1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 struct xhci_segment *seg = ring->first_seg;
44
45 if (!td || !td->start_seg)
46 return false;
47 do {
48 if (seg == td->start_seg)
49 return true;
50 seg = seg->next;
51 } while (seg && seg != ring->first_seg);
52
53 return false;
54 }
55
56 /*
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
62 *
63 * Returns negative errno, or zero on success
64 *
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 u32 result;
72 int ret;
73
74 ret = readl_poll_timeout_atomic(ptr, result,
75 (result & mask) == done ||
76 result == U32_MAX,
77 1, timeout_us);
78 if (result == U32_MAX) /* card removed */
79 return -ENODEV;
80
81 return ret;
82 }
83
84 /*
85 * Disable interrupts and begin the xHCI halting process.
86 */
xhci_quiesce(struct xhci_hcd * xhci)87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 u32 halted;
90 u32 cmd;
91 u32 mask;
92
93 mask = ~(XHCI_IRQS);
94 halted = readl(&xhci->op_regs->status) & STS_HALT;
95 if (!halted)
96 mask &= ~CMD_RUN;
97
98 cmd = readl(&xhci->op_regs->command);
99 cmd &= mask;
100 writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104 * Force HC into halt state.
105 *
106 * Disable any IRQs and clear the run/stop bit.
107 * HC will complete any current and actively pipelined transactions, and
108 * should halt within 16 ms of the run/stop bit being cleared.
109 * Read HC Halted bit in the status register to see when the HC is finished.
110 */
xhci_halt(struct xhci_hcd * xhci)111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 int ret;
114
115 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116 xhci_quiesce(xhci);
117
118 ret = xhci_handshake(&xhci->op_regs->status,
119 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120 if (ret) {
121 xhci_warn(xhci, "Host halt failed, %d\n", ret);
122 return ret;
123 }
124
125 xhci->xhc_state |= XHCI_STATE_HALTED;
126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127
128 return ret;
129 }
130
131 /*
132 * Set the run bit and wait for the host to be running.
133 */
xhci_start(struct xhci_hcd * xhci)134 int xhci_start(struct xhci_hcd *xhci)
135 {
136 u32 temp;
137 int ret;
138
139 temp = readl(&xhci->op_regs->command);
140 temp |= (CMD_RUN);
141 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
142 temp);
143 writel(temp, &xhci->op_regs->command);
144
145 /*
146 * Wait for the HCHalted Status bit to be 0 to indicate the host is
147 * running.
148 */
149 ret = xhci_handshake(&xhci->op_regs->status,
150 STS_HALT, 0, XHCI_MAX_HALT_USEC);
151 if (ret == -ETIMEDOUT)
152 xhci_err(xhci, "Host took too long to start, "
153 "waited %u microseconds.\n",
154 XHCI_MAX_HALT_USEC);
155 if (!ret) {
156 /* clear state flags. Including dying, halted or removing */
157 xhci->xhc_state = 0;
158 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
159 }
160
161 return ret;
162 }
163
164 /*
165 * Reset a halted HC.
166 *
167 * This resets pipelines, timers, counters, state machines, etc.
168 * Transactions will be terminated immediately, and operational registers
169 * will be set to their defaults.
170 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
172 {
173 u32 command;
174 u32 state;
175 int ret;
176
177 state = readl(&xhci->op_regs->status);
178
179 if (state == ~(u32)0) {
180 xhci_warn(xhci, "Host not accessible, reset failed.\n");
181 return -ENODEV;
182 }
183
184 if ((state & STS_HALT) == 0) {
185 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
186 return 0;
187 }
188
189 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
190 command = readl(&xhci->op_regs->command);
191 command |= CMD_RESET;
192 writel(command, &xhci->op_regs->command);
193
194 /* Existing Intel xHCI controllers require a delay of 1 mS,
195 * after setting the CMD_RESET bit, and before accessing any
196 * HC registers. This allows the HC to complete the
197 * reset operation and be ready for HC register access.
198 * Without this delay, the subsequent HC register access,
199 * may result in a system hang very rarely.
200 */
201 if (xhci->quirks & XHCI_INTEL_HOST)
202 udelay(1000);
203
204 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
205 if (ret)
206 return ret;
207
208 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
209 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
210
211 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
212 "Wait for controller to be ready for doorbell rings");
213 /*
214 * xHCI cannot write to any doorbells or operational registers other
215 * than status until the "Controller Not Ready" flag is cleared.
216 */
217 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
218
219 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
220 xhci->usb2_rhub.bus_state.suspended_ports = 0;
221 xhci->usb2_rhub.bus_state.resuming_ports = 0;
222 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
223 xhci->usb3_rhub.bus_state.suspended_ports = 0;
224 xhci->usb3_rhub.bus_state.resuming_ports = 0;
225
226 return ret;
227 }
228
xhci_zero_64b_regs(struct xhci_hcd * xhci)229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
230 {
231 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
232 struct iommu_domain *domain;
233 int err, i;
234 u64 val;
235 u32 intrs;
236
237 /*
238 * Some Renesas controllers get into a weird state if they are
239 * reset while programmed with 64bit addresses (they will preserve
240 * the top half of the address in internal, non visible
241 * registers). You end up with half the address coming from the
242 * kernel, and the other half coming from the firmware. Also,
243 * changing the programming leads to extra accesses even if the
244 * controller is supposed to be halted. The controller ends up with
245 * a fatal fault, and is then ripe for being properly reset.
246 *
247 * Special care is taken to only apply this if the device is behind
248 * an iommu. Doing anything when there is no iommu is definitely
249 * unsafe...
250 */
251 domain = iommu_get_domain_for_dev(dev);
252 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
253 domain->type == IOMMU_DOMAIN_IDENTITY)
254 return;
255
256 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
257
258 /* Clear HSEIE so that faults do not get signaled */
259 val = readl(&xhci->op_regs->command);
260 val &= ~CMD_HSEIE;
261 writel(val, &xhci->op_regs->command);
262
263 /* Clear HSE (aka FATAL) */
264 val = readl(&xhci->op_regs->status);
265 val |= STS_FATAL;
266 writel(val, &xhci->op_regs->status);
267
268 /* Now zero the registers, and brace for impact */
269 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
270 if (upper_32_bits(val))
271 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
272 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
273 if (upper_32_bits(val))
274 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
275
276 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
277 ARRAY_SIZE(xhci->run_regs->ir_set));
278
279 for (i = 0; i < intrs; i++) {
280 struct xhci_intr_reg __iomem *ir;
281
282 ir = &xhci->run_regs->ir_set[i];
283 val = xhci_read_64(xhci, &ir->erst_base);
284 if (upper_32_bits(val))
285 xhci_write_64(xhci, 0, &ir->erst_base);
286 val= xhci_read_64(xhci, &ir->erst_dequeue);
287 if (upper_32_bits(val))
288 xhci_write_64(xhci, 0, &ir->erst_dequeue);
289 }
290
291 /* Wait for the fault to appear. It will be cleared on reset */
292 err = xhci_handshake(&xhci->op_regs->status,
293 STS_FATAL, STS_FATAL,
294 XHCI_MAX_HALT_USEC);
295 if (!err)
296 xhci_info(xhci, "Fault detected\n");
297 }
298
xhci_enable_interrupter(struct xhci_interrupter * ir)299 int xhci_enable_interrupter(struct xhci_interrupter *ir)
300 {
301 u32 iman;
302
303 if (!ir || !ir->ir_set)
304 return -EINVAL;
305
306 iman = readl(&ir->ir_set->irq_pending);
307 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
308
309 return 0;
310 }
311 EXPORT_SYMBOL_GPL(xhci_enable_interrupter);
312
xhci_disable_interrupter(struct xhci_interrupter * ir)313 int xhci_disable_interrupter(struct xhci_interrupter *ir)
314 {
315 u32 iman;
316
317 if (!ir || !ir->ir_set)
318 return -EINVAL;
319
320 iman = readl(&ir->ir_set->irq_pending);
321 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
322
323 return 0;
324 }
325 EXPORT_SYMBOL_GPL(xhci_disable_interrupter);
326
327 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)328 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
329 u32 imod_interval)
330 {
331 u32 imod;
332
333 if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
334 return -EINVAL;
335
336 imod = readl(&ir->ir_set->irq_control);
337 imod &= ~ER_IRQ_INTERVAL_MASK;
338 imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
339 writel(imod, &ir->ir_set->irq_control);
340
341 return 0;
342 }
343 EXPORT_SYMBOL_GPL(xhci_set_interrupter_moderation);
344
compliance_mode_recovery(struct timer_list * t)345 static void compliance_mode_recovery(struct timer_list *t)
346 {
347 struct xhci_hcd *xhci;
348 struct usb_hcd *hcd;
349 struct xhci_hub *rhub;
350 u32 temp;
351 int i;
352
353 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
354 rhub = &xhci->usb3_rhub;
355 hcd = rhub->hcd;
356
357 if (!hcd)
358 return;
359
360 for (i = 0; i < rhub->num_ports; i++) {
361 temp = readl(rhub->ports[i]->addr);
362 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
363 /*
364 * Compliance Mode Detected. Letting USB Core
365 * handle the Warm Reset
366 */
367 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
368 "Compliance mode detected->port %d",
369 i + 1);
370 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
371 "Attempting compliance mode recovery");
372
373 if (hcd->state == HC_STATE_SUSPENDED)
374 usb_hcd_resume_root_hub(hcd);
375
376 usb_hcd_poll_rh_status(hcd);
377 }
378 }
379
380 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
381 mod_timer(&xhci->comp_mode_recovery_timer,
382 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
383 }
384
385 /*
386 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
387 * that causes ports behind that hardware to enter compliance mode sometimes.
388 * The quirk creates a timer that polls every 2 seconds the link state of
389 * each host controller's port and recovers it by issuing a Warm reset
390 * if Compliance mode is detected, otherwise the port will become "dead" (no
391 * device connections or disconnections will be detected anymore). Becasue no
392 * status event is generated when entering compliance mode (per xhci spec),
393 * this quirk is needed on systems that have the failing hardware installed.
394 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)395 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
396 {
397 xhci->port_status_u0 = 0;
398 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
399 0);
400 xhci->comp_mode_recovery_timer.expires = jiffies +
401 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
402
403 add_timer(&xhci->comp_mode_recovery_timer);
404 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
405 "Compliance mode recovery timer initialized");
406 }
407
408 /*
409 * This function identifies the systems that have installed the SN65LVPE502CP
410 * USB3.0 re-driver and that need the Compliance Mode Quirk.
411 * Systems:
412 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
413 */
xhci_compliance_mode_recovery_timer_quirk_check(void)414 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
415 {
416 const char *dmi_product_name, *dmi_sys_vendor;
417
418 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
419 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
420 if (!dmi_product_name || !dmi_sys_vendor)
421 return false;
422
423 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
424 return false;
425
426 if (strstr(dmi_product_name, "Z420") ||
427 strstr(dmi_product_name, "Z620") ||
428 strstr(dmi_product_name, "Z820") ||
429 strstr(dmi_product_name, "Z1 Workstation"))
430 return true;
431
432 return false;
433 }
434
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)435 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
436 {
437 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
438 }
439
440
441 /*
442 * Initialize memory for HCD and xHC (one-time init).
443 *
444 * Program the PAGESIZE register, initialize the device context array, create
445 * device contexts (?), set up a command ring segment (or two?), create event
446 * ring (one for now).
447 */
xhci_init(struct usb_hcd * hcd)448 static int xhci_init(struct usb_hcd *hcd)
449 {
450 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
451 int retval;
452
453 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
454 spin_lock_init(&xhci->lock);
455 if (xhci->hci_version == 0x95 && link_quirk) {
456 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
457 "QUIRK: Not clearing Link TRB chain bits.");
458 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
459 } else {
460 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
461 "xHCI doesn't need link TRB QUIRK");
462 }
463 retval = xhci_mem_init(xhci, GFP_KERNEL);
464 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
465
466 /* Initializing Compliance Mode Recovery Data If Needed */
467 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
468 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
469 compliance_mode_recovery_timer_init(xhci);
470 }
471
472 return retval;
473 }
474
475 /*-------------------------------------------------------------------------*/
476
xhci_run_finished(struct xhci_hcd * xhci)477 static int xhci_run_finished(struct xhci_hcd *xhci)
478 {
479 struct xhci_interrupter *ir = xhci->interrupters[0];
480 unsigned long flags;
481 u32 temp;
482
483 /*
484 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
485 * Protect the short window before host is running with a lock
486 */
487 spin_lock_irqsave(&xhci->lock, flags);
488
489 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
490 temp = readl(&xhci->op_regs->command);
491 temp |= (CMD_EIE);
492 writel(temp, &xhci->op_regs->command);
493
494 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
495 xhci_enable_interrupter(ir);
496
497 if (xhci_start(xhci)) {
498 xhci_halt(xhci);
499 spin_unlock_irqrestore(&xhci->lock, flags);
500 return -ENODEV;
501 }
502
503 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
504
505 if (xhci->quirks & XHCI_NEC_HOST)
506 xhci_ring_cmd_db(xhci);
507
508 spin_unlock_irqrestore(&xhci->lock, flags);
509
510 return 0;
511 }
512
513 /*
514 * Start the HC after it was halted.
515 *
516 * This function is called by the USB core when the HC driver is added.
517 * Its opposite is xhci_stop().
518 *
519 * xhci_init() must be called once before this function can be called.
520 * Reset the HC, enable device slot contexts, program DCBAAP, and
521 * set command ring pointer and event ring pointer.
522 *
523 * Setup MSI-X vectors and enable interrupts.
524 */
xhci_run(struct usb_hcd * hcd)525 int xhci_run(struct usb_hcd *hcd)
526 {
527 u64 temp_64;
528 int ret;
529 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
530 struct xhci_interrupter *ir = xhci->interrupters[0];
531 /* Start the xHCI host controller running only after the USB 2.0 roothub
532 * is setup.
533 */
534
535 hcd->uses_new_polling = 1;
536 if (hcd->msi_enabled)
537 ir->ip_autoclear = true;
538
539 if (!usb_hcd_is_primary_hcd(hcd))
540 return xhci_run_finished(xhci);
541
542 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
543
544 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
545 temp_64 &= ERST_PTR_MASK;
546 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
547 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
548
549 xhci_set_interrupter_moderation(ir, xhci->imod_interval);
550
551 if (xhci->quirks & XHCI_NEC_HOST) {
552 struct xhci_command *command;
553
554 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
555 if (!command)
556 return -ENOMEM;
557
558 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
559 TRB_TYPE(TRB_NEC_GET_FW));
560 if (ret)
561 xhci_free_command(xhci, command);
562 }
563 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
564 "Finished %s for main hcd", __func__);
565
566 xhci_create_dbc_dev(xhci);
567
568 xhci_debugfs_init(xhci);
569
570 if (xhci_has_one_roothub(xhci))
571 return xhci_run_finished(xhci);
572
573 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
574
575 return 0;
576 }
577 EXPORT_SYMBOL_GPL(xhci_run);
578
579 /*
580 * Stop xHCI driver.
581 *
582 * This function is called by the USB core when the HC driver is removed.
583 * Its opposite is xhci_run().
584 *
585 * Disable device contexts, disable IRQs, and quiesce the HC.
586 * Reset the HC, finish any completed transactions, and cleanup memory.
587 */
xhci_stop(struct usb_hcd * hcd)588 void xhci_stop(struct usb_hcd *hcd)
589 {
590 u32 temp;
591 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
592 struct xhci_interrupter *ir = xhci->interrupters[0];
593
594 mutex_lock(&xhci->mutex);
595
596 /* Only halt host and free memory after both hcds are removed */
597 if (!usb_hcd_is_primary_hcd(hcd)) {
598 mutex_unlock(&xhci->mutex);
599 return;
600 }
601
602 xhci_remove_dbc_dev(xhci);
603
604 spin_lock_irq(&xhci->lock);
605 xhci->xhc_state |= XHCI_STATE_HALTED;
606 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
607 xhci_halt(xhci);
608 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
609 spin_unlock_irq(&xhci->lock);
610
611 /* Deleting Compliance Mode Recovery Timer */
612 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
613 (!(xhci_all_ports_seen_u0(xhci)))) {
614 del_timer_sync(&xhci->comp_mode_recovery_timer);
615 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
616 "%s: compliance mode recovery timer deleted",
617 __func__);
618 }
619
620 if (xhci->quirks & XHCI_AMD_PLL_FIX)
621 usb_amd_dev_put();
622
623 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624 "// Disabling event ring interrupts");
625 temp = readl(&xhci->op_regs->status);
626 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
627 xhci_disable_interrupter(ir);
628
629 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
630 xhci_mem_cleanup(xhci);
631 xhci_debugfs_exit(xhci);
632 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633 "xhci_stop completed - status = %x",
634 readl(&xhci->op_regs->status));
635 mutex_unlock(&xhci->mutex);
636 }
637 EXPORT_SYMBOL_GPL(xhci_stop);
638
639 /*
640 * Shutdown HC (not bus-specific)
641 *
642 * This is called when the machine is rebooting or halting. We assume that the
643 * machine will be powered off, and the HC's internal state will be reset.
644 * Don't bother to free memory.
645 *
646 * This will only ever be called with the main usb_hcd (the USB3 roothub).
647 */
xhci_shutdown(struct usb_hcd * hcd)648 void xhci_shutdown(struct usb_hcd *hcd)
649 {
650 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
651
652 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
653 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
654
655 /* Don't poll the roothubs after shutdown. */
656 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
657 __func__, hcd->self.busnum);
658 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
659 del_timer_sync(&hcd->rh_timer);
660
661 if (xhci->shared_hcd) {
662 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
663 del_timer_sync(&xhci->shared_hcd->rh_timer);
664 }
665
666 spin_lock_irq(&xhci->lock);
667 xhci_halt(xhci);
668
669 /*
670 * Workaround for spurious wakeps at shutdown with HSW, and for boot
671 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
672 */
673 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
674 xhci->quirks & XHCI_RESET_TO_DEFAULT)
675 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
676
677 spin_unlock_irq(&xhci->lock);
678
679 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
680 "xhci_shutdown completed - status = %x",
681 readl(&xhci->op_regs->status));
682 }
683 EXPORT_SYMBOL_GPL(xhci_shutdown);
684
685 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)686 static void xhci_save_registers(struct xhci_hcd *xhci)
687 {
688 struct xhci_interrupter *ir;
689 unsigned int i;
690
691 xhci->s3.command = readl(&xhci->op_regs->command);
692 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
693 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
694 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
695
696 /* save both primary and all secondary interrupters */
697 /* fixme, shold we lock to prevent race with remove secondary interrupter? */
698 for (i = 0; i < xhci->max_interrupters; i++) {
699 ir = xhci->interrupters[i];
700 if (!ir)
701 continue;
702
703 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
704 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
705 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
706 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
707 ir->s3_irq_control = readl(&ir->ir_set->irq_control);
708 }
709 }
710
xhci_restore_registers(struct xhci_hcd * xhci)711 static void xhci_restore_registers(struct xhci_hcd *xhci)
712 {
713 struct xhci_interrupter *ir;
714 unsigned int i;
715
716 writel(xhci->s3.command, &xhci->op_regs->command);
717 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
718 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
719 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
720
721 /* FIXME should we lock to protect against freeing of interrupters */
722 for (i = 0; i < xhci->max_interrupters; i++) {
723 ir = xhci->interrupters[i];
724 if (!ir)
725 continue;
726
727 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
728 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
729 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
730 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
731 writel(ir->s3_irq_control, &ir->ir_set->irq_control);
732 }
733 }
734
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)735 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
736 {
737 u64 val_64;
738
739 /* step 2: initialize command ring buffer */
740 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
741 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
742 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
743 xhci->cmd_ring->dequeue) &
744 (u64) ~CMD_RING_RSVD_BITS) |
745 xhci->cmd_ring->cycle_state;
746 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
747 "// Setting command ring address to 0x%llx",
748 (long unsigned long) val_64);
749 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
750 }
751
752 /*
753 * The whole command ring must be cleared to zero when we suspend the host.
754 *
755 * The host doesn't save the command ring pointer in the suspend well, so we
756 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
757 * aligned, because of the reserved bits in the command ring dequeue pointer
758 * register. Therefore, we can't just set the dequeue pointer back in the
759 * middle of the ring (TRBs are 16-byte aligned).
