1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include "ctree.h"
8 #include "disk-io.h"
9 #include "print-tree.h"
10 #include "transaction.h"
11 #include "locking.h"
12 #include "accessors.h"
13 #include "messages.h"
14 #include "delalloc-space.h"
15 #include "subpage.h"
16 #include "defrag.h"
17 #include "file-item.h"
18 #include "super.h"
19
20 static struct kmem_cache *btrfs_inode_defrag_cachep;
21
22 /*
23 * When auto defrag is enabled we queue up these defrag structs to remember
24 * which inodes need defragging passes.
25 */
26 struct inode_defrag {
27 struct rb_node rb_node;
28 /* Inode number */
29 u64 ino;
30 /*
31 * Transid where the defrag was added, we search for extents newer than
32 * this.
33 */
34 u64 transid;
35
36 /* Root objectid */
37 u64 root;
38
39 /*
40 * The extent size threshold for autodefrag.
41 *
42 * This value is different for compressed/non-compressed extents, thus
43 * needs to be passed from higher layer.
44 * (aka, inode_should_defrag())
45 */
46 u32 extent_thresh;
47 };
48
__compare_inode_defrag(struct inode_defrag * defrag1,struct inode_defrag * defrag2)49 static int __compare_inode_defrag(struct inode_defrag *defrag1,
50 struct inode_defrag *defrag2)
51 {
52 if (defrag1->root > defrag2->root)
53 return 1;
54 else if (defrag1->root < defrag2->root)
55 return -1;
56 else if (defrag1->ino > defrag2->ino)
57 return 1;
58 else if (defrag1->ino < defrag2->ino)
59 return -1;
60 else
61 return 0;
62 }
63
64 /*
65 * Pop a record for an inode into the defrag tree. The lock must be held
66 * already.
67 *
68 * If you're inserting a record for an older transid than an existing record,
69 * the transid already in the tree is lowered.
70 *
71 * If an existing record is found the defrag item you pass in is freed.
72 */
__btrfs_add_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)73 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
74 struct inode_defrag *defrag)
75 {
76 struct btrfs_fs_info *fs_info = inode->root->fs_info;
77 struct inode_defrag *entry;
78 struct rb_node **p;
79 struct rb_node *parent = NULL;
80 int ret;
81
82 p = &fs_info->defrag_inodes.rb_node;
83 while (*p) {
84 parent = *p;
85 entry = rb_entry(parent, struct inode_defrag, rb_node);
86
87 ret = __compare_inode_defrag(defrag, entry);
88 if (ret < 0)
89 p = &parent->rb_left;
90 else if (ret > 0)
91 p = &parent->rb_right;
92 else {
93 /*
94 * If we're reinserting an entry for an old defrag run,
95 * make sure to lower the transid of our existing
96 * record.
97 */
98 if (defrag->transid < entry->transid)
99 entry->transid = defrag->transid;
100 entry->extent_thresh = min(defrag->extent_thresh,
101 entry->extent_thresh);
102 return -EEXIST;
103 }
104 }
105 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
106 rb_link_node(&defrag->rb_node, parent, p);
107 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
108 return 0;
109 }
110
__need_auto_defrag(struct btrfs_fs_info * fs_info)111 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
112 {
113 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
114 return 0;
115
116 if (btrfs_fs_closing(fs_info))
117 return 0;
118
119 return 1;
120 }
121
122 /*
123 * Insert a defrag record for this inode if auto defrag is enabled.
124 */
btrfs_add_inode_defrag(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u32 extent_thresh)125 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
126 struct btrfs_inode *inode, u32 extent_thresh)
127 {
128 struct btrfs_root *root = inode->root;
129 struct btrfs_fs_info *fs_info = root->fs_info;
130 struct inode_defrag *defrag;
131 u64 transid;
132 int ret;
133
134 if (!__need_auto_defrag(fs_info))
135 return 0;
136
137 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
138 return 0;
139
140 if (trans)
141 transid = trans->transid;
142 else
143 transid = inode->root->last_trans;
144
145 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
146 if (!defrag)
147 return -ENOMEM;
148
149 defrag->ino = btrfs_ino(inode);
150 defrag->transid = transid;
151 defrag->root = root->root_key.objectid;
152 defrag->extent_thresh = extent_thresh;
153
154 spin_lock(&fs_info->defrag_inodes_lock);
155 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
156 /*
157 * If we set IN_DEFRAG flag and evict the inode from memory,
158 * and then re-read this inode, this new inode doesn't have
159 * IN_DEFRAG flag. At the case, we may find the existed defrag.
160 */
161 ret = __btrfs_add_inode_defrag(inode, defrag);
162 if (ret)
163 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
164 } else {
165 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
166 }
167 spin_unlock(&fs_info->defrag_inodes_lock);
168 return 0;
169 }
170
171 /*
172 * Pick the defragable inode that we want, if it doesn't exist, we will get the
173 * next one.
