1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/blkdev.h>
9 #include <linux/fs.h>
10 #include <linux/random.h>
11 #include <linux/slab.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16
17 /*
18 * LOG FILE structs
19 */
20
21 // clang-format off
22
23 #define MaxLogFileSize 0x100000000ull
24 #define DefaultLogPageSize 4096
25 #define MinLogRecordPages 0x30
26
27 struct RESTART_HDR {
28 struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30 __le32 page_size; // 0x14: Log page size used for this log file.
31 __le16 ra_off; // 0x18:
32 __le16 minor_ver; // 0x1A:
33 __le16 major_ver; // 0x1C:
34 __le16 fixups[];
35 };
36
37 #define LFS_NO_CLIENT 0xffff
38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39
40 struct CLIENT_REC {
41 __le64 oldest_lsn;
42 __le64 restart_lsn; // 0x08:
43 __le16 prev_client; // 0x10:
44 __le16 next_client; // 0x12:
45 __le16 seq_num; // 0x14:
46 u8 align[6]; // 0x16:
47 __le32 name_bytes; // 0x1C: In bytes.
48 __le16 name[32]; // 0x20: Name of client.
49 };
50
51 static_assert(sizeof(struct CLIENT_REC) == 0x60);
52
53 /* Two copies of these will exist at the beginning of the log file */
54 struct RESTART_AREA {
55 __le64 current_lsn; // 0x00: Current logical end of log file.
56 __le16 log_clients; // 0x08: Maximum number of clients.
57 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays.
58 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO.
59 __le32 seq_num_bits; // 0x10: The number of bits in sequence number.
60 __le16 ra_len; // 0x14:
61 __le16 client_off; // 0x16:
62 __le64 l_size; // 0x18: Usable log file size.
63 __le32 last_lsn_data_len; // 0x20:
64 __le16 rec_hdr_len; // 0x24: Log page data offset.
65 __le16 data_off; // 0x26: Log page data length.
66 __le32 open_log_count; // 0x28:
67 __le32 align[5]; // 0x2C:
68 struct CLIENT_REC clients[]; // 0x40:
69 };
70
71 struct LOG_REC_HDR {
72 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION
73 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION
74 __le16 redo_off; // 0x04: Offset to Redo record.
75 __le16 redo_len; // 0x06: Redo length.
76 __le16 undo_off; // 0x08: Offset to Undo record.
77 __le16 undo_len; // 0x0A: Undo length.
78 __le16 target_attr; // 0x0C:
79 __le16 lcns_follow; // 0x0E:
80 __le16 record_off; // 0x10:
81 __le16 attr_off; // 0x12:
82 __le16 cluster_off; // 0x14:
83 __le16 reserved; // 0x16:
84 __le64 target_vcn; // 0x18:
85 __le64 page_lcns[]; // 0x20:
86 };
87
88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89
90 #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF
91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92
93 struct RESTART_TABLE {
94 __le16 size; // 0x00: In bytes
95 __le16 used; // 0x02: Entries
96 __le16 total; // 0x04: Entries
97 __le16 res[3]; // 0x06:
98 __le32 free_goal; // 0x0C:
99 __le32 first_free; // 0x10:
100 __le32 last_free; // 0x14:
101
102 };
103
104 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105
106 struct ATTR_NAME_ENTRY {
107 __le16 off; // Offset in the Open attribute Table.
108 __le16 name_bytes;
109 __le16 name[];
110 };
111
112 struct OPEN_ATTR_ENRTY {
113 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114 __le32 bytes_per_index; // 0x04:
115 enum ATTR_TYPE type; // 0x08:
116 u8 is_dirty_pages; // 0x0C:
117 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr'
118 u8 name_len; // 0x0C: Faked field to manage 'ptr'
119 u8 res;
120 struct MFT_REF ref; // 0x10: File Reference of file containing attribute
121 __le64 open_record_lsn; // 0x18:
122 void *ptr; // 0x20:
123 };
124
125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126 struct OPEN_ATTR_ENRTY_32 {
127 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128 __le32 ptr; // 0x04:
129 struct MFT_REF ref; // 0x08:
130 __le64 open_record_lsn; // 0x10:
131 u8 is_dirty_pages; // 0x18:
132 u8 is_attr_name; // 0x19:
133 u8 res1[2];
134 enum ATTR_TYPE type; // 0x1C:
135 u8 name_len; // 0x20: In wchar
136 u8 res2[3];
137 __le32 AttributeName; // 0x24:
138 __le32 bytes_per_index; // 0x28:
139 };
140
141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144
145 /*
146 * One entry exists in the Dirty Pages Table for each page which is dirty at
147 * the time the Restart Area is written.
148 */
149 struct DIR_PAGE_ENTRY {
150 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151 __le32 target_attr; // 0x04: Index into the Open attribute Table
152 __le32 transfer_len; // 0x08:
153 __le32 lcns_follow; // 0x0C:
154 __le64 vcn; // 0x10: Vcn of dirty page
155 __le64 oldest_lsn; // 0x18:
156 __le64 page_lcns[]; // 0x20:
157 };
158
159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160
161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162 struct DIR_PAGE_ENTRY_32 {
163 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
164 __le32 target_attr; // 0x04: Index into the Open attribute Table
165 __le32 transfer_len; // 0x08:
166 __le32 lcns_follow; // 0x0C:
167 __le32 reserved; // 0x10:
168 __le32 vcn_low; // 0x14: Vcn of dirty page
169 __le32 vcn_hi; // 0x18: Vcn of dirty page
170 __le32 oldest_lsn_low; // 0x1C:
171 __le32 oldest_lsn_hi; // 0x1C:
172 __le32 page_lcns_low; // 0x24:
173 __le32 page_lcns_hi; // 0x24:
174 };
175
176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178
179 enum transact_state {
180 TransactionUninitialized = 0,
181 TransactionActive,
182 TransactionPrepared,
183 TransactionCommitted
184 };
185
186 struct TRANSACTION_ENTRY {
187 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188 u8 transact_state; // 0x04:
189 u8 reserved[3]; // 0x05:
190 __le64 first_lsn; // 0x08:
191 __le64 prev_lsn; // 0x10:
192 __le64 undo_next_lsn; // 0x18:
193 __le32 undo_records; // 0x20: Number of undo log records pending abort
194 __le32 undo_len; // 0x24: Total undo size
195 };
196
197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198
199 struct NTFS_RESTART {
200 __le32 major_ver; // 0x00:
201 __le32 minor_ver; // 0x04:
202 __le64 check_point_start; // 0x08:
203 __le64 open_attr_table_lsn; // 0x10:
204 __le64 attr_names_lsn; // 0x18:
205 __le64 dirty_pages_table_lsn; // 0x20:
206 __le64 transact_table_lsn; // 0x28:
207 __le32 open_attr_len; // 0x30: In bytes
208 __le32 attr_names_len; // 0x34: In bytes
209 __le32 dirty_pages_len; // 0x38: In bytes
210 __le32 transact_table_len; // 0x3C: In bytes
211 };
212
213 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214
215 struct NEW_ATTRIBUTE_SIZES {
216 __le64 alloc_size;
217 __le64 valid_size;
218 __le64 data_size;
219 __le64 total_size;
220 };
221
222 struct BITMAP_RANGE {
223 __le32 bitmap_off;
224 __le32 bits;
225 };
226
227 struct LCN_RANGE {
228 __le64 lcn;
229 __le64 len;
230 };
231
232 /* The following type defines the different log record types. */
233 #define LfsClientRecord cpu_to_le32(1)
234 #define LfsClientRestart cpu_to_le32(2)
235
236 /* This is used to uniquely identify a client for a particular log file. */
237 struct CLIENT_ID {
238 __le16 seq_num;
239 __le16 client_idx;
240 };
241
242 /* This is the header that begins every Log Record in the log file. */
243 struct LFS_RECORD_HDR {
244 __le64 this_lsn; // 0x00:
245 __le64 client_prev_lsn; // 0x08:
246 __le64 client_undo_next_lsn; // 0x10:
247 __le32 client_data_len; // 0x18:
248 struct CLIENT_ID client; // 0x1C: Owner of this log record.
249 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart.
250 __le32 transact_id; // 0x24:
251 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE
252 u8 align[6]; // 0x2A:
253 };
254
255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256
257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258
259 struct LFS_RECORD {
260 __le16 next_record_off; // 0x00: Offset of the free space in the page,
261 u8 align[6]; // 0x02:
262 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page,
263 };
264
265 static_assert(sizeof(struct LFS_RECORD) == 0x10);
266
267 struct RECORD_PAGE_HDR {
268 struct NTFS_RECORD_HEADER rhdr; // 'RCRD'
269 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END
270 __le16 page_count; // 0x14:
271 __le16 page_pos; // 0x16:
272 struct LFS_RECORD record_hdr; // 0x18:
273 __le16 fixups[10]; // 0x28:
274 __le32 file_off; // 0x3c: Used when major version >= 2
275 };
276
277 // clang-format on
278
279 // Page contains the end of a log record.
280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281
is_log_record_end(const struct RECORD_PAGE_HDR * hdr)282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283 {
284 return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285 }
286
287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288
289 /*
290 * END of NTFS LOG structures
291 */
292
293 /* Define some tuning parameters to keep the restart tables a reasonable size. */
294 #define INITIAL_NUMBER_TRANSACTIONS 5
295
296 enum NTFS_LOG_OPERATION {
297
298 Noop = 0x00,
299 CompensationLogRecord = 0x01,
300 InitializeFileRecordSegment = 0x02,
301 DeallocateFileRecordSegment = 0x03,
302 WriteEndOfFileRecordSegment = 0x04,
303 CreateAttribute = 0x05,
304 DeleteAttribute = 0x06,
305 UpdateResidentValue = 0x07,
306 UpdateNonresidentValue = 0x08,
307 UpdateMappingPairs = 0x09,
308 DeleteDirtyClusters = 0x0A,
309 SetNewAttributeSizes = 0x0B,
310 AddIndexEntryRoot = 0x0C,
311 DeleteIndexEntryRoot = 0x0D,
312 AddIndexEntryAllocation = 0x0E,
313 DeleteIndexEntryAllocation = 0x0F,
314 WriteEndOfIndexBuffer = 0x10,
315 SetIndexEntryVcnRoot = 0x11,
316 SetIndexEntryVcnAllocation = 0x12,
317 UpdateFileNameRoot = 0x13,
318 UpdateFileNameAllocation = 0x14,
319 SetBitsInNonresidentBitMap = 0x15,
320 ClearBitsInNonresidentBitMap = 0x16,
321 HotFix = 0x17,
322 EndTopLevelAction = 0x18,
323 PrepareTransaction = 0x19,
324 CommitTransaction = 0x1A,
325 ForgetTransaction = 0x1B,
326 OpenNonresidentAttribute = 0x1C,
327 OpenAttributeTableDump = 0x1D,
328 AttributeNamesDump = 0x1E,
329 DirtyPageTableDump = 0x1F,
330 TransactionTableDump = 0x20,
331 UpdateRecordDataRoot = 0x21,
332 UpdateRecordDataAllocation = 0x22,
333
334 UpdateRelativeDataInIndex =
335 0x23, // NtOfsRestartUpdateRelativeDataInIndex
336 UpdateRelativeDataInIndex2 = 0x24,
337 ZeroEndOfFileRecord = 0x25,
338 };
339
340 /*
341 * Array for log records which require a target attribute.
342 * A true indicates that the corresponding restart operation
343 * requires a target attribute.
344 */
345 static const u8 AttributeRequired[] = {
346 0xFC, 0xFB, 0xFF, 0x10, 0x06,
347 };
348
is_target_required(u16 op)349 static inline bool is_target_required(u16 op)
350 {
351 bool ret = op <= UpdateRecordDataAllocation &&
352 (AttributeRequired[op >> 3] >> (op & 7) & 1);
353 return ret;
354 }
355
can_skip_action(enum NTFS_LOG_OPERATION op)356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357 {
358 switch (op) {
359 case Noop:
360 case DeleteDirtyClusters:
361 case HotFix:
362 case EndTopLevelAction:
363 case PrepareTransaction:
364 case CommitTransaction:
365 case ForgetTransaction:
366 case CompensationLogRecord:
367 case OpenNonresidentAttribute:
368 case OpenAttributeTableDump:
369 case AttributeNamesDump:
370 case DirtyPageTableDump:
371 case TransactionTableDump:
372 return true;
373 default:
374 return false;
375 }
376 }
377
378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379
380 /* Bytes per restart table. */
bytes_per_rt(const struct RESTART_TABLE * rt)381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382 {
383 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384 sizeof(struct RESTART_TABLE);
385 }
386
387 /* Log record length. */
lrh_length(const struct LOG_REC_HDR * lr)388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389 {
390 u16 t16 = le16_to_cpu(lr->lcns_follow);
391
392 return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393 }
394
395 struct lcb {
396 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397 struct LOG_REC_HDR *log_rec;
398 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399 struct CLIENT_ID client;
400 bool alloc; // If true the we should deallocate 'log_rec'.
401 };
402
lcb_put(struct lcb * lcb)403 static void lcb_put(struct lcb *lcb)
404 {
405 if (lcb->alloc)
406 kfree(lcb->log_rec);
407 kfree(lcb->lrh);
408 kfree(lcb);
409 }
410
411 /* Find the oldest lsn from active clients. */
oldest_client_lsn(const struct CLIENT_REC * ca,__le16 next_client,u64 * oldest_lsn)412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413 __le16 next_client, u64 *oldest_lsn)
414 {
415 while (next_client != LFS_NO_CLIENT_LE) {
416 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417 u64 lsn = le64_to_cpu(cr->oldest_lsn);
418
419 /* Ignore this block if it's oldest lsn is 0. */
420 if (lsn && lsn < *oldest_lsn)
421 *oldest_lsn = lsn;
422
423 next_client = cr->next_client;
424 }
425 }
426
is_rst_page_hdr_valid(u32 file_off,const struct RESTART_HDR * rhdr)427 static inline bool is_rst_page_hdr_valid(u32 file_off,
428 const struct RESTART_HDR *rhdr)
429 {
430 u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431 u32 page_size = le32_to_cpu(rhdr->page_size);
432 u32 end_usa;
433 u16 ro;
434
435 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436 sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437 return false;
438 }
439
440 /* Check that if the file offset isn't 0, it is the system page size. */
441 if (file_off && file_off != sys_page)
442 return false;
443
444 /* Check support version 1.1+. */
445 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446 return false;
447
448 if (le16_to_cpu(rhdr->major_ver) > 2)
449 return false;
450
451 ro = le16_to_cpu(rhdr->ra_off);
452 if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453 return false;
454
455 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456 end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457
458 if (ro < end_usa)
459 return false;
460
461 return true;
462 }
463
is_rst_area_valid(const struct RESTART_HDR * rhdr)464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465 {
466 const struct RESTART_AREA *ra;
467 u16 cl, fl, ul;
468 u32 off, l_size, seq_bits;
469 u16 ro = le16_to_cpu(rhdr->ra_off);
470 u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471
472 if (ro + offsetof(struct RESTART_AREA, l_size) >
473 SECTOR_SIZE - sizeof(short))
474 return false;
475
476 ra = Add2Ptr(rhdr, ro);
477 cl = le16_to_cpu(ra->log_clients);
478
479 if (cl > 1)
480 return false;
481
482 off = le16_to_cpu(ra->client_off);
483
484 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485 return false;
486
487 off += cl * sizeof(struct CLIENT_REC);
488
489 if (off > sys_page)
490 return false;
491
492 /*
493 * Check the restart length field and whether the entire
494 * restart area is contained that length.
495 */
496 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497 off > le16_to_cpu(ra->ra_len)) {
498 return false;
499 }
500
501 /*
502 * As a final check make sure that the use list and the free list
503 * are either empty or point to a valid client.
504 */
505 fl = le16_to_cpu(ra->client_idx[0]);
506 ul = le16_to_cpu(ra->client_idx[1]);
507 if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508 (ul != LFS_NO_CLIENT && ul >= cl))
509 return false;
510
511 /* Make sure the sequence number bits match the log file size. */
512 l_size = le64_to_cpu(ra->l_size);
513
514 seq_bits = sizeof(u64) * 8 + 3;
515 while (l_size) {
516 l_size >>= 1;
517 seq_bits -= 1;
518 }
519
520 if (seq_bits != ra->seq_num_bits)
521 return false;
522
523 /* The log page data offset and record header length must be quad-aligned. */
524 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
525 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
526 return false;
527
528 return true;
529 }
530
is_client_area_valid(const struct RESTART_HDR * rhdr,bool usa_error)531 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
532 bool usa_error)
533 {
534 u16 ro = le16_to_cpu(rhdr->ra_off);
535 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
536 u16 ra_len = le16_to_cpu(ra->ra_len);
537 const struct CLIENT_REC *ca;
538 u32 i;
539
540 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
541 return false;
542
543 /* Find the start of the client array. */
544 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
545
546 /*
547 * Start with the free list.
548 * Check that all the clients are valid and that there isn't a cycle.
549 * Do the in-use list on the second pass.
550 */
551 for (i = 0; i < 2; i++) {
552 u16 client_idx = le16_to_cpu(ra->client_idx[i]);
553 bool first_client = true;
554 u16 clients = le16_to_cpu(ra->log_clients);
555
556 while (client_idx != LFS_NO_CLIENT) {
557 const struct CLIENT_REC *cr;
558
559 if (!clients ||
560 client_idx >= le16_to_cpu(ra->log_clients))
561 return false;
562
563 clients -= 1;
564 cr = ca + client_idx;
565
566 client_idx = le16_to_cpu(cr->next_client);
567
568 if (first_client) {
569 first_client = false;
570 if (cr->prev_client != LFS_NO_CLIENT_LE)
571 return false;
572 }
573 }
574 }
575
576 return true;
577 }
578
579 /*
580 * remove_client
581 *
582 * Remove a client record from a client record list an restart area.
583 */
remove_client(struct CLIENT_REC * ca,const struct CLIENT_REC * cr,__le16 * head)584 static inline void remove_client(struct CLIENT_REC *ca,
585 const struct CLIENT_REC *cr, __le16 *head)
586 {
587 if (cr->prev_client == LFS_NO_CLIENT_LE)
588 *head = cr->next_client;
589 else
590 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
591
592 if (cr->next_client != LFS_NO_CLIENT_LE)
593 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
594 }
595
596 /*
597 * add_client - Add a client record to the start of a list.
598 */
add_client(struct CLIENT_REC * ca,u16 index,__le16 * head)599 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
600 {
601 struct CLIENT_REC *cr = ca + index;
602
603 cr->prev_client = LFS_NO_CLIENT_LE;
604 cr->next_client = *head;
605
606 if (*head != LFS_NO_CLIENT_LE)
607 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
608
609 *head = cpu_to_le16(index);
610 }
611
enum_rstbl(struct RESTART_TABLE * t,void * c)612 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
613 {
614 __le32 *e;
615 u32 bprt;
616 u16 rsize = t ? le16_to_cpu(t->size) : 0;
617
618 if (!c) {
619 if (!t || !t->total)
620 return NULL;
621 e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
622 } else {
623 e = Add2Ptr(c, rsize);
624 }
625
626 /* Loop until we hit the first one allocated, or the end of the list. */
627 for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
628 e = Add2Ptr(e, rsize)) {
629 if (*e == RESTART_ENTRY_ALLOCATED_LE)
630 return e;
631 }
632 return NULL;
633 }
634
635 /*
636 * find_dp - Search for a @vcn in Dirty Page Table.
