1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for Broadcom BCM2835 SPI Controllers
4 *
5 * Copyright (C) 2012 Chris Boot
6 * Copyright (C) 2013 Stephen Warren
7 * Copyright (C) 2015 Martin Sperl
8 *
9 * This driver is inspired by:
10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
12 */
13
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/debugfs.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/platform_device.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/gpio/machine.h> /* FIXME: using chip internals */
30 #include <linux/gpio/driver.h> /* FIXME: using chip internals */
31 #include <linux/of_irq.h>
32 #include <linux/spi/spi.h>
33
34 /* SPI register offsets */
35 #define BCM2835_SPI_CS 0x00
36 #define BCM2835_SPI_FIFO 0x04
37 #define BCM2835_SPI_CLK 0x08
38 #define BCM2835_SPI_DLEN 0x0c
39 #define BCM2835_SPI_LTOH 0x10
40 #define BCM2835_SPI_DC 0x14
41
42 /* Bitfields in CS */
43 #define BCM2835_SPI_CS_LEN_LONG 0x02000000
44 #define BCM2835_SPI_CS_DMA_LEN 0x01000000
45 #define BCM2835_SPI_CS_CSPOL2 0x00800000
46 #define BCM2835_SPI_CS_CSPOL1 0x00400000
47 #define BCM2835_SPI_CS_CSPOL0 0x00200000
48 #define BCM2835_SPI_CS_RXF 0x00100000
49 #define BCM2835_SPI_CS_RXR 0x00080000
50 #define BCM2835_SPI_CS_TXD 0x00040000
51 #define BCM2835_SPI_CS_RXD 0x00020000
52 #define BCM2835_SPI_CS_DONE 0x00010000
53 #define BCM2835_SPI_CS_LEN 0x00002000
54 #define BCM2835_SPI_CS_REN 0x00001000
55 #define BCM2835_SPI_CS_ADCS 0x00000800
56 #define BCM2835_SPI_CS_INTR 0x00000400
57 #define BCM2835_SPI_CS_INTD 0x00000200
58 #define BCM2835_SPI_CS_DMAEN 0x00000100
59 #define BCM2835_SPI_CS_TA 0x00000080
60 #define BCM2835_SPI_CS_CSPOL 0x00000040
61 #define BCM2835_SPI_CS_CLEAR_RX 0x00000020
62 #define BCM2835_SPI_CS_CLEAR_TX 0x00000010
63 #define BCM2835_SPI_CS_CPOL 0x00000008
64 #define BCM2835_SPI_CS_CPHA 0x00000004
65 #define BCM2835_SPI_CS_CS_10 0x00000002
66 #define BCM2835_SPI_CS_CS_01 0x00000001
67
68 #define BCM2835_SPI_FIFO_SIZE 64
69 #define BCM2835_SPI_FIFO_SIZE_3_4 48
70 #define BCM2835_SPI_DMA_MIN_LENGTH 96
71 #define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
72 | SPI_NO_CS | SPI_3WIRE)
73
74 #define DRV_NAME "spi-bcm2835"
75
76 /* define polling limits */
77 static unsigned int polling_limit_us = 30;
78 module_param(polling_limit_us, uint, 0664);
79 MODULE_PARM_DESC(polling_limit_us,
80 "time in us to run a transfer in polling mode\n");
81
82 /**
83 * struct bcm2835_spi - BCM2835 SPI controller
84 * @regs: base address of register map
85 * @clk: core clock, divided to calculate serial clock
86 * @clk_hz: core clock cached speed
87 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
88 * @tfr: SPI transfer currently processed
89 * @ctlr: SPI controller reverse lookup
90 * @tx_buf: pointer whence next transmitted byte is read
91 * @rx_buf: pointer where next received byte is written
92 * @tx_len: remaining bytes to transmit
93 * @rx_len: remaining bytes to receive
94 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
95 * length is not a multiple of 4 (to overcome hardware limitation)
96 * @rx_prologue: bytes received without DMA if first RX sglist entry's
97 * length is not a multiple of 4 (to overcome hardware limitation)
98 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
99 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
100 * unloading the module
101 * @count_transfer_polling: count of how often polling mode is used
102 * @count_transfer_irq: count of how often interrupt mode is used
103 * @count_transfer_irq_after_polling: count of how often we fall back to
104 * interrupt mode after starting in polling mode.
