• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21 
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, timeout_us);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
xhci_quiesce(struct xhci_hcd * xhci)87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
xhci_halt(struct xhci_hcd * xhci)111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 
115 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116 	xhci_quiesce(xhci);
117 
118 	ret = xhci_handshake(&xhci->op_regs->status,
119 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120 	if (ret) {
121 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
122 		return ret;
123 	}
124 
125 	xhci->xhc_state |= XHCI_STATE_HALTED;
126 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 
128 	return ret;
129 }
130 
131 /*
132  * Set the run bit and wait for the host to be running.
133  */
xhci_start(struct xhci_hcd * xhci)134 int xhci_start(struct xhci_hcd *xhci)
135 {
136 	u32 temp;
137 	int ret;
138 
139 	temp = readl(&xhci->op_regs->command);
140 	temp |= (CMD_RUN);
141 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
142 			temp);
143 	writel(temp, &xhci->op_regs->command);
144 
145 	/*
146 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
147 	 * running.
148 	 */
149 	ret = xhci_handshake(&xhci->op_regs->status,
150 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
151 	if (ret == -ETIMEDOUT)
152 		xhci_err(xhci, "Host took too long to start, "
153 				"waited %u microseconds.\n",
154 				XHCI_MAX_HALT_USEC);
155 	if (!ret) {
156 		/* clear state flags. Including dying, halted or removing */
157 		xhci->xhc_state = 0;
158 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
159 	}
160 
161 	return ret;
162 }
163 
164 /*
165  * Reset a halted HC.
166  *
167  * This resets pipelines, timers, counters, state machines, etc.
168  * Transactions will be terminated immediately, and operational registers
169  * will be set to their defaults.
170  */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
172 {
173 	u32 command;
174 	u32 state;
175 	int ret;
176 
177 	state = readl(&xhci->op_regs->status);
178 
179 	if (state == ~(u32)0) {
180 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
181 		return -ENODEV;
182 	}
183 
184 	if ((state & STS_HALT) == 0) {
185 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
186 		return 0;
187 	}
188 
189 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
190 	command = readl(&xhci->op_regs->command);
191 	command |= CMD_RESET;
192 	writel(command, &xhci->op_regs->command);
193 
194 	/* Existing Intel xHCI controllers require a delay of 1 mS,
195 	 * after setting the CMD_RESET bit, and before accessing any
196 	 * HC registers. This allows the HC to complete the
197 	 * reset operation and be ready for HC register access.
198 	 * Without this delay, the subsequent HC register access,
199 	 * may result in a system hang very rarely.
200 	 */
201 	if (xhci->quirks & XHCI_INTEL_HOST)
202 		udelay(1000);
203 
204 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
205 	if (ret)
206 		return ret;
207 
208 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
209 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
210 
211 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
212 			 "Wait for controller to be ready for doorbell rings");
213 	/*
214 	 * xHCI cannot write to any doorbells or operational registers other
215 	 * than status until the "Controller Not Ready" flag is cleared.
216 	 */
217 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
218 
219 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
222 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
223 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
224 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
225 
226 	return ret;
227 }
228 
xhci_zero_64b_regs(struct xhci_hcd * xhci)229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
230 {
231 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
232 	struct iommu_domain *domain;
233 	int err, i;
234 	u64 val;
235 	u32 intrs;
236 
237 	/*
238 	 * Some Renesas controllers get into a weird state if they are
239 	 * reset while programmed with 64bit addresses (they will preserve
240 	 * the top half of the address in internal, non visible
241 	 * registers). You end up with half the address coming from the
242 	 * kernel, and the other half coming from the firmware. Also,
243 	 * changing the programming leads to extra accesses even if the
244 	 * controller is supposed to be halted. The controller ends up with
245 	 * a fatal fault, and is then ripe for being properly reset.
246 	 *
247 	 * Special care is taken to only apply this if the device is behind
248 	 * an iommu. Doing anything when there is no iommu is definitely
249 	 * unsafe...
250 	 */
251 	domain = iommu_get_domain_for_dev(dev);
252 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
253 	    domain->type == IOMMU_DOMAIN_IDENTITY)
254 		return;
255 
256 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
257 
258 	/* Clear HSEIE so that faults do not get signaled */
259 	val = readl(&xhci->op_regs->command);
260 	val &= ~CMD_HSEIE;
261 	writel(val, &xhci->op_regs->command);
262 
263 	/* Clear HSE (aka FATAL) */
264 	val = readl(&xhci->op_regs->status);
265 	val |= STS_FATAL;
266 	writel(val, &xhci->op_regs->status);
267 
268 	/* Now zero the registers, and brace for impact */
269 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
270 	if (upper_32_bits(val))
271 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
272 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
273 	if (upper_32_bits(val))
274 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
275 
276 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
277 		      ARRAY_SIZE(xhci->run_regs->ir_set));
278 
279 	for (i = 0; i < intrs; i++) {
280 		struct xhci_intr_reg __iomem *ir;
281 
282 		ir = &xhci->run_regs->ir_set[i];
283 		val = xhci_read_64(xhci, &ir->erst_base);
284 		if (upper_32_bits(val))
285 			xhci_write_64(xhci, 0, &ir->erst_base);
286 		val= xhci_read_64(xhci, &ir->erst_dequeue);
287 		if (upper_32_bits(val))
288 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
289 	}
290 
291 	/* Wait for the fault to appear. It will be cleared on reset */
292 	err = xhci_handshake(&xhci->op_regs->status,
293 			     STS_FATAL, STS_FATAL,
294 			     XHCI_MAX_HALT_USEC);
295 	if (!err)
296 		xhci_info(xhci, "Fault detected\n");
297 }
298 
xhci_enable_interrupter(struct xhci_interrupter * ir)299 int xhci_enable_interrupter(struct xhci_interrupter *ir)
300 {
301 	u32 iman;
302 
303 	if (!ir || !ir->ir_set)
304 		return -EINVAL;
305 
306 	iman = readl(&ir->ir_set->irq_pending);
307 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
308 
309 	return 0;
310 }
311 EXPORT_SYMBOL_GPL(xhci_enable_interrupter);
312 
xhci_disable_interrupter(struct xhci_interrupter * ir)313 int xhci_disable_interrupter(struct xhci_interrupter *ir)
314 {
315 	u32 iman;
316 
317 	if (!ir || !ir->ir_set)
318 		return -EINVAL;
319 
320 	iman = readl(&ir->ir_set->irq_pending);
321 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
322 
323 	return 0;
324 }
325 EXPORT_SYMBOL_GPL(xhci_disable_interrupter);
326 
327 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)328 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
329 					   u32 imod_interval)
330 {
331 	u32 imod;
332 
333 	if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
334 		return -EINVAL;
335 
336 	imod = readl(&ir->ir_set->irq_control);
337 	imod &= ~ER_IRQ_INTERVAL_MASK;
338 	imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
339 	writel(imod, &ir->ir_set->irq_control);
340 
341 	return 0;
342 }
343 EXPORT_SYMBOL_GPL(xhci_set_interrupter_moderation);
344 
compliance_mode_recovery(struct timer_list * t)345 static void compliance_mode_recovery(struct timer_list *t)
346 {
347 	struct xhci_hcd *xhci;
348 	struct usb_hcd *hcd;
349 	struct xhci_hub *rhub;
350 	u32 temp;
351 	int i;
352 
353 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
354 	rhub = &xhci->usb3_rhub;
355 	hcd = rhub->hcd;
356 
357 	if (!hcd)
358 		return;
359 
360 	for (i = 0; i < rhub->num_ports; i++) {
361 		temp = readl(rhub->ports[i]->addr);
362 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
363 			/*
364 			 * Compliance Mode Detected. Letting USB Core
365 			 * handle the Warm Reset
366 			 */
367 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
368 					"Compliance mode detected->port %d",
369 					i + 1);
370 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
371 					"Attempting compliance mode recovery");
372 
373 			if (hcd->state == HC_STATE_SUSPENDED)
374 				usb_hcd_resume_root_hub(hcd);
375 
376 			usb_hcd_poll_rh_status(hcd);
377 		}
378 	}
379 
380 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
381 		mod_timer(&xhci->comp_mode_recovery_timer,
382 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
383 }
384 
385 /*
386  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
387  * that causes ports behind that hardware to enter compliance mode sometimes.
388  * The quirk creates a timer that polls every 2 seconds the link state of
389  * each host controller's port and recovers it by issuing a Warm reset
390  * if Compliance mode is detected, otherwise the port will become "dead" (no
391  * device connections or disconnections will be detected anymore). Becasue no
392  * status event is generated when entering compliance mode (per xhci spec),
393  * this quirk is needed on systems that have the failing hardware installed.
394  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)395 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
396 {
397 	xhci->port_status_u0 = 0;
398 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
399 		    0);
400 	xhci->comp_mode_recovery_timer.expires = jiffies +
401 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
402 
403 	add_timer(&xhci->comp_mode_recovery_timer);
404 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
405 			"Compliance mode recovery timer initialized");
406 }
407 
408 /*
409  * This function identifies the systems that have installed the SN65LVPE502CP
410  * USB3.0 re-driver and that need the Compliance Mode Quirk.
411  * Systems:
412  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
413  */
xhci_compliance_mode_recovery_timer_quirk_check(void)414 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
415 {
416 	const char *dmi_product_name, *dmi_sys_vendor;
417 
418 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
419 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
420 	if (!dmi_product_name || !dmi_sys_vendor)
421 		return false;
422 
423 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
424 		return false;
425 
426 	if (strstr(dmi_product_name, "Z420") ||
427 			strstr(dmi_product_name, "Z620") ||
428 			strstr(dmi_product_name, "Z820") ||
429 			strstr(dmi_product_name, "Z1 Workstation"))
430 		return true;
431 
432 	return false;
433 }
434 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)435 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
436 {
437 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
438 }
439 
440 
441 /*
442  * Initialize memory for HCD and xHC (one-time init).
443  *
444  * Program the PAGESIZE register, initialize the device context array, create
445  * device contexts (?), set up a command ring segment (or two?), create event
446  * ring (one for now).
447  */
xhci_init(struct usb_hcd * hcd)448 static int xhci_init(struct usb_hcd *hcd)
449 {
450 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
451 	int retval;
452 
453 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
454 	spin_lock_init(&xhci->lock);
455 	if (xhci->hci_version == 0x95 && link_quirk) {
456 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
457 				"QUIRK: Not clearing Link TRB chain bits.");
458 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
459 	} else {
460 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
461 				"xHCI doesn't need link TRB QUIRK");
462 	}
463 	retval = xhci_mem_init(xhci, GFP_KERNEL);
464 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
465 
466 	/* Initializing Compliance Mode Recovery Data If Needed */
467 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
468 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
469 		compliance_mode_recovery_timer_init(xhci);
470 	}
471 
472 	return retval;
473 }
474 
475 /*-------------------------------------------------------------------------*/
476 
xhci_run_finished(struct xhci_hcd * xhci)477 static int xhci_run_finished(struct xhci_hcd *xhci)
478 {
479 	struct xhci_interrupter *ir = xhci->interrupters[0];
480 	unsigned long	flags;
481 	u32		temp;
482 
483 	/*
484 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
485 	 * Protect the short window before host is running with a lock
486 	 */
487 	spin_lock_irqsave(&xhci->lock, flags);
488 
489 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
490 	temp = readl(&xhci->op_regs->command);
491 	temp |= (CMD_EIE);
492 	writel(temp, &xhci->op_regs->command);
493 
494 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
495 	xhci_enable_interrupter(ir);
496 
497 	if (xhci_start(xhci)) {
498 		xhci_halt(xhci);
499 		spin_unlock_irqrestore(&xhci->lock, flags);
500 		return -ENODEV;
501 	}
502 
503 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
504 
505 	if (xhci->quirks & XHCI_NEC_HOST)
506 		xhci_ring_cmd_db(xhci);
507 
508 	spin_unlock_irqrestore(&xhci->lock, flags);
509 
510 	return 0;
511 }
512 
513 /*
514  * Start the HC after it was halted.
515  *
516  * This function is called by the USB core when the HC driver is added.
517  * Its opposite is xhci_stop().
518  *
519  * xhci_init() must be called once before this function can be called.
520  * Reset the HC, enable device slot contexts, program DCBAAP, and
521  * set command ring pointer and event ring pointer.
522  *
523  * Setup MSI-X vectors and enable interrupts.
524  */
xhci_run(struct usb_hcd * hcd)525 int xhci_run(struct usb_hcd *hcd)
526 {
527 	u64 temp_64;
528 	int ret;
529 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
530 	struct xhci_interrupter *ir = xhci->interrupters[0];
531 	/* Start the xHCI host controller running only after the USB 2.0 roothub
532 	 * is setup.
533 	 */
534 
535 	hcd->uses_new_polling = 1;
536 	if (hcd->msi_enabled)
537 		ir->ip_autoclear = true;
538 
539 	if (!usb_hcd_is_primary_hcd(hcd))
540 		return xhci_run_finished(xhci);
541 
542 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
543 
544 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
545 	temp_64 &= ERST_PTR_MASK;
546 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
547 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
548 
549 	xhci_set_interrupter_moderation(ir, xhci->imod_interval);
550 
551 	if (xhci->quirks & XHCI_NEC_HOST) {
552 		struct xhci_command *command;
553 
554 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
555 		if (!command)
556 			return -ENOMEM;
557 
558 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
559 				TRB_TYPE(TRB_NEC_GET_FW));
560 		if (ret)
561 			xhci_free_command(xhci, command);
562 	}
563 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
564 			"Finished %s for main hcd", __func__);
565 
566 	xhci_create_dbc_dev(xhci);
567 
568 	xhci_debugfs_init(xhci);
569 
570 	if (xhci_has_one_roothub(xhci))
571 		return xhci_run_finished(xhci);
572 
573 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
574 
575 	return 0;
576 }
577 EXPORT_SYMBOL_GPL(xhci_run);
578 
579 /*
580  * Stop xHCI driver.
581  *
582  * This function is called by the USB core when the HC driver is removed.
583  * Its opposite is xhci_run().
584  *
585  * Disable device contexts, disable IRQs, and quiesce the HC.
586  * Reset the HC, finish any completed transactions, and cleanup memory.
587  */
xhci_stop(struct usb_hcd * hcd)588 void xhci_stop(struct usb_hcd *hcd)
589 {
590 	u32 temp;
591 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
592 	struct xhci_interrupter *ir = xhci->interrupters[0];
593 
594 	mutex_lock(&xhci->mutex);
595 
596 	/* Only halt host and free memory after both hcds are removed */
597 	if (!usb_hcd_is_primary_hcd(hcd)) {
598 		mutex_unlock(&xhci->mutex);
599 		return;
600 	}
601 
602 	xhci_remove_dbc_dev(xhci);
603 
604 	spin_lock_irq(&xhci->lock);
605 	xhci->xhc_state |= XHCI_STATE_HALTED;
606 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
607 	xhci_halt(xhci);
608 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
609 	spin_unlock_irq(&xhci->lock);
610 
611 	/* Deleting Compliance Mode Recovery Timer */
612 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
613 			(!(xhci_all_ports_seen_u0(xhci)))) {
614 		del_timer_sync(&xhci->comp_mode_recovery_timer);
615 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
616 				"%s: compliance mode recovery timer deleted",
617 				__func__);
618 	}
619 
620 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
621 		usb_amd_dev_put();
622 
623 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624 			"// Disabling event ring interrupts");
625 	temp = readl(&xhci->op_regs->status);
626 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
627 	xhci_disable_interrupter(ir);
628 
629 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
630 	xhci_mem_cleanup(xhci);
631 	xhci_debugfs_exit(xhci);
632 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633 			"xhci_stop completed - status = %x",
634 			readl(&xhci->op_regs->status));
635 	mutex_unlock(&xhci->mutex);
636 }
637 EXPORT_SYMBOL_GPL(xhci_stop);
638 
639 /*
640  * Shutdown HC (not bus-specific)
641  *
642  * This is called when the machine is rebooting or halting.  We assume that the
643  * machine will be powered off, and the HC's internal state will be reset.
644  * Don't bother to free memory.
645  *
646  * This will only ever be called with the main usb_hcd (the USB3 roothub).
647  */
xhci_shutdown(struct usb_hcd * hcd)648 void xhci_shutdown(struct usb_hcd *hcd)
649 {
650 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
651 
652 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
653 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
654 
655 	/* Don't poll the roothubs after shutdown. */
656 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
657 			__func__, hcd->self.busnum);
658 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
659 	del_timer_sync(&hcd->rh_timer);
660 
661 	if (xhci->shared_hcd) {
662 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
663 		del_timer_sync(&xhci->shared_hcd->rh_timer);
664 	}
665 
666 	spin_lock_irq(&xhci->lock);
667 	xhci_halt(xhci);
668 
669 	/*
670 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
671 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
672 	 */
673 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
674 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
675 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
676 
677 	spin_unlock_irq(&xhci->lock);
678 
679 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
680 			"xhci_shutdown completed - status = %x",
681 			readl(&xhci->op_regs->status));
682 }
683 EXPORT_SYMBOL_GPL(xhci_shutdown);
684 
685 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)686 static void xhci_save_registers(struct xhci_hcd *xhci)
687 {
688 	struct xhci_interrupter *ir;
689 	unsigned int i;
690 
691 	xhci->s3.command = readl(&xhci->op_regs->command);
692 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
693 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
694 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
695 
696 	/* save both primary and all secondary interrupters */
697 	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
698 	for (i = 0; i < xhci->max_interrupters; i++) {
699 		ir = xhci->interrupters[i];
700 		if (!ir)
701 			continue;
702 
703 		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
704 		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
705 		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
706 		ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
707 		ir->s3_irq_control = readl(&ir->ir_set->irq_control);
708 	}
709 }
710 
xhci_restore_registers(struct xhci_hcd * xhci)711 static void xhci_restore_registers(struct xhci_hcd *xhci)
712 {
713 	struct xhci_interrupter *ir;
714 	unsigned int i;
715 
716 	writel(xhci->s3.command, &xhci->op_regs->command);
717 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
718 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
719 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
720 
721 	/* FIXME should we lock to protect against freeing of interrupters */
722 	for (i = 0; i < xhci->max_interrupters; i++) {
723 		ir = xhci->interrupters[i];
724 		if (!ir)
725 			continue;
726 
727 		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
728 		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
729 		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
730 		writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
731 		writel(ir->s3_irq_control, &ir->ir_set->irq_control);
732 	}
733 }
734 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)735 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
736 {
737 	u64	val_64;
738 
739 	/* step 2: initialize command ring buffer */
740 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
741 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
742 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
743 				      xhci->cmd_ring->dequeue) &
744 		 (u64) ~CMD_RING_RSVD_BITS) |
745 		xhci->cmd_ring->cycle_state;
746 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
747 			"// Setting command ring address to 0x%llx",
748 			(long unsigned long) val_64);
749 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
750 }
751 
752 /*
753  * The whole command ring must be cleared to zero when we suspend the host.
754  *
755  * The host doesn't save the command ring pointer in the suspend well, so we
756  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
757  * aligned, because of the reserved bits in the command ring dequeue pointer
758  * register.  Therefore, we can't just set the dequeue pointer back in the
759  * middle of the ring (TRBs are 16-byte aligned).
760  */
xhci_clear_command_ring(struct xhci_hcd * xhci)761 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
762 {
763 	struct xhci_ring *ring;
764 	struct xhci_segment *seg;
765 
766 	ring = xhci->cmd_ring;
767 	seg = ring->deq_seg;
768 	do {
769 		memset(seg->trbs, 0,
770 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
771 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
772 			cpu_to_le32(~TRB_CYCLE);
773 		seg = seg->next;
774 	} while (seg != ring->deq_seg);
775 
776 	/* Reset the software enqueue and dequeue pointers */
777 	ring->deq_seg = ring->first_seg;
778 	ring->dequeue = ring->first_seg->trbs;
779 	ring->enq_seg = ring->deq_seg;
780 	ring->enqueue = ring->dequeue;
781 
782 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
783 	/*
784 	 * Ring is now zeroed, so the HW should look for change of ownership
785 	 * when the cycle bit is set to 1.
786 	 */
787 	ring->cycle_state = 1;
788 
789 	/*
790 	 * Reset the hardware dequeue pointer.
791 	 * Yes, this will need to be re-written after resume, but we're paranoid
792 	 * and want to make sure the hardware doesn't access bogus memory
793 	 * because, say, the BIOS or an SMI started the host without changing
794 	 * the command ring pointers.
795 	 */
796 	xhci_set_cmd_ring_deq(xhci);
797 }
798 
799 /*
800  * Disable port wake bits if do_wakeup is not set.
801  *
802  * Also clear a possible internal port wake state left hanging for ports that
803  * detected termination but never successfully enumerated (trained to 0U).