637 */
find_dp(struct RESTART_TABLE * dptbl,u32 target_attr,u64 vcn)638 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
639 u32 target_attr, u64 vcn)
640 {
641 __le32 ta = cpu_to_le32(target_attr);
642 struct DIR_PAGE_ENTRY *dp = NULL;
643
644 while ((dp = enum_rstbl(dptbl, dp))) {
645 u64 dp_vcn = le64_to_cpu(dp->vcn);
646
647 if (dp->target_attr == ta && vcn >= dp_vcn &&
648 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
649 return dp;
650 }
651 }
652 return NULL;
653 }
654
norm_file_page(u32 page_size,u32 * l_size,bool use_default)655 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
656 {
657 if (use_default)
658 page_size = DefaultLogPageSize;
659
660 /* Round the file size down to a system page boundary. */
661 *l_size &= ~(page_size - 1);
662
663 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */
664 if (*l_size < (MinLogRecordPages + 2) * page_size)
665 return 0;
666
667 return page_size;
668 }
669
check_log_rec(const struct LOG_REC_HDR * lr,u32 bytes,u32 tr,u32 bytes_per_attr_entry)670 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
671 u32 bytes_per_attr_entry)
672 {
673 u16 t16;
674
675 if (bytes < sizeof(struct LOG_REC_HDR))
676 return false;
677 if (!tr)
678 return false;
679
680 if ((tr - sizeof(struct RESTART_TABLE)) %
681 sizeof(struct TRANSACTION_ENTRY))
682 return false;
683
684 if (le16_to_cpu(lr->redo_off) & 7)
685 return false;
686
687 if (le16_to_cpu(lr->undo_off) & 7)
688 return false;
689
690 if (lr->target_attr)
691 goto check_lcns;
692
693 if (is_target_required(le16_to_cpu(lr->redo_op)))
694 return false;
695
696 if (is_target_required(le16_to_cpu(lr->undo_op)))
697 return false;
698
699 check_lcns:
700 if (!lr->lcns_follow)
701 goto check_length;
702
703 t16 = le16_to_cpu(lr->target_attr);
704 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
705 return false;
706
707 check_length:
708 if (bytes < lrh_length(lr))
709 return false;
710
711 return true;
712 }
713
check_rstbl(const struct RESTART_TABLE * rt,size_t bytes)714 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
715 {
716 u32 ts;
717 u32 i, off;
718 u16 rsize = le16_to_cpu(rt->size);
719 u16 ne = le16_to_cpu(rt->used);
720 u32 ff = le32_to_cpu(rt->first_free);
721 u32 lf = le32_to_cpu(rt->last_free);
722
723 ts = rsize * ne + sizeof(struct RESTART_TABLE);
724
725 if (!rsize || rsize > bytes ||
726 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
727 le16_to_cpu(rt->total) > ne ||
728 ff > ts - sizeof(__le32) || lf > ts - sizeof(__le32) ||
729 (ff && ff < sizeof(struct RESTART_TABLE)) ||
730 (lf && lf < sizeof(struct RESTART_TABLE))) {
731 return false;
732 }
733
734 /*
735 * Verify each entry is either allocated or points
736 * to a valid offset the table.
737 */
738 for (i = 0; i < ne; i++) {
739 off = le32_to_cpu(*(__le32 *)Add2Ptr(
740 rt, i * rsize + sizeof(struct RESTART_TABLE)));
741
742 if (off != RESTART_ENTRY_ALLOCATED && off &&
743 (off < sizeof(struct RESTART_TABLE) ||
744 ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
745 return false;
746 }
747 }
748
749 /*
750 * Walk through the list headed by the first entry to make
751 * sure none of the entries are currently being used.
752 */
753 for (off = ff; off;) {
754 if (off == RESTART_ENTRY_ALLOCATED)
755 return false;
756
757 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
758
759 if (off > ts - sizeof(__le32))
760 return false;
761 }
762
763 return true;
764 }
765
766 /*
767 * free_rsttbl_idx - Free a previously allocated index a Restart Table.
768 */
free_rsttbl_idx(struct RESTART_TABLE * rt,u32 off)769 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
770 {
771 __le32 *e;
772 u32 lf = le32_to_cpu(rt->last_free);
773 __le32 off_le = cpu_to_le32(off);
774
775 e = Add2Ptr(rt, off);
776
777 if (off < le32_to_cpu(rt->free_goal)) {
778 *e = rt->first_free;
779 rt->first_free = off_le;
780 if (!lf)
781 rt->last_free = off_le;
782 } else {
783 if (lf)
784 *(__le32 *)Add2Ptr(rt, lf) = off_le;
785 else
786 rt->first_free = off_le;
787
788 rt->last_free = off_le;
789 *e = 0;
790 }
791
792 le16_sub_cpu(&rt->total, 1);
793 }
794
init_rsttbl(u16 esize,u16 used)795 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
796 {
797 __le32 *e, *last_free;
798 u32 off;
799 u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
800 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
801 struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
802
803 if (!t)
804 return NULL;
805
806 t->size = cpu_to_le16(esize);
807 t->used = cpu_to_le16(used);
808 t->free_goal = cpu_to_le32(~0u);
809 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
810 t->last_free = cpu_to_le32(lf);
811
812 e = (__le32 *)(t + 1);
813 last_free = Add2Ptr(t, lf);
814
815 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
816 e = Add2Ptr(e, esize), off += esize) {
817 *e = cpu_to_le32(off);
818 }
819 return t;
820 }
821
extend_rsttbl(struct RESTART_TABLE * tbl,u32 add,u32 free_goal)822 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
823 u32 add, u32 free_goal)
824 {
825 u16 esize = le16_to_cpu(tbl->size);
826 __le32 osize = cpu_to_le32(bytes_per_rt(tbl));
827 u32 used = le16_to_cpu(tbl->used);
828 struct RESTART_TABLE *rt;
829
830 rt = init_rsttbl(esize, used + add);
831 if (!rt)
832 return NULL;
833
834 memcpy(rt + 1, tbl + 1, esize * used);
835
836 rt->free_goal = free_goal == ~0u ?
837 cpu_to_le32(~0u) :
838 cpu_to_le32(sizeof(struct RESTART_TABLE) +
839 free_goal * esize);
840
841 if (tbl->first_free) {
842 rt->first_free = tbl->first_free;
843 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
844 } else {
845 rt->first_free = osize;
846 }
847
848 rt->total = tbl->total;
849
850 kfree(tbl);
851 return rt;
852 }
853
854 /*
855 * alloc_rsttbl_idx
856 *
857 * Allocate an index from within a previously initialized Restart Table.
858 */
alloc_rsttbl_idx(struct RESTART_TABLE ** tbl)859 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
860 {
861 u32 off;
862 __le32 *e;
863 struct RESTART_TABLE *t = *tbl;
864
865 if (!t->first_free) {
866 *tbl = t = extend_rsttbl(t, 16, ~0u);
867 if (!t)
868 return NULL;
869 }
870
871 off = le32_to_cpu(t->first_free);
872
873 /* Dequeue this entry and zero it. */
874 e = Add2Ptr(t, off);
875
876 t->first_free = *e;
877
878 memset(e, 0, le16_to_cpu(t->size));
879
880 *e = RESTART_ENTRY_ALLOCATED_LE;
881
882 /* If list is going empty, then we fix the last_free as well. */
883 if (!t->first_free)
884 t->last_free = 0;
885
886 le16_add_cpu(&t->total, 1);
887
888 return Add2Ptr(t, off);
889 }
890
891 /*
892 * alloc_rsttbl_from_idx
893 *
894 * Allocate a specific index from within a previously initialized Restart Table.
895 */
alloc_rsttbl_from_idx(struct RESTART_TABLE ** tbl,u32 vbo)896 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
897 {
898 u32 off;
899 __le32 *e;
900 struct RESTART_TABLE *rt = *tbl;
901 u32 bytes = bytes_per_rt(rt);
902 u16 esize = le16_to_cpu(rt->size);
903
904 /* If the entry is not the table, we will have to extend the table. */
905 if (vbo >= bytes) {
906 /*
907 * Extend the size by computing the number of entries between
908 * the existing size and the desired index and adding 1 to that.
909 */
910 u32 bytes2idx = vbo - bytes;
911
912 /*
913 * There should always be an integral number of entries
914 * being added. Now extend the table.
915 */
916 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
917 if (!rt)
918 return NULL;
919 }
920
921 /* See if the entry is already allocated, and just return if it is. */
922 e = Add2Ptr(rt, vbo);
923
924 if (*e == RESTART_ENTRY_ALLOCATED_LE)
925 return e;
926
927 /*
928 * Walk through the table, looking for the entry we're
929 * interested and the previous entry.
930 */
931 off = le32_to_cpu(rt->first_free);
932 e = Add2Ptr(rt, off);
933
934 if (off == vbo) {
935 /* this is a match */
936 rt->first_free = *e;
937 goto skip_looking;
938 }
939
940 /*
941 * Need to walk through the list looking for the predecessor
942 * of our entry.
943 */
944 for (;;) {
945 /* Remember the entry just found */
946 u32 last_off = off;
947 __le32 *last_e = e;
948
949 /* Should never run of entries. */
950
951 /* Lookup up the next entry the list. */
952 off = le32_to_cpu(*last_e);
953 e = Add2Ptr(rt, off);
954
955 /* If this is our match we are done. */
956 if (off == vbo) {
957 *last_e = *e;
958
959 /*
960 * If this was the last entry, we update that
961 * table as well.
962 */
963 if (le32_to_cpu(rt->last_free) == off)
964 rt->last_free = cpu_to_le32(last_off);
965 break;
966 }
967 }
968
969 skip_looking:
970 /* If the list is now empty, we fix the last_free as well. */
971 if (!rt->first_free)
972 rt->last_free = 0;
973
974 /* Zero this entry. */
975 memset(e, 0, esize);
976 *e = RESTART_ENTRY_ALLOCATED_LE;
977
978 le16_add_cpu(&rt->total, 1);
979
980 return e;
981 }
982
983 struct restart_info {
984 u64 last_lsn;
985 struct RESTART_HDR *r_page;
986 u32 vbo;
987 bool chkdsk_was_run;
988 bool valid_page;
989 bool initialized;
990 bool restart;
991 };
992
993 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
994
995 #define NTFSLOG_WRAPPED 0x00000001
996 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
997 #define NTFSLOG_NO_LAST_LSN 0x00000004
998 #define NTFSLOG_REUSE_TAIL 0x00000010
999 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
1000
1001 /* Helper struct to work with NTFS $LogFile. */
1002 struct ntfs_log {
1003 struct ntfs_inode *ni;
1004
1005 u32 l_size;
1006 u32 orig_file_size;
1007 u32 sys_page_size;
1008 u32 sys_page_mask;
1009 u32 page_size;
1010 u32 page_mask; // page_size - 1
1011 u8 page_bits;
1012 struct RECORD_PAGE_HDR *one_page_buf;
1013
1014 struct RESTART_TABLE *open_attr_tbl;
1015 u32 transaction_id;
1016 u32 clst_per_page;
1017
1018 u32 first_page;
1019 u32 next_page;
1020 u32 ra_off;
1021 u32 data_off;
1022 u32 restart_size;
1023 u32 data_size;
1024 u16 record_header_len;
1025 u64 seq_num;
1026 u32 seq_num_bits;
1027 u32 file_data_bits;
1028 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1029
1030 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1031 u32 ra_size; /* The usable size of the restart area. */
1032
1033 /*
1034 * If true, then the in-memory restart area is to be written
1035 * to the first position on the disk.
1036 */
1037 bool init_ra;
1038 bool set_dirty; /* True if we need to set dirty flag. */
1039
1040 u64 oldest_lsn;
1041
1042 u32 oldest_lsn_off;
1043 u64 last_lsn;
1044
1045 u32 total_avail;
1046 u32 total_avail_pages;
1047 u32 total_undo_commit;
1048 u32 max_current_avail;
1049 u32 current_avail;
1050 u32 reserved;
1051
1052 short major_ver;
1053 short minor_ver;
1054
1055 u32 l_flags; /* See NTFSLOG_XXX */
1056 u32 current_openlog_count; /* On-disk value for open_log_count. */
1057
1058 struct CLIENT_ID client_id;
1059 u32 client_undo_commit;
1060
1061 struct restart_info rst_info, rst_info2;
1062 };
1063
lsn_to_vbo(struct ntfs_log * log,const u64 lsn)1064 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1065 {
1066 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1067
1068 return vbo;
1069 }
1070
1071 /* Compute the offset in the log file of the next log page. */
next_page_off(struct ntfs_log * log,u32 off)1072 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1073 {
1074 off = (off & ~log->sys_page_mask) + log->page_size;
1075 return off >= log->l_size ? log->first_page : off;
1076 }
1077
lsn_to_page_off(struct ntfs_log * log,u64 lsn)1078 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1079 {
1080 return (((u32)lsn) << 3) & log->page_mask;
1081 }
1082
vbo_to_lsn(struct ntfs_log * log,u32 off,u64 Seq)1083 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1084 {
1085 return (off >> 3) + (Seq << log->file_data_bits);
1086 }
1087
is_lsn_in_file(struct ntfs_log * log,u64 lsn)1088 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1089 {
1090 return lsn >= log->oldest_lsn &&
1091 lsn <= le64_to_cpu(log->ra->current_lsn);
1092 }
1093
hdr_file_off(struct ntfs_log * log,struct RECORD_PAGE_HDR * hdr)1094 static inline u32 hdr_file_off(struct ntfs_log *log,
1095 struct RECORD_PAGE_HDR *hdr)
1096 {
1097 if (log->major_ver < 2)
1098 return le64_to_cpu(hdr->rhdr.lsn);
1099
1100 return le32_to_cpu(hdr->file_off);
1101 }
1102
base_lsn(struct ntfs_log * log,const struct RECORD_PAGE_HDR * hdr,u64 lsn)1103 static inline u64 base_lsn(struct ntfs_log *log,
1104 const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1105 {
1106 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1107 u64 ret = (((h_lsn >> log->file_data_bits) +
1108 (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1109 << log->file_data_bits) +
1110 ((((is_log_record_end(hdr) &&
1111 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ?
1112 le16_to_cpu(hdr->record_hdr.next_record_off) :
1113 log->page_size) +
1114 lsn) >>
1115 3);
1116
1117 return ret;
1118 }
1119
verify_client_lsn(struct ntfs_log * log,const struct CLIENT_REC * client,u64 lsn)1120 static inline bool verify_client_lsn(struct ntfs_log *log,
1121 const struct CLIENT_REC *client, u64 lsn)
1122 {
1123 return lsn >= le64_to_cpu(client->oldest_lsn) &&
1124 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1125 }
1126
read_log_page(struct ntfs_log * log,u32 vbo,struct RECORD_PAGE_HDR ** buffer,bool * usa_error)1127 static int read_log_page(struct ntfs_log *log, u32 vbo,
1128 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1129 {
1130 int err = 0;
1131 u32 page_idx = vbo >> log->page_bits;
1132 u32 page_off = vbo & log->page_mask;
1133 u32 bytes = log->page_size - page_off;
1134 void *to_free = NULL;
1135 u32 page_vbo = page_idx << log->page_bits;
1136 struct RECORD_PAGE_HDR *page_buf;
1137 struct ntfs_inode *ni = log->ni;
1138 bool bBAAD;
1139
1140 if (vbo >= log->l_size)
1141 return -EINVAL;
1142
1143 if (!*buffer) {
1144 to_free = kmalloc(log->page_size, GFP_NOFS);
1145 if (!to_free)
1146 return -ENOMEM;
1147 *buffer = to_free;
1148 }
1149
1150 page_buf = page_off ? log->one_page_buf : *buffer;
1151
1152 err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1153 log->page_size, NULL);
1154 if (err)
1155 goto out;
1156
1157 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1158 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1159
1160 if (page_buf != *buffer)
1161 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1162
1163 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1164
1165 if (usa_error)
1166 *usa_error = bBAAD;
1167 /* Check that the update sequence array for this page is valid */
1168 /* If we don't allow errors, raise an error status */
1169 else if (bBAAD)
1170 err = -EINVAL;
1171
1172 out:
1173 if (err && to_free) {
1174 kfree(to_free);
1175 *buffer = NULL;
1176 }
1177
1178 return err;
1179 }
1180
1181 /*
1182 * log_read_rst
1183 *
1184 * It walks through 512 blocks of the file looking for a valid
1185 * restart page header. It will stop the first time we find a
1186 * valid page header.
1187 */
log_read_rst(struct ntfs_log * log,bool first,struct restart_info * info)1188 static int log_read_rst(struct ntfs_log *log, bool first,
1189 struct restart_info *info)
1190 {
1191 u32 skip;
1192 u64 vbo;
1193 struct RESTART_HDR *r_page = NULL;
1194
1195 /* Determine which restart area we are looking for. */
1196 if (first) {
1197 vbo = 0;
1198 skip = 512;
1199 } else {
1200 vbo = 512;
1201 skip = 0;
1202 }
1203
1204 /* Loop continuously until we succeed. */
1205 for (; vbo < log->l_size; vbo = 2 * vbo + skip, skip = 0) {
1206 bool usa_error;
1207 bool brst, bchk;
1208 struct RESTART_AREA *ra;
1209
1210 /* Read a page header at the current offset. */
1211 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1212 &usa_error)) {
1213 /* Ignore any errors. */
1214 continue;
1215 }
1216
1217 /* Exit if the signature is a log record page. */
1218 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1219 info->initialized = true;
1220 break;
1221 }
1222
1223 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1224 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1225
1226 if (!bchk && !brst) {
1227 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1228 /*
1229 * Remember if the signature does not
1230 * indicate uninitialized file.
1231 */
1232 info->initialized = true;
1233 }
1234 continue;
1235 }
1236
1237 ra = NULL;
1238 info->valid_page = false;
1239 info->initialized = true;
1240 info->vbo = vbo;
1241
1242 /* Let's check the restart area if this is a valid page. */
1243 if (!is_rst_page_hdr_valid(vbo, r_page))
1244 goto check_result;
1245 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1246
1247 if (!is_rst_area_valid(r_page))
1248 goto check_result;
1249
1250 /*
1251 * We have a valid restart page header and restart area.
1252 * If chkdsk was run or we have no clients then we have
1253 * no more checking to do.
1254 */
1255 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1256 info->valid_page = true;
1257 goto check_result;
1258 }
1259
1260 if (is_client_area_valid(r_page, usa_error)) {
1261 info->valid_page = true;
1262 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1263 }
1264
1265 check_result:
1266 /*
1267 * If chkdsk was run then update the caller's
1268 * values and return.
1269 */
1270 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1271 info->chkdsk_was_run = true;
1272 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1273 info->restart = true;
1274 info->r_page = r_page;
1275 return 0;
1276 }
1277
1278 /*
1279 * If we have a valid page then copy the values
1280 * we need from it.
1281 */
1282 if (info->valid_page) {
1283 info->last_lsn = le64_to_cpu(ra->current_lsn);
1284 info->restart = true;
1285 info->r_page = r_page;
1286 return 0;
1287 }
1288 }
1289
1290 kfree(r_page);
1291
1292 return 0;
1293 }
1294
1295 /*
1296 * Ilog_init_pg_hdr - Init @log from restart page header.
1297 */
log_init_pg_hdr(struct ntfs_log * log,u16 major_ver,u16 minor_ver)1298 static void log_init_pg_hdr(struct ntfs_log *log, u16 major_ver, u16 minor_ver)
1299 {
1300 log->sys_page_size = log->page_size;
1301 log->sys_page_mask = log->page_mask;
1302
1303 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1304 if (!log->clst_per_page)
1305 log->clst_per_page = 1;
1306
1307 log->first_page = major_ver >= 2 ? 0x22 * log->page_size :
1308 4 * log->page_size;
1309 log->major_ver = major_ver;
1310 log->minor_ver = minor_ver;
1311 }
1312
1313 /*
1314 * log_create - Init @log in cases when we don't have a restart area to use.
