• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMU_NOTIFIER_H
3 #define _LINUX_MMU_NOTIFIER_H
4 
5 #include <linux/list.h>
6 #include <linux/spinlock.h>
7 #include <linux/mm_types.h>
8 #include <linux/mmap_lock.h>
9 #include <linux/srcu.h>
10 #include <linux/interval_tree.h>
11 #include <linux/android_kabi.h>
12 
13 struct mmu_notifier_subscriptions;
14 struct mmu_notifier;
15 struct mmu_notifier_range;
16 struct mmu_interval_notifier;
17 
18 /**
19  * enum mmu_notifier_event - reason for the mmu notifier callback
20  * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that
21  * move the range
22  *
23  * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like
24  * madvise() or replacing a page by another one, ...).
25  *
26  * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range
27  * ie using the vma access permission (vm_page_prot) to update the whole range
28  * is enough no need to inspect changes to the CPU page table (mprotect()
29  * syscall)
30  *
31  * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for
32  * pages in the range so to mirror those changes the user must inspect the CPU
33  * page table (from the end callback).
34  *
35  * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same
36  * access flags). User should soft dirty the page in the end callback to make
37  * sure that anyone relying on soft dirtiness catch pages that might be written
38  * through non CPU mappings.
39  *
40  * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal
41  * that the mm refcount is zero and the range is no longer accessible.
42  *
43  * @MMU_NOTIFY_MIGRATE: used during migrate_vma_collect() invalidate to signal
44  * a device driver to possibly ignore the invalidation if the
45  * owner field matches the driver's device private pgmap owner.
46  *
47  * @MMU_NOTIFY_EXCLUSIVE: to signal a device driver that the device will no
48  * longer have exclusive access to the page. When sent during creation of an
49  * exclusive range the owner will be initialised to the value provided by the
50  * caller of make_device_exclusive_range(), otherwise the owner will be NULL.
51  */
52 enum mmu_notifier_event {
53 	MMU_NOTIFY_UNMAP = 0,
54 	MMU_NOTIFY_CLEAR,
55 	MMU_NOTIFY_PROTECTION_VMA,
56 	MMU_NOTIFY_PROTECTION_PAGE,
57 	MMU_NOTIFY_SOFT_DIRTY,
58 	MMU_NOTIFY_RELEASE,
59 	MMU_NOTIFY_MIGRATE,
60 	MMU_NOTIFY_EXCLUSIVE,
61 };
62 
63 #define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0)
64 
65 struct mmu_notifier_ops {
66 	/*
67 	 * Called either by mmu_notifier_unregister or when the mm is
68 	 * being destroyed by exit_mmap, always before all pages are
69 	 * freed. This can run concurrently with other mmu notifier
70 	 * methods (the ones invoked outside the mm context) and it
71 	 * should tear down all secondary mmu mappings and freeze the
72 	 * secondary mmu. If this method isn't implemented you've to
73 	 * be sure that nothing could possibly write to the pages
74 	 * through the secondary mmu by the time the last thread with
75 	 * tsk->mm == mm exits.
76 	 *
77 	 * As side note: the pages freed after ->release returns could
78 	 * be immediately reallocated by the gart at an alias physical
79 	 * address with a different cache model, so if ->release isn't
80 	 * implemented because all _software_ driven memory accesses
81 	 * through the secondary mmu are terminated by the time the
82 	 * last thread of this mm quits, you've also to be sure that
83 	 * speculative _hardware_ operations can't allocate dirty
84 	 * cachelines in the cpu that could not be snooped and made
85 	 * coherent with the other read and write operations happening
86 	 * through the gart alias address, so leading to memory
87 	 * corruption.
88 	 */
89 	void (*release)(struct mmu_notifier *subscription,
90 			struct mm_struct *mm);
91 
92 	/*
93 	 * clear_flush_young is called after the VM is
94 	 * test-and-clearing the young/accessed bitflag in the
95 	 * pte. This way the VM will provide proper aging to the
96 	 * accesses to the page through the secondary MMUs and not
97 	 * only to the ones through the Linux pte.