105 * These are counted as well in @count_transfer_polling and
106 * @count_transfer_irq
107 * @count_transfer_dma: count how often dma mode is used
108 * @target: SPI target currently selected
109 * (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
110 * @tx_dma_active: whether a TX DMA descriptor is in progress
111 * @rx_dma_active: whether a RX DMA descriptor is in progress
112 * (used by bcm2835_spi_dma_tx_done() to handle a race)
113 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
114 * (cyclically copies from zero page to TX FIFO)
115 * @fill_tx_addr: bus address of zero page
116 */
117 struct bcm2835_spi {
118 void __iomem *regs;
119 struct clk *clk;
120 unsigned long clk_hz;
121 int irq;
122 struct spi_transfer *tfr;
123 struct spi_controller *ctlr;
124 const u8 *tx_buf;
125 u8 *rx_buf;
126 int tx_len;
127 int rx_len;
128 int tx_prologue;
129 int rx_prologue;
130 unsigned int tx_spillover;
131
132 struct dentry *debugfs_dir;
133 u64 count_transfer_polling;
134 u64 count_transfer_irq;
135 u64 count_transfer_irq_after_polling;
136 u64 count_transfer_dma;
137
138 struct bcm2835_spidev *target;
139 unsigned int tx_dma_active;
140 unsigned int rx_dma_active;
141 struct dma_async_tx_descriptor *fill_tx_desc;
142 dma_addr_t fill_tx_addr;
143 };
144
145 /**
146 * struct bcm2835_spidev - BCM2835 SPI target
147 * @prepare_cs: precalculated CS register value for ->prepare_message()
148 * (uses target-specific clock polarity and phase settings)
149 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
150 * (cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
151 * @clear_rx_addr: bus address of @clear_rx_cs
152 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
153 * (uses target-specific clock polarity and phase settings)
154 */
155 struct bcm2835_spidev {
156 u32 prepare_cs;
157 struct dma_async_tx_descriptor *clear_rx_desc;
158 dma_addr_t clear_rx_addr;
159 u32 clear_rx_cs ____cacheline_aligned;
160 };
161
162 #if defined(CONFIG_DEBUG_FS)
bcm2835_debugfs_create(struct bcm2835_spi * bs,const char * dname)163 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
164 const char *dname)
165 {
166 char name[64];
167 struct dentry *dir;
168
169 /* get full name */
170 snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
171
172 /* the base directory */
173 dir = debugfs_create_dir(name, NULL);
174 bs->debugfs_dir = dir;
175
176 /* the counters */
177 debugfs_create_u64("count_transfer_polling", 0444, dir,
178 &bs->count_transfer_polling);
179 debugfs_create_u64("count_transfer_irq", 0444, dir,
180 &bs->count_transfer_irq);
181 debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
182 &bs->count_transfer_irq_after_polling);
183 debugfs_create_u64("count_transfer_dma", 0444, dir,
184 &bs->count_transfer_dma);
185 }
186
bcm2835_debugfs_remove(struct bcm2835_spi * bs)187 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
188 {
189 debugfs_remove_recursive(bs->debugfs_dir);
190 bs->debugfs_dir = NULL;
191 }
192 #else
bcm2835_debugfs_create(struct bcm2835_spi * bs,const char * dname)193 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
194 const char *dname)
195 {
196 }
197
bcm2835_debugfs_remove(struct bcm2835_spi * bs)198 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
199 {
200 }
201 #endif /* CONFIG_DEBUG_FS */
202
bcm2835_rd(struct bcm2835_spi * bs,unsigned int reg)203 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
204 {
205 return readl(bs->regs + reg);
206 }
207
bcm2835_wr(struct bcm2835_spi * bs,unsigned int reg,u32 val)208 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
209 {
210 writel(val, bs->regs + reg);
211 }
212
bcm2835_rd_fifo(struct bcm2835_spi * bs)213 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
214 {
215 u8 byte;
216
217 while ((bs->rx_len) &&
218 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
219 byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
220 if (bs->rx_buf)
221 *bs->rx_buf++ = byte;
222 bs->rx_len--;
223 }
224 }
225
bcm2835_wr_fifo(struct bcm2835_spi * bs)226 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
227 {
228 u8 byte;
229
230 while ((bs->tx_len) &&
231 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
232 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
233 bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
234 bs->tx_len--;
235 }
236 }
237
238 /**
239 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
240 * @bs: BCM2835 SPI controller
241 * @count: bytes to read from RX FIFO
242 *
243 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
244 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
245 * in the CS register is set (such that a read from the FIFO register receives
246 * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL.
247 */
bcm2835_rd_fifo_count(struct bcm2835_spi * bs,int count)248 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
249 {
250 u32 val;
251 int len;
252
253 bs->rx_len -= count;
254
255 do {
256 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
257 len = min(count, 4);
258 memcpy(bs->rx_buf, &val, len);
259 bs->rx_buf += len;
260 count -= 4;
261 } while (count > 0);
262 }
263
264 /**
265 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
266 * @bs: BCM2835 SPI controller
267 * @count: bytes to write to TX FIFO
268 *
269 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
270 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
271 * in the CS register is set (such that a write to the FIFO register transmits
272 * 32-bit instead of just 8-bit).
273 */
bcm2835_wr_fifo_count(struct bcm2835_spi * bs,int count)274 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
275 {
276 u32 val;
277 int len;
278
279 bs->tx_len -= count;
280
281 do {
282 if (bs->tx_buf) {
283 len = min(count, 4);
284 memcpy(&val, bs->tx_buf, len);
285 bs->tx_buf += len;
286 } else {
287 val = 0;
288 }
289 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
290 count -= 4;
291 } while (count > 0);
292 }
293
294 /**
295 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
296 * @bs: BCM2835 SPI controller
297 *
298 * The caller must ensure that the RX FIFO can accommodate as many bytes
299 * as have been written to the TX FIFO: Transmission is halted once the
300 * RX FIFO is full, causing this function to spin forever.
301 */
bcm2835_wait_tx_fifo_empty(struct bcm2835_spi * bs)302 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
303 {
304 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
305 cpu_relax();
306 }
307
308 /**
309 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
310 * @bs: BCM2835 SPI controller
311 * @count: bytes available for reading in RX FIFO
312 */
bcm2835_rd_fifo_blind(struct bcm2835_spi * bs,int count)313 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
314 {
315 u8 val;
316
317 count = min(count, bs->rx_len);
318 bs->rx_len -= count;
319
320 do {
321 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
322 if (bs->rx_buf)
323 *bs->rx_buf++ = val;
324 } while (--count);
325 }
326
327 /**
328 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
329 * @bs: BCM2835 SPI controller
330 * @count: bytes available for writing in TX FIFO
331 */
bcm2835_wr_fifo_blind(struct bcm2835_spi * bs,int count)332 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
333 {
334 u8 val;
335
336 count = min(count, bs->tx_len);
337 bs->tx_len -= count;
338
339 do {
340 val = bs->tx_buf ? *bs->tx_buf++ : 0;
341 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
342 } while (--count);
343 }
344
bcm2835_spi_reset_hw(struct bcm2835_spi * bs)345 static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
346 {
347 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
348
349 /* Disable SPI interrupts and transfer */
350 cs &= ~(BCM2835_SPI_CS_INTR |
351 BCM2835_SPI_CS_INTD |
352 BCM2835_SPI_CS_DMAEN |
353 BCM2835_SPI_CS_TA);
354 /*
355 * Transmission sometimes breaks unless the DONE bit is written at the
356 * end of every transfer. The spec says it's a RO bit. Either the
357 * spec is wrong and the bit is actually of type RW1C, or it's a
358 * hardware erratum.