804  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
805  * at enumeration clears this wake, force one here as well for unconnected ports
806  */
807 
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)808 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
809 				       struct xhci_hub *rhub,
810 				       bool do_wakeup)
811 {
812 	unsigned long flags;
813 	u32 t1, t2, portsc;
814 	int i;
815 
816 	spin_lock_irqsave(&xhci->lock, flags);
817 
818 	for (i = 0; i < rhub->num_ports; i++) {
819 		portsc = readl(rhub->ports[i]->addr);
820 		t1 = xhci_port_state_to_neutral(portsc);
821 		t2 = t1;
822 
823 		/* clear wake bits if do_wake is not set */
824 		if (!do_wakeup)
825 			t2 &= ~PORT_WAKE_BITS;
826 
827 		/* Don't touch csc bit if connected or connect change is set */
828 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
829 			t2 |= PORT_CSC;
830 
831 		if (t1 != t2) {
832 			writel(t2, rhub->ports[i]->addr);
833 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
834 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
835 		}
836 	}
837 	spin_unlock_irqrestore(&xhci->lock, flags);
838 }
839 
xhci_pending_portevent(struct xhci_hcd * xhci)840 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
841 {
842 	struct xhci_port	**ports;
843 	int			port_index;
844 	u32			status;
845 	u32			portsc;
846 
847 	status = readl(&xhci->op_regs->status);
848 	if (status & STS_EINT)
849 		return true;
850 	/*
851 	 * Checking STS_EINT is not enough as there is a lag between a change
852 	 * bit being set and the Port Status Change Event that it generated
853 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
854 	 */
855 
856 	port_index = xhci->usb2_rhub.num_ports;
857 	ports = xhci->usb2_rhub.ports;
858 	while (port_index--) {
859 		portsc = readl(ports[port_index]->addr);
860 		if (portsc & PORT_CHANGE_MASK ||
861 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
862 			return true;
863 	}
864 	port_index = xhci->usb3_rhub.num_ports;
865 	ports = xhci->usb3_rhub.ports;
866 	while (port_index--) {
867 		portsc = readl(ports[port_index]->addr);
868 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
869 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
870 			return true;
871 	}
872 	return false;
873 }
874 
875 /*
876  * Stop HC (not bus-specific)
877  *
878  * This is called when the machine transition into S3/S4 mode.
879  *
880  */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)881 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
882 {
883 	int			rc = 0;
884 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
885 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
886 	u32			command;
887 	u32			res;
888 
889 	if (!hcd->state)
890 		return 0;
891 
892 	if (hcd->state != HC_STATE_SUSPENDED ||
893 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
894 		return -EINVAL;
895 
896 	/* Clear root port wake on bits if wakeup not allowed. */
897 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
898 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
899 
900 	if (!HCD_HW_ACCESSIBLE(hcd))
901 		return 0;
902 
903 	xhci_dbc_suspend(xhci);
904 
905 	/* Don't poll the roothubs on bus suspend. */
906 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
907 		 __func__, hcd->self.busnum);
908 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
909 	del_timer_sync(&hcd->rh_timer);
910 	if (xhci->shared_hcd) {
911 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
912 		del_timer_sync(&xhci->shared_hcd->rh_timer);
913 	}
914 
915 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
916 		usleep_range(1000, 1500);
917 
918 	spin_lock_irq(&xhci->lock);
919 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
920 	if (xhci->shared_hcd)
921 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
922 	/* step 1: stop endpoint */
923 	/* skipped assuming that port suspend has done */
924 
925 	/* step 2: clear Run/Stop bit */
926 	command = readl(&xhci->op_regs->command);
927 	command &= ~CMD_RUN;
928 	writel(command, &xhci->op_regs->command);
929 
930 	/* Some chips from Fresco Logic need an extraordinary delay */
931 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
932 
933 	if (xhci_handshake(&xhci->op_regs->status,
934 		      STS_HALT, STS_HALT, delay)) {
935 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
936 		spin_unlock_irq(&xhci->lock);
937 		return -ETIMEDOUT;
938 	}
939 	xhci_clear_command_ring(xhci);
940 
941 	/* step 3: save registers */
942 	xhci_save_registers(xhci);
943 
944 	/* step 4: set CSS flag */
945 	command = readl(&xhci->op_regs->command);
946 	command |= CMD_CSS;
947 	writel(command, &xhci->op_regs->command);
948 	xhci->broken_suspend = 0;
949 	if (xhci_handshake(&xhci->op_regs->status,
950 				STS_SAVE, 0, 20 * 1000)) {
951 	/*
952 	 * AMD SNPS xHC 3.0 occasionally does not clear the
953 	 * SSS bit of USBSTS and when driver tries to poll
954 	 * to see if the xHC clears BIT(8) which never happens
955 	 * and driver assumes that controller is not responding
956 	 * and times out. To workaround this, its good to check
957 	 * if SRE and HCE bits are not set (as per xhci
958 	 * Section 5.4.2) and bypass the timeout.
959 	 */
960 		res = readl(&xhci->op_regs->status);
961 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
962 		    (((res & STS_SRE) == 0) &&
963 				((res & STS_HCE) == 0))) {
964 			xhci->broken_suspend = 1;
965 		} else {
966 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
967 			spin_unlock_irq(&xhci->lock);
968 			return -ETIMEDOUT;
969 		}
970 	}
971 	spin_unlock_irq(&xhci->lock);
972 
973 	/*
974 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
975 	 * is about to be suspended.
976 	 */
977 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
978 			(!(xhci_all_ports_seen_u0(xhci)))) {
979 		del_timer_sync(&xhci->comp_mode_recovery_timer);
980 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
981 				"%s: compliance mode recovery timer deleted",
982 				__func__);
983 	}
984 
985 	return rc;
986 }
987 EXPORT_SYMBOL_GPL(xhci_suspend);
988 
989 /*
990  * start xHC (not bus-specific)
991  *
992  * This is called when the machine transition from S3/S4 mode.
993  *
994  */
xhci_resume(struct xhci_hcd * xhci,pm_message_t msg)995 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
996 {
997 	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
998 	u32			command, temp = 0;
999 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1000 	int			retval = 0;
1001 	bool			comp_timer_running = false;
1002 	bool			pending_portevent = false;
1003 	bool			suspended_usb3_devs = false;
1004 	bool			reinit_xhc = false;
1005 
1006 	if (!hcd->state)
1007 		return 0;
1008 
1009 	/* Wait a bit if either of the roothubs need to settle from the
1010 	 * transition into bus suspend.
1011 	 */
1012 
1013 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1014 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1015 		msleep(100);
1016 
1017 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1018 	if (xhci->shared_hcd)
1019 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1020 
1021 	spin_lock_irq(&xhci->lock);
1022 
1023 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1024 		reinit_xhc = true;
1025 
1026 	if (!reinit_xhc) {
1027 		/*
1028 		 * Some controllers might lose power during suspend, so wait
1029 		 * for controller not ready bit to clear, just as in xHC init.
1030 		 */
1031 		retval = xhci_handshake(&xhci->op_regs->status,
1032 					STS_CNR, 0, 10 * 1000 * 1000);
1033 		if (retval) {
1034 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1035 				  retval);
1036 			spin_unlock_irq(&xhci->lock);
1037 			return retval;
1038 		}
1039 		/* step 1: restore register */
1040 		xhci_restore_registers(xhci);
1041 		/* step 2: initialize command ring buffer */
1042 		xhci_set_cmd_ring_deq(xhci);
1043 		/* step 3: restore state and start state*/
1044 		/* step 3: set CRS flag */
1045 		command = readl(&xhci->op_regs->command);
1046 		command |= CMD_CRS;
1047 		writel(command, &xhci->op_regs->command);
1048 		/*
1049 		 * Some controllers take up to 55+ ms to complete the controller
1050 		 * restore so setting the timeout to 100ms. Xhci specification
1051 		 * doesn't mention any timeout value.
1052 		 */
1053 		if (xhci_handshake(&xhci->op_regs->status,
1054 			      STS_RESTORE, 0, 100 * 1000)) {
1055 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1056 			spin_unlock_irq(&xhci->lock);
1057 			return -ETIMEDOUT;
1058 		}
1059 	}
1060 
1061 	temp = readl(&xhci->op_regs->status);
1062 
1063 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1064 	if ((temp & (STS_SRE | STS_HCE)) &&
1065 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1066 		reinit_xhc = true;
1067 		if (!xhci->broken_suspend)
1068 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1069 	}
1070 
1071 	if (reinit_xhc) {
1072 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1073 				!(xhci_all_ports_seen_u0(xhci))) {
1074 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1075 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1076 				"Compliance Mode Recovery Timer deleted!");
1077 		}
1078 
1079 		/* Let the USB core know _both_ roothubs lost power. */
1080 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1081 		if (xhci->shared_hcd)
1082 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1083 
1084 		xhci_dbg(xhci, "Stop HCD\n");
1085 		xhci_halt(xhci);
1086 		xhci_zero_64b_regs(xhci);
1087 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1088 		spin_unlock_irq(&xhci->lock);
1089 		if (retval)
1090 			return retval;
1091 
1092 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1093 		temp = readl(&xhci->op_regs->status);
1094 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1095 		xhci_disable_interrupter(xhci->interrupters[0]);
1096 
1097 		xhci_dbg(xhci, "cleaning up memory\n");
1098 		xhci_mem_cleanup(xhci);
1099 		xhci_debugfs_exit(xhci);
1100 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1101 			    readl(&xhci->op_regs->status));
1102 
1103 		/* USB core calls the PCI reinit and start functions twice:
1104 		 * first with the primary HCD, and then with the secondary HCD.
1105 		 * If we don't do the same, the host will never be started.
1106 		 */
1107 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1108 		retval = xhci_init(hcd);
1109 		if (retval)
1110 			return retval;
1111 		comp_timer_running = true;
1112 
1113 		xhci_dbg(xhci, "Start the primary HCD\n");
1114 		retval = xhci_run(hcd);
1115 		if (!retval && xhci->shared_hcd) {
1116 			xhci_dbg(xhci, "Start the secondary HCD\n");
1117 			retval = xhci_run(xhci->shared_hcd);
1118 		}
1119 		if (retval)
1120 			return retval;
1121 		/*
1122 		 * Resume roothubs unconditionally as PORTSC change bits are not
1123 		 * immediately visible after xHC reset
1124 		 */
1125 		hcd->state = HC_STATE_SUSPENDED;
1126 
1127 		if (xhci->shared_hcd) {
1128 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1129 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1130 		}
1131 		usb_hcd_resume_root_hub(hcd);
1132 
1133 		goto done;
1134 	}
1135 
1136 	/* step 4: set Run/Stop bit */
1137 	command = readl(&xhci->op_regs->command);
1138 	command |= CMD_RUN;
1139 	writel(command, &xhci->op_regs->command);
1140 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1141 		  0, 250 * 1000);
1142 
1143 	/* step 5: walk topology and initialize portsc,
1144 	 * portpmsc and portli
1145 	 */
1146 	/* this is done in bus_resume */
1147 
1148 	/* step 6: restart each of the previously
1149 	 * Running endpoints by ringing their doorbells
1150 	 */
1151 
1152 	spin_unlock_irq(&xhci->lock);
1153 
1154 	xhci_dbc_resume(xhci);
1155 
1156 	if (retval == 0) {
1157 		/*
1158 		 * Resume roothubs only if there are pending events.
1159 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1160 		 * the first wake signalling failed, give it that chance if
1161 		 * there are suspended USB 3 devices.
1162 		 */
1163 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1164 		    xhci->usb3_rhub.bus_state.bus_suspended)
1165 			suspended_usb3_devs = true;
1166 
1167 		pending_portevent = xhci_pending_portevent(xhci);
1168 
1169 		if (suspended_usb3_devs && !pending_portevent &&
1170 		    msg.event == PM_EVENT_AUTO_RESUME) {
1171 			msleep(120);
1172 			pending_portevent = xhci_pending_portevent(xhci);
1173 		}
1174 
1175 		if (pending_portevent) {
1176 			if (xhci->shared_hcd)
1177 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1178 			usb_hcd_resume_root_hub(hcd);
1179 		}
1180 	}
1181 done:
1182 	/*
1183 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1184 	 * be re-initialized Always after a system resume. Ports are subject
1185 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1186 	 * ports have entered previously to U0 before system's suspension.
1187 	 */
1188 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1189 		compliance_mode_recovery_timer_init(xhci);
1190 
1191 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1192 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1193 
1194 	/* Re-enable port polling. */
1195 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1196 		 __func__, hcd->self.busnum);
1197 	if (xhci->shared_hcd) {
1198 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1199 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1200 	}
1201 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1202 	usb_hcd_poll_rh_status(hcd);
1203 
1204 	return retval;
1205 }
1206 EXPORT_SYMBOL_GPL(xhci_resume);
1207 #endif	/* CONFIG_PM */
1208 
1209 /*-------------------------------------------------------------------------*/
1210 
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1211 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1212 {
1213 	void *temp;
1214 	int ret = 0;
1215 	unsigned int buf_len;
1216 	enum dma_data_direction dir;
1217 
1218 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1219 	buf_len = urb->transfer_buffer_length;
1220 
1221 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1222 			    dev_to_node(hcd->self.sysdev));
1223 	if (!temp)
1224 		return -ENOMEM;
1225 
1226 	if (usb_urb_dir_out(urb))
1227 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1228 				   temp, buf_len, 0);
1229 
1230 	urb->transfer_buffer = temp;
1231 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1232 					   urb->transfer_buffer,
1233 					   urb->transfer_buffer_length,
1234 					   dir);
1235 
1236 	if (dma_mapping_error(hcd->self.sysdev,
1237 			      urb->transfer_dma)) {
1238 		ret = -EAGAIN;
1239 		kfree(temp);
1240 	} else {
1241 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1242 	}
1243 
1244 	return ret;
1245 }
1246 
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1247 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1248 					  struct urb *urb)
1249 {
1250 	bool ret = false;
1251 	unsigned int i;
1252 	unsigned int len = 0;
1253 	unsigned int trb_size;
1254 	unsigned int max_pkt;
1255 	struct scatterlist *sg;
1256 	struct scatterlist *tail_sg;
1257 
1258 	tail_sg = urb->sg;
1259 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1260 
1261 	if (!urb->num_sgs)
1262 		return ret;
1263 
1264 	if (urb->dev->speed >= USB_SPEED_SUPER)
1265 		trb_size = TRB_CACHE_SIZE_SS;
1266 	else
1267 		trb_size = TRB_CACHE_SIZE_HS;
1268 
1269 	if (urb->transfer_buffer_length != 0 &&
1270 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1271 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1272 			len = len + sg->length;
1273 			if (i > trb_size - 2) {
1274 				len = len - tail_sg->length;
1275 				if (len < max_pkt) {
1276 					ret = true;
1277 					break;
1278 				}
1279 
1280 				tail_sg = sg_next(tail_sg);
1281 			}
1282 		}
1283 	}
1284 	return ret;
1285 }
1286 
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1287 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1288 {
1289 	unsigned int len;
1290 	unsigned int buf_len;
1291 	enum dma_data_direction dir;
1292 
1293 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1294 
1295 	buf_len = urb->transfer_buffer_length;
1296 
1297 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1298 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1299 		dma_unmap_single(hcd->self.sysdev,
1300 				 urb->transfer_dma,
1301 				 urb->transfer_buffer_length,
1302 				 dir);
1303 
1304 	if (usb_urb_dir_in(urb)) {
1305 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1306 					   urb->transfer_buffer,
1307 					   buf_len,
1308 					   0);
1309 		if (len != buf_len) {
1310 			xhci_dbg(hcd_to_xhci(hcd),
1311 				 "Copy from tmp buf to urb sg list failed\n");
1312 			urb->actual_length = len;
1313 		}
1314 	}
1315 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1316 	kfree(urb->transfer_buffer);
1317 	urb->transfer_buffer = NULL;
1318 }
1319 
1320 /*
1321  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1322  * we'll copy the actual data into the TRB address register. This is limited to
1323  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1324  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1325  */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1326 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1327 				gfp_t mem_flags)
1328 {
1329 	struct xhci_hcd *xhci;
1330 
1331 	xhci = hcd_to_xhci(hcd);
1332 
1333 	if (xhci_urb_suitable_for_idt(urb))
1334 		return 0;
1335 
1336 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1337 		if (xhci_urb_temp_buffer_required(hcd, urb))
1338 			return xhci_map_temp_buffer(hcd, urb);
1339 	}
1340 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1341 }
1342 
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1343 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1344 {
1345 	struct xhci_hcd *xhci;
1346 	bool unmap_temp_buf = false;
1347 
1348 	xhci = hcd_to_xhci(hcd);
1349 
1350 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1351 		unmap_temp_buf = true;
1352 
1353 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1354 		xhci_unmap_temp_buf(hcd, urb);
1355 	else
1356 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1357 }
1358 
1359 /**
1360  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1361  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1362  * value to right shift 1 for the bitmask.
1363  *
1364  * Index  = (epnum * 2) + direction - 1,
1365  * where direction = 0 for OUT, 1 for IN.
1366  * For control endpoints, the IN index is used (OUT index is unused), so
1367  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1368  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1369 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1370 {
1371 	unsigned int index;
1372 	if (usb_endpoint_xfer_control(desc))
1373 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1374 	else
1375 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1376 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1377 	return index;
1378 }
1379 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1380 
1381 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1382  * address from the XHCI endpoint index.
1383  */
xhci_get_endpoint_address(unsigned int ep_index)1384 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1385 {
1386 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1387 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1388 	return direction | number;
1389 }
1390 
1391 /* Find the flag for this endpoint (for use in the control context).  Use the
1392  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1393  * bit 1, etc.
1394  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1395 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1396 {
1397 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1398 }
1399 
1400 /* Compute the last valid endpoint context index.  Basically, this is the
1401  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1402  * we find the most significant bit set in the added contexts flags.
1403  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1404  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1405  */
xhci_last_valid_endpoint(u32 added_ctxs)1406 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1407 {
1408 	return fls(added_ctxs) - 1;
1409 }
1410 
1411 /* Returns 1 if the arguments are OK;
1412  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1413  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1414 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1415 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1416 		const char *func) {
1417 	struct xhci_hcd	*xhci;
1418 	struct xhci_virt_device	*virt_dev;
1419 
1420 	if (!hcd || (check_ep && !ep) || !udev) {
1421 		pr_debug("xHCI %s called with invalid args\n", func);
1422 		return -EINVAL;
1423 	}
1424 	if (!udev->parent) {
1425 		pr_debug("xHCI %s called for root hub\n", func);
1426 		return 0;
1427 	}
1428 
1429 	xhci = hcd_to_xhci(hcd);
1430 	if (check_virt_dev) {
1431 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1432 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1433 					func);
1434 			return -EINVAL;
1435 		}
1436 
1437 		virt_dev = xhci->devs[udev->slot_id];
1438 		if (virt_dev->udev != udev) {
1439 			xhci_dbg(xhci, "xHCI %s called with udev and "
1440 					  "virt_dev does not match\n", func);
1441 			return -EINVAL;
1442 		}
1443 	}
1444 
1445 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1446 		return -ENODEV;
1447 
1448 	return 1;
1449 }
1450 
1451 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1452 		struct usb_device *udev, struct xhci_command *command,
1453 		bool ctx_change, bool must_succeed);
1454 
1455 /*
1456  * Full speed devices may have a max packet size greater than 8 bytes, but the
1457  * USB core doesn't know that until it reads the first 8 bytes of the
1458  * descriptor.  If the usb_device's max packet size changes after that point,
1459  * we need to issue an evaluate context command and wait on it.
1460  */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1461 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1462 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1463 {
1464 	struct xhci_container_ctx *out_ctx;
1465 	struct xhci_input_control_ctx *ctrl_ctx;
1466 	struct xhci_ep_ctx *ep_ctx;
1467 	struct xhci_command *command;
1468 	int max_packet_size;
1469 	int hw_max_packet_size;
1470 	int ret = 0;
1471 
1472 	out_ctx = xhci->devs[slot_id]->out_ctx;
1473 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1474 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1475 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1476 	if (hw_max_packet_size != max_packet_size) {
1477 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1478 				"Max Packet Size for ep 0 changed.");
1479 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1480 				"Max packet size in usb_device = %d",
1481 				max_packet_size);
1482 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1483 				"Max packet size in xHCI HW = %d",
1484 				hw_max_packet_size);
1485 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1486 				"Issuing evaluate context command.");
1487 
1488 		/* Set up the input context flags for the command */
1489 		/* FIXME: This won't work if a non-default control endpoint
1490 		 * changes max packet sizes.
1491 		 */
1492 
1493 		command = xhci_alloc_command(xhci, true, mem_flags);
1494 		if (!command)
1495 			return -ENOMEM;
1496 
1497 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1498 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1499 		if (!ctrl_ctx) {
1500 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1501 					__func__);
1502 			ret = -ENOMEM;
1503 			goto command_cleanup;
1504 		}
1505 		/* Set up the modified control endpoint 0 */
1506 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1507 				xhci->devs[slot_id]->out_ctx, ep_index);
1508 
1509 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1510 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1511 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1512 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1513 
1514 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1515 		ctrl_ctx->drop_flags = 0;
1516 
1517 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1518 				true, false);
1519 
1520 		/* Clean up the input context for later use by bandwidth
1521 		 * functions.