760 */
xhci_clear_command_ring(struct xhci_hcd * xhci)761 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
762 {
763 struct xhci_ring *ring;
764 struct xhci_segment *seg;
765
766 ring = xhci->cmd_ring;
767 seg = ring->deq_seg;
768 do {
769 memset(seg->trbs, 0,
770 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
771 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
772 cpu_to_le32(~TRB_CYCLE);
773 seg = seg->next;
774 } while (seg != ring->deq_seg);
775
776 /* Reset the software enqueue and dequeue pointers */
777 ring->deq_seg = ring->first_seg;
778 ring->dequeue = ring->first_seg->trbs;
779 ring->enq_seg = ring->deq_seg;
780 ring->enqueue = ring->dequeue;
781
782 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
783 /*
784 * Ring is now zeroed, so the HW should look for change of ownership
785 * when the cycle bit is set to 1.
786 */
787 ring->cycle_state = 1;
788
789 /*
790 * Reset the hardware dequeue pointer.
791 * Yes, this will need to be re-written after resume, but we're paranoid
792 * and want to make sure the hardware doesn't access bogus memory
793 * because, say, the BIOS or an SMI started the host without changing
794 * the command ring pointers.
795 */
796 xhci_set_cmd_ring_deq(xhci);
797 }
798
799 /*
800 * Disable port wake bits if do_wakeup is not set.
801 *
802 * Also clear a possible internal port wake state left hanging for ports that
803 * detected termination but never successfully enumerated (trained to 0U).
804 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
805 * at enumeration clears this wake, force one here as well for unconnected ports
806 */
807
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)808 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
809 struct xhci_hub *rhub,
810 bool do_wakeup)
811 {
812 unsigned long flags;
813 u32 t1, t2, portsc;
814 int i;
815
816 spin_lock_irqsave(&xhci->lock, flags);
817
818 for (i = 0; i < rhub->num_ports; i++) {
819 portsc = readl(rhub->ports[i]->addr);
820 t1 = xhci_port_state_to_neutral(portsc);
821 t2 = t1;
822
823 /* clear wake bits if do_wake is not set */
824 if (!do_wakeup)
825 t2 &= ~PORT_WAKE_BITS;
826
827 /* Don't touch csc bit if connected or connect change is set */
828 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
829 t2 |= PORT_CSC;
830
831 if (t1 != t2) {
832 writel(t2, rhub->ports[i]->addr);
833 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
834 rhub->hcd->self.busnum, i + 1, portsc, t2);
835 }
836 }
837 spin_unlock_irqrestore(&xhci->lock, flags);
838 }
839
xhci_pending_portevent(struct xhci_hcd * xhci)840 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
841 {
842 struct xhci_port **ports;
843 int port_index;
844 u32 status;
845 u32 portsc;
846
847 status = readl(&xhci->op_regs->status);
848 if (status & STS_EINT)
849 return true;
850 /*
851 * Checking STS_EINT is not enough as there is a lag between a change
852 * bit being set and the Port Status Change Event that it generated
853 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
854 */
855
856 port_index = xhci->usb2_rhub.num_ports;
857 ports = xhci->usb2_rhub.ports;
858 while (port_index--) {
859 portsc = readl(ports[port_index]->addr);
860 if (portsc & PORT_CHANGE_MASK ||
861 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
862 return true;
863 }
864 port_index = xhci->usb3_rhub.num_ports;
865 ports = xhci->usb3_rhub.ports;
866 while (port_index--) {
867 portsc = readl(ports[port_index]->addr);
868 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
869 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
870 return true;
871 }
872 return false;
873 }
874
875 /*
876 * Stop HC (not bus-specific)
877 *
878 * This is called when the machine transition into S3/S4 mode.
879 *
880 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)881 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
882 {
883 int rc = 0;
884 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
885 struct usb_hcd *hcd = xhci_to_hcd(xhci);
886 u32 command;
887 u32 res;
888
889 if (!hcd->state)
890 return 0;
891
892 if (hcd->state != HC_STATE_SUSPENDED ||
893 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
894 return -EINVAL;
895
896 /* Clear root port wake on bits if wakeup not allowed. */
897 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
898 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
899
900 if (!HCD_HW_ACCESSIBLE(hcd))
901 return 0;
902
903 xhci_dbc_suspend(xhci);
904
905 /* Don't poll the roothubs on bus suspend. */
906 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
907 __func__, hcd->self.busnum);
908 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
909 del_timer_sync(&hcd->rh_timer);
910 if (xhci->shared_hcd) {
911 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
912 del_timer_sync(&xhci->shared_hcd->rh_timer);
913 }
914
915 if (xhci->quirks & XHCI_SUSPEND_DELAY)
916 usleep_range(1000, 1500);
917
918 spin_lock_irq(&xhci->lock);
919 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
920 if (xhci->shared_hcd)
921 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
922 /* step 1: stop endpoint */
923 /* skipped assuming that port suspend has done */
924
925 /* step 2: clear Run/Stop bit */
926 command = readl(&xhci->op_regs->command);
927 command &= ~CMD_RUN;
928 writel(command, &xhci->op_regs->command);
929
930 /* Some chips from Fresco Logic need an extraordinary delay */
931 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
932
933 if (xhci_handshake(&xhci->op_regs->status,
934 STS_HALT, STS_HALT, delay)) {
935 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
936 spin_unlock_irq(&xhci->lock);
937 return -ETIMEDOUT;
938 }
939 xhci_clear_command_ring(xhci);
940
941 /* step 3: save registers */
942 xhci_save_registers(xhci);
943
944 /* step 4: set CSS flag */
945 command = readl(&xhci->op_regs->command);
946 command |= CMD_CSS;
947 writel(command, &xhci->op_regs->command);
948 xhci->broken_suspend = 0;
949 if (xhci_handshake(&xhci->op_regs->status,
950 STS_SAVE, 0, 20 * 1000)) {
951 /*
952 * AMD SNPS xHC 3.0 occasionally does not clear the
953 * SSS bit of USBSTS and when driver tries to poll
954 * to see if the xHC clears BIT(8) which never happens
955 * and driver assumes that controller is not responding
956 * and times out. To workaround this, its good to check
957 * if SRE and HCE bits are not set (as per xhci
958 * Section 5.4.2) and bypass the timeout.
959 */
960 res = readl(&xhci->op_regs->status);
961 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
962 (((res & STS_SRE) == 0) &&
963 ((res & STS_HCE) == 0))) {
964 xhci->broken_suspend = 1;
965 } else {
966 xhci_warn(xhci, "WARN: xHC save state timeout\n");
967 spin_unlock_irq(&xhci->lock);
968 return -ETIMEDOUT;
969 }
970 }
971 spin_unlock_irq(&xhci->lock);
972
973 /*
974 * Deleting Compliance Mode Recovery Timer because the xHCI Host
975 * is about to be suspended.
976 */
977 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
978 (!(xhci_all_ports_seen_u0(xhci)))) {
979 del_timer_sync(&xhci->comp_mode_recovery_timer);
980 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
981 "%s: compliance mode recovery timer deleted",
982 __func__);
983 }
984
985 return rc;
986 }
987 EXPORT_SYMBOL_GPL(xhci_suspend);
988
989 /*
990 * start xHC (not bus-specific)
991 *
992 * This is called when the machine transition from S3/S4 mode.
993 *
994 */
xhci_resume(struct xhci_hcd * xhci,pm_message_t msg)995 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
996 {
997 bool hibernated = (msg.event == PM_EVENT_RESTORE);
998 u32 command, temp = 0;
999 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1000 int retval = 0;
1001 bool comp_timer_running = false;
1002 bool pending_portevent = false;
1003 bool suspended_usb3_devs = false;
1004 bool reinit_xhc = false;
1005
1006 if (!hcd->state)
1007 return 0;
1008
1009 /* Wait a bit if either of the roothubs need to settle from the
1010 * transition into bus suspend.
1011 */
1012
1013 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1014 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1015 msleep(100);
1016
1017 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1018 if (xhci->shared_hcd)
1019 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1020
1021 spin_lock_irq(&xhci->lock);
1022
1023 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1024 reinit_xhc = true;
1025
1026 if (!reinit_xhc) {
1027 /*
1028 * Some controllers might lose power during suspend, so wait
1029 * for controller not ready bit to clear, just as in xHC init.
1030 */
1031 retval = xhci_handshake(&xhci->op_regs->status,
1032 STS_CNR, 0, 10 * 1000 * 1000);
1033 if (retval) {
1034 xhci_warn(xhci, "Controller not ready at resume %d\n",
1035 retval);
1036 spin_unlock_irq(&xhci->lock);
1037 return retval;
1038 }
1039 /* step 1: restore register */
1040 xhci_restore_registers(xhci);
1041 /* step 2: initialize command ring buffer */
1042 xhci_set_cmd_ring_deq(xhci);
1043 /* step 3: restore state and start state*/
1044 /* step 3: set CRS flag */
1045 command = readl(&xhci->op_regs->command);
1046 command |= CMD_CRS;
1047 writel(command, &xhci->op_regs->command);
1048 /*
1049 * Some controllers take up to 55+ ms to complete the controller
1050 * restore so setting the timeout to 100ms. Xhci specification
1051 * doesn't mention any timeout value.
1052 */
1053 if (xhci_handshake(&xhci->op_regs->status,
1054 STS_RESTORE, 0, 100 * 1000)) {
1055 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1056 spin_unlock_irq(&xhci->lock);
1057 return -ETIMEDOUT;
1058 }
1059 }
1060
1061 temp = readl(&xhci->op_regs->status);
1062
1063 /* re-initialize the HC on Restore Error, or Host Controller Error */
1064 if ((temp & (STS_SRE | STS_HCE)) &&
1065 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1066 reinit_xhc = true;
1067 if (!xhci->broken_suspend)
1068 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1069 }
1070
1071 if (reinit_xhc) {
1072 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1073 !(xhci_all_ports_seen_u0(xhci))) {
1074 del_timer_sync(&xhci->comp_mode_recovery_timer);
1075 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1076 "Compliance Mode Recovery Timer deleted!");
1077 }
1078
1079 /* Let the USB core know _both_ roothubs lost power. */
1080 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1081 if (xhci->shared_hcd)
1082 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1083
1084 xhci_dbg(xhci, "Stop HCD\n");
1085 xhci_halt(xhci);
1086 xhci_zero_64b_regs(xhci);
1087 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1088 spin_unlock_irq(&xhci->lock);
1089 if (retval)
1090 return retval;
1091
1092 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1093 temp = readl(&xhci->op_regs->status);
1094 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1095 xhci_disable_interrupter(xhci->interrupters[0]);
1096
1097 xhci_dbg(xhci, "cleaning up memory\n");
1098 xhci_mem_cleanup(xhci);
1099 xhci_debugfs_exit(xhci);
1100 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1101 readl(&xhci->op_regs->status));
1102
1103 /* USB core calls the PCI reinit and start functions twice:
1104 * first with the primary HCD, and then with the secondary HCD.
1105 * If we don't do the same, the host will never be started.
1106 */
1107 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1108 retval = xhci_init(hcd);
1109 if (retval)
1110 return retval;
1111 comp_timer_running = true;
1112
1113 xhci_dbg(xhci, "Start the primary HCD\n");
1114 retval = xhci_run(hcd);
1115 if (!retval && xhci->shared_hcd) {
1116 xhci_dbg(xhci, "Start the secondary HCD\n");
1117 retval = xhci_run(xhci->shared_hcd);
1118 }
1119 if (retval)
1120 return retval;
1121 /*
1122 * Resume roothubs unconditionally as PORTSC change bits are not
1123 * immediately visible after xHC reset
1124 */
1125 hcd->state = HC_STATE_SUSPENDED;
1126
1127 if (xhci->shared_hcd) {
1128 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1129 usb_hcd_resume_root_hub(xhci->shared_hcd);
1130 }
1131 usb_hcd_resume_root_hub(hcd);
1132
1133 goto done;
1134 }
1135
1136 /* step 4: set Run/Stop bit */
1137 command = readl(&xhci->op_regs->command);
1138 command |= CMD_RUN;
1139 writel(command, &xhci->op_regs->command);
1140 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1141 0, 250 * 1000);
1142
1143 /* step 5: walk topology and initialize portsc,
1144 * portpmsc and portli
1145 */
1146 /* this is done in bus_resume */
1147
1148 /* step 6: restart each of the previously
1149 * Running endpoints by ringing their doorbells
1150 */
1151
1152 spin_unlock_irq(&xhci->lock);
1153
1154 xhci_dbc_resume(xhci);
1155
1156 if (retval == 0) {
1157 /*
1158 * Resume roothubs only if there are pending events.
1159 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1160 * the first wake signalling failed, give it that chance if
1161 * there are suspended USB 3 devices.
1162 */
1163 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1164 xhci->usb3_rhub.bus_state.bus_suspended)
1165 suspended_usb3_devs = true;
1166
1167 pending_portevent = xhci_pending_portevent(xhci);
1168
1169 if (suspended_usb3_devs && !pending_portevent &&
1170 msg.event == PM_EVENT_AUTO_RESUME) {
1171 msleep(120);
1172 pending_portevent = xhci_pending_portevent(xhci);
1173 }
1174
1175 if (pending_portevent) {
1176 if (xhci->shared_hcd)
1177 usb_hcd_resume_root_hub(xhci->shared_hcd);
1178 usb_hcd_resume_root_hub(hcd);
1179 }
1180 }
1181 done:
1182 /*
1183 * If system is subject to the Quirk, Compliance Mode Timer needs to
1184 * be re-initialized Always after a system resume. Ports are subject
1185 * to suffer the Compliance Mode issue again. It doesn't matter if
1186 * ports have entered previously to U0 before system's suspension.
1187 */
1188 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1189 compliance_mode_recovery_timer_init(xhci);
1190
1191 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1192 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1193
1194 /* Re-enable port polling. */
1195 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1196 __func__, hcd->self.busnum);
1197 if (xhci->shared_hcd) {
1198 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1199 usb_hcd_poll_rh_status(xhci->shared_hcd);
1200 }
1201 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1202 usb_hcd_poll_rh_status(hcd);
1203
1204 return retval;
1205 }
1206 EXPORT_SYMBOL_GPL(xhci_resume);
1207 #endif /* CONFIG_PM */
1208
1209 /*-------------------------------------------------------------------------*/
1210
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1211 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1212 {
1213 void *temp;
1214 int ret = 0;
1215 unsigned int buf_len;
1216 enum dma_data_direction dir;
1217
1218 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1219 buf_len = urb->transfer_buffer_length;
1220
1221 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1222 dev_to_node(hcd->self.sysdev));
1223 if (!temp)
1224 return -ENOMEM;
1225
1226 if (usb_urb_dir_out(urb))
1227 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1228 temp, buf_len, 0);
1229
1230 urb->transfer_buffer = temp;
1231 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1232 urb->transfer_buffer,
1233 urb->transfer_buffer_length,
1234 dir);
1235
1236 if (dma_mapping_error(hcd->self.sysdev,
1237 urb->transfer_dma)) {
1238 ret = -EAGAIN;
1239 kfree(temp);
1240 } else {
1241 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1242 }
1243
1244 return ret;
1245 }
1246
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1247 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1248 struct urb *urb)
1249 {
1250 bool ret = false;
1251 unsigned int i;
1252 unsigned int len = 0;
1253 unsigned int trb_size;
1254 unsigned int max_pkt;
1255 struct scatterlist *sg;
1256 struct scatterlist *tail_sg;
1257
1258 tail_sg = urb->sg;
1259 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1260
1261 if (!urb->num_sgs)
1262 return ret;
1263
1264 if (urb->dev->speed >= USB_SPEED_SUPER)
1265 trb_size = TRB_CACHE_SIZE_SS;
1266 else
1267 trb_size = TRB_CACHE_SIZE_HS;
1268
1269 if (urb->transfer_buffer_length != 0 &&
1270 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1271 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1272 len = len + sg->length;
1273 if (i > trb_size - 2) {
1274 len = len - tail_sg->length;
1275 if (len < max_pkt) {
1276 ret = true;
1277 break;
1278 }
1279
1280 tail_sg = sg_next(tail_sg);
1281 }
1282 }
1283 }
1284 return ret;
1285 }
1286
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1287 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1288 {
1289 unsigned int len;
1290 unsigned int buf_len;
1291 enum dma_data_direction dir;
1292
1293 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1294
1295 buf_len = urb->transfer_buffer_length;
1296
1297 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1298 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1299 dma_unmap_single(hcd->self.sysdev,
1300 urb->transfer_dma,
1301 urb->transfer_buffer_length,
1302 dir);
1303
1304 if (usb_urb_dir_in(urb)) {
1305 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1306 urb->transfer_buffer,
1307 buf_len,
1308 0);
1309 if (len != buf_len) {
1310 xhci_dbg(hcd_to_xhci(hcd),
1311 "Copy from tmp buf to urb sg list failed\n");
1312 urb->actual_length = len;
1313 }
1314 }
1315 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1316 kfree(urb->transfer_buffer);
1317 urb->transfer_buffer = NULL;
1318 }
1319
1320 /*
1321 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1322 * we'll copy the actual data into the TRB address register. This is limited to
1323 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1324 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1325 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1326 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1327 gfp_t mem_flags)
1328 {
1329 struct xhci_hcd *xhci;
1330
1331 xhci = hcd_to_xhci(hcd);
1332
1333 if (xhci_urb_suitable_for_idt(urb))
1334 return 0;
1335
1336 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1337 if (xhci_urb_temp_buffer_required(hcd, urb))
1338 return xhci_map_temp_buffer(hcd, urb);
1339 }
1340 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1341 }
1342
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1343 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1344 {
1345 struct xhci_hcd *xhci;
1346 bool unmap_temp_buf = false;
1347
1348 xhci = hcd_to_xhci(hcd);
1349
1350 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1351 unmap_temp_buf = true;
1352
1353 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1354 xhci_unmap_temp_buf(hcd, urb);
1355 else
1356 usb_hcd_unmap_urb_for_dma(hcd, urb);
1357 }
1358
1359 /**
1360 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1361 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1362 * value to right shift 1 for the bitmask.
1363 *
1364 * Index = (epnum * 2) + direction - 1,
1365 * where direction = 0 for OUT, 1 for IN.
1366 * For control endpoints, the IN index is used (OUT index is unused), so
1367 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1368 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1369 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1370 {
1371 unsigned int index;
1372 if (usb_endpoint_xfer_control(desc))
1373 index = (unsigned int) (usb_endpoint_num(desc)*2);
1374 else
1375 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1376 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1377 return index;
1378 }
1379 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1380
1381 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1382 * address from the XHCI endpoint index.
1383 */
xhci_get_endpoint_address(unsigned int ep_index)1384 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1385 {
1386 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1387 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1388 return direction | number;
1389 }
1390
1391 /* Find the flag for this endpoint (for use in the control context). Use the
1392 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1393 * bit 1, etc.
1394 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1395 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1396 {
1397 return 1 << (xhci_get_endpoint_index(desc) + 1);
1398 }
1399
1400 /* Compute the last valid endpoint context index. Basically, this is the
1401 * endpoint index plus one. For slot contexts with more than valid endpoint,
1402 * we find the most significant bit set in the added contexts flags.
1403 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1404 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1405 */
xhci_last_valid_endpoint(u32 added_ctxs)1406 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1407 {
1408 return fls(added_ctxs) - 1;
1409 }
1410
1411 /* Returns 1 if the arguments are OK;
1412 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1413 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1414 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1415 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1416 const char *func) {
1417 struct xhci_hcd *xhci;
1418 struct xhci_virt_device *virt_dev;
1419
1420 if (!hcd || (check_ep && !ep) || !udev) {
1421 pr_debug("xHCI %s called with invalid args\n", func);
1422 return -EINVAL;
1423 }
1424 if (!udev->parent) {
1425 pr_debug("xHCI %s called for root hub\n", func);
1426 return 0;
1427 }
1428
1429 xhci = hcd_to_xhci(hcd);
1430 if (check_virt_dev) {
1431 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1432 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1433 func);
1434 return -EINVAL;
1435 }
1436
1437 virt_dev = xhci->devs[udev->slot_id];
1438 if (virt_dev->udev != udev) {
1439 xhci_dbg(xhci, "xHCI %s called with udev and "
1440 "virt_dev does not match\n", func);
1441 return -EINVAL;
1442 }
1443 }
1444
1445 if (xhci->xhc_state & XHCI_STATE_HALTED)
1446 return -ENODEV;
1447
1448 return 1;
1449 }
1450
1451 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1452 struct usb_device *udev, struct xhci_command *command,
1453 bool ctx_change, bool must_succeed);
1454
1455 /*
1456 * Full speed devices may have a max packet size greater than 8 bytes, but the
1457 * USB core doesn't know that until it reads the first 8 bytes of the
1458 * descriptor. If the usb_device's max packet size changes after that point,
1459 * we need to issue an evaluate context command and wait on it.