1315 */
log_create(struct ntfs_log * log,const u64 last_lsn,u32 open_log_count,bool wrapped,bool use_multi_page)1316 static void log_create(struct ntfs_log *log, const u64 last_lsn,
1317 u32 open_log_count, bool wrapped, bool use_multi_page)
1318 {
1319 /* All file offsets must be quadword aligned. */
1320 log->file_data_bits = blksize_bits(log->l_size) - 3;
1321 log->seq_num_mask = (8 << log->file_data_bits) - 1;
1322 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1323 log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1324 log->next_page = log->first_page;
1325 log->oldest_lsn = log->seq_num << log->file_data_bits;
1326 log->oldest_lsn_off = 0;
1327 log->last_lsn = log->oldest_lsn;
1328
1329 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1330
1331 /* Set the correct flags for the I/O and indicate if we have wrapped. */
1332 if (wrapped)
1333 log->l_flags |= NTFSLOG_WRAPPED;
1334
1335 if (use_multi_page)
1336 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1337
1338 /* Compute the log page values. */
1339 log->data_off = ALIGN(
1340 offsetof(struct RECORD_PAGE_HDR, fixups) +
1341 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1342 8);
1343 log->data_size = log->page_size - log->data_off;
1344 log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1345
1346 /* Remember the different page sizes for reservation. */
1347 log->reserved = log->data_size - log->record_header_len;
1348
1349 /* Compute the restart page values. */
1350 log->ra_off = ALIGN(
1351 offsetof(struct RESTART_HDR, fixups) +
1352 sizeof(short) *
1353 ((log->sys_page_size >> SECTOR_SHIFT) + 1),
1354 8);
1355 log->restart_size = log->sys_page_size - log->ra_off;
1356 log->ra_size = struct_size(log->ra, clients, 1);
1357 log->current_openlog_count = open_log_count;
1358
1359 /*
1360 * The total available log file space is the number of
1361 * log file pages times the space available on each page.
1362 */
1363 log->total_avail_pages = log->l_size - log->first_page;
1364 log->total_avail = log->total_avail_pages >> log->page_bits;
1365
1366 /*
1367 * We assume that we can't use the end of the page less than
1368 * the file record size.
1369 * Then we won't need to reserve more than the caller asks for.
1370 */
1371 log->max_current_avail = log->total_avail * log->reserved;
1372 log->total_avail = log->total_avail * log->data_size;
1373 log->current_avail = log->max_current_avail;
1374 }
1375
1376 /*
1377 * log_create_ra - Fill a restart area from the values stored in @log.
1378 */
log_create_ra(struct ntfs_log * log)1379 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1380 {
1381 struct CLIENT_REC *cr;
1382 struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1383
1384 if (!ra)
1385 return NULL;
1386
1387 ra->current_lsn = cpu_to_le64(log->last_lsn);
1388 ra->log_clients = cpu_to_le16(1);
1389 ra->client_idx[1] = LFS_NO_CLIENT_LE;
1390 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1391 ra->flags = RESTART_SINGLE_PAGE_IO;
1392 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1393 ra->ra_len = cpu_to_le16(log->ra_size);
1394 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1395 ra->l_size = cpu_to_le64(log->l_size);
1396 ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1397 ra->data_off = cpu_to_le16(log->data_off);
1398 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1399
1400 cr = ra->clients;
1401
1402 cr->prev_client = LFS_NO_CLIENT_LE;
1403 cr->next_client = LFS_NO_CLIENT_LE;
1404
1405 return ra;
1406 }
1407
final_log_off(struct ntfs_log * log,u64 lsn,u32 data_len)1408 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1409 {
1410 u32 base_vbo = lsn << 3;
1411 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1412 u32 page_off = base_vbo & log->page_mask;
1413 u32 tail = log->page_size - page_off;
1414
1415 page_off -= 1;
1416
1417 /* Add the length of the header. */
1418 data_len += log->record_header_len;
1419
1420 /*
1421 * If this lsn is contained this log page we are done.
1422 * Otherwise we need to walk through several log pages.
1423 */
1424 if (data_len > tail) {
1425 data_len -= tail;
1426 tail = log->data_size;
1427 page_off = log->data_off - 1;
1428
1429 for (;;) {
1430 final_log_off = next_page_off(log, final_log_off);
1431
1432 /*
1433 * We are done if the remaining bytes
1434 * fit on this page.
1435 */
1436 if (data_len <= tail)
1437 break;
1438 data_len -= tail;
1439 }
1440 }
1441
1442 /*
1443 * We add the remaining bytes to our starting position on this page
1444 * and then add that value to the file offset of this log page.
1445 */
1446 return final_log_off + data_len + page_off;
1447 }
1448
next_log_lsn(struct ntfs_log * log,const struct LFS_RECORD_HDR * rh,u64 * lsn)1449 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1450 u64 *lsn)
1451 {
1452 int err;
1453 u64 this_lsn = le64_to_cpu(rh->this_lsn);
1454 u32 vbo = lsn_to_vbo(log, this_lsn);
1455 u32 end =
1456 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1457 u32 hdr_off = end & ~log->sys_page_mask;
1458 u64 seq = this_lsn >> log->file_data_bits;
1459 struct RECORD_PAGE_HDR *page = NULL;
1460
1461 /* Remember if we wrapped. */
1462 if (end <= vbo)
1463 seq += 1;
1464
1465 /* Log page header for this page. */
1466 err = read_log_page(log, hdr_off, &page, NULL);
1467 if (err)
1468 return err;
1469
1470 /*
1471 * If the lsn we were given was not the last lsn on this page,
1472 * then the starting offset for the next lsn is on a quad word
1473 * boundary following the last file offset for the current lsn.
1474 * Otherwise the file offset is the start of the data on the next page.
1475 */
1476 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1477 /* If we wrapped, we need to increment the sequence number. */
1478 hdr_off = next_page_off(log, hdr_off);
1479 if (hdr_off == log->first_page)
1480 seq += 1;
1481
1482 vbo = hdr_off + log->data_off;
1483 } else {
1484 vbo = ALIGN(end, 8);
1485 }
1486
1487 /* Compute the lsn based on the file offset and the sequence count. */
1488 *lsn = vbo_to_lsn(log, vbo, seq);
1489
1490 /*
1491 * If this lsn is within the legal range for the file, we return true.
1492 * Otherwise false indicates that there are no more lsn's.
1493 */
1494 if (!is_lsn_in_file(log, *lsn))
1495 *lsn = 0;
1496
1497 kfree(page);
1498
1499 return 0;
1500 }
1501
1502 /*
1503 * current_log_avail - Calculate the number of bytes available for log records.
1504 */
current_log_avail(struct ntfs_log * log)1505 static u32 current_log_avail(struct ntfs_log *log)
1506 {
1507 u32 oldest_off, next_free_off, free_bytes;
1508
1509 if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1510 /* The entire file is available. */
1511 return log->max_current_avail;
1512 }
1513
1514 /*
1515 * If there is a last lsn the restart area then we know that we will
1516 * have to compute the free range.
1517 * If there is no oldest lsn then start at the first page of the file.
1518 */
1519 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ?
1520 log->first_page :
1521 (log->oldest_lsn_off & ~log->sys_page_mask);
1522
1523 /*
1524 * We will use the next log page offset to compute the next free page.
1525 * If we are going to reuse this page go to the next page.
1526 * If we are at the first page then use the end of the file.
1527 */
1528 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ?
1529 log->next_page + log->page_size :
1530 log->next_page == log->first_page ? log->l_size :
1531 log->next_page;
1532
1533 /* If the two offsets are the same then there is no available space. */
1534 if (oldest_off == next_free_off)
1535 return 0;
1536 /*
1537 * If the free offset follows the oldest offset then subtract
1538 * this range from the total available pages.
1539 */
1540 free_bytes =
1541 oldest_off < next_free_off ?
1542 log->total_avail_pages - (next_free_off - oldest_off) :
1543 oldest_off - next_free_off;
1544
1545 free_bytes >>= log->page_bits;
1546 return free_bytes * log->reserved;
1547 }
1548
check_subseq_log_page(struct ntfs_log * log,const struct RECORD_PAGE_HDR * rp,u32 vbo,u64 seq)1549 static bool check_subseq_log_page(struct ntfs_log *log,
1550 const struct RECORD_PAGE_HDR *rp, u32 vbo,
1551 u64 seq)
1552 {
1553 u64 lsn_seq;
1554 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1555 u64 lsn = le64_to_cpu(rhdr->lsn);
1556
1557 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1558 return false;
1559
1560 /*
1561 * If the last lsn on the page occurs was written after the page
1562 * that caused the original error then we have a fatal error.
1563 */
1564 lsn_seq = lsn >> log->file_data_bits;
1565
1566 /*
1567 * If the sequence number for the lsn the page is equal or greater
1568 * than lsn we expect, then this is a subsequent write.
1569 */
1570 return lsn_seq >= seq ||
1571 (lsn_seq == seq - 1 && log->first_page == vbo &&
1572 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1573 }
1574
1575 /*
1576 * last_log_lsn
1577 *
1578 * Walks through the log pages for a file, searching for the
1579 * last log page written to the file.
1580 */
last_log_lsn(struct ntfs_log * log)1581 static int last_log_lsn(struct ntfs_log *log)
1582 {
1583 int err;
1584 bool usa_error = false;
1585 bool replace_page = false;
1586 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1587 bool wrapped_file, wrapped;
1588
1589 u32 page_cnt = 1, page_pos = 1;
1590 u32 page_off = 0, page_off1 = 0, saved_off = 0;
1591 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1592 u32 first_file_off = 0, second_file_off = 0;
1593 u32 part_io_count = 0;
1594 u32 tails = 0;
1595 u32 this_off, curpage_off, nextpage_off, remain_pages;
1596
1597 u64 expected_seq, seq_base = 0, lsn_base = 0;
1598 u64 best_lsn, best_lsn1, best_lsn2;
1599 u64 lsn_cur, lsn1, lsn2;
1600 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1601
1602 u16 cur_pos, best_page_pos;
1603
1604 struct RECORD_PAGE_HDR *page = NULL;
1605 struct RECORD_PAGE_HDR *tst_page = NULL;
1606 struct RECORD_PAGE_HDR *first_tail = NULL;
1607 struct RECORD_PAGE_HDR *second_tail = NULL;
1608 struct RECORD_PAGE_HDR *tail_page = NULL;
1609 struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1610 struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1611 struct RECORD_PAGE_HDR *page_bufs = NULL;
1612 struct RECORD_PAGE_HDR *best_page;
1613
1614 if (log->major_ver >= 2) {
1615 final_off = 0x02 * log->page_size;
1616 second_off = 0x12 * log->page_size;
1617
1618 // 0x10 == 0x12 - 0x2
1619 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1620 if (!page_bufs)
1621 return -ENOMEM;
1622 } else {
1623 second_off = log->first_page - log->page_size;
1624 final_off = second_off - log->page_size;
1625 }
1626
1627 next_tail:
1628 /* Read second tail page (at pos 3/0x12000). */
1629 if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1630 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1631 kfree(second_tail);
1632 second_tail = NULL;
1633 second_file_off = 0;
1634 lsn2 = 0;
1635 } else {
1636 second_file_off = hdr_file_off(log, second_tail);
1637 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1638 }
1639
1640 /* Read first tail page (at pos 2/0x2000). */
1641 if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1642 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1643 kfree(first_tail);
1644 first_tail = NULL;
1645 first_file_off = 0;
1646 lsn1 = 0;
1647 } else {
1648 first_file_off = hdr_file_off(log, first_tail);
1649 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1650 }
1651
1652 if (log->major_ver < 2) {
1653 int best_page;
1654
1655 first_tail_prev = first_tail;
1656 final_off_prev = first_file_off;
1657 second_tail_prev = second_tail;
1658 second_off_prev = second_file_off;
1659 tails = 1;
1660
1661 if (!first_tail && !second_tail)
1662 goto tail_read;
1663
1664 if (first_tail && second_tail)
1665 best_page = lsn1 < lsn2 ? 1 : 0;
1666 else if (first_tail)
1667 best_page = 0;
1668 else
1669 best_page = 1;
1670
1671 page_off = best_page ? second_file_off : first_file_off;
1672 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1673 goto tail_read;
1674 }
1675
1676 best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1677 best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) :
1678 0;
1679
1680 if (first_tail && second_tail) {
1681 if (best_lsn1 > best_lsn2) {
1682 best_lsn = best_lsn1;
1683 best_page = first_tail;
1684 this_off = first_file_off;
1685 } else {
1686 best_lsn = best_lsn2;
1687 best_page = second_tail;
1688 this_off = second_file_off;
1689 }
1690 } else if (first_tail) {
1691 best_lsn = best_lsn1;
1692 best_page = first_tail;
1693 this_off = first_file_off;
1694 } else if (second_tail) {
1695 best_lsn = best_lsn2;
1696 best_page = second_tail;
1697 this_off = second_file_off;
1698 } else {
1699 goto tail_read;
1700 }
1701
1702 best_page_pos = le16_to_cpu(best_page->page_pos);
1703
1704 if (!tails) {
1705 if (best_page_pos == page_pos) {
1706 seq_base = best_lsn >> log->file_data_bits;
1707 saved_off = page_off = le32_to_cpu(best_page->file_off);
1708 lsn_base = best_lsn;
1709
1710 memmove(page_bufs, best_page, log->page_size);
1711
1712 page_cnt = le16_to_cpu(best_page->page_count);
1713 if (page_cnt > 1)
1714 page_pos += 1;
1715
1716 tails = 1;
1717 }
1718 } else if (seq_base == (best_lsn >> log->file_data_bits) &&
1719 saved_off + log->page_size == this_off &&
1720 lsn_base < best_lsn &&
1721 (page_pos != page_cnt || best_page_pos == page_pos ||
1722 best_page_pos == 1) &&
1723 (page_pos >= page_cnt || best_page_pos == page_pos)) {
1724 u16 bppc = le16_to_cpu(best_page->page_count);
1725
1726 saved_off += log->page_size;
1727 lsn_base = best_lsn;
1728
1729 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1730 log->page_size);
1731
1732 tails += 1;
1733
1734 if (best_page_pos != bppc) {
1735 page_cnt = bppc;
1736 page_pos = best_page_pos;
1737
1738 if (page_cnt > 1)
1739 page_pos += 1;
1740 } else {
1741 page_pos = page_cnt = 1;
1742 }
1743 } else {
1744 kfree(first_tail);
1745 kfree(second_tail);
1746 goto tail_read;
1747 }
1748
1749 kfree(first_tail_prev);
1750 first_tail_prev = first_tail;
1751 final_off_prev = first_file_off;
1752 first_tail = NULL;
1753
1754 kfree(second_tail_prev);
1755 second_tail_prev = second_tail;
1756 second_off_prev = second_file_off;
1757 second_tail = NULL;
1758
1759 final_off += log->page_size;
1760 second_off += log->page_size;
1761
1762 if (tails < 0x10)
1763 goto next_tail;
1764 tail_read:
1765 first_tail = first_tail_prev;
1766 final_off = final_off_prev;
1767
1768 second_tail = second_tail_prev;
1769 second_off = second_off_prev;
1770
1771 page_cnt = page_pos = 1;
1772
1773 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) :
1774 log->next_page;
1775
1776 wrapped_file =
1777 curpage_off == log->first_page &&
1778 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1779
1780 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1781
1782 nextpage_off = curpage_off;
1783
1784 next_page:
1785 tail_page = NULL;
1786 /* Read the next log page. */
1787 err = read_log_page(log, curpage_off, &page, &usa_error);
1788
1789 /* Compute the next log page offset the file. */
1790 nextpage_off = next_page_off(log, curpage_off);
1791 wrapped = nextpage_off == log->first_page;
1792
1793 if (tails > 1) {
1794 struct RECORD_PAGE_HDR *cur_page =
1795 Add2Ptr(page_bufs, curpage_off - page_off);
1796
1797 if (curpage_off == saved_off) {
1798 tail_page = cur_page;
1799 goto use_tail_page;
1800 }
1801
1802 if (page_off > curpage_off || curpage_off >= saved_off)
1803 goto use_tail_page;
1804
1805 if (page_off1)
1806 goto use_cur_page;
1807
1808 if (!err && !usa_error &&
1809 page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1810 cur_page->rhdr.lsn == page->rhdr.lsn &&
1811 cur_page->record_hdr.next_record_off ==
1812 page->record_hdr.next_record_off &&
1813 ((page_pos == page_cnt &&
1814 le16_to_cpu(page->page_pos) == 1) ||
1815 (page_pos != page_cnt &&
1816 le16_to_cpu(page->page_pos) == page_pos + 1 &&
1817 le16_to_cpu(page->page_count) == page_cnt))) {
1818 cur_page = NULL;
1819 goto use_tail_page;
1820 }
1821
1822 page_off1 = page_off;
1823
1824 use_cur_page:
1825
1826 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1827
1828 if (last_ok_lsn !=
1829 le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1830 ((lsn_cur >> log->file_data_bits) +
1831 ((curpage_off <
1832 (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ?
1833 1 :
1834 0)) != expected_seq) {
1835 goto check_tail;
1836 }
1837
1838 if (!is_log_record_end(cur_page)) {
1839 tail_page = NULL;
1840 last_ok_lsn = lsn_cur;
1841 goto next_page_1;
1842 }
1843
1844 log->seq_num = expected_seq;
1845 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1846 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1847 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1848
1849 if (log->record_header_len <=
1850 log->page_size -
1851 le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1852 log->l_flags |= NTFSLOG_REUSE_TAIL;
1853 log->next_page = curpage_off;
1854 } else {
1855 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1856 log->next_page = nextpage_off;
1857 }
1858
1859 if (wrapped_file)
1860 log->l_flags |= NTFSLOG_WRAPPED;
1861
1862 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1863 goto next_page_1;
1864 }
1865
1866 /*
1867 * If we are at the expected first page of a transfer check to see
1868 * if either tail copy is at this offset.
1869 * If this page is the last page of a transfer, check if we wrote
1870 * a subsequent tail copy.
1871 */
1872 if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1873 /*
1874 * Check if the offset matches either the first or second
1875 * tail copy. It is possible it will match both.
1876 */
1877 if (curpage_off == final_off)
1878 tail_page = first_tail;
1879
1880 /*
1881 * If we already matched on the first page then
1882 * check the ending lsn's.
1883 */
1884 if (curpage_off == second_off) {
1885 if (!tail_page ||
1886 (second_tail &&
1887 le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1888 le64_to_cpu(first_tail->record_hdr
1889 .last_end_lsn))) {
1890 tail_page = second_tail;
1891 }
1892 }
1893 }
1894
1895 use_tail_page:
1896 if (tail_page) {
1897 /* We have a candidate for a tail copy. */
1898 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1899
1900 if (last_ok_lsn < lsn_cur) {
1901 /*
1902 * If the sequence number is not expected,
1903 * then don't use the tail copy.
1904 */
1905 if (expected_seq != (lsn_cur >> log->file_data_bits))
1906 tail_page = NULL;
1907 } else if (last_ok_lsn > lsn_cur) {
1908 /*
1909 * If the last lsn is greater than the one on
1910 * this page then forget this tail.
1911 */
1912 tail_page = NULL;
1913 }
1914 }
1915
1916 /*
1917 *If we have an error on the current page,
1918 * we will break of this loop.
1919 */
1920 if (err || usa_error)
1921 goto check_tail;
1922
1923 /*
1924 * Done if the last lsn on this page doesn't match the previous known
1925 * last lsn or the sequence number is not expected.
1926 */
1927 lsn_cur = le64_to_cpu(page->rhdr.lsn);
1928 if (last_ok_lsn != lsn_cur &&
1929 expected_seq != (lsn_cur >> log->file_data_bits)) {
1930 goto check_tail;
1931 }
1932
1933 /*
1934 * Check that the page position and page count values are correct.
1935 * If this is the first page of a transfer the position must be 1
1936 * and the count will be unknown.
1937 */
1938 if (page_cnt == page_pos) {
1939 if (page->page_pos != cpu_to_le16(1) &&
1940 (!reuse_page || page->page_pos != page->page_count)) {
1941 /*
1942 * If the current page is the first page we are
1943 * looking at and we are reusing this page then
1944 * it can be either the first or last page of a
1945 * transfer. Otherwise it can only be the first.
1946 */
1947 goto check_tail;
1948 }
1949 } else if (le16_to_cpu(page->page_count) != page_cnt ||
1950 le16_to_cpu(page->page_pos) != page_pos + 1) {
1951 /*
1952 * The page position better be 1 more than the last page
1953 * position and the page count better match.
1954 */
1955 goto check_tail;
1956 }
1957
1958 /*
1959 * We have a valid page the file and may have a valid page
1960 * the tail copy area.
1961 * If the tail page was written after the page the file then
1962 * break of the loop.