1522 		 */
1523 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1524 command_cleanup:
1525 		kfree(command->completion);
1526 		kfree(command);
1527 	}
1528 	return ret;
1529 }
1530 
1531 /*
1532  * non-error returns are a promise to giveback() the urb later
1533  * we drop ownership so next owner (or urb unlink) can get it
1534  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1535 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1536 {
1537 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1538 	unsigned long flags;
1539 	int ret = 0;
1540 	unsigned int slot_id, ep_index;
1541 	unsigned int *ep_state;
1542 	struct urb_priv	*urb_priv;
1543 	int num_tds;
1544 
1545 	if (!urb)
1546 		return -EINVAL;
1547 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1548 					true, true, __func__);
1549 	if (ret <= 0)
1550 		return ret ? ret : -EINVAL;
1551 
1552 	slot_id = urb->dev->slot_id;
1553 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1554 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1555 
1556 	if (!HCD_HW_ACCESSIBLE(hcd))
1557 		return -ESHUTDOWN;
1558 
1559 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1560 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1561 		return -ENODEV;
1562 	}
1563 
1564 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1565 		num_tds = urb->number_of_packets;
1566 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1567 	    urb->transfer_buffer_length > 0 &&
1568 	    urb->transfer_flags & URB_ZERO_PACKET &&
1569 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1570 		num_tds = 2;
1571 	else
1572 		num_tds = 1;
1573 
1574 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1575 	if (!urb_priv)
1576 		return -ENOMEM;
1577 
1578 	urb_priv->num_tds = num_tds;
1579 	urb_priv->num_tds_done = 0;
1580 	urb->hcpriv = urb_priv;
1581 
1582 	trace_xhci_urb_enqueue(urb);
1583 
1584 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1585 		/* Check to see if the max packet size for the default control
1586 		 * endpoint changed during FS device enumeration
1587 		 */
1588 		if (urb->dev->speed == USB_SPEED_FULL) {
1589 			ret = xhci_check_maxpacket(xhci, slot_id,
1590 					ep_index, urb, mem_flags);
1591 			if (ret < 0) {
1592 				xhci_urb_free_priv(urb_priv);
1593 				urb->hcpriv = NULL;
1594 				return ret;
1595 			}
1596 		}
1597 	}
1598 
1599 	spin_lock_irqsave(&xhci->lock, flags);
1600 
1601 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1602 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1603 			 urb->ep->desc.bEndpointAddress, urb);
1604 		ret = -ESHUTDOWN;
1605 		goto free_priv;
1606 	}
1607 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1608 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1609 			  *ep_state);
1610 		ret = -EINVAL;
1611 		goto free_priv;
1612 	}
1613 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1614 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1615 		ret = -EINVAL;
1616 		goto free_priv;
1617 	}
1618 
1619 	switch (usb_endpoint_type(&urb->ep->desc)) {
1620 
1621 	case USB_ENDPOINT_XFER_CONTROL:
1622 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1623 					 slot_id, ep_index);
1624 		break;
1625 	case USB_ENDPOINT_XFER_BULK:
1626 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1627 					 slot_id, ep_index);
1628 		break;
1629 	case USB_ENDPOINT_XFER_INT:
1630 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1631 				slot_id, ep_index);
1632 		break;
1633 	case USB_ENDPOINT_XFER_ISOC:
1634 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1635 				slot_id, ep_index);
1636 	}
1637 
1638 	if (ret) {
1639 free_priv:
1640 		xhci_urb_free_priv(urb_priv);
1641 		urb->hcpriv = NULL;
1642 	}
1643 	spin_unlock_irqrestore(&xhci->lock, flags);
1644 	return ret;
1645 }
1646 
1647 /*
1648  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1649  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1650  * should pick up where it left off in the TD, unless a Set Transfer Ring
1651  * Dequeue Pointer is issued.
1652  *
1653  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1654  * the ring.  Since the ring is a contiguous structure, they can't be physically
1655  * removed.  Instead, there are two options:
1656  *
1657  *  1) If the HC is in the middle of processing the URB to be canceled, we
1658  *     simply move the ring's dequeue pointer past those TRBs using the Set
1659  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1660  *     when drivers timeout on the last submitted URB and attempt to cancel.
1661  *
1662  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1663  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1664  *     HC will need to invalidate the any TRBs it has cached after the stop
1665  *     endpoint command, as noted in the xHCI 0.95 errata.
1666  *
1667  *  3) The TD may have completed by the time the Stop Endpoint Command
1668  *     completes, so software needs to handle that case too.
1669  *
1670  * This function should protect against the TD enqueueing code ringing the
1671  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1672  * It also needs to account for multiple cancellations on happening at the same
1673  * time for the same endpoint.
1674  *
1675  * Note that this function can be called in any context, or so says
1676  * usb_hcd_unlink_urb()
1677  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1678 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1679 {
1680 	unsigned long flags;
1681 	int ret, i;
1682 	u32 temp;
1683 	struct xhci_hcd *xhci;
1684 	struct urb_priv	*urb_priv;
1685 	struct xhci_td *td;
1686 	unsigned int ep_index;
1687 	struct xhci_ring *ep_ring;
1688 	struct xhci_virt_ep *ep;
1689 	struct xhci_command *command;
1690 	struct xhci_virt_device *vdev;
1691 
1692 	xhci = hcd_to_xhci(hcd);
1693 	spin_lock_irqsave(&xhci->lock, flags);
1694 
1695 	trace_xhci_urb_dequeue(urb);
1696 
1697 	/* Make sure the URB hasn't completed or been unlinked already */
1698 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1699 	if (ret)
1700 		goto done;
1701 
1702 	/* give back URB now if we can't queue it for cancel */
1703 	vdev = xhci->devs[urb->dev->slot_id];
1704 	urb_priv = urb->hcpriv;
1705 	if (!vdev || !urb_priv)
1706 		goto err_giveback;
1707 
1708 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1709 	ep = &vdev->eps[ep_index];
1710 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1711 	if (!ep || !ep_ring)
1712 		goto err_giveback;
1713 
1714 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1715 	temp = readl(&xhci->op_regs->status);
1716 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1717 		xhci_hc_died(xhci);
1718 		goto done;
1719 	}
1720 
1721 	/*
1722 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1723 	 * make sure none of the ring related pointers in this URB private data
1724 	 * are touched, such as td_list, otherwise we overwrite freed data
1725 	 */
1726 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1727 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1728 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1729 			td = &urb_priv->td[i];
1730 			if (!list_empty(&td->cancelled_td_list))
1731 				list_del_init(&td->cancelled_td_list);
1732 		}
1733 		goto err_giveback;
1734 	}
1735 
1736 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1737 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1738 				"HC halted, freeing TD manually.");
1739 		for (i = urb_priv->num_tds_done;
1740 		     i < urb_priv->num_tds;
1741 		     i++) {
1742 			td = &urb_priv->td[i];
1743 			if (!list_empty(&td->td_list))
1744 				list_del_init(&td->td_list);
1745 			if (!list_empty(&td->cancelled_td_list))
1746 				list_del_init(&td->cancelled_td_list);
1747 		}
1748 		goto err_giveback;
1749 	}
1750 
1751 	i = urb_priv->num_tds_done;
1752 	if (i < urb_priv->num_tds)
1753 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1754 				"Cancel URB %p, dev %s, ep 0x%x, "
1755 				"starting at offset 0x%llx",
1756 				urb, urb->dev->devpath,
1757 				urb->ep->desc.bEndpointAddress,
1758 				(unsigned long long) xhci_trb_virt_to_dma(
1759 					urb_priv->td[i].start_seg,
1760 					urb_priv->td[i].first_trb));
1761 
1762 	for (; i < urb_priv->num_tds; i++) {
1763 		td = &urb_priv->td[i];
1764 		/* TD can already be on cancelled list if ep halted on it */
1765 		if (list_empty(&td->cancelled_td_list)) {
1766 			td->cancel_status = TD_DIRTY;
1767 			list_add_tail(&td->cancelled_td_list,
1768 				      &ep->cancelled_td_list);
1769 		}
1770 	}
1771 
1772 	/* Queue a stop endpoint command, but only if this is
1773 	 * the first cancellation to be handled.
1774 	 */
1775 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1776 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1777 		if (!command) {
1778 			ret = -ENOMEM;
1779 			goto done;
1780 		}
1781 		ep->ep_state |= EP_STOP_CMD_PENDING;
1782 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1783 					 ep_index, 0);
1784 		xhci_ring_cmd_db(xhci);
1785 	}
1786 done:
1787 	spin_unlock_irqrestore(&xhci->lock, flags);
1788 	return ret;
1789 
1790 err_giveback:
1791 	if (urb_priv)
1792 		xhci_urb_free_priv(urb_priv);
1793 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1794 	spin_unlock_irqrestore(&xhci->lock, flags);
1795 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1796 	return ret;
1797 }
1798 
1799 /* Drop an endpoint from a new bandwidth configuration for this device.
1800  * Only one call to this function is allowed per endpoint before
1801  * check_bandwidth() or reset_bandwidth() must be called.
1802  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1803  * add the endpoint to the schedule with possibly new parameters denoted by a
1804  * different endpoint descriptor in usb_host_endpoint.
1805  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1806  * not allowed.
1807  *
1808  * The USB core will not allow URBs to be queued to an endpoint that is being
1809  * disabled, so there's no need for mutual exclusion to protect
1810  * the xhci->devs[slot_id] structure.
1811  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1812 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1813 		       struct usb_host_endpoint *ep)
1814 {
1815 	struct xhci_hcd *xhci;
1816 	struct xhci_container_ctx *in_ctx, *out_ctx;
1817 	struct xhci_input_control_ctx *ctrl_ctx;
1818 	unsigned int ep_index;
1819 	struct xhci_ep_ctx *ep_ctx;
1820 	u32 drop_flag;
1821 	u32 new_add_flags, new_drop_flags;
1822 	int ret;
1823 
1824 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1825 	if (ret <= 0)
1826 		return ret;
1827 	xhci = hcd_to_xhci(hcd);
1828 	if (xhci->xhc_state & XHCI_STATE_DYING)
1829 		return -ENODEV;
1830 
1831 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1832 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1833 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1834 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1835 				__func__, drop_flag);
1836 		return 0;
1837 	}
1838 
1839 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1840 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1841 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1842 	if (!ctrl_ctx) {
1843 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1844 				__func__);
1845 		return 0;
1846 	}
1847 
1848 	ep_index = xhci_get_endpoint_index(&ep->desc);
1849 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1850 	/* If the HC already knows the endpoint is disabled,
1851 	 * or the HCD has noted it is disabled, ignore this request
1852 	 */
1853 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1854 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1855 	    xhci_get_endpoint_flag(&ep->desc)) {
1856 		/* Do not warn when called after a usb_device_reset */
1857 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1858 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1859 				  __func__, ep);
1860 		return 0;
1861 	}
1862 
1863 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1864 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1865 
1866 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1867 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1868 
1869 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1870 
1871 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1872 
1873 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1874 			(unsigned int) ep->desc.bEndpointAddress,
1875 			udev->slot_id,
1876 			(unsigned int) new_drop_flags,
1877 			(unsigned int) new_add_flags);
1878 	return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1881 
1882 /* Add an endpoint to a new possible bandwidth configuration for this device.
1883  * Only one call to this function is allowed per endpoint before
1884  * check_bandwidth() or reset_bandwidth() must be called.
1885  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1886  * add the endpoint to the schedule with possibly new parameters denoted by a
1887  * different endpoint descriptor in usb_host_endpoint.
1888  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1889  * not allowed.
1890  *
1891  * The USB core will not allow URBs to be queued to an endpoint until the
1892  * configuration or alt setting is installed in the device, so there's no need
1893  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1894  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1895 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1896 		      struct usb_host_endpoint *ep)
1897 {
1898 	struct xhci_hcd *xhci;
1899 	struct xhci_container_ctx *in_ctx;
1900 	unsigned int ep_index;
1901 	struct xhci_input_control_ctx *ctrl_ctx;
1902 	struct xhci_ep_ctx *ep_ctx;
1903 	u32 added_ctxs;
1904 	u32 new_add_flags, new_drop_flags;
1905 	struct xhci_virt_device *virt_dev;
1906 	int ret = 0;
1907 
1908 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1909 	if (ret <= 0) {
1910 		/* So we won't queue a reset ep command for a root hub */
1911 		ep->hcpriv = NULL;
1912 		return ret;
1913 	}
1914 	xhci = hcd_to_xhci(hcd);
1915 	if (xhci->xhc_state & XHCI_STATE_DYING)
1916 		return -ENODEV;
1917 
1918 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1919 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1920 		/* FIXME when we have to issue an evaluate endpoint command to
1921 		 * deal with ep0 max packet size changing once we get the
1922 		 * descriptors
1923 		 */
1924 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1925 				__func__, added_ctxs);
1926 		return 0;
1927 	}
1928 
1929 	virt_dev = xhci->devs[udev->slot_id];
1930 	in_ctx = virt_dev->in_ctx;
1931 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1932 	if (!ctrl_ctx) {
1933 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1934 				__func__);
1935 		return 0;
1936 	}
1937 
1938 	ep_index = xhci_get_endpoint_index(&ep->desc);
1939 	/* If this endpoint is already in use, and the upper layers are trying
1940 	 * to add it again without dropping it, reject the addition.
1941 	 */
1942 	if (virt_dev->eps[ep_index].ring &&
1943 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1944 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1945 				"without dropping it.\n",
1946 				(unsigned int) ep->desc.bEndpointAddress);
1947 		return -EINVAL;
1948 	}
1949 
1950 	/* If the HCD has already noted the endpoint is enabled,
1951 	 * ignore this request.
1952 	 */
1953 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1954 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1955 				__func__, ep);
1956 		return 0;
1957 	}
1958 
1959 	/*
1960 	 * Configuration and alternate setting changes must be done in
1961 	 * process context, not interrupt context (or so documenation
1962 	 * for usb_set_interface() and usb_set_configuration() claim).
1963 	 */
1964 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1965 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1966 				__func__, ep->desc.bEndpointAddress);
1967 		return -ENOMEM;
1968 	}
1969 
1970 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1971 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1972 
1973 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1974 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1975 	 * this re-adds a new state for the endpoint from the new endpoint
1976 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1977 	 * drop flags alone.
1978 	 */
1979 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1980 
1981 	/* Store the usb_device pointer for later use */
1982 	ep->hcpriv = udev;
1983 
1984 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1985 	trace_xhci_add_endpoint(ep_ctx);
1986 
1987 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1988 			(unsigned int) ep->desc.bEndpointAddress,
1989 			udev->slot_id,
1990 			(unsigned int) new_drop_flags,
1991 			(unsigned int) new_add_flags);
1992 	return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1995 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1996 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1997 {
1998 	struct xhci_input_control_ctx *ctrl_ctx;
1999 	struct xhci_ep_ctx *ep_ctx;
2000 	struct xhci_slot_ctx *slot_ctx;
2001 	int i;
2002 
2003 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2004 	if (!ctrl_ctx) {
2005 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2006 				__func__);
2007 		return;
2008 	}
2009 
2010 	/* When a device's add flag and drop flag are zero, any subsequent
2011 	 * configure endpoint command will leave that endpoint's state
2012 	 * untouched.  Make sure we don't leave any old state in the input
2013 	 * endpoint contexts.
2014 	 */
2015 	ctrl_ctx->drop_flags = 0;
2016 	ctrl_ctx->add_flags = 0;
2017 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2018 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2019 	/* Endpoint 0 is always valid */
2020 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2021 	for (i = 1; i < 31; i++) {
2022 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2023 		ep_ctx->ep_info = 0;
2024 		ep_ctx->ep_info2 = 0;
2025 		ep_ctx->deq = 0;
2026 		ep_ctx->tx_info = 0;
2027 	}
2028 }
2029 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2030 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2031 		struct usb_device *udev, u32 *cmd_status)
2032 {
2033 	int ret;
2034 
2035 	switch (*cmd_status) {
2036 	case COMP_COMMAND_ABORTED:
2037 	case COMP_COMMAND_RING_STOPPED:
2038 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2039 		ret = -ETIME;
2040 		break;
2041 	case COMP_RESOURCE_ERROR:
2042 		dev_warn(&udev->dev,
2043 			 "Not enough host controller resources for new device state.\n");
2044 		ret = -ENOMEM;
2045 		/* FIXME: can we allocate more resources for the HC? */
2046 		break;
2047 	case COMP_BANDWIDTH_ERROR:
2048 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2049 		dev_warn(&udev->dev,
2050 			 "Not enough bandwidth for new device state.\n");
2051 		ret = -ENOSPC;
2052 		/* FIXME: can we go back to the old state? */
2053 		break;
2054 	case COMP_TRB_ERROR:
2055 		/* the HCD set up something wrong */
2056 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2057 				"add flag = 1, "
2058 				"and endpoint is not disabled.\n");
2059 		ret = -EINVAL;
2060 		break;
2061 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2062 		dev_warn(&udev->dev,
2063 			 "ERROR: Incompatible device for endpoint configure command.\n");
2064 		ret = -ENODEV;
2065 		break;
2066 	case COMP_SUCCESS:
2067 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2068 				"Successful Endpoint Configure command");
2069 		ret = 0;
2070 		break;
2071 	default:
2072 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2073 				*cmd_status);
2074 		ret = -EINVAL;
2075 		break;
2076 	}
2077 	return ret;
2078 }
2079 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2080 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2081 		struct usb_device *udev, u32 *cmd_status)
2082 {
2083 	int ret;
2084 
2085 	switch (*cmd_status) {
2086 	case COMP_COMMAND_ABORTED:
2087 	case COMP_COMMAND_RING_STOPPED:
2088 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2089 		ret = -ETIME;
2090 		break;
2091 	case COMP_PARAMETER_ERROR:
2092 		dev_warn(&udev->dev,
2093 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2094 		ret = -EINVAL;
2095 		break;
2096 	case COMP_SLOT_NOT_ENABLED_ERROR:
2097 		dev_warn(&udev->dev,
2098 			"WARN: slot not enabled for evaluate context command.\n");
2099 		ret = -EINVAL;
2100 		break;
2101 	case COMP_CONTEXT_STATE_ERROR:
2102 		dev_warn(&udev->dev,
2103 			"WARN: invalid context state for evaluate context command.\n");
2104 		ret = -EINVAL;
2105 		break;
2106 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2107 		dev_warn(&udev->dev,
2108 			"ERROR: Incompatible device for evaluate context command.\n");
2109 		ret = -ENODEV;
2110 		break;
2111 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2112 		/* Max Exit Latency too large error */
2113 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2114 		ret = -EINVAL;
2115 		break;
2116 	case COMP_SUCCESS:
2117 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2118 				"Successful evaluate context command");
2119 		ret = 0;
2120 		break;
2121 	default:
2122 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2123 			*cmd_status);
2124 		ret = -EINVAL;
2125 		break;
2126 	}
2127 	return ret;
2128 }
2129 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2130 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2131 		struct xhci_input_control_ctx *ctrl_ctx)
2132 {
2133 	u32 valid_add_flags;
2134 	u32 valid_drop_flags;
2135 
2136 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2137 	 * (bit 1).  The default control endpoint is added during the Address
2138 	 * Device command and is never removed until the slot is disabled.
2139 	 */
2140 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2141 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2142 
2143 	/* Use hweight32 to count the number of ones in the add flags, or
2144 	 * number of endpoints added.  Don't count endpoints that are changed
2145 	 * (both added and dropped).
2146 	 */
2147 	return hweight32(valid_add_flags) -
2148 		hweight32(valid_add_flags & valid_drop_flags);
2149 }
2150 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2151 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2152 		struct xhci_input_control_ctx *ctrl_ctx)
2153 {
2154 	u32 valid_add_flags;
2155 	u32 valid_drop_flags;
2156 
2157 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2158 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2159 
2160 	return hweight32(valid_drop_flags) -
2161 		hweight32(valid_add_flags & valid_drop_flags);
2162 }
2163 
2164 /*
2165  * We need to reserve the new number of endpoints before the configure endpoint
2166  * command completes.  We can't subtract the dropped endpoints from the number
2167  * of active endpoints until the command completes because we can oversubscribe
2168  * the host in this case:
2169  *
2170  *  - the first configure endpoint command drops more endpoints than it adds
2171  *  - a second configure endpoint command that adds more endpoints is queued
2172  *  - the first configure endpoint command fails, so the config is unchanged
2173  *  - the second command may succeed, even though there isn't enough resources
2174  *
2175  * Must be called with xhci->lock held.
2176  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2177 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2178 		struct xhci_input_control_ctx *ctrl_ctx)
2179 {
2180 	u32 added_eps;
2181 
2182 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2183 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2184 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2185 				"Not enough ep ctxs: "
2186 				"%u active, need to add %u, limit is %u.",
2187 				xhci->num_active_eps, added_eps,
2188 				xhci->limit_active_eps);
2189 		return -ENOMEM;
2190 	}
2191 	xhci->num_active_eps += added_eps;
2192 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2193 			"Adding %u ep ctxs, %u now active.", added_eps,
2194 			xhci->num_active_eps);
2195 	return 0;
2196 }
2197 
2198 /*
2199  * The configure endpoint was failed by the xHC for some other reason, so we
2200  * need to revert the resources that failed configuration would have used.