1460 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1461 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1462 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1463 {
1464 struct xhci_container_ctx *out_ctx;
1465 struct xhci_input_control_ctx *ctrl_ctx;
1466 struct xhci_ep_ctx *ep_ctx;
1467 struct xhci_command *command;
1468 int max_packet_size;
1469 int hw_max_packet_size;
1470 int ret = 0;
1471
1472 out_ctx = xhci->devs[slot_id]->out_ctx;
1473 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1474 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1475 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1476 if (hw_max_packet_size != max_packet_size) {
1477 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1478 "Max Packet Size for ep 0 changed.");
1479 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1480 "Max packet size in usb_device = %d",
1481 max_packet_size);
1482 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1483 "Max packet size in xHCI HW = %d",
1484 hw_max_packet_size);
1485 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1486 "Issuing evaluate context command.");
1487
1488 /* Set up the input context flags for the command */
1489 /* FIXME: This won't work if a non-default control endpoint
1490 * changes max packet sizes.
1491 */
1492
1493 command = xhci_alloc_command(xhci, true, mem_flags);
1494 if (!command)
1495 return -ENOMEM;
1496
1497 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1498 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1499 if (!ctrl_ctx) {
1500 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1501 __func__);
1502 ret = -ENOMEM;
1503 goto command_cleanup;
1504 }
1505 /* Set up the modified control endpoint 0 */
1506 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1507 xhci->devs[slot_id]->out_ctx, ep_index);
1508
1509 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1510 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1511 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1512 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1513
1514 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1515 ctrl_ctx->drop_flags = 0;
1516
1517 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1518 true, false);
1519
1520 /* Clean up the input context for later use by bandwidth
1521 * functions.
1522 */
1523 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1524 command_cleanup:
1525 kfree(command->completion);
1526 kfree(command);
1527 }
1528 return ret;
1529 }
1530
1531 /*
1532 * non-error returns are a promise to giveback() the urb later
1533 * we drop ownership so next owner (or urb unlink) can get it
1534 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1535 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1536 {
1537 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1538 unsigned long flags;
1539 int ret = 0;
1540 unsigned int slot_id, ep_index;
1541 unsigned int *ep_state;
1542 struct urb_priv *urb_priv;
1543 int num_tds;
1544
1545 if (!urb)
1546 return -EINVAL;
1547 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1548 true, true, __func__);
1549 if (ret <= 0)
1550 return ret ? ret : -EINVAL;
1551
1552 slot_id = urb->dev->slot_id;
1553 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1554 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1555
1556 if (!HCD_HW_ACCESSIBLE(hcd))
1557 return -ESHUTDOWN;
1558
1559 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1560 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1561 return -ENODEV;
1562 }
1563
1564 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1565 num_tds = urb->number_of_packets;
1566 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1567 urb->transfer_buffer_length > 0 &&
1568 urb->transfer_flags & URB_ZERO_PACKET &&
1569 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1570 num_tds = 2;
1571 else
1572 num_tds = 1;
1573
1574 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1575 if (!urb_priv)
1576 return -ENOMEM;
1577
1578 urb_priv->num_tds = num_tds;
1579 urb_priv->num_tds_done = 0;
1580 urb->hcpriv = urb_priv;
1581
1582 trace_xhci_urb_enqueue(urb);
1583
1584 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1585 /* Check to see if the max packet size for the default control
1586 * endpoint changed during FS device enumeration
1587 */
1588 if (urb->dev->speed == USB_SPEED_FULL) {
1589 ret = xhci_check_maxpacket(xhci, slot_id,
1590 ep_index, urb, mem_flags);
1591 if (ret < 0) {
1592 xhci_urb_free_priv(urb_priv);
1593 urb->hcpriv = NULL;
1594 return ret;
1595 }
1596 }
1597 }
1598
1599 spin_lock_irqsave(&xhci->lock, flags);
1600
1601 if (xhci->xhc_state & XHCI_STATE_DYING) {
1602 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1603 urb->ep->desc.bEndpointAddress, urb);
1604 ret = -ESHUTDOWN;
1605 goto free_priv;
1606 }
1607 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1608 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1609 *ep_state);
1610 ret = -EINVAL;
1611 goto free_priv;
1612 }
1613 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1614 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1615 ret = -EINVAL;
1616 goto free_priv;
1617 }
1618
1619 switch (usb_endpoint_type(&urb->ep->desc)) {
1620
1621 case USB_ENDPOINT_XFER_CONTROL:
1622 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1623 slot_id, ep_index);
1624 break;
1625 case USB_ENDPOINT_XFER_BULK:
1626 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1627 slot_id, ep_index);
1628 break;
1629 case USB_ENDPOINT_XFER_INT:
1630 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1631 slot_id, ep_index);
1632 break;
1633 case USB_ENDPOINT_XFER_ISOC:
1634 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1635 slot_id, ep_index);
1636 }
1637
1638 if (ret) {
1639 free_priv:
1640 xhci_urb_free_priv(urb_priv);
1641 urb->hcpriv = NULL;
1642 }
1643 spin_unlock_irqrestore(&xhci->lock, flags);
1644 return ret;
1645 }
1646
1647 /*
1648 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1649 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1650 * should pick up where it left off in the TD, unless a Set Transfer Ring
1651 * Dequeue Pointer is issued.
1652 *
1653 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1654 * the ring. Since the ring is a contiguous structure, they can't be physically
1655 * removed. Instead, there are two options:
1656 *
1657 * 1) If the HC is in the middle of processing the URB to be canceled, we
1658 * simply move the ring's dequeue pointer past those TRBs using the Set
1659 * Transfer Ring Dequeue Pointer command. This will be the common case,
1660 * when drivers timeout on the last submitted URB and attempt to cancel.
1661 *
1662 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1663 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1664 * HC will need to invalidate the any TRBs it has cached after the stop
1665 * endpoint command, as noted in the xHCI 0.95 errata.
1666 *
1667 * 3) The TD may have completed by the time the Stop Endpoint Command
1668 * completes, so software needs to handle that case too.
1669 *
1670 * This function should protect against the TD enqueueing code ringing the
1671 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1672 * It also needs to account for multiple cancellations on happening at the same
1673 * time for the same endpoint.
1674 *
1675 * Note that this function can be called in any context, or so says
1676 * usb_hcd_unlink_urb()
1677 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1678 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1679 {
1680 unsigned long flags;
1681 int ret, i;
1682 u32 temp;
1683 struct xhci_hcd *xhci;
1684 struct urb_priv *urb_priv;
1685 struct xhci_td *td;
1686 unsigned int ep_index;
1687 struct xhci_ring *ep_ring;
1688 struct xhci_virt_ep *ep;
1689 struct xhci_command *command;
1690 struct xhci_virt_device *vdev;
1691
1692 xhci = hcd_to_xhci(hcd);
1693 spin_lock_irqsave(&xhci->lock, flags);
1694
1695 trace_xhci_urb_dequeue(urb);
1696
1697 /* Make sure the URB hasn't completed or been unlinked already */
1698 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1699 if (ret)
1700 goto done;
1701
1702 /* give back URB now if we can't queue it for cancel */
1703 vdev = xhci->devs[urb->dev->slot_id];
1704 urb_priv = urb->hcpriv;
1705 if (!vdev || !urb_priv)
1706 goto err_giveback;
1707
1708 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1709 ep = &vdev->eps[ep_index];
1710 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1711 if (!ep || !ep_ring)
1712 goto err_giveback;
1713
1714 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1715 temp = readl(&xhci->op_regs->status);
1716 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1717 xhci_hc_died(xhci);
1718 goto done;
1719 }
1720
1721 /*
1722 * check ring is not re-allocated since URB was enqueued. If it is, then
1723 * make sure none of the ring related pointers in this URB private data
1724 * are touched, such as td_list, otherwise we overwrite freed data
1725 */
1726 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1727 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1728 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1729 td = &urb_priv->td[i];
1730 if (!list_empty(&td->cancelled_td_list))
1731 list_del_init(&td->cancelled_td_list);
1732 }
1733 goto err_giveback;
1734 }
1735
1736 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1737 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1738 "HC halted, freeing TD manually.");
1739 for (i = urb_priv->num_tds_done;
1740 i < urb_priv->num_tds;
1741 i++) {
1742 td = &urb_priv->td[i];
1743 if (!list_empty(&td->td_list))
1744 list_del_init(&td->td_list);
1745 if (!list_empty(&td->cancelled_td_list))
1746 list_del_init(&td->cancelled_td_list);
1747 }
1748 goto err_giveback;
1749 }
1750
1751 i = urb_priv->num_tds_done;
1752 if (i < urb_priv->num_tds)
1753 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1754 "Cancel URB %p, dev %s, ep 0x%x, "
1755 "starting at offset 0x%llx",
1756 urb, urb->dev->devpath,
1757 urb->ep->desc.bEndpointAddress,
1758 (unsigned long long) xhci_trb_virt_to_dma(
1759 urb_priv->td[i].start_seg,
1760 urb_priv->td[i].first_trb));
1761
1762 for (; i < urb_priv->num_tds; i++) {
1763 td = &urb_priv->td[i];
1764 /* TD can already be on cancelled list if ep halted on it */
1765 if (list_empty(&td->cancelled_td_list)) {
1766 td->cancel_status = TD_DIRTY;
1767 list_add_tail(&td->cancelled_td_list,
1768 &ep->cancelled_td_list);
1769 }
1770 }
1771
1772 /* Queue a stop endpoint command, but only if this is
1773 * the first cancellation to be handled.
1774 */
1775 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1776 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1777 if (!command) {
1778 ret = -ENOMEM;
1779 goto done;
1780 }
1781 ep->ep_state |= EP_STOP_CMD_PENDING;
1782 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1783 ep_index, 0);
1784 xhci_ring_cmd_db(xhci);
1785 }
1786 done:
1787 spin_unlock_irqrestore(&xhci->lock, flags);
1788 return ret;
1789
1790 err_giveback:
1791 if (urb_priv)
1792 xhci_urb_free_priv(urb_priv);
1793 usb_hcd_unlink_urb_from_ep(hcd, urb);
1794 spin_unlock_irqrestore(&xhci->lock, flags);
1795 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1796 return ret;
1797 }
1798
1799 /* Drop an endpoint from a new bandwidth configuration for this device.
1800 * Only one call to this function is allowed per endpoint before
1801 * check_bandwidth() or reset_bandwidth() must be called.
1802 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1803 * add the endpoint to the schedule with possibly new parameters denoted by a
1804 * different endpoint descriptor in usb_host_endpoint.
1805 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1806 * not allowed.
1807 *
1808 * The USB core will not allow URBs to be queued to an endpoint that is being
1809 * disabled, so there's no need for mutual exclusion to protect
1810 * the xhci->devs[slot_id] structure.
1811 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1812 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1813 struct usb_host_endpoint *ep)
1814 {
1815 struct xhci_hcd *xhci;
1816 struct xhci_container_ctx *in_ctx, *out_ctx;
1817 struct xhci_input_control_ctx *ctrl_ctx;
1818 unsigned int ep_index;
1819 struct xhci_ep_ctx *ep_ctx;
1820 u32 drop_flag;
1821 u32 new_add_flags, new_drop_flags;
1822 int ret;
1823
1824 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1825 if (ret <= 0)
1826 return ret;
1827 xhci = hcd_to_xhci(hcd);
1828 if (xhci->xhc_state & XHCI_STATE_DYING)
1829 return -ENODEV;
1830
1831 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1832 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1833 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1834 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1835 __func__, drop_flag);
1836 return 0;
1837 }
1838
1839 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1840 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1841 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1842 if (!ctrl_ctx) {
1843 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1844 __func__);
1845 return 0;
1846 }
1847
1848 ep_index = xhci_get_endpoint_index(&ep->desc);
1849 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1850 /* If the HC already knows the endpoint is disabled,
1851 * or the HCD has noted it is disabled, ignore this request
1852 */
1853 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1854 le32_to_cpu(ctrl_ctx->drop_flags) &
1855 xhci_get_endpoint_flag(&ep->desc)) {
1856 /* Do not warn when called after a usb_device_reset */
1857 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1858 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1859 __func__, ep);
1860 return 0;
1861 }
1862
1863 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1864 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1865
1866 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1867 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1868
1869 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1870
1871 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1872
1873 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1874 (unsigned int) ep->desc.bEndpointAddress,
1875 udev->slot_id,
1876 (unsigned int) new_drop_flags,
1877 (unsigned int) new_add_flags);
1878 return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1881
1882 /* Add an endpoint to a new possible bandwidth configuration for this device.
1883 * Only one call to this function is allowed per endpoint before
1884 * check_bandwidth() or reset_bandwidth() must be called.
1885 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1886 * add the endpoint to the schedule with possibly new parameters denoted by a
1887 * different endpoint descriptor in usb_host_endpoint.
1888 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1889 * not allowed.
1890 *
1891 * The USB core will not allow URBs to be queued to an endpoint until the
1892 * configuration or alt setting is installed in the device, so there's no need
1893 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1894 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1895 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1896 struct usb_host_endpoint *ep)
1897 {
1898 struct xhci_hcd *xhci;
1899 struct xhci_container_ctx *in_ctx;
1900 unsigned int ep_index;
1901 struct xhci_input_control_ctx *ctrl_ctx;
1902 struct xhci_ep_ctx *ep_ctx;
1903 u32 added_ctxs;
1904 u32 new_add_flags, new_drop_flags;
1905 struct xhci_virt_device *virt_dev;
1906 int ret = 0;
1907
1908 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1909 if (ret <= 0) {
1910 /* So we won't queue a reset ep command for a root hub */
1911 ep->hcpriv = NULL;
1912 return ret;
1913 }
1914 xhci = hcd_to_xhci(hcd);
1915 if (xhci->xhc_state & XHCI_STATE_DYING)
1916 return -ENODEV;
1917
1918 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1919 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1920 /* FIXME when we have to issue an evaluate endpoint command to
1921 * deal with ep0 max packet size changing once we get the
1922 * descriptors
1923 */
1924 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1925 __func__, added_ctxs);
1926 return 0;
1927 }
1928
1929 virt_dev = xhci->devs[udev->slot_id];
1930 in_ctx = virt_dev->in_ctx;
1931 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1932 if (!ctrl_ctx) {
1933 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1934 __func__);
1935 return 0;
1936 }
1937
1938 ep_index = xhci_get_endpoint_index(&ep->desc);
1939 /* If this endpoint is already in use, and the upper layers are trying
1940 * to add it again without dropping it, reject the addition.
1941 */
1942 if (virt_dev->eps[ep_index].ring &&
1943 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1944 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1945 "without dropping it.\n",
1946 (unsigned int) ep->desc.bEndpointAddress);
1947 return -EINVAL;
1948 }
1949
1950 /* If the HCD has already noted the endpoint is enabled,
1951 * ignore this request.
1952 */
1953 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1954 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1955 __func__, ep);
1956 return 0;
1957 }
1958
1959 /*
1960 * Configuration and alternate setting changes must be done in
1961 * process context, not interrupt context (or so documenation
1962 * for usb_set_interface() and usb_set_configuration() claim).
1963 */
1964 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1965 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1966 __func__, ep->desc.bEndpointAddress);
1967 return -ENOMEM;
1968 }
1969
1970 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1971 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1972
1973 /* If xhci_endpoint_disable() was called for this endpoint, but the
1974 * xHC hasn't been notified yet through the check_bandwidth() call,
1975 * this re-adds a new state for the endpoint from the new endpoint
1976 * descriptors. We must drop and re-add this endpoint, so we leave the
1977 * drop flags alone.
1978 */
1979 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1980
1981 /* Store the usb_device pointer for later use */
1982 ep->hcpriv = udev;
1983
1984 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1985 trace_xhci_add_endpoint(ep_ctx);
1986
1987 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1988 (unsigned int) ep->desc.bEndpointAddress,
1989 udev->slot_id,
1990 (unsigned int) new_drop_flags,
1991 (unsigned int) new_add_flags);
1992 return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1995
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1996 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1997 {
1998 struct xhci_input_control_ctx *ctrl_ctx;
1999 struct xhci_ep_ctx *ep_ctx;
2000 struct xhci_slot_ctx *slot_ctx;
2001 int i;
2002
2003 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2004 if (!ctrl_ctx) {
2005 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2006 __func__);
2007 return;
2008 }
2009
2010 /* When a device's add flag and drop flag are zero, any subsequent
2011 * configure endpoint command will leave that endpoint's state
2012 * untouched. Make sure we don't leave any old state in the input
2013 * endpoint contexts.
2014 */
2015 ctrl_ctx->drop_flags = 0;
2016 ctrl_ctx->add_flags = 0;
2017 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2018 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2019 /* Endpoint 0 is always valid */
2020 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2021 for (i = 1; i < 31; i++) {
2022 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2023 ep_ctx->ep_info = 0;
2024 ep_ctx->ep_info2 = 0;
2025 ep_ctx->deq = 0;
2026 ep_ctx->tx_info = 0;
2027 }
2028 }
2029
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2030 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2031 struct usb_device *udev, u32 *cmd_status)
2032 {
2033 int ret;
2034
2035 switch (*cmd_status) {
2036 case COMP_COMMAND_ABORTED:
2037 case COMP_COMMAND_RING_STOPPED:
2038 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2039 ret = -ETIME;
2040 break;
2041 case COMP_RESOURCE_ERROR:
2042 dev_warn(&udev->dev,
2043 "Not enough host controller resources for new device state.\n");
2044 ret = -ENOMEM;
2045 /* FIXME: can we allocate more resources for the HC? */
2046 break;
2047 case COMP_BANDWIDTH_ERROR:
2048 case COMP_SECONDARY_BANDWIDTH_ERROR:
2049 dev_warn(&udev->dev,
2050 "Not enough bandwidth for new device state.\n");
2051 ret = -ENOSPC;
2052 /* FIXME: can we go back to the old state? */
2053 break;
2054 case COMP_TRB_ERROR:
2055 /* the HCD set up something wrong */
2056 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2057 "add flag = 1, "
2058 "and endpoint is not disabled.\n");
2059 ret = -EINVAL;
2060 break;
2061 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2062 dev_warn(&udev->dev,
2063 "ERROR: Incompatible device for endpoint configure command.\n");
2064 ret = -ENODEV;
2065 break;
2066 case COMP_SUCCESS:
2067 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2068 "Successful Endpoint Configure command");
2069 ret = 0;
2070 break;
2071 default:
2072 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2073 *cmd_status);
2074 ret = -EINVAL;
2075 break;
2076 }
2077 return ret;
2078 }
2079
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2080 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2081 struct usb_device *udev, u32 *cmd_status)
2082 {
2083 int ret;
2084
2085 switch (*cmd_status) {
2086 case COMP_COMMAND_ABORTED:
2087 case COMP_COMMAND_RING_STOPPED:
2088 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2089 ret = -ETIME;
2090 break;
2091 case COMP_PARAMETER_ERROR:
2092 dev_warn(&udev->dev,
2093 "WARN: xHCI driver setup invalid evaluate context command.\n");
2094 ret = -EINVAL;
2095 break;
2096 case COMP_SLOT_NOT_ENABLED_ERROR:
2097 dev_warn(&udev->dev,
2098 "WARN: slot not enabled for evaluate context command.\n");
2099 ret = -EINVAL;
2100 break;
2101 case COMP_CONTEXT_STATE_ERROR:
2102 dev_warn(&udev->dev,
2103 "WARN: invalid context state for evaluate context command.\n");
2104 ret = -EINVAL;
2105 break;
2106 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2107 dev_warn(&udev->dev,
2108 "ERROR: Incompatible device for evaluate context command.\n");
2109 ret = -ENODEV;
2110 break;
2111 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2112 /* Max Exit Latency too large error */
2113 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2114 ret = -EINVAL;
2115 break;
2116 case COMP_SUCCESS:
2117 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2118 "Successful evaluate context command");
2119 ret = 0;
2120 break;
2121 default:
2122 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2123 *cmd_status);
2124 ret = -EINVAL;
2125 break;
2126 }
2127 return ret;
2128 }
2129
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2130 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2131 struct xhci_input_control_ctx *ctrl_ctx)
2132 {
2133 u32 valid_add_flags;
2134 u32 valid_drop_flags;
2135
2136 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2137 * (bit 1). The default control endpoint is added during the Address
2138 * Device command and is never removed until the slot is disabled.
2139 */
2140 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2141 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2142
2143 /* Use hweight32 to count the number of ones in the add flags, or
2144 * number of endpoints added. Don't count endpoints that are changed
2145 * (both added and dropped).