1963 */
1964 if (tail_page &&
1965 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1966 /* Remember if we will replace the page. */
1967 replace_page = true;
1968 goto check_tail;
1969 }
1970
1971 tail_page = NULL;
1972
1973 if (is_log_record_end(page)) {
1974 /*
1975 * Since we have read this page we know the sequence number
1976 * is the same as our expected value.
1977 */
1978 log->seq_num = expected_seq;
1979 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1980 log->ra->current_lsn = page->record_hdr.last_end_lsn;
1981 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1982
1983 /*
1984 * If there is room on this page for another header then
1985 * remember we want to reuse the page.
1986 */
1987 if (log->record_header_len <=
1988 log->page_size -
1989 le16_to_cpu(page->record_hdr.next_record_off)) {
1990 log->l_flags |= NTFSLOG_REUSE_TAIL;
1991 log->next_page = curpage_off;
1992 } else {
1993 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1994 log->next_page = nextpage_off;
1995 }
1996
1997 /* Remember if we wrapped the log file. */
1998 if (wrapped_file)
1999 log->l_flags |= NTFSLOG_WRAPPED;
2000 }
2001
2002 /*
2003 * Remember the last page count and position.
2004 * Also remember the last known lsn.
2005 */
2006 page_cnt = le16_to_cpu(page->page_count);
2007 page_pos = le16_to_cpu(page->page_pos);
2008 last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2009
2010 next_page_1:
2011
2012 if (wrapped) {
2013 expected_seq += 1;
2014 wrapped_file = 1;
2015 }
2016
2017 curpage_off = nextpage_off;
2018 kfree(page);
2019 page = NULL;
2020 reuse_page = 0;
2021 goto next_page;
2022
2023 check_tail:
2024 if (tail_page) {
2025 log->seq_num = expected_seq;
2026 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2027 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2028 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2029
2030 if (log->page_size -
2031 le16_to_cpu(
2032 tail_page->record_hdr.next_record_off) >=
2033 log->record_header_len) {
2034 log->l_flags |= NTFSLOG_REUSE_TAIL;
2035 log->next_page = curpage_off;
2036 } else {
2037 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2038 log->next_page = nextpage_off;
2039 }
2040
2041 if (wrapped)
2042 log->l_flags |= NTFSLOG_WRAPPED;
2043 }
2044
2045 /* Remember that the partial IO will start at the next page. */
2046 second_off = nextpage_off;
2047
2048 /*
2049 * If the next page is the first page of the file then update
2050 * the sequence number for log records which begon the next page.
2051 */
2052 if (wrapped)
2053 expected_seq += 1;
2054
2055 /*
2056 * If we have a tail copy or are performing single page I/O we can
2057 * immediately look at the next page.
2058 */
2059 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2060 page_cnt = 2;
2061 page_pos = 1;
2062 goto check_valid;
2063 }
2064
2065 if (page_pos != page_cnt)
2066 goto check_valid;
2067 /*
2068 * If the next page causes us to wrap to the beginning of the log
2069 * file then we know which page to check next.
2070 */
2071 if (wrapped) {
2072 page_cnt = 2;
2073 page_pos = 1;
2074 goto check_valid;
2075 }
2076
2077 cur_pos = 2;
2078
2079 next_test_page:
2080 kfree(tst_page);
2081 tst_page = NULL;
2082
2083 /* Walk through the file, reading log pages. */
2084 err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2085
2086 /*
2087 * If we get a USA error then assume that we correctly found
2088 * the end of the original transfer.
2089 */
2090 if (usa_error)
2091 goto file_is_valid;
2092
2093 /*
2094 * If we were able to read the page, we examine it to see if it
2095 * is the same or different Io block.
2096 */
2097 if (err)
2098 goto next_test_page_1;
2099
2100 if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2101 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2102 page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2103 page_pos = le16_to_cpu(tst_page->page_pos);
2104 goto check_valid;
2105 } else {
2106 goto file_is_valid;
2107 }
2108
2109 next_test_page_1:
2110
2111 nextpage_off = next_page_off(log, curpage_off);
2112 wrapped = nextpage_off == log->first_page;
2113
2114 if (wrapped) {
2115 expected_seq += 1;
2116 page_cnt = 2;
2117 page_pos = 1;
2118 }
2119
2120 cur_pos += 1;
2121 part_io_count += 1;
2122 if (!wrapped)
2123 goto next_test_page;
2124
2125 check_valid:
2126 /* Skip over the remaining pages this transfer. */
2127 remain_pages = page_cnt - page_pos - 1;
2128 part_io_count += remain_pages;
2129
2130 while (remain_pages--) {
2131 nextpage_off = next_page_off(log, curpage_off);
2132 wrapped = nextpage_off == log->first_page;
2133
2134 if (wrapped)
2135 expected_seq += 1;
2136 }
2137
2138 /* Call our routine to check this log page. */
2139 kfree(tst_page);
2140 tst_page = NULL;
2141
2142 err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2143 if (!err && !usa_error &&
2144 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2145 err = -EINVAL;
2146 goto out;
2147 }
2148
2149 file_is_valid:
2150
2151 /* We have a valid file. */
2152 if (page_off1 || tail_page) {
2153 struct RECORD_PAGE_HDR *tmp_page;
2154
2155 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2156 err = -EROFS;
2157 goto out;
2158 }
2159
2160 if (page_off1) {
2161 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2162 tails -= (page_off1 - page_off) / log->page_size;
2163 if (!tail_page)
2164 tails -= 1;
2165 } else {
2166 tmp_page = tail_page;
2167 tails = 1;
2168 }
2169
2170 while (tails--) {
2171 u64 off = hdr_file_off(log, tmp_page);
2172
2173 if (!page) {
2174 page = kmalloc(log->page_size, GFP_NOFS);
2175 if (!page) {
2176 err = -ENOMEM;
2177 goto out;
2178 }
2179 }
2180
2181 /*
2182 * Correct page and copy the data from this page
2183 * into it and flush it to disk.
2184 */
2185 memcpy(page, tmp_page, log->page_size);
2186
2187 /* Fill last flushed lsn value flush the page. */
2188 if (log->major_ver < 2)
2189 page->rhdr.lsn = page->record_hdr.last_end_lsn;
2190 else
2191 page->file_off = 0;
2192
2193 page->page_pos = page->page_count = cpu_to_le16(1);
2194
2195 ntfs_fix_pre_write(&page->rhdr, log->page_size);
2196
2197 err = ntfs_sb_write_run(log->ni->mi.sbi,
2198 &log->ni->file.run, off, page,
2199 log->page_size, 0);
2200
2201 if (err)
2202 goto out;
2203
2204 if (part_io_count && second_off == off) {
2205 second_off += log->page_size;
2206 part_io_count -= 1;
2207 }
2208
2209 tmp_page = Add2Ptr(tmp_page, log->page_size);
2210 }
2211 }
2212
2213 if (part_io_count) {
2214 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2215 err = -EROFS;
2216 goto out;
2217 }
2218 }
2219
2220 out:
2221 kfree(second_tail);
2222 kfree(first_tail);
2223 kfree(page);
2224 kfree(tst_page);
2225 kfree(page_bufs);
2226
2227 return err;
2228 }
2229
2230 /*
2231 * read_log_rec_buf - Copy a log record from the file to a buffer.
2232 *
2233 * The log record may span several log pages and may even wrap the file.
2234 */
read_log_rec_buf(struct ntfs_log * log,const struct LFS_RECORD_HDR * rh,void * buffer)2235 static int read_log_rec_buf(struct ntfs_log *log,
2236 const struct LFS_RECORD_HDR *rh, void *buffer)
2237 {
2238 int err;
2239 struct RECORD_PAGE_HDR *ph = NULL;
2240 u64 lsn = le64_to_cpu(rh->this_lsn);
2241 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2242 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2243 u32 data_len = le32_to_cpu(rh->client_data_len);
2244
2245 /*
2246 * While there are more bytes to transfer,
2247 * we continue to attempt to perform the read.
2248 */
2249 for (;;) {
2250 bool usa_error;
2251 u32 tail = log->page_size - off;
2252
2253 if (tail >= data_len)
2254 tail = data_len;
2255
2256 data_len -= tail;
2257
2258 err = read_log_page(log, vbo, &ph, &usa_error);
2259 if (err)
2260 goto out;
2261
2262 /*
2263 * The last lsn on this page better be greater or equal
2264 * to the lsn we are copying.
2265 */
2266 if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2267 err = -EINVAL;
2268 goto out;
2269 }
2270
2271 memcpy(buffer, Add2Ptr(ph, off), tail);
2272
2273 /* If there are no more bytes to transfer, we exit the loop. */
2274 if (!data_len) {
2275 if (!is_log_record_end(ph) ||
2276 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2277 err = -EINVAL;
2278 goto out;
2279 }
2280 break;
2281 }
2282
2283 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2284 lsn > le64_to_cpu(ph->rhdr.lsn)) {
2285 err = -EINVAL;
2286 goto out;
2287 }
2288
2289 vbo = next_page_off(log, vbo);
2290 off = log->data_off;
2291
2292 /*
2293 * Adjust our pointer the user's buffer to transfer
2294 * the next block to.
2295 */
2296 buffer = Add2Ptr(buffer, tail);
2297 }
2298
2299 out:
2300 kfree(ph);
2301 return err;
2302 }
2303
read_rst_area(struct ntfs_log * log,struct NTFS_RESTART ** rst_,u64 * lsn)2304 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2305 u64 *lsn)
2306 {
2307 int err;
2308 struct LFS_RECORD_HDR *rh = NULL;
2309 const struct CLIENT_REC *cr =
2310 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2311 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2312 u32 len;
2313 struct NTFS_RESTART *rst;
2314
2315 *lsn = 0;
2316 *rst_ = NULL;
2317
2318 /* If the client doesn't have a restart area, go ahead and exit now. */
2319 if (!lsnc)
2320 return 0;
2321
2322 err = read_log_page(log, lsn_to_vbo(log, lsnc),
2323 (struct RECORD_PAGE_HDR **)&rh, NULL);
2324 if (err)
2325 return err;
2326
2327 rst = NULL;
2328 lsnr = le64_to_cpu(rh->this_lsn);
2329
2330 if (lsnc != lsnr) {
2331 /* If the lsn values don't match, then the disk is corrupt. */
2332 err = -EINVAL;
2333 goto out;
2334 }
2335
2336 *lsn = lsnr;
2337 len = le32_to_cpu(rh->client_data_len);
2338
2339 if (!len) {
2340 err = 0;
2341 goto out;
2342 }
2343
2344 if (len < sizeof(struct NTFS_RESTART)) {
2345 err = -EINVAL;
2346 goto out;
2347 }
2348
2349 rst = kmalloc(len, GFP_NOFS);
2350 if (!rst) {
2351 err = -ENOMEM;
2352 goto out;
2353 }
2354
2355 /* Copy the data into the 'rst' buffer. */
2356 err = read_log_rec_buf(log, rh, rst);
2357 if (err)
2358 goto out;
2359
2360 *rst_ = rst;
2361 rst = NULL;
2362
2363 out:
2364 kfree(rh);
2365 kfree(rst);
2366
2367 return err;
2368 }
2369
find_log_rec(struct ntfs_log * log,u64 lsn,struct lcb * lcb)2370 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2371 {
2372 int err;
2373 struct LFS_RECORD_HDR *rh = lcb->lrh;
2374 u32 rec_len, len;
2375
2376 /* Read the record header for this lsn. */
2377 if (!rh) {
2378 err = read_log_page(log, lsn_to_vbo(log, lsn),
2379 (struct RECORD_PAGE_HDR **)&rh, NULL);
2380
2381 lcb->lrh = rh;
2382 if (err)
2383 return err;
2384 }
2385
2386 /*
2387 * If the lsn the log record doesn't match the desired
2388 * lsn then the disk is corrupt.
2389 */
2390 if (lsn != le64_to_cpu(rh->this_lsn))
2391 return -EINVAL;
2392
2393 len = le32_to_cpu(rh->client_data_len);
2394
2395 /*
2396 * Check that the length field isn't greater than the total
2397 * available space the log file.
2398 */
2399 rec_len = len + log->record_header_len;
2400 if (rec_len >= log->total_avail)
2401 return -EINVAL;
2402
2403 /*
2404 * If the entire log record is on this log page,
2405 * put a pointer to the log record the context block.
2406 */
2407 if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2408 void *lr = kmalloc(len, GFP_NOFS);
2409
2410 if (!lr)
2411 return -ENOMEM;
2412
2413 lcb->log_rec = lr;
2414 lcb->alloc = true;
2415
2416 /* Copy the data into the buffer returned. */
2417 err = read_log_rec_buf(log, rh, lr);
2418 if (err)
2419 return err;
2420 } else {
2421 /* If beyond the end of the current page -> an error. */
2422 u32 page_off = lsn_to_page_off(log, lsn);
2423
2424 if (page_off + len + log->record_header_len > log->page_size)
2425 return -EINVAL;
2426
2427 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2428 lcb->alloc = false;
2429 }
2430
2431 return 0;
2432 }
2433
2434 /*
2435 * read_log_rec_lcb - Init the query operation.
2436 */
read_log_rec_lcb(struct ntfs_log * log,u64 lsn,u32 ctx_mode,struct lcb ** lcb_)2437 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2438 struct lcb **lcb_)
2439 {
2440 int err;
2441 const struct CLIENT_REC *cr;
2442 struct lcb *lcb;
2443
2444 switch (ctx_mode) {
2445 case lcb_ctx_undo_next:
2446 case lcb_ctx_prev:
2447 case lcb_ctx_next:
2448 break;
2449 default:
2450 return -EINVAL;
2451 }
2452
2453 /* Check that the given lsn is the legal range for this client. */
2454 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2455
2456 if (!verify_client_lsn(log, cr, lsn))
2457 return -EINVAL;
2458
2459 lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2460 if (!lcb)
2461 return -ENOMEM;
2462 lcb->client = log->client_id;
2463 lcb->ctx_mode = ctx_mode;
2464
2465 /* Find the log record indicated by the given lsn. */
2466 err = find_log_rec(log, lsn, lcb);
2467 if (err)
2468 goto out;
2469
2470 *lcb_ = lcb;
2471 return 0;
2472
2473 out:
2474 lcb_put(lcb);
2475 *lcb_ = NULL;
2476 return err;
2477 }
2478
2479 /*
2480 * find_client_next_lsn
2481 *
2482 * Attempt to find the next lsn to return to a client based on the context mode.
2483 */
find_client_next_lsn(struct ntfs_log * log,struct lcb * lcb,u64 * lsn)2484 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2485 {
2486 int err;
2487 u64 next_lsn;
2488 struct LFS_RECORD_HDR *hdr;
2489
2490 hdr = lcb->lrh;
2491 *lsn = 0;
2492
2493 if (lcb_ctx_next != lcb->ctx_mode)
2494 goto check_undo_next;
2495
2496 /* Loop as long as another lsn can be found. */
2497 for (;;) {
2498 u64 current_lsn;
2499
2500 err = next_log_lsn(log, hdr, ¤t_lsn);
2501 if (err)
2502 goto out;
2503
2504 if (!current_lsn)
2505 break;
2506
2507 if (hdr != lcb->lrh)
2508 kfree(hdr);
2509
2510 hdr = NULL;
2511 err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2512 (struct RECORD_PAGE_HDR **)&hdr, NULL);
2513 if (err)
2514 goto out;
2515
2516 if (memcmp(&hdr->client, &lcb->client,
2517 sizeof(struct CLIENT_ID))) {
2518 /*err = -EINVAL; */
2519 } else if (LfsClientRecord == hdr->record_type) {
2520 kfree(lcb->lrh);
2521 lcb->lrh = hdr;
2522 *lsn = current_lsn;
2523 return 0;
2524 }
2525 }
2526
2527 out:
2528 if (hdr != lcb->lrh)
2529 kfree(hdr);
2530 return err;
2531
2532 check_undo_next:
2533 if (lcb_ctx_undo_next == lcb->ctx_mode)
2534 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2535 else if (lcb_ctx_prev == lcb->ctx_mode)
2536 next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2537 else
2538 return 0;
2539
2540 if (!next_lsn)
2541 return 0;
2542
2543 if (!verify_client_lsn(
2544 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2545 next_lsn))
2546 return 0;
2547
2548 hdr = NULL;
2549 err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2550 (struct RECORD_PAGE_HDR **)&hdr, NULL);
2551 if (err)
2552 return err;
2553 kfree(lcb->lrh);
2554 lcb->lrh = hdr;
2555
2556 *lsn = next_lsn;
2557
2558 return 0;
2559 }
2560
read_next_log_rec(struct ntfs_log * log,struct lcb * lcb,u64 * lsn)2561 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2562 {
2563 int err;
2564
2565 err = find_client_next_lsn(log, lcb, lsn);
2566 if (err)
2567 return err;
2568
2569 if (!*lsn)
2570 return 0;
2571
2572 if (lcb->alloc)
2573 kfree(lcb->log_rec);
2574
2575 lcb->log_rec = NULL;
2576 lcb->alloc = false;
2577 kfree(lcb->lrh);
2578 lcb->lrh = NULL;
2579
2580 return find_log_rec(log, *lsn, lcb);
2581 }
2582
check_index_header(const struct INDEX_HDR * hdr,size_t bytes)2583 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2584 {
2585 __le16 mask;
2586 u32 min_de, de_off, used, total;
2587 const struct NTFS_DE *e;
2588
2589 if (hdr_has_subnode(hdr)) {
2590 min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2591 mask = NTFS_IE_HAS_SUBNODES;
2592 } else {
2593 min_de = sizeof(struct NTFS_DE);
2594 mask = 0;
2595 }
2596
2597 de_off = le32_to_cpu(hdr->de_off);
2598 used = le32_to_cpu(hdr->used);
2599 total = le32_to_cpu(hdr->total);
2600
2601 if (de_off > bytes - min_de || used > bytes || total > bytes ||
2602 de_off + min_de > used || used > total) {
2603 return false;
2604 }
2605
2606 e = Add2Ptr(hdr, de_off);
2607 for (;;) {
2608 u16 esize = le16_to_cpu(e->size);
2609 struct NTFS_DE *next = Add2Ptr(e, esize);
2610
2611 if (esize < min_de || PtrOffset(hdr, next) > used ||
2612 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2613 return false;
2614 }
2615
2616 if (de_is_last(e))
2617 break;
2618
2619 e = next;
2620 }
2621
2622 return true;
2623 }
2624
check_index_buffer(const struct INDEX_BUFFER * ib,u32 bytes)2625 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2626 {
2627 u16 fo;
2628 const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2629
2630 if (r->sign != NTFS_INDX_SIGNATURE)
2631 return false;
2632
2633 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2634
2635 if (le16_to_cpu(r->fix_off) > fo)
2636 return false;
2637
2638 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2639 return false;
2640
2641 return check_index_header(&ib->ihdr,
2642 bytes - offsetof(struct INDEX_BUFFER, ihdr));
2643 }
2644
check_index_root(const struct ATTRIB * attr,struct ntfs_sb_info * sbi)2645 static inline bool check_index_root(const struct ATTRIB *attr,
2646 struct ntfs_sb_info *sbi)
2647 {
2648 bool ret;
2649 const struct INDEX_ROOT *root = resident_data(attr);
2650 u8 index_bits = le32_to_cpu(root->index_block_size) >=
2651 sbi->cluster_size ?