2201  *
2202  * Must be called with xhci->lock held.
2203  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2204 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2205 		struct xhci_input_control_ctx *ctrl_ctx)
2206 {
2207 	u32 num_failed_eps;
2208 
2209 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2210 	xhci->num_active_eps -= num_failed_eps;
2211 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2212 			"Removing %u failed ep ctxs, %u now active.",
2213 			num_failed_eps,
2214 			xhci->num_active_eps);
2215 }
2216 
2217 /*
2218  * Now that the command has completed, clean up the active endpoint count by
2219  * subtracting out the endpoints that were dropped (but not changed).
2220  *
2221  * Must be called with xhci->lock held.
2222  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2223 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2224 		struct xhci_input_control_ctx *ctrl_ctx)
2225 {
2226 	u32 num_dropped_eps;
2227 
2228 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2229 	xhci->num_active_eps -= num_dropped_eps;
2230 	if (num_dropped_eps)
2231 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2232 				"Removing %u dropped ep ctxs, %u now active.",
2233 				num_dropped_eps,
2234 				xhci->num_active_eps);
2235 }
2236 
xhci_get_block_size(struct usb_device * udev)2237 static unsigned int xhci_get_block_size(struct usb_device *udev)
2238 {
2239 	switch (udev->speed) {
2240 	case USB_SPEED_LOW:
2241 	case USB_SPEED_FULL:
2242 		return FS_BLOCK;
2243 	case USB_SPEED_HIGH:
2244 		return HS_BLOCK;
2245 	case USB_SPEED_SUPER:
2246 	case USB_SPEED_SUPER_PLUS:
2247 		return SS_BLOCK;
2248 	case USB_SPEED_UNKNOWN:
2249 	default:
2250 		/* Should never happen */
2251 		return 1;
2252 	}
2253 }
2254 
2255 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2256 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2257 {
2258 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2259 		return LS_OVERHEAD;
2260 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2261 		return FS_OVERHEAD;
2262 	return HS_OVERHEAD;
2263 }
2264 
2265 /* If we are changing a LS/FS device under a HS hub,
2266  * make sure (if we are activating a new TT) that the HS bus has enough
2267  * bandwidth for this new TT.
2268  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2269 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2270 		struct xhci_virt_device *virt_dev,
2271 		int old_active_eps)
2272 {
2273 	struct xhci_interval_bw_table *bw_table;
2274 	struct xhci_tt_bw_info *tt_info;
2275 
2276 	/* Find the bandwidth table for the root port this TT is attached to. */
2277 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2278 	tt_info = virt_dev->tt_info;
2279 	/* If this TT already had active endpoints, the bandwidth for this TT
2280 	 * has already been added.  Removing all periodic endpoints (and thus
2281 	 * making the TT enactive) will only decrease the bandwidth used.
2282 	 */
2283 	if (old_active_eps)
2284 		return 0;
2285 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2286 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2287 			return -ENOMEM;
2288 		return 0;
2289 	}
2290 	/* Not sure why we would have no new active endpoints...
2291 	 *
2292 	 * Maybe because of an Evaluate Context change for a hub update or a
2293 	 * control endpoint 0 max packet size change?
2294 	 * FIXME: skip the bandwidth calculation in that case.
2295 	 */
2296 	return 0;
2297 }
2298 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2299 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2300 		struct xhci_virt_device *virt_dev)
2301 {
2302 	unsigned int bw_reserved;
2303 
2304 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2305 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2306 		return -ENOMEM;
2307 
2308 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2309 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2310 		return -ENOMEM;
2311 
2312 	return 0;
2313 }
2314 
2315 /*
2316  * This algorithm is a very conservative estimate of the worst-case scheduling
2317  * scenario for any one interval.  The hardware dynamically schedules the
2318  * packets, so we can't tell which microframe could be the limiting factor in
2319  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2320  *
2321  * Obviously, we can't solve an NP complete problem to find the minimum worst
2322  * case scenario.  Instead, we come up with an estimate that is no less than
2323  * the worst case bandwidth used for any one microframe, but may be an
2324  * over-estimate.
2325  *
2326  * We walk the requirements for each endpoint by interval, starting with the
2327  * smallest interval, and place packets in the schedule where there is only one
2328  * possible way to schedule packets for that interval.  In order to simplify
2329  * this algorithm, we record the largest max packet size for each interval, and
2330  * assume all packets will be that size.
2331  *
2332  * For interval 0, we obviously must schedule all packets for each interval.
2333  * The bandwidth for interval 0 is just the amount of data to be transmitted
2334  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2335  * the number of packets).
2336  *
2337  * For interval 1, we have two possible microframes to schedule those packets
2338  * in.  For this algorithm, if we can schedule the same number of packets for
2339  * each possible scheduling opportunity (each microframe), we will do so.  The
2340  * remaining number of packets will be saved to be transmitted in the gaps in
2341  * the next interval's scheduling sequence.
2342  *
2343  * As we move those remaining packets to be scheduled with interval 2 packets,
2344  * we have to double the number of remaining packets to transmit.  This is
2345  * because the intervals are actually powers of 2, and we would be transmitting
2346  * the previous interval's packets twice in this interval.  We also have to be
2347  * sure that when we look at the largest max packet size for this interval, we
2348  * also look at the largest max packet size for the remaining packets and take
2349  * the greater of the two.
2350  *
2351  * The algorithm continues to evenly distribute packets in each scheduling
2352  * opportunity, and push the remaining packets out, until we get to the last
2353  * interval.  Then those packets and their associated overhead are just added
2354  * to the bandwidth used.
2355  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2356 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2357 		struct xhci_virt_device *virt_dev,
2358 		int old_active_eps)
2359 {
2360 	unsigned int bw_reserved;
2361 	unsigned int max_bandwidth;
2362 	unsigned int bw_used;
2363 	unsigned int block_size;
2364 	struct xhci_interval_bw_table *bw_table;
2365 	unsigned int packet_size = 0;
2366 	unsigned int overhead = 0;
2367 	unsigned int packets_transmitted = 0;
2368 	unsigned int packets_remaining = 0;
2369 	unsigned int i;
2370 
2371 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2372 		return xhci_check_ss_bw(xhci, virt_dev);
2373 
2374 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2375 		max_bandwidth = HS_BW_LIMIT;
2376 		/* Convert percent of bus BW reserved to blocks reserved */
2377 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2378 	} else {
2379 		max_bandwidth = FS_BW_LIMIT;
2380 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2381 	}
2382 
2383 	bw_table = virt_dev->bw_table;
2384 	/* We need to translate the max packet size and max ESIT payloads into
2385 	 * the units the hardware uses.
2386 	 */
2387 	block_size = xhci_get_block_size(virt_dev->udev);
2388 
2389 	/* If we are manipulating a LS/FS device under a HS hub, double check
2390 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2391 	 */
2392 	if (virt_dev->tt_info) {
2393 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2394 				"Recalculating BW for rootport %u",
2395 				virt_dev->real_port);
2396 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2397 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2398 					"newly activated TT.\n");
2399 			return -ENOMEM;
2400 		}
2401 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2402 				"Recalculating BW for TT slot %u port %u",
2403 				virt_dev->tt_info->slot_id,
2404 				virt_dev->tt_info->ttport);
2405 	} else {
2406 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2407 				"Recalculating BW for rootport %u",
2408 				virt_dev->real_port);
2409 	}
2410 
2411 	/* Add in how much bandwidth will be used for interval zero, or the
2412 	 * rounded max ESIT payload + number of packets * largest overhead.
2413 	 */
2414 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2415 		bw_table->interval_bw[0].num_packets *
2416 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2417 
2418 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2419 		unsigned int bw_added;
2420 		unsigned int largest_mps;
2421 		unsigned int interval_overhead;
2422 
2423 		/*
2424 		 * How many packets could we transmit in this interval?
2425 		 * If packets didn't fit in the previous interval, we will need
2426 		 * to transmit that many packets twice within this interval.
2427 		 */
2428 		packets_remaining = 2 * packets_remaining +
2429 			bw_table->interval_bw[i].num_packets;
2430 
2431 		/* Find the largest max packet size of this or the previous
2432 		 * interval.
2433 		 */
2434 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2435 			largest_mps = 0;
2436 		else {
2437 			struct xhci_virt_ep *virt_ep;
2438 			struct list_head *ep_entry;
2439 
2440 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2441 			virt_ep = list_entry(ep_entry,
2442 					struct xhci_virt_ep, bw_endpoint_list);
2443 			/* Convert to blocks, rounding up */
2444 			largest_mps = DIV_ROUND_UP(
2445 					virt_ep->bw_info.max_packet_size,
2446 					block_size);
2447 		}
2448 		if (largest_mps > packet_size)
2449 			packet_size = largest_mps;
2450 
2451 		/* Use the larger overhead of this or the previous interval. */
2452 		interval_overhead = xhci_get_largest_overhead(
2453 				&bw_table->interval_bw[i]);
2454 		if (interval_overhead > overhead)
2455 			overhead = interval_overhead;
2456 
2457 		/* How many packets can we evenly distribute across
2458 		 * (1 << (i + 1)) possible scheduling opportunities?
2459 		 */
2460 		packets_transmitted = packets_remaining >> (i + 1);
2461 
2462 		/* Add in the bandwidth used for those scheduled packets */
2463 		bw_added = packets_transmitted * (overhead + packet_size);
2464 
2465 		/* How many packets do we have remaining to transmit? */
2466 		packets_remaining = packets_remaining % (1 << (i + 1));
2467 
2468 		/* What largest max packet size should those packets have? */
2469 		/* If we've transmitted all packets, don't carry over the
2470 		 * largest packet size.
2471 		 */
2472 		if (packets_remaining == 0) {
2473 			packet_size = 0;
2474 			overhead = 0;
2475 		} else if (packets_transmitted > 0) {
2476 			/* Otherwise if we do have remaining packets, and we've
2477 			 * scheduled some packets in this interval, take the
2478 			 * largest max packet size from endpoints with this
2479 			 * interval.
2480 			 */
2481 			packet_size = largest_mps;
2482 			overhead = interval_overhead;
2483 		}
2484 		/* Otherwise carry over packet_size and overhead from the last
2485 		 * time we had a remainder.
2486 		 */
2487 		bw_used += bw_added;
2488 		if (bw_used > max_bandwidth) {
2489 			xhci_warn(xhci, "Not enough bandwidth. "
2490 					"Proposed: %u, Max: %u\n",
2491 				bw_used, max_bandwidth);
2492 			return -ENOMEM;
2493 		}
2494 	}
2495 	/*
2496 	 * Ok, we know we have some packets left over after even-handedly
2497 	 * scheduling interval 15.  We don't know which microframes they will
2498 	 * fit into, so we over-schedule and say they will be scheduled every
2499 	 * microframe.
2500 	 */
2501 	if (packets_remaining > 0)
2502 		bw_used += overhead + packet_size;
2503 
2504 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2505 		unsigned int port_index = virt_dev->real_port - 1;
2506 
2507 		/* OK, we're manipulating a HS device attached to a
2508 		 * root port bandwidth domain.  Include the number of active TTs
2509 		 * in the bandwidth used.
2510 		 */
2511 		bw_used += TT_HS_OVERHEAD *
2512 			xhci->rh_bw[port_index].num_active_tts;
2513 	}
2514 
2515 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2516 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2517 		"Available: %u " "percent",
2518 		bw_used, max_bandwidth, bw_reserved,
2519 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2520 		max_bandwidth);
2521 
2522 	bw_used += bw_reserved;
2523 	if (bw_used > max_bandwidth) {
2524 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2525 				bw_used, max_bandwidth);
2526 		return -ENOMEM;
2527 	}
2528 
2529 	bw_table->bw_used = bw_used;
2530 	return 0;
2531 }
2532 
xhci_is_async_ep(unsigned int ep_type)2533 static bool xhci_is_async_ep(unsigned int ep_type)
2534 {
2535 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2536 					ep_type != ISOC_IN_EP &&
2537 					ep_type != INT_IN_EP);
2538 }
2539 
xhci_is_sync_in_ep(unsigned int ep_type)2540 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2541 {
2542 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2543 }
2544 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2545 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2546 {
2547 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2548 
2549 	if (ep_bw->ep_interval == 0)
2550 		return SS_OVERHEAD_BURST +
2551 			(ep_bw->mult * ep_bw->num_packets *
2552 					(SS_OVERHEAD + mps));
2553 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2554 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2555 				1 << ep_bw->ep_interval);
2556 
2557 }
2558 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2559 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2560 		struct xhci_bw_info *ep_bw,
2561 		struct xhci_interval_bw_table *bw_table,
2562 		struct usb_device *udev,
2563 		struct xhci_virt_ep *virt_ep,
2564 		struct xhci_tt_bw_info *tt_info)
2565 {
2566 	struct xhci_interval_bw	*interval_bw;
2567 	int normalized_interval;
2568 
2569 	if (xhci_is_async_ep(ep_bw->type))
2570 		return;
2571 
2572 	if (udev->speed >= USB_SPEED_SUPER) {
2573 		if (xhci_is_sync_in_ep(ep_bw->type))
2574 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2575 				xhci_get_ss_bw_consumed(ep_bw);
2576 		else
2577 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2578 				xhci_get_ss_bw_consumed(ep_bw);
2579 		return;
2580 	}
2581 
2582 	/* SuperSpeed endpoints never get added to intervals in the table, so
2583 	 * this check is only valid for HS/FS/LS devices.
2584 	 */
2585 	if (list_empty(&virt_ep->bw_endpoint_list))
2586 		return;
2587 	/* For LS/FS devices, we need to translate the interval expressed in
2588 	 * microframes to frames.
2589 	 */
2590 	if (udev->speed == USB_SPEED_HIGH)
2591 		normalized_interval = ep_bw->ep_interval;
2592 	else
2593 		normalized_interval = ep_bw->ep_interval - 3;
2594 
2595 	if (normalized_interval == 0)
2596 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2597 	interval_bw = &bw_table->interval_bw[normalized_interval];
2598 	interval_bw->num_packets -= ep_bw->num_packets;
2599 	switch (udev->speed) {
2600 	case USB_SPEED_LOW:
2601 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2602 		break;
2603 	case USB_SPEED_FULL:
2604 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2605 		break;
2606 	case USB_SPEED_HIGH:
2607 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2608 		break;
2609 	default:
2610 		/* Should never happen because only LS/FS/HS endpoints will get
2611 		 * added to the endpoint list.
2612 		 */
2613 		return;
2614 	}
2615 	if (tt_info)
2616 		tt_info->active_eps -= 1;
2617 	list_del_init(&virt_ep->bw_endpoint_list);
2618 }
2619 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2620 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2621 		struct xhci_bw_info *ep_bw,
2622 		struct xhci_interval_bw_table *bw_table,
2623 		struct usb_device *udev,
2624 		struct xhci_virt_ep *virt_ep,
2625 		struct xhci_tt_bw_info *tt_info)
2626 {
2627 	struct xhci_interval_bw	*interval_bw;
2628 	struct xhci_virt_ep *smaller_ep;
2629 	int normalized_interval;
2630 
2631 	if (xhci_is_async_ep(ep_bw->type))
2632 		return;
2633 
2634 	if (udev->speed == USB_SPEED_SUPER) {
2635 		if (xhci_is_sync_in_ep(ep_bw->type))
2636 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2637 				xhci_get_ss_bw_consumed(ep_bw);
2638 		else
2639 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2640 				xhci_get_ss_bw_consumed(ep_bw);
2641 		return;
2642 	}
2643 
2644 	/* For LS/FS devices, we need to translate the interval expressed in
2645 	 * microframes to frames.
2646 	 */
2647 	if (udev->speed == USB_SPEED_HIGH)
2648 		normalized_interval = ep_bw->ep_interval;
2649 	else
2650 		normalized_interval = ep_bw->ep_interval - 3;
2651 
2652 	if (normalized_interval == 0)
2653 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2654 	interval_bw = &bw_table->interval_bw[normalized_interval];
2655 	interval_bw->num_packets += ep_bw->num_packets;
2656 	switch (udev->speed) {
2657 	case USB_SPEED_LOW:
2658 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2659 		break;
2660 	case USB_SPEED_FULL:
2661 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2662 		break;
2663 	case USB_SPEED_HIGH:
2664 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2665 		break;
2666 	default:
2667 		/* Should never happen because only LS/FS/HS endpoints will get
2668 		 * added to the endpoint list.
2669 		 */
2670 		return;
2671 	}
2672 
2673 	if (tt_info)
2674 		tt_info->active_eps += 1;
2675 	/* Insert the endpoint into the list, largest max packet size first. */
2676 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2677 			bw_endpoint_list) {
2678 		if (ep_bw->max_packet_size >=
2679 				smaller_ep->bw_info.max_packet_size) {
2680 			/* Add the new ep before the smaller endpoint */
2681 			list_add_tail(&virt_ep->bw_endpoint_list,
2682 					&smaller_ep->bw_endpoint_list);
2683 			return;
2684 		}
2685 	}
2686 	/* Add the new endpoint at the end of the list. */
2687 	list_add_tail(&virt_ep->bw_endpoint_list,
2688 			&interval_bw->endpoints);
2689 }
2690 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2691 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2692 		struct xhci_virt_device *virt_dev,
2693 		int old_active_eps)
2694 {
2695 	struct xhci_root_port_bw_info *rh_bw_info;
2696 	if (!virt_dev->tt_info)
2697 		return;
2698 
2699 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2700 	if (old_active_eps == 0 &&
2701 				virt_dev->tt_info->active_eps != 0) {
2702 		rh_bw_info->num_active_tts += 1;
2703 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2704 	} else if (old_active_eps != 0 &&
2705 				virt_dev->tt_info->active_eps == 0) {
2706 		rh_bw_info->num_active_tts -= 1;
2707 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2708 	}
2709 }
2710 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2711 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2712 		struct xhci_virt_device *virt_dev,
2713 		struct xhci_container_ctx *in_ctx)
2714 {
2715 	struct xhci_bw_info ep_bw_info[31];
2716 	int i;
2717 	struct xhci_input_control_ctx *ctrl_ctx;
2718 	int old_active_eps = 0;
2719 
2720 	if (virt_dev->tt_info)
2721 		old_active_eps = virt_dev->tt_info->active_eps;
2722 
2723 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2724 	if (!ctrl_ctx) {
2725 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2726 				__func__);
2727 		return -ENOMEM;
2728 	}
2729 
2730 	for (i = 0; i < 31; i++) {
2731 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2732 			continue;
2733 
2734 		/* Make a copy of the BW info in case we need to revert this */
2735 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2736 				sizeof(ep_bw_info[i]));
2737 		/* Drop the endpoint from the interval table if the endpoint is
2738 		 * being dropped or changed.
2739 		 */
2740 		if (EP_IS_DROPPED(ctrl_ctx, i))
2741 			xhci_drop_ep_from_interval_table(xhci,
2742 					&virt_dev->eps[i].bw_info,
2743 					virt_dev->bw_table,
2744 					virt_dev->udev,
2745 					&virt_dev->eps[i],
2746 					virt_dev->tt_info);
2747 	}
2748 	/* Overwrite the information stored in the endpoints' bw_info */
2749 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2750 	for (i = 0; i < 31; i++) {
2751 		/* Add any changed or added endpoints to the interval table */
2752 		if (EP_IS_ADDED(ctrl_ctx, i))
2753 			xhci_add_ep_to_interval_table(xhci,
2754 					&virt_dev->eps[i].bw_info,
2755 					virt_dev->bw_table,
2756 					virt_dev->udev,
2757 					&virt_dev->eps[i],
2758 					virt_dev->tt_info);
2759 	}
2760 
2761 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2762 		/* Ok, this fits in the bandwidth we have.
2763 		 * Update the number of active TTs.
2764 		 */
2765 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2766 		return 0;
2767 	}
2768 
2769 	/* We don't have enough bandwidth for this, revert the stored info. */
2770 	for (i = 0; i < 31; i++) {
2771 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2772 			continue;
2773 
2774 		/* Drop the new copies of any added or changed endpoints from
2775 		 * the interval table.
2776 		 */
2777 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2778 			xhci_drop_ep_from_interval_table(xhci,
2779 					&virt_dev->eps[i].bw_info,
2780 					virt_dev->bw_table,
2781 					virt_dev->udev,
2782 					&virt_dev->eps[i],
2783 					virt_dev->tt_info);
2784 		}
2785 		/* Revert the endpoint back to its old information */
2786 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2787 				sizeof(ep_bw_info[i]));
2788 		/* Add any changed or dropped endpoints back into the table */
2789 		if (EP_IS_DROPPED(ctrl_ctx, i))
2790 			xhci_add_ep_to_interval_table(xhci,
2791 					&virt_dev->eps[i].bw_info,
2792 					virt_dev->bw_table,
2793 					virt_dev->udev,
2794 					&virt_dev->eps[i],
2795 					virt_dev->tt_info);
2796 	}
2797 	return -ENOMEM;
2798 }
2799 
2800 /*
2801  * Synchronous XHCI stop endpoint helper.  Issues the stop endpoint command and
2802  * waits for the command completion before returning.