2146 */
2147 return hweight32(valid_add_flags) -
2148 hweight32(valid_add_flags & valid_drop_flags);
2149 }
2150
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2151 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2152 struct xhci_input_control_ctx *ctrl_ctx)
2153 {
2154 u32 valid_add_flags;
2155 u32 valid_drop_flags;
2156
2157 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2158 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2159
2160 return hweight32(valid_drop_flags) -
2161 hweight32(valid_add_flags & valid_drop_flags);
2162 }
2163
2164 /*
2165 * We need to reserve the new number of endpoints before the configure endpoint
2166 * command completes. We can't subtract the dropped endpoints from the number
2167 * of active endpoints until the command completes because we can oversubscribe
2168 * the host in this case:
2169 *
2170 * - the first configure endpoint command drops more endpoints than it adds
2171 * - a second configure endpoint command that adds more endpoints is queued
2172 * - the first configure endpoint command fails, so the config is unchanged
2173 * - the second command may succeed, even though there isn't enough resources
2174 *
2175 * Must be called with xhci->lock held.
2176 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2177 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2178 struct xhci_input_control_ctx *ctrl_ctx)
2179 {
2180 u32 added_eps;
2181
2182 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2183 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2184 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2185 "Not enough ep ctxs: "
2186 "%u active, need to add %u, limit is %u.",
2187 xhci->num_active_eps, added_eps,
2188 xhci->limit_active_eps);
2189 return -ENOMEM;
2190 }
2191 xhci->num_active_eps += added_eps;
2192 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2193 "Adding %u ep ctxs, %u now active.", added_eps,
2194 xhci->num_active_eps);
2195 return 0;
2196 }
2197
2198 /*
2199 * The configure endpoint was failed by the xHC for some other reason, so we
2200 * need to revert the resources that failed configuration would have used.
2201 *
2202 * Must be called with xhci->lock held.
2203 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2204 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2205 struct xhci_input_control_ctx *ctrl_ctx)
2206 {
2207 u32 num_failed_eps;
2208
2209 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2210 xhci->num_active_eps -= num_failed_eps;
2211 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2212 "Removing %u failed ep ctxs, %u now active.",
2213 num_failed_eps,
2214 xhci->num_active_eps);
2215 }
2216
2217 /*
2218 * Now that the command has completed, clean up the active endpoint count by
2219 * subtracting out the endpoints that were dropped (but not changed).
2220 *
2221 * Must be called with xhci->lock held.
2222 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2223 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2224 struct xhci_input_control_ctx *ctrl_ctx)
2225 {
2226 u32 num_dropped_eps;
2227
2228 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2229 xhci->num_active_eps -= num_dropped_eps;
2230 if (num_dropped_eps)
2231 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2232 "Removing %u dropped ep ctxs, %u now active.",
2233 num_dropped_eps,
2234 xhci->num_active_eps);
2235 }
2236
xhci_get_block_size(struct usb_device * udev)2237 static unsigned int xhci_get_block_size(struct usb_device *udev)
2238 {
2239 switch (udev->speed) {
2240 case USB_SPEED_LOW:
2241 case USB_SPEED_FULL:
2242 return FS_BLOCK;
2243 case USB_SPEED_HIGH:
2244 return HS_BLOCK;
2245 case USB_SPEED_SUPER:
2246 case USB_SPEED_SUPER_PLUS:
2247 return SS_BLOCK;
2248 case USB_SPEED_UNKNOWN:
2249 default:
2250 /* Should never happen */
2251 return 1;
2252 }
2253 }
2254
2255 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2256 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2257 {
2258 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2259 return LS_OVERHEAD;
2260 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2261 return FS_OVERHEAD;
2262 return HS_OVERHEAD;
2263 }
2264
2265 /* If we are changing a LS/FS device under a HS hub,
2266 * make sure (if we are activating a new TT) that the HS bus has enough
2267 * bandwidth for this new TT.
2268 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2269 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2270 struct xhci_virt_device *virt_dev,
2271 int old_active_eps)
2272 {
2273 struct xhci_interval_bw_table *bw_table;
2274 struct xhci_tt_bw_info *tt_info;
2275
2276 /* Find the bandwidth table for the root port this TT is attached to. */
2277 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2278 tt_info = virt_dev->tt_info;
2279 /* If this TT already had active endpoints, the bandwidth for this TT
2280 * has already been added. Removing all periodic endpoints (and thus
2281 * making the TT enactive) will only decrease the bandwidth used.
2282 */
2283 if (old_active_eps)
2284 return 0;
2285 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2286 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2287 return -ENOMEM;
2288 return 0;
2289 }
2290 /* Not sure why we would have no new active endpoints...
2291 *
2292 * Maybe because of an Evaluate Context change for a hub update or a
2293 * control endpoint 0 max packet size change?
2294 * FIXME: skip the bandwidth calculation in that case.
2295 */
2296 return 0;
2297 }
2298
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2299 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2300 struct xhci_virt_device *virt_dev)
2301 {
2302 unsigned int bw_reserved;
2303
2304 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2305 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2306 return -ENOMEM;
2307
2308 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2309 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2310 return -ENOMEM;
2311
2312 return 0;
2313 }
2314
2315 /*
2316 * This algorithm is a very conservative estimate of the worst-case scheduling
2317 * scenario for any one interval. The hardware dynamically schedules the
2318 * packets, so we can't tell which microframe could be the limiting factor in
2319 * the bandwidth scheduling. This only takes into account periodic endpoints.
2320 *
2321 * Obviously, we can't solve an NP complete problem to find the minimum worst
2322 * case scenario. Instead, we come up with an estimate that is no less than
2323 * the worst case bandwidth used for any one microframe, but may be an
2324 * over-estimate.
2325 *
2326 * We walk the requirements for each endpoint by interval, starting with the
2327 * smallest interval, and place packets in the schedule where there is only one
2328 * possible way to schedule packets for that interval. In order to simplify
2329 * this algorithm, we record the largest max packet size for each interval, and
2330 * assume all packets will be that size.
2331 *
2332 * For interval 0, we obviously must schedule all packets for each interval.
2333 * The bandwidth for interval 0 is just the amount of data to be transmitted
2334 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2335 * the number of packets).
2336 *
2337 * For interval 1, we have two possible microframes to schedule those packets
2338 * in. For this algorithm, if we can schedule the same number of packets for
2339 * each possible scheduling opportunity (each microframe), we will do so. The
2340 * remaining number of packets will be saved to be transmitted in the gaps in
2341 * the next interval's scheduling sequence.
2342 *
2343 * As we move those remaining packets to be scheduled with interval 2 packets,
2344 * we have to double the number of remaining packets to transmit. This is
2345 * because the intervals are actually powers of 2, and we would be transmitting
2346 * the previous interval's packets twice in this interval. We also have to be
2347 * sure that when we look at the largest max packet size for this interval, we
2348 * also look at the largest max packet size for the remaining packets and take
2349 * the greater of the two.
2350 *
2351 * The algorithm continues to evenly distribute packets in each scheduling
2352 * opportunity, and push the remaining packets out, until we get to the last
2353 * interval. Then those packets and their associated overhead are just added
2354 * to the bandwidth used.
2355 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2356 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2357 struct xhci_virt_device *virt_dev,
2358 int old_active_eps)
2359 {
2360 unsigned int bw_reserved;
2361 unsigned int max_bandwidth;
2362 unsigned int bw_used;
2363 unsigned int block_size;
2364 struct xhci_interval_bw_table *bw_table;
2365 unsigned int packet_size = 0;
2366 unsigned int overhead = 0;
2367 unsigned int packets_transmitted = 0;
2368 unsigned int packets_remaining = 0;
2369 unsigned int i;
2370
2371 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2372 return xhci_check_ss_bw(xhci, virt_dev);
2373
2374 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2375 max_bandwidth = HS_BW_LIMIT;
2376 /* Convert percent of bus BW reserved to blocks reserved */
2377 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2378 } else {
2379 max_bandwidth = FS_BW_LIMIT;
2380 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2381 }
2382
2383 bw_table = virt_dev->bw_table;
2384 /* We need to translate the max packet size and max ESIT payloads into
2385 * the units the hardware uses.
2386 */
2387 block_size = xhci_get_block_size(virt_dev->udev);
2388
2389 /* If we are manipulating a LS/FS device under a HS hub, double check
2390 * that the HS bus has enough bandwidth if we are activing a new TT.
2391 */
2392 if (virt_dev->tt_info) {
2393 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2394 "Recalculating BW for rootport %u",
2395 virt_dev->real_port);
2396 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2397 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2398 "newly activated TT.\n");
2399 return -ENOMEM;
2400 }
2401 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2402 "Recalculating BW for TT slot %u port %u",
2403 virt_dev->tt_info->slot_id,
2404 virt_dev->tt_info->ttport);
2405 } else {
2406 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2407 "Recalculating BW for rootport %u",
2408 virt_dev->real_port);
2409 }
2410
2411 /* Add in how much bandwidth will be used for interval zero, or the
2412 * rounded max ESIT payload + number of packets * largest overhead.
2413 */
2414 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2415 bw_table->interval_bw[0].num_packets *
2416 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2417
2418 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2419 unsigned int bw_added;
2420 unsigned int largest_mps;
2421 unsigned int interval_overhead;
2422
2423 /*
2424 * How many packets could we transmit in this interval?
2425 * If packets didn't fit in the previous interval, we will need
2426 * to transmit that many packets twice within this interval.
2427 */
2428 packets_remaining = 2 * packets_remaining +
2429 bw_table->interval_bw[i].num_packets;
2430
2431 /* Find the largest max packet size of this or the previous
2432 * interval.
2433 */
2434 if (list_empty(&bw_table->interval_bw[i].endpoints))
2435 largest_mps = 0;
2436 else {
2437 struct xhci_virt_ep *virt_ep;
2438 struct list_head *ep_entry;
2439
2440 ep_entry = bw_table->interval_bw[i].endpoints.next;
2441 virt_ep = list_entry(ep_entry,
2442 struct xhci_virt_ep, bw_endpoint_list);
2443 /* Convert to blocks, rounding up */
2444 largest_mps = DIV_ROUND_UP(
2445 virt_ep->bw_info.max_packet_size,
2446 block_size);
2447 }
2448 if (largest_mps > packet_size)
2449 packet_size = largest_mps;
2450
2451 /* Use the larger overhead of this or the previous interval. */
2452 interval_overhead = xhci_get_largest_overhead(
2453 &bw_table->interval_bw[i]);
2454 if (interval_overhead > overhead)
2455 overhead = interval_overhead;
2456
2457 /* How many packets can we evenly distribute across
2458 * (1 << (i + 1)) possible scheduling opportunities?
2459 */
2460 packets_transmitted = packets_remaining >> (i + 1);
2461
2462 /* Add in the bandwidth used for those scheduled packets */
2463 bw_added = packets_transmitted * (overhead + packet_size);
2464
2465 /* How many packets do we have remaining to transmit? */
2466 packets_remaining = packets_remaining % (1 << (i + 1));
2467
2468 /* What largest max packet size should those packets have? */
2469 /* If we've transmitted all packets, don't carry over the
2470 * largest packet size.
2471 */
2472 if (packets_remaining == 0) {
2473 packet_size = 0;
2474 overhead = 0;
2475 } else if (packets_transmitted > 0) {
2476 /* Otherwise if we do have remaining packets, and we've
2477 * scheduled some packets in this interval, take the
2478 * largest max packet size from endpoints with this
2479 * interval.
2480 */
2481 packet_size = largest_mps;
2482 overhead = interval_overhead;
2483 }
2484 /* Otherwise carry over packet_size and overhead from the last
2485 * time we had a remainder.
2486 */
2487 bw_used += bw_added;
2488 if (bw_used > max_bandwidth) {
2489 xhci_warn(xhci, "Not enough bandwidth. "
2490 "Proposed: %u, Max: %u\n",
2491 bw_used, max_bandwidth);
2492 return -ENOMEM;
2493 }
2494 }
2495 /*
2496 * Ok, we know we have some packets left over after even-handedly
2497 * scheduling interval 15. We don't know which microframes they will
2498 * fit into, so we over-schedule and say they will be scheduled every
2499 * microframe.
2500 */
2501 if (packets_remaining > 0)
2502 bw_used += overhead + packet_size;
2503
2504 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2505 unsigned int port_index = virt_dev->real_port - 1;
2506
2507 /* OK, we're manipulating a HS device attached to a
2508 * root port bandwidth domain. Include the number of active TTs
2509 * in the bandwidth used.
2510 */
2511 bw_used += TT_HS_OVERHEAD *
2512 xhci->rh_bw[port_index].num_active_tts;
2513 }
2514
2515 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2516 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2517 "Available: %u " "percent",
2518 bw_used, max_bandwidth, bw_reserved,
2519 (max_bandwidth - bw_used - bw_reserved) * 100 /
2520 max_bandwidth);
2521
2522 bw_used += bw_reserved;
2523 if (bw_used > max_bandwidth) {
2524 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2525 bw_used, max_bandwidth);
2526 return -ENOMEM;
2527 }
2528
2529 bw_table->bw_used = bw_used;
2530 return 0;
2531 }
2532
xhci_is_async_ep(unsigned int ep_type)2533 static bool xhci_is_async_ep(unsigned int ep_type)
2534 {
2535 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2536 ep_type != ISOC_IN_EP &&
2537 ep_type != INT_IN_EP);
2538 }
2539
xhci_is_sync_in_ep(unsigned int ep_type)2540 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2541 {
2542 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2543 }
2544
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2545 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2546 {
2547 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2548
2549 if (ep_bw->ep_interval == 0)
2550 return SS_OVERHEAD_BURST +
2551 (ep_bw->mult * ep_bw->num_packets *
2552 (SS_OVERHEAD + mps));
2553 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2554 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2555 1 << ep_bw->ep_interval);
2556
2557 }
2558
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2559 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2560 struct xhci_bw_info *ep_bw,
2561 struct xhci_interval_bw_table *bw_table,
2562 struct usb_device *udev,
2563 struct xhci_virt_ep *virt_ep,
2564 struct xhci_tt_bw_info *tt_info)
2565 {
2566 struct xhci_interval_bw *interval_bw;
2567 int normalized_interval;
2568
2569 if (xhci_is_async_ep(ep_bw->type))
2570 return;
2571
2572 if (udev->speed >= USB_SPEED_SUPER) {
2573 if (xhci_is_sync_in_ep(ep_bw->type))
2574 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2575 xhci_get_ss_bw_consumed(ep_bw);
2576 else
2577 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2578 xhci_get_ss_bw_consumed(ep_bw);
2579 return;
2580 }
2581
2582 /* SuperSpeed endpoints never get added to intervals in the table, so
2583 * this check is only valid for HS/FS/LS devices.
2584 */
2585 if (list_empty(&virt_ep->bw_endpoint_list))
2586 return;
2587 /* For LS/FS devices, we need to translate the interval expressed in
2588 * microframes to frames.
2589 */
2590 if (udev->speed == USB_SPEED_HIGH)
2591 normalized_interval = ep_bw->ep_interval;
2592 else
2593 normalized_interval = ep_bw->ep_interval - 3;
2594
2595 if (normalized_interval == 0)
2596 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2597 interval_bw = &bw_table->interval_bw[normalized_interval];
2598 interval_bw->num_packets -= ep_bw->num_packets;
2599 switch (udev->speed) {
2600 case USB_SPEED_LOW:
2601 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2602 break;
2603 case USB_SPEED_FULL:
2604 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2605 break;
2606 case USB_SPEED_HIGH:
2607 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2608 break;
2609 default:
2610 /* Should never happen because only LS/FS/HS endpoints will get
2611 * added to the endpoint list.
2612 */
2613 return;
2614 }
2615 if (tt_info)
2616 tt_info->active_eps -= 1;
2617 list_del_init(&virt_ep->bw_endpoint_list);
2618 }
2619
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2620 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2621 struct xhci_bw_info *ep_bw,
2622 struct xhci_interval_bw_table *bw_table,
2623 struct usb_device *udev,
2624 struct xhci_virt_ep *virt_ep,
2625 struct xhci_tt_bw_info *tt_info)
2626 {
2627 struct xhci_interval_bw *interval_bw;
2628 struct xhci_virt_ep *smaller_ep;
2629 int normalized_interval;
2630
2631 if (xhci_is_async_ep(ep_bw->type))
2632 return;
2633
2634 if (udev->speed == USB_SPEED_SUPER) {
2635 if (xhci_is_sync_in_ep(ep_bw->type))
2636 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2637 xhci_get_ss_bw_consumed(ep_bw);
2638 else
2639 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2640 xhci_get_ss_bw_consumed(ep_bw);
2641 return;
2642 }
2643
2644 /* For LS/FS devices, we need to translate the interval expressed in
2645 * microframes to frames.
2646 */
2647 if (udev->speed == USB_SPEED_HIGH)
2648 normalized_interval = ep_bw->ep_interval;
2649 else
2650 normalized_interval = ep_bw->ep_interval - 3;
2651
2652 if (normalized_interval == 0)
2653 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2654 interval_bw = &bw_table->interval_bw[normalized_interval];
2655 interval_bw->num_packets += ep_bw->num_packets;
2656 switch (udev->speed) {
2657 case USB_SPEED_LOW:
2658 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2659 break;
2660 case USB_SPEED_FULL:
2661 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2662 break;
2663 case USB_SPEED_HIGH:
2664 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2665 break;
2666 default:
2667 /* Should never happen because only LS/FS/HS endpoints will get
2668 * added to the endpoint list.
2669 */
2670 return;
2671 }
2672
2673 if (tt_info)
2674 tt_info->active_eps += 1;
2675 /* Insert the endpoint into the list, largest max packet size first. */
2676 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2677 bw_endpoint_list) {
2678 if (ep_bw->max_packet_size >=
2679 smaller_ep->bw_info.max_packet_size) {
2680 /* Add the new ep before the smaller endpoint */
2681 list_add_tail(&virt_ep->bw_endpoint_list,
2682 &smaller_ep->bw_endpoint_list);
2683 return;
2684 }
2685 }
2686 /* Add the new endpoint at the end of the list. */
2687 list_add_tail(&virt_ep->bw_endpoint_list,
2688 &interval_bw->endpoints);
2689 }
2690
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2691 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2692 struct xhci_virt_device *virt_dev,
2693 int old_active_eps)
2694 {
2695 struct xhci_root_port_bw_info *rh_bw_info;
2696 if (!virt_dev->tt_info)
2697 return;
2698
2699 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2700 if (old_active_eps == 0 &&
2701 virt_dev->tt_info->active_eps != 0) {
2702 rh_bw_info->num_active_tts += 1;
2703 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2704 } else if (old_active_eps != 0 &&
2705 virt_dev->tt_info->active_eps == 0) {
2706 rh_bw_info->num_active_tts -= 1;
2707 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2708 }
2709 }
2710
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2711 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2712 struct xhci_virt_device *virt_dev,
2713 struct xhci_container_ctx *in_ctx)
2714 {
2715 struct xhci_bw_info ep_bw_info[31];
2716 int i;
2717 struct xhci_input_control_ctx *ctrl_ctx;
2718 int old_active_eps = 0;
2719
2720 if (virt_dev->tt_info)
2721 old_active_eps = virt_dev->tt_info->active_eps;
2722
2723 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2724 if (!ctrl_ctx) {
2725 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2726 __func__);
2727 return -ENOMEM;
2728 }
2729
2730 for (i = 0; i < 31; i++) {
2731 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2732 continue;
2733
2734 /* Make a copy of the BW info in case we need to revert this */
2735 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2736 sizeof(ep_bw_info[i]));
2737 /* Drop the endpoint from the interval table if the endpoint is
2738 * being dropped or changed.
2739 */
2740 if (EP_IS_DROPPED(ctrl_ctx, i))
2741 xhci_drop_ep_from_interval_table(xhci,
2742 &virt_dev->eps[i].bw_info,
2743 virt_dev->bw_table,
2744 virt_dev->udev,
2745 &virt_dev->eps[i],
2746 virt_dev->tt_info);
2747 }
2748 /* Overwrite the information stored in the endpoints' bw_info */
2749 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2750 for (i = 0; i < 31; i++) {
2751 /* Add any changed or added endpoints to the interval table */
2752 if (EP_IS_ADDED(ctrl_ctx, i))
2753 xhci_add_ep_to_interval_table(xhci,
2754 &virt_dev->eps[i].bw_info,
2755 virt_dev->bw_table,
2756 virt_dev->udev,
2757 &virt_dev->eps[i],
2758 virt_dev->tt_info);
2759 }
2760
2761 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2762 /* Ok, this fits in the bandwidth we have.
2763 * Update the number of active TTs.
2764 */
2765 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2766 return 0;
2767 }
2768
2769 /* We don't have enough bandwidth for this, revert the stored info. */
2770 for (i = 0; i < 31; i++) {
2771 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2772 continue;
2773
2774 /* Drop the new copies of any added or changed endpoints from
2775 * the interval table.