2652 sbi->cluster_bits :
2653 SECTOR_SHIFT;
2654 u8 block_clst = root->index_block_clst;
2655
2656 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2657 (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2658 (root->type == ATTR_NAME &&
2659 root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2660 (le32_to_cpu(root->index_block_size) !=
2661 (block_clst << index_bits)) ||
2662 (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2663 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2664 block_clst != 0x40 && block_clst != 0x80)) {
2665 return false;
2666 }
2667
2668 ret = check_index_header(&root->ihdr,
2669 le32_to_cpu(attr->res.data_size) -
2670 offsetof(struct INDEX_ROOT, ihdr));
2671 return ret;
2672 }
2673
check_attr(const struct MFT_REC * rec,const struct ATTRIB * attr,struct ntfs_sb_info * sbi)2674 static inline bool check_attr(const struct MFT_REC *rec,
2675 const struct ATTRIB *attr,
2676 struct ntfs_sb_info *sbi)
2677 {
2678 u32 asize = le32_to_cpu(attr->size);
2679 u32 rsize = 0;
2680 u64 dsize, svcn, evcn;
2681 u16 run_off;
2682
2683 /* Check the fixed part of the attribute record header. */
2684 if (asize >= sbi->record_size ||
2685 asize + PtrOffset(rec, attr) >= sbi->record_size ||
2686 (attr->name_len &&
2687 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2688 asize)) {
2689 return false;
2690 }
2691
2692 /* Check the attribute fields. */
2693 switch (attr->non_res) {
2694 case 0:
2695 rsize = le32_to_cpu(attr->res.data_size);
2696 if (rsize >= asize ||
2697 le16_to_cpu(attr->res.data_off) + rsize > asize) {
2698 return false;
2699 }
2700 break;
2701
2702 case 1:
2703 dsize = le64_to_cpu(attr->nres.data_size);
2704 svcn = le64_to_cpu(attr->nres.svcn);
2705 evcn = le64_to_cpu(attr->nres.evcn);
2706 run_off = le16_to_cpu(attr->nres.run_off);
2707
2708 if (svcn > evcn + 1 || run_off >= asize ||
2709 le64_to_cpu(attr->nres.valid_size) > dsize ||
2710 dsize > le64_to_cpu(attr->nres.alloc_size)) {
2711 return false;
2712 }
2713
2714 if (run_off > asize)
2715 return false;
2716
2717 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2718 Add2Ptr(attr, run_off), asize - run_off) < 0) {
2719 return false;
2720 }
2721
2722 return true;
2723
2724 default:
2725 return false;
2726 }
2727
2728 switch (attr->type) {
2729 case ATTR_NAME:
2730 if (fname_full_size(Add2Ptr(
2731 attr, le16_to_cpu(attr->res.data_off))) > asize) {
2732 return false;
2733 }
2734 break;
2735
2736 case ATTR_ROOT:
2737 return check_index_root(attr, sbi);
2738
2739 case ATTR_STD:
2740 if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2741 rsize != sizeof(struct ATTR_STD_INFO)) {
2742 return false;
2743 }
2744 break;
2745
2746 case ATTR_LIST:
2747 case ATTR_ID:
2748 case ATTR_SECURE:
2749 case ATTR_LABEL:
2750 case ATTR_VOL_INFO:
2751 case ATTR_DATA:
2752 case ATTR_ALLOC:
2753 case ATTR_BITMAP:
2754 case ATTR_REPARSE:
2755 case ATTR_EA_INFO:
2756 case ATTR_EA:
2757 case ATTR_PROPERTYSET:
2758 case ATTR_LOGGED_UTILITY_STREAM:
2759 break;
2760
2761 default:
2762 return false;
2763 }
2764
2765 return true;
2766 }
2767
check_file_record(const struct MFT_REC * rec,const struct MFT_REC * rec2,struct ntfs_sb_info * sbi)2768 static inline bool check_file_record(const struct MFT_REC *rec,
2769 const struct MFT_REC *rec2,
2770 struct ntfs_sb_info *sbi)
2771 {
2772 const struct ATTRIB *attr;
2773 u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2774 u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2775 u16 ao = le16_to_cpu(rec->attr_off);
2776 u32 rs = sbi->record_size;
2777
2778 /* Check the file record header for consistency. */
2779 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2780 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2781 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2782 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2783 le32_to_cpu(rec->total) != rs) {
2784 return false;
2785 }
2786
2787 /* Loop to check all of the attributes. */
2788 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2789 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2790 if (check_attr(rec, attr, sbi))
2791 continue;
2792 return false;
2793 }
2794
2795 return true;
2796 }
2797
check_lsn(const struct NTFS_RECORD_HEADER * hdr,const u64 * rlsn)2798 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2799 const u64 *rlsn)
2800 {
2801 u64 lsn;
2802
2803 if (!rlsn)
2804 return true;
2805
2806 lsn = le64_to_cpu(hdr->lsn);
2807
2808 if (hdr->sign == NTFS_HOLE_SIGNATURE)
2809 return false;
2810
2811 if (*rlsn > lsn)
2812 return true;
2813
2814 return false;
2815 }
2816
check_if_attr(const struct MFT_REC * rec,const struct LOG_REC_HDR * lrh)2817 static inline bool check_if_attr(const struct MFT_REC *rec,
2818 const struct LOG_REC_HDR *lrh)
2819 {
2820 u16 ro = le16_to_cpu(lrh->record_off);
2821 u16 o = le16_to_cpu(rec->attr_off);
2822 const struct ATTRIB *attr = Add2Ptr(rec, o);
2823
2824 while (o < ro) {
2825 u32 asize;
2826
2827 if (attr->type == ATTR_END)
2828 break;
2829
2830 asize = le32_to_cpu(attr->size);
2831 if (!asize)
2832 break;
2833
2834 o += asize;
2835 attr = Add2Ptr(attr, asize);
2836 }
2837
2838 return o == ro;
2839 }
2840
check_if_index_root(const struct MFT_REC * rec,const struct LOG_REC_HDR * lrh)2841 static inline bool check_if_index_root(const struct MFT_REC *rec,
2842 const struct LOG_REC_HDR *lrh)
2843 {
2844 u16 ro = le16_to_cpu(lrh->record_off);
2845 u16 o = le16_to_cpu(rec->attr_off);
2846 const struct ATTRIB *attr = Add2Ptr(rec, o);
2847
2848 while (o < ro) {
2849 u32 asize;
2850
2851 if (attr->type == ATTR_END)
2852 break;
2853
2854 asize = le32_to_cpu(attr->size);
2855 if (!asize)
2856 break;
2857
2858 o += asize;
2859 attr = Add2Ptr(attr, asize);
2860 }
2861
2862 return o == ro && attr->type == ATTR_ROOT;
2863 }
2864
check_if_root_index(const struct ATTRIB * attr,const struct INDEX_HDR * hdr,const struct LOG_REC_HDR * lrh)2865 static inline bool check_if_root_index(const struct ATTRIB *attr,
2866 const struct INDEX_HDR *hdr,
2867 const struct LOG_REC_HDR *lrh)
2868 {
2869 u16 ao = le16_to_cpu(lrh->attr_off);
2870 u32 de_off = le32_to_cpu(hdr->de_off);
2871 u32 o = PtrOffset(attr, hdr) + de_off;
2872 const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2873 u32 asize = le32_to_cpu(attr->size);
2874
2875 while (o < ao) {
2876 u16 esize;
2877
2878 if (o >= asize)
2879 break;
2880
2881 esize = le16_to_cpu(e->size);
2882 if (!esize)
2883 break;
2884
2885 o += esize;
2886 e = Add2Ptr(e, esize);
2887 }
2888
2889 return o == ao;
2890 }
2891
check_if_alloc_index(const struct INDEX_HDR * hdr,u32 attr_off)2892 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2893 u32 attr_off)
2894 {
2895 u32 de_off = le32_to_cpu(hdr->de_off);
2896 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2897 const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2898 u32 used = le32_to_cpu(hdr->used);
2899
2900 while (o < attr_off) {
2901 u16 esize;
2902
2903 if (de_off >= used)
2904 break;
2905
2906 esize = le16_to_cpu(e->size);
2907 if (!esize)
2908 break;
2909
2910 o += esize;
2911 de_off += esize;
2912 e = Add2Ptr(e, esize);
2913 }
2914
2915 return o == attr_off;
2916 }
2917
change_attr_size(struct MFT_REC * rec,struct ATTRIB * attr,u32 nsize)2918 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2919 u32 nsize)
2920 {
2921 u32 asize = le32_to_cpu(attr->size);
2922 int dsize = nsize - asize;
2923 u8 *next = Add2Ptr(attr, asize);
2924 u32 used = le32_to_cpu(rec->used);
2925
2926 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2927
2928 rec->used = cpu_to_le32(used + dsize);
2929 attr->size = cpu_to_le32(nsize);
2930 }
2931
2932 struct OpenAttr {
2933 struct ATTRIB *attr;
2934 struct runs_tree *run1;
2935 struct runs_tree run0;
2936 struct ntfs_inode *ni;
2937 // CLST rno;
2938 };
2939
2940 /*
2941 * cmp_type_and_name
2942 *
2943 * Return: 0 if 'attr' has the same type and name.
2944 */
cmp_type_and_name(const struct ATTRIB * a1,const struct ATTRIB * a2)2945 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2946 const struct ATTRIB *a2)
2947 {
2948 return a1->type != a2->type || a1->name_len != a2->name_len ||
2949 (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2950 a1->name_len * sizeof(short)));
2951 }
2952
find_loaded_attr(struct ntfs_log * log,const struct ATTRIB * attr,CLST rno)2953 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2954 const struct ATTRIB *attr, CLST rno)
2955 {
2956 struct OPEN_ATTR_ENRTY *oe = NULL;
2957
2958 while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2959 struct OpenAttr *op_attr;
2960
2961 if (ino_get(&oe->ref) != rno)
2962 continue;
2963
2964 op_attr = (struct OpenAttr *)oe->ptr;
2965 if (!cmp_type_and_name(op_attr->attr, attr))
2966 return op_attr;
2967 }
2968 return NULL;
2969 }
2970
attr_create_nonres_log(struct ntfs_sb_info * sbi,enum ATTR_TYPE type,u64 size,const u16 * name,size_t name_len,__le16 flags)2971 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2972 enum ATTR_TYPE type, u64 size,
2973 const u16 *name, size_t name_len,
2974 __le16 flags)
2975 {
2976 struct ATTRIB *attr;
2977 u32 name_size = ALIGN(name_len * sizeof(short), 8);
2978 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2979 u32 asize = name_size +
2980 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2981
2982 attr = kzalloc(asize, GFP_NOFS);
2983 if (!attr)
2984 return NULL;
2985
2986 attr->type = type;
2987 attr->size = cpu_to_le32(asize);
2988 attr->flags = flags;
2989 attr->non_res = 1;
2990 attr->name_len = name_len;
2991
2992 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
2993 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
2994 attr->nres.data_size = cpu_to_le64(size);
2995 attr->nres.valid_size = attr->nres.data_size;
2996 if (is_ext) {
2997 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
2998 if (is_attr_compressed(attr))
2999 attr->nres.c_unit = NTFS_LZNT_CUNIT;
3000
3001 attr->nres.run_off =
3002 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
3003 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
3004 name_len * sizeof(short));
3005 } else {
3006 attr->name_off = SIZEOF_NONRESIDENT_LE;
3007 attr->nres.run_off =
3008 cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3009 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3010 name_len * sizeof(short));
3011 }
3012
3013 return attr;
3014 }
3015
3016 /*
3017 * do_action - Common routine for the Redo and Undo Passes.
3018 * @rlsn: If it is NULL then undo.
3019 */
do_action(struct ntfs_log * log,struct OPEN_ATTR_ENRTY * oe,const struct LOG_REC_HDR * lrh,u32 op,void * data,u32 dlen,u32 rec_len,const u64 * rlsn)3020 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3021 const struct LOG_REC_HDR *lrh, u32 op, void *data,
3022 u32 dlen, u32 rec_len, const u64 *rlsn)
3023 {
3024 int err = 0;
3025 struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3026 struct inode *inode = NULL, *inode_parent;
3027 struct mft_inode *mi = NULL, *mi2_child = NULL;
3028 CLST rno = 0, rno_base = 0;
3029 struct INDEX_BUFFER *ib = NULL;
3030 struct MFT_REC *rec = NULL;
3031 struct ATTRIB *attr = NULL, *attr2;
3032 struct INDEX_HDR *hdr;
3033 struct INDEX_ROOT *root;
3034 struct NTFS_DE *e, *e1, *e2;
3035 struct NEW_ATTRIBUTE_SIZES *new_sz;
3036 struct ATTR_FILE_NAME *fname;
3037 struct OpenAttr *oa, *oa2;
3038 u32 nsize, t32, asize, used, esize, off, bits;
3039 u16 id, id2;
3040 u32 record_size = sbi->record_size;
3041 u64 t64;
3042 u16 roff = le16_to_cpu(lrh->record_off);
3043 u16 aoff = le16_to_cpu(lrh->attr_off);
3044 u64 lco = 0;
3045 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3046 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3047 u64 vbo = cbo + tvo;
3048 void *buffer_le = NULL;
3049 u32 bytes = 0;
3050 bool a_dirty = false;
3051 u16 data_off;
3052
3053 oa = oe->ptr;
3054
3055 /* Big switch to prepare. */
3056 switch (op) {
3057 /* ============================================================
3058 * Process MFT records, as described by the current log record.
3059 * ============================================================
3060 */
3061 case InitializeFileRecordSegment:
3062 case DeallocateFileRecordSegment:
3063 case WriteEndOfFileRecordSegment:
3064 case CreateAttribute:
3065 case DeleteAttribute:
3066 case UpdateResidentValue:
3067 case UpdateMappingPairs:
3068 case SetNewAttributeSizes:
3069 case AddIndexEntryRoot:
3070 case DeleteIndexEntryRoot:
3071 case SetIndexEntryVcnRoot:
3072 case UpdateFileNameRoot:
3073 case UpdateRecordDataRoot:
3074 case ZeroEndOfFileRecord:
3075 rno = vbo >> sbi->record_bits;
3076 inode = ilookup(sbi->sb, rno);
3077 if (inode) {
3078 mi = &ntfs_i(inode)->mi;
3079 } else if (op == InitializeFileRecordSegment) {
3080 mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3081 if (!mi)
3082 return -ENOMEM;
3083 err = mi_format_new(mi, sbi, rno, 0, false);
3084 if (err)
3085 goto out;
3086 } else {
3087 /* Read from disk. */
3088 err = mi_get(sbi, rno, &mi);
3089 if (err)
3090 return err;
3091 }
3092 rec = mi->mrec;
3093
3094 if (op == DeallocateFileRecordSegment)
3095 goto skip_load_parent;
3096
3097 if (InitializeFileRecordSegment != op) {
3098 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3099 goto dirty_vol;
3100 if (!check_lsn(&rec->rhdr, rlsn))
3101 goto out;
3102 if (!check_file_record(rec, NULL, sbi))
3103 goto dirty_vol;
3104 attr = Add2Ptr(rec, roff);
3105 }
3106
3107 if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3108 rno_base = rno;
3109 goto skip_load_parent;
3110 }
3111
3112 rno_base = ino_get(&rec->parent_ref);
3113 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3114 if (IS_ERR(inode_parent))
3115 goto skip_load_parent;
3116
3117 if (is_bad_inode(inode_parent)) {
3118 iput(inode_parent);
3119 goto skip_load_parent;
3120 }
3121
3122 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3123 iput(inode_parent);
3124 } else {
3125 if (mi2_child->mrec != mi->mrec)
3126 memcpy(mi2_child->mrec, mi->mrec,
3127 sbi->record_size);
3128
3129 if (inode)
3130 iput(inode);
3131 else if (mi)
3132 mi_put(mi);
3133
3134 inode = inode_parent;
3135 mi = mi2_child;
3136 rec = mi2_child->mrec;
3137 attr = Add2Ptr(rec, roff);
3138 }
3139
3140 skip_load_parent:
3141 inode_parent = NULL;
3142 break;
3143
3144 /*
3145 * Process attributes, as described by the current log record.
3146 */
3147 case UpdateNonresidentValue:
3148 case AddIndexEntryAllocation:
3149 case DeleteIndexEntryAllocation:
3150 case WriteEndOfIndexBuffer:
3151 case SetIndexEntryVcnAllocation:
3152 case UpdateFileNameAllocation:
3153 case SetBitsInNonresidentBitMap:
3154 case ClearBitsInNonresidentBitMap:
3155 case UpdateRecordDataAllocation:
3156 attr = oa->attr;
3157 bytes = UpdateNonresidentValue == op ? dlen : 0;
3158 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3159
3160 if (attr->type == ATTR_ALLOC) {
3161 t32 = le32_to_cpu(oe->bytes_per_index);
3162 if (bytes < t32)
3163 bytes = t32;
3164 }
3165
3166 if (!bytes)
3167 bytes = lco - cbo;
3168
3169 bytes += roff;
3170 if (attr->type == ATTR_ALLOC)
3171 bytes = (bytes + 511) & ~511; // align
3172
3173 buffer_le = kmalloc(bytes, GFP_NOFS);
3174 if (!buffer_le)
3175 return -ENOMEM;
3176
3177 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3178 NULL);
3179 if (err)
3180 goto out;
3181
3182 if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3183 ntfs_fix_post_read(buffer_le, bytes, false);
3184 break;
3185
3186 default:
3187 WARN_ON(1);
3188 }
3189
3190 /* Big switch to do operation. */
3191 switch (op) {
3192 case InitializeFileRecordSegment:
3193 if (roff + dlen > record_size)
3194 goto dirty_vol;
3195
3196 memcpy(Add2Ptr(rec, roff), data, dlen);
3197 mi->dirty = true;
3198 break;
3199
3200 case DeallocateFileRecordSegment:
3201 clear_rec_inuse(rec);
3202 le16_add_cpu(&rec->seq, 1);
3203 mi->dirty = true;
3204 break;
3205
3206 case WriteEndOfFileRecordSegment:
3207 attr2 = (struct ATTRIB *)data;
3208 if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3209 goto dirty_vol;
3210
3211 memmove(attr, attr2, dlen);
3212 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3213
3214 mi->dirty = true;
3215 break;
3216
3217 case CreateAttribute:
3218 attr2 = (struct ATTRIB *)data;
3219 asize = le32_to_cpu(attr2->size);
3220 used = le32_to_cpu(rec->used);
3221
3222 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3223 !IS_ALIGNED(asize, 8) ||
3224 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3225 dlen > record_size - used) {
3226 goto dirty_vol;
3227 }
3228
3229 memmove(Add2Ptr(attr, asize), attr, used - roff);
3230 memcpy(attr, attr2, asize);
3231
3232 rec->used = cpu_to_le32(used + asize);
3233 id = le16_to_cpu(rec->next_attr_id);
3234 id2 = le16_to_cpu(attr2->id);
3235 if (id <= id2)
3236 rec->next_attr_id = cpu_to_le16(id2 + 1);
3237 if (is_attr_indexed(attr))
3238 le16_add_cpu(&rec->hard_links, 1);
3239
3240 oa2 = find_loaded_attr(log, attr, rno_base);
3241 if (oa2) {
3242 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3243 GFP_NOFS);
3244 if (p2) {
3245 // run_close(oa2->run1);
3246 kfree(oa2->attr);
3247 oa2->attr = p2;
3248 }
3249 }
3250
3251 mi->dirty = true;
3252 break;
3253
3254 case DeleteAttribute:
3255 asize = le32_to_cpu(attr->size);
3256 used = le32_to_cpu(rec->used);
3257
3258 if (!check_if_attr(rec, lrh))
3259 goto dirty_vol;
3260
3261 rec->used = cpu_to_le32(used - asize);
3262 if (is_attr_indexed(attr))
3263 le16_add_cpu(&rec->hard_links, -1);
3264
3265 memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3266
3267 mi->dirty = true;
3268 break;
3269
3270 case UpdateResidentValue:
3271 nsize = aoff + dlen;
3272
3273 if (!check_if_attr(rec, lrh))
3274 goto dirty_vol;
3275
3276 asize = le32_to_cpu(attr->size);
3277 used = le32_to_cpu(rec->used);
3278
3279 if (lrh->redo_len == lrh->undo_len) {
3280 if (nsize > asize)
3281 goto dirty_vol;
3282 goto move_data;
3283 }
3284
3285 if (nsize > asize && nsize - asize > record_size - used)
3286 goto dirty_vol;
3287
3288 nsize = ALIGN(nsize, 8);
3289 data_off = le16_to_cpu(attr->res.data_off);
3290
3291 if (nsize < asize) {
3292 memmove(Add2Ptr(attr, aoff), data, dlen);
3293 data = NULL; // To skip below memmove().