2803  */
xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2804 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2805 			    gfp_t gfp_flags)
2806 {
2807 	struct xhci_command *command;
2808 	unsigned long flags;
2809 	int ret;
2810 
2811 	command = xhci_alloc_command(xhci, true, gfp_flags);
2812 	if (!command)
2813 		return -ENOMEM;
2814 
2815 	spin_lock_irqsave(&xhci->lock, flags);
2816 	ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2817 				       ep->ep_index, suspend);
2818 	if (ret < 0) {
2819 		spin_unlock_irqrestore(&xhci->lock, flags);
2820 		goto out;
2821 	}
2822 
2823 	xhci_ring_cmd_db(xhci);
2824 	spin_unlock_irqrestore(&xhci->lock, flags);
2825 
2826 	wait_for_completion(command->completion);
2827 
2828 	if (command->status == COMP_COMMAND_ABORTED ||
2829 	    command->status == COMP_COMMAND_RING_STOPPED) {
2830 		xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2831 		ret = -ETIME;
2832 	}
2833 out:
2834 	xhci_free_command(xhci, command);
2835 
2836 	return ret;
2837 }
2838 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2839 
2840 /* Issue a configure endpoint command or evaluate context command
2841  * and wait for it to finish.
2842  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2843 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2844 		struct usb_device *udev,
2845 		struct xhci_command *command,
2846 		bool ctx_change, bool must_succeed)
2847 {
2848 	int ret;
2849 	unsigned long flags;
2850 	struct xhci_input_control_ctx *ctrl_ctx;
2851 	struct xhci_virt_device *virt_dev;
2852 	struct xhci_slot_ctx *slot_ctx;
2853 
2854 	if (!command)
2855 		return -EINVAL;
2856 
2857 	spin_lock_irqsave(&xhci->lock, flags);
2858 
2859 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2860 		spin_unlock_irqrestore(&xhci->lock, flags);
2861 		return -ESHUTDOWN;
2862 	}
2863 
2864 	virt_dev = xhci->devs[udev->slot_id];
2865 
2866 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2867 	if (!ctrl_ctx) {
2868 		spin_unlock_irqrestore(&xhci->lock, flags);
2869 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2870 				__func__);
2871 		return -ENOMEM;
2872 	}
2873 
2874 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2875 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2876 		spin_unlock_irqrestore(&xhci->lock, flags);
2877 		xhci_warn(xhci, "Not enough host resources, "
2878 				"active endpoint contexts = %u\n",
2879 				xhci->num_active_eps);
2880 		return -ENOMEM;
2881 	}
2882 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2883 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2884 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2885 			xhci_free_host_resources(xhci, ctrl_ctx);
2886 		spin_unlock_irqrestore(&xhci->lock, flags);
2887 		xhci_warn(xhci, "Not enough bandwidth\n");
2888 		return -ENOMEM;
2889 	}
2890 
2891 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2892 
2893 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2894 	trace_xhci_configure_endpoint(slot_ctx);
2895 
2896 	if (!ctx_change)
2897 		ret = xhci_queue_configure_endpoint(xhci, command,
2898 				command->in_ctx->dma,
2899 				udev->slot_id, must_succeed);
2900 	else
2901 		ret = xhci_queue_evaluate_context(xhci, command,
2902 				command->in_ctx->dma,
2903 				udev->slot_id, must_succeed);
2904 	if (ret < 0) {
2905 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2906 			xhci_free_host_resources(xhci, ctrl_ctx);
2907 		spin_unlock_irqrestore(&xhci->lock, flags);
2908 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2909 				"FIXME allocate a new ring segment");
2910 		return -ENOMEM;
2911 	}
2912 	xhci_ring_cmd_db(xhci);
2913 	spin_unlock_irqrestore(&xhci->lock, flags);
2914 
2915 	/* Wait for the configure endpoint command to complete */
2916 	wait_for_completion(command->completion);
2917 
2918 	if (!ctx_change)
2919 		ret = xhci_configure_endpoint_result(xhci, udev,
2920 						     &command->status);
2921 	else
2922 		ret = xhci_evaluate_context_result(xhci, udev,
2923 						   &command->status);
2924 
2925 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2926 		spin_lock_irqsave(&xhci->lock, flags);
2927 		/* If the command failed, remove the reserved resources.
2928 		 * Otherwise, clean up the estimate to include dropped eps.
2929 		 */
2930 		if (ret)
2931 			xhci_free_host_resources(xhci, ctrl_ctx);
2932 		else
2933 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2934 		spin_unlock_irqrestore(&xhci->lock, flags);
2935 	}
2936 	return ret;
2937 }
2938 
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2939 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2940 	struct xhci_virt_device *vdev, int i)
2941 {
2942 	struct xhci_virt_ep *ep = &vdev->eps[i];
2943 
2944 	if (ep->ep_state & EP_HAS_STREAMS) {
2945 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2946 				xhci_get_endpoint_address(i));
2947 		xhci_free_stream_info(xhci, ep->stream_info);
2948 		ep->stream_info = NULL;
2949 		ep->ep_state &= ~EP_HAS_STREAMS;
2950 	}
2951 }
2952 
2953 /* Called after one or more calls to xhci_add_endpoint() or
2954  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2955  * to call xhci_reset_bandwidth().
2956  *
2957  * Since we are in the middle of changing either configuration or
2958  * installing a new alt setting, the USB core won't allow URBs to be
2959  * enqueued for any endpoint on the old config or interface.  Nothing
2960  * else should be touching the xhci->devs[slot_id] structure, so we
2961  * don't need to take the xhci->lock for manipulating that.
2962  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2963 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2964 {
2965 	int i;
2966 	int ret = 0;
2967 	struct xhci_hcd *xhci;
2968 	struct xhci_virt_device	*virt_dev;
2969 	struct xhci_input_control_ctx *ctrl_ctx;
2970 	struct xhci_slot_ctx *slot_ctx;
2971 	struct xhci_command *command;
2972 
2973 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2974 	if (ret <= 0)
2975 		return ret;
2976 	xhci = hcd_to_xhci(hcd);
2977 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2978 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2979 		return -ENODEV;
2980 
2981 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2982 	virt_dev = xhci->devs[udev->slot_id];
2983 
2984 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2985 	if (!command)
2986 		return -ENOMEM;
2987 
2988 	command->in_ctx = virt_dev->in_ctx;
2989 
2990 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2991 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2992 	if (!ctrl_ctx) {
2993 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2994 				__func__);
2995 		ret = -ENOMEM;
2996 		goto command_cleanup;
2997 	}
2998 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2999 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3000 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3001 
3002 	/* Don't issue the command if there's no endpoints to update. */
3003 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3004 	    ctrl_ctx->drop_flags == 0) {
3005 		ret = 0;
3006 		goto command_cleanup;
3007 	}
3008 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3009 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3010 	for (i = 31; i >= 1; i--) {
3011 		__le32 le32 = cpu_to_le32(BIT(i));
3012 
3013 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3014 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3015 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3016 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3017 			break;
3018 		}
3019 	}
3020 
3021 	ret = xhci_configure_endpoint(xhci, udev, command,
3022 			false, false);
3023 	if (ret)
3024 		/* Callee should call reset_bandwidth() */
3025 		goto command_cleanup;
3026 
3027 	/* Free any rings that were dropped, but not changed. */
3028 	for (i = 1; i < 31; i++) {
3029 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3030 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3031 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3032 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3033 		}
3034 	}
3035 	xhci_zero_in_ctx(xhci, virt_dev);
3036 	/*
3037 	 * Install any rings for completely new endpoints or changed endpoints,
3038 	 * and free any old rings from changed endpoints.
3039 	 */
3040 	for (i = 1; i < 31; i++) {
3041 		if (!virt_dev->eps[i].new_ring)
3042 			continue;
3043 		/* Only free the old ring if it exists.
3044 		 * It may not if this is the first add of an endpoint.
3045 		 */
3046 		if (virt_dev->eps[i].ring) {
3047 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3048 		}
3049 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3050 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3051 		virt_dev->eps[i].new_ring = NULL;
3052 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3053 	}
3054 command_cleanup:
3055 	kfree(command->completion);
3056 	kfree(command);
3057 
3058 	return ret;
3059 }
3060 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3061 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3062 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3063 {
3064 	struct xhci_hcd *xhci;
3065 	struct xhci_virt_device	*virt_dev;
3066 	int i, ret;
3067 
3068 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3069 	if (ret <= 0)
3070 		return;
3071 	xhci = hcd_to_xhci(hcd);
3072 
3073 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3074 	virt_dev = xhci->devs[udev->slot_id];
3075 	/* Free any rings allocated for added endpoints */
3076 	for (i = 0; i < 31; i++) {
3077 		if (virt_dev->eps[i].new_ring) {
3078 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3079 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3080 			virt_dev->eps[i].new_ring = NULL;
3081 		}
3082 	}
3083 	xhci_zero_in_ctx(xhci, virt_dev);
3084 }
3085 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3086 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3087 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3088 		struct xhci_container_ctx *in_ctx,
3089 		struct xhci_container_ctx *out_ctx,
3090 		struct xhci_input_control_ctx *ctrl_ctx,
3091 		u32 add_flags, u32 drop_flags)
3092 {
3093 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3094 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3095 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3096 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3097 }
3098 
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3099 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3100 				  struct usb_host_endpoint *host_ep)
3101 {
3102 	struct xhci_hcd		*xhci;
3103 	struct xhci_virt_device	*vdev;
3104 	struct xhci_virt_ep	*ep;
3105 	struct usb_device	*udev;
3106 	unsigned long		flags;
3107 	unsigned int		ep_index;
3108 
3109 	xhci = hcd_to_xhci(hcd);
3110 rescan:
3111 	spin_lock_irqsave(&xhci->lock, flags);
3112 
3113 	udev = (struct usb_device *)host_ep->hcpriv;
3114 	if (!udev || !udev->slot_id)
3115 		goto done;
3116 
3117 	vdev = xhci->devs[udev->slot_id];
3118 	if (!vdev)
3119 		goto done;
3120 
3121 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3122 	ep = &vdev->eps[ep_index];
3123 
3124 	/* wait for hub_tt_work to finish clearing hub TT */
3125 	if (ep->ep_state & EP_CLEARING_TT) {
3126 		spin_unlock_irqrestore(&xhci->lock, flags);
3127 		schedule_timeout_uninterruptible(1);
3128 		goto rescan;
3129 	}
3130 
3131 	if (ep->ep_state)
3132 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3133 			 ep->ep_state);
3134 done:
3135 	host_ep->hcpriv = NULL;
3136 	spin_unlock_irqrestore(&xhci->lock, flags);
3137 }
3138 
3139 /*
3140  * Called after usb core issues a clear halt control message.
3141  * The host side of the halt should already be cleared by a reset endpoint
3142  * command issued when the STALL event was received.
3143  *
3144  * The reset endpoint command may only be issued to endpoints in the halted
3145  * state. For software that wishes to reset the data toggle or sequence number
3146  * of an endpoint that isn't in the halted state this function will issue a
3147  * configure endpoint command with the Drop and Add bits set for the target
3148  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3149  */
3150 
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3151 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3152 		struct usb_host_endpoint *host_ep)
3153 {
3154 	struct xhci_hcd *xhci;
3155 	struct usb_device *udev;
3156 	struct xhci_virt_device *vdev;
3157 	struct xhci_virt_ep *ep;
3158 	struct xhci_input_control_ctx *ctrl_ctx;
3159 	struct xhci_command *stop_cmd, *cfg_cmd;
3160 	unsigned int ep_index;
3161 	unsigned long flags;
3162 	u32 ep_flag;
3163 	int err;
3164 
3165 	xhci = hcd_to_xhci(hcd);
3166 	if (!host_ep->hcpriv)
3167 		return;
3168 	udev = (struct usb_device *) host_ep->hcpriv;
3169 	vdev = xhci->devs[udev->slot_id];
3170 
3171 	/*
3172 	 * vdev may be lost due to xHC restore error and re-initialization
3173 	 * during S3/S4 resume. A new vdev will be allocated later by
3174 	 * xhci_discover_or_reset_device()
3175 	 */
3176 	if (!udev->slot_id || !vdev)
3177 		return;
3178 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3179 	ep = &vdev->eps[ep_index];
3180 
3181 	/* Bail out if toggle is already being cleared by a endpoint reset */
3182 	spin_lock_irqsave(&xhci->lock, flags);
3183 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3184 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3185 		spin_unlock_irqrestore(&xhci->lock, flags);
3186 		return;
3187 	}
3188 	spin_unlock_irqrestore(&xhci->lock, flags);
3189 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3190 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3191 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3192 		return;
3193 
3194 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3195 
3196 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3197 		return;
3198 
3199 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3200 	if (!stop_cmd)
3201 		return;
3202 
3203 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3204 	if (!cfg_cmd)
3205 		goto cleanup;
3206 
3207 	spin_lock_irqsave(&xhci->lock, flags);
3208 
3209 	/* block queuing new trbs and ringing ep doorbell */
3210 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3211 
3212 	/*
3213 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3214 	 * Driver is required to synchronously cancel all transfer request.
3215 	 * Stop the endpoint to force xHC to update the output context
3216 	 */
3217 
3218 	if (!list_empty(&ep->ring->td_list)) {
3219 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3220 		spin_unlock_irqrestore(&xhci->lock, flags);
3221 		xhci_free_command(xhci, cfg_cmd);
3222 		goto cleanup;
3223 	}
3224 
3225 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3226 					ep_index, 0);
3227 	if (err < 0) {
3228 		spin_unlock_irqrestore(&xhci->lock, flags);
3229 		xhci_free_command(xhci, cfg_cmd);
3230 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3231 				__func__, err);
3232 		goto cleanup;
3233 	}
3234 
3235 	xhci_ring_cmd_db(xhci);
3236 	spin_unlock_irqrestore(&xhci->lock, flags);
3237 
3238 	wait_for_completion(stop_cmd->completion);
3239 
3240 	spin_lock_irqsave(&xhci->lock, flags);
3241 
3242 	/* config ep command clears toggle if add and drop ep flags are set */
3243 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3244 	if (!ctrl_ctx) {
3245 		spin_unlock_irqrestore(&xhci->lock, flags);
3246 		xhci_free_command(xhci, cfg_cmd);
3247 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3248 				__func__);
3249 		goto cleanup;
3250 	}
3251 
3252 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3253 					   ctrl_ctx, ep_flag, ep_flag);
3254 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3255 
3256 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3257 				      udev->slot_id, false);
3258 	if (err < 0) {
3259 		spin_unlock_irqrestore(&xhci->lock, flags);
3260 		xhci_free_command(xhci, cfg_cmd);
3261 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3262 				__func__, err);
3263 		goto cleanup;
3264 	}
3265 
3266 	xhci_ring_cmd_db(xhci);
3267 	spin_unlock_irqrestore(&xhci->lock, flags);
3268 
3269 	wait_for_completion(cfg_cmd->completion);
3270 
3271 	xhci_free_command(xhci, cfg_cmd);
3272 cleanup:
3273 	xhci_free_command(xhci, stop_cmd);
3274 	spin_lock_irqsave(&xhci->lock, flags);
3275 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3276 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3277 	spin_unlock_irqrestore(&xhci->lock, flags);
3278 }
3279 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3280 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3281 		struct usb_device *udev, struct usb_host_endpoint *ep,
3282 		unsigned int slot_id)
3283 {
3284 	int ret;
3285 	unsigned int ep_index;
3286 	unsigned int ep_state;
3287 
3288 	if (!ep)
3289 		return -EINVAL;
3290 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3291 	if (ret <= 0)
3292 		return ret ? ret : -EINVAL;
3293 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3294 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3295 				" descriptor for ep 0x%x does not support streams\n",
3296 				ep->desc.bEndpointAddress);
3297 		return -EINVAL;
3298 	}
3299 
3300 	ep_index = xhci_get_endpoint_index(&ep->desc);
3301 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3302 	if (ep_state & EP_HAS_STREAMS ||
3303 			ep_state & EP_GETTING_STREAMS) {
3304 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3305 				"already has streams set up.\n",
3306 				ep->desc.bEndpointAddress);
3307 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3308 				"dynamic stream context array reallocation.\n");
3309 		return -EINVAL;
3310 	}
3311 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3312 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3313 				"endpoint 0x%x; URBs are pending.\n",
3314 				ep->desc.bEndpointAddress);
3315 		return -EINVAL;
3316 	}
3317 	return 0;
3318 }
3319 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3320 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3321 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3322 {
3323 	unsigned int max_streams;
3324 
3325 	/* The stream context array size must be a power of two */
3326 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3327 	/*
3328 	 * Find out how many primary stream array entries the host controller
3329 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3330 	 * level page entries), but that's an optional feature for xHCI host
3331 	 * controllers. xHCs must support at least 4 stream IDs.
3332 	 */
3333 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3334 	if (*num_stream_ctxs > max_streams) {
3335 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3336 				max_streams);
3337 		*num_stream_ctxs = max_streams;
3338 		*num_streams = max_streams;
3339 	}
3340 }
3341 
3342 /* Returns an error code if one of the endpoint already has streams.
3343  * This does not change any data structures, it only checks and gathers
3344  * information.
3345  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3346 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3347 		struct usb_device *udev,
3348 		struct usb_host_endpoint **eps, unsigned int num_eps,
3349 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3350 {
3351 	unsigned int max_streams;
3352 	unsigned int endpoint_flag;
3353 	int i;
3354 	int ret;
3355 
3356 	for (i = 0; i < num_eps; i++) {
3357 		ret = xhci_check_streams_endpoint(xhci, udev,
3358 				eps[i], udev->slot_id);
3359 		if (ret < 0)
3360 			return ret;
3361 
3362 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3363 		if (max_streams < (*num_streams - 1)) {
3364 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3365 					eps[i]->desc.bEndpointAddress,
3366 					max_streams);
3367 			*num_streams = max_streams+1;
3368 		}
3369 
3370 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3371 		if (*changed_ep_bitmask & endpoint_flag)
3372 			return -EINVAL;
3373 		*changed_ep_bitmask |= endpoint_flag;
3374 	}
3375 	return 0;
3376 }
3377 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3378 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3379 		struct usb_device *udev,
3380 		struct usb_host_endpoint **eps, unsigned int num_eps)
3381 {
3382 	u32 changed_ep_bitmask = 0;
3383 	unsigned int slot_id;
3384 	unsigned int ep_index;
3385 	unsigned int ep_state;
3386 	int i;
3387 
3388 	slot_id = udev->slot_id;
3389 	if (!xhci->devs[slot_id])
3390 		return 0;
3391 
3392 	for (i = 0; i < num_eps; i++) {
3393 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3394 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3395 		/* Are streams already being freed for the endpoint? */
3396 		if (ep_state & EP_GETTING_NO_STREAMS) {
3397 			xhci_warn(xhci, "WARN Can't disable streams for "
3398 					"endpoint 0x%x, "
3399 					"streams are being disabled already\n",
3400 					eps[i]->desc.bEndpointAddress);
3401 			return 0;
3402 		}
3403 		/* Are there actually any streams to free? */
3404 		if (!(ep_state & EP_HAS_STREAMS) &&
3405 				!(ep_state & EP_GETTING_STREAMS)) {
3406 			xhci_warn(xhci, "WARN Can't disable streams for "
3407 					"endpoint 0x%x, "
3408 					"streams are already disabled!\n",
3409 					eps[i]->desc.bEndpointAddress);
3410 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3411 					"with non-streams endpoint\n");
3412 			return 0;
3413 		}
3414 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3415 	}
3416 	return changed_ep_bitmask;
3417 }
3418 
3419 /*
3420  * The USB device drivers use this function (through the HCD interface in USB
3421  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3422  * coordinate mass storage command queueing across multiple endpoints (basically
3423  * a stream ID == a task ID).
3424  *
3425  * Setting up streams involves allocating the same size stream context array
3426  * for each endpoint and issuing a configure endpoint command for all endpoints.
3427  *
3428  * Don't allow the call to succeed if one endpoint only supports one stream
3429  * (which means it doesn't support streams at all).
3430  *
3431  * Drivers may get less stream IDs than they asked for, if the host controller
3432  * hardware or endpoints claim they can't support the number of requested
3433  * stream IDs.
3434  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3435 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3436 		struct usb_host_endpoint **eps, unsigned int num_eps,
3437 		unsigned int num_streams, gfp_t mem_flags)
3438 {
3439 	int i, ret;
3440 	struct xhci_hcd *xhci;
3441 	struct xhci_virt_device *vdev;
3442 	struct xhci_command *config_cmd;
3443 	struct xhci_input_control_ctx *ctrl_ctx;
3444 	unsigned int ep_index;
3445 	unsigned int num_stream_ctxs;
3446 	unsigned int max_packet;
3447 	unsigned long flags;
3448 	u32 changed_ep_bitmask = 0;
3449 
3450 	if (!eps)
3451 		return -EINVAL;
3452 
3453 	/* Add one to the number of streams requested to account for
3454 	 * stream 0 that is reserved for xHCI usage.