98 	 * Start-end is necessary in case the secondary MMU is mapping the page
99 	 * at a smaller granularity than the primary MMU.
100 	 */
101 	int (*clear_flush_young)(struct mmu_notifier *subscription,
102 				 struct mm_struct *mm,
103 				 unsigned long start,
104 				 unsigned long end);
105 
106 	/*
107 	 * clear_young is a lightweight version of clear_flush_young. Like the
108 	 * latter, it is supposed to test-and-clear the young/accessed bitflag
109 	 * in the secondary pte, but it may omit flushing the secondary tlb.
110 	 */
111 	int (*clear_young)(struct mmu_notifier *subscription,
112 			   struct mm_struct *mm,
113 			   unsigned long start,
114 			   unsigned long end);
115 
116 	/*
117 	 * test_young is called to check the young/accessed bitflag in
118 	 * the secondary pte. This is used to know if the page is
119 	 * frequently used without actually clearing the flag or tearing
120 	 * down the secondary mapping on the page.
121 	 */
122 	int (*test_young)(struct mmu_notifier *subscription,
123 			  struct mm_struct *mm,
124 			  unsigned long address);
125 
126 	/*
127 	 * change_pte is called in cases that pte mapping to page is changed:
128 	 * for example, when ksm remaps pte to point to a new shared page.
129 	 */
130 	void (*change_pte)(struct mmu_notifier *subscription,
131 			   struct mm_struct *mm,
132 			   unsigned long address,
133 			   pte_t pte);
134 
135 	/*
136 	 * invalidate_range_start() and invalidate_range_end() must be
137 	 * paired and are called only when the mmap_lock and/or the
138 	 * locks protecting the reverse maps are held. If the subsystem
139 	 * can't guarantee that no additional references are taken to
140 	 * the pages in the range, it has to implement the
141 	 * invalidate_range() notifier to remove any references taken
142 	 * after invalidate_range_start().
143 	 *
144 	 * Invalidation of multiple concurrent ranges may be
145 	 * optionally permitted by the driver. Either way the
146 	 * establishment of sptes is forbidden in the range passed to
147 	 * invalidate_range_begin/end for the whole duration of the
148 	 * invalidate_range_begin/end critical section.
149 	 *
150 	 * invalidate_range_start() is called when all pages in the
151 	 * range are still mapped and have at least a refcount of one.
152 	 *
153 	 * invalidate_range_end() is called when all pages in the
154 	 * range have been unmapped and the pages have been freed by
155 	 * the VM.
156 	 *
157 	 * The VM will remove the page table entries and potentially
158 	 * the page between invalidate_range_start() and
159 	 * invalidate_range_end(). If the page must not be freed
160 	 * because of pending I/O or other circumstances then the
161 	 * invalidate_range_start() callback (or the initial mapping
162 	 * by the driver) must make sure that the refcount is kept
163 	 * elevated.
164 	 *
165 	 * If the driver increases the refcount when the pages are
166 	 * initially mapped into an address space then either
167 	 * invalidate_range_start() or invalidate_range_end() may
168 	 * decrease the refcount. If the refcount is decreased on
169 	 * invalidate_range_start() then the VM can free pages as page
170 	 * table entries are removed.  If the refcount is only
171 	 * dropped on invalidate_range_end() then the driver itself
172 	 * will drop the last refcount but it must take care to flush
173 	 * any secondary tlb before doing the final free on the
174 	 * page. Pages will no longer be referenced by the linux
175 	 * address space but may still be referenced by sptes until
176 	 * the last refcount is dropped.
177 	 *
178 	 * If blockable argument is set to false then the callback cannot
179 	 * sleep and has to return with -EAGAIN if sleeping would be required.