2776 */
2777 if (EP_IS_ADDED(ctrl_ctx, i)) {
2778 xhci_drop_ep_from_interval_table(xhci,
2779 &virt_dev->eps[i].bw_info,
2780 virt_dev->bw_table,
2781 virt_dev->udev,
2782 &virt_dev->eps[i],
2783 virt_dev->tt_info);
2784 }
2785 /* Revert the endpoint back to its old information */
2786 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2787 sizeof(ep_bw_info[i]));
2788 /* Add any changed or dropped endpoints back into the table */
2789 if (EP_IS_DROPPED(ctrl_ctx, i))
2790 xhci_add_ep_to_interval_table(xhci,
2791 &virt_dev->eps[i].bw_info,
2792 virt_dev->bw_table,
2793 virt_dev->udev,
2794 &virt_dev->eps[i],
2795 virt_dev->tt_info);
2796 }
2797 return -ENOMEM;
2798 }
2799
2800 /*
2801 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and
2802 * waits for the command completion before returning.
2803 */
xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2804 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2805 gfp_t gfp_flags)
2806 {
2807 struct xhci_command *command;
2808 unsigned long flags;
2809 int ret;
2810
2811 command = xhci_alloc_command(xhci, true, gfp_flags);
2812 if (!command)
2813 return -ENOMEM;
2814
2815 spin_lock_irqsave(&xhci->lock, flags);
2816 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2817 ep->ep_index, suspend);
2818 if (ret < 0) {
2819 spin_unlock_irqrestore(&xhci->lock, flags);
2820 goto out;
2821 }
2822
2823 xhci_ring_cmd_db(xhci);
2824 spin_unlock_irqrestore(&xhci->lock, flags);
2825
2826 wait_for_completion(command->completion);
2827
2828 if (command->status == COMP_COMMAND_ABORTED ||
2829 command->status == COMP_COMMAND_RING_STOPPED) {
2830 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2831 ret = -ETIME;
2832 }
2833 out:
2834 xhci_free_command(xhci, command);
2835
2836 return ret;
2837 }
2838 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2839
2840 /* Issue a configure endpoint command or evaluate context command
2841 * and wait for it to finish.
2842 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2843 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2844 struct usb_device *udev,
2845 struct xhci_command *command,
2846 bool ctx_change, bool must_succeed)
2847 {
2848 int ret;
2849 unsigned long flags;
2850 struct xhci_input_control_ctx *ctrl_ctx;
2851 struct xhci_virt_device *virt_dev;
2852 struct xhci_slot_ctx *slot_ctx;
2853
2854 if (!command)
2855 return -EINVAL;
2856
2857 spin_lock_irqsave(&xhci->lock, flags);
2858
2859 if (xhci->xhc_state & XHCI_STATE_DYING) {
2860 spin_unlock_irqrestore(&xhci->lock, flags);
2861 return -ESHUTDOWN;
2862 }
2863
2864 virt_dev = xhci->devs[udev->slot_id];
2865
2866 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2867 if (!ctrl_ctx) {
2868 spin_unlock_irqrestore(&xhci->lock, flags);
2869 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2870 __func__);
2871 return -ENOMEM;
2872 }
2873
2874 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2875 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2876 spin_unlock_irqrestore(&xhci->lock, flags);
2877 xhci_warn(xhci, "Not enough host resources, "
2878 "active endpoint contexts = %u\n",
2879 xhci->num_active_eps);
2880 return -ENOMEM;
2881 }
2882 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2883 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2884 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2885 xhci_free_host_resources(xhci, ctrl_ctx);
2886 spin_unlock_irqrestore(&xhci->lock, flags);
2887 xhci_warn(xhci, "Not enough bandwidth\n");
2888 return -ENOMEM;
2889 }
2890
2891 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2892
2893 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2894 trace_xhci_configure_endpoint(slot_ctx);
2895
2896 if (!ctx_change)
2897 ret = xhci_queue_configure_endpoint(xhci, command,
2898 command->in_ctx->dma,
2899 udev->slot_id, must_succeed);
2900 else
2901 ret = xhci_queue_evaluate_context(xhci, command,
2902 command->in_ctx->dma,
2903 udev->slot_id, must_succeed);
2904 if (ret < 0) {
2905 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2906 xhci_free_host_resources(xhci, ctrl_ctx);
2907 spin_unlock_irqrestore(&xhci->lock, flags);
2908 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2909 "FIXME allocate a new ring segment");
2910 return -ENOMEM;
2911 }
2912 xhci_ring_cmd_db(xhci);
2913 spin_unlock_irqrestore(&xhci->lock, flags);
2914
2915 /* Wait for the configure endpoint command to complete */
2916 wait_for_completion(command->completion);
2917
2918 if (!ctx_change)
2919 ret = xhci_configure_endpoint_result(xhci, udev,
2920 &command->status);
2921 else
2922 ret = xhci_evaluate_context_result(xhci, udev,
2923 &command->status);
2924
2925 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2926 spin_lock_irqsave(&xhci->lock, flags);
2927 /* If the command failed, remove the reserved resources.
2928 * Otherwise, clean up the estimate to include dropped eps.
2929 */
2930 if (ret)
2931 xhci_free_host_resources(xhci, ctrl_ctx);
2932 else
2933 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2934 spin_unlock_irqrestore(&xhci->lock, flags);
2935 }
2936 return ret;
2937 }
2938
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2939 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2940 struct xhci_virt_device *vdev, int i)
2941 {
2942 struct xhci_virt_ep *ep = &vdev->eps[i];
2943
2944 if (ep->ep_state & EP_HAS_STREAMS) {
2945 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2946 xhci_get_endpoint_address(i));
2947 xhci_free_stream_info(xhci, ep->stream_info);
2948 ep->stream_info = NULL;
2949 ep->ep_state &= ~EP_HAS_STREAMS;
2950 }
2951 }
2952
2953 /* Called after one or more calls to xhci_add_endpoint() or
2954 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2955 * to call xhci_reset_bandwidth().
2956 *
2957 * Since we are in the middle of changing either configuration or
2958 * installing a new alt setting, the USB core won't allow URBs to be
2959 * enqueued for any endpoint on the old config or interface. Nothing
2960 * else should be touching the xhci->devs[slot_id] structure, so we
2961 * don't need to take the xhci->lock for manipulating that.
2962 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2963 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2964 {
2965 int i;
2966 int ret = 0;
2967 struct xhci_hcd *xhci;
2968 struct xhci_virt_device *virt_dev;
2969 struct xhci_input_control_ctx *ctrl_ctx;
2970 struct xhci_slot_ctx *slot_ctx;
2971 struct xhci_command *command;
2972
2973 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2974 if (ret <= 0)
2975 return ret;
2976 xhci = hcd_to_xhci(hcd);
2977 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2978 (xhci->xhc_state & XHCI_STATE_REMOVING))
2979 return -ENODEV;
2980
2981 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2982 virt_dev = xhci->devs[udev->slot_id];
2983
2984 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2985 if (!command)
2986 return -ENOMEM;
2987
2988 command->in_ctx = virt_dev->in_ctx;
2989
2990 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2991 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2992 if (!ctrl_ctx) {
2993 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2994 __func__);
2995 ret = -ENOMEM;
2996 goto command_cleanup;
2997 }
2998 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2999 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3000 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3001
3002 /* Don't issue the command if there's no endpoints to update. */
3003 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3004 ctrl_ctx->drop_flags == 0) {
3005 ret = 0;
3006 goto command_cleanup;
3007 }
3008 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3009 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3010 for (i = 31; i >= 1; i--) {
3011 __le32 le32 = cpu_to_le32(BIT(i));
3012
3013 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3014 || (ctrl_ctx->add_flags & le32) || i == 1) {
3015 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3016 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3017 break;
3018 }
3019 }
3020
3021 ret = xhci_configure_endpoint(xhci, udev, command,
3022 false, false);
3023 if (ret)
3024 /* Callee should call reset_bandwidth() */
3025 goto command_cleanup;
3026
3027 /* Free any rings that were dropped, but not changed. */
3028 for (i = 1; i < 31; i++) {
3029 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3030 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3031 xhci_free_endpoint_ring(xhci, virt_dev, i);
3032 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3033 }
3034 }
3035 xhci_zero_in_ctx(xhci, virt_dev);
3036 /*
3037 * Install any rings for completely new endpoints or changed endpoints,
3038 * and free any old rings from changed endpoints.
3039 */
3040 for (i = 1; i < 31; i++) {
3041 if (!virt_dev->eps[i].new_ring)
3042 continue;
3043 /* Only free the old ring if it exists.
3044 * It may not if this is the first add of an endpoint.
3045 */
3046 if (virt_dev->eps[i].ring) {
3047 xhci_free_endpoint_ring(xhci, virt_dev, i);
3048 }
3049 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3050 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3051 virt_dev->eps[i].new_ring = NULL;
3052 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3053 }
3054 command_cleanup:
3055 kfree(command->completion);
3056 kfree(command);
3057
3058 return ret;
3059 }
3060 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3061
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3062 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3063 {
3064 struct xhci_hcd *xhci;
3065 struct xhci_virt_device *virt_dev;
3066 int i, ret;
3067
3068 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3069 if (ret <= 0)
3070 return;
3071 xhci = hcd_to_xhci(hcd);
3072
3073 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3074 virt_dev = xhci->devs[udev->slot_id];
3075 /* Free any rings allocated for added endpoints */
3076 for (i = 0; i < 31; i++) {
3077 if (virt_dev->eps[i].new_ring) {
3078 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3079 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3080 virt_dev->eps[i].new_ring = NULL;
3081 }
3082 }
3083 xhci_zero_in_ctx(xhci, virt_dev);
3084 }
3085 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3086
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3087 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3088 struct xhci_container_ctx *in_ctx,
3089 struct xhci_container_ctx *out_ctx,
3090 struct xhci_input_control_ctx *ctrl_ctx,
3091 u32 add_flags, u32 drop_flags)
3092 {
3093 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3094 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3095 xhci_slot_copy(xhci, in_ctx, out_ctx);
3096 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3097 }
3098
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3099 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3100 struct usb_host_endpoint *host_ep)
3101 {
3102 struct xhci_hcd *xhci;
3103 struct xhci_virt_device *vdev;
3104 struct xhci_virt_ep *ep;
3105 struct usb_device *udev;
3106 unsigned long flags;
3107 unsigned int ep_index;
3108
3109 xhci = hcd_to_xhci(hcd);
3110 rescan:
3111 spin_lock_irqsave(&xhci->lock, flags);
3112
3113 udev = (struct usb_device *)host_ep->hcpriv;
3114 if (!udev || !udev->slot_id)
3115 goto done;
3116
3117 vdev = xhci->devs[udev->slot_id];
3118 if (!vdev)
3119 goto done;
3120
3121 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3122 ep = &vdev->eps[ep_index];
3123
3124 /* wait for hub_tt_work to finish clearing hub TT */
3125 if (ep->ep_state & EP_CLEARING_TT) {
3126 spin_unlock_irqrestore(&xhci->lock, flags);
3127 schedule_timeout_uninterruptible(1);
3128 goto rescan;
3129 }
3130
3131 if (ep->ep_state)
3132 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3133 ep->ep_state);
3134 done:
3135 host_ep->hcpriv = NULL;
3136 spin_unlock_irqrestore(&xhci->lock, flags);
3137 }
3138
3139 /*
3140 * Called after usb core issues a clear halt control message.
3141 * The host side of the halt should already be cleared by a reset endpoint
3142 * command issued when the STALL event was received.
3143 *
3144 * The reset endpoint command may only be issued to endpoints in the halted
3145 * state. For software that wishes to reset the data toggle or sequence number
3146 * of an endpoint that isn't in the halted state this function will issue a
3147 * configure endpoint command with the Drop and Add bits set for the target
3148 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3149 */
3150
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3151 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3152 struct usb_host_endpoint *host_ep)
3153 {
3154 struct xhci_hcd *xhci;
3155 struct usb_device *udev;
3156 struct xhci_virt_device *vdev;
3157 struct xhci_virt_ep *ep;
3158 struct xhci_input_control_ctx *ctrl_ctx;
3159 struct xhci_command *stop_cmd, *cfg_cmd;
3160 unsigned int ep_index;
3161 unsigned long flags;
3162 u32 ep_flag;
3163 int err;
3164
3165 xhci = hcd_to_xhci(hcd);
3166 if (!host_ep->hcpriv)
3167 return;
3168 udev = (struct usb_device *) host_ep->hcpriv;
3169 vdev = xhci->devs[udev->slot_id];
3170
3171 /*
3172 * vdev may be lost due to xHC restore error and re-initialization
3173 * during S3/S4 resume. A new vdev will be allocated later by
3174 * xhci_discover_or_reset_device()
3175 */
3176 if (!udev->slot_id || !vdev)
3177 return;
3178 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3179 ep = &vdev->eps[ep_index];
3180
3181 /* Bail out if toggle is already being cleared by a endpoint reset */
3182 spin_lock_irqsave(&xhci->lock, flags);
3183 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3184 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3185 spin_unlock_irqrestore(&xhci->lock, flags);
3186 return;
3187 }
3188 spin_unlock_irqrestore(&xhci->lock, flags);
3189 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3190 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3191 usb_endpoint_xfer_isoc(&host_ep->desc))
3192 return;
3193
3194 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3195
3196 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3197 return;
3198
3199 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3200 if (!stop_cmd)
3201 return;
3202
3203 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3204 if (!cfg_cmd)
3205 goto cleanup;
3206
3207 spin_lock_irqsave(&xhci->lock, flags);
3208
3209 /* block queuing new trbs and ringing ep doorbell */
3210 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3211
3212 /*
3213 * Make sure endpoint ring is empty before resetting the toggle/seq.
3214 * Driver is required to synchronously cancel all transfer request.
3215 * Stop the endpoint to force xHC to update the output context
3216 */
3217
3218 if (!list_empty(&ep->ring->td_list)) {
3219 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3220 spin_unlock_irqrestore(&xhci->lock, flags);
3221 xhci_free_command(xhci, cfg_cmd);
3222 goto cleanup;
3223 }
3224
3225 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3226 ep_index, 0);
3227 if (err < 0) {
3228 spin_unlock_irqrestore(&xhci->lock, flags);
3229 xhci_free_command(xhci, cfg_cmd);
3230 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3231 __func__, err);
3232 goto cleanup;
3233 }
3234
3235 xhci_ring_cmd_db(xhci);
3236 spin_unlock_irqrestore(&xhci->lock, flags);
3237
3238 wait_for_completion(stop_cmd->completion);
3239
3240 spin_lock_irqsave(&xhci->lock, flags);
3241
3242 /* config ep command clears toggle if add and drop ep flags are set */
3243 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3244 if (!ctrl_ctx) {
3245 spin_unlock_irqrestore(&xhci->lock, flags);
3246 xhci_free_command(xhci, cfg_cmd);
3247 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3248 __func__);
3249 goto cleanup;
3250 }
3251
3252 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3253 ctrl_ctx, ep_flag, ep_flag);
3254 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3255
3256 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3257 udev->slot_id, false);
3258 if (err < 0) {
3259 spin_unlock_irqrestore(&xhci->lock, flags);
3260 xhci_free_command(xhci, cfg_cmd);
3261 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3262 __func__, err);
3263 goto cleanup;
3264 }
3265
3266 xhci_ring_cmd_db(xhci);
3267 spin_unlock_irqrestore(&xhci->lock, flags);
3268
3269 wait_for_completion(cfg_cmd->completion);
3270
3271 xhci_free_command(xhci, cfg_cmd);
3272 cleanup:
3273 xhci_free_command(xhci, stop_cmd);
3274 spin_lock_irqsave(&xhci->lock, flags);
3275 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3276 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3277 spin_unlock_irqrestore(&xhci->lock, flags);
3278 }
3279
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3280 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3281 struct usb_device *udev, struct usb_host_endpoint *ep,
3282 unsigned int slot_id)
3283 {
3284 int ret;
3285 unsigned int ep_index;
3286 unsigned int ep_state;
3287
3288 if (!ep)
3289 return -EINVAL;
3290 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3291 if (ret <= 0)
3292 return ret ? ret : -EINVAL;
3293 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3294 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3295 " descriptor for ep 0x%x does not support streams\n",
3296 ep->desc.bEndpointAddress);
3297 return -EINVAL;
3298 }
3299
3300 ep_index = xhci_get_endpoint_index(&ep->desc);
3301 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3302 if (ep_state & EP_HAS_STREAMS ||
3303 ep_state & EP_GETTING_STREAMS) {
3304 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3305 "already has streams set up.\n",
3306 ep->desc.bEndpointAddress);
3307 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3308 "dynamic stream context array reallocation.\n");
3309 return -EINVAL;
3310 }
3311 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3312 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3313 "endpoint 0x%x; URBs are pending.\n",
3314 ep->desc.bEndpointAddress);
3315 return -EINVAL;
3316 }
3317 return 0;
3318 }
3319
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3320 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3321 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3322 {
3323 unsigned int max_streams;
3324
3325 /* The stream context array size must be a power of two */
3326 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3327 /*
3328 * Find out how many primary stream array entries the host controller
3329 * supports. Later we may use secondary stream arrays (similar to 2nd
3330 * level page entries), but that's an optional feature for xHCI host
3331 * controllers. xHCs must support at least 4 stream IDs.
3332 */
3333 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3334 if (*num_stream_ctxs > max_streams) {
3335 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3336 max_streams);
3337 *num_stream_ctxs = max_streams;
3338 *num_streams = max_streams;
3339 }
3340 }
3341
3342 /* Returns an error code if one of the endpoint already has streams.
3343 * This does not change any data structures, it only checks and gathers
3344 * information.
3345 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3346 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3347 struct usb_device *udev,
3348 struct usb_host_endpoint **eps, unsigned int num_eps,
3349 unsigned int *num_streams, u32 *changed_ep_bitmask)
3350 {
3351 unsigned int max_streams;
3352 unsigned int endpoint_flag;
3353 int i;
3354 int ret;
3355
3356 for (i = 0; i < num_eps; i++) {
3357 ret = xhci_check_streams_endpoint(xhci, udev,
3358 eps[i], udev->slot_id);
3359 if (ret < 0)
3360 return ret;
3361
3362 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3363 if (max_streams < (*num_streams - 1)) {
3364 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3365 eps[i]->desc.bEndpointAddress,
3366 max_streams);
3367 *num_streams = max_streams+1;
3368 }
3369
3370 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3371 if (*changed_ep_bitmask & endpoint_flag)
3372 return -EINVAL;
3373 *changed_ep_bitmask |= endpoint_flag;
3374 }
3375 return 0;
3376 }
3377
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3378 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3379 struct usb_device *udev,
3380 struct usb_host_endpoint **eps, unsigned int num_eps)
3381 {
3382 u32 changed_ep_bitmask = 0;
3383 unsigned int slot_id;
3384 unsigned int ep_index;
3385 unsigned int ep_state;
3386 int i;
3387
3388 slot_id = udev->slot_id;
3389 if (!xhci->devs[slot_id])
3390 return 0;
3391
3392 for (i = 0; i < num_eps; i++) {
3393 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3394 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3395 /* Are streams already being freed for the endpoint? */
3396 if (ep_state & EP_GETTING_NO_STREAMS) {
3397 xhci_warn(xhci, "WARN Can't disable streams for "
3398 "endpoint 0x%x, "
3399 "streams are being disabled already\n",
3400 eps[i]->desc.bEndpointAddress);
3401 return 0;
3402 }
3403 /* Are there actually any streams to free? */
3404 if (!(ep_state & EP_HAS_STREAMS) &&
3405 !(ep_state & EP_GETTING_STREAMS)) {
3406 xhci_warn(xhci, "WARN Can't disable streams for "
3407 "endpoint 0x%x, "
3408 "streams are already disabled!\n",
3409 eps[i]->desc.bEndpointAddress);
3410 xhci_warn(xhci, "WARN xhci_free_streams() called "
3411 "with non-streams endpoint\n");
3412 return 0;
3413 }
3414 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3415 }
3416 return changed_ep_bitmask;
3417 }
3418
3419 /*
3420 * The USB device drivers use this function (through the HCD interface in USB
3421 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3422 * coordinate mass storage command queueing across multiple endpoints (basically
3423 * a stream ID == a task ID).
3424 *
3425 * Setting up streams involves allocating the same size stream context array
3426 * for each endpoint and issuing a configure endpoint command for all endpoints.
3427 *
3428 * Don't allow the call to succeed if one endpoint only supports one stream
3429 * (which means it doesn't support streams at all).
3430 *
3431 * Drivers may get less stream IDs than they asked for, if the host controller
3432 * hardware or endpoints claim they can't support the number of requested
3433 * stream IDs.