3455 	 */
3456 	num_streams += 1;
3457 	xhci = hcd_to_xhci(hcd);
3458 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3459 			num_streams);
3460 
3461 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3462 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3463 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3464 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3465 		return -ENOSYS;
3466 	}
3467 
3468 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3469 	if (!config_cmd)
3470 		return -ENOMEM;
3471 
3472 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3473 	if (!ctrl_ctx) {
3474 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3475 				__func__);
3476 		xhci_free_command(xhci, config_cmd);
3477 		return -ENOMEM;
3478 	}
3479 
3480 	/* Check to make sure all endpoints are not already configured for
3481 	 * streams.  While we're at it, find the maximum number of streams that
3482 	 * all the endpoints will support and check for duplicate endpoints.
3483 	 */
3484 	spin_lock_irqsave(&xhci->lock, flags);
3485 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3486 			num_eps, &num_streams, &changed_ep_bitmask);
3487 	if (ret < 0) {
3488 		xhci_free_command(xhci, config_cmd);
3489 		spin_unlock_irqrestore(&xhci->lock, flags);
3490 		return ret;
3491 	}
3492 	if (num_streams <= 1) {
3493 		xhci_warn(xhci, "WARN: endpoints can't handle "
3494 				"more than one stream.\n");
3495 		xhci_free_command(xhci, config_cmd);
3496 		spin_unlock_irqrestore(&xhci->lock, flags);
3497 		return -EINVAL;
3498 	}
3499 	vdev = xhci->devs[udev->slot_id];
3500 	/* Mark each endpoint as being in transition, so
3501 	 * xhci_urb_enqueue() will reject all URBs.
3502 	 */
3503 	for (i = 0; i < num_eps; i++) {
3504 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3505 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3506 	}
3507 	spin_unlock_irqrestore(&xhci->lock, flags);
3508 
3509 	/* Setup internal data structures and allocate HW data structures for
3510 	 * streams (but don't install the HW structures in the input context
3511 	 * until we're sure all memory allocation succeeded).
3512 	 */
3513 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3514 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3515 			num_stream_ctxs, num_streams);
3516 
3517 	for (i = 0; i < num_eps; i++) {
3518 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3519 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3520 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3521 				num_stream_ctxs,
3522 				num_streams,
3523 				max_packet, mem_flags);
3524 		if (!vdev->eps[ep_index].stream_info)
3525 			goto cleanup;
3526 		/* Set maxPstreams in endpoint context and update deq ptr to
3527 		 * point to stream context array. FIXME
3528 		 */
3529 	}
3530 
3531 	/* Set up the input context for a configure endpoint command. */
3532 	for (i = 0; i < num_eps; i++) {
3533 		struct xhci_ep_ctx *ep_ctx;
3534 
3535 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3536 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3537 
3538 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3539 				vdev->out_ctx, ep_index);
3540 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3541 				vdev->eps[ep_index].stream_info);
3542 	}
3543 	/* Tell the HW to drop its old copy of the endpoint context info
3544 	 * and add the updated copy from the input context.
3545 	 */
3546 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3547 			vdev->out_ctx, ctrl_ctx,
3548 			changed_ep_bitmask, changed_ep_bitmask);
3549 
3550 	/* Issue and wait for the configure endpoint command */
3551 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3552 			false, false);
3553 
3554 	/* xHC rejected the configure endpoint command for some reason, so we
3555 	 * leave the old ring intact and free our internal streams data
3556 	 * structure.
3557 	 */
3558 	if (ret < 0)
3559 		goto cleanup;
3560 
3561 	spin_lock_irqsave(&xhci->lock, flags);
3562 	for (i = 0; i < num_eps; i++) {
3563 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3564 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3565 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3566 			 udev->slot_id, ep_index);
3567 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3568 	}
3569 	xhci_free_command(xhci, config_cmd);
3570 	spin_unlock_irqrestore(&xhci->lock, flags);
3571 
3572 	for (i = 0; i < num_eps; i++) {
3573 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3574 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3575 	}
3576 	/* Subtract 1 for stream 0, which drivers can't use */
3577 	return num_streams - 1;
3578 
3579 cleanup:
3580 	/* If it didn't work, free the streams! */
3581 	for (i = 0; i < num_eps; i++) {
3582 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3583 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3584 		vdev->eps[ep_index].stream_info = NULL;
3585 		/* FIXME Unset maxPstreams in endpoint context and
3586 		 * update deq ptr to point to normal string ring.
3587 		 */
3588 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3589 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3590 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3591 	}
3592 	xhci_free_command(xhci, config_cmd);
3593 	return -ENOMEM;
3594 }
3595 
3596 /* Transition the endpoint from using streams to being a "normal" endpoint
3597  * without streams.
3598  *
3599  * Modify the endpoint context state, submit a configure endpoint command,
3600  * and free all endpoint rings for streams if that completes successfully.
3601  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3602 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3603 		struct usb_host_endpoint **eps, unsigned int num_eps,
3604 		gfp_t mem_flags)
3605 {
3606 	int i, ret;
3607 	struct xhci_hcd *xhci;
3608 	struct xhci_virt_device *vdev;
3609 	struct xhci_command *command;
3610 	struct xhci_input_control_ctx *ctrl_ctx;
3611 	unsigned int ep_index;
3612 	unsigned long flags;
3613 	u32 changed_ep_bitmask;
3614 
3615 	xhci = hcd_to_xhci(hcd);
3616 	vdev = xhci->devs[udev->slot_id];
3617 
3618 	/* Set up a configure endpoint command to remove the streams rings */
3619 	spin_lock_irqsave(&xhci->lock, flags);
3620 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3621 			udev, eps, num_eps);
3622 	if (changed_ep_bitmask == 0) {
3623 		spin_unlock_irqrestore(&xhci->lock, flags);
3624 		return -EINVAL;
3625 	}
3626 
3627 	/* Use the xhci_command structure from the first endpoint.  We may have
3628 	 * allocated too many, but the driver may call xhci_free_streams() for
3629 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3630 	 */
3631 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3632 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3633 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3634 	if (!ctrl_ctx) {
3635 		spin_unlock_irqrestore(&xhci->lock, flags);
3636 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3637 				__func__);
3638 		return -EINVAL;
3639 	}
3640 
3641 	for (i = 0; i < num_eps; i++) {
3642 		struct xhci_ep_ctx *ep_ctx;
3643 
3644 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3645 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3646 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3647 			EP_GETTING_NO_STREAMS;
3648 
3649 		xhci_endpoint_copy(xhci, command->in_ctx,
3650 				vdev->out_ctx, ep_index);
3651 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3652 				&vdev->eps[ep_index]);
3653 	}
3654 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3655 			vdev->out_ctx, ctrl_ctx,
3656 			changed_ep_bitmask, changed_ep_bitmask);
3657 	spin_unlock_irqrestore(&xhci->lock, flags);
3658 
3659 	/* Issue and wait for the configure endpoint command,
3660 	 * which must succeed.
3661 	 */
3662 	ret = xhci_configure_endpoint(xhci, udev, command,
3663 			false, true);
3664 
3665 	/* xHC rejected the configure endpoint command for some reason, so we
3666 	 * leave the streams rings intact.
3667 	 */
3668 	if (ret < 0)
3669 		return ret;
3670 
3671 	spin_lock_irqsave(&xhci->lock, flags);
3672 	for (i = 0; i < num_eps; i++) {
3673 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3674 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3675 		vdev->eps[ep_index].stream_info = NULL;
3676 		/* FIXME Unset maxPstreams in endpoint context and
3677 		 * update deq ptr to point to normal string ring.
3678 		 */
3679 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3680 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3681 	}
3682 	spin_unlock_irqrestore(&xhci->lock, flags);
3683 
3684 	return 0;
3685 }
3686 
3687 /*
3688  * Deletes endpoint resources for endpoints that were active before a Reset
3689  * Device command, or a Disable Slot command.  The Reset Device command leaves
3690  * the control endpoint intact, whereas the Disable Slot command deletes it.
3691  *
3692  * Must be called with xhci->lock held.
3693  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3694 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3695 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3696 {
3697 	int i;
3698 	unsigned int num_dropped_eps = 0;
3699 	unsigned int drop_flags = 0;
3700 
3701 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3702 		if (virt_dev->eps[i].ring) {
3703 			drop_flags |= 1 << i;
3704 			num_dropped_eps++;
3705 		}
3706 	}
3707 	xhci->num_active_eps -= num_dropped_eps;
3708 	if (num_dropped_eps)
3709 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3710 				"Dropped %u ep ctxs, flags = 0x%x, "
3711 				"%u now active.",
3712 				num_dropped_eps, drop_flags,
3713 				xhci->num_active_eps);
3714 }
3715 
3716 /*
3717  * This submits a Reset Device Command, which will set the device state to 0,
3718  * set the device address to 0, and disable all the endpoints except the default
3719  * control endpoint.  The USB core should come back and call
3720  * xhci_address_device(), and then re-set up the configuration.  If this is
3721  * called because of a usb_reset_and_verify_device(), then the old alternate
3722  * settings will be re-installed through the normal bandwidth allocation
3723  * functions.
3724  *
3725  * Wait for the Reset Device command to finish.  Remove all structures
3726  * associated with the endpoints that were disabled.  Clear the input device
3727  * structure? Reset the control endpoint 0 max packet size?
3728  *
3729  * If the virt_dev to be reset does not exist or does not match the udev,
3730  * it means the device is lost, possibly due to the xHC restore error and
3731  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3732  * re-allocate the device.
3733  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3734 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3735 		struct usb_device *udev)
3736 {
3737 	int ret, i;
3738 	unsigned long flags;
3739 	struct xhci_hcd *xhci;
3740 	unsigned int slot_id;
3741 	struct xhci_virt_device *virt_dev;
3742 	struct xhci_command *reset_device_cmd;
3743 	struct xhci_slot_ctx *slot_ctx;
3744 	int old_active_eps = 0;
3745 
3746 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3747 	if (ret <= 0)
3748 		return ret;
3749 	xhci = hcd_to_xhci(hcd);
3750 	slot_id = udev->slot_id;
3751 	virt_dev = xhci->devs[slot_id];
3752 	if (!virt_dev) {
3753 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3754 				"not exist. Re-allocate the device\n", slot_id);
3755 		ret = xhci_alloc_dev(hcd, udev);
3756 		if (ret == 1)
3757 			return 0;
3758 		else
3759 			return -EINVAL;
3760 	}
3761 
3762 	if (virt_dev->tt_info)
3763 		old_active_eps = virt_dev->tt_info->active_eps;
3764 
3765 	if (virt_dev->udev != udev) {
3766 		/* If the virt_dev and the udev does not match, this virt_dev
3767 		 * may belong to another udev.
3768 		 * Re-allocate the device.
3769 		 */
3770 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3771 				"not match the udev. Re-allocate the device\n",
3772 				slot_id);
3773 		ret = xhci_alloc_dev(hcd, udev);
3774 		if (ret == 1)
3775 			return 0;
3776 		else
3777 			return -EINVAL;
3778 	}
3779 
3780 	/* If device is not setup, there is no point in resetting it */
3781 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3782 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3783 						SLOT_STATE_DISABLED)
3784 		return 0;
3785 
3786 	trace_xhci_discover_or_reset_device(slot_ctx);
3787 
3788 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3789 	/* Allocate the command structure that holds the struct completion.
3790 	 * Assume we're in process context, since the normal device reset
3791 	 * process has to wait for the device anyway.  Storage devices are
3792 	 * reset as part of error handling, so use GFP_NOIO instead of
3793 	 * GFP_KERNEL.
3794 	 */
3795 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3796 	if (!reset_device_cmd) {
3797 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3798 		return -ENOMEM;
3799 	}
3800 
3801 	/* Attempt to submit the Reset Device command to the command ring */
3802 	spin_lock_irqsave(&xhci->lock, flags);
3803 
3804 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3805 	if (ret) {
3806 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3807 		spin_unlock_irqrestore(&xhci->lock, flags);
3808 		goto command_cleanup;
3809 	}
3810 	xhci_ring_cmd_db(xhci);
3811 	spin_unlock_irqrestore(&xhci->lock, flags);
3812 
3813 	/* Wait for the Reset Device command to finish */
3814 	wait_for_completion(reset_device_cmd->completion);
3815 
3816 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3817 	 * unless we tried to reset a slot ID that wasn't enabled,
3818 	 * or the device wasn't in the addressed or configured state.
3819 	 */
3820 	ret = reset_device_cmd->status;
3821 	switch (ret) {
3822 	case COMP_COMMAND_ABORTED:
3823 	case COMP_COMMAND_RING_STOPPED:
3824 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3825 		ret = -ETIME;
3826 		goto command_cleanup;
3827 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3828 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3829 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3830 				slot_id,
3831 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3832 		xhci_dbg(xhci, "Not freeing device rings.\n");
3833 		/* Don't treat this as an error.  May change my mind later. */
3834 		ret = 0;
3835 		goto command_cleanup;
3836 	case COMP_SUCCESS:
3837 		xhci_dbg(xhci, "Successful reset device command.\n");
3838 		break;
3839 	default:
3840 		if (xhci_is_vendor_info_code(xhci, ret))
3841 			break;
3842 		xhci_warn(xhci, "Unknown completion code %u for "
3843 				"reset device command.\n", ret);
3844 		ret = -EINVAL;
3845 		goto command_cleanup;
3846 	}
3847 
3848 	/* Free up host controller endpoint resources */
3849 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3850 		spin_lock_irqsave(&xhci->lock, flags);
3851 		/* Don't delete the default control endpoint resources */
3852 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3853 		spin_unlock_irqrestore(&xhci->lock, flags);
3854 	}
3855 
3856 	/* Everything but endpoint 0 is disabled, so free the rings. */
3857 	for (i = 1; i < 31; i++) {
3858 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3859 
3860 		if (ep->ep_state & EP_HAS_STREAMS) {
3861 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3862 					xhci_get_endpoint_address(i));
3863 			xhci_free_stream_info(xhci, ep->stream_info);
3864 			ep->stream_info = NULL;
3865 			ep->ep_state &= ~EP_HAS_STREAMS;
3866 		}
3867 
3868 		if (ep->ring) {
3869 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3870 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3871 		}
3872 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3873 			xhci_drop_ep_from_interval_table(xhci,
3874 					&virt_dev->eps[i].bw_info,
3875 					virt_dev->bw_table,
3876 					udev,
3877 					&virt_dev->eps[i],
3878 					virt_dev->tt_info);
3879 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3880 	}
3881 	/* If necessary, update the number of active TTs on this root port */
3882 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3883 	virt_dev->flags = 0;
3884 	ret = 0;
3885 
3886 command_cleanup:
3887 	xhci_free_command(xhci, reset_device_cmd);
3888 	return ret;
3889 }
3890 
3891 /*
3892  * At this point, the struct usb_device is about to go away, the device has
3893  * disconnected, and all traffic has been stopped and the endpoints have been
3894  * disabled.  Free any HC data structures associated with that device.
3895  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3896 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3897 {
3898 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3899 	struct xhci_virt_device *virt_dev;
3900 	struct xhci_slot_ctx *slot_ctx;
3901 	unsigned long flags;
3902 	int i, ret;
3903 
3904 	/*
3905 	 * We called pm_runtime_get_noresume when the device was attached.
3906 	 * Decrement the counter here to allow controller to runtime suspend
3907 	 * if no devices remain.
3908 	 */
3909 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3910 		pm_runtime_put_noidle(hcd->self.controller);
3911 
3912 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3913 	/* If the host is halted due to driver unload, we still need to free the
3914 	 * device.
3915 	 */
3916 	if (ret <= 0 && ret != -ENODEV)
3917 		return;
3918 
3919 	virt_dev = xhci->devs[udev->slot_id];
3920 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3921 	trace_xhci_free_dev(slot_ctx);
3922 
3923 	/* Stop any wayward timer functions (which may grab the lock) */
3924 	for (i = 0; i < 31; i++)
3925 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3926 	virt_dev->udev = NULL;
3927 	xhci_disable_slot(xhci, udev->slot_id);
3928 
3929 	spin_lock_irqsave(&xhci->lock, flags);
3930 	xhci_free_virt_device(xhci, udev->slot_id);
3931 	spin_unlock_irqrestore(&xhci->lock, flags);
3932 
3933 }
3934 
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3935 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3936 {
3937 	struct xhci_command *command;
3938 	unsigned long flags;
3939 	u32 state;
3940 	int ret;
3941 
3942 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3943 	if (!command)
3944 		return -ENOMEM;
3945 
3946 	xhci_debugfs_remove_slot(xhci, slot_id);
3947 
3948 	spin_lock_irqsave(&xhci->lock, flags);
3949 	/* Don't disable the slot if the host controller is dead. */
3950 	state = readl(&xhci->op_regs->status);
3951 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3952 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3953 		spin_unlock_irqrestore(&xhci->lock, flags);
3954 		kfree(command);
3955 		return -ENODEV;
3956 	}
3957 
3958 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3959 				slot_id);
3960 	if (ret) {
3961 		spin_unlock_irqrestore(&xhci->lock, flags);
3962 		kfree(command);
3963 		return ret;
3964 	}
3965 	xhci_ring_cmd_db(xhci);
3966 	spin_unlock_irqrestore(&xhci->lock, flags);
3967 
3968 	wait_for_completion(command->completion);
3969 
3970 	if (command->status != COMP_SUCCESS)
3971 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3972 			  slot_id, command->status);
3973 
3974 	xhci_free_command(xhci, command);
3975 
3976 	return 0;
3977 }
3978 
3979 /*
3980  * Checks if we have enough host controller resources for the default control
3981  * endpoint.
3982  *
3983  * Must be called with xhci->lock held.
3984  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3985 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3986 {
3987 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3988 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3989 				"Not enough ep ctxs: "
3990 				"%u active, need to add 1, limit is %u.",
3991 				xhci->num_active_eps, xhci->limit_active_eps);
3992 		return -ENOMEM;
3993 	}
3994 	xhci->num_active_eps += 1;
3995 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3996 			"Adding 1 ep ctx, %u now active.",
3997 			xhci->num_active_eps);
3998 	return 0;
3999 }
4000 
4001 
4002 /*
4003  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4004  * timed out, or allocating memory failed.  Returns 1 on success.
4005  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4006 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4007 {
4008 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4009 	struct xhci_virt_device *vdev;
4010 	struct xhci_slot_ctx *slot_ctx;
4011 	unsigned long flags;
4012 	int ret, slot_id;
4013 	struct xhci_command *command;
4014 
4015 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4016 	if (!command)
4017 		return 0;
4018 
4019 	spin_lock_irqsave(&xhci->lock, flags);
4020 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4021 	if (ret) {
4022 		spin_unlock_irqrestore(&xhci->lock, flags);
4023 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4024 		xhci_free_command(xhci, command);
4025 		return 0;
4026 	}
4027 	xhci_ring_cmd_db(xhci);
4028 	spin_unlock_irqrestore(&xhci->lock, flags);
4029 
4030 	wait_for_completion(command->completion);
4031 	slot_id = command->slot_id;
4032 
4033 	if (!slot_id || command->status != COMP_SUCCESS) {
4034 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4035 			 xhci_trb_comp_code_string(command->status));
4036 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4037 				HCS_MAX_SLOTS(
4038 					readl(&xhci->cap_regs->hcs_params1)));
4039 		xhci_free_command(xhci, command);
4040 		return 0;
4041 	}
4042 
4043 	xhci_free_command(xhci, command);
4044 
4045 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4046 		spin_lock_irqsave(&xhci->lock, flags);
4047 		ret = xhci_reserve_host_control_ep_resources(xhci);
4048 		if (ret) {
4049 			spin_unlock_irqrestore(&xhci->lock, flags);
4050 			xhci_warn(xhci, "Not enough host resources, "
4051 					"active endpoint contexts = %u\n",
4052 					xhci->num_active_eps);
4053 			goto disable_slot;
4054 		}
4055 		spin_unlock_irqrestore(&xhci->lock, flags);
4056 	}
4057 	/* Use GFP_NOIO, since this function can be called from
4058 	 * xhci_discover_or_reset_device(), which may be called as part of
4059 	 * mass storage driver error handling.
4060 	 */
4061 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4062 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4063 		goto disable_slot;
4064 	}
4065 	vdev = xhci->devs[slot_id];
4066 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4067 	trace_xhci_alloc_dev(slot_ctx);
4068 
4069 	udev->slot_id = slot_id;
4070 
4071 	xhci_debugfs_create_slot(xhci, slot_id);
4072 
4073 	/*
4074 	 * If resetting upon resume, we can't put the controller into runtime
4075 	 * suspend if there is a device attached.
4076 	 */
4077 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4078 		pm_runtime_get_noresume(hcd->self.controller);
4079 
4080 	/* Is this a LS or FS device under a HS hub? */
4081 	/* Hub or peripherial? */
4082 	return 1;
4083 
4084 disable_slot:
4085 	xhci_disable_slot(xhci, udev->slot_id);
4086 	xhci_free_virt_device(xhci, udev->slot_id);
4087 
4088 	return 0;
4089 }
4090 
4091 /**
4092  * xhci_setup_device - issues an Address Device command to assign a unique
4093  *			USB bus address.