359 */
360 cs |= BCM2835_SPI_CS_DONE;
361 /* and reset RX/TX FIFOS */
362 cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
363
364 /* and reset the SPI_HW */
365 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
366 /* as well as DLEN */
367 bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
368 }
369
bcm2835_spi_interrupt(int irq,void * dev_id)370 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
371 {
372 struct bcm2835_spi *bs = dev_id;
373 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
374
375 /* Bail out early if interrupts are not enabled */
376 if (!(cs & BCM2835_SPI_CS_INTR))
377 return IRQ_NONE;
378
379 /*
380 * An interrupt is signaled either if DONE is set (TX FIFO empty)
381 * or if RXR is set (RX FIFO >= ¾ full).
382 */
383 if (cs & BCM2835_SPI_CS_RXF)
384 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
385 else if (cs & BCM2835_SPI_CS_RXR)
386 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
387
388 if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
389 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
390
391 /* Read as many bytes as possible from FIFO */
392 bcm2835_rd_fifo(bs);
393 /* Write as many bytes as possible to FIFO */
394 bcm2835_wr_fifo(bs);
395
396 if (!bs->rx_len) {
397 /* Transfer complete - reset SPI HW */
398 bcm2835_spi_reset_hw(bs);
399 /* wake up the framework */
400 spi_finalize_current_transfer(bs->ctlr);
401 }
402
403 return IRQ_HANDLED;
404 }
405
bcm2835_spi_transfer_one_irq(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * tfr,u32 cs,bool fifo_empty)406 static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
407 struct spi_device *spi,
408 struct spi_transfer *tfr,
409 u32 cs, bool fifo_empty)
410 {
411 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
412
413 /* update usage statistics */
414 bs->count_transfer_irq++;
415
416 /*
417 * Enable HW block, but with interrupts still disabled.
418 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
419 */
420 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
421
422 /* fill TX FIFO as much as possible */
423 if (fifo_empty)
424 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
425 bcm2835_wr_fifo(bs);
426
427 /* enable interrupts */
428 cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
429 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
430
431 /* signal that we need to wait for completion */
432 return 1;
433 }
434
435 /**
436 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
437 * @ctlr: SPI host controller
438 * @tfr: SPI transfer
439 * @bs: BCM2835 SPI controller
440 * @cs: CS register
441 *
442 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
443 * Only the final write access is permitted to transmit less than 4 bytes, the
444 * SPI controller deduces its intended size from the DLEN register.
445 *
446 * If a TX or RX sglist contains multiple entries, one per page, and the first
447 * entry starts in the middle of a page, that first entry's length may not be
448 * a multiple of 4. Subsequent entries are fine because they span an entire
449 * page, hence do have a length that's a multiple of 4.
450 *
451 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
452 * because they are contiguous in physical memory and therefore not split on
453 * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed
454 * buffers.
455 *
456 * The DMA engine is incapable of combining sglist entries into a continuous
457 * stream of 4 byte chunks, it treats every entry separately: A TX entry is
458 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
459 * entry is rounded up by throwing away received bytes.
460 *
461 * Overcome this limitation by transferring the first few bytes without DMA:
462 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
463 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
464 * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with
465 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
466 *
467 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
468 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
469 * Caution, the additional 4 bytes spill over to the second TX sglist entry
470 * if the length of the first is *exactly* 1.
471 *
472 * At most 6 bytes are written and at most 3 bytes read. Do we know the
473 * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
474 *
475 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
476 * by the DMA engine. Toggling the DMA Enable flag in the CS register switches
477 * the width but also garbles the FIFO's contents. The prologue must therefore
478 * be transmitted in 32-bit width to ensure that the following DMA transfer can
479 * pick up the residue in the RX FIFO in ungarbled form.
480 */
bcm2835_spi_transfer_prologue(struct spi_controller * ctlr,struct spi_transfer * tfr,struct bcm2835_spi * bs,u32 cs)481 static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
482 struct spi_transfer *tfr,
483 struct bcm2835_spi *bs,
484 u32 cs)
485 {
486 int tx_remaining;
487
488 bs->tfr = tfr;
489 bs->tx_prologue = 0;
490 bs->rx_prologue = 0;
491 bs->tx_spillover = false;
492
493 if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
494 bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
495
496 if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
497 bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
498
499 if (bs->rx_prologue > bs->tx_prologue) {
500 if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
501 bs->tx_prologue = bs->rx_prologue;
502 } else {
503 bs->tx_prologue += 4;
504 bs->tx_spillover =
505 !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
506 }
507 }
508 }
509
510 /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
511 if (!bs->tx_prologue)
512 return;
513
514 /* Write and read RX prologue. Adjust first entry in RX sglist. */
515 if (bs->rx_prologue) {
516 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
517 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
518 | BCM2835_SPI_CS_DMAEN);
519 bcm2835_wr_fifo_count(bs, bs->rx_prologue);
520 bcm2835_wait_tx_fifo_empty(bs);
521 bcm2835_rd_fifo_count(bs, bs->rx_prologue);
522 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
523 | BCM2835_SPI_CS_CLEAR_TX
524 | BCM2835_SPI_CS_DONE);
525
526 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
527 sg_dma_address(&tfr->rx_sg.sgl[0]),
528 bs->rx_prologue, DMA_FROM_DEVICE);
529
530 sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
531 sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
532 }
533
534 if (!bs->tx_buf)
535 return;
536
537 /*
538 * Write remaining TX prologue. Adjust first entry in TX sglist.
539 * Also adjust second entry if prologue spills over to it.
