1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fscrypt_private.h
4 *
5 * Copyright (C) 2015, Google, Inc.
6 *
7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8 * Heavily modified since then.
9 */
10
11 #ifndef _FSCRYPT_PRIVATE_H
12 #define _FSCRYPT_PRIVATE_H
13
14 #include <linux/fscrypt.h>
15 #include <linux/siphash.h>
16 #include <crypto/hash.h>
17 #include <linux/blk-crypto.h>
18
19 #define CONST_STRLEN(str) (sizeof(str) - 1)
20
21 #define FSCRYPT_FILE_NONCE_SIZE 16
22
23 /*
24 * Minimum size of an fscrypt master key. Note: a longer key will be required
25 * if ciphers with a 256-bit security strength are used. This is just the
26 * absolute minimum, which applies when only 128-bit encryption is used.
27 */
28 #define FSCRYPT_MIN_KEY_SIZE 16
29
30 /* Maximum size of a standard fscrypt master key */
31 #define FSCRYPT_MAX_STANDARD_KEY_SIZE 64
32
33 /* Maximum size of a hardware-wrapped fscrypt master key */
34 #define FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE
35
36 /*
37 * Maximum size of an fscrypt master key across both key types.
38 * This should just use max(), but max() doesn't work in a struct definition.
39 */
40 #define FSCRYPT_MAX_ANY_KEY_SIZE \
41 (FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE > FSCRYPT_MAX_STANDARD_KEY_SIZE ? \
42 FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE : FSCRYPT_MAX_STANDARD_KEY_SIZE)
43
44 /*
45 * FSCRYPT_MAX_KEY_SIZE is defined in the UAPI header, but the addition of
46 * hardware-wrapped keys has made it misleading as it's only for standard keys.
47 * Don't use it in kernel code; use one of the above constants instead.
48 */
49 #undef FSCRYPT_MAX_KEY_SIZE
50
51 #define FSCRYPT_CONTEXT_V1 1
52 #define FSCRYPT_CONTEXT_V2 2
53
54 /* Keep this in sync with include/uapi/linux/fscrypt.h */
55 #define FSCRYPT_MODE_MAX FSCRYPT_MODE_AES_256_HCTR2
56
57 struct fscrypt_context_v1 {
58 u8 version; /* FSCRYPT_CONTEXT_V1 */
59 u8 contents_encryption_mode;
60 u8 filenames_encryption_mode;
61 u8 flags;
62 u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
63 u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
64 };
65
66 struct fscrypt_context_v2 {
67 u8 version; /* FSCRYPT_CONTEXT_V2 */
68 u8 contents_encryption_mode;
69 u8 filenames_encryption_mode;
70 u8 flags;
71 u8 log2_data_unit_size;
72 u8 __reserved[3];
73 u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
74 u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
75 };
76
77 /*
78 * fscrypt_context - the encryption context of an inode
79 *
80 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
81 * encrypted file usually in a hidden extended attribute. It contains the
82 * fields from the fscrypt_policy, in order to identify the encryption algorithm
83 * and key with which the file is encrypted. It also contains a nonce that was
84 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
85 * to cause different files to be encrypted differently.
86 */
87 union fscrypt_context {
88 u8 version;
89 struct fscrypt_context_v1 v1;
90 struct fscrypt_context_v2 v2;
91 };
92
93 /*
94 * Return the size expected for the given fscrypt_context based on its version
95 * number, or 0 if the context version is unrecognized.