174 */
btrfs_pick_defrag_inode(struct btrfs_fs_info * fs_info,u64 root,u64 ino)175 static struct inode_defrag *btrfs_pick_defrag_inode(
176 struct btrfs_fs_info *fs_info, u64 root, u64 ino)
177 {
178 struct inode_defrag *entry = NULL;
179 struct inode_defrag tmp;
180 struct rb_node *p;
181 struct rb_node *parent = NULL;
182 int ret;
183
184 tmp.ino = ino;
185 tmp.root = root;
186
187 spin_lock(&fs_info->defrag_inodes_lock);
188 p = fs_info->defrag_inodes.rb_node;
189 while (p) {
190 parent = p;
191 entry = rb_entry(parent, struct inode_defrag, rb_node);
192
193 ret = __compare_inode_defrag(&tmp, entry);
194 if (ret < 0)
195 p = parent->rb_left;
196 else if (ret > 0)
197 p = parent->rb_right;
198 else
199 goto out;
200 }
201
202 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
203 parent = rb_next(parent);
204 if (parent)
205 entry = rb_entry(parent, struct inode_defrag, rb_node);
206 else
207 entry = NULL;
208 }
209 out:
210 if (entry)
211 rb_erase(parent, &fs_info->defrag_inodes);
212 spin_unlock(&fs_info->defrag_inodes_lock);
213 return entry;
214 }
215
btrfs_cleanup_defrag_inodes(struct btrfs_fs_info * fs_info)216 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
217 {
218 struct inode_defrag *defrag;
219 struct rb_node *node;
220
221 spin_lock(&fs_info->defrag_inodes_lock);
222 node = rb_first(&fs_info->defrag_inodes);
223 while (node) {
224 rb_erase(node, &fs_info->defrag_inodes);
225 defrag = rb_entry(node, struct inode_defrag, rb_node);
226 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
227
228 cond_resched_lock(&fs_info->defrag_inodes_lock);
229
230 node = rb_first(&fs_info->defrag_inodes);
231 }
232 spin_unlock(&fs_info->defrag_inodes_lock);
233 }
234
235 #define BTRFS_DEFRAG_BATCH 1024
236
__btrfs_run_defrag_inode(struct btrfs_fs_info * fs_info,struct inode_defrag * defrag)237 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
238 struct inode_defrag *defrag)
239 {
240 struct btrfs_root *inode_root;
241 struct inode *inode;
242 struct btrfs_ioctl_defrag_range_args range;
243 int ret = 0;
244 u64 cur = 0;
245
246 again:
247 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
248 goto cleanup;
249 if (!__need_auto_defrag(fs_info))
250 goto cleanup;
251
252 /* Get the inode */
253 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
254 if (IS_ERR(inode_root)) {
255 ret = PTR_ERR(inode_root);
256 goto cleanup;
257 }
258
259 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
260 btrfs_put_root(inode_root);
261 if (IS_ERR(inode)) {
262 ret = PTR_ERR(inode);
263 goto cleanup;
264 }
265
266 if (cur >= i_size_read(inode)) {
267 iput(inode);
268 goto cleanup;
269 }
270
271 /* Do a chunk of defrag */
272 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
273 memset(&range, 0, sizeof(range));
274 range.len = (u64)-1;
275 range.start = cur;
276 range.extent_thresh = defrag->extent_thresh;
277
278 sb_start_write(fs_info->sb);
279 ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
280 BTRFS_DEFRAG_BATCH);
281 sb_end_write(fs_info->sb);
282 iput(inode);
283
284 if (ret < 0)
285 goto cleanup;
286
287 cur = max(cur + fs_info->sectorsize, range.start);
288 goto again;
289
290 cleanup:
291 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
292 return ret;
293 }
294
295 /*
296 * Run through the list of inodes in the FS that need defragging.
297 */
btrfs_run_defrag_inodes(struct btrfs_fs_info * fs_info)298 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
299 {
300 struct inode_defrag *defrag;
301 u64 first_ino = 0;
302 u64 root_objectid = 0;
303
304 atomic_inc(&fs_info->defrag_running);
305 while (1) {
306 /* Pause the auto defragger. */
307 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
308 break;
309
310 if (!__need_auto_defrag(fs_info))
311 break;
312
313 /* find an inode to defrag */
314 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
315 if (!defrag) {
316 if (root_objectid || first_ino) {
317 root_objectid = 0;
318 first_ino = 0;
319 continue;
320 } else {
321 break;
322 }
323 }
324
325 first_ino = defrag->ino + 1;
326 root_objectid = defrag->root;
327
328 __btrfs_run_defrag_inode(fs_info, defrag);
329 }
330 atomic_dec(&fs_info->defrag_running);
331
332 /*
333 * During unmount, we use the transaction_wait queue to wait for the
334 * defragger to stop.
335 */
336 wake_up(&fs_info->transaction_wait);
337 return 0;
338 }
339
340 /*
341 * Defrag all the leaves in a given btree.
342 * Read all the leaves and try to get key order to
343 * better reflect disk order
344 */
345
btrfs_defrag_leaves(struct btrfs_trans_handle * trans,struct btrfs_root * root)346 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
347 struct btrfs_root *root)
348 {
349 struct btrfs_path *path = NULL;
350 struct btrfs_key key;
351 int ret = 0;
352 int wret;
353 int level;
354 int next_key_ret = 0;
355 u64 last_ret = 0;
356
357 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
358 goto out;
359
360 path = btrfs_alloc_path();
361 if (!path) {
362 ret = -ENOMEM;
363 goto out;
364 }
365
366 level = btrfs_header_level(root->node);
367
368 if (level == 0)
369 goto out;
370
371 if (root->defrag_progress.objectid == 0) {
372 struct extent_buffer *root_node;
373 u32 nritems;
374
375 root_node = btrfs_lock_root_node(root);
376 nritems = btrfs_header_nritems(root_node);
377 root->defrag_max.objectid = 0;
378 /* from above we know this is not a leaf */
379 btrfs_node_key_to_cpu(root_node, &root->defrag_max,
380 nritems - 1);
381 btrfs_tree_unlock(root_node);
382 free_extent_buffer(root_node);
383 memset(&key, 0, sizeof(key));
384 } else {
385 memcpy(&key, &root->defrag_progress, sizeof(key));
386 }
387
388 path->keep_locks = 1;
389
390 ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
391 if (ret < 0)
392 goto out;
393 if (ret > 0) {
394 ret = 0;
395 goto out;
396 }
397 btrfs_release_path(path);
398 /*
399 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
400 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
401 * a deadlock (attempting to write lock an already write locked leaf).