180 	 * 0 should be returned otherwise. Please note that notifiers that can
181 	 * fail invalidate_range_start are not allowed to implement
182 	 * invalidate_range_end, as there is no mechanism for informing the
183 	 * notifier that its start failed.
184 	 */
185 	int (*invalidate_range_start)(struct mmu_notifier *subscription,
186 				      const struct mmu_notifier_range *range);
187 	void (*invalidate_range_end)(struct mmu_notifier *subscription,
188 				     const struct mmu_notifier_range *range);
189 
190 	/*
191 	 * arch_invalidate_secondary_tlbs() is used to manage a non-CPU TLB
192 	 * which shares page-tables with the CPU. The
193 	 * invalidate_range_start()/end() callbacks should not be implemented as
194 	 * invalidate_secondary_tlbs() already catches the points in time when
195 	 * an external TLB needs to be flushed.
196 	 *
197 	 * This requires arch_invalidate_secondary_tlbs() to be called while
198 	 * holding the ptl spin-lock and therefore this callback is not allowed
199 	 * to sleep.
200 	 *
201 	 * This is called by architecture code whenever invalidating a TLB
202 	 * entry. It is assumed that any secondary TLB has the same rules for
203 	 * when invalidations are required. If this is not the case architecture
204 	 * code will need to call this explicitly when required for secondary
205 	 * TLB invalidation.
206 	 */
207 	void (*arch_invalidate_secondary_tlbs)(
208 					struct mmu_notifier *subscription,
209 					struct mm_struct *mm,
210 					unsigned long start,
211 					unsigned long end);
212 
213 	/*
214 	 * These callbacks are used with the get/put interface to manage the
215 	 * lifetime of the mmu_notifier memory. alloc_notifier() returns a new
216 	 * notifier for use with the mm.
217 	 *
218 	 * free_notifier() is only called after the mmu_notifier has been
219 	 * fully put, calls to any ops callback are prevented and no ops
220 	 * callbacks are currently running. It is called from a SRCU callback
221 	 * and cannot sleep.
222 	 */
223 	struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm);
224 	void (*free_notifier)(struct mmu_notifier *subscription);
225 
226 	ANDROID_KABI_RESERVE(1);
227 	ANDROID_KABI_RESERVE(2);
228 	ANDROID_KABI_RESERVE(3);
229 	ANDROID_KABI_RESERVE(4);
230 };
231 
232 /*
233  * The notifier chains are protected by mmap_lock and/or the reverse map
234  * semaphores. Notifier chains are only changed when all reverse maps and
235  * the mmap_lock locks are taken.
236  *
237  * Therefore notifier chains can only be traversed when either
238  *
239  * 1. mmap_lock is held.
240  * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
241  * 3. No other concurrent thread can access the list (release)
242  */
243 struct mmu_notifier {
244 	struct hlist_node hlist;
245 	const struct mmu_notifier_ops *ops;
246 	struct mm_struct *mm;
247 	struct rcu_head rcu;
248 	unsigned int users;
249 
250 	ANDROID_KABI_RESERVE(1);
251 	ANDROID_KABI_RESERVE(2);
252 };
253 
254 /**
255  * struct mmu_interval_notifier_ops
256  * @invalidate: Upon return the caller must stop using any SPTEs within this
257  *              range. This function can sleep. Return false only if sleeping
258  *              was required but mmu_notifier_range_blockable(range) is false.