540 */
541 tx_remaining = bs->tx_prologue - bs->rx_prologue;
542 if (tx_remaining) {
543 bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
544 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
545 | BCM2835_SPI_CS_DMAEN);
546 bcm2835_wr_fifo_count(bs, tx_remaining);
547 bcm2835_wait_tx_fifo_empty(bs);
548 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
549 | BCM2835_SPI_CS_DONE);
550 }
551
552 if (likely(!bs->tx_spillover)) {
553 sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
554 sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
555 } else {
556 sg_dma_len(&tfr->tx_sg.sgl[0]) = 0;
557 sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
558 sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4;
559 }
560 }
561
562 /**
563 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
564 * @bs: BCM2835 SPI controller
565 *
566 * Undo changes which were made to an SPI transfer's sglist when transmitting
567 * the prologue. This is necessary to ensure the same memory ranges are
568 * unmapped that were originally mapped.
569 */
bcm2835_spi_undo_prologue(struct bcm2835_spi * bs)570 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
571 {
572 struct spi_transfer *tfr = bs->tfr;
573
574 if (!bs->tx_prologue)
575 return;
576
577 if (bs->rx_prologue) {
578 sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
579 sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
580 }
581
582 if (!bs->tx_buf)
583 goto out;
584
585 if (likely(!bs->tx_spillover)) {
586 sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
587 sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
588 } else {
589 sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4;
590 sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
591 sg_dma_len(&tfr->tx_sg.sgl[1]) += 4;
592 }
593 out:
594 bs->tx_prologue = 0;
595 }
596
597 /**
598 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
599 * @data: SPI host controller
600 *
601 * Used for bidirectional and RX-only transfers.
602 */
bcm2835_spi_dma_rx_done(void * data)603 static void bcm2835_spi_dma_rx_done(void *data)
604 {
605 struct spi_controller *ctlr = data;
606 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
607
608 /* terminate tx-dma as we do not have an irq for it
609 * because when the rx dma will terminate and this callback
610 * is called the tx-dma must have finished - can't get to this
611 * situation otherwise...
612 */
613 dmaengine_terminate_async(ctlr->dma_tx);
614 bs->tx_dma_active = false;
615 bs->rx_dma_active = false;
616 bcm2835_spi_undo_prologue(bs);
617
618 /* reset fifo and HW */
619 bcm2835_spi_reset_hw(bs);
620
621 /* and mark as completed */;
622 spi_finalize_current_transfer(ctlr);
623 }
624
625 /**
626 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
627 * @data: SPI host controller
628 *
629 * Used for TX-only transfers.
630 */
bcm2835_spi_dma_tx_done(void * data)631 static void bcm2835_spi_dma_tx_done(void *data)
632 {
633 struct spi_controller *ctlr = data;
634 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
635
636 /* busy-wait for TX FIFO to empty */
637 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
638 bcm2835_wr(bs, BCM2835_SPI_CS, bs->target->clear_rx_cs);
639
640 bs->tx_dma_active = false;
641 smp_wmb();
642
643 /*
644 * In case of a very short transfer, RX DMA may not have been
645 * issued yet. The onus is then on bcm2835_spi_transfer_one_dma()
646 * to terminate it immediately after issuing.
647 */
648 if (cmpxchg(&bs->rx_dma_active, true, false))
649 dmaengine_terminate_async(ctlr->dma_rx);
650
651 bcm2835_spi_undo_prologue(bs);
652 bcm2835_spi_reset_hw(bs);
653 spi_finalize_current_transfer(ctlr);
654 }
655
656 /**
657 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
658 * @ctlr: SPI host controller
659 * @tfr: SPI transfer
660 * @bs: BCM2835 SPI controller
661 * @target: BCM2835 SPI target
662 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
663 *
664 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
665 * Return 0 on success or a negative error number.
666 */
bcm2835_spi_prepare_sg(struct spi_controller * ctlr,struct spi_transfer * tfr,struct bcm2835_spi * bs,struct bcm2835_spidev * target,bool is_tx)667 static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
668 struct spi_transfer *tfr,
669 struct bcm2835_spi *bs,
670 struct bcm2835_spidev *target,
671 bool is_tx)
672 {
673 struct dma_chan *chan;
674 struct scatterlist *sgl;
675 unsigned int nents;
676 enum dma_transfer_direction dir;
677 unsigned long flags;
678
679 struct dma_async_tx_descriptor *desc;
680 dma_cookie_t cookie;
681
682 if (is_tx) {
683 dir = DMA_MEM_TO_DEV;
684 chan = ctlr->dma_tx;
685 nents = tfr->tx_sg.nents;
686 sgl = tfr->tx_sg.sgl;
687 flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
688 } else {
689 dir = DMA_DEV_TO_MEM;
690 chan = ctlr->dma_rx;
691 nents = tfr->rx_sg.nents;
692 sgl = tfr->rx_sg.sgl;
693 flags = DMA_PREP_INTERRUPT;
694 }
695 /* prepare the channel */
696 desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
697 if (!desc)
698 return -EINVAL;
699
700 /*
701 * Completion is signaled by the RX channel for bidirectional and
702 * RX-only transfers; else by the TX channel for TX-only transfers.
703 */
704 if (!is_tx) {
705 desc->callback = bcm2835_spi_dma_rx_done;
706 desc->callback_param = ctlr;
707 } else if (!tfr->rx_buf) {
708 desc->callback = bcm2835_spi_dma_tx_done;
709 desc->callback_param = ctlr;
710 bs->target = target;
711 }
712
713 /* submit it to DMA-engine */
714 cookie = dmaengine_submit(desc);
715
716 return dma_submit_error(cookie);
717 }
718
719 /**
720 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
721 * @ctlr: SPI host controller
722 * @tfr: SPI transfer
723 * @target: BCM2835 SPI target
724 * @cs: CS register
725 *
726 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
727 * the TX and RX DMA channel to copy between memory and FIFO register.