402 */
403 path->lowest_level = 1;
404 wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
405
406 if (wret < 0) {
407 ret = wret;
408 goto out;
409 }
410 if (!path->nodes[1]) {
411 ret = 0;
412 goto out;
413 }
414 /*
415 * The node at level 1 must always be locked when our path has
416 * keep_locks set and lowest_level is 1, regardless of the value of
417 * path->slots[1].
418 */
419 ASSERT(path->locks[1] != 0);
420 ret = btrfs_realloc_node(trans, root,
421 path->nodes[1], 0,
422 &last_ret,
423 &root->defrag_progress);
424 if (ret) {
425 WARN_ON(ret == -EAGAIN);
426 goto out;
427 }
428 /*
429 * Now that we reallocated the node we can find the next key. Note that
430 * btrfs_find_next_key() can release our path and do another search
431 * without COWing, this is because even with path->keep_locks = 1,
432 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
433 * node when path->slots[node_level - 1] does not point to the last
434 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
435 * we search for the next key after reallocating our node.
436 */
437 path->slots[1] = btrfs_header_nritems(path->nodes[1]);
438 next_key_ret = btrfs_find_next_key(root, path, &key, 1,
439 BTRFS_OLDEST_GENERATION);
440 if (next_key_ret == 0) {
441 memcpy(&root->defrag_progress, &key, sizeof(key));
442 ret = -EAGAIN;
443 }
444 out:
445 btrfs_free_path(path);
446 if (ret == -EAGAIN) {
447 if (root->defrag_max.objectid > root->defrag_progress.objectid)
448 goto done;
449 if (root->defrag_max.type > root->defrag_progress.type)
450 goto done;
451 if (root->defrag_max.offset > root->defrag_progress.offset)
452 goto done;
453 ret = 0;
454 }
455 done:
456 if (ret != -EAGAIN)
457 memset(&root->defrag_progress, 0,
458 sizeof(root->defrag_progress));
459
460 return ret;
461 }
462
463 /*
464 * Defrag specific helper to get an extent map.
465 *
466 * Differences between this and btrfs_get_extent() are:
467 *
468 * - No extent_map will be added to inode->extent_tree
469 * To reduce memory usage in the long run.
470 *
471 * - Extra optimization to skip file extents older than @newer_than
472 * By using btrfs_search_forward() we can skip entire file ranges that
473 * have extents created in past transactions, because btrfs_search_forward()
474 * will not visit leaves and nodes with a generation smaller than given
475 * minimal generation threshold (@newer_than).
476 *
477 * Return valid em if we find a file extent matching the requirement.
478 * Return NULL if we can not find a file extent matching the requirement.
479 *
480 * Return ERR_PTR() for error.
481 */
defrag_get_extent(struct btrfs_inode * inode,u64 start,u64 newer_than)482 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
483 u64 start, u64 newer_than)
484 {
485 struct btrfs_root *root = inode->root;
486 struct btrfs_file_extent_item *fi;
487 struct btrfs_path path = { 0 };
488 struct extent_map *em;
489 struct btrfs_key key;
490 u64 ino = btrfs_ino(inode);
491 int ret;
492
493 em = alloc_extent_map();
494 if (!em) {
495 ret = -ENOMEM;
496 goto err;
497 }
498
499 key.objectid = ino;
500 key.type = BTRFS_EXTENT_DATA_KEY;
501 key.offset = start;
502
503 if (newer_than) {
504 ret = btrfs_search_forward(root, &key, &path, newer_than);
505 if (ret < 0)
506 goto err;
507 /* Can't find anything newer */
508 if (ret > 0)
509 goto not_found;
510 } else {
511 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
512 if (ret < 0)
513 goto err;
514 }
515 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
516 /*
517 * If btrfs_search_slot() makes path to point beyond nritems,
518 * we should not have an empty leaf, as this inode must at
519 * least have its INODE_ITEM.
520 */
521 ASSERT(btrfs_header_nritems(path.nodes[0]));
522 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
523 }
524 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
525 /* Perfect match, no need to go one slot back */
526 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
527 key.offset == start)
528 goto iterate;
529
530 /* We didn't find a perfect match, needs to go one slot back */
531 if (path.slots[0] > 0) {
532 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
533 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
534 path.slots[0]--;
535 }
536
537 iterate:
538 /* Iterate through the path to find a file extent covering @start */
539 while (true) {
540 u64 extent_end;
541
542 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
543 goto next;
544
545 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
546
547 /*
548 * We may go one slot back to INODE_REF/XATTR item, then
549 * need to go forward until we reach an EXTENT_DATA.