3294 }
3295
3296 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3297 used - le16_to_cpu(lrh->record_off) - asize);
3298
3299 rec->used = cpu_to_le32(used + nsize - asize);
3300 attr->size = cpu_to_le32(nsize);
3301 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3302
3303 move_data:
3304 if (data)
3305 memmove(Add2Ptr(attr, aoff), data, dlen);
3306
3307 oa2 = find_loaded_attr(log, attr, rno_base);
3308 if (oa2) {
3309 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3310 GFP_NOFS);
3311 if (p2) {
3312 // run_close(&oa2->run0);
3313 oa2->run1 = &oa2->run0;
3314 kfree(oa2->attr);
3315 oa2->attr = p2;
3316 }
3317 }
3318
3319 mi->dirty = true;
3320 break;
3321
3322 case UpdateMappingPairs:
3323 nsize = aoff + dlen;
3324 asize = le32_to_cpu(attr->size);
3325 used = le32_to_cpu(rec->used);
3326
3327 if (!check_if_attr(rec, lrh) || !attr->non_res ||
3328 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3329 (nsize > asize && nsize - asize > record_size - used)) {
3330 goto dirty_vol;
3331 }
3332
3333 nsize = ALIGN(nsize, 8);
3334
3335 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3336 used - le16_to_cpu(lrh->record_off) - asize);
3337 rec->used = cpu_to_le32(used + nsize - asize);
3338 attr->size = cpu_to_le32(nsize);
3339 memmove(Add2Ptr(attr, aoff), data, dlen);
3340
3341 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3342 attr_run(attr), &t64)) {
3343 goto dirty_vol;
3344 }
3345
3346 attr->nres.evcn = cpu_to_le64(t64);
3347 oa2 = find_loaded_attr(log, attr, rno_base);
3348 if (oa2 && oa2->attr->non_res)
3349 oa2->attr->nres.evcn = attr->nres.evcn;
3350
3351 mi->dirty = true;
3352 break;
3353
3354 case SetNewAttributeSizes:
3355 new_sz = data;
3356 if (!check_if_attr(rec, lrh) || !attr->non_res)
3357 goto dirty_vol;
3358
3359 attr->nres.alloc_size = new_sz->alloc_size;
3360 attr->nres.data_size = new_sz->data_size;
3361 attr->nres.valid_size = new_sz->valid_size;
3362
3363 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3364 attr->nres.total_size = new_sz->total_size;
3365
3366 oa2 = find_loaded_attr(log, attr, rno_base);
3367 if (oa2) {
3368 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3369 GFP_NOFS);
3370 if (p2) {
3371 kfree(oa2->attr);
3372 oa2->attr = p2;
3373 }
3374 }
3375 mi->dirty = true;
3376 break;
3377
3378 case AddIndexEntryRoot:
3379 e = (struct NTFS_DE *)data;
3380 esize = le16_to_cpu(e->size);
3381 root = resident_data(attr);
3382 hdr = &root->ihdr;
3383 used = le32_to_cpu(hdr->used);
3384
3385 if (!check_if_index_root(rec, lrh) ||
3386 !check_if_root_index(attr, hdr, lrh) ||
3387 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3388 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3389 goto dirty_vol;
3390 }
3391
3392 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3393
3394 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3395
3396 memmove(Add2Ptr(e1, esize), e1,
3397 PtrOffset(e1, Add2Ptr(hdr, used)));
3398 memmove(e1, e, esize);
3399
3400 le32_add_cpu(&attr->res.data_size, esize);
3401 hdr->used = cpu_to_le32(used + esize);
3402 le32_add_cpu(&hdr->total, esize);
3403
3404 mi->dirty = true;
3405 break;
3406
3407 case DeleteIndexEntryRoot:
3408 root = resident_data(attr);
3409 hdr = &root->ihdr;
3410 used = le32_to_cpu(hdr->used);
3411
3412 if (!check_if_index_root(rec, lrh) ||
3413 !check_if_root_index(attr, hdr, lrh)) {
3414 goto dirty_vol;
3415 }
3416
3417 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3418 esize = le16_to_cpu(e1->size);
3419 e2 = Add2Ptr(e1, esize);
3420
3421 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3422
3423 le32_sub_cpu(&attr->res.data_size, esize);
3424 hdr->used = cpu_to_le32(used - esize);
3425 le32_sub_cpu(&hdr->total, esize);
3426
3427 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3428
3429 mi->dirty = true;
3430 break;
3431
3432 case SetIndexEntryVcnRoot:
3433 root = resident_data(attr);
3434 hdr = &root->ihdr;
3435
3436 if (!check_if_index_root(rec, lrh) ||
3437 !check_if_root_index(attr, hdr, lrh)) {
3438 goto dirty_vol;
3439 }
3440
3441 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3442
3443 de_set_vbn_le(e, *(__le64 *)data);
3444 mi->dirty = true;
3445 break;
3446
3447 case UpdateFileNameRoot:
3448 root = resident_data(attr);
3449 hdr = &root->ihdr;
3450
3451 if (!check_if_index_root(rec, lrh) ||
3452 !check_if_root_index(attr, hdr, lrh)) {
3453 goto dirty_vol;
3454 }
3455
3456 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3457 fname = (struct ATTR_FILE_NAME *)(e + 1);
3458 memmove(&fname->dup, data, sizeof(fname->dup)); //
3459 mi->dirty = true;
3460 break;
3461
3462 case UpdateRecordDataRoot:
3463 root = resident_data(attr);
3464 hdr = &root->ihdr;
3465
3466 if (!check_if_index_root(rec, lrh) ||
3467 !check_if_root_index(attr, hdr, lrh)) {
3468 goto dirty_vol;
3469 }
3470
3471 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3472
3473 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3474
3475 mi->dirty = true;
3476 break;
3477
3478 case ZeroEndOfFileRecord:
3479 if (roff + dlen > record_size)
3480 goto dirty_vol;
3481
3482 memset(attr, 0, dlen);
3483 mi->dirty = true;
3484 break;
3485
3486 case UpdateNonresidentValue:
3487 if (lco < cbo + roff + dlen)
3488 goto dirty_vol;
3489
3490 memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3491
3492 a_dirty = true;
3493 if (attr->type == ATTR_ALLOC)
3494 ntfs_fix_pre_write(buffer_le, bytes);
3495 break;
3496
3497 case AddIndexEntryAllocation:
3498 ib = Add2Ptr(buffer_le, roff);
3499 hdr = &ib->ihdr;
3500 e = data;
3501 esize = le16_to_cpu(e->size);
3502 e1 = Add2Ptr(ib, aoff);
3503
3504 if (is_baad(&ib->rhdr))
3505 goto dirty_vol;
3506 if (!check_lsn(&ib->rhdr, rlsn))
3507 goto out;
3508
3509 used = le32_to_cpu(hdr->used);
3510
3511 if (!check_index_buffer(ib, bytes) ||
3512 !check_if_alloc_index(hdr, aoff) ||
3513 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3514 used + esize > le32_to_cpu(hdr->total)) {
3515 goto dirty_vol;
3516 }
3517
3518 memmove(Add2Ptr(e1, esize), e1,
3519 PtrOffset(e1, Add2Ptr(hdr, used)));
3520 memcpy(e1, e, esize);
3521
3522 hdr->used = cpu_to_le32(used + esize);
3523
3524 a_dirty = true;
3525
3526 ntfs_fix_pre_write(&ib->rhdr, bytes);
3527 break;
3528
3529 case DeleteIndexEntryAllocation:
3530 ib = Add2Ptr(buffer_le, roff);
3531 hdr = &ib->ihdr;
3532 e = Add2Ptr(ib, aoff);
3533 esize = le16_to_cpu(e->size);
3534
3535 if (is_baad(&ib->rhdr))
3536 goto dirty_vol;
3537 if (!check_lsn(&ib->rhdr, rlsn))
3538 goto out;
3539
3540 if (!check_index_buffer(ib, bytes) ||
3541 !check_if_alloc_index(hdr, aoff)) {
3542 goto dirty_vol;
3543 }
3544
3545 e1 = Add2Ptr(e, esize);
3546 nsize = esize;
3547 used = le32_to_cpu(hdr->used);
3548
3549 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3550
3551 hdr->used = cpu_to_le32(used - nsize);
3552
3553 a_dirty = true;
3554
3555 ntfs_fix_pre_write(&ib->rhdr, bytes);
3556 break;
3557
3558 case WriteEndOfIndexBuffer:
3559 ib = Add2Ptr(buffer_le, roff);
3560 hdr = &ib->ihdr;
3561 e = Add2Ptr(ib, aoff);
3562
3563 if (is_baad(&ib->rhdr))
3564 goto dirty_vol;
3565 if (!check_lsn(&ib->rhdr, rlsn))
3566 goto out;
3567 if (!check_index_buffer(ib, bytes) ||
3568 !check_if_alloc_index(hdr, aoff) ||
3569 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3570 le32_to_cpu(hdr->total)) {
3571 goto dirty_vol;
3572 }
3573
3574 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3575 memmove(e, data, dlen);
3576
3577 a_dirty = true;
3578 ntfs_fix_pre_write(&ib->rhdr, bytes);
3579 break;
3580
3581 case SetIndexEntryVcnAllocation:
3582 ib = Add2Ptr(buffer_le, roff);
3583 hdr = &ib->ihdr;
3584 e = Add2Ptr(ib, aoff);
3585
3586 if (is_baad(&ib->rhdr))
3587 goto dirty_vol;
3588
3589 if (!check_lsn(&ib->rhdr, rlsn))
3590 goto out;
3591 if (!check_index_buffer(ib, bytes) ||
3592 !check_if_alloc_index(hdr, aoff)) {
3593 goto dirty_vol;
3594 }
3595
3596 de_set_vbn_le(e, *(__le64 *)data);
3597
3598 a_dirty = true;
3599 ntfs_fix_pre_write(&ib->rhdr, bytes);
3600 break;
3601
3602 case UpdateFileNameAllocation:
3603 ib = Add2Ptr(buffer_le, roff);
3604 hdr = &ib->ihdr;
3605 e = Add2Ptr(ib, aoff);
3606
3607 if (is_baad(&ib->rhdr))
3608 goto dirty_vol;
3609
3610 if (!check_lsn(&ib->rhdr, rlsn))
3611 goto out;
3612 if (!check_index_buffer(ib, bytes) ||
3613 !check_if_alloc_index(hdr, aoff)) {
3614 goto dirty_vol;
3615 }
3616
3617 fname = (struct ATTR_FILE_NAME *)(e + 1);
3618 memmove(&fname->dup, data, sizeof(fname->dup));
3619
3620 a_dirty = true;
3621 ntfs_fix_pre_write(&ib->rhdr, bytes);
3622 break;
3623
3624 case SetBitsInNonresidentBitMap:
3625 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3626 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3627
3628 if (cbo + (off + 7) / 8 > lco ||
3629 cbo + ((off + bits + 7) / 8) > lco) {
3630 goto dirty_vol;
3631 }
3632
3633 ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits);
3634 a_dirty = true;
3635 break;
3636
3637 case ClearBitsInNonresidentBitMap:
3638 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3639 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3640
3641 if (cbo + (off + 7) / 8 > lco ||
3642 cbo + ((off + bits + 7) / 8) > lco) {
3643 goto dirty_vol;
3644 }
3645
3646 ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits);
3647 a_dirty = true;
3648 break;
3649
3650 case UpdateRecordDataAllocation:
3651 ib = Add2Ptr(buffer_le, roff);
3652 hdr = &ib->ihdr;
3653 e = Add2Ptr(ib, aoff);
3654
3655 if (is_baad(&ib->rhdr))
3656 goto dirty_vol;
3657
3658 if (!check_lsn(&ib->rhdr, rlsn))
3659 goto out;
3660 if (!check_index_buffer(ib, bytes) ||
3661 !check_if_alloc_index(hdr, aoff)) {
3662 goto dirty_vol;
3663 }
3664
3665 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3666
3667 a_dirty = true;
3668 ntfs_fix_pre_write(&ib->rhdr, bytes);
3669 break;
3670
3671 default:
3672 WARN_ON(1);
3673 }
3674
3675 if (rlsn) {
3676 __le64 t64 = cpu_to_le64(*rlsn);
3677
3678 if (rec)
3679 rec->rhdr.lsn = t64;
3680 if (ib)
3681 ib->rhdr.lsn = t64;
3682 }
3683
3684 if (mi && mi->dirty) {
3685 err = mi_write(mi, 0);
3686 if (err)
3687 goto out;
3688 }
3689
3690 if (a_dirty) {
3691 attr = oa->attr;
3692 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes,
3693 0);
3694 if (err)
3695 goto out;
3696 }
3697
3698 out:
3699
3700 if (inode)
3701 iput(inode);
3702 else if (mi != mi2_child)
3703 mi_put(mi);
3704
3705 kfree(buffer_le);
3706
3707 return err;
3708
3709 dirty_vol:
3710 log->set_dirty = true;
3711 goto out;
3712 }
3713
3714 /*
3715 * log_replay - Replays log and empties it.
3716 *
3717 * This function is called during mount operation.
3718 * It replays log and empties it.
3719 * Initialized is set false if logfile contains '-1'.
3720 */
log_replay(struct ntfs_inode * ni,bool * initialized)3721 int log_replay(struct ntfs_inode *ni, bool *initialized)
3722 {
3723 int err;
3724 struct ntfs_sb_info *sbi = ni->mi.sbi;
3725 struct ntfs_log *log;
3726
3727 u64 rec_lsn, checkpt_lsn = 0, rlsn = 0;
3728 struct ATTR_NAME_ENTRY *attr_names = NULL;
3729 u32 attr_names_bytes = 0;
3730 u32 oatbl_bytes = 0;
3731 struct RESTART_TABLE *dptbl = NULL;
3732 struct RESTART_TABLE *trtbl = NULL;
3733 const struct RESTART_TABLE *rt;
3734 struct RESTART_TABLE *oatbl = NULL;
3735 struct inode *inode;
3736 struct OpenAttr *oa;
3737 struct ntfs_inode *ni_oe;
3738 struct ATTRIB *attr = NULL;
3739 u64 size, vcn, undo_next_lsn;
3740 CLST rno, lcn, lcn0, len0, clen;
3741 void *data;
3742 struct NTFS_RESTART *rst = NULL;
3743 struct lcb *lcb = NULL;
3744 struct OPEN_ATTR_ENRTY *oe;
3745 struct ATTR_NAME_ENTRY *ane;
3746 struct TRANSACTION_ENTRY *tr;
3747 struct DIR_PAGE_ENTRY *dp;
3748 u32 i, bytes_per_attr_entry;
3749 u32 vbo, tail, off, dlen;
3750 u32 saved_len, rec_len, transact_id;
3751 bool use_second_page;
3752 struct RESTART_AREA *ra2, *ra = NULL;
3753 struct CLIENT_REC *ca, *cr;
3754 __le16 client;
3755 struct RESTART_HDR *rh;
3756 const struct LFS_RECORD_HDR *frh;
3757 const struct LOG_REC_HDR *lrh;
3758 bool is_mapped;
3759 bool is_ro = sb_rdonly(sbi->sb);
3760 u64 t64;
3761 u16 t16;
3762 u32 t32;
3763
3764 log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3765 if (!log)
3766 return -ENOMEM;
3767
3768 log->ni = ni;
3769 log->l_size = log->orig_file_size = ni->vfs_inode.i_size;
3770
3771 /* Get the size of page. NOTE: To replay we can use default page. */
3772 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3773 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, true);
3774 #else
3775 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, false);
3776 #endif
3777 if (!log->page_size) {
3778 err = -EINVAL;
3779 goto out;
3780 }
3781
3782 log->one_page_buf = kmalloc(log->page_size, GFP_NOFS);
3783 if (!log->one_page_buf) {
3784 err = -ENOMEM;
3785 goto out;
3786 }
3787
3788 log->page_mask = log->page_size - 1;
3789 log->page_bits = blksize_bits(log->page_size);
3790
3791 /* Look for a restart area on the disk. */
3792 err = log_read_rst(log, true, &log->rst_info);
3793 if (err)
3794 goto out;
3795
3796 /* remember 'initialized' */
3797 *initialized = log->rst_info.initialized;
3798
3799 if (!log->rst_info.restart) {
3800 if (log->rst_info.initialized) {
3801 /* No restart area but the file is not initialized. */
3802 err = -EINVAL;
3803 goto out;
3804 }
3805
3806 log_init_pg_hdr(log, 1, 1);
3807 log_create(log, 0, get_random_u32(), false, false);
3808
3809 ra = log_create_ra(log);
3810 if (!ra) {
3811 err = -ENOMEM;
3812 goto out;
3813 }
3814 log->ra = ra;
3815 log->init_ra = true;
3816
3817 goto process_log;
3818 }
3819
3820 /*
3821 * If the restart offset above wasn't zero then we won't
3822 * look for a second restart.
3823 */
3824 if (log->rst_info.vbo)
3825 goto check_restart_area;
3826
3827 err = log_read_rst(log, false, &log->rst_info2);
3828 if (err)
3829 goto out;
3830
3831 /* Determine which restart area to use. */
3832 if (!log->rst_info2.restart ||
3833 log->rst_info2.last_lsn <= log->rst_info.last_lsn)
3834 goto use_first_page;
3835
3836 use_second_page = true;
3837
3838 if (log->rst_info.chkdsk_was_run &&
3839 log->page_size != log->rst_info.vbo) {
3840 struct RECORD_PAGE_HDR *sp = NULL;
3841 bool usa_error;
3842
3843 if (!read_log_page(log, log->page_size, &sp, &usa_error) &&
3844 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3845 use_second_page = false;
3846 }
3847 kfree(sp);
3848 }
3849
3850 if (use_second_page) {
3851 kfree(log->rst_info.r_page);
3852 memcpy(&log->rst_info, &log->rst_info2,
3853 sizeof(struct restart_info));
3854 log->rst_info2.r_page = NULL;
3855 }
3856
3857 use_first_page:
3858 kfree(log->rst_info2.r_page);
3859
3860 check_restart_area:
3861 /*
3862 * If the restart area is at offset 0, we want
3863 * to write the second restart area first.
3864 */
3865 log->init_ra = !!log->rst_info.vbo;
3866
3867 /* If we have a valid page then grab a pointer to the restart area. */
3868 ra2 = log->rst_info.valid_page ?
3869 Add2Ptr(log->rst_info.r_page,
3870 le16_to_cpu(log->rst_info.r_page->ra_off)) :
3871 NULL;
3872
3873 if (log->rst_info.chkdsk_was_run ||
3874 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3875 bool wrapped = false;
3876 bool use_multi_page = false;
3877 u32 open_log_count;
3878
3879 /* Do some checks based on whether we have a valid log page. */
3880 open_log_count = log->rst_info.valid_page ?
3881 le32_to_cpu(ra2->open_log_count) :
3882 get_random_u32();
3883
3884 log_init_pg_hdr(log, 1, 1);
3885
3886 log_create(log, log->rst_info.last_lsn, open_log_count, wrapped,
3887 use_multi_page);
3888
3889 ra = log_create_ra(log);
3890 if (!ra) {
3891 err = -ENOMEM;
3892 goto out;
3893 }
3894 log->ra = ra;
3895
3896 /* Put the restart areas and initialize
3897 * the log file as required.
3898 */
3899 goto process_log;
3900 }
3901
3902 if (!ra2) {
3903 err = -EINVAL;
3904 goto out;
3905 }
3906
3907 /*
3908 * If the log page or the system page sizes have changed, we can't
3909 * use the log file. We must use the system page size instead of the
3910 * default size if there is not a clean shutdown.
