pm);
881 return NOTIFY_OK;
882 default:
883 return NOTIFY_DONE;
884 }
885
886 /*
887 * It's likely we're on the last CPU. Grab the drv->lock and write
888 * out the sleep/wake commands to RPMH hardware. Grabbing the lock
889 * means that if we race with another CPU coming up we are still
890 * guaranteed to be safe. If another CPU came up just after we checked
891 * and has grabbed the lock or started an active transfer then we'll
892 * notice we're busy and abort. If another CPU comes up after we start
893 * flushing it will be blocked from starting an active transfer until
894 * we're done flushing. If another CPU starts an active transfer after
895 * we release the lock we're still OK because we're no longer the last
896 * CPU.
897 */
898 if (spin_trylock(&drv->lock)) {
899 if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
900 ret = NOTIFY_BAD;
901 spin_unlock(&drv->lock);
902 } else {
903 /* Another CPU must be up */
904 return NOTIFY_OK;
905 }
906
907 if (ret == NOTIFY_BAD) {
908 /* Double-check if we're here because someone else is up */
909 if (cpus_in_pm < num_online_cpus())
910 ret = NOTIFY_OK;
911 else
912 /* We won't be called w/ CPU_PM_ENTER_FAILED */
913 atomic_dec(&drv->cpus_in_pm);
914 }
915
916 return ret;
917 }
918
919 /**
920 * rpmh_rsc_pd_callback() - Check if any of the AMCs are busy.
921 * @nfb: Pointer to the genpd notifier block in struct rsc_drv.
922 * @action: GENPD_NOTIFY_PRE_OFF, GENPD_NOTIFY_OFF, GENPD_NOTIFY_PRE_ON or GENPD_NOTIFY_ON.
923 * @v: Unused
924 *
925 * This function is given to dev_pm_genpd_add_notifier() so we can be informed
926 * about when cluster-pd is going down. When cluster go down we know no more active
927 * transfers will be started so we write sleep/wake sets. This function gets
928 * called from cpuidle code paths and also at system suspend time.
929 *
930 * If AMCs are not busy then writes cached sleep and wake messages to TCSes.
931 * The firmware then takes care of triggering them when entering deepest low power modes.
932 *
933 * Return:
934 * * NOTIFY_OK - success
935 * * NOTIFY_BAD - failure
936 */
rpmh_rsc_pd_callback(struct notifier_block * nfb,unsigned long action,void * v)937 static int rpmh_rsc_pd_callback(struct notifier_block *nfb,
938 unsigned long action, void *v)
939 {
940 struct rsc_drv *drv = container_of(nfb, struct rsc_drv, genpd_nb);
941
942 /* We don't need to lock as genpd on/off are serialized */
943 if ((action == GENPD_NOTIFY_PRE_OFF) &&
944 (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client)))
945 return NOTIFY_BAD;
946
947 return NOTIFY_OK;
948 }
949
rpmh_rsc_pd_attach(struct rsc_drv * drv,struct device * dev)950 static int rpmh_rsc_pd_attach(struct rsc_drv *drv, struct device *dev)
951 {
952 int ret;
953
954 pm_runtime_enable(dev);
955 drv->genpd_nb.notifier_call = rpmh_rsc_pd_callback;
956 ret = dev_pm_genpd_add_notifier(dev, &drv->genpd_nb);
957 if (ret)
958 pm_runtime_disable(dev);
959
960 return ret;
961 }
962
rpmh_probe_tcs_config(struct platform_device * pdev,struct rsc_drv * drv)963 static int rpmh_probe_tcs_config(struct platform_device *pdev, struct rsc_drv *drv)
964 {
965 struct tcs_type_config {
966 u32 type;
967 u32 n;
968 } tcs_cfg[TCS_TYPE_NR] = { { 0 } };
969 struct device_node *dn = pdev->dev.of_node;
970 u32 config, max_tcs, ncpt, offset;
971 int i, ret, n, st = 0;
972 struct tcs_group *tcs;
973
974 ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset);
975 if (ret)
976 return ret;
977 drv->tcs_base = drv->base + offset;
978
979 config = readl_relaxed(drv->base + drv->regs[DRV_PRNT_CHLD_CONFIG]);
980
981 max_tcs = config;
982 max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
983 max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
984
985 ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
986 ncpt = ncpt >> DRV_NCPT_SHIFT;
987
988 n = of_property_count_u32_elems(dn, "qcom,tcs-config");
989 if (n != 2 * TCS_TYPE_NR)
990 return -EINVAL;
991
992 for (i = 0; i < TCS_TYPE_NR; i++) {
993 ret = of_property_read_u32_index(dn, "qcom,tcs-config",
994 i * 2, &tcs_cfg[i].type);
995 if (ret)
996 return ret;
997 if (tcs_cfg[i].type >= TCS_TYPE_NR)
998 return -EINVAL;
999
1000 ret = of_property_read_u32_index(dn, "qcom,tcs-config",
1001 i * 2 + 1, &tcs_cfg[i].n);
1002 if (ret)
1003 return ret;
1004 if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
1005 return -EINVAL;
1006 }
1007
1008 for (i = 0; i < TCS_TYPE_NR; i++) {
1009 tcs = &drv->tcs[tcs_cfg[i].type];
1010 if (tcs->drv)
1011 return -EINVAL;
1012 tcs->drv = drv;
1013 tcs->type = tcs_cfg[i].type;
1014 tcs->num_tcs = tcs_cfg[i].n;
1015 tcs->ncpt = ncpt;
1016
1017 if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
1018 continue;
1019
1020 if (st + tcs->num_tcs > max_tcs ||
1021 st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
1022 return -EINVAL;
1023
1024 tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
1025 tcs->offset = st;
1026 st += tcs->num_tcs;
1027 }
1028
1029 drv->num_tcs = st;
1030
1031 return 0;
1032 }
1033
rpmh_rsc_probe(struct platform_device * pdev)1034 static int rpmh_rsc_probe(struct platform_device *pdev)
1035 {
1036 struct device_node *dn = pdev->dev.of_node;
1037 struct rsc_drv *drv;
1038 char drv_id[10] = {0};
1039 int ret, irq;
1040 u32 solver_config;
1041 u32 rsc_id;
1042
1043 /*
1044 * Even though RPMh doesn't directly use cmd-db, all of its children
1045 * do. To avoid adding this check to our children we'll do it now.