4094  * @hcd: USB host controller data structure.
4095  * @udev: USB dev structure representing the connected device.
4096  * @setup: Enum specifying setup mode: address only or with context.
4097  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4098  *
4099  * Return: 0 if successful; otherwise, negative error code.
4100  */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4101 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4102 			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4103 {
4104 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4105 	unsigned long flags;
4106 	struct xhci_virt_device *virt_dev;
4107 	int ret = 0;
4108 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4109 	struct xhci_slot_ctx *slot_ctx;
4110 	struct xhci_input_control_ctx *ctrl_ctx;
4111 	u64 temp_64;
4112 	struct xhci_command *command = NULL;
4113 
4114 	mutex_lock(&xhci->mutex);
4115 
4116 	if (xhci->xhc_state) {	/* dying, removing or halted */
4117 		ret = -ESHUTDOWN;
4118 		goto out;
4119 	}
4120 
4121 	if (!udev->slot_id) {
4122 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4123 				"Bad Slot ID %d", udev->slot_id);
4124 		ret = -EINVAL;
4125 		goto out;
4126 	}
4127 
4128 	virt_dev = xhci->devs[udev->slot_id];
4129 
4130 	if (WARN_ON(!virt_dev)) {
4131 		/*
4132 		 * In plug/unplug torture test with an NEC controller,
4133 		 * a zero-dereference was observed once due to virt_dev = 0.
4134 		 * Print useful debug rather than crash if it is observed again!
4135 		 */
4136 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4137 			udev->slot_id);
4138 		ret = -EINVAL;
4139 		goto out;
4140 	}
4141 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4142 	trace_xhci_setup_device_slot(slot_ctx);
4143 
4144 	if (setup == SETUP_CONTEXT_ONLY) {
4145 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4146 		    SLOT_STATE_DEFAULT) {
4147 			xhci_dbg(xhci, "Slot already in default state\n");
4148 			goto out;
4149 		}
4150 	}
4151 
4152 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4153 	if (!command) {
4154 		ret = -ENOMEM;
4155 		goto out;
4156 	}
4157 
4158 	command->in_ctx = virt_dev->in_ctx;
4159 	command->timeout_ms = timeout_ms;
4160 
4161 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4162 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4163 	if (!ctrl_ctx) {
4164 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4165 				__func__);
4166 		ret = -EINVAL;
4167 		goto out;
4168 	}
4169 	/*
4170 	 * If this is the first Set Address since device plug-in or
4171 	 * virt_device realloaction after a resume with an xHCI power loss,
4172 	 * then set up the slot context.
4173 	 */
4174 	if (!slot_ctx->dev_info)
4175 		xhci_setup_addressable_virt_dev(xhci, udev);
4176 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4177 	else
4178 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4179 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4180 	ctrl_ctx->drop_flags = 0;
4181 
4182 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4183 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4184 
4185 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4186 	spin_lock_irqsave(&xhci->lock, flags);
4187 	trace_xhci_setup_device(virt_dev);
4188 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4189 					udev->slot_id, setup);
4190 	if (ret) {
4191 		spin_unlock_irqrestore(&xhci->lock, flags);
4192 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4193 				"FIXME: allocate a command ring segment");
4194 		goto out;
4195 	}
4196 	xhci_ring_cmd_db(xhci);
4197 	spin_unlock_irqrestore(&xhci->lock, flags);
4198 
4199 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4200 	wait_for_completion(command->completion);
4201 
4202 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4203 	 * the SetAddress() "recovery interval" required by USB and aborting the
4204 	 * command on a timeout.
4205 	 */
4206 	switch (command->status) {
4207 	case COMP_COMMAND_ABORTED:
4208 	case COMP_COMMAND_RING_STOPPED:
4209 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4210 		ret = -ETIME;
4211 		break;
4212 	case COMP_CONTEXT_STATE_ERROR:
4213 	case COMP_SLOT_NOT_ENABLED_ERROR:
4214 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4215 			 act, udev->slot_id);
4216 		ret = -EINVAL;
4217 		break;
4218 	case COMP_USB_TRANSACTION_ERROR:
4219 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4220 
4221 		mutex_unlock(&xhci->mutex);
4222 		ret = xhci_disable_slot(xhci, udev->slot_id);
4223 		xhci_free_virt_device(xhci, udev->slot_id);
4224 		if (!ret) {
4225 			if (xhci_alloc_dev(hcd, udev) == 1)
4226 				xhci_setup_addressable_virt_dev(xhci, udev);
4227 		}
4228 		kfree(command->completion);
4229 		kfree(command);
4230 		return -EPROTO;
4231 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4232 		dev_warn(&udev->dev,
4233 			 "ERROR: Incompatible device for setup %s command\n", act);
4234 		ret = -ENODEV;
4235 		break;
4236 	case COMP_SUCCESS:
4237 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4238 			       "Successful setup %s command", act);
4239 		break;
4240 	default:
4241 		xhci_err(xhci,
4242 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4243 			 act, command->status);
4244 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4245 		ret = -EINVAL;
4246 		break;
4247 	}
4248 	if (ret)
4249 		goto out;
4250 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4251 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4252 			"Op regs DCBAA ptr = %#016llx", temp_64);
4253 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4254 		"Slot ID %d dcbaa entry @%p = %#016llx",
4255 		udev->slot_id,
4256 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4257 		(unsigned long long)
4258 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4259 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4260 			"Output Context DMA address = %#08llx",
4261 			(unsigned long long)virt_dev->out_ctx->dma);
4262 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4263 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4264 	/*
4265 	 * USB core uses address 1 for the roothubs, so we add one to the
4266 	 * address given back to us by the HC.
4267 	 */
4268 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4269 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4270 	/* Zero the input context control for later use */
4271 	ctrl_ctx->add_flags = 0;
4272 	ctrl_ctx->drop_flags = 0;
4273 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4274 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4275 
4276 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4277 		       "Internal device address = %d",
4278 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4279 out:
4280 	mutex_unlock(&xhci->mutex);
4281 	if (command) {
4282 		kfree(command->completion);
4283 		kfree(command);
4284 	}
4285 	return ret;
4286 }
4287 
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4288 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4289 			       unsigned int timeout_ms)
4290 {
4291 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4292 }
4293 
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4294 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4295 {
4296 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4297 				 XHCI_CMD_DEFAULT_TIMEOUT);
4298 }
4299 
4300 /*
4301  * Transfer the port index into real index in the HW port status
4302  * registers. Caculate offset between the port's PORTSC register
4303  * and port status base. Divide the number of per port register
4304  * to get the real index. The raw port number bases 1.
4305  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4306 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4307 {
4308 	struct xhci_hub *rhub;
4309 
4310 	rhub = xhci_get_rhub(hcd);
4311 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4312 }
4313 
4314 /*
4315  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4316  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4317  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4318 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4319 			struct usb_device *udev, u16 max_exit_latency)
4320 {
4321 	struct xhci_virt_device *virt_dev;
4322 	struct xhci_command *command;
4323 	struct xhci_input_control_ctx *ctrl_ctx;
4324 	struct xhci_slot_ctx *slot_ctx;
4325 	unsigned long flags;
4326 	int ret;
4327 
4328 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4329 	if (!command)
4330 		return -ENOMEM;
4331 
4332 	spin_lock_irqsave(&xhci->lock, flags);
4333 
4334 	virt_dev = xhci->devs[udev->slot_id];
4335 
4336 	/*
4337 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4338 	 * xHC was re-initialized. Exit latency will be set later after
4339 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4340 	 */
4341 
4342 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4343 		spin_unlock_irqrestore(&xhci->lock, flags);
4344 		xhci_free_command(xhci, command);
4345 		return 0;
4346 	}
4347 
4348 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4349 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4350 	if (!ctrl_ctx) {
4351 		spin_unlock_irqrestore(&xhci->lock, flags);
4352 		xhci_free_command(xhci, command);
4353 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4354 				__func__);
4355 		return -ENOMEM;
4356 	}
4357 
4358 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4359 	spin_unlock_irqrestore(&xhci->lock, flags);
4360 
4361 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4362 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4363 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4364 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4365 	slot_ctx->dev_state = 0;
4366 
4367 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4368 			"Set up evaluate context for LPM MEL change.");
4369 
4370 	/* Issue and wait for the evaluate context command. */
4371 	ret = xhci_configure_endpoint(xhci, udev, command,
4372 			true, true);
4373 
4374 	if (!ret) {
4375 		spin_lock_irqsave(&xhci->lock, flags);
4376 		virt_dev->current_mel = max_exit_latency;
4377 		spin_unlock_irqrestore(&xhci->lock, flags);
4378 	}
4379 
4380 	xhci_free_command(xhci, command);
4381 
4382 	return ret;
4383 }
4384 
4385 #ifdef CONFIG_PM
4386 
4387 /* BESL to HIRD Encoding array for USB2 LPM */
4388 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4389 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4390 
4391 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4392 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4393 					struct usb_device *udev)
4394 {
4395 	int u2del, besl, besl_host;
4396 	int besl_device = 0;
4397 	u32 field;
4398 
4399 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4400 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4401 
4402 	if (field & USB_BESL_SUPPORT) {
4403 		for (besl_host = 0; besl_host < 16; besl_host++) {
4404 			if (xhci_besl_encoding[besl_host] >= u2del)
4405 				break;
4406 		}
4407 		/* Use baseline BESL value as default */
4408 		if (field & USB_BESL_BASELINE_VALID)
4409 			besl_device = USB_GET_BESL_BASELINE(field);
4410 		else if (field & USB_BESL_DEEP_VALID)
4411 			besl_device = USB_GET_BESL_DEEP(field);
4412 	} else {
4413 		if (u2del <= 50)
4414 			besl_host = 0;
4415 		else
4416 			besl_host = (u2del - 51) / 75 + 1;
4417 	}
4418 
4419 	besl = besl_host + besl_device;
4420 	if (besl > 15)
4421 		besl = 15;
4422 
4423 	return besl;
4424 }
4425 
4426 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4427 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4428 {
4429 	u32 field;
4430 	int l1;
4431 	int besld = 0;
4432 	int hirdm = 0;
4433 
4434 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4435 
4436 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4437 	l1 = udev->l1_params.timeout / 256;
4438 
4439 	/* device has preferred BESLD */
4440 	if (field & USB_BESL_DEEP_VALID) {
4441 		besld = USB_GET_BESL_DEEP(field);
4442 		hirdm = 1;
4443 	}
4444 
4445 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4446 }
4447 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4448 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4449 			struct usb_device *udev, int enable)
4450 {
4451 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4452 	struct xhci_port **ports;
4453 	__le32 __iomem	*pm_addr, *hlpm_addr;
4454 	u32		pm_val, hlpm_val, field;
4455 	unsigned int	port_num;
4456 	unsigned long	flags;
4457 	int		hird, exit_latency;
4458 	int		ret;
4459 
4460 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4461 		return -EPERM;
4462 
4463 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4464 			!udev->lpm_capable)
4465 		return -EPERM;
4466 
4467 	if (!udev->parent || udev->parent->parent ||
4468 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4469 		return -EPERM;
4470 
4471 	if (udev->usb2_hw_lpm_capable != 1)
4472 		return -EPERM;
4473 
4474 	spin_lock_irqsave(&xhci->lock, flags);
4475 
4476 	ports = xhci->usb2_rhub.ports;
4477 	port_num = udev->portnum - 1;
4478 	pm_addr = ports[port_num]->addr + PORTPMSC;
4479 	pm_val = readl(pm_addr);
4480 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4481 
4482 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4483 			enable ? "enable" : "disable", port_num + 1);
4484 
4485 	if (enable) {
4486 		/* Host supports BESL timeout instead of HIRD */
4487 		if (udev->usb2_hw_lpm_besl_capable) {
4488 			/* if device doesn't have a preferred BESL value use a
4489 			 * default one which works with mixed HIRD and BESL
4490 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4491 			 */
4492 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4493 			if ((field & USB_BESL_SUPPORT) &&
4494 			    (field & USB_BESL_BASELINE_VALID))
4495 				hird = USB_GET_BESL_BASELINE(field);
4496 			else
4497 				hird = udev->l1_params.besl;
4498 
4499 			exit_latency = xhci_besl_encoding[hird];
4500 			spin_unlock_irqrestore(&xhci->lock, flags);
4501 
4502 			ret = xhci_change_max_exit_latency(xhci, udev,
4503 							   exit_latency);
4504 			if (ret < 0)
4505 				return ret;
4506 			spin_lock_irqsave(&xhci->lock, flags);
4507 
4508 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4509 			writel(hlpm_val, hlpm_addr);
4510 			/* flush write */
4511 			readl(hlpm_addr);
4512 		} else {
4513 			hird = xhci_calculate_hird_besl(xhci, udev);
4514 		}
4515 
4516 		pm_val &= ~PORT_HIRD_MASK;
4517 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4518 		writel(pm_val, pm_addr);
4519 		pm_val = readl(pm_addr);
4520 		pm_val |= PORT_HLE;
4521 		writel(pm_val, pm_addr);
4522 		/* flush write */
4523 		readl(pm_addr);
4524 	} else {
4525 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4526 		writel(pm_val, pm_addr);
4527 		/* flush write */
4528 		readl(pm_addr);
4529 		if (udev->usb2_hw_lpm_besl_capable) {
4530 			spin_unlock_irqrestore(&xhci->lock, flags);
4531 			xhci_change_max_exit_latency(xhci, udev, 0);
4532 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4533 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4534 					   100, 10000);
4535 			return 0;
4536 		}
4537 	}
4538 
4539 	spin_unlock_irqrestore(&xhci->lock, flags);
4540 	return 0;
4541 }
4542 
4543 /* check if a usb2 port supports a given extened capability protocol
4544  * only USB2 ports extended protocol capability values are cached.
4545  * Return 1 if capability is supported
4546  */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4547 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4548 					   unsigned capability)
4549 {
4550 	u32 port_offset, port_count;
4551 	int i;
4552 
4553 	for (i = 0; i < xhci->num_ext_caps; i++) {
4554 		if (xhci->ext_caps[i] & capability) {
4555 			/* port offsets starts at 1 */
4556 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4557 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4558 			if (port >= port_offset &&
4559 			    port < port_offset + port_count)
4560 				return 1;
4561 		}
4562 	}
4563 	return 0;
4564 }
4565 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4566 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4567 {
4568 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4569 	int		portnum = udev->portnum - 1;
4570 
4571 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4572 		return 0;
4573 
4574 	/* we only support lpm for non-hub device connected to root hub yet */
4575 	if (!udev->parent || udev->parent->parent ||
4576 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4577 		return 0;
4578 
4579 	if (xhci->hw_lpm_support == 1 &&
4580 			xhci_check_usb2_port_capability(
4581 				xhci, portnum, XHCI_HLC)) {
4582 		udev->usb2_hw_lpm_capable = 1;
4583 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4584 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4585 		if (xhci_check_usb2_port_capability(xhci, portnum,
4586 					XHCI_BLC))
4587 			udev->usb2_hw_lpm_besl_capable = 1;
4588 	}
4589 
4590 	return 0;
4591 }
4592 
4593 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4594 
4595 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4596 static unsigned long long xhci_service_interval_to_ns(
4597 		struct usb_endpoint_descriptor *desc)
4598 {
4599 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4600 }
4601 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4602 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4603 		enum usb3_link_state state)
4604 {
4605 	unsigned long long sel;
4606 	unsigned long long pel;
4607 	unsigned int max_sel_pel;
4608 	char *state_name;
4609 
4610 	switch (state) {
4611 	case USB3_LPM_U1:
4612 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4613 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4614 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4615 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4616 		state_name = "U1";
4617 		break;
4618 	case USB3_LPM_U2:
4619 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4620 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4621 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4622 		state_name = "U2";
4623 		break;
4624 	default:
4625 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4626 				__func__);
4627 		return USB3_LPM_DISABLED;
4628 	}
4629 
4630 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4631 		return USB3_LPM_DEVICE_INITIATED;
4632 
4633 	if (sel > max_sel_pel)
4634 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4635 				"due to long SEL %llu ms\n",
4636 				state_name, sel);
4637 	else
4638 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4639 				"due to long PEL %llu ms\n",
4640 				state_name, pel);
4641 	return USB3_LPM_DISABLED;
4642 }
4643 
4644 /* The U1 timeout should be the maximum of the following values:
4645  *  - For control endpoints, U1 system exit latency (SEL) * 3
4646  *  - For bulk endpoints, U1 SEL * 5
4647  *  - For interrupt endpoints:
4648  *    - Notification EPs, U1 SEL * 3
4649  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4650  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4651  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4652 static unsigned long long xhci_calculate_intel_u1_timeout(
4653 		struct usb_device *udev,
4654 		struct usb_endpoint_descriptor *desc)
4655 {
4656 	unsigned long long timeout_ns;
4657 	int ep_type;
4658 	int intr_type;
4659 
4660 	ep_type = usb_endpoint_type(desc);
4661 	switch (ep_type) {
4662 	case USB_ENDPOINT_XFER_CONTROL:
4663 		timeout_ns = udev->u1_params.sel * 3;
4664 		break;
4665 	case USB_ENDPOINT_XFER_BULK:
4666 		timeout_ns = udev->u1_params.sel * 5;
4667 		break;
4668 	case USB_ENDPOINT_XFER_INT:
4669 		intr_type = usb_endpoint_interrupt_type(desc);
4670 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4671 			timeout_ns = udev->u1_params.sel * 3;
4672 			break;
4673 		}
4674 		/* Otherwise the calculation is the same as isoc eps */
4675 		fallthrough;
4676 	case USB_ENDPOINT_XFER_ISOC:
4677 		timeout_ns = xhci_service_interval_to_ns(desc);
4678 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4679 		if (timeout_ns < udev->u1_params.sel * 2)
4680 			timeout_ns = udev->u1_params.sel * 2;
4681 		break;
4682 	default:
4683 		return 0;
4684 	}
4685 
4686 	return timeout_ns;
4687 }
4688 
4689 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4690 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4691 		struct usb_device *udev,
4692 		struct usb_endpoint_descriptor *desc)
4693 {
4694 	unsigned long long timeout_ns;
4695 
4696 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4697 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4698 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4699 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4700 			return USB3_LPM_DISABLED;
4701 		}
4702 	}
4703 
4704 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4705 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4706 	else
4707 		timeout_ns = udev->u1_params.sel;
4708 
4709 	/* The U1 timeout is encoded in 1us intervals.
4710 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4711 	 */
4712 	if (timeout_ns == USB3_LPM_DISABLED)
4713 		timeout_ns = 1;
4714 	else
4715 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4716 
4717 	/* If the necessary timeout value is bigger than what we can set in the
4718 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4719 	 */
4720 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4721 		return timeout_ns;
4722 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4723 			"due to long timeout %llu ms\n", timeout_ns);
4724 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4725 }
4726 
4727 /* The U2 timeout should be the maximum of:
4728  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4729  *  - largest bInterval of any active periodic endpoint (to avoid going
4730  *    into lower power link states between intervals).
4731  *  - the U2 Exit Latency of the device
4732  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4733 static unsigned long long xhci_calculate_intel_u2_timeout(
4734 		struct usb_device *udev,
4735 		struct usb_endpoint_descriptor *desc)
4736 {
4737 	unsigned long long timeout_ns;
4738 	unsigned long long u2_del_ns;
4739 
4740 	timeout_ns = 10 * 1000 * 1000;
4741 
4742 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4743 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4744 		timeout_ns = xhci_service_interval_to_ns(desc);
4745 
4746 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4747 	if (u2_del_ns > timeout_ns)
4748 		timeout_ns = u2_del_ns;
4749 
4750 	return timeout_ns;
4751 }
4752 
4753 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4754 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4755 		struct usb_device *udev,
4756 		struct usb_endpoint_descriptor *desc)
4757 {
4758 	unsigned long long timeout_ns;
4759 
4760 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4761 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4762 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4763 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4764 			return USB3_LPM_DISABLED;
4765 		}
4766 	}
4767 
4768 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4769 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4770 	else
4771 		timeout_ns = udev->u2_params.sel;
4772 
4773 	/* The U2 timeout is encoded in 256us intervals */
4774 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4775 	/* If the necessary timeout value is bigger than what we can set in the
4776 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4777 	 */
4778 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4779 		return timeout_ns;
4780 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4781 			"due to long timeout %llu ms\n", timeout_ns);
4782 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4783 }
4784 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4785 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4786 		struct usb_device *udev,
4787 		struct usb_endpoint_descriptor *desc,
4788 		enum usb3_link_state state,
4789 		u16 *timeout)
4790 {
4791 	if (state == USB3_LPM_U1)
4792 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4793 	else if (state == USB3_LPM_U2)
4794 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4795 
4796 	return USB3_LPM_DISABLED;
4797 }
4798 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4799 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4800 		struct usb_device *udev,
4801 		struct usb_endpoint_descriptor *desc,
4802 		enum usb3_link_state state,
4803 		u16 *timeout)
4804 {
4805 	u16 alt_timeout;
4806 
4807 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4808 		desc, state, timeout);
4809 
4810 	/* If we found we can't enable hub-initiated LPM, and
4811 	 * the U1 or U2 exit latency was too high to allow
4812 	 * device-initiated LPM as well, then we will disable LPM
4813 	 * for this device, so stop searching any further.