550 * But we should still has the correct ino as key.objectid.
551 */
552 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
553 goto next;
554
555 /* It's beyond our target range, definitely not extent found */
556 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
557 goto not_found;
558
559 /*
560 * | |<- File extent ->|
561 * \- start
562 *
563 * This means there is a hole between start and key.offset.
564 */
565 if (key.offset > start) {
566 em->start = start;
567 em->orig_start = start;
568 em->block_start = EXTENT_MAP_HOLE;
569 em->len = key.offset - start;
570 break;
571 }
572
573 fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
574 struct btrfs_file_extent_item);
575 extent_end = btrfs_file_extent_end(&path);
576
577 /*
578 * |<- file extent ->| |
579 * \- start
580 *
581 * We haven't reached start, search next slot.
582 */
583 if (extent_end <= start)
584 goto next;
585
586 /* Now this extent covers @start, convert it to em */
587 btrfs_extent_item_to_extent_map(inode, &path, fi, em);
588 break;
589 next:
590 ret = btrfs_next_item(root, &path);
591 if (ret < 0)
592 goto err;
593 if (ret > 0)
594 goto not_found;
595 }
596 btrfs_release_path(&path);
597 return em;
598
599 not_found:
600 btrfs_release_path(&path);
601 free_extent_map(em);
602 return NULL;
603
604 err:
605 btrfs_release_path(&path);
606 free_extent_map(em);
607 return ERR_PTR(ret);
608 }
609
defrag_lookup_extent(struct inode * inode,u64 start,u64 newer_than,bool locked)610 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
611 u64 newer_than, bool locked)
612 {
613 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
614 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
615 struct extent_map *em;
616 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
617
618 /*
619 * Hopefully we have this extent in the tree already, try without the
620 * full extent lock.
621 */
622 read_lock(&em_tree->lock);
623 em = lookup_extent_mapping(em_tree, start, sectorsize);
624 read_unlock(&em_tree->lock);
625
626 /*
627 * We can get a merged extent, in that case, we need to re-search
628 * tree to get the original em for defrag.
629 *
630 * If @newer_than is 0 or em::generation < newer_than, we can trust
631 * this em, as either we don't care about the generation, or the
632 * merged extent map will be rejected anyway.
633 */
634 if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
635 newer_than && em->generation >= newer_than) {
636 free_extent_map(em);
637 em = NULL;
638 }
639
640 if (!em) {
641 struct extent_state *cached = NULL;
642 u64 end = start + sectorsize - 1;
643
644 /* Get the big lock and read metadata off disk. */
645 if (!locked)
646 lock_extent(io_tree, start, end, &cached);
647 em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
648 if (!locked)
649 unlock_extent(io_tree, start, end, &cached);
650
651 if (IS_ERR(em))
652 return NULL;
653 }
654
655 return em;
656 }
657
get_extent_max_capacity(const struct btrfs_fs_info * fs_info,const struct extent_map * em)658 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
659 const struct extent_map *em)
660 {
661 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
662 return BTRFS_MAX_COMPRESSED;
663 return fs_info->max_extent_size;
664 }
665
defrag_check_next_extent(struct inode * inode,struct extent_map * em,u32 extent_thresh,u64 newer_than,bool locked)666 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
667 u32 extent_thresh, u64 newer_than, bool locked)
668 {
669 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
670 struct extent_map *next;
671 bool ret = false;
672
673 /* This is the last extent */
674 if (em->start + em->len >= i_size_read(inode))
675 return false;
676
677 /*
678 * Here we need to pass @newer_then when checking the next extent, or
679 * we will hit a case we mark current extent for defrag, but the next
680 * one will not be a target.
681 * This will just cause extra IO without really reducing the fragments.
682 */
683 next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
684 /* No more em or hole */
685 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
686 goto out;
687 if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
688 goto out;
689 /*
690 * If the next extent is at its max capacity, defragging current extent
691 * makes no sense, as the total number of extents won't change.
692 */
693 if (next->len >= get_extent_max_capacity(fs_info, em))
694 goto out;
695 /* Skip older extent */
696 if (next->generation < newer_than)
697 goto out;
698 /* Also check extent size */
699 if (next->len >= extent_thresh)
700 goto out;
701
702 ret = true;
703 out:
704 free_extent_map(next);
705 return ret;
706 }
707
708 /*
709 * Prepare one page to be defragged.
710 *
711 * This will ensure:
712 *
713 * - Returned page is locked and has been set up properly.
714 * - No ordered extent exists in the page.
715 * - The page is uptodate.
716 *
717 * NOTE: Caller should also wait for page writeback after the cluster is
718 * prepared, here we don't do writeback wait for each page.
719 */
defrag_prepare_one_page(struct btrfs_inode * inode,pgoff_t index)720 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, pgoff_t index)
721 {
722 struct address_space *mapping = inode->vfs_inode.i_mapping;
723 gfp_t mask = btrfs_alloc_write_mask(mapping);
724 u64 page_start = (u64)index << PAGE_SHIFT;
725 u64 page_end = page_start + PAGE_SIZE - 1;
726 struct extent_state *cached_state = NULL;
727 struct page *page;
728 int ret;
729
730 again:
731 page = find_or_create_page(mapping, index, mask);
732 if (!page)
733 return ERR_PTR(-ENOMEM);
734
735 /*
736 * Since we can defragment files opened read-only, we can encounter
737 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
738 * can't do I/O using huge pages yet, so return an error for now.