96 */
fscrypt_context_size(const union fscrypt_context * ctx)97 static inline int fscrypt_context_size(const union fscrypt_context *ctx)
98 {
99 switch (ctx->version) {
100 case FSCRYPT_CONTEXT_V1:
101 BUILD_BUG_ON(sizeof(ctx->v1) != 28);
102 return sizeof(ctx->v1);
103 case FSCRYPT_CONTEXT_V2:
104 BUILD_BUG_ON(sizeof(ctx->v2) != 40);
105 return sizeof(ctx->v2);
106 }
107 return 0;
108 }
109
110 /* Check whether an fscrypt_context has a recognized version number and size */
fscrypt_context_is_valid(const union fscrypt_context * ctx,int ctx_size)111 static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
112 int ctx_size)
113 {
114 return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
115 }
116
117 /* Retrieve the context's nonce, assuming the context was already validated */
fscrypt_context_nonce(const union fscrypt_context * ctx)118 static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
119 {
120 switch (ctx->version) {
121 case FSCRYPT_CONTEXT_V1:
122 return ctx->v1.nonce;
123 case FSCRYPT_CONTEXT_V2:
124 return ctx->v2.nonce;
125 }
126 WARN_ON_ONCE(1);
127 return NULL;
128 }
129
130 union fscrypt_policy {
131 u8 version;
132 struct fscrypt_policy_v1 v1;
133 struct fscrypt_policy_v2 v2;
134 };
135
136 /*
137 * Return the size expected for the given fscrypt_policy based on its version
138 * number, or 0 if the policy version is unrecognized.
139 */
fscrypt_policy_size(const union fscrypt_policy * policy)140 static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
141 {
142 switch (policy->version) {
143 case FSCRYPT_POLICY_V1:
144 return sizeof(policy->v1);
145 case FSCRYPT_POLICY_V2:
146 return sizeof(policy->v2);
147 }
148 return 0;
149 }
150
151 /* Return the contents encryption mode of a valid encryption policy */
152 static inline u8
fscrypt_policy_contents_mode(const union fscrypt_policy * policy)153 fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
154 {
155 switch (policy->version) {
156 case FSCRYPT_POLICY_V1:
157 return policy->v1.contents_encryption_mode;
158 case FSCRYPT_POLICY_V2:
159 return policy->v2.contents_encryption_mode;
160 }
161 BUG();
162 }
163
164 /* Return the filenames encryption mode of a valid encryption policy */
165 static inline u8
fscrypt_policy_fnames_mode(const union fscrypt_policy * policy)166 fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
167 {
168 switch (policy->version) {
169 case FSCRYPT_POLICY_V1:
170 return policy->v1.filenames_encryption_mode;
171 case FSCRYPT_POLICY_V2:
172 return policy->v2.filenames_encryption_mode;
173 }
174 BUG();
175 }
176
177 /* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
178 static inline u8
fscrypt_policy_flags(const union fscrypt_policy * policy)179 fscrypt_policy_flags(const union fscrypt_policy *policy)
180 {
181 switch (policy->version) {
182 case FSCRYPT_POLICY_V1:
183 return policy->v1.flags;
184 case FSCRYPT_POLICY_V2:
185 return policy->v2.flags;
186 }
187 BUG();
188 }
189
190 static inline int
fscrypt_policy_v2_du_bits(const struct fscrypt_policy_v2 * policy,const struct inode * inode)191 fscrypt_policy_v2_du_bits(const struct fscrypt_policy_v2 *policy,
192 const struct inode *inode)
193 {
194 return policy->log2_data_unit_size ?: inode->i_blkbits;
195 }
196
197 static inline int
fscrypt_policy_du_bits(const union fscrypt_policy * policy,const struct inode * inode)198 fscrypt_policy_du_bits(const union fscrypt_policy *policy,
199 const struct inode *inode)
200 {
201 switch (policy->version) {
202 case FSCRYPT_POLICY_V1:
203 return inode->i_blkbits;
204 case FSCRYPT_POLICY_V2:
205 return fscrypt_policy_v2_du_bits(&policy->v2, inode);
206 }
207 BUG();
208 }
209
210 /*
211 * For encrypted symlinks, the ciphertext length is stored at the beginning
212 * of the string in little-endian format.
213 */
214 struct fscrypt_symlink_data {
215 __le16 len;
216 char encrypted_path[];
217 } __packed;
218
219 /**
220 * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
221 * @tfm: crypto API transform object
222 * @blk_key: key for blk-crypto
223 *
224 * Normally only one of the fields will be non-NULL.