728 *
729 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
730 * memory is pointless. However not reading the RX FIFO isn't an option either
731 * because transmission is halted once it's full. As a workaround, cyclically
732 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
733 *
734 * The CS register value is precalculated in bcm2835_spi_setup(). Normally
735 * this is called only once, on target registration. A DMA descriptor to write
736 * this value is preallocated in bcm2835_dma_init(). All that's left to do
737 * when performing a TX-only transfer is to submit this descriptor to the RX
738 * DMA channel. Latency is thereby minimized. The descriptor does not
739 * generate any interrupts while running. It must be terminated once the
740 * TX DMA channel is done.
741 *
742 * Clearing the RX FIFO is paced by the DREQ signal. The signal is asserted
743 * when the RX FIFO becomes half full, i.e. 32 bytes. (Tuneable with the DC
744 * register.) Reading 32 bytes from the RX FIFO would normally require 8 bus
745 * accesses, whereas clearing it requires only 1 bus access. So an 8-fold
746 * reduction in bus traffic and thus energy consumption is achieved.
747 *
748 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
749 * copying from the zero page. The DMA descriptor to do this is preallocated
750 * in bcm2835_dma_init(). It must be terminated once the RX DMA channel is
751 * done and can then be reused.
752 *
753 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
754 * page and utilizes the DMA controller's ability to synthesize zeroes instead
755 * of copying them from memory. This reduces traffic on the memory bus. The
756 * feature is not available on so-called "lite" channels, but normally TX DMA
757 * is backed by a full-featured channel.
758 *
759 * Zero-filling the TX FIFO is paced by the DREQ signal. Unfortunately the
760 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
761 * has been counted down to zero (hardware erratum). Thus, when the transfer
762 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
763 * (Tuneable with the DC register.) So up to 9 gratuitous bus accesses are
764 * performed at the end of an RX-only transfer.
765 */
bcm2835_spi_transfer_one_dma(struct spi_controller * ctlr,struct spi_transfer * tfr,struct bcm2835_spidev * target,u32 cs)766 static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
767 struct spi_transfer *tfr,
768 struct bcm2835_spidev *target,
769 u32 cs)
770 {
771 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
772 dma_cookie_t cookie;
773 int ret;
774
775 /* update usage statistics */
776 bs->count_transfer_dma++;
777
778 /*
779 * Transfer first few bytes without DMA if length of first TX or RX
780 * sglist entry is not a multiple of 4 bytes (hardware limitation).
781 */
782 bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
783
784 /* setup tx-DMA */
785 if (bs->tx_buf) {
786 ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, true);
787 } else {
788 cookie = dmaengine_submit(bs->fill_tx_desc);
789 ret = dma_submit_error(cookie);
790 }
791 if (ret)
792 goto err_reset_hw;
793
794 /* set the DMA length */
795 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
796
797 /* start the HW */
798 bcm2835_wr(bs, BCM2835_SPI_CS,
799 cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
800
801 bs->tx_dma_active = true;
802 smp_wmb();
803
804 /* start TX early */
805 dma_async_issue_pending(ctlr->dma_tx);
806
807 /* setup rx-DMA late - to run transfers while
808 * mapping of the rx buffers still takes place
809 * this saves 10us or more.
810 */
811 if (bs->rx_buf) {
812 ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, false);
813 } else {
814 cookie = dmaengine_submit(target->clear_rx_desc);
815 ret = dma_submit_error(cookie);
816 }
817 if (ret) {
818 /* need to reset on errors */
819 dmaengine_terminate_sync(ctlr->dma_tx);
820 bs->tx_dma_active = false;
821 goto err_reset_hw;
822 }
823
824 /* start rx dma late */
825 dma_async_issue_pending(ctlr->dma_rx);
826 bs->rx_dma_active = true;
827 smp_mb();
828
829 /*
830 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
831 * may run before RX DMA is issued. Terminate RX DMA if so.
832 */
833 if (!bs->rx_buf && !bs->tx_dma_active &&
834 cmpxchg(&bs->rx_dma_active, true, false)) {
835 dmaengine_terminate_async(ctlr->dma_rx);
836 bcm2835_spi_reset_hw(bs);
837 }
838
839 /* wait for wakeup in framework */
840 return 1;
841
842 err_reset_hw:
843 bcm2835_spi_reset_hw(bs);
844 bcm2835_spi_undo_prologue(bs);
845 return ret;
846 }
847
bcm2835_spi_can_dma(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * tfr)848 static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
849 struct spi_device *spi,
850 struct spi_transfer *tfr)
851 {
852 /* we start DMA efforts only on bigger transfers */
853 if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
854 return false;
855
856 /* return OK */
857 return true;
858 }
859
bcm2835_dma_release(struct spi_controller * ctlr,struct bcm2835_spi * bs)860 static void bcm2835_dma_release(struct spi_controller *ctlr,
861 struct bcm2835_spi *bs)
862 {
863 if (ctlr->dma_tx) {
864 dmaengine_terminate_sync(ctlr->dma_tx);
865
866 if (bs->fill_tx_desc)
867 dmaengine_desc_free(bs->fill_tx_desc);
868
869 if (bs->fill_tx_addr)
870 dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
871 bs->fill_tx_addr, sizeof(u32),
872 DMA_TO_DEVICE,
873 DMA_ATTR_SKIP_CPU_SYNC);
874
875 dma_release_channel(ctlr->dma_tx);
876 ctlr->dma_tx = NULL;
877 }
878
879 if (ctlr->dma_rx) {
880 dmaengine_terminate_sync(ctlr->dma_rx);
881 dma_release_channel(ctlr->dma_rx);
882 ctlr->dma_rx = NULL;
883 }
884 }
885
bcm2835_dma_init(struct spi_controller * ctlr,struct device * dev,struct bcm2835_spi * bs)886 static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
887 struct bcm2835_spi *bs)
888 {
889 struct dma_slave_config slave_config;
890 const __be32 *addr;
891 dma_addr_t dma_reg_base;
892 int ret;
893
894 /* base address in dma-space */
895 addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
896 if (!addr) {
897 dev_err(dev, "could not get DMA-register address - not using dma mode\n");
898 /* Fall back to interrupt mode */
899 return 0;
900 }
901 dma_reg_base = be32_to_cpup(addr);
902
903 /* get tx/rx dma */
904 ctlr->dma_tx = dma_request_chan(dev, "tx");
905 if (IS_ERR(ctlr->dma_tx)) {
906 ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_tx),
907 "no tx-dma configuration found - not using dma mode\n");
908 ctlr->dma_tx = NULL;
909 goto err;
910 }
911 ctlr->dma_rx = dma_request_chan(dev, "rx");
912 if (IS_ERR(ctlr->dma_rx)) {
913 ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_rx),
914 "no rx-dma configuration found - not using dma mode\n");
915 ctlr->dma_rx = NULL;
916 goto err_release;
917 }
918
919 /*
920 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
921 * or, in case of an RX-only transfer, cyclically copies from the zero
922 * page to the FIFO using a preallocated, reusable descriptor.