739 * Filesystem transparent huge pages are typically only used for
740 * executables that explicitly enable them, so this isn't very
741 * restrictive.
742 */
743 if (PageCompound(page)) {
744 unlock_page(page);
745 put_page(page);
746 return ERR_PTR(-ETXTBSY);
747 }
748
749 ret = set_page_extent_mapped(page);
750 if (ret < 0) {
751 unlock_page(page);
752 put_page(page);
753 return ERR_PTR(ret);
754 }
755
756 /* Wait for any existing ordered extent in the range */
757 while (1) {
758 struct btrfs_ordered_extent *ordered;
759
760 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
761 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
762 unlock_extent(&inode->io_tree, page_start, page_end,
763 &cached_state);
764 if (!ordered)
765 break;
766
767 unlock_page(page);
768 btrfs_start_ordered_extent(ordered);
769 btrfs_put_ordered_extent(ordered);
770 lock_page(page);
771 /*
772 * We unlocked the page above, so we need check if it was
773 * released or not.
774 */
775 if (page->mapping != mapping || !PagePrivate(page)) {
776 unlock_page(page);
777 put_page(page);
778 goto again;
779 }
780 }
781
782 /*
783 * Now the page range has no ordered extent any more. Read the page to
784 * make it uptodate.
785 */
786 if (!PageUptodate(page)) {
787 btrfs_read_folio(NULL, page_folio(page));
788 lock_page(page);
789 if (page->mapping != mapping || !PagePrivate(page)) {
790 unlock_page(page);
791 put_page(page);
792 goto again;
793 }
794 if (!PageUptodate(page)) {
795 unlock_page(page);
796 put_page(page);
797 return ERR_PTR(-EIO);
798 }
799 }
800 return page;
801 }
802
803 struct defrag_target_range {
804 struct list_head list;
805 u64 start;
806 u64 len;
807 };
808
809 /*
810 * Collect all valid target extents.
811 *
812 * @start: file offset to lookup
813 * @len: length to lookup
814 * @extent_thresh: file extent size threshold, any extent size >= this value
815 * will be ignored
816 * @newer_than: only defrag extents newer than this value
817 * @do_compress: whether the defrag is doing compression
818 * if true, @extent_thresh will be ignored and all regular
819 * file extents meeting @newer_than will be targets.
820 * @locked: if the range has already held extent lock
821 * @target_list: list of targets file extents
822 */
defrag_collect_targets(struct btrfs_inode * inode,u64 start,u64 len,u32 extent_thresh,u64 newer_than,bool do_compress,bool locked,struct list_head * target_list,u64 * last_scanned_ret)823 static int defrag_collect_targets(struct btrfs_inode *inode,
824 u64 start, u64 len, u32 extent_thresh,
825 u64 newer_than, bool do_compress,
826 bool locked, struct list_head *target_list,
827 u64 *last_scanned_ret)
828 {
829 struct btrfs_fs_info *fs_info = inode->root->fs_info;
830 bool last_is_target = false;
831 u64 cur = start;
832 int ret = 0;
833
834 while (cur < start + len) {
835 struct extent_map *em;
836 struct defrag_target_range *new;
837 bool next_mergeable = true;
838 u64 range_len;
839
840 last_is_target = false;
841 em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
842 if (!em)
843 break;
844
845 /*
846 * If the file extent is an inlined one, we may still want to
847 * defrag it (fallthrough) if it will cause a regular extent.
848 * This is for users who want to convert inline extents to
849 * regular ones through max_inline= mount option.
850 */
851 if (em->block_start == EXTENT_MAP_INLINE &&
852 em->len <= inode->root->fs_info->max_inline)
853 goto next;
854
855 /* Skip hole/delalloc/preallocated extents */
856 if (em->block_start == EXTENT_MAP_HOLE ||
857 em->block_start == EXTENT_MAP_DELALLOC ||
858 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
859 goto next;
860
861 /* Skip older extent */
862 if (em->generation < newer_than)
863 goto next;
864
865 /* This em is under writeback, no need to defrag */
866 if (em->generation == (u64)-1)
867 goto next;
868
869 /*
870 * Our start offset might be in the middle of an existing extent
871 * map, so take that into account.
872 */
873 range_len = em->len - (cur - em->start);
874 /*
875 * If this range of the extent map is already flagged for delalloc,
876 * skip it, because:
877 *
878 * 1) We could deadlock later, when trying to reserve space for
879 * delalloc, because in case we can't immediately reserve space
880 * the flusher can start delalloc and wait for the respective
881 * ordered extents to complete. The deadlock would happen
882 * because we do the space reservation while holding the range
883 * locked, and starting writeback, or finishing an ordered
884 * extent, requires locking the range;
885 *
886 * 2) If there's delalloc there, it means there's dirty pages for
887 * which writeback has not started yet (we clean the delalloc
888 * flag when starting writeback and after creating an ordered
889 * extent). If we mark pages in an adjacent range for defrag,
890 * then we will have a larger contiguous range for delalloc,
891 * very likely resulting in a larger extent after writeback is
892 * triggered (except in a case of free space fragmentation).