225 */
226 struct fscrypt_prepared_key {
227 struct crypto_skcipher *tfm;
228 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
229 struct blk_crypto_key *blk_key;
230 #endif
231 };
232
233 /*
234 * fscrypt_inode_info - the "encryption key" for an inode
235 *
236 * When an encrypted file's key is made available, an instance of this struct is
237 * allocated and stored in ->i_crypt_info. Once created, it remains until the
238 * inode is evicted.
239 */
240 struct fscrypt_inode_info {
241
242 /* The key in a form prepared for actual encryption/decryption */
243 struct fscrypt_prepared_key ci_enc_key;
244
245 /* True if ci_enc_key should be freed when this struct is freed */
246 bool ci_owns_key;
247
248 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
249 /*
250 * True if this inode will use inline encryption (blk-crypto) instead of
251 * the traditional filesystem-layer encryption.
252 */
253 bool ci_inlinecrypt;
254 #endif
255
256 /*
257 * log2 of the data unit size (granularity of contents encryption) of
258 * this file. This is computable from ci_policy and ci_inode but is
259 * cached here for efficiency. Only used for regular files.
260 */
261 u8 ci_data_unit_bits;
262
263 /* Cached value: log2 of number of data units per FS block */
264 u8 ci_data_units_per_block_bits;
265
266 /*
267 * Encryption mode used for this inode. It corresponds to either the
268 * contents or filenames encryption mode, depending on the inode type.
269 */
270 struct fscrypt_mode *ci_mode;
271
272 /* Back-pointer to the inode */
273 struct inode *ci_inode;
274
275 /*
276 * The master key with which this inode was unlocked (decrypted). This
277 * will be NULL if the master key was found in a process-subscribed
278 * keyring rather than in the filesystem-level keyring.
279 */
280 struct fscrypt_master_key *ci_master_key;
281
282 /*
283 * Link in list of inodes that were unlocked with the master key.
284 * Only used when ->ci_master_key is set.
285 */
286 struct list_head ci_master_key_link;
287
288 /*
289 * If non-NULL, then encryption is done using the master key directly
290 * and ci_enc_key will equal ci_direct_key->dk_key.
291 */
292 struct fscrypt_direct_key *ci_direct_key;
293
294 /*
295 * This inode's hash key for filenames. This is a 128-bit SipHash-2-4
296 * key. This is only set for directories that use a keyed dirhash over
297 * the plaintext filenames -- currently just casefolded directories.
298 */
299 siphash_key_t ci_dirhash_key;
300 bool ci_dirhash_key_initialized;
301
302 /* The encryption policy used by this inode */
303 union fscrypt_policy ci_policy;
304
305 /* This inode's nonce, copied from the fscrypt_context */
306 u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
307
308 /* Hashed inode number. Only set for IV_INO_LBLK_32 */
309 u32 ci_hashed_ino;
310 };
311
312 typedef enum {
313 FS_DECRYPT = 0,
314 FS_ENCRYPT,
315 } fscrypt_direction_t;
316
317 /* crypto.c */
318 extern struct kmem_cache *fscrypt_inode_info_cachep;
319 int fscrypt_initialize(struct super_block *sb);
320 int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci,
321 fscrypt_direction_t rw, u64 index,
322 struct page *src_page, struct page *dest_page,
323 unsigned int len, unsigned int offs,
324 gfp_t gfp_flags);
325 struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
326
327 void __printf(3, 4) __cold
328 fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
329
330 #define fscrypt_warn(inode, fmt, ...) \
331 fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
332 #define fscrypt_err(inode, fmt, ...) \
333 fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
334
335 #define FSCRYPT_MAX_IV_SIZE 32
336
337 union fscrypt_iv {
338 struct {
339 /* zero-based index of data unit within the file */
340 __le64 index;
341
342 /* per-file nonce; only set in DIRECT_KEY mode */
343 u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
344 };
345 u8 raw[FSCRYPT_MAX_IV_SIZE];
346 __le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
347 };
348
349 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
350 const struct fscrypt_inode_info *ci);
351
352 /*
353 * Return the number of bits used by the maximum file data unit index that is
354 * possible on the given filesystem, using the given log2 data unit size.