1046 */
1047 ret = cmd_db_ready();
1048 if (ret) {
1049 if (ret != -EPROBE_DEFER)
1050 dev_err(&pdev->dev, "Command DB not available (%d)\n",
1051 ret);
1052 return ret;
1053 }
1054
1055 drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
1056 if (!drv)
1057 return -ENOMEM;
1058
1059 ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id);
1060 if (ret)
1061 return ret;
1062
1063 drv->name = of_get_property(dn, "label", NULL);
1064 if (!drv->name)
1065 drv->name = dev_name(&pdev->dev);
1066
1067 snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
1068 drv->base = devm_platform_ioremap_resource_byname(pdev, drv_id);
1069 if (IS_ERR(drv->base))
1070 return PTR_ERR(drv->base);
1071
1072 rsc_id = readl_relaxed(drv->base + RSC_DRV_ID);
1073 drv->ver.major = rsc_id & (MAJOR_VER_MASK << MAJOR_VER_SHIFT);
1074 drv->ver.major >>= MAJOR_VER_SHIFT;
1075 drv->ver.minor = rsc_id & (MINOR_VER_MASK << MINOR_VER_SHIFT);
1076 drv->ver.minor >>= MINOR_VER_SHIFT;
1077
1078 if (drv->ver.major == 3)
1079 drv->regs = rpmh_rsc_reg_offset_ver_3_0;
1080 else
1081 drv->regs = rpmh_rsc_reg_offset_ver_2_7;
1082
1083 ret = rpmh_probe_tcs_config(pdev, drv);
1084 if (ret)
1085 return ret;
1086
1087 spin_lock_init(&drv->lock);
1088 init_waitqueue_head(&drv->tcs_wait);
1089 bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
1090
1091 irq = platform_get_irq(pdev, drv->id);
1092 if (irq < 0)
1093 return irq;
1094
1095 ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done,
1096 IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND,
1097 drv->name, drv);
1098 if (ret)
1099 return ret;
1100
1101 /*
1102 * CPU PM/genpd notification are not required for controllers that support
1103 * 'HW solver' mode where they can be in autonomous mode executing low
1104 * power mode to power down.
1105 */
1106 solver_config = readl_relaxed(drv->base + drv->regs[DRV_SOLVER_CONFIG]);
1107 solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT;
1108 solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
1109 if (!solver_config) {
1110 if (pdev->dev.pm_domain) {
1111 ret = rpmh_rsc_pd_attach(drv, &pdev->dev);
1112 if (ret)
1113 return ret;
1114 } else {
1115 drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
1116 cpu_pm_register_notifier(&drv->rsc_pm);
1117 }
1118 }
1119
1120 /* Enable the active TCS to send requests immediately */
1121 writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
1122 drv->tcs_base + drv->regs[RSC_DRV_IRQ_ENABLE]);
1123
1124 spin_lock_init(&drv->client.cache_lock);
1125 INIT_LIST_HEAD(&drv->client.cache);
1126 INIT_LIST_HEAD(&drv->client.batch_cache);
1127
1128 dev_set_drvdata(&pdev->dev, drv);
1129 drv->dev = &pdev->dev;
1130
1131 ret = devm_of_platform_populate(&pdev->dev);
1132 if (ret && pdev->dev.pm_domain) {
1133 dev_pm_genpd_remove_notifier(&pdev->dev);
1134 pm_runtime_disable(&pdev->dev);
1135 }
1136
1137 return ret;
1138 }
1139
1140 static const struct of_device_id rpmh_drv_match[] = {
1141 { .compatible = "qcom,rpmh-rsc", },
1142 { }
1143 };
1144 MODULE_DEVICE_TABLE(of, rpmh_drv_match);
1145
1146 static struct platform_driver rpmh_driver = {
1147 .probe = rpmh_rsc_probe,
1148 .driver = {
1149 .name = "rpmh",
1150 .of_match_table = rpmh_drv_match,
1151 .suppress_bind_attrs = true,
1152 },
1153 };
1154
rpmh_driver_init(void)1155 static int __init rpmh_driver_init(void)
1156 {
1157 return platform_driver_register(&rpmh_driver);
1158 }
1159 arch_initcall(rpmh_driver_init);
1160
1161 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. RPMh Driver");
1162 MODULE_LICENSE("GPL v2");
1163