3911 */
3912 t32 = le32_to_cpu(log->rst_info.r_page->sys_page_size);
3913 if (log->page_size != t32) {
3914 log->l_size = log->orig_file_size;
3915 log->page_size = norm_file_page(t32, &log->l_size,
3916 t32 == DefaultLogPageSize);
3917 }
3918
3919 if (log->page_size != t32 ||
3920 log->page_size != le32_to_cpu(log->rst_info.r_page->page_size)) {
3921 err = -EINVAL;
3922 goto out;
3923 }
3924
3925 log->page_mask = log->page_size - 1;
3926 log->page_bits = blksize_bits(log->page_size);
3927
3928 /* If the file size has shrunk then we won't mount it. */
3929 if (log->l_size < le64_to_cpu(ra2->l_size)) {
3930 err = -EINVAL;
3931 goto out;
3932 }
3933
3934 log_init_pg_hdr(log, le16_to_cpu(log->rst_info.r_page->major_ver),
3935 le16_to_cpu(log->rst_info.r_page->minor_ver));
3936
3937 log->l_size = le64_to_cpu(ra2->l_size);
3938 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3939 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3940 log->seq_num_mask = (8 << log->file_data_bits) - 1;
3941 log->last_lsn = le64_to_cpu(ra2->current_lsn);
3942 log->seq_num = log->last_lsn >> log->file_data_bits;
3943 log->ra_off = le16_to_cpu(log->rst_info.r_page->ra_off);
3944 log->restart_size = log->sys_page_size - log->ra_off;
3945 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3946 log->ra_size = le16_to_cpu(ra2->ra_len);
3947 log->data_off = le16_to_cpu(ra2->data_off);
3948 log->data_size = log->page_size - log->data_off;
3949 log->reserved = log->data_size - log->record_header_len;
3950
3951 vbo = lsn_to_vbo(log, log->last_lsn);
3952
3953 if (vbo < log->first_page) {
3954 /* This is a pseudo lsn. */
3955 log->l_flags |= NTFSLOG_NO_LAST_LSN;
3956 log->next_page = log->first_page;
3957 goto find_oldest;
3958 }
3959
3960 /* Find the end of this log record. */
3961 off = final_log_off(log, log->last_lsn,
3962 le32_to_cpu(ra2->last_lsn_data_len));
3963
3964 /* If we wrapped the file then increment the sequence number. */
3965 if (off <= vbo) {
3966 log->seq_num += 1;
3967 log->l_flags |= NTFSLOG_WRAPPED;
3968 }
3969
3970 /* Now compute the next log page to use. */
3971 vbo &= ~log->sys_page_mask;
3972 tail = log->page_size - (off & log->page_mask) - 1;
3973
3974 /*
3975 *If we can fit another log record on the page,
3976 * move back a page the log file.
3977 */
3978 if (tail >= log->record_header_len) {
3979 log->l_flags |= NTFSLOG_REUSE_TAIL;
3980 log->next_page = vbo;
3981 } else {
3982 log->next_page = next_page_off(log, vbo);
3983 }
3984
3985 find_oldest:
3986 /*
3987 * Find the oldest client lsn. Use the last
3988 * flushed lsn as a starting point.
3989 */
3990 log->oldest_lsn = log->last_lsn;
3991 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
3992 ra2->client_idx[1], &log->oldest_lsn);
3993 log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
3994
3995 if (log->oldest_lsn_off < log->first_page)
3996 log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
3997
3998 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
3999 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4000
4001 log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4002 log->total_avail_pages = log->l_size - log->first_page;
4003 log->total_avail = log->total_avail_pages >> log->page_bits;
4004 log->max_current_avail = log->total_avail * log->reserved;
4005 log->total_avail = log->total_avail * log->data_size;
4006
4007 log->current_avail = current_log_avail(log);
4008
4009 ra = kzalloc(log->restart_size, GFP_NOFS);
4010 if (!ra) {
4011 err = -ENOMEM;
4012 goto out;
4013 }
4014 log->ra = ra;
4015
4016 t16 = le16_to_cpu(ra2->client_off);
4017 if (t16 == offsetof(struct RESTART_AREA, clients)) {
4018 memcpy(ra, ra2, log->ra_size);
4019 } else {
4020 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4021 memcpy(ra->clients, Add2Ptr(ra2, t16),
4022 le16_to_cpu(ra2->ra_len) - t16);
4023
4024 log->current_openlog_count = get_random_u32();
4025 ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4026 log->ra_size = offsetof(struct RESTART_AREA, clients) +
4027 sizeof(struct CLIENT_REC);
4028 ra->client_off =
4029 cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4030 ra->ra_len = cpu_to_le16(log->ra_size);
4031 }
4032
4033 le32_add_cpu(&ra->open_log_count, 1);
4034
4035 /* Now we need to walk through looking for the last lsn. */
4036 err = last_log_lsn(log);
4037 if (err)
4038 goto out;
4039
4040 log->current_avail = current_log_avail(log);
4041
4042 /* Remember which restart area to write first. */
4043 log->init_ra = log->rst_info.vbo;
4044
4045 process_log:
4046 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4047 switch ((log->major_ver << 16) + log->minor_ver) {
4048 case 0x10000:
4049 case 0x10001:
4050 case 0x20000:
4051 break;
4052 default:
4053 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4054 log->major_ver, log->minor_ver);
4055 err = -EOPNOTSUPP;
4056 log->set_dirty = true;
4057 goto out;
4058 }
4059
4060 /* One client "NTFS" per logfile. */
4061 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4062
4063 for (client = ra->client_idx[1];; client = cr->next_client) {
4064 if (client == LFS_NO_CLIENT_LE) {
4065 /* Insert "NTFS" client LogFile. */
4066 client = ra->client_idx[0];
4067 if (client == LFS_NO_CLIENT_LE) {
4068 err = -EINVAL;
4069 goto out;
4070 }
4071
4072 t16 = le16_to_cpu(client);
4073 cr = ca + t16;
4074
4075 remove_client(ca, cr, &ra->client_idx[0]);
4076
4077 cr->restart_lsn = 0;
4078 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4079 cr->name_bytes = cpu_to_le32(8);
4080 cr->name[0] = cpu_to_le16('N');
4081 cr->name[1] = cpu_to_le16('T');
4082 cr->name[2] = cpu_to_le16('F');
4083 cr->name[3] = cpu_to_le16('S');
4084
4085 add_client(ca, t16, &ra->client_idx[1]);
4086 break;
4087 }
4088
4089 cr = ca + le16_to_cpu(client);
4090
4091 if (cpu_to_le32(8) == cr->name_bytes &&
4092 cpu_to_le16('N') == cr->name[0] &&
4093 cpu_to_le16('T') == cr->name[1] &&
4094 cpu_to_le16('F') == cr->name[2] &&
4095 cpu_to_le16('S') == cr->name[3])
4096 break;
4097 }
4098
4099 /* Update the client handle with the client block information. */
4100 log->client_id.seq_num = cr->seq_num;
4101 log->client_id.client_idx = client;
4102
4103 err = read_rst_area(log, &rst, &checkpt_lsn);
4104 if (err)
4105 goto out;
4106
4107 if (!rst)
4108 goto out;
4109
4110 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4111
4112 if (rst->check_point_start)
4113 checkpt_lsn = le64_to_cpu(rst->check_point_start);
4114
4115 /* Allocate and Read the Transaction Table. */
4116 if (!rst->transact_table_len)
4117 goto check_dirty_page_table;
4118
4119 t64 = le64_to_cpu(rst->transact_table_lsn);
4120 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4121 if (err)
4122 goto out;
4123
4124 lrh = lcb->log_rec;
4125 frh = lcb->lrh;
4126 rec_len = le32_to_cpu(frh->client_data_len);
4127
4128 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4129 bytes_per_attr_entry)) {
4130 err = -EINVAL;
4131 goto out;
4132 }
4133
4134 t16 = le16_to_cpu(lrh->redo_off);
4135
4136 rt = Add2Ptr(lrh, t16);
4137 t32 = rec_len - t16;
4138
4139 /* Now check that this is a valid restart table. */
4140 if (!check_rstbl(rt, t32)) {
4141 err = -EINVAL;
4142 goto out;
4143 }
4144
4145 trtbl = kmemdup(rt, t32, GFP_NOFS);
4146 if (!trtbl) {
4147 err = -ENOMEM;
4148 goto out;
4149 }
4150
4151 lcb_put(lcb);
4152 lcb = NULL;
4153
4154 check_dirty_page_table:
4155 /* The next record back should be the Dirty Pages Table. */
4156 if (!rst->dirty_pages_len)
4157 goto check_attribute_names;
4158
4159 t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4160 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4161 if (err)
4162 goto out;
4163
4164 lrh = lcb->log_rec;
4165 frh = lcb->lrh;
4166 rec_len = le32_to_cpu(frh->client_data_len);
4167
4168 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4169 bytes_per_attr_entry)) {
4170 err = -EINVAL;
4171 goto out;
4172 }
4173
4174 t16 = le16_to_cpu(lrh->redo_off);
4175
4176 rt = Add2Ptr(lrh, t16);
4177 t32 = rec_len - t16;
4178
4179 /* Now check that this is a valid restart table. */
4180 if (!check_rstbl(rt, t32)) {
4181 err = -EINVAL;
4182 goto out;
4183 }
4184
4185 dptbl = kmemdup(rt, t32, GFP_NOFS);
4186 if (!dptbl) {
4187 err = -ENOMEM;
4188 goto out;
4189 }
4190
4191 /* Convert Ra version '0' into version '1'. */
4192 if (rst->major_ver)
4193 goto end_conv_1;
4194
4195 dp = NULL;
4196 while ((dp = enum_rstbl(dptbl, dp))) {
4197 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4198 // NOTE: Danger. Check for of boundary.
4199 memmove(&dp->vcn, &dp0->vcn_low,
4200 2 * sizeof(u64) +
4201 le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4202 }
4203
4204 end_conv_1:
4205 lcb_put(lcb);
4206 lcb = NULL;
4207
4208 /*
4209 * Go through the table and remove the duplicates,
4210 * remembering the oldest lsn values.
4211 */
4212 if (sbi->cluster_size <= log->page_size)
4213 goto trace_dp_table;
4214
4215 dp = NULL;
4216 while ((dp = enum_rstbl(dptbl, dp))) {
4217 struct DIR_PAGE_ENTRY *next = dp;
4218
4219 while ((next = enum_rstbl(dptbl, next))) {
4220 if (next->target_attr == dp->target_attr &&
4221 next->vcn == dp->vcn) {
4222 if (le64_to_cpu(next->oldest_lsn) <
4223 le64_to_cpu(dp->oldest_lsn)) {
4224 dp->oldest_lsn = next->oldest_lsn;
4225 }
4226
4227 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4228 }
4229 }
4230 }
4231 trace_dp_table:
4232 check_attribute_names:
4233 /* The next record should be the Attribute Names. */
4234 if (!rst->attr_names_len)
4235 goto check_attr_table;
4236
4237 t64 = le64_to_cpu(rst->attr_names_lsn);
4238 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4239 if (err)
4240 goto out;
4241
4242 lrh = lcb->log_rec;
4243 frh = lcb->lrh;
4244 rec_len = le32_to_cpu(frh->client_data_len);
4245
4246 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4247 bytes_per_attr_entry)) {
4248 err = -EINVAL;
4249 goto out;
4250 }
4251
4252 t32 = lrh_length(lrh);
4253 rec_len -= t32;
4254
4255 attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4256 if (!attr_names) {
4257 err = -ENOMEM;
4258 goto out;
4259 }
4260
4261 lcb_put(lcb);
4262 lcb = NULL;
4263
4264 check_attr_table:
4265 /* The next record should be the attribute Table. */
4266 if (!rst->open_attr_len)
4267 goto check_attribute_names2;
4268
4269 t64 = le64_to_cpu(rst->open_attr_table_lsn);
4270 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4271 if (err)
4272 goto out;
4273
4274 lrh = lcb->log_rec;
4275 frh = lcb->lrh;
4276 rec_len = le32_to_cpu(frh->client_data_len);
4277
4278 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4279 bytes_per_attr_entry)) {
4280 err = -EINVAL;
4281 goto out;
4282 }
4283
4284 t16 = le16_to_cpu(lrh->redo_off);
4285
4286 rt = Add2Ptr(lrh, t16);
4287 t32 = rec_len - t16;
4288
4289 if (!check_rstbl(rt, t32)) {
4290 err = -EINVAL;
4291 goto out;
4292 }
4293
4294 oatbl = kmemdup(rt, t32, GFP_NOFS);
4295 if (!oatbl) {
4296 err = -ENOMEM;
4297 goto out;
4298 }
4299
4300 log->open_attr_tbl = oatbl;
4301
4302 /* Clear all of the Attr pointers. */
4303 oe = NULL;
4304 while ((oe = enum_rstbl(oatbl, oe))) {
4305 if (!rst->major_ver) {
4306 struct OPEN_ATTR_ENRTY_32 oe0;
4307
4308 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4309 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4310
4311 oe->bytes_per_index = oe0.bytes_per_index;
4312 oe->type = oe0.type;
4313 oe->is_dirty_pages = oe0.is_dirty_pages;
4314 oe->name_len = 0;
4315 oe->ref = oe0.ref;
4316 oe->open_record_lsn = oe0.open_record_lsn;
4317 }
4318
4319 oe->is_attr_name = 0;
4320 oe->ptr = NULL;
4321 }
4322
4323 lcb_put(lcb);
4324 lcb = NULL;
4325
4326 check_attribute_names2:
4327 if (attr_names && oatbl) {
4328 off = 0;
4329 for (;;) {
4330 /* Check we can use attribute name entry 'ane'. */
4331 static_assert(sizeof(*ane) == 4);
4332 if (off + sizeof(*ane) > attr_names_bytes) {
4333 /* just ignore the rest. */
4334 break;
4335 }
4336
4337 ane = Add2Ptr(attr_names, off);
4338 t16 = le16_to_cpu(ane->off);
4339 if (!t16) {
4340 /* this is the only valid exit. */
4341 break;
4342 }
4343
4344 /* Check we can use open attribute entry 'oe'. */
4345 if (t16 + sizeof(*oe) > oatbl_bytes) {
4346 /* just ignore the rest. */
4347 break;
4348 }
4349
4350 /* TODO: Clear table on exit! */
4351 oe = Add2Ptr(oatbl, t16);
4352 t16 = le16_to_cpu(ane->name_bytes);
4353 off += t16 + sizeof(*ane);
4354 if (off > attr_names_bytes) {
4355 /* just ignore the rest. */
4356 break;
4357 }
4358 oe->name_len = t16 / sizeof(short);
4359 oe->ptr = ane->name;
4360 oe->is_attr_name = 2;
4361 }
4362 }
4363
4364 /*
4365 * If the checkpt_lsn is zero, then this is a freshly
4366 * formatted disk and we have no work to do.
4367 */
4368 if (!checkpt_lsn) {
4369 err = 0;
4370 goto out;
4371 }
4372
4373 if (!oatbl) {
4374 oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4375 if (!oatbl) {
4376 err = -ENOMEM;
4377 goto out;
4378 }
4379 }
4380
4381 log->open_attr_tbl = oatbl;
4382
4383 /* Start the analysis pass from the Checkpoint lsn. */
4384 rec_lsn = checkpt_lsn;
4385
4386 /* Read the first lsn. */
4387 err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4388 if (err)
4389 goto out;
4390
4391 /* Loop to read all subsequent records to the end of the log file. */
4392 next_log_record_analyze:
4393 err = read_next_log_rec(log, lcb, &rec_lsn);
4394 if (err)
4395 goto out;
4396
4397 if (!rec_lsn)
4398 goto end_log_records_enumerate;
4399
4400 frh = lcb->lrh;
4401 transact_id = le32_to_cpu(frh->transact_id);
4402 rec_len = le32_to_cpu(frh->client_data_len);
4403 lrh = lcb->log_rec;
4404
4405 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4406 err = -EINVAL;
4407 goto out;
4408 }
4409
4410 /*
4411 * The first lsn after the previous lsn remembered
4412 * the checkpoint is the first candidate for the rlsn.
4413 */
4414 if (!rlsn)
4415 rlsn = rec_lsn;
4416
4417 if (LfsClientRecord != frh->record_type)
4418 goto next_log_record_analyze;
4419
4420 /*
4421 * Now update the Transaction Table for this transaction. If there
4422 * is no entry present or it is unallocated we allocate the entry.
4423 */
4424 if (!trtbl) {
4425 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4426 INITIAL_NUMBER_TRANSACTIONS);
4427 if (!trtbl) {
4428 err = -ENOMEM;
4429 goto out;
4430 }
4431 }
4432
4433 tr = Add2Ptr(trtbl, transact_id);
4434
4435 if (transact_id >= bytes_per_rt(trtbl) ||
4436 tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4437 tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4438 if (!tr) {
4439 err = -ENOMEM;
4440 goto out;
4441 }
4442 tr->transact_state = TransactionActive;
4443 tr->first_lsn = cpu_to_le64(rec_lsn);
4444 }
4445
4446 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4447
4448 /*
4449 * If this is a compensation log record, then change
4450 * the undo_next_lsn to be the undo_next_lsn of this record.
4451 */
4452 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4453 tr->undo_next_lsn = frh->client_undo_next_lsn;
4454
4455 /* Dispatch to handle log record depending on type. */
4456 switch (le16_to_cpu(lrh->redo_op)) {
4457 case InitializeFileRecordSegment:
4458 case DeallocateFileRecordSegment:
4459 case WriteEndOfFileRecordSegment:
4460 case CreateAttribute:
4461 case DeleteAttribute:
4462 case UpdateResidentValue:
4463 case UpdateNonresidentValue:
4464 case UpdateMappingPairs:
4465 case SetNewAttributeSizes:
4466 case AddIndexEntryRoot:
4467 case DeleteIndexEntryRoot:
4468 case AddIndexEntryAllocation:
4469 case DeleteIndexEntryAllocation:
4470 case WriteEndOfIndexBuffer:
4471 case SetIndexEntryVcnRoot:
4472 case SetIndexEntryVcnAllocation:
4473 case UpdateFileNameRoot:
4474 case UpdateFileNameAllocation:
4475 case SetBitsInNonresidentBitMap:
4476 case ClearBitsInNonresidentBitMap:
4477 case UpdateRecordDataRoot:
4478 case UpdateRecordDataAllocation:
4479 case ZeroEndOfFileRecord:
4480 t16 = le16_to_cpu(lrh->target_attr);
4481 t64 = le64_to_cpu(lrh->target_vcn);
4482 dp = find_dp(dptbl, t16, t64);
4483
4484 if (dp)
4485 goto copy_lcns;
4486
4487 /*
4488 * Calculate the number of clusters per page the system
4489 * which wrote the checkpoint, possibly creating the table.
4490 */
4491 if (dptbl) {
4492 t32 = (le16_to_cpu(dptbl->size) -
4493 sizeof(struct DIR_PAGE_ENTRY)) /
4494 sizeof(u64);
4495 } else {
4496 t32 = log->clst_per_page;
4497 kfree(dptbl);
4498 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4499 32);
4500 if (!dptbl) {
4501 err = -ENOMEM;
4502 goto out;
4503 }
4504 }
4505
4506 dp = alloc_rsttbl_idx(&dptbl);
4507 if (!dp) {
4508 err = -ENOMEM;
4509 goto out;
4510 }
4511 dp->target_attr = cpu_to_le32(t16);
4512 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4513 dp->lcns_follow = cpu_to_le32(t32);
4514 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4515 dp->oldest_lsn = cpu_to_le64(rec_lsn);
4516
4517 copy_lcns:
4518 /*
4519 * Copy the Lcns from the log record into the Dirty Page Entry.
4520 * TODO: For different page size support, must somehow make
4521 * whole routine a loop, case Lcns do not fit below.
4522 */
4523 t16 = le16_to_cpu(lrh->lcns_follow);
4524 for (i = 0; i < t16; i++) {
4525 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4526 le64_to_cpu(dp->vcn));
4527 dp->page_lcns[j + i] = lrh->page_lcns[i];
4528 }
4529
4530 goto next_log_record_analyze;
4531
4532 case DeleteDirtyClusters: {
4533 u32 range_count =
4534 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4535 const struct LCN_RANGE *r =
4536 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4537
4538 /* Loop through all of the Lcn ranges this log record. */
4539 for (i = 0; i < range_count; i++, r++) {
4540 u64 lcn0 = le64_to_cpu(r->lcn);
4541 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4542
4543 dp = NULL;
4544 while ((dp = enum_rstbl(dptbl, dp))) {
4545 u32 j;
4546
4547 t32 = le32_to_cpu(dp->lcns_follow);
4548 for (j = 0; j < t32; j++) {
4549 t64 = le64_to_cpu(dp->page_lcns[j]);
4550 if (t64 >= lcn0 && t64 <= lcn_e)
4551 dp->page_lcns[j] = 0;
4552 }
4553 }
4554 }
4555 goto next_log_record_analyze;
4556 ;
4557 }
4558
4559 case OpenNonresidentAttribute:
4560 t16 = le16_to_cpu(lrh->target_attr);
4561 if (t16 >= bytes_per_rt(oatbl)) {
4562 /*
4563 * Compute how big the table needs to be.