259  */
260 struct mmu_interval_notifier_ops {
261 	bool (*invalidate)(struct mmu_interval_notifier *interval_sub,
262 			   const struct mmu_notifier_range *range,
263 			   unsigned long cur_seq);
264 };
265 
266 struct mmu_interval_notifier {
267 	struct interval_tree_node interval_tree;
268 	const struct mmu_interval_notifier_ops *ops;
269 	struct mm_struct *mm;
270 	struct hlist_node deferred_item;
271 	unsigned long invalidate_seq;
272 };
273 
274 #ifdef CONFIG_MMU_NOTIFIER
275 
276 #ifdef CONFIG_LOCKDEP
277 extern struct lockdep_map __mmu_notifier_invalidate_range_start_map;
278 #endif
279 
280 struct mmu_notifier_range {
281 	struct mm_struct *mm;
282 	unsigned long start;
283 	unsigned long end;
284 	unsigned flags;
285 	enum mmu_notifier_event event;
286 	void *owner;
287 };
288 
mm_has_notifiers(struct mm_struct * mm)289 static inline int mm_has_notifiers(struct mm_struct *mm)
290 {
291 	return unlikely(mm->notifier_subscriptions);
292 }
293 
294 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
295 					     struct mm_struct *mm);
296 static inline struct mmu_notifier *
mmu_notifier_get(const struct mmu_notifier_ops * ops,struct mm_struct * mm)297 mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm)
298 {
299 	struct mmu_notifier *ret;
300 
301 	mmap_write_lock(mm);
302 	ret = mmu_notifier_get_locked(ops, mm);
303 	mmap_write_unlock(mm);
304 	return ret;
305 }
306 void mmu_notifier_put(struct mmu_notifier *subscription);
307 void mmu_notifier_synchronize(void);
308 
309 extern int mmu_notifier_register(struct mmu_notifier *subscription,
310 				 struct mm_struct *mm);
311 extern int __mmu_notifier_register(struct mmu_notifier *subscription,
312 				   struct mm_struct *mm);
313 extern void mmu_notifier_unregister(struct mmu_notifier *subscription,
314 				    struct mm_struct *mm);
315 
316 unsigned long
317 mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub);
318 int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
319 				 struct mm_struct *mm, unsigned long start,
320 				 unsigned long length,
321 				 const struct mmu_interval_notifier_ops *ops);
322 int mmu_interval_notifier_insert_locked(
323 	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
324 	unsigned long start, unsigned long length,
325 	const struct mmu_interval_notifier_ops *ops);
326 void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub);
327 
328 /**
329  * mmu_interval_set_seq - Save the invalidation sequence
330  * @interval_sub - The subscription passed to invalidate
331  * @cur_seq - The cur_seq passed to the invalidate() callback
332  *
333  * This must be called unconditionally from the invalidate callback of a
334  * struct mmu_interval_notifier_ops under the same lock that is used to call
335  * mmu_interval_read_retry(). It updates the sequence number for later use by
336  * mmu_interval_read_retry(). The provided cur_seq will always be odd.
337  *
338  * If the caller does not call mmu_interval_read_begin() or
339  * mmu_interval_read_retry() then this call is not required.
340  */
341 static inline void
mmu_interval_set_seq(struct mmu_interval_notifier * interval_sub,unsigned long cur_seq)342 mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub,
343 		     unsigned long cur_seq)
344 {
345 	WRITE_ONCE(interval_sub->invalidate_seq, cur_seq);
346 }
347 
348 /**
349  * mmu_interval_read_retry - End a read side critical section against a VA range
350  * interval_sub: The subscription
351  * seq: The return of the paired mmu_interval_read_begin()
352  *
353  * This MUST be called under a user provided lock that is also held
354  * unconditionally by op->invalidate() when it calls mmu_interval_set_seq().
355  *
356  * Each call should be paired with a single mmu_interval_read_begin() and
357  * should be used to conclude the read side.
358  *
359  * Returns true if an invalidation collided with this critical section, and
360  * the caller should retry.
361  */
362 static inline bool
mmu_interval_read_retry(struct mmu_interval_notifier * interval_sub,unsigned long seq)363 mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub,
364 			unsigned long seq)
365 {
366 	return interval_sub->invalidate_seq != seq;
367 }
368 
369 /**
370  * mmu_interval_check_retry - Test if a collision has occurred
371  * interval_sub: The subscription
372  * seq: The return of the matching mmu_interval_read_begin()
373  *
374  * This can be used in the critical section between mmu_interval_read_begin()
375  * and mmu_interval_read_retry().  A return of true indicates an invalidation
376  * has collided with this critical region and a future
377  * mmu_interval_read_retry() will return true.