923 */
924 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
925 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
926
927 ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
928 if (ret)
929 goto err_config;
930
931 bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
932 ZERO_PAGE(0), 0, sizeof(u32),
933 DMA_TO_DEVICE,
934 DMA_ATTR_SKIP_CPU_SYNC);
935 if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
936 dev_err(dev, "cannot map zero page - not using DMA mode\n");
937 bs->fill_tx_addr = 0;
938 ret = -ENOMEM;
939 goto err_release;
940 }
941
942 bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
943 bs->fill_tx_addr,
944 sizeof(u32), 0,
945 DMA_MEM_TO_DEV, 0);
946 if (!bs->fill_tx_desc) {
947 dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
948 ret = -ENOMEM;
949 goto err_release;
950 }
951
952 ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
953 if (ret) {
954 dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
955 goto err_release;
956 }
957
958 /*
959 * The RX DMA channel is used bidirectionally: It either reads the
960 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
961 * precalculated value to the CS register to clear the RX FIFO.
962 */
963 slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
964 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
965 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
966 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
967
968 ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
969 if (ret)
970 goto err_config;
971
972 /* all went well, so set can_dma */
973 ctlr->can_dma = bcm2835_spi_can_dma;
974
975 return 0;
976
977 err_config:
978 dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
979 ret);
980 err_release:
981 bcm2835_dma_release(ctlr, bs);
982 err:
983 /*
984 * Only report error for deferred probing, otherwise fall back to
985 * interrupt mode
986 */
987 if (ret != -EPROBE_DEFER)
988 ret = 0;
989
990 return ret;
991 }
992
bcm2835_spi_transfer_one_poll(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * tfr,u32 cs)993 static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
994 struct spi_device *spi,
995 struct spi_transfer *tfr,
996 u32 cs)
997 {
998 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
999 unsigned long timeout;
1000
1001 /* update usage statistics */
1002 bs->count_transfer_polling++;
1003
1004 /* enable HW block without interrupts */
1005 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1006
1007 /* fill in the fifo before timeout calculations
1008 * if we are interrupted here, then the data is
1009 * getting transferred by the HW while we are interrupted
1010 */
1011 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1012
1013 /* set the timeout to at least 2 jiffies */
1014 timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1015
1016 /* loop until finished the transfer */
1017 while (bs->rx_len) {
1018 /* fill in tx fifo with remaining data */
1019 bcm2835_wr_fifo(bs);
1020
1021 /* read from fifo as much as possible */
1022 bcm2835_rd_fifo(bs);
1023
1024 /* if there is still data pending to read
1025 * then check the timeout
1026 */
1027 if (bs->rx_len && time_after(jiffies, timeout)) {
1028 dev_dbg_ratelimited(&spi->dev,
1029 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1030 jiffies - timeout,
1031 bs->tx_len, bs->rx_len);
1032 /* fall back to interrupt mode */
1033
1034 /* update usage statistics */
1035 bs->count_transfer_irq_after_polling++;
1036
1037 return bcm2835_spi_transfer_one_irq(ctlr, spi,
1038 tfr, cs, false);
1039 }
1040 }
1041
1042 /* Transfer complete - reset SPI HW */
1043 bcm2835_spi_reset_hw(bs);
1044 /* and return without waiting for completion */
1045 return 0;
1046 }
1047
bcm2835_spi_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * tfr)1048 static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1049 struct spi_device *spi,
1050 struct spi_transfer *tfr)
1051 {
1052 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1053 struct bcm2835_spidev *target = spi_get_ctldata(spi);
1054 unsigned long spi_hz, cdiv;
1055 unsigned long hz_per_byte, byte_limit;
1056 u32 cs = target->prepare_cs;
1057
1058 /* set clock */
1059 spi_hz = tfr->speed_hz;
1060
1061 if (spi_hz >= bs->clk_hz / 2) {
1062 cdiv = 2; /* clk_hz/2 is the fastest we can go */
1063 } else if (spi_hz) {
1064 /* CDIV must be a multiple of two */
1065 cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
1066 cdiv += (cdiv % 2);
1067
1068 if (cdiv >= 65536)
1069 cdiv = 0; /* 0 is the slowest we can go */
1070 } else {
1071 cdiv = 0; /* 0 is the slowest we can go */
1072 }
1073 tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
1074 bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1075
1076 /* handle all the 3-wire mode */
1077 if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1078 cs |= BCM2835_SPI_CS_REN;
1079
1080 /* set transmit buffers and length */
1081 bs->tx_buf = tfr->tx_buf;
1082 bs->rx_buf = tfr->rx_buf;
1083 bs->tx_len = tfr->len;
1084 bs->rx_len = tfr->len;
1085
1086 /* Calculate the estimated time in us the transfer runs. Note that
1087 * there is 1 idle clocks cycles after each byte getting transferred
1088 * so we have 9 cycles/byte. This is used to find the number of Hz
1089 * per byte per polling limit. E.g., we can transfer 1 byte in 30 us
1090 * per 300,000 Hz of bus clock.