4814 	 */
4815 	if (alt_timeout == USB3_LPM_DISABLED) {
4816 		*timeout = alt_timeout;
4817 		return -E2BIG;
4818 	}
4819 	if (alt_timeout > *timeout)
4820 		*timeout = alt_timeout;
4821 	return 0;
4822 }
4823 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4824 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4825 		struct usb_device *udev,
4826 		struct usb_host_interface *alt,
4827 		enum usb3_link_state state,
4828 		u16 *timeout)
4829 {
4830 	int j;
4831 
4832 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4833 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4834 					&alt->endpoint[j].desc, state, timeout))
4835 			return -E2BIG;
4836 	}
4837 	return 0;
4838 }
4839 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4840 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4841 		struct usb_device *udev,
4842 		enum usb3_link_state state)
4843 {
4844 	struct usb_device *parent = udev->parent;
4845 	int tier = 1; /* roothub is tier1 */
4846 
4847 	while (parent) {
4848 		parent = parent->parent;
4849 		tier++;
4850 	}
4851 
4852 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4853 		goto fail;
4854 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4855 		goto fail;
4856 
4857 	return 0;
4858 fail:
4859 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4860 			tier);
4861 	return -E2BIG;
4862 }
4863 
4864 /* Returns the U1 or U2 timeout that should be enabled.
4865  * If the tier check or timeout setting functions return with a non-zero exit
4866  * code, that means the timeout value has been finalized and we shouldn't look
4867  * at any more endpoints.
4868  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4869 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4870 			struct usb_device *udev, enum usb3_link_state state)
4871 {
4872 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4873 	struct usb_host_config *config;
4874 	char *state_name;
4875 	int i;
4876 	u16 timeout = USB3_LPM_DISABLED;
4877 
4878 	if (state == USB3_LPM_U1)
4879 		state_name = "U1";
4880 	else if (state == USB3_LPM_U2)
4881 		state_name = "U2";
4882 	else {
4883 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4884 				state);
4885 		return timeout;
4886 	}
4887 
4888 	/* Gather some information about the currently installed configuration
4889 	 * and alternate interface settings.
4890 	 */
4891 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4892 			state, &timeout))
4893 		return timeout;
4894 
4895 	config = udev->actconfig;
4896 	if (!config)
4897 		return timeout;
4898 
4899 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4900 		struct usb_driver *driver;
4901 		struct usb_interface *intf = config->interface[i];
4902 
4903 		if (!intf)
4904 			continue;
4905 
4906 		/* Check if any currently bound drivers want hub-initiated LPM
4907 		 * disabled.
4908 		 */
4909 		if (intf->dev.driver) {
4910 			driver = to_usb_driver(intf->dev.driver);
4911 			if (driver && driver->disable_hub_initiated_lpm) {
4912 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4913 					state_name, driver->name);
4914 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4915 								      state);
4916 				if (timeout == USB3_LPM_DISABLED)
4917 					return timeout;
4918 			}
4919 		}
4920 
4921 		/* Not sure how this could happen... */
4922 		if (!intf->cur_altsetting)
4923 			continue;
4924 
4925 		if (xhci_update_timeout_for_interface(xhci, udev,
4926 					intf->cur_altsetting,
4927 					state, &timeout))
4928 			return timeout;
4929 	}
4930 	return timeout;
4931 }
4932 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4933 static int calculate_max_exit_latency(struct usb_device *udev,
4934 		enum usb3_link_state state_changed,
4935 		u16 hub_encoded_timeout)
4936 {
4937 	unsigned long long u1_mel_us = 0;
4938 	unsigned long long u2_mel_us = 0;
4939 	unsigned long long mel_us = 0;
4940 	bool disabling_u1;
4941 	bool disabling_u2;
4942 	bool enabling_u1;
4943 	bool enabling_u2;
4944 
4945 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4946 			hub_encoded_timeout == USB3_LPM_DISABLED);
4947 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4948 			hub_encoded_timeout == USB3_LPM_DISABLED);
4949 
4950 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4951 			hub_encoded_timeout != USB3_LPM_DISABLED);
4952 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4953 			hub_encoded_timeout != USB3_LPM_DISABLED);
4954 
4955 	/* If U1 was already enabled and we're not disabling it,
4956 	 * or we're going to enable U1, account for the U1 max exit latency.
4957 	 */
4958 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4959 			enabling_u1)
4960 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4961 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4962 			enabling_u2)
4963 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4964 
4965 	mel_us = max(u1_mel_us, u2_mel_us);
4966 
4967 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4968 	if (mel_us > MAX_EXIT) {
4969 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4970 				"is too big.\n", mel_us);
4971 		return -E2BIG;
4972 	}
4973 	return mel_us;
4974 }
4975 
4976 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4977 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4978 			struct usb_device *udev, enum usb3_link_state state)
4979 {
4980 	struct xhci_hcd	*xhci;
4981 	struct xhci_port *port;
4982 	u16 hub_encoded_timeout;
4983 	int mel;
4984 	int ret;
4985 
4986 	xhci = hcd_to_xhci(hcd);
4987 	/* The LPM timeout values are pretty host-controller specific, so don't
4988 	 * enable hub-initiated timeouts unless the vendor has provided
4989 	 * information about their timeout algorithm.
4990 	 */
4991 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4992 			!xhci->devs[udev->slot_id])
4993 		return USB3_LPM_DISABLED;
4994 
4995 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4996 		return USB3_LPM_DISABLED;
4997 
4998 	/* If connected to root port then check port can handle lpm */
4999 	if (udev->parent && !udev->parent->parent) {
5000 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5001 		if (port->lpm_incapable)
5002 			return USB3_LPM_DISABLED;
5003 	}
5004 
5005 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5006 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5007 	if (mel < 0) {
5008 		/* Max Exit Latency is too big, disable LPM. */
5009 		hub_encoded_timeout = USB3_LPM_DISABLED;
5010 		mel = 0;
5011 	}
5012 
5013 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5014 	if (ret)
5015 		return ret;
5016 	return hub_encoded_timeout;
5017 }
5018 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5019 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5020 			struct usb_device *udev, enum usb3_link_state state)
5021 {
5022 	struct xhci_hcd	*xhci;
5023 	u16 mel;
5024 
5025 	xhci = hcd_to_xhci(hcd);
5026 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5027 			!xhci->devs[udev->slot_id])
5028 		return 0;
5029 
5030 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5031 	return xhci_change_max_exit_latency(xhci, udev, mel);
5032 }
5033 #else /* CONFIG_PM */
5034 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5035 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5036 				struct usb_device *udev, int enable)
5037 {
5038 	return 0;
5039 }
5040 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5041 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5042 {
5043 	return 0;
5044 }
5045 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5046 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5047 			struct usb_device *udev, enum usb3_link_state state)
5048 {
5049 	return USB3_LPM_DISABLED;
5050 }
5051 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5052 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5053 			struct usb_device *udev, enum usb3_link_state state)
5054 {
5055 	return 0;
5056 }
5057 #endif	/* CONFIG_PM */
5058 
5059 /*-------------------------------------------------------------------------*/
5060 
5061 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5062  * internal data structures for the device.
5063  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5064 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5065 			struct usb_tt *tt, gfp_t mem_flags)
5066 {
5067 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5068 	struct xhci_virt_device *vdev;
5069 	struct xhci_command *config_cmd;
5070 	struct xhci_input_control_ctx *ctrl_ctx;
5071 	struct xhci_slot_ctx *slot_ctx;
5072 	unsigned long flags;
5073 	unsigned think_time;
5074 	int ret;
5075 
5076 	/* Ignore root hubs */
5077 	if (!hdev->parent)
5078 		return 0;
5079 
5080 	vdev = xhci->devs[hdev->slot_id];
5081 	if (!vdev) {
5082 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5083 		return -EINVAL;
5084 	}
5085 
5086 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5087 	if (!config_cmd)
5088 		return -ENOMEM;
5089 
5090 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5091 	if (!ctrl_ctx) {
5092 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5093 				__func__);
5094 		xhci_free_command(xhci, config_cmd);
5095 		return -ENOMEM;
5096 	}
5097 
5098 	spin_lock_irqsave(&xhci->lock, flags);
5099 	if (hdev->speed == USB_SPEED_HIGH &&
5100 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5101 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5102 		xhci_free_command(xhci, config_cmd);
5103 		spin_unlock_irqrestore(&xhci->lock, flags);
5104 		return -ENOMEM;
5105 	}
5106 
5107 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5108 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5109 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5110 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5111 	/*
5112 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5113 	 * but it may be already set to 1 when setup an xHCI virtual
5114 	 * device, so clear it anyway.
5115 	 */
5116 	if (tt->multi)
5117 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5118 	else if (hdev->speed == USB_SPEED_FULL)
5119 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5120 
5121 	if (xhci->hci_version > 0x95) {
5122 		xhci_dbg(xhci, "xHCI version %x needs hub "
5123 				"TT think time and number of ports\n",
5124 				(unsigned int) xhci->hci_version);
5125 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5126 		/* Set TT think time - convert from ns to FS bit times.
5127 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5128 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5129 		 *
5130 		 * xHCI 1.0: this field shall be 0 if the device is not a
5131 		 * High-spped hub.
5132 		 */
5133 		think_time = tt->think_time;
5134 		if (think_time != 0)
5135 			think_time = (think_time / 666) - 1;
5136 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5137 			slot_ctx->tt_info |=
5138 				cpu_to_le32(TT_THINK_TIME(think_time));
5139 	} else {
5140 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5141 				"TT think time or number of ports\n",
5142 				(unsigned int) xhci->hci_version);
5143 	}
5144 	slot_ctx->dev_state = 0;
5145 	spin_unlock_irqrestore(&xhci->lock, flags);
5146 
5147 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5148 			(xhci->hci_version > 0x95) ?
5149 			"configure endpoint" : "evaluate context");
5150 
5151 	/* Issue and wait for the configure endpoint or
5152 	 * evaluate context command.
5153 	 */
5154 	if (xhci->hci_version > 0x95)
5155 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5156 				false, false);
5157 	else
5158 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5159 				true, false);
5160 
5161 	xhci_free_command(xhci, config_cmd);
5162 	return ret;
5163 }
5164 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5165 
xhci_get_frame(struct usb_hcd * hcd)5166 static int xhci_get_frame(struct usb_hcd *hcd)
5167 {
5168 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5169 	/* EHCI mods by the periodic size.  Why? */
5170 	return readl(&xhci->run_regs->microframe_index) >> 3;
5171 }
5172 
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5173 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5174 {
5175 	xhci->usb2_rhub.hcd = hcd;
5176 	hcd->speed = HCD_USB2;
5177 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5178 	/*
5179 	 * USB 2.0 roothub under xHCI has an integrated TT,
5180 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5181 	 * companion controller.
5182 	 */
5183 	hcd->has_tt = 1;
5184 }
5185 
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5186 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5187 {
5188 	unsigned int minor_rev;
5189 
5190 	/*
5191 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5192 	 * should return 0x31 for sbrn, or that the minor revision
5193 	 * is a two digit BCD containig minor and sub-minor numbers.
5194 	 * This was later clarified in xHCI 1.2.
5195 	 *
5196 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5197 	 * minor revision set to 0x1 instead of 0x10.
5198 	 */
5199 	if (xhci->usb3_rhub.min_rev == 0x1)
5200 		minor_rev = 1;
5201 	else
5202 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5203 
5204 	switch (minor_rev) {
5205 	case 2:
5206 		hcd->speed = HCD_USB32;
5207 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5208 		hcd->self.root_hub->rx_lanes = 2;
5209 		hcd->self.root_hub->tx_lanes = 2;
5210 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5211 		break;
5212 	case 1:
5213 		hcd->speed = HCD_USB31;
5214 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5215 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5216 		break;
5217 	}
5218 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5219 		  minor_rev, minor_rev ? "Enhanced " : "");
5220 
5221 	xhci->usb3_rhub.hcd = hcd;
5222 }
5223 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5224 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5225 {
5226 	struct xhci_hcd		*xhci;
5227 	/*
5228 	 * TODO: Check with DWC3 clients for sysdev according to
5229 	 * quirks
5230 	 */
5231 	struct device		*dev = hcd->self.sysdev;
5232 	int			retval;
5233 
5234 	/* Accept arbitrarily long scatter-gather lists */
5235 	hcd->self.sg_tablesize = ~0;
5236 
5237 	/* support to build packet from discontinuous buffers */
5238 	hcd->self.no_sg_constraint = 1;
5239 
5240 	/* XHCI controllers don't stop the ep queue on short packets :| */
5241 	hcd->self.no_stop_on_short = 1;
5242 
5243 	xhci = hcd_to_xhci(hcd);
5244 
5245 	if (!usb_hcd_is_primary_hcd(hcd)) {
5246 		xhci_hcd_init_usb3_data(xhci, hcd);
5247 		return 0;
5248 	}
5249 
5250 	mutex_init(&xhci->mutex);
5251 	xhci->main_hcd = hcd;
5252 	xhci->cap_regs = hcd->regs;
5253 	xhci->op_regs = hcd->regs +
5254 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5255 	xhci->run_regs = hcd->regs +
5256 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5257 	/* Cache read-only capability registers */
5258 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5259 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5260 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5261 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5262 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5263 	if (xhci->hci_version > 0x100)
5264 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5265 
5266 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5267 	if ((!xhci->max_interrupters) ||
5268 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5269 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5270 
5271 	xhci->quirks |= quirks;
5272 
5273 	if (get_quirks)
5274 		get_quirks(dev, xhci);
5275 
5276 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5277 	 * success event after a short transfer. This quirk will ignore such
5278 	 * spurious event.
5279 	 */
5280 	if (xhci->hci_version > 0x96)
5281 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5282 
5283 	/* Make sure the HC is halted. */
5284 	retval = xhci_halt(xhci);
5285 	if (retval)
5286 		return retval;
5287 
5288 	xhci_zero_64b_regs(xhci);
5289 
5290 	xhci_dbg(xhci, "Resetting HCD\n");
5291 	/* Reset the internal HC memory state and registers. */
5292 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5293 	if (retval)
5294 		return retval;
5295 	xhci_dbg(xhci, "Reset complete\n");
5296 
5297 	/*
5298 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5299 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5300 	 * address memory pointers actually. So, this driver clears the AC64
5301 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5302 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5303 	 */
5304 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5305 		xhci->hcc_params &= ~BIT(0);
5306 
5307 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5308 	 * if xHC supports 64-bit addressing */
5309 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5310 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5311 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5312 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5313 	} else {
5314 		/*
5315 		 * This is to avoid error in cases where a 32-bit USB
5316 		 * controller is used on a 64-bit capable system.
5317 		 */
5318 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5319 		if (retval)
5320 			return retval;
5321 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5322 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5323 	}
5324 
5325 	xhci_dbg(xhci, "Calling HCD init\n");
5326 	/* Initialize HCD and host controller data structures. */
5327 	retval = xhci_init(hcd);
5328 	if (retval)
5329 		return retval;
5330 	xhci_dbg(xhci, "Called HCD init\n");
5331 
5332 	if (xhci_hcd_is_usb3(hcd))
5333 		xhci_hcd_init_usb3_data(xhci, hcd);
5334 	else
5335 		xhci_hcd_init_usb2_data(xhci, hcd);
5336 
5337 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5338 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5339 
5340 	return 0;
5341 }
5342 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5343 
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5344 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5345 		struct usb_host_endpoint *ep)
5346 {
5347 	struct xhci_hcd *xhci;
5348 	struct usb_device *udev;
5349 	unsigned int slot_id;
5350 	unsigned int ep_index;
5351 	unsigned long flags;
5352 
5353 	xhci = hcd_to_xhci(hcd);
5354 
5355 	spin_lock_irqsave(&xhci->lock, flags);
5356 	udev = (struct usb_device *)ep->hcpriv;
5357 	slot_id = udev->slot_id;
5358 	ep_index = xhci_get_endpoint_index(&ep->desc);
5359 
5360 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5361 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5362 	spin_unlock_irqrestore(&xhci->lock, flags);
5363 }
5364 
5365 static const struct hc_driver xhci_hc_driver = {
5366 	.description =		"xhci-hcd",
5367 	.product_desc =		"xHCI Host Controller",
5368 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5369 
5370 	/*
5371 	 * generic hardware linkage
5372 	 */
5373 	.irq =			xhci_irq,
5374 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5375 				HCD_BH,
5376 
5377 	/*
5378 	 * basic lifecycle operations
5379 	 */
5380 	.reset =		NULL, /* set in xhci_init_driver() */
5381 	.start =		xhci_run,
5382 	.stop =			xhci_stop,
5383 	.shutdown =		xhci_shutdown,
5384 
5385 	/*
5386 	 * managing i/o requests and associated device resources
5387 	 */
5388 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5389 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5390 	.urb_enqueue =		xhci_urb_enqueue,
5391 	.urb_dequeue =		xhci_urb_dequeue,
5392 	.alloc_dev =		xhci_alloc_dev,
5393 	.free_dev =		xhci_free_dev,
5394 	.alloc_streams =	xhci_alloc_streams,
5395 	.free_streams =		xhci_free_streams,
5396 	.add_endpoint =		xhci_add_endpoint,
5397 	.drop_endpoint =	xhci_drop_endpoint,
5398 	.endpoint_disable =	xhci_endpoint_disable,
5399 	.endpoint_reset =	xhci_endpoint_reset,
5400 	.check_bandwidth =	xhci_check_bandwidth,
5401 	.reset_bandwidth =	xhci_reset_bandwidth,
5402 	.address_device =	xhci_address_device,
5403 	.enable_device =	xhci_enable_device,
5404 	.update_hub_device =	xhci_update_hub_device,
5405 	.reset_device =		xhci_discover_or_reset_device,
5406 
5407 	/*
5408 	 * scheduling support
5409 	 */
5410 	.get_frame_number =	xhci_get_frame,
5411 
5412 	/*
5413 	 * root hub support
5414 	 */
5415 	.hub_control =		xhci_hub_control,
5416 	.hub_status_data =	xhci_hub_status_data,
5417 	.bus_suspend =		xhci_bus_suspend,
5418 	.bus_resume =		xhci_bus_resume,
5419 	.get_resuming_ports =	xhci_get_resuming_ports,
5420 
5421 	/*
5422 	 * call back when device connected and addressed
5423 	 */
5424 	.update_device =        xhci_update_device,
5425 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5426 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5427 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5428 	.find_raw_port_number =	xhci_find_raw_port_number,
5429 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5430 };
5431 
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5432 void xhci_init_driver(struct hc_driver *drv,
5433 		      const struct xhci_driver_overrides *over)
5434 {
5435 	BUG_ON(!over);
5436 
5437 	/* Copy the generic table to drv then apply the overrides */
5438 	*drv = xhci_hc_driver;
5439 
5440 	if (over) {
5441 		drv->hcd_priv_size += over->extra_priv_size;
5442 		if (over->reset)
5443 			drv->reset = over->reset;
5444 		if (over->start)
5445 			drv->start = over->start;
5446 		if (over->add_endpoint)
5447 			drv->add_endpoint = over->add_endpoint;
5448 		if (over->drop_endpoint)
5449 			drv->drop_endpoint = over->drop_endpoint;
5450 		if (over->check_bandwidth)
5451 			drv->check_bandwidth = over->check_bandwidth;
5452 		if (over->reset_bandwidth)
5453 			drv->reset_bandwidth = over->reset_bandwidth;
5454 		if (over->update_hub_device)
5455 			drv->update_hub_device = over->update_hub_device;
5456 		if (over->hub_control)
5457 			drv->hub_control = over->hub_control;
5458 	}
5459 }
5460 EXPORT_SYMBOL_GPL(xhci_init_driver);
5461 
5462 MODULE_DESCRIPTION(DRIVER_DESC);
5463 MODULE_AUTHOR(DRIVER_AUTHOR);
5464 MODULE_LICENSE("GPL");
5465 
xhci_hcd_init(void)5466 static int __init xhci_hcd_init(void)
5467 {
5468 	/*
5469 	 * Check the compiler generated sizes of structures that must be laid
5470 	 * out in specific ways for hardware access.
5471 	 */
5472 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5473 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5474 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5475 	/* xhci_device_control has eight fields, and also
5476 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5477 	 */
5478 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5479 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5480 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5481 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5482 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5483 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5484 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5485 
5486 	if (usb_disabled())
5487 		return -ENODEV;
5488 
5489 	xhci_debugfs_create_root();
5490 	xhci_dbc_init();
5491 
5492 	return 0;
5493 }
5494 
5495 /*
5496  * If an init function is provided, an exit function must also be provided
5497  * to allow module unload.
5498  */
xhci_hcd_fini(void)5499 static void __exit xhci_hcd_fini(void)
5500 {
5501 	xhci_debugfs_remove_root();
5502 	xhci_dbc_exit();
5503 }
5504 
5505 module_init(xhci_hcd_init);
5506 module_exit(xhci_hcd_fini);
5507