378  *
379  * False is not reliable and only suggests a collision may not have
380  * occurred. It can be called many times and does not have to hold the user
381  * provided lock.
382  *
383  * This call can be used as part of loops and other expensive operations to
384  * expedite a retry.
385  */
386 static inline bool
mmu_interval_check_retry(struct mmu_interval_notifier * interval_sub,unsigned long seq)387 mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub,
388 			 unsigned long seq)
389 {
390 	/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
391 	return READ_ONCE(interval_sub->invalidate_seq) != seq;
392 }
393 
394 extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm);
395 extern void __mmu_notifier_release(struct mm_struct *mm);
396 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
397 					  unsigned long start,
398 					  unsigned long end);
399 extern int __mmu_notifier_clear_young(struct mm_struct *mm,
400 				      unsigned long start,
401 				      unsigned long end);
402 extern int __mmu_notifier_test_young(struct mm_struct *mm,
403 				     unsigned long address);
404 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
405 				      unsigned long address, pte_t pte);
406 extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r);
407 extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r);
408 extern void __mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm,
409 					unsigned long start, unsigned long end);
410 extern bool
411 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range);
412 
413 static inline bool
mmu_notifier_range_blockable(const struct mmu_notifier_range * range)414 mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
415 {
416 	return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE);
417 }
418 
mmu_notifier_release(struct mm_struct * mm)419 static inline void mmu_notifier_release(struct mm_struct *mm)
420 {
421 	if (mm_has_notifiers(mm))
422 		__mmu_notifier_release(mm);
423 }
424 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long start,unsigned long end)425 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
426 					  unsigned long start,
427 					  unsigned long end)
428 {
429 	if (mm_has_notifiers(mm))
430 		return __mmu_notifier_clear_flush_young(mm, start, end);
431 	return 0;
432 }
433 
mmu_notifier_clear_young(struct mm_struct * mm,unsigned long start,unsigned long end)434 static inline int mmu_notifier_clear_young(struct mm_struct *mm,
435 					   unsigned long start,
436 					   unsigned long end)
437 {
438 	if (mm_has_notifiers(mm))
439 		return __mmu_notifier_clear_young(mm, start, end);
440 	return 0;
441 }
442 
mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)443 static inline int mmu_notifier_test_young(struct mm_struct *mm,
444 					  unsigned long address)
445 {
446 	if (mm_has_notifiers(mm))
447 		return __mmu_notifier_test_young(mm, address);
448 	return 0;
449 }
450 
mmu_notifier_change_pte(struct mm_struct * mm,unsigned long address,pte_t pte)451 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
452 					   unsigned long address, pte_t pte)
453 {
454 	if (mm_has_notifiers(mm))
455 		__mmu_notifier_change_pte(mm, address, pte);
456 }
457 
458 static inline void
mmu_notifier_invalidate_range_start(struct mmu_notifier_range * range)459 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
460 {
461 	might_sleep();
462 
463 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
464 	if (mm_has_notifiers(range->mm)) {
465 		range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE;
466 		__mmu_notifier_invalidate_range_start(range);
467 	}
468 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
469 }
470 
471 static inline int
mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range * range)472 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
473 {
474 	int ret = 0;
475 
476 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
477 	if (mm_has_notifiers(range->mm)) {
478 		range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE;
479 		ret = __mmu_notifier_invalidate_range_start(range);
480 	}
481 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
482 	return ret;
483 }
484 
485 static inline void
mmu_notifier_invalidate_range_end(struct mmu_notifier_range * range)486 mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
487 {
488 	if (mmu_notifier_range_blockable(range))
489 		might_sleep();
490 
491