893 */
894 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
895 EXTENT_DELALLOC, 0, NULL))
896 goto next;
897
898 /*
899 * For do_compress case, we want to compress all valid file
900 * extents, thus no @extent_thresh or mergeable check.
901 */
902 if (do_compress)
903 goto add;
904
905 /* Skip too large extent */
906 if (em->len >= extent_thresh)
907 goto next;
908
909 /*
910 * Skip extents already at its max capacity, this is mostly for
911 * compressed extents, which max cap is only 128K.
912 */
913 if (em->len >= get_extent_max_capacity(fs_info, em))
914 goto next;
915
916 /*
917 * Normally there are no more extents after an inline one, thus
918 * @next_mergeable will normally be false and not defragged.
919 * So if an inline extent passed all above checks, just add it
920 * for defrag, and be converted to regular extents.
921 */
922 if (em->block_start == EXTENT_MAP_INLINE)
923 goto add;
924
925 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
926 extent_thresh, newer_than, locked);
927 if (!next_mergeable) {
928 struct defrag_target_range *last;
929
930 /* Empty target list, no way to merge with last entry */
931 if (list_empty(target_list))
932 goto next;
933 last = list_entry(target_list->prev,
934 struct defrag_target_range, list);
935 /* Not mergeable with last entry */
936 if (last->start + last->len != cur)
937 goto next;
938
939 /* Mergeable, fall through to add it to @target_list. */
940 }
941
942 add:
943 last_is_target = true;
944 range_len = min(extent_map_end(em), start + len) - cur;
945 /*
946 * This one is a good target, check if it can be merged into
947 * last range of the target list.
948 */
949 if (!list_empty(target_list)) {
950 struct defrag_target_range *last;
951
952 last = list_entry(target_list->prev,
953 struct defrag_target_range, list);
954 ASSERT(last->start + last->len <= cur);
955 if (last->start + last->len == cur) {
956 /* Mergeable, enlarge the last entry */
957 last->len += range_len;
958 goto next;
959 }
960 /* Fall through to allocate a new entry */
961 }
962
963 /* Allocate new defrag_target_range */
964 new = kmalloc(sizeof(*new), GFP_NOFS);
965 if (!new) {
966 free_extent_map(em);
967 ret = -ENOMEM;
968 break;
969 }
970 new->start = cur;
971 new->len = range_len;
972 list_add_tail(&new->list, target_list);
973
974 next:
975 cur = extent_map_end(em);
976 free_extent_map(em);
977 }
978 if (ret < 0) {
979 struct defrag_target_range *entry;
980 struct defrag_target_range *tmp;
981
982 list_for_each_entry_safe(entry, tmp, target_list, list) {
983 list_del_init(&entry->list);
984 kfree(entry);
985 }
986 }
987 if (!ret && last_scanned_ret) {
988 /*
989 * If the last extent is not a target, the caller can skip to
990 * the end of that extent.
991 * Otherwise, we can only go the end of the specified range.
992 */
993 if (!last_is_target)
994 *last_scanned_ret = max(cur, *last_scanned_ret);
995 else
996 *last_scanned_ret = max(start + len, *last_scanned_ret);
997 }
998 return ret;
999 }
1000
1001 #define CLUSTER_SIZE (SZ_256K)
1002 static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
1003
1004 /*
1005 * Defrag one contiguous target range.
1006 *
1007 * @inode: target inode
1008 * @target: target range to defrag
1009 * @pages: locked pages covering the defrag range
1010 * @nr_pages: number of locked pages
1011 *
1012 * Caller should ensure:
1013 *
1014 * - Pages are prepared
1015 * Pages should be locked, no ordered extent in the pages range,
1016 * no writeback.
1017 *
1018 * - Extent bits are locked
1019 */
defrag_one_locked_target(struct btrfs_inode * inode,struct defrag_target_range * target,struct page ** pages,int nr_pages,struct extent_state ** cached_state)1020 static int defrag_one_locked_target(struct btrfs_inode *inode,
1021 struct defrag_target_range *target,
1022 struct page **pages, int nr_pages,
1023 struct extent_state **cached_state)
1024 {
1025 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1026 struct extent_changeset *data_reserved = NULL;
1027 const u64 start = target->start;
1028 const u64 len = target->len;
1029 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1030 unsigned long start_index = start >> PAGE_SHIFT;
1031 unsigned long first_index = page_index(pages[0]);
1032 int ret = 0;
1033 int i;
1034
1035 ASSERT(last_index - first_index + 1 <= nr_pages);
1036
1037 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1038 if (ret < 0)
1039 return ret;
1040 clear_extent_bit(&inode->io_tree, start, start + len - 1,
1041 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1042 EXTENT_DEFRAG, cached_state);
1043 set_extent_bit(&inode->io_tree, start, start + len - 1,
1044 EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
1045
1046 /* Update the page status */
1047 for (i = start_index - first_index; i <= last_index - first_index; i++) {
1048 ClearPageChecked(pages[i]);
1049 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1050 }
1051 btrfs_delalloc_release_extents(inode, len);
1052 extent_changeset_free(data_reserved);
1053
1054 return ret;
1055 }
1056
defrag_one_range(struct btrfs_inode * inode,u64 start,u32 len,u32 extent_thresh,u64 newer_than,bool do_compress,u64 * last_scanned_ret)1057 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1058 u32 extent_thresh, u64 newer_than, bool do_compress,
1059 u64 *last_scanned_ret)
1060 {
1061 struct extent_state *cached_state = NULL;
1062 struct defrag_target_range *entry;
1063 struct defrag_target_range *tmp;
1064 LIST_HEAD(target_list);
1065 struct page **pages;
1066 const u32 sectorsize = inode->root->fs_info->sectorsize;
1067 u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1068 u64 start_index = start >> PAGE_SHIFT;
1069 unsigned int nr_pages = last_index - start_index + 1;
1070 int ret = 0;
1071 int i;
1072
1073 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1074 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1075
1076 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1077 if (!pages)
1078 return -ENOMEM;
1079
1080 /* Prepare all pages */
1081 for (i = 0; i < nr_pages; i++) {
1082 pages[i] = defrag_prepare_one_page(inode, start_index + i);
1083 if (IS_ERR(pages[i])) {
1084 ret = PTR_ERR(pages[i]);
1085 pages[i] = NULL;
1086 goto free_pages;
1087 }
1088 }
1089 for (i = 0; i < nr_pages; i++)
1090 wait_on_page_writeback(pages[i]);
1091
1092 /* Lock the pages range */
1093 lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1094 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1095 &cached_state);
1096 /*
1097 * Now we have a consistent view about the extent map, re-check
1098 * which range really needs to be defragged.