355 */
356 static inline int
fscrypt_max_file_dun_bits(const struct super_block * sb,int du_bits)357 fscrypt_max_file_dun_bits(const struct super_block *sb, int du_bits)
358 {
359 return fls64(sb->s_maxbytes - 1) - du_bits;
360 }
361
362 /* fname.c */
363 bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
364 u32 orig_len, u32 max_len,
365 u32 *encrypted_len_ret);
366
367 /* hkdf.c */
368 struct fscrypt_hkdf {
369 struct crypto_shash *hmac_tfm;
370 };
371
372 int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
373 unsigned int master_key_size);
374
375 /*
376 * The list of contexts in which fscrypt uses HKDF. These values are used as
377 * the first byte of the HKDF application-specific info string to guarantee that
378 * info strings are never repeated between contexts. This ensures that all HKDF
379 * outputs are unique and cryptographically isolated, i.e. knowledge of one
380 * output doesn't reveal another.
381 */
382 #define HKDF_CONTEXT_KEY_IDENTIFIER 1 /* info=<empty> */
383 #define HKDF_CONTEXT_PER_FILE_ENC_KEY 2 /* info=file_nonce */
384 #define HKDF_CONTEXT_DIRECT_KEY 3 /* info=mode_num */
385 #define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4 /* info=mode_num||fs_uuid */
386 #define HKDF_CONTEXT_DIRHASH_KEY 5 /* info=file_nonce */
387 #define HKDF_CONTEXT_IV_INO_LBLK_32_KEY 6 /* info=mode_num||fs_uuid */
388 #define HKDF_CONTEXT_INODE_HASH_KEY 7 /* info=<empty> */
389
390 int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
391 const u8 *info, unsigned int infolen,
392 u8 *okm, unsigned int okmlen);
393
394 void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
395
396 /* inline_crypt.c */
397 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
398 int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci,
399 bool is_hw_wrapped_key);
400
401 static inline bool
fscrypt_using_inline_encryption(const struct fscrypt_inode_info * ci)402 fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
403 {
404 return ci->ci_inlinecrypt;
405 }
406
407 int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
408 const u8 *raw_key, size_t raw_key_size,
409 bool is_hw_wrapped,
410 const struct fscrypt_inode_info *ci);
411
412 void fscrypt_destroy_inline_crypt_key(struct super_block *sb,
413 struct fscrypt_prepared_key *prep_key);
414
415 int fscrypt_derive_sw_secret(struct super_block *sb,
416 const u8 *wrapped_key, size_t wrapped_key_size,
417 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]);
418
419 /*
420 * Check whether the crypto transform or blk-crypto key has been allocated in
421 * @prep_key, depending on which encryption implementation the file will use.
422 */
423 static inline bool
fscrypt_is_key_prepared(struct fscrypt_prepared_key * prep_key,const struct fscrypt_inode_info * ci)424 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
425 const struct fscrypt_inode_info *ci)
426 {
427 /*
428 * The two smp_load_acquire()'s here pair with the smp_store_release()'s
429 * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
430 * I.e., in some cases (namely, if this prep_key is a per-mode
431 * encryption key) another task can publish blk_key or tfm concurrently,
432 * executing a RELEASE barrier. We need to use smp_load_acquire() here
433 * to safely ACQUIRE the memory the other task published.
434 */
435 if (fscrypt_using_inline_encryption(ci))
436 return smp_load_acquire(&prep_key->blk_key) != NULL;
437 return smp_load_acquire(&prep_key->tfm) != NULL;
438 }
439
440 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
441
fscrypt_select_encryption_impl(struct fscrypt_inode_info * ci,bool is_hw_wrapped_key)442 static inline int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci,
443 bool is_hw_wrapped_key)
444 {
445 return 0;
446 }
447
448 static inline bool
fscrypt_using_inline_encryption(const struct fscrypt_inode_info * ci)449 fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
450 {
451 return false;
452 }
453
454 static inline int
fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key * prep_key,const u8 * raw_key,size_t raw_key_size,bool is_hw_wrapped,const struct fscrypt_inode_info * ci)455 fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
456 const u8 *raw_key, size_t raw_key_size,
457 bool is_hw_wrapped,
458 const struct fscrypt_inode_info *ci)
459 {
460 WARN_ON_ONCE(1);
461 return -EOPNOTSUPP;
462 }
463
464 static inline void
fscrypt_destroy_inline_crypt_key(struct super_block * sb,struct fscrypt_prepared_key * prep_key)465 fscrypt_destroy_inline_crypt_key(struct super_block *sb,
466 struct fscrypt_prepared_key *prep_key)
467 {
468 }
469
470 static inline int
fscrypt_derive_sw_secret(struct super_block * sb,const u8 * wrapped_key,size_t wrapped_key_size,u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])471 fscrypt_derive_sw_secret(struct super_block *sb,
472 const u8 *wrapped_key, size_t wrapped_key_size,
473 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
474 {
475 fscrypt_warn(NULL, "kernel doesn't support hardware-wrapped keys");
476 return -EOPNOTSUPP;
477 }
478
479 static inline bool
fscrypt_is_key_prepared(struct fscrypt_prepared_key * prep_key,const struct fscrypt_inode_info * ci)480 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
481 const struct fscrypt_inode_info *ci)
482 {
483 return smp_load_acquire(&prep_key->tfm) != NULL;
484 }
485 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
486
487 /* keyring.c */
488
489 /*
490 * fscrypt_master_key_secret - secret key material of an in-use master key
491 */
492 struct fscrypt_master_key_secret {
493
494 /*
495 * The KDF with which subkeys of this key can be derived.
496 *
497 * For v1 policy keys, this isn't applicable and won't be set.
498 * Otherwise, this KDF will be keyed by this master key if
499 * ->is_hw_wrapped=false, or by the "software secret" that hardware
500 * derived from this master key if ->is_hw_wrapped=true.
501 */
502 struct fscrypt_hkdf hkdf;
503
504 /*
505 * True if this key is a hardware-wrapped key; false if this key is a
506 * standard key (i.e. a "software key"). For v1 policy keys this will
507 * always be false, as v1 policy support is a legacy feature which
508 * doesn't support newer functionality such as hardware-wrapped keys.
509 */
510 bool is_hw_wrapped;
511
512 /*
513 * Size of the raw key in bytes. This remains set even if ->raw was
514 * zeroized due to no longer being needed. I.e. we still remember the
515 * size of the key even if we don't need to remember the key itself.
516 */
517 u32 size;
518
519 /*
520 * The raw key which userspace provided, when still needed. This can be
521 * either a standard key or a hardware-wrapped key, as indicated by
522 * ->is_hw_wrapped. In the case of a standard, v2 policy key, there is
523 * no need to remember the raw key separately from ->hkdf so this field
524 * will be zeroized as soon as ->hkdf is initialized.
525 */
526 u8 raw[FSCRYPT_MAX_ANY_KEY_SIZE];
527
528 } __randomize_layout;
529
530 /*
531 * fscrypt_master_key - an in-use master key
532 *
533 * This represents a master encryption key which has been added to the
534 * filesystem. There are three high-level states that a key can be in:
535 *
536 * FSCRYPT_KEY_STATUS_PRESENT
537 * Key is fully usable; it can be used to unlock inodes that are encrypted
538 * with it (this includes being able to create new inodes). ->mk_present
539 * indicates whether the key is in this state. ->mk_secret exists, the key
540 * is in the keyring, and ->mk_active_refs > 0 due to ->mk_present.
541 *
542 * FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED
543 * Removal of this key has been initiated, but some inodes that were
544 * unlocked with it are still in-use. Like ABSENT, ->mk_secret is wiped,
545 * and the key can no longer be used to unlock inodes. Unlike ABSENT, the
546 * key is still in the keyring; ->mk_decrypted_inodes is nonempty; and
547 * ->mk_active_refs > 0, being equal to the size of ->mk_decrypted_inodes.
548 *
549 * This state transitions to ABSENT if ->mk_decrypted_inodes becomes empty,
550 * or to PRESENT if FS_IOC_ADD_ENCRYPTION_KEY is called again for this key.
551 *
552 * FSCRYPT_KEY_STATUS_ABSENT
553 * Key is fully removed. The key is no longer in the keyring,
554 * ->mk_decrypted_inodes is empty, ->mk_active_refs == 0, ->mk_secret is
555 * wiped, and the key can no longer be used to unlock inodes.
556 */
557 struct fscrypt_master_key {
558
559 /*
560 * Link in ->s_master_keys->key_hashtable.
561 * Only valid if ->mk_active_refs > 0.
562 */
563 struct hlist_node mk_node;
564
565 /* Semaphore that protects ->mk_secret, ->mk_users, and ->mk_present */
566 struct rw_semaphore mk_sem;
567
568 /*
569 * Active and structural reference counts. An active ref guarantees
570 * that the struct continues to exist, continues to be in the keyring
571 * ->s_master_keys, and that any embedded subkeys (e.g.
572 * ->mk_direct_keys) that have been prepared continue to exist.
573 * A structural ref only guarantees that the struct continues to exist.
574 *
575 * There is one active ref associated with ->mk_present being true, and
576 * one active ref for each inode in ->mk_decrypted_inodes.
577 *
578 * There is one structural ref associated with the active refcount being
579 * nonzero. Finding a key in the keyring also takes a structural ref,
580 * which is then held temporarily while the key is operated on.
581 */
582 refcount_t mk_active_refs;
583 refcount_t mk_struct_refs;
584
585 struct rcu_head mk_rcu_head;
586
587 /*
588 * The secret key material. Wiped as soon as it is no longer needed;
589 * for details, see the fscrypt_master_key struct comment.
590 *
591 * Locking: protected by ->mk_sem.
592 */
593 struct fscrypt_master_key_secret mk_secret;
594
595 /*
596 * For v1 policy keys: an arbitrary key descriptor which was assigned by
597 * userspace (->descriptor).
598 *
599 * For v2 policy keys: a cryptographic hash of this key (->identifier).
600 */
601 struct fscrypt_key_specifier mk_spec;
602
603 /*
604 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
605 * user who has added this key. Normally each key will be added by just
606 * one user, but it's possible that multiple users share a key, and in
607 * that case we need to keep track of those users so that one user can't
608 * remove the key before the others want it removed too.
609 *
610 * This is NULL for v1 policy keys; those can only be added by root.
611 *
612 * Locking: protected by ->mk_sem. (We don't just rely on the keyrings
613 * subsystem semaphore ->mk_users->sem, as we need support for atomic
614 * search+insert along with proper synchronization with other fields.)
615 */
616 struct key *mk_users;
617
618 /*
619 * List of inodes that were unlocked using this key. This allows the
620 * inodes to be evicted efficiently if the key is removed.
621 */
622 struct list_head mk_decrypted_inodes;
623 spinlock_t mk_decrypted_inodes_lock;
624
625 /*
626 * Per-mode encryption keys for the various types of encryption policies
627 * that use them. Allocated and derived on-demand.
628 */
629 struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1];
630 struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1];
631 struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1];
632
633 /* Hash key for inode numbers. Initialized only when needed. */
634 siphash_key_t mk_ino_hash_key;
635 bool mk_ino_hash_key_initialized;
636
637 /*
638 * Whether this key is in the "present" state, i.e. fully usable. For
639 * details, see the fscrypt_master_key struct comment.
640 *
641 * Locking: protected by ->mk_sem, but can be read locklessly using
642 * READ_ONCE(). Writers must use WRITE_ONCE() when concurrent readers
643 * are possible.
644 */
645 bool mk_present;
646
647 } __randomize_layout;
648
master_key_spec_type(const struct fscrypt_key_specifier * spec)649 static inline const char *master_key_spec_type(
650 const struct fscrypt_key_specifier *spec)
651 {
652 switch (spec->type) {
653 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
654 return "descriptor";
655 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
656 return "identifier";
657 }
658 return "[unknown]";
659 }
660
master_key_spec_len(const struct fscrypt_key_specifier * spec)661 static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
662 {
663 switch (spec->type) {
664 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
665 return FSCRYPT_KEY_DESCRIPTOR_SIZE;
666 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
667 return FSCRYPT_KEY_IDENTIFIER_SIZE;
668 }
669 return 0;
670 }
671
672 void fscrypt_put_master_key(struct fscrypt_master_key *mk);
673
674 void fscrypt_put_master_key_activeref(struct super_block *sb,
675 struct fscrypt_master_key *mk);
676
677 struct fscrypt_master_key *
678 fscrypt_find_master_key(struct super_block *sb,
679 const struct fscrypt_key_specifier *mk_spec);
680
681 int fscrypt_get_test_dummy_key_identifier(
682 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
683
684 int fscrypt_add_test_dummy_key(struct super_block *sb,
685 struct fscrypt_key_specifier *key_spec);
686
687 int fscrypt_verify_key_added(struct super_block *sb,
688 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
689
690 int __init fscrypt_init_keyring(void);
691
692 /* keysetup.c */
693
694 struct fscrypt_mode {
695 const char *friendly_name;
696 const char *cipher_str;
697 int keysize; /* key size in bytes */
698 int security_strength; /* security strength in bytes */
699 int ivsize; /* IV size in bytes */
700 int logged_cryptoapi_impl;
701 int logged_blk_crypto_native;
702 int logged_blk_crypto_fallback;
703 enum blk_crypto_mode_num blk_crypto_mode;
704 };
705
706 extern struct fscrypt_mode fscrypt_modes[];
707
708 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
709 const u8 *raw_key, const struct fscrypt_inode_info *ci);
710
711 void fscrypt_destroy_prepared_key(struct super_block *sb,
712 struct fscrypt_prepared_key *prep_key);
713
714 int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci,
715 const u8 *raw_key);
716
717 int fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci,
718 const struct fscrypt_master_key *mk);
719
720 void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci,
721 const struct fscrypt_master_key *mk);
722
723 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported);
724
725 /**
726 * fscrypt_require_key() - require an inode's encryption key
727 * @inode: the inode we need the key for
728 *
729 * If the inode is encrypted, set up its encryption key if not already done.
730 * Then require that the key be present and return -ENOKEY otherwise.
731 *
732 * No locks are needed, and the key will live as long as the struct inode --- so
733 * it won't go away from under you.
734 *
735 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
736 * if a problem occurred while setting up the encryption key.
737 */
fscrypt_require_key(struct inode * inode)738 static inline int fscrypt_require_key(struct inode *inode)
739 {
740 if (IS_ENCRYPTED(inode)) {
741 int err = fscrypt_get_encryption_info(inode, false);
742
743 if (err)
744 return err;
745 if (!fscrypt_has_encryption_key(inode))
746 return -ENOKEY;
747 }
748 return 0;
749 }
750
751 /* keysetup_v1.c */
752
753 void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
754
755 int fscrypt_setup_v1_file_key(struct fscrypt_inode_info *ci,
756 const u8 *raw_master_key);
757
758 int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
759 struct fscrypt_inode_info *ci);
760
761 /* policy.c */
762
763 bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
764 const union fscrypt_policy *policy2);
765 int fscrypt_policy_to_key_spec(const union fscrypt_policy *policy,
766 struct fscrypt_key_specifier *key_spec);
767 const union fscrypt_policy *fscrypt_get_dummy_policy(struct super_block *sb);
768 bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
769 const struct inode *inode);
770 int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
771 const union fscrypt_context *ctx_u,
772 int ctx_size);
773 const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir);
774
775 #endif /* _FSCRYPT_PRIVATE_H */
776