3434 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3435 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3436 struct usb_host_endpoint **eps, unsigned int num_eps,
3437 unsigned int num_streams, gfp_t mem_flags)
3438 {
3439 int i, ret;
3440 struct xhci_hcd *xhci;
3441 struct xhci_virt_device *vdev;
3442 struct xhci_command *config_cmd;
3443 struct xhci_input_control_ctx *ctrl_ctx;
3444 unsigned int ep_index;
3445 unsigned int num_stream_ctxs;
3446 unsigned int max_packet;
3447 unsigned long flags;
3448 u32 changed_ep_bitmask = 0;
3449
3450 if (!eps)
3451 return -EINVAL;
3452
3453 /* Add one to the number of streams requested to account for
3454 * stream 0 that is reserved for xHCI usage.
3455 */
3456 num_streams += 1;
3457 xhci = hcd_to_xhci(hcd);
3458 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3459 num_streams);
3460
3461 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3462 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3463 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3464 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3465 return -ENOSYS;
3466 }
3467
3468 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3469 if (!config_cmd)
3470 return -ENOMEM;
3471
3472 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3473 if (!ctrl_ctx) {
3474 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3475 __func__);
3476 xhci_free_command(xhci, config_cmd);
3477 return -ENOMEM;
3478 }
3479
3480 /* Check to make sure all endpoints are not already configured for
3481 * streams. While we're at it, find the maximum number of streams that
3482 * all the endpoints will support and check for duplicate endpoints.
3483 */
3484 spin_lock_irqsave(&xhci->lock, flags);
3485 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3486 num_eps, &num_streams, &changed_ep_bitmask);
3487 if (ret < 0) {
3488 xhci_free_command(xhci, config_cmd);
3489 spin_unlock_irqrestore(&xhci->lock, flags);
3490 return ret;
3491 }
3492 if (num_streams <= 1) {
3493 xhci_warn(xhci, "WARN: endpoints can't handle "
3494 "more than one stream.\n");
3495 xhci_free_command(xhci, config_cmd);
3496 spin_unlock_irqrestore(&xhci->lock, flags);
3497 return -EINVAL;
3498 }
3499 vdev = xhci->devs[udev->slot_id];
3500 /* Mark each endpoint as being in transition, so
3501 * xhci_urb_enqueue() will reject all URBs.
3502 */
3503 for (i = 0; i < num_eps; i++) {
3504 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3505 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3506 }
3507 spin_unlock_irqrestore(&xhci->lock, flags);
3508
3509 /* Setup internal data structures and allocate HW data structures for
3510 * streams (but don't install the HW structures in the input context
3511 * until we're sure all memory allocation succeeded).
3512 */
3513 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3514 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3515 num_stream_ctxs, num_streams);
3516
3517 for (i = 0; i < num_eps; i++) {
3518 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3519 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3520 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3521 num_stream_ctxs,
3522 num_streams,
3523 max_packet, mem_flags);
3524 if (!vdev->eps[ep_index].stream_info)
3525 goto cleanup;
3526 /* Set maxPstreams in endpoint context and update deq ptr to
3527 * point to stream context array. FIXME
3528 */
3529 }
3530
3531 /* Set up the input context for a configure endpoint command. */
3532 for (i = 0; i < num_eps; i++) {
3533 struct xhci_ep_ctx *ep_ctx;
3534
3535 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3536 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3537
3538 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3539 vdev->out_ctx, ep_index);
3540 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3541 vdev->eps[ep_index].stream_info);
3542 }
3543 /* Tell the HW to drop its old copy of the endpoint context info
3544 * and add the updated copy from the input context.
3545 */
3546 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3547 vdev->out_ctx, ctrl_ctx,
3548 changed_ep_bitmask, changed_ep_bitmask);
3549
3550 /* Issue and wait for the configure endpoint command */
3551 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3552 false, false);
3553
3554 /* xHC rejected the configure endpoint command for some reason, so we
3555 * leave the old ring intact and free our internal streams data
3556 * structure.
3557 */
3558 if (ret < 0)
3559 goto cleanup;
3560
3561 spin_lock_irqsave(&xhci->lock, flags);
3562 for (i = 0; i < num_eps; i++) {
3563 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3564 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3565 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3566 udev->slot_id, ep_index);
3567 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3568 }
3569 xhci_free_command(xhci, config_cmd);
3570 spin_unlock_irqrestore(&xhci->lock, flags);
3571
3572 for (i = 0; i < num_eps; i++) {
3573 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3574 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3575 }
3576 /* Subtract 1 for stream 0, which drivers can't use */
3577 return num_streams - 1;
3578
3579 cleanup:
3580 /* If it didn't work, free the streams! */
3581 for (i = 0; i < num_eps; i++) {
3582 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3583 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3584 vdev->eps[ep_index].stream_info = NULL;
3585 /* FIXME Unset maxPstreams in endpoint context and
3586 * update deq ptr to point to normal string ring.
3587 */
3588 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3589 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3590 xhci_endpoint_zero(xhci, vdev, eps[i]);
3591 }
3592 xhci_free_command(xhci, config_cmd);
3593 return -ENOMEM;
3594 }
3595
3596 /* Transition the endpoint from using streams to being a "normal" endpoint
3597 * without streams.
3598 *
3599 * Modify the endpoint context state, submit a configure endpoint command,
3600 * and free all endpoint rings for streams if that completes successfully.
3601 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3602 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3603 struct usb_host_endpoint **eps, unsigned int num_eps,
3604 gfp_t mem_flags)
3605 {
3606 int i, ret;
3607 struct xhci_hcd *xhci;
3608 struct xhci_virt_device *vdev;
3609 struct xhci_command *command;
3610 struct xhci_input_control_ctx *ctrl_ctx;
3611 unsigned int ep_index;
3612 unsigned long flags;
3613 u32 changed_ep_bitmask;
3614
3615 xhci = hcd_to_xhci(hcd);
3616 vdev = xhci->devs[udev->slot_id];
3617
3618 /* Set up a configure endpoint command to remove the streams rings */
3619 spin_lock_irqsave(&xhci->lock, flags);
3620 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3621 udev, eps, num_eps);
3622 if (changed_ep_bitmask == 0) {
3623 spin_unlock_irqrestore(&xhci->lock, flags);
3624 return -EINVAL;
3625 }
3626
3627 /* Use the xhci_command structure from the first endpoint. We may have
3628 * allocated too many, but the driver may call xhci_free_streams() for
3629 * each endpoint it grouped into one call to xhci_alloc_streams().
3630 */
3631 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3632 command = vdev->eps[ep_index].stream_info->free_streams_command;
3633 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3634 if (!ctrl_ctx) {
3635 spin_unlock_irqrestore(&xhci->lock, flags);
3636 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3637 __func__);
3638 return -EINVAL;
3639 }
3640
3641 for (i = 0; i < num_eps; i++) {
3642 struct xhci_ep_ctx *ep_ctx;
3643
3644 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3645 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3646 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3647 EP_GETTING_NO_STREAMS;
3648
3649 xhci_endpoint_copy(xhci, command->in_ctx,
3650 vdev->out_ctx, ep_index);
3651 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3652 &vdev->eps[ep_index]);
3653 }
3654 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3655 vdev->out_ctx, ctrl_ctx,
3656 changed_ep_bitmask, changed_ep_bitmask);
3657 spin_unlock_irqrestore(&xhci->lock, flags);
3658
3659 /* Issue and wait for the configure endpoint command,
3660 * which must succeed.
3661 */
3662 ret = xhci_configure_endpoint(xhci, udev, command,
3663 false, true);
3664
3665 /* xHC rejected the configure endpoint command for some reason, so we
3666 * leave the streams rings intact.
3667 */
3668 if (ret < 0)
3669 return ret;
3670
3671 spin_lock_irqsave(&xhci->lock, flags);
3672 for (i = 0; i < num_eps; i++) {
3673 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3674 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3675 vdev->eps[ep_index].stream_info = NULL;
3676 /* FIXME Unset maxPstreams in endpoint context and
3677 * update deq ptr to point to normal string ring.
3678 */
3679 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3680 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3681 }
3682 spin_unlock_irqrestore(&xhci->lock, flags);
3683
3684 return 0;
3685 }
3686
3687 /*
3688 * Deletes endpoint resources for endpoints that were active before a Reset
3689 * Device command, or a Disable Slot command. The Reset Device command leaves
3690 * the control endpoint intact, whereas the Disable Slot command deletes it.
3691 *
3692 * Must be called with xhci->lock held.
3693 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3694 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3695 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3696 {
3697 int i;
3698 unsigned int num_dropped_eps = 0;
3699 unsigned int drop_flags = 0;
3700
3701 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3702 if (virt_dev->eps[i].ring) {
3703 drop_flags |= 1 << i;
3704 num_dropped_eps++;
3705 }
3706 }
3707 xhci->num_active_eps -= num_dropped_eps;
3708 if (num_dropped_eps)
3709 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3710 "Dropped %u ep ctxs, flags = 0x%x, "
3711 "%u now active.",
3712 num_dropped_eps, drop_flags,
3713 xhci->num_active_eps);
3714 }
3715
3716 /*
3717 * This submits a Reset Device Command, which will set the device state to 0,
3718 * set the device address to 0, and disable all the endpoints except the default
3719 * control endpoint. The USB core should come back and call
3720 * xhci_address_device(), and then re-set up the configuration. If this is
3721 * called because of a usb_reset_and_verify_device(), then the old alternate
3722 * settings will be re-installed through the normal bandwidth allocation
3723 * functions.
3724 *
3725 * Wait for the Reset Device command to finish. Remove all structures
3726 * associated with the endpoints that were disabled. Clear the input device
3727 * structure? Reset the control endpoint 0 max packet size?
3728 *
3729 * If the virt_dev to be reset does not exist or does not match the udev,
3730 * it means the device is lost, possibly due to the xHC restore error and
3731 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3732 * re-allocate the device.
3733 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3734 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3735 struct usb_device *udev)
3736 {
3737 int ret, i;
3738 unsigned long flags;
3739 struct xhci_hcd *xhci;
3740 unsigned int slot_id;
3741 struct xhci_virt_device *virt_dev;
3742 struct xhci_command *reset_device_cmd;
3743 struct xhci_slot_ctx *slot_ctx;
3744 int old_active_eps = 0;
3745
3746 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3747 if (ret <= 0)
3748 return ret;
3749 xhci = hcd_to_xhci(hcd);
3750 slot_id = udev->slot_id;
3751 virt_dev = xhci->devs[slot_id];
3752 if (!virt_dev) {
3753 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3754 "not exist. Re-allocate the device\n", slot_id);
3755 ret = xhci_alloc_dev(hcd, udev);
3756 if (ret == 1)
3757 return 0;
3758 else
3759 return -EINVAL;
3760 }
3761
3762 if (virt_dev->tt_info)
3763 old_active_eps = virt_dev->tt_info->active_eps;
3764
3765 if (virt_dev->udev != udev) {
3766 /* If the virt_dev and the udev does not match, this virt_dev
3767 * may belong to another udev.
3768 * Re-allocate the device.
3769 */
3770 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3771 "not match the udev. Re-allocate the device\n",
3772 slot_id);
3773 ret = xhci_alloc_dev(hcd, udev);
3774 if (ret == 1)
3775 return 0;
3776 else
3777 return -EINVAL;
3778 }
3779
3780 /* If device is not setup, there is no point in resetting it */
3781 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3782 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3783 SLOT_STATE_DISABLED)
3784 return 0;
3785
3786 trace_xhci_discover_or_reset_device(slot_ctx);
3787
3788 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3789 /* Allocate the command structure that holds the struct completion.
3790 * Assume we're in process context, since the normal device reset
3791 * process has to wait for the device anyway. Storage devices are
3792 * reset as part of error handling, so use GFP_NOIO instead of
3793 * GFP_KERNEL.
3794 */
3795 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3796 if (!reset_device_cmd) {
3797 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3798 return -ENOMEM;
3799 }
3800
3801 /* Attempt to submit the Reset Device command to the command ring */
3802 spin_lock_irqsave(&xhci->lock, flags);
3803
3804 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3805 if (ret) {
3806 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3807 spin_unlock_irqrestore(&xhci->lock, flags);
3808 goto command_cleanup;
3809 }
3810 xhci_ring_cmd_db(xhci);
3811 spin_unlock_irqrestore(&xhci->lock, flags);
3812
3813 /* Wait for the Reset Device command to finish */
3814 wait_for_completion(reset_device_cmd->completion);
3815
3816 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3817 * unless we tried to reset a slot ID that wasn't enabled,
3818 * or the device wasn't in the addressed or configured state.
3819 */
3820 ret = reset_device_cmd->status;
3821 switch (ret) {
3822 case COMP_COMMAND_ABORTED:
3823 case COMP_COMMAND_RING_STOPPED:
3824 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3825 ret = -ETIME;
3826 goto command_cleanup;
3827 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3828 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3829 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3830 slot_id,
3831 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3832 xhci_dbg(xhci, "Not freeing device rings.\n");
3833 /* Don't treat this as an error. May change my mind later. */
3834 ret = 0;
3835 goto command_cleanup;
3836 case COMP_SUCCESS:
3837 xhci_dbg(xhci, "Successful reset device command.\n");
3838 break;
3839 default:
3840 if (xhci_is_vendor_info_code(xhci, ret))
3841 break;
3842 xhci_warn(xhci, "Unknown completion code %u for "
3843 "reset device command.\n", ret);
3844 ret = -EINVAL;
3845 goto command_cleanup;
3846 }
3847
3848 /* Free up host controller endpoint resources */
3849 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3850 spin_lock_irqsave(&xhci->lock, flags);
3851 /* Don't delete the default control endpoint resources */
3852 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3853 spin_unlock_irqrestore(&xhci->lock, flags);
3854 }
3855
3856 /* Everything but endpoint 0 is disabled, so free the rings. */
3857 for (i = 1; i < 31; i++) {
3858 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3859
3860 if (ep->ep_state & EP_HAS_STREAMS) {
3861 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3862 xhci_get_endpoint_address(i));
3863 xhci_free_stream_info(xhci, ep->stream_info);
3864 ep->stream_info = NULL;
3865 ep->ep_state &= ~EP_HAS_STREAMS;
3866 }
3867
3868 if (ep->ring) {
3869 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3870 xhci_free_endpoint_ring(xhci, virt_dev, i);
3871 }
3872 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3873 xhci_drop_ep_from_interval_table(xhci,
3874 &virt_dev->eps[i].bw_info,
3875 virt_dev->bw_table,
3876 udev,
3877 &virt_dev->eps[i],
3878 virt_dev->tt_info);
3879 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3880 }
3881 /* If necessary, update the number of active TTs on this root port */
3882 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3883 virt_dev->flags = 0;
3884 ret = 0;
3885
3886 command_cleanup:
3887 xhci_free_command(xhci, reset_device_cmd);
3888 return ret;
3889 }
3890
3891 /*
3892 * At this point, the struct usb_device is about to go away, the device has
3893 * disconnected, and all traffic has been stopped and the endpoints have been
3894 * disabled. Free any HC data structures associated with that device.
3895 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3896 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3897 {
3898 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3899 struct xhci_virt_device *virt_dev;
3900 struct xhci_slot_ctx *slot_ctx;
3901 unsigned long flags;
3902 int i, ret;
3903
3904 /*
3905 * We called pm_runtime_get_noresume when the device was attached.
3906 * Decrement the counter here to allow controller to runtime suspend
3907 * if no devices remain.
3908 */
3909 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3910 pm_runtime_put_noidle(hcd->self.controller);
3911
3912 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3913 /* If the host is halted due to driver unload, we still need to free the
3914 * device.
3915 */
3916 if (ret <= 0 && ret != -ENODEV)
3917 return;
3918
3919 virt_dev = xhci->devs[udev->slot_id];
3920 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3921 trace_xhci_free_dev(slot_ctx);
3922
3923 /* Stop any wayward timer functions (which may grab the lock) */
3924 for (i = 0; i < 31; i++)
3925 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3926 virt_dev->udev = NULL;
3927 xhci_disable_slot(xhci, udev->slot_id);
3928
3929 spin_lock_irqsave(&xhci->lock, flags);
3930 xhci_free_virt_device(xhci, udev->slot_id);
3931 spin_unlock_irqrestore(&xhci->lock, flags);
3932
3933 }
3934
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3935 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3936 {
3937 struct xhci_command *command;
3938 unsigned long flags;
3939 u32 state;
3940 int ret;
3941
3942 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3943 if (!command)
3944 return -ENOMEM;
3945
3946 xhci_debugfs_remove_slot(xhci, slot_id);
3947
3948 spin_lock_irqsave(&xhci->lock, flags);
3949 /* Don't disable the slot if the host controller is dead. */
3950 state = readl(&xhci->op_regs->status);
3951 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3952 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3953 spin_unlock_irqrestore(&xhci->lock, flags);
3954 kfree(command);
3955 return -ENODEV;
3956 }
3957
3958 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3959 slot_id);
3960 if (ret) {
3961 spin_unlock_irqrestore(&xhci->lock, flags);
3962 kfree(command);
3963 return ret;
3964 }
3965 xhci_ring_cmd_db(xhci);
3966 spin_unlock_irqrestore(&xhci->lock, flags);
3967
3968 wait_for_completion(command->completion);
3969
3970 if (command->status != COMP_SUCCESS)
3971 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3972 slot_id, command->status);
3973
3974 xhci_free_command(xhci, command);
3975
3976 return 0;
3977 }
3978
3979 /*
3980 * Checks if we have enough host controller resources for the default control
3981 * endpoint.
3982 *
3983 * Must be called with xhci->lock held.
3984 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3985 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3986 {
3987 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3988 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3989 "Not enough ep ctxs: "
3990 "%u active, need to add 1, limit is %u.",
3991 xhci->num_active_eps, xhci->limit_active_eps);
3992 return -ENOMEM;
3993 }
3994 xhci->num_active_eps += 1;
3995 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3996 "Adding 1 ep ctx, %u now active.",
3997 xhci->num_active_eps);
3998 return 0;
3999 }
4000
4001
4002 /*
4003 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4004 * timed out, or allocating memory failed. Returns 1 on success.
4005 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4006 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4007 {
4008 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4009 struct xhci_virt_device *vdev;
4010 struct xhci_slot_ctx *slot_ctx;
4011 unsigned long flags;
4012 int ret, slot_id;
4013 struct xhci_command *command;
4014
4015 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4016 if (!command)
4017 return 0;
4018
4019 spin_lock_irqsave(&xhci->lock, flags);
4020 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4021 if (ret) {
4022 spin_unlock_irqrestore(&xhci->lock, flags);
4023 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4024 xhci_free_command(xhci, command);
4025 return 0;
4026 }
4027 xhci_ring_cmd_db(xhci);
4028 spin_unlock_irqrestore(&xhci->lock, flags);
4029
4030 wait_for_completion(command->completion);
4031 slot_id = command->slot_id;
4032
4033 if (!slot_id || command->status != COMP_SUCCESS) {
4034 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4035 xhci_trb_comp_code_string(command->status));
4036 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4037 HCS_MAX_SLOTS(
4038 readl(&xhci->cap_regs->hcs_params1)));
4039 xhci_free_command(xhci, command);
4040 return 0;
4041 }
4042
4043 xhci_free_command(xhci, command);
4044
4045 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4046 spin_lock_irqsave(&xhci->lock, flags);
4047 ret = xhci_reserve_host_control_ep_resources(xhci);
4048 if (ret) {
4049 spin_unlock_irqrestore(&xhci->lock, flags);
4050 xhci_warn(xhci, "Not enough host resources, "
4051 "active endpoint contexts = %u\n",
4052 xhci->num_active_eps);
4053 goto disable_slot;
4054 }
4055 spin_unlock_irqrestore(&xhci->lock, flags);
4056 }
4057 /* Use GFP_NOIO, since this function can be called from
4058 * xhci_discover_or_reset_device(), which may be called as part of
4059 * mass storage driver error handling.
4060 */
4061 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4062 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4063 goto disable_slot;
4064 }
4065 vdev = xhci->devs[slot_id];
4066 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4067 trace_xhci_alloc_dev(slot_ctx);
4068
4069 udev->slot_id = slot_id;
4070
4071 xhci_debugfs_create_slot(xhci, slot_id);
4072
4073 /*
4074 * If resetting upon resume, we can't put the controller into runtime
4075 * suspend if there is a device attached.