1099 *
1100 * And this time we have extent locked already, pass @locked = true
1101 * so that we won't relock the extent range and cause deadlock.
1102 */
1103 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1104 newer_than, do_compress, true,
1105 &target_list, last_scanned_ret);
1106 if (ret < 0)
1107 goto unlock_extent;
1108
1109 list_for_each_entry(entry, &target_list, list) {
1110 ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1111 &cached_state);
1112 if (ret < 0)
1113 break;
1114 }
1115
1116 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1117 list_del_init(&entry->list);
1118 kfree(entry);
1119 }
1120 unlock_extent:
1121 unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1122 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1123 &cached_state);
1124 free_pages:
1125 for (i = 0; i < nr_pages; i++) {
1126 if (pages[i]) {
1127 unlock_page(pages[i]);
1128 put_page(pages[i]);
1129 }
1130 }
1131 kfree(pages);
1132 return ret;
1133 }
1134
defrag_one_cluster(struct btrfs_inode * inode,struct file_ra_state * ra,u64 start,u32 len,u32 extent_thresh,u64 newer_than,bool do_compress,unsigned long * sectors_defragged,unsigned long max_sectors,u64 * last_scanned_ret)1135 static int defrag_one_cluster(struct btrfs_inode *inode,
1136 struct file_ra_state *ra,
1137 u64 start, u32 len, u32 extent_thresh,
1138 u64 newer_than, bool do_compress,
1139 unsigned long *sectors_defragged,
1140 unsigned long max_sectors,
1141 u64 *last_scanned_ret)
1142 {
1143 const u32 sectorsize = inode->root->fs_info->sectorsize;
1144 struct defrag_target_range *entry;
1145 struct defrag_target_range *tmp;
1146 LIST_HEAD(target_list);
1147 int ret;
1148
1149 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1150 newer_than, do_compress, false,
1151 &target_list, NULL);
1152 if (ret < 0)
1153 goto out;
1154
1155 list_for_each_entry(entry, &target_list, list) {
1156 u32 range_len = entry->len;
1157
1158 /* Reached or beyond the limit */
1159 if (max_sectors && *sectors_defragged >= max_sectors) {
1160 ret = 1;
1161 break;
1162 }
1163
1164 if (max_sectors)
1165 range_len = min_t(u32, range_len,
1166 (max_sectors - *sectors_defragged) * sectorsize);
1167
1168 /*
1169 * If defrag_one_range() has updated last_scanned_ret,
1170 * our range may already be invalid (e.g. hole punched).
1171 * Skip if our range is before last_scanned_ret, as there is
1172 * no need to defrag the range anymore.
1173 */
1174 if (entry->start + range_len <= *last_scanned_ret)
1175 continue;
1176
1177 if (ra)
1178 page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1179 ra, NULL, entry->start >> PAGE_SHIFT,
1180 ((entry->start + range_len - 1) >> PAGE_SHIFT) -
1181 (entry->start >> PAGE_SHIFT) + 1);
1182 /*
1183 * Here we may not defrag any range if holes are punched before
1184 * we locked the pages.
1185 * But that's fine, it only affects the @sectors_defragged
1186 * accounting.
1187 */
1188 ret = defrag_one_range(inode, entry->start, range_len,
1189 extent_thresh, newer_than, do_compress,
1190 last_scanned_ret);
1191 if (ret < 0)
1192 break;
1193 *sectors_defragged += range_len >>
1194 inode->root->fs_info->sectorsize_bits;
1195 }
1196 out:
1197 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1198 list_del_init(&entry->list);
1199 kfree(entry);
1200 }
1201 if (ret >= 0)
1202 *last_scanned_ret = max(*last_scanned_ret, start + len);
1203 return ret;
1204 }
1205
1206 /*
1207 * Entry point to file defragmentation.
1208 *
1209 * @inode: inode to be defragged
1210 * @ra: readahead state (can be NUL)
1211 * @range: defrag options including range and flags
1212 * @newer_than: minimum transid to defrag
1213 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1214 * will be defragged.
1215 *
1216 * Return <0 for error.