1091 */
1092 hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1093 byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1094
1095 /* run in polling mode for short transfers */
1096 if (tfr->len < byte_limit)
1097 return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1098
1099 /* run in dma mode if conditions are right
1100 * Note that unlike poll or interrupt mode DMA mode does not have
1101 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1102 */
1103 if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1104 return bcm2835_spi_transfer_one_dma(ctlr, tfr, target, cs);
1105
1106 /* run in interrupt-mode */
1107 return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1108 }
1109
bcm2835_spi_prepare_message(struct spi_controller * ctlr,struct spi_message * msg)1110 static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1111 struct spi_message *msg)
1112 {
1113 struct spi_device *spi = msg->spi;
1114 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1115 struct bcm2835_spidev *target = spi_get_ctldata(spi);
1116 int ret;
1117
1118 if (ctlr->can_dma) {
1119 /*
1120 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1121 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1122 * aligned) if the limit is exceeded.
1123 */
1124 ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1125 GFP_KERNEL | GFP_DMA);
1126 if (ret)
1127 return ret;
1128 }
1129
1130 /*
1131 * Set up clock polarity before spi_transfer_one_message() asserts
1132 * chip select to avoid a gratuitous clock signal edge.
1133 */
1134 bcm2835_wr(bs, BCM2835_SPI_CS, target->prepare_cs);
1135
1136 return 0;
1137 }
1138
bcm2835_spi_handle_err(struct spi_controller * ctlr,struct spi_message * msg)1139 static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1140 struct spi_message *msg)
1141 {
1142 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1143
1144 /* if an error occurred and we have an active dma, then terminate */
1145 if (ctlr->dma_tx) {
1146 dmaengine_terminate_sync(ctlr->dma_tx);
1147 bs->tx_dma_active = false;
1148 }
1149 if (ctlr->dma_rx) {
1150 dmaengine_terminate_sync(ctlr->dma_rx);
1151 bs->rx_dma_active = false;
1152 }
1153 bcm2835_spi_undo_prologue(bs);
1154
1155 /* and reset */
1156 bcm2835_spi_reset_hw(bs);
1157 }
1158
chip_match_name(struct gpio_chip * chip,void * data)1159 static int chip_match_name(struct gpio_chip *chip, void *data)
1160 {
1161 return !strcmp(chip->label, data);
1162 }
1163
bcm2835_spi_cleanup(struct spi_device * spi)1164 static void bcm2835_spi_cleanup(struct spi_device *spi)
1165 {
1166 struct bcm2835_spidev *target = spi_get_ctldata(spi);
1167 struct spi_controller *ctlr = spi->controller;
1168
1169 if (target->clear_rx_desc)
1170 dmaengine_desc_free(target->clear_rx_desc);
1171
1172 if (target->clear_rx_addr)
1173 dma_unmap_single(ctlr->dma_rx->device->dev,
1174 target->clear_rx_addr,
1175 sizeof(u32),
1176 DMA_TO_DEVICE);
1177
1178 kfree(target);
1179 }
1180
bcm2835_spi_setup_dma(struct spi_controller * ctlr,struct spi_device * spi,struct bcm2835_spi * bs,struct bcm2835_spidev * target)1181 static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
1182 struct spi_device *spi,
1183 struct bcm2835_spi *bs,
1184 struct bcm2835_spidev *target)
1185 {
1186 int ret;
1187
1188 if (!ctlr->dma_rx)
1189 return 0;
1190
1191 target->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
1192 &target->clear_rx_cs,
1193 sizeof(u32),
1194 DMA_TO_DEVICE);
1195 if (dma_mapping_error(ctlr->dma_rx->device->dev, target->clear_rx_addr)) {
1196 dev_err(&spi->dev, "cannot map clear_rx_cs\n");
1197 target->clear_rx_addr = 0;
1198 return -ENOMEM;
1199 }
1200
1201 target->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
1202 target->clear_rx_addr,
1203 sizeof(u32), 0,
1204 DMA_MEM_TO_DEV, 0);
1205 if (!target->clear_rx_desc) {
1206 dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
1207 return -ENOMEM;
1208 }
1209
1210 ret = dmaengine_desc_set_reuse(target->clear_rx_desc);
1211 if (ret) {
1212 dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
1213 return ret;
1214 }
1215
1216 return 0;
1217 }
1218
bcm2835_spi_setup(struct spi_device * spi)1219 static int bcm2835_spi_setup(struct spi_device *spi)
1220 {
1221 struct spi_controller *ctlr = spi->controller;
1222 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1223 struct bcm2835_spidev *target = spi_get_ctldata(spi);
1224 struct gpio_chip *chip;
1225 int ret;
1226 u32 cs;
1227
1228 if (!target) {
1229 target = kzalloc(ALIGN(sizeof(*target), dma_get_cache_alignment()),
1230 GFP_KERNEL);
1231 if (!target)
1232 return -ENOMEM;
1233
1234 spi_set_ctldata(spi, target);
1235
1236 ret = bcm2835_spi_setup_dma(ctlr, spi, bs, target);
1237 if (ret)
1238 goto err_cleanup;
1239 }
1240
1241 /*
1242 * Precalculate SPI target's CS register value for ->prepare_message():
1243 * The driver always uses software-controlled GPIO chip select, hence
1244 * set the hardware-controlled native chip select to an invalid value
1245 * to prevent it from interfering.
1246 */
1247 cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1248 if (spi->mode & SPI_CPOL)
1249 cs |= BCM2835_SPI_CS_CPOL;
1250 if (spi->mode & SPI_CPHA)
1251 cs |= BCM2835_SPI_CS_CPHA;
1252 target->prepare_cs = cs;
1253
1254 /*
1255 * Precalculate SPI target's CS register value to clear RX FIFO
1256 * in case of a TX-only DMA transfer.