4076 */
4077 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4078 pm_runtime_get_noresume(hcd->self.controller);
4079
4080 /* Is this a LS or FS device under a HS hub? */
4081 /* Hub or peripherial? */
4082 return 1;
4083
4084 disable_slot:
4085 xhci_disable_slot(xhci, udev->slot_id);
4086 xhci_free_virt_device(xhci, udev->slot_id);
4087
4088 return 0;
4089 }
4090
4091 /**
4092 * xhci_setup_device - issues an Address Device command to assign a unique
4093 * USB bus address.
4094 * @hcd: USB host controller data structure.
4095 * @udev: USB dev structure representing the connected device.
4096 * @setup: Enum specifying setup mode: address only or with context.
4097 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4098 *
4099 * Return: 0 if successful; otherwise, negative error code.
4100 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4101 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4102 enum xhci_setup_dev setup, unsigned int timeout_ms)
4103 {
4104 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4105 unsigned long flags;
4106 struct xhci_virt_device *virt_dev;
4107 int ret = 0;
4108 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4109 struct xhci_slot_ctx *slot_ctx;
4110 struct xhci_input_control_ctx *ctrl_ctx;
4111 u64 temp_64;
4112 struct xhci_command *command = NULL;
4113
4114 mutex_lock(&xhci->mutex);
4115
4116 if (xhci->xhc_state) { /* dying, removing or halted */
4117 ret = -ESHUTDOWN;
4118 goto out;
4119 }
4120
4121 if (!udev->slot_id) {
4122 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4123 "Bad Slot ID %d", udev->slot_id);
4124 ret = -EINVAL;
4125 goto out;
4126 }
4127
4128 virt_dev = xhci->devs[udev->slot_id];
4129
4130 if (WARN_ON(!virt_dev)) {
4131 /*
4132 * In plug/unplug torture test with an NEC controller,
4133 * a zero-dereference was observed once due to virt_dev = 0.
4134 * Print useful debug rather than crash if it is observed again!
4135 */
4136 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4137 udev->slot_id);
4138 ret = -EINVAL;
4139 goto out;
4140 }
4141 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4142 trace_xhci_setup_device_slot(slot_ctx);
4143
4144 if (setup == SETUP_CONTEXT_ONLY) {
4145 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4146 SLOT_STATE_DEFAULT) {
4147 xhci_dbg(xhci, "Slot already in default state\n");
4148 goto out;
4149 }
4150 }
4151
4152 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4153 if (!command) {
4154 ret = -ENOMEM;
4155 goto out;
4156 }
4157
4158 command->in_ctx = virt_dev->in_ctx;
4159 command->timeout_ms = timeout_ms;
4160
4161 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4162 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4163 if (!ctrl_ctx) {
4164 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4165 __func__);
4166 ret = -EINVAL;
4167 goto out;
4168 }
4169 /*
4170 * If this is the first Set Address since device plug-in or
4171 * virt_device realloaction after a resume with an xHCI power loss,
4172 * then set up the slot context.
4173 */
4174 if (!slot_ctx->dev_info)
4175 xhci_setup_addressable_virt_dev(xhci, udev);
4176 /* Otherwise, update the control endpoint ring enqueue pointer. */
4177 else
4178 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4179 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4180 ctrl_ctx->drop_flags = 0;
4181
4182 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4183 le32_to_cpu(slot_ctx->dev_info) >> 27);
4184
4185 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4186 spin_lock_irqsave(&xhci->lock, flags);
4187 trace_xhci_setup_device(virt_dev);
4188 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4189 udev->slot_id, setup);
4190 if (ret) {
4191 spin_unlock_irqrestore(&xhci->lock, flags);
4192 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4193 "FIXME: allocate a command ring segment");
4194 goto out;
4195 }
4196 xhci_ring_cmd_db(xhci);
4197 spin_unlock_irqrestore(&xhci->lock, flags);
4198
4199 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4200 wait_for_completion(command->completion);
4201
4202 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4203 * the SetAddress() "recovery interval" required by USB and aborting the
4204 * command on a timeout.
4205 */
4206 switch (command->status) {
4207 case COMP_COMMAND_ABORTED:
4208 case COMP_COMMAND_RING_STOPPED:
4209 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4210 ret = -ETIME;
4211 break;
4212 case COMP_CONTEXT_STATE_ERROR:
4213 case COMP_SLOT_NOT_ENABLED_ERROR:
4214 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4215 act, udev->slot_id);
4216 ret = -EINVAL;
4217 break;
4218 case COMP_USB_TRANSACTION_ERROR:
4219 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4220
4221 mutex_unlock(&xhci->mutex);
4222 ret = xhci_disable_slot(xhci, udev->slot_id);
4223 xhci_free_virt_device(xhci, udev->slot_id);
4224 if (!ret) {
4225 if (xhci_alloc_dev(hcd, udev) == 1)
4226 xhci_setup_addressable_virt_dev(xhci, udev);
4227 }
4228 kfree(command->completion);
4229 kfree(command);
4230 return -EPROTO;
4231 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4232 dev_warn(&udev->dev,
4233 "ERROR: Incompatible device for setup %s command\n", act);
4234 ret = -ENODEV;
4235 break;
4236 case COMP_SUCCESS:
4237 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4238 "Successful setup %s command", act);
4239 break;
4240 default:
4241 xhci_err(xhci,
4242 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4243 act, command->status);
4244 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4245 ret = -EINVAL;
4246 break;
4247 }
4248 if (ret)
4249 goto out;
4250 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4251 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4252 "Op regs DCBAA ptr = %#016llx", temp_64);
4253 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4254 "Slot ID %d dcbaa entry @%p = %#016llx",
4255 udev->slot_id,
4256 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4257 (unsigned long long)
4258 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4259 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4260 "Output Context DMA address = %#08llx",
4261 (unsigned long long)virt_dev->out_ctx->dma);
4262 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4263 le32_to_cpu(slot_ctx->dev_info) >> 27);
4264 /*
4265 * USB core uses address 1 for the roothubs, so we add one to the
4266 * address given back to us by the HC.
4267 */
4268 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4269 le32_to_cpu(slot_ctx->dev_info) >> 27);
4270 /* Zero the input context control for later use */
4271 ctrl_ctx->add_flags = 0;
4272 ctrl_ctx->drop_flags = 0;
4273 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4274 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4275
4276 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4277 "Internal device address = %d",
4278 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4279 out:
4280 mutex_unlock(&xhci->mutex);
4281 if (command) {
4282 kfree(command->completion);
4283 kfree(command);
4284 }
4285 return ret;
4286 }
4287
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4288 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4289 unsigned int timeout_ms)
4290 {
4291 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4292 }
4293
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4294 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4295 {
4296 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4297 XHCI_CMD_DEFAULT_TIMEOUT);
4298 }
4299
4300 /*
4301 * Transfer the port index into real index in the HW port status
4302 * registers. Caculate offset between the port's PORTSC register
4303 * and port status base. Divide the number of per port register
4304 * to get the real index. The raw port number bases 1.
4305 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4306 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4307 {
4308 struct xhci_hub *rhub;
4309
4310 rhub = xhci_get_rhub(hcd);
4311 return rhub->ports[port1 - 1]->hw_portnum + 1;
4312 }
4313
4314 /*
4315 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4316 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4317 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4318 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4319 struct usb_device *udev, u16 max_exit_latency)
4320 {
4321 struct xhci_virt_device *virt_dev;
4322 struct xhci_command *command;
4323 struct xhci_input_control_ctx *ctrl_ctx;
4324 struct xhci_slot_ctx *slot_ctx;
4325 unsigned long flags;
4326 int ret;
4327
4328 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4329 if (!command)
4330 return -ENOMEM;
4331
4332 spin_lock_irqsave(&xhci->lock, flags);
4333
4334 virt_dev = xhci->devs[udev->slot_id];
4335
4336 /*
4337 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4338 * xHC was re-initialized. Exit latency will be set later after
4339 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4340 */
4341
4342 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4343 spin_unlock_irqrestore(&xhci->lock, flags);
4344 xhci_free_command(xhci, command);
4345 return 0;
4346 }
4347
4348 /* Attempt to issue an Evaluate Context command to change the MEL. */
4349 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4350 if (!ctrl_ctx) {
4351 spin_unlock_irqrestore(&xhci->lock, flags);
4352 xhci_free_command(xhci, command);
4353 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4354 __func__);
4355 return -ENOMEM;
4356 }
4357
4358 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4359 spin_unlock_irqrestore(&xhci->lock, flags);
4360
4361 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4362 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4363 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4364 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4365 slot_ctx->dev_state = 0;
4366
4367 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4368 "Set up evaluate context for LPM MEL change.");
4369
4370 /* Issue and wait for the evaluate context command. */
4371 ret = xhci_configure_endpoint(xhci, udev, command,
4372 true, true);
4373
4374 if (!ret) {
4375 spin_lock_irqsave(&xhci->lock, flags);
4376 virt_dev->current_mel = max_exit_latency;
4377 spin_unlock_irqrestore(&xhci->lock, flags);
4378 }
4379
4380 xhci_free_command(xhci, command);
4381
4382 return ret;
4383 }
4384
4385 #ifdef CONFIG_PM
4386
4387 /* BESL to HIRD Encoding array for USB2 LPM */
4388 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4389 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4390
4391 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4392 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4393 struct usb_device *udev)
4394 {
4395 int u2del, besl, besl_host;
4396 int besl_device = 0;
4397 u32 field;
4398
4399 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4400 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4401
4402 if (field & USB_BESL_SUPPORT) {
4403 for (besl_host = 0; besl_host < 16; besl_host++) {
4404 if (xhci_besl_encoding[besl_host] >= u2del)
4405 break;
4406 }
4407 /* Use baseline BESL value as default */
4408 if (field & USB_BESL_BASELINE_VALID)
4409 besl_device = USB_GET_BESL_BASELINE(field);
4410 else if (field & USB_BESL_DEEP_VALID)
4411 besl_device = USB_GET_BESL_DEEP(field);
4412 } else {
4413 if (u2del <= 50)
4414 besl_host = 0;
4415 else
4416 besl_host = (u2del - 51) / 75 + 1;
4417 }
4418
4419 besl = besl_host + besl_device;
4420 if (besl > 15)
4421 besl = 15;
4422
4423 return besl;
4424 }
4425
4426 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4427 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4428 {
4429 u32 field;
4430 int l1;
4431 int besld = 0;
4432 int hirdm = 0;
4433
4434 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4435
4436 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4437 l1 = udev->l1_params.timeout / 256;
4438
4439 /* device has preferred BESLD */
4440 if (field & USB_BESL_DEEP_VALID) {
4441 besld = USB_GET_BESL_DEEP(field);
4442 hirdm = 1;
4443 }
4444
4445 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4446 }
4447
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4448 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4449 struct usb_device *udev, int enable)
4450 {
4451 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4452 struct xhci_port **ports;
4453 __le32 __iomem *pm_addr, *hlpm_addr;
4454 u32 pm_val, hlpm_val, field;
4455 unsigned int port_num;
4456 unsigned long flags;
4457 int hird, exit_latency;
4458 int ret;
4459
4460 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4461 return -EPERM;
4462
4463 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4464 !udev->lpm_capable)
4465 return -EPERM;
4466
4467 if (!udev->parent || udev->parent->parent ||
4468 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4469 return -EPERM;
4470
4471 if (udev->usb2_hw_lpm_capable != 1)
4472 return -EPERM;
4473
4474 spin_lock_irqsave(&xhci->lock, flags);
4475
4476 ports = xhci->usb2_rhub.ports;
4477 port_num = udev->portnum - 1;
4478 pm_addr = ports[port_num]->addr + PORTPMSC;
4479 pm_val = readl(pm_addr);
4480 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4481
4482 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4483 enable ? "enable" : "disable", port_num + 1);
4484
4485 if (enable) {
4486 /* Host supports BESL timeout instead of HIRD */
4487 if (udev->usb2_hw_lpm_besl_capable) {
4488 /* if device doesn't have a preferred BESL value use a
4489 * default one which works with mixed HIRD and BESL
4490 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4491 */
4492 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4493 if ((field & USB_BESL_SUPPORT) &&
4494 (field & USB_BESL_BASELINE_VALID))
4495 hird = USB_GET_BESL_BASELINE(field);
4496 else
4497 hird = udev->l1_params.besl;
4498
4499 exit_latency = xhci_besl_encoding[hird];
4500 spin_unlock_irqrestore(&xhci->lock, flags);
4501
4502 ret = xhci_change_max_exit_latency(xhci, udev,
4503 exit_latency);
4504 if (ret < 0)
4505 return ret;
4506 spin_lock_irqsave(&xhci->lock, flags);
4507
4508 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4509 writel(hlpm_val, hlpm_addr);
4510 /* flush write */
4511 readl(hlpm_addr);
4512 } else {
4513 hird = xhci_calculate_hird_besl(xhci, udev);
4514 }
4515
4516 pm_val &= ~PORT_HIRD_MASK;
4517 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4518 writel(pm_val, pm_addr);
4519 pm_val = readl(pm_addr);
4520 pm_val |= PORT_HLE;
4521 writel(pm_val, pm_addr);
4522 /* flush write */
4523 readl(pm_addr);
4524 } else {
4525 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4526 writel(pm_val, pm_addr);
4527 /* flush write */
4528 readl(pm_addr);
4529 if (udev->usb2_hw_lpm_besl_capable) {
4530 spin_unlock_irqrestore(&xhci->lock, flags);
4531 xhci_change_max_exit_latency(xhci, udev, 0);
4532 readl_poll_timeout(ports[port_num]->addr, pm_val,
4533 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4534 100, 10000);
4535 return 0;
4536 }
4537 }
4538
4539 spin_unlock_irqrestore(&xhci->lock, flags);
4540 return 0;
4541 }
4542
4543 /* check if a usb2 port supports a given extened capability protocol
4544 * only USB2 ports extended protocol capability values are cached.
4545 * Return 1 if capability is supported
4546 */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4547 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4548 unsigned capability)
4549 {
4550 u32 port_offset, port_count;
4551 int i;
4552
4553 for (i = 0; i < xhci->num_ext_caps; i++) {
4554 if (xhci->ext_caps[i] & capability) {
4555 /* port offsets starts at 1 */
4556 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4557 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4558 if (port >= port_offset &&
4559 port < port_offset + port_count)
4560 return 1;
4561 }
4562 }
4563 return 0;
4564 }
4565
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4566 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4567 {
4568 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4569 int portnum = udev->portnum - 1;
4570
4571 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4572 return 0;
4573
4574 /* we only support lpm for non-hub device connected to root hub yet */
4575 if (!udev->parent || udev->parent->parent ||
4576 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4577 return 0;
4578
4579 if (xhci->hw_lpm_support == 1 &&
4580 xhci_check_usb2_port_capability(
4581 xhci, portnum, XHCI_HLC)) {
4582 udev->usb2_hw_lpm_capable = 1;
4583 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4584 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4585 if (xhci_check_usb2_port_capability(xhci, portnum,
4586 XHCI_BLC))
4587 udev->usb2_hw_lpm_besl_capable = 1;
4588 }
4589
4590 return 0;
4591 }
4592
4593 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4594
4595 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4596 static unsigned long long xhci_service_interval_to_ns(
4597 struct usb_endpoint_descriptor *desc)
4598 {
4599 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4600 }
4601
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4602 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4603 enum usb3_link_state state)
4604 {
4605 unsigned long long sel;
4606 unsigned long long pel;
4607 unsigned int max_sel_pel;
4608 char *state_name;
4609
4610 switch (state) {
4611 case USB3_LPM_U1:
4612 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4613 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4614 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4615 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4616 state_name = "U1";
4617 break;
4618 case USB3_LPM_U2:
4619 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4620 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4621 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4622 state_name = "U2";
4623 break;
4624 default:
4625 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4626 __func__);
4627 return USB3_LPM_DISABLED;
4628 }
4629
4630 if (sel <= max_sel_pel && pel <= max_sel_pel)
4631 return USB3_LPM_DEVICE_INITIATED;
4632
4633 if (sel > max_sel_pel)
4634 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4635 "due to long SEL %llu ms\n",
4636 state_name, sel);
4637 else
4638 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4639 "due to long PEL %llu ms\n",
4640 state_name, pel);
4641 return USB3_LPM_DISABLED;
4642 }
4643
4644 /* The U1 timeout should be the maximum of the following values:
4645 * - For control endpoints, U1 system exit latency (SEL) * 3
4646 * - For bulk endpoints, U1 SEL * 5
4647 * - For interrupt endpoints:
4648 * - Notification EPs, U1 SEL * 3
4649 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4650 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4651 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4652 static unsigned long long xhci_calculate_intel_u1_timeout(
4653 struct usb_device *udev,
4654 struct usb_endpoint_descriptor *desc)
4655 {
4656 unsigned long long timeout_ns;
4657 int ep_type;
4658 int intr_type;
4659
4660 ep_type = usb_endpoint_type(desc);
4661 switch (ep_type) {
4662 case USB_ENDPOINT_XFER_CONTROL:
4663 timeout_ns = udev->u1_params.sel * 3;
4664 break;
4665 case USB_ENDPOINT_XFER_BULK:
4666 timeout_ns = udev->u1_params.sel * 5;
4667 break;
4668 case USB_ENDPOINT_XFER_INT:
4669 intr_type = usb_endpoint_interrupt_type(desc);
4670 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4671 timeout_ns = udev->u1_params.sel * 3;
4672 break;
4673 }
4674 /* Otherwise the calculation is the same as isoc eps */
4675 fallthrough;
4676 case USB_ENDPOINT_XFER_ISOC:
4677 timeout_ns = xhci_service_interval_to_ns(desc);
4678 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4679 if (timeout_ns < udev->u1_params.sel * 2)
4680 timeout_ns = udev->u1_params.sel * 2;
4681 break;
4682 default:
4683 return 0;
4684 }
4685
4686 return timeout_ns;
4687 }
4688
4689 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4690 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4691 struct usb_device *udev,
4692 struct usb_endpoint_descriptor *desc)
4693 {
4694 unsigned long long timeout_ns;
4695
4696 /* Prevent U1 if service interval is shorter than U1 exit latency */
4697 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4698 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4699 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4700 return USB3_LPM_DISABLED;
4701 }
4702 }
4703
4704 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4705 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4706 else
4707 timeout_ns = udev->u1_params.sel;
4708
4709 /* The U1 timeout is encoded in 1us intervals.
4710 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4711 */
4712 if (timeout_ns == USB3_LPM_DISABLED)
4713 timeout_ns = 1;
4714 else
4715 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4716
4717 /* If the necessary timeout value is bigger than what we can set in the
4718 * USB 3.0 hub, we have to disable hub-initiated U1.
4719 */
4720 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4721 return timeout_ns;
4722 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4723 "due to long timeout %llu ms\n", timeout_ns);
4724 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4725 }
4726
4727 /* The U2 timeout should be the maximum of:
4728 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4729 * - largest bInterval of any active periodic endpoint (to avoid going
4730 * into lower power link states between intervals).
4731 * - the U2 Exit Latency of the device
4732 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4733 static unsigned long long xhci_calculate_intel_u2_timeout(
4734 struct usb_device *udev,
4735 struct usb_endpoint_descriptor *desc)
4736 {
4737 unsigned long long timeout_ns;
4738 unsigned long long u2_del_ns;
4739
4740 timeout_ns = 10 * 1000 * 1000;
4741
4742 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4743 (xhci_service_interval_to_ns(desc) > timeout_ns))
4744 timeout_ns = xhci_service_interval_to_ns(desc);
4745
4746 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4747 if (u2_del_ns > timeout_ns)
4748 timeout_ns = u2_del_ns;
4749
4750 return timeout_ns;
4751 }
4752
4753 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4754 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4755 struct usb_device *udev,
4756 struct usb_endpoint_descriptor *desc)
4757 {
4758 unsigned long long timeout_ns;
4759
4760 /* Prevent U2 if service interval is shorter than U2 exit latency */
4761 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4762 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4763 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4764 return USB3_LPM_DISABLED;
4765 }
4766 }
4767
4768 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4769 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4770 else
4771 timeout_ns = udev->u2_params.sel;
4772
4773 /* The U2 timeout is encoded in 256us intervals */
4774 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4775 /* If the necessary timeout value is bigger than what we can set in the
4776 * USB 3.0 hub, we have to disable hub-initiated U2.
4777 */
4778 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4779 return timeout_ns;
4780 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4781 "due to long timeout %llu ms\n", timeout_ns);
4782 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4783 }
4784
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4785 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4786 struct usb_device *udev,
4787 struct usb_endpoint_descriptor *desc,
4788 enum usb3_link_state state,
4789 u16 *timeout)
4790 {
4791 if (state == USB3_LPM_U1)
4792 return xhci_calculate_u1_timeout(xhci, udev, desc);
4793 else if (state == USB3_LPM_U2)
4794 return xhci_calculate_u2_timeout(xhci, udev, desc);
4795
4796 return USB3_LPM_DISABLED;
4797 }
4798
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4799 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4800 struct usb_device *udev,
4801 struct usb_endpoint_descriptor *desc,
4802 enum usb3_link_state state,
4803 u16 *timeout)
4804 {
4805 u16 alt_timeout;
4806
4807 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4808 desc, state, timeout);
4809
4810 /* If we found we can't enable hub-initiated LPM, and
4811 * the U1 or U2 exit latency was too high to allow
4812 * device-initiated LPM as well, then we will disable LPM
4813 * for this device, so stop searching any further.