1217 * Return >=0 for the number of sectors defragged, and range->start will be updated
1218 * to indicate the file offset where next defrag should be started at.
1219 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1220 * defragging all the range).
1221 */
btrfs_defrag_file(struct inode * inode,struct file_ra_state * ra,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1222 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1223 struct btrfs_ioctl_defrag_range_args *range,
1224 u64 newer_than, unsigned long max_to_defrag)
1225 {
1226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1227 unsigned long sectors_defragged = 0;
1228 u64 isize = i_size_read(inode);
1229 u64 cur;
1230 u64 last_byte;
1231 bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1232 bool ra_allocated = false;
1233 int compress_type = BTRFS_COMPRESS_ZLIB;
1234 int ret = 0;
1235 u32 extent_thresh = range->extent_thresh;
1236 pgoff_t start_index;
1237
1238 if (isize == 0)
1239 return 0;
1240
1241 if (range->start >= isize)
1242 return -EINVAL;
1243
1244 if (do_compress) {
1245 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1246 return -EINVAL;
1247 if (range->compress_type)
1248 compress_type = range->compress_type;
1249 }
1250
1251 if (extent_thresh == 0)
1252 extent_thresh = SZ_256K;
1253
1254 if (range->start + range->len > range->start) {
1255 /* Got a specific range */
1256 last_byte = min(isize, range->start + range->len);
1257 } else {
1258 /* Defrag until file end */
1259 last_byte = isize;
1260 }
1261
1262 /* Align the range */
1263 cur = round_down(range->start, fs_info->sectorsize);
1264 last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1265
1266 /*
1267 * If we were not given a ra, allocate a readahead context. As
1268 * readahead is just an optimization, defrag will work without it so
1269 * we don't error out.
1270 */
1271 if (!ra) {
1272 ra_allocated = true;
1273 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1274 if (ra)
1275 file_ra_state_init(ra, inode->i_mapping);
1276 }
1277
1278 /*
1279 * Make writeback start from the beginning of the range, so that the
1280 * defrag range can be written sequentially.
1281 */
1282 start_index = cur >> PAGE_SHIFT;
1283 if (start_index < inode->i_mapping->writeback_index)
1284 inode->i_mapping->writeback_index = start_index;
1285
1286 while (cur < last_byte) {
1287 const unsigned long prev_sectors_defragged = sectors_defragged;
1288 u64 last_scanned = cur;
1289 u64 cluster_end;
1290
1291 if (btrfs_defrag_cancelled(fs_info)) {
1292 ret = -EAGAIN;
1293 break;
1294 }
1295
1296 /* We want the cluster end at page boundary when possible */
1297 cluster_end = (((cur >> PAGE_SHIFT) +
1298 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1299 cluster_end = min(cluster_end, last_byte);
1300
1301 btrfs_inode_lock(BTRFS_I(inode), 0);
1302 if (IS_SWAPFILE(inode)) {
1303 ret = -ETXTBSY;
1304 btrfs_inode_unlock(BTRFS_I(inode), 0);
1305 break;
1306 }
1307 if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1308 btrfs_inode_unlock(BTRFS_I(inode), 0);
1309 break;
1310 }
1311 if (do_compress)
1312 BTRFS_I(inode)->defrag_compress = compress_type;
1313 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1314 cluster_end + 1 - cur, extent_thresh,
1315 newer_than, do_compress, §ors_defragged,
1316 max_to_defrag, &last_scanned);
1317
1318 if (sectors_defragged > prev_sectors_defragged)
1319 balance_dirty_pages_ratelimited(inode->i_mapping);
1320
1321 btrfs_inode_unlock(BTRFS_I(inode), 0);
1322 if (ret < 0)
1323 break;
1324 cur = max(cluster_end + 1, last_scanned);
1325 if (ret > 0) {
1326 ret = 0;
1327 break;
1328 }
1329 cond_resched();
1330 }
1331
1332 if (ra_allocated)
1333 kfree(ra);
1334 /*
1335 * Update range.start for autodefrag, this will indicate where to start
1336 * in next run.
1337 */
1338 range->start = cur;
1339 if (sectors_defragged) {
1340 /*
1341 * We have defragged some sectors, for compression case they
1342 * need to be written back immediately.
1343 */
1344 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1345 filemap_flush(inode->i_mapping);
1346 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1347 &BTRFS_I(inode)->runtime_flags))
1348 filemap_flush(inode->i_mapping);
1349 }
1350 if (range->compress_type == BTRFS_COMPRESS_LZO)
1351 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1352 else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1353 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1354 ret = sectors_defragged;
1355 }
1356 if (do_compress) {
1357 btrfs_inode_lock(BTRFS_I(inode), 0);
1358 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1359 btrfs_inode_unlock(BTRFS_I(inode), 0);
1360 }
1361 return ret;
1362 }
1363
btrfs_auto_defrag_exit(void)1364 void __cold btrfs_auto_defrag_exit(void)
1365 {
1366 kmem_cache_destroy(btrfs_inode_defrag_cachep);
1367 }
1368
btrfs_auto_defrag_init(void)1369 int __init btrfs_auto_defrag_init(void)
1370 {
1371 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1372 sizeof(struct inode_defrag), 0,
1373 SLAB_MEM_SPREAD,
1374 NULL);
1375 if (!btrfs_inode_defrag_cachep)
1376 return -ENOMEM;
1377
1378 return 0;
1379 }
1380