1257 */
1258 if (ctlr->dma_rx) {
1259 target->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
1260 BCM2835_SPI_CS_DMAEN |
1261 BCM2835_SPI_CS_CLEAR_RX;
1262 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1263 target->clear_rx_addr,
1264 sizeof(u32),
1265 DMA_TO_DEVICE);
1266 }
1267
1268 /*
1269 * sanity checking the native-chipselects
1270 */
1271 if (spi->mode & SPI_NO_CS)
1272 return 0;
1273 /*
1274 * The SPI core has successfully requested the CS GPIO line from the
1275 * device tree, so we are done.
1276 */
1277 if (spi_get_csgpiod(spi, 0))
1278 return 0;
1279 if (spi_get_chipselect(spi, 0) > 1) {
1280 /* error in the case of native CS requested with CS > 1
1281 * officially there is a CS2, but it is not documented
1282 * which GPIO is connected with that...
1283 */
1284 dev_err(&spi->dev,
1285 "setup: only two native chip-selects are supported\n");
1286 ret = -EINVAL;
1287 goto err_cleanup;
1288 }
1289
1290 /*
1291 * Translate native CS to GPIO
1292 *
1293 * FIXME: poking around in the gpiolib internals like this is
1294 * not very good practice. Find a way to locate the real problem
1295 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1296 * sometimes not assigned correctly? Erroneous device trees?
1297 */
1298
1299 /* get the gpio chip for the base */
1300 chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1301 if (!chip)
1302 return 0;
1303
1304 spi_set_csgpiod(spi, 0, gpiochip_request_own_desc(chip,
1305 8 - (spi_get_chipselect(spi, 0)),
1306 DRV_NAME,
1307 GPIO_LOOKUP_FLAGS_DEFAULT,
1308 GPIOD_OUT_LOW));
1309 if (IS_ERR(spi_get_csgpiod(spi, 0))) {
1310 ret = PTR_ERR(spi_get_csgpiod(spi, 0));
1311 goto err_cleanup;
1312 }
1313
1314 /* and set up the "mode" and level */
1315 dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1316 spi_get_chipselect(spi, 0));
1317
1318 return 0;
1319
1320 err_cleanup:
1321 bcm2835_spi_cleanup(spi);
1322 return ret;
1323 }
1324
bcm2835_spi_probe(struct platform_device * pdev)1325 static int bcm2835_spi_probe(struct platform_device *pdev)
1326 {
1327 struct spi_controller *ctlr;
1328 struct bcm2835_spi *bs;
1329 int err;
1330
1331 ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*bs));
1332 if (!ctlr)
1333 return -ENOMEM;
1334
1335 platform_set_drvdata(pdev, ctlr);
1336
1337 ctlr->use_gpio_descriptors = true;
1338 ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1339 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1340 ctlr->num_chipselect = 3;
1341 ctlr->setup = bcm2835_spi_setup;
1342 ctlr->cleanup = bcm2835_spi_cleanup;
1343 ctlr->transfer_one = bcm2835_spi_transfer_one;
1344 ctlr->handle_err = bcm2835_spi_handle_err;
1345 ctlr->prepare_message = bcm2835_spi_prepare_message;
1346 ctlr->dev.of_node = pdev->dev.of_node;
1347
1348 bs = spi_controller_get_devdata(ctlr);
1349 bs->ctlr = ctlr;
1350
1351 bs->regs = devm_platform_ioremap_resource(pdev, 0);
1352 if (IS_ERR(bs->regs))
1353 return PTR_ERR(bs->regs);
1354
1355 bs->clk = devm_clk_get(&pdev->dev, NULL);
1356 if (IS_ERR(bs->clk))
1357 return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
1358 "could not get clk\n");
1359
1360 ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
1361
1362 bs->irq = platform_get_irq(pdev, 0);
1363 if (bs->irq < 0)
1364 return bs->irq;
1365
1366 err = clk_prepare_enable(bs->clk);
1367 if (err)
1368 return err;
1369 bs->clk_hz = clk_get_rate(bs->clk);
1370
1371 err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1372 if (err)
1373 goto out_clk_disable;
1374
1375 /* initialise the hardware with the default polarities */
1376 bcm2835_wr(bs, BCM2835_SPI_CS,
1377 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1378
1379 err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt,
1380 IRQF_SHARED, dev_name(&pdev->dev), bs);
1381 if (err) {
1382 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1383 goto out_dma_release;
1384 }
1385
1386 err = spi_register_controller(ctlr);
1387 if (err) {
1388 dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1389 err);
1390 goto out_dma_release;
1391 }
1392
1393 bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1394
1395 return 0;
1396
1397 out_dma_release:
1398 bcm2835_dma_release(ctlr, bs);
1399 out_clk_disable:
1400 clk_disable_unprepare(bs->clk);
1401 return err;
1402 }
1403
bcm2835_spi_remove(struct platform_device * pdev)1404 static void bcm2835_spi_remove(struct platform_device *pdev)
1405 {
1406 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1407 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1408
1409 bcm2835_debugfs_remove(bs);
1410
1411 spi_unregister_controller(ctlr);
1412
1413 bcm2835_dma_release(ctlr, bs);
1414
1415 /* Clear FIFOs, and disable the HW block */
1416 bcm2835_wr(bs, BCM2835_SPI_CS,
1417 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1418
1419 clk_disable_unprepare(bs->clk);
1420 }
1421
1422 static const struct of_device_id bcm2835_spi_match[] = {
1423 { .compatible = "brcm,bcm2835-spi", },
1424 {}
1425 };
1426 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1427
1428 static struct platform_driver bcm2835_spi_driver = {
1429 .driver = {
1430 .name = DRV_NAME,
1431 .of_match_table = bcm2835_spi_match,
1432 },
1433 .probe = bcm2835_spi_probe,
1434 .remove_new = bcm2835_spi_remove,
1435 .shutdown = bcm2835_spi_remove,
1436 };
1437 module_platform_driver(bcm2835_spi_driver);
1438
1439 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1440 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1441 MODULE_LICENSE("GPL");
1442