4814 */
4815 if (alt_timeout == USB3_LPM_DISABLED) {
4816 *timeout = alt_timeout;
4817 return -E2BIG;
4818 }
4819 if (alt_timeout > *timeout)
4820 *timeout = alt_timeout;
4821 return 0;
4822 }
4823
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4824 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4825 struct usb_device *udev,
4826 struct usb_host_interface *alt,
4827 enum usb3_link_state state,
4828 u16 *timeout)
4829 {
4830 int j;
4831
4832 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4833 if (xhci_update_timeout_for_endpoint(xhci, udev,
4834 &alt->endpoint[j].desc, state, timeout))
4835 return -E2BIG;
4836 }
4837 return 0;
4838 }
4839
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4840 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4841 struct usb_device *udev,
4842 enum usb3_link_state state)
4843 {
4844 struct usb_device *parent = udev->parent;
4845 int tier = 1; /* roothub is tier1 */
4846
4847 while (parent) {
4848 parent = parent->parent;
4849 tier++;
4850 }
4851
4852 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4853 goto fail;
4854 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4855 goto fail;
4856
4857 return 0;
4858 fail:
4859 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4860 tier);
4861 return -E2BIG;
4862 }
4863
4864 /* Returns the U1 or U2 timeout that should be enabled.
4865 * If the tier check or timeout setting functions return with a non-zero exit
4866 * code, that means the timeout value has been finalized and we shouldn't look
4867 * at any more endpoints.
4868 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4869 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4870 struct usb_device *udev, enum usb3_link_state state)
4871 {
4872 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4873 struct usb_host_config *config;
4874 char *state_name;
4875 int i;
4876 u16 timeout = USB3_LPM_DISABLED;
4877
4878 if (state == USB3_LPM_U1)
4879 state_name = "U1";
4880 else if (state == USB3_LPM_U2)
4881 state_name = "U2";
4882 else {
4883 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4884 state);
4885 return timeout;
4886 }
4887
4888 /* Gather some information about the currently installed configuration
4889 * and alternate interface settings.
4890 */
4891 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4892 state, &timeout))
4893 return timeout;
4894
4895 config = udev->actconfig;
4896 if (!config)
4897 return timeout;
4898
4899 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4900 struct usb_driver *driver;
4901 struct usb_interface *intf = config->interface[i];
4902
4903 if (!intf)
4904 continue;
4905
4906 /* Check if any currently bound drivers want hub-initiated LPM
4907 * disabled.
4908 */
4909 if (intf->dev.driver) {
4910 driver = to_usb_driver(intf->dev.driver);
4911 if (driver && driver->disable_hub_initiated_lpm) {
4912 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4913 state_name, driver->name);
4914 timeout = xhci_get_timeout_no_hub_lpm(udev,
4915 state);
4916 if (timeout == USB3_LPM_DISABLED)
4917 return timeout;
4918 }
4919 }
4920
4921 /* Not sure how this could happen... */
4922 if (!intf->cur_altsetting)
4923 continue;
4924
4925 if (xhci_update_timeout_for_interface(xhci, udev,
4926 intf->cur_altsetting,
4927 state, &timeout))
4928 return timeout;
4929 }
4930 return timeout;
4931 }
4932
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4933 static int calculate_max_exit_latency(struct usb_device *udev,
4934 enum usb3_link_state state_changed,
4935 u16 hub_encoded_timeout)
4936 {
4937 unsigned long long u1_mel_us = 0;
4938 unsigned long long u2_mel_us = 0;
4939 unsigned long long mel_us = 0;
4940 bool disabling_u1;
4941 bool disabling_u2;
4942 bool enabling_u1;
4943 bool enabling_u2;
4944
4945 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4946 hub_encoded_timeout == USB3_LPM_DISABLED);
4947 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4948 hub_encoded_timeout == USB3_LPM_DISABLED);
4949
4950 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4951 hub_encoded_timeout != USB3_LPM_DISABLED);
4952 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4953 hub_encoded_timeout != USB3_LPM_DISABLED);
4954
4955 /* If U1 was already enabled and we're not disabling it,
4956 * or we're going to enable U1, account for the U1 max exit latency.
4957 */
4958 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4959 enabling_u1)
4960 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4961 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4962 enabling_u2)
4963 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4964
4965 mel_us = max(u1_mel_us, u2_mel_us);
4966
4967 /* xHCI host controller max exit latency field is only 16 bits wide. */
4968 if (mel_us > MAX_EXIT) {
4969 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4970 "is too big.\n", mel_us);
4971 return -E2BIG;
4972 }
4973 return mel_us;
4974 }
4975
4976 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4977 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4978 struct usb_device *udev, enum usb3_link_state state)
4979 {
4980 struct xhci_hcd *xhci;
4981 struct xhci_port *port;
4982 u16 hub_encoded_timeout;
4983 int mel;
4984 int ret;
4985
4986 xhci = hcd_to_xhci(hcd);
4987 /* The LPM timeout values are pretty host-controller specific, so don't
4988 * enable hub-initiated timeouts unless the vendor has provided
4989 * information about their timeout algorithm.
4990 */
4991 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4992 !xhci->devs[udev->slot_id])
4993 return USB3_LPM_DISABLED;
4994
4995 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4996 return USB3_LPM_DISABLED;
4997
4998 /* If connected to root port then check port can handle lpm */
4999 if (udev->parent && !udev->parent->parent) {
5000 port = xhci->usb3_rhub.ports[udev->portnum - 1];
5001 if (port->lpm_incapable)
5002 return USB3_LPM_DISABLED;
5003 }
5004
5005 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5006 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5007 if (mel < 0) {
5008 /* Max Exit Latency is too big, disable LPM. */
5009 hub_encoded_timeout = USB3_LPM_DISABLED;
5010 mel = 0;
5011 }
5012
5013 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5014 if (ret)
5015 return ret;
5016 return hub_encoded_timeout;
5017 }
5018
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5019 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5020 struct usb_device *udev, enum usb3_link_state state)
5021 {
5022 struct xhci_hcd *xhci;
5023 u16 mel;
5024
5025 xhci = hcd_to_xhci(hcd);
5026 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5027 !xhci->devs[udev->slot_id])
5028 return 0;
5029
5030 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5031 return xhci_change_max_exit_latency(xhci, udev, mel);
5032 }
5033 #else /* CONFIG_PM */
5034
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5035 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5036 struct usb_device *udev, int enable)
5037 {
5038 return 0;
5039 }
5040
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5041 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5042 {
5043 return 0;
5044 }
5045
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5046 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5047 struct usb_device *udev, enum usb3_link_state state)
5048 {
5049 return USB3_LPM_DISABLED;
5050 }
5051
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5052 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5053 struct usb_device *udev, enum usb3_link_state state)
5054 {
5055 return 0;
5056 }
5057 #endif /* CONFIG_PM */
5058
5059 /*-------------------------------------------------------------------------*/
5060
5061 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5062 * internal data structures for the device.
5063 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5064 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5065 struct usb_tt *tt, gfp_t mem_flags)
5066 {
5067 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5068 struct xhci_virt_device *vdev;
5069 struct xhci_command *config_cmd;
5070 struct xhci_input_control_ctx *ctrl_ctx;
5071 struct xhci_slot_ctx *slot_ctx;
5072 unsigned long flags;
5073 unsigned think_time;
5074 int ret;
5075
5076 /* Ignore root hubs */
5077 if (!hdev->parent)
5078 return 0;
5079
5080 vdev = xhci->devs[hdev->slot_id];
5081 if (!vdev) {
5082 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5083 return -EINVAL;
5084 }
5085
5086 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5087 if (!config_cmd)
5088 return -ENOMEM;
5089
5090 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5091 if (!ctrl_ctx) {
5092 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5093 __func__);
5094 xhci_free_command(xhci, config_cmd);
5095 return -ENOMEM;
5096 }
5097
5098 spin_lock_irqsave(&xhci->lock, flags);
5099 if (hdev->speed == USB_SPEED_HIGH &&
5100 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5101 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5102 xhci_free_command(xhci, config_cmd);
5103 spin_unlock_irqrestore(&xhci->lock, flags);
5104 return -ENOMEM;
5105 }
5106
5107 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5108 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5109 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5110 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5111 /*
5112 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5113 * but it may be already set to 1 when setup an xHCI virtual
5114 * device, so clear it anyway.
5115 */
5116 if (tt->multi)
5117 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5118 else if (hdev->speed == USB_SPEED_FULL)
5119 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5120
5121 if (xhci->hci_version > 0x95) {
5122 xhci_dbg(xhci, "xHCI version %x needs hub "
5123 "TT think time and number of ports\n",
5124 (unsigned int) xhci->hci_version);
5125 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5126 /* Set TT think time - convert from ns to FS bit times.
5127 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5128 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5129 *
5130 * xHCI 1.0: this field shall be 0 if the device is not a
5131 * High-spped hub.
5132 */
5133 think_time = tt->think_time;
5134 if (think_time != 0)
5135 think_time = (think_time / 666) - 1;
5136 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5137 slot_ctx->tt_info |=
5138 cpu_to_le32(TT_THINK_TIME(think_time));
5139 } else {
5140 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5141 "TT think time or number of ports\n",
5142 (unsigned int) xhci->hci_version);
5143 }
5144 slot_ctx->dev_state = 0;
5145 spin_unlock_irqrestore(&xhci->lock, flags);
5146
5147 xhci_dbg(xhci, "Set up %s for hub device.\n",
5148 (xhci->hci_version > 0x95) ?
5149 "configure endpoint" : "evaluate context");
5150
5151 /* Issue and wait for the configure endpoint or
5152 * evaluate context command.
5153 */
5154 if (xhci->hci_version > 0x95)
5155 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5156 false, false);
5157 else
5158 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5159 true, false);
5160
5161 xhci_free_command(xhci, config_cmd);
5162 return ret;
5163 }
5164 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5165
xhci_get_frame(struct usb_hcd * hcd)5166 static int xhci_get_frame(struct usb_hcd *hcd)
5167 {
5168 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5169 /* EHCI mods by the periodic size. Why? */
5170 return readl(&xhci->run_regs->microframe_index) >> 3;
5171 }
5172
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5173 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5174 {
5175 xhci->usb2_rhub.hcd = hcd;
5176 hcd->speed = HCD_USB2;
5177 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5178 /*
5179 * USB 2.0 roothub under xHCI has an integrated TT,
5180 * (rate matching hub) as opposed to having an OHCI/UHCI
5181 * companion controller.
5182 */
5183 hcd->has_tt = 1;
5184 }
5185
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5186 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5187 {
5188 unsigned int minor_rev;
5189
5190 /*
5191 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5192 * should return 0x31 for sbrn, or that the minor revision
5193 * is a two digit BCD containig minor and sub-minor numbers.
5194 * This was later clarified in xHCI 1.2.
5195 *
5196 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5197 * minor revision set to 0x1 instead of 0x10.
5198 */
5199 if (xhci->usb3_rhub.min_rev == 0x1)
5200 minor_rev = 1;
5201 else
5202 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5203
5204 switch (minor_rev) {
5205 case 2:
5206 hcd->speed = HCD_USB32;
5207 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5208 hcd->self.root_hub->rx_lanes = 2;
5209 hcd->self.root_hub->tx_lanes = 2;
5210 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5211 break;
5212 case 1:
5213 hcd->speed = HCD_USB31;
5214 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5215 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5216 break;
5217 }
5218 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5219 minor_rev, minor_rev ? "Enhanced " : "");
5220
5221 xhci->usb3_rhub.hcd = hcd;
5222 }
5223
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5224 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5225 {
5226 struct xhci_hcd *xhci;
5227 /*
5228 * TODO: Check with DWC3 clients for sysdev according to
5229 * quirks
5230 */
5231 struct device *dev = hcd->self.sysdev;
5232 int retval;
5233
5234 /* Accept arbitrarily long scatter-gather lists */
5235 hcd->self.sg_tablesize = ~0;
5236
5237 /* support to build packet from discontinuous buffers */
5238 hcd->self.no_sg_constraint = 1;
5239
5240 /* XHCI controllers don't stop the ep queue on short packets :| */
5241 hcd->self.no_stop_on_short = 1;
5242
5243 xhci = hcd_to_xhci(hcd);
5244
5245 if (!usb_hcd_is_primary_hcd(hcd)) {
5246 xhci_hcd_init_usb3_data(xhci, hcd);
5247 return 0;
5248 }
5249
5250 mutex_init(&xhci->mutex);
5251 xhci->main_hcd = hcd;
5252 xhci->cap_regs = hcd->regs;
5253 xhci->op_regs = hcd->regs +
5254 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5255 xhci->run_regs = hcd->regs +
5256 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5257 /* Cache read-only capability registers */
5258 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5259 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5260 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5261 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5262 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5263 if (xhci->hci_version > 0x100)
5264 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5265
5266 /* xhci-plat or xhci-pci might have set max_interrupters already */
5267 if ((!xhci->max_interrupters) ||
5268 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5269 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5270
5271 xhci->quirks |= quirks;
5272
5273 if (get_quirks)
5274 get_quirks(dev, xhci);
5275
5276 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5277 * success event after a short transfer. This quirk will ignore such
5278 * spurious event.
5279 */
5280 if (xhci->hci_version > 0x96)
5281 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5282
5283 /* Make sure the HC is halted. */
5284 retval = xhci_halt(xhci);
5285 if (retval)
5286 return retval;
5287
5288 xhci_zero_64b_regs(xhci);
5289
5290 xhci_dbg(xhci, "Resetting HCD\n");
5291 /* Reset the internal HC memory state and registers. */
5292 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5293 if (retval)
5294 return retval;
5295 xhci_dbg(xhci, "Reset complete\n");
5296
5297 /*
5298 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5299 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5300 * address memory pointers actually. So, this driver clears the AC64
5301 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5302 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5303 */
5304 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5305 xhci->hcc_params &= ~BIT(0);
5306
5307 /* Set dma_mask and coherent_dma_mask to 64-bits,
5308 * if xHC supports 64-bit addressing */
5309 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5310 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5311 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5312 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5313 } else {
5314 /*
5315 * This is to avoid error in cases where a 32-bit USB
5316 * controller is used on a 64-bit capable system.
5317 */
5318 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5319 if (retval)
5320 return retval;
5321 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5322 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5323 }
5324
5325 xhci_dbg(xhci, "Calling HCD init\n");
5326 /* Initialize HCD and host controller data structures. */
5327 retval = xhci_init(hcd);
5328 if (retval)
5329 return retval;
5330 xhci_dbg(xhci, "Called HCD init\n");
5331
5332 if (xhci_hcd_is_usb3(hcd))
5333 xhci_hcd_init_usb3_data(xhci, hcd);
5334 else
5335 xhci_hcd_init_usb2_data(xhci, hcd);
5336
5337 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5338 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5339
5340 return 0;
5341 }
5342 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5343
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5344 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5345 struct usb_host_endpoint *ep)
5346 {
5347 struct xhci_hcd *xhci;
5348 struct usb_device *udev;
5349 unsigned int slot_id;
5350 unsigned int ep_index;
5351 unsigned long flags;
5352
5353 xhci = hcd_to_xhci(hcd);
5354
5355 spin_lock_irqsave(&xhci->lock, flags);
5356 udev = (struct usb_device *)ep->hcpriv;
5357 slot_id = udev->slot_id;
5358 ep_index = xhci_get_endpoint_index(&ep->desc);
5359
5360 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5361 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5362 spin_unlock_irqrestore(&xhci->lock, flags);
5363 }
5364
5365 static const struct hc_driver xhci_hc_driver = {
5366 .description = "xhci-hcd",
5367 .product_desc = "xHCI Host Controller",
5368 .hcd_priv_size = sizeof(struct xhci_hcd),
5369
5370 /*
5371 * generic hardware linkage
5372 */
5373 .irq = xhci_irq,
5374 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5375 HCD_BH,
5376
5377 /*
5378 * basic lifecycle operations
5379 */
5380 .reset = NULL, /* set in xhci_init_driver() */
5381 .start = xhci_run,
5382 .stop = xhci_stop,
5383 .shutdown = xhci_shutdown,
5384
5385 /*
5386 * managing i/o requests and associated device resources
5387 */
5388 .map_urb_for_dma = xhci_map_urb_for_dma,
5389 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5390 .urb_enqueue = xhci_urb_enqueue,
5391 .urb_dequeue = xhci_urb_dequeue,
5392 .alloc_dev = xhci_alloc_dev,
5393 .free_dev = xhci_free_dev,
5394 .alloc_streams = xhci_alloc_streams,
5395 .free_streams = xhci_free_streams,
5396 .add_endpoint = xhci_add_endpoint,
5397 .drop_endpoint = xhci_drop_endpoint,
5398 .endpoint_disable = xhci_endpoint_disable,
5399 .endpoint_reset = xhci_endpoint_reset,
5400 .check_bandwidth = xhci_check_bandwidth,
5401 .reset_bandwidth = xhci_reset_bandwidth,
5402 .address_device = xhci_address_device,
5403 .enable_device = xhci_enable_device,
5404 .update_hub_device = xhci_update_hub_device,
5405 .reset_device = xhci_discover_or_reset_device,
5406
5407 /*
5408 * scheduling support
5409 */
5410 .get_frame_number = xhci_get_frame,
5411
5412 /*
5413 * root hub support
5414 */
5415 .hub_control = xhci_hub_control,
5416 .hub_status_data = xhci_hub_status_data,
5417 .bus_suspend = xhci_bus_suspend,
5418 .bus_resume = xhci_bus_resume,
5419 .get_resuming_ports = xhci_get_resuming_ports,
5420
5421 /*
5422 * call back when device connected and addressed
5423 */
5424 .update_device = xhci_update_device,
5425 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5426 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5427 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5428 .find_raw_port_number = xhci_find_raw_port_number,
5429 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5430 };
5431
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5432 void xhci_init_driver(struct hc_driver *drv,
5433 const struct xhci_driver_overrides *over)
5434 {
5435 BUG_ON(!over);
5436
5437 /* Copy the generic table to drv then apply the overrides */
5438 *drv = xhci_hc_driver;
5439
5440 if (over) {
5441 drv->hcd_priv_size += over->extra_priv_size;
5442 if (over->reset)
5443 drv->reset = over->reset;
5444 if (over->start)
5445 drv->start = over->start;
5446 if (over->add_endpoint)
5447 drv->add_endpoint = over->add_endpoint;
5448 if (over->drop_endpoint)
5449 drv->drop_endpoint = over->drop_endpoint;
5450 if (over->check_bandwidth)
5451 drv->check_bandwidth = over->check_bandwidth;
5452 if (over->reset_bandwidth)
5453 drv->reset_bandwidth = over->reset_bandwidth;
5454 if (over->update_hub_device)
5455 drv->update_hub_device = over->update_hub_device;
5456 if (over->hub_control)
5457 drv->hub_control = over->hub_control;
5458 }
5459 }
5460 EXPORT_SYMBOL_GPL(xhci_init_driver);
5461
5462 MODULE_DESCRIPTION(DRIVER_DESC);
5463 MODULE_AUTHOR(DRIVER_AUTHOR);
5464 MODULE_LICENSE("GPL");
5465
xhci_hcd_init(void)5466 static int __init xhci_hcd_init(void)
5467 {
5468 /*
5469 * Check the compiler generated sizes of structures that must be laid
5470 * out in specific ways for hardware access.
5471 */
5472 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5473 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5474 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5475 /* xhci_device_control has eight fields, and also
5476 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5477 */
5478 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5479 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5480 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5481 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5482 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5483 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5484 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5485
5486 if (usb_disabled())
5487 return -ENODEV;
5488
5489 xhci_debugfs_create_root();
5490 xhci_dbc_init();
5491
5492 return 0;
5493 }
5494
5495 /*
5496 * If an init function is provided, an exit function must also be provided
5497 * to allow module unload.
5498 */
xhci_hcd_fini(void)5499 static void __exit xhci_hcd_fini(void)
5500 {
5501 xhci_debugfs_remove_root();
5502 xhci_dbc_exit();
5503 }
5504
5505 module_init(xhci_hcd_init);
5506 module_exit(xhci_hcd_fini);
5507