4564 * Add 10 extra entries for some cushion.
4565 */
4566 u32 new_e = t16 / le16_to_cpu(oatbl->size);
4567
4568 new_e += 10 - le16_to_cpu(oatbl->used);
4569
4570 oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4571 log->open_attr_tbl = oatbl;
4572 if (!oatbl) {
4573 err = -ENOMEM;
4574 goto out;
4575 }
4576 }
4577
4578 /* Point to the entry being opened. */
4579 oe = alloc_rsttbl_from_idx(&oatbl, t16);
4580 log->open_attr_tbl = oatbl;
4581 if (!oe) {
4582 err = -ENOMEM;
4583 goto out;
4584 }
4585
4586 /* Initialize this entry from the log record. */
4587 t16 = le16_to_cpu(lrh->redo_off);
4588 if (!rst->major_ver) {
4589 /* Convert version '0' into version '1'. */
4590 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4591
4592 oe->bytes_per_index = oe0->bytes_per_index;
4593 oe->type = oe0->type;
4594 oe->is_dirty_pages = oe0->is_dirty_pages;
4595 oe->name_len = 0; //oe0.name_len;
4596 oe->ref = oe0->ref;
4597 oe->open_record_lsn = oe0->open_record_lsn;
4598 } else {
4599 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4600 }
4601
4602 t16 = le16_to_cpu(lrh->undo_len);
4603 if (t16) {
4604 oe->ptr = kmalloc(t16, GFP_NOFS);
4605 if (!oe->ptr) {
4606 err = -ENOMEM;
4607 goto out;
4608 }
4609 oe->name_len = t16 / sizeof(short);
4610 memcpy(oe->ptr,
4611 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4612 oe->is_attr_name = 1;
4613 } else {
4614 oe->ptr = NULL;
4615 oe->is_attr_name = 0;
4616 }
4617
4618 goto next_log_record_analyze;
4619
4620 case HotFix:
4621 t16 = le16_to_cpu(lrh->target_attr);
4622 t64 = le64_to_cpu(lrh->target_vcn);
4623 dp = find_dp(dptbl, t16, t64);
4624 if (dp) {
4625 size_t j = le64_to_cpu(lrh->target_vcn) -
4626 le64_to_cpu(dp->vcn);
4627 if (dp->page_lcns[j])
4628 dp->page_lcns[j] = lrh->page_lcns[0];
4629 }
4630 goto next_log_record_analyze;
4631
4632 case EndTopLevelAction:
4633 tr = Add2Ptr(trtbl, transact_id);
4634 tr->prev_lsn = cpu_to_le64(rec_lsn);
4635 tr->undo_next_lsn = frh->client_undo_next_lsn;
4636 goto next_log_record_analyze;
4637
4638 case PrepareTransaction:
4639 tr = Add2Ptr(trtbl, transact_id);
4640 tr->transact_state = TransactionPrepared;
4641 goto next_log_record_analyze;
4642
4643 case CommitTransaction:
4644 tr = Add2Ptr(trtbl, transact_id);
4645 tr->transact_state = TransactionCommitted;
4646 goto next_log_record_analyze;
4647
4648 case ForgetTransaction:
4649 free_rsttbl_idx(trtbl, transact_id);
4650 goto next_log_record_analyze;
4651
4652 case Noop:
4653 case OpenAttributeTableDump:
4654 case AttributeNamesDump:
4655 case DirtyPageTableDump:
4656 case TransactionTableDump:
4657 /* The following cases require no action the Analysis Pass. */
4658 goto next_log_record_analyze;
4659
4660 default:
4661 /*
4662 * All codes will be explicitly handled.
4663 * If we see a code we do not expect, then we are trouble.
4664 */
4665 goto next_log_record_analyze;
4666 }
4667
4668 end_log_records_enumerate:
4669 lcb_put(lcb);
4670 lcb = NULL;
4671
4672 /*
4673 * Scan the Dirty Page Table and Transaction Table for
4674 * the lowest lsn, and return it as the Redo lsn.
4675 */
4676 dp = NULL;
4677 while ((dp = enum_rstbl(dptbl, dp))) {
4678 t64 = le64_to_cpu(dp->oldest_lsn);
4679 if (t64 && t64 < rlsn)
4680 rlsn = t64;
4681 }
4682
4683 tr = NULL;
4684 while ((tr = enum_rstbl(trtbl, tr))) {
4685 t64 = le64_to_cpu(tr->first_lsn);
4686 if (t64 && t64 < rlsn)
4687 rlsn = t64;
4688 }
4689
4690 /*
4691 * Only proceed if the Dirty Page Table or Transaction
4692 * table are not empty.
4693 */
4694 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4695 goto end_reply;
4696
4697 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4698 if (is_ro)
4699 goto out;
4700
4701 /* Reopen all of the attributes with dirty pages. */
4702 oe = NULL;
4703 next_open_attribute:
4704
4705 oe = enum_rstbl(oatbl, oe);
4706 if (!oe) {
4707 err = 0;
4708 dp = NULL;
4709 goto next_dirty_page;
4710 }
4711
4712 oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4713 if (!oa) {
4714 err = -ENOMEM;
4715 goto out;
4716 }
4717
4718 inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4719 if (IS_ERR(inode))
4720 goto fake_attr;
4721
4722 if (is_bad_inode(inode)) {
4723 iput(inode);
4724 fake_attr:
4725 if (oa->ni) {
4726 iput(&oa->ni->vfs_inode);
4727 oa->ni = NULL;
4728 }
4729
4730 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4731 oe->name_len, 0);
4732 if (!attr) {
4733 kfree(oa);
4734 err = -ENOMEM;
4735 goto out;
4736 }
4737 oa->attr = attr;
4738 oa->run1 = &oa->run0;
4739 goto final_oe;
4740 }
4741
4742 ni_oe = ntfs_i(inode);
4743 oa->ni = ni_oe;
4744
4745 attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4746 NULL, NULL);
4747
4748 if (!attr)
4749 goto fake_attr;
4750
4751 t32 = le32_to_cpu(attr->size);
4752 oa->attr = kmemdup(attr, t32, GFP_NOFS);
4753 if (!oa->attr)
4754 goto fake_attr;
4755
4756 if (!S_ISDIR(inode->i_mode)) {
4757 if (attr->type == ATTR_DATA && !attr->name_len) {
4758 oa->run1 = &ni_oe->file.run;
4759 goto final_oe;
4760 }
4761 } else {
4762 if (attr->type == ATTR_ALLOC &&
4763 attr->name_len == ARRAY_SIZE(I30_NAME) &&
4764 !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4765 oa->run1 = &ni_oe->dir.alloc_run;
4766 goto final_oe;
4767 }
4768 }
4769
4770 if (attr->non_res) {
4771 u16 roff = le16_to_cpu(attr->nres.run_off);
4772 CLST svcn = le64_to_cpu(attr->nres.svcn);
4773
4774 if (roff > t32) {
4775 kfree(oa->attr);
4776 oa->attr = NULL;
4777 goto fake_attr;
4778 }
4779
4780 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4781 le64_to_cpu(attr->nres.evcn), svcn,
4782 Add2Ptr(attr, roff), t32 - roff);
4783 if (err < 0) {
4784 kfree(oa->attr);
4785 oa->attr = NULL;
4786 goto fake_attr;
4787 }
4788 err = 0;
4789 }
4790 oa->run1 = &oa->run0;
4791 attr = oa->attr;
4792
4793 final_oe:
4794 if (oe->is_attr_name == 1)
4795 kfree(oe->ptr);
4796 oe->is_attr_name = 0;
4797 oe->ptr = oa;
4798 oe->name_len = attr->name_len;
4799
4800 goto next_open_attribute;
4801
4802 /*
4803 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4804 * Mapping that we have, and insert it into the appropriate run.
4805 */
4806 next_dirty_page:
4807 dp = enum_rstbl(dptbl, dp);
4808 if (!dp)
4809 goto do_redo_1;
4810
4811 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4812
4813 if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4814 goto next_dirty_page;
4815
4816 oa = oe->ptr;
4817 if (!oa)
4818 goto next_dirty_page;
4819
4820 i = -1;
4821 next_dirty_page_vcn:
4822 i += 1;
4823 if (i >= le32_to_cpu(dp->lcns_follow))
4824 goto next_dirty_page;
4825
4826 vcn = le64_to_cpu(dp->vcn) + i;
4827 size = (vcn + 1) << sbi->cluster_bits;
4828
4829 if (!dp->page_lcns[i])
4830 goto next_dirty_page_vcn;
4831
4832 rno = ino_get(&oe->ref);
4833 if (rno <= MFT_REC_MIRR &&
4834 size < (MFT_REC_VOL + 1) * sbi->record_size &&
4835 oe->type == ATTR_DATA) {
4836 goto next_dirty_page_vcn;
4837 }
4838
4839 lcn = le64_to_cpu(dp->page_lcns[i]);
4840
4841 if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4842 lcn0 != lcn) &&
4843 !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4844 err = -ENOMEM;
4845 goto out;
4846 }
4847 attr = oa->attr;
4848 if (size > le64_to_cpu(attr->nres.alloc_size)) {
4849 attr->nres.valid_size = attr->nres.data_size =
4850 attr->nres.alloc_size = cpu_to_le64(size);
4851 }
4852 goto next_dirty_page_vcn;
4853
4854 do_redo_1:
4855 /*
4856 * Perform the Redo Pass, to restore all of the dirty pages to the same
4857 * contents that they had immediately before the crash. If the dirty
4858 * page table is empty, then we can skip the entire Redo Pass.
4859 */
4860 if (!dptbl || !dptbl->total)
4861 goto do_undo_action;
4862
4863 rec_lsn = rlsn;
4864
4865 /*
4866 * Read the record at the Redo lsn, before falling
4867 * into common code to handle each record.
4868 */
4869 err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4870 if (err)
4871 goto out;
4872
4873 /*
4874 * Now loop to read all of our log records forwards, until
4875 * we hit the end of the file, cleaning up at the end.
4876 */
4877 do_action_next:
4878 frh = lcb->lrh;
4879
4880 if (LfsClientRecord != frh->record_type)
4881 goto read_next_log_do_action;
4882
4883 transact_id = le32_to_cpu(frh->transact_id);
4884 rec_len = le32_to_cpu(frh->client_data_len);
4885 lrh = lcb->log_rec;
4886
4887 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4888 err = -EINVAL;
4889 goto out;
4890 }
4891
4892 /* Ignore log records that do not update pages. */
4893 if (lrh->lcns_follow)
4894 goto find_dirty_page;
4895
4896 goto read_next_log_do_action;
4897
4898 find_dirty_page:
4899 t16 = le16_to_cpu(lrh->target_attr);
4900 t64 = le64_to_cpu(lrh->target_vcn);
4901 dp = find_dp(dptbl, t16, t64);
4902
4903 if (!dp)
4904 goto read_next_log_do_action;
4905
4906 if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4907 goto read_next_log_do_action;
4908
4909 t16 = le16_to_cpu(lrh->target_attr);
4910 if (t16 >= bytes_per_rt(oatbl)) {
4911 err = -EINVAL;
4912 goto out;
4913 }
4914
4915 oe = Add2Ptr(oatbl, t16);
4916
4917 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4918 err = -EINVAL;
4919 goto out;
4920 }
4921
4922 oa = oe->ptr;
4923
4924 if (!oa) {
4925 err = -EINVAL;
4926 goto out;
4927 }
4928 attr = oa->attr;
4929
4930 vcn = le64_to_cpu(lrh->target_vcn);
4931
4932 if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4933 lcn == SPARSE_LCN) {
4934 goto read_next_log_do_action;
4935 }
4936
4937 /* Point to the Redo data and get its length. */
4938 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4939 dlen = le16_to_cpu(lrh->redo_len);
4940
4941 /* Shorten length by any Lcns which were deleted. */
4942 saved_len = dlen;
4943
4944 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4945 size_t j;
4946 u32 alen, voff;
4947
4948 voff = le16_to_cpu(lrh->record_off) +
4949 le16_to_cpu(lrh->attr_off);
4950 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4951
4952 /* If the Vcn question is allocated, we can just get out. */
4953 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4954 if (dp->page_lcns[j + i - 1])
4955 break;
4956
4957 if (!saved_len)
4958 saved_len = 1;
4959
4960 /*
4961 * Calculate the allocated space left relative to the
4962 * log record Vcn, after removing this unallocated Vcn.
4963 */
4964 alen = (i - 1) << sbi->cluster_bits;
4965
4966 /*
4967 * If the update described this log record goes beyond
4968 * the allocated space, then we will have to reduce the length.
4969 */
4970 if (voff >= alen)
4971 dlen = 0;
4972 else if (voff + dlen > alen)
4973 dlen = alen - voff;
4974 }
4975
4976 /*
4977 * If the resulting dlen from above is now zero,
4978 * we can skip this log record.
4979 */
4980 if (!dlen && saved_len)
4981 goto read_next_log_do_action;
4982
4983 t16 = le16_to_cpu(lrh->redo_op);
4984 if (can_skip_action(t16))
4985 goto read_next_log_do_action;
4986
4987 /* Apply the Redo operation a common routine. */
4988 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4989 if (err)
4990 goto out;
4991
4992 /* Keep reading and looping back until end of file. */
4993 read_next_log_do_action:
4994 err = read_next_log_rec(log, lcb, &rec_lsn);
4995 if (!err && rec_lsn)
4996 goto do_action_next;
4997
4998 lcb_put(lcb);
4999 lcb = NULL;
5000
5001 do_undo_action:
5002 /* Scan Transaction Table. */
5003 tr = NULL;
5004 transaction_table_next:
5005 tr = enum_rstbl(trtbl, tr);
5006 if (!tr)
5007 goto undo_action_done;
5008
5009 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
5010 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
5011 goto transaction_table_next;
5012 }
5013
5014 log->transaction_id = PtrOffset(trtbl, tr);
5015 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
5016
5017 /*
5018 * We only have to do anything if the transaction has
5019 * something its undo_next_lsn field.
5020 */
5021 if (!undo_next_lsn)
5022 goto commit_undo;
5023
5024 /* Read the first record to be undone by this transaction. */
5025 err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5026 if (err)
5027 goto out;
5028
5029 /*
5030 * Now loop to read all of our log records forwards,
5031 * until we hit the end of the file, cleaning up at the end.
5032 */
5033 undo_action_next:
5034
5035 lrh = lcb->log_rec;
5036 frh = lcb->lrh;
5037 transact_id = le32_to_cpu(frh->transact_id);
5038 rec_len = le32_to_cpu(frh->client_data_len);
5039
5040 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5041 err = -EINVAL;
5042 goto out;
5043 }
5044
5045 if (lrh->undo_op == cpu_to_le16(Noop))
5046 goto read_next_log_undo_action;
5047
5048 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5049 oa = oe->ptr;
5050
5051 t16 = le16_to_cpu(lrh->lcns_follow);
5052 if (!t16)
5053 goto add_allocated_vcns;
5054
5055 is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5056 &lcn, &clen, NULL);
5057
5058 /*
5059 * If the mapping isn't already the table or the mapping
5060 * corresponds to a hole the mapping, we need to make sure
5061 * there is no partial page already memory.
5062 */
5063 if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5064 goto add_allocated_vcns;
5065
5066 vcn = le64_to_cpu(lrh->target_vcn);
5067 vcn &= ~(u64)(log->clst_per_page - 1);
5068
5069 add_allocated_vcns:
5070 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5071 size = (vcn + 1) << sbi->cluster_bits;
5072 i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5073 attr = oa->attr;
5074 if (!attr->non_res) {
5075 if (size > le32_to_cpu(attr->res.data_size))
5076 attr->res.data_size = cpu_to_le32(size);
5077 } else {
5078 if (size > le64_to_cpu(attr->nres.data_size))
5079 attr->nres.valid_size = attr->nres.data_size =
5080 attr->nres.alloc_size =
5081 cpu_to_le64(size);
5082 }
5083 }
5084
5085 t16 = le16_to_cpu(lrh->undo_op);
5086 if (can_skip_action(t16))
5087 goto read_next_log_undo_action;
5088
5089 /* Point to the Redo data and get its length. */
5090 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5091 dlen = le16_to_cpu(lrh->undo_len);
5092
5093 /* It is time to apply the undo action. */
5094 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5095
5096 read_next_log_undo_action:
5097 /*
5098 * Keep reading and looping back until we have read the
5099 * last record for this transaction.
5100 */
5101 err = read_next_log_rec(log, lcb, &rec_lsn);
5102 if (err)
5103 goto out;
5104
5105 if (rec_lsn)
5106 goto undo_action_next;
5107
5108 lcb_put(lcb);
5109 lcb = NULL;
5110
5111 commit_undo:
5112 free_rsttbl_idx(trtbl, log->transaction_id);
5113
5114 log->transaction_id = 0;
5115
5116 goto transaction_table_next;
5117
5118 undo_action_done:
5119
5120 ntfs_update_mftmirr(sbi, 0);
5121
5122 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5123
5124 end_reply:
5125
5126 err = 0;
5127 if (is_ro)
5128 goto out;
5129
5130 rh = kzalloc(log->page_size, GFP_NOFS);
5131 if (!rh) {
5132 err = -ENOMEM;
5133 goto out;
5134 }
5135
5136 rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5137 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5138 t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5139 rh->rhdr.fix_num = cpu_to_le16(t16);
5140 rh->sys_page_size = cpu_to_le32(log->page_size);
5141 rh->page_size = cpu_to_le32(log->page_size);
5142
5143 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5144 8);
5145 rh->ra_off = cpu_to_le16(t16);
5146 rh->minor_ver = cpu_to_le16(1); // 0x1A:
5147 rh->major_ver = cpu_to_le16(1); // 0x1C:
5148
5149 ra2 = Add2Ptr(rh, t16);
5150 memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5151
5152 ra2->client_idx[0] = 0;
5153 ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5154 ra2->flags = cpu_to_le16(2);
5155
5156 le32_add_cpu(&ra2->open_log_count, 1);
5157
5158 ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5159
5160 err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5161 if (!err)
5162 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5163 rh, log->page_size, 0);
5164
5165 kfree(rh);
5166 if (err)
5167 goto out;
5168
5169 out:
5170 kfree(rst);
5171 if (lcb)
5172 lcb_put(lcb);
5173
5174 /*
5175 * Scan the Open Attribute Table to close all of
5176 * the open attributes.
5177 */
5178 oe = NULL;
5179 while ((oe = enum_rstbl(oatbl, oe))) {
5180 rno = ino_get(&oe->ref);
5181
5182 if (oe->is_attr_name == 1) {
5183 kfree(oe->ptr);
5184 oe->ptr = NULL;
5185 continue;
5186 }
5187
5188 if (oe->is_attr_name)
5189 continue;
5190
5191 oa = oe->ptr;
5192 if (!oa)
5193 continue;
5194
5195 run_close(&oa->run0);
5196 kfree(oa->attr);
5197 if (oa->ni)
5198 iput(&oa->ni->vfs_inode);
5199 kfree(oa);
5200 }
5201
5202 kfree(trtbl);
5203 kfree(oatbl);
5204 kfree(dptbl);
5205 kfree(attr_names);
5206 kfree(log->rst_info.r_page);
5207
5208 kfree(ra);
5209 kfree(log->one_page_buf);
5210
5211 if (err)
5212 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5213
5214 if (err == -EROFS)
5215 err = 0;
5216 else if (log->set_dirty)
5217 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5218
5219 kfree(log);
5220
5221 return err;
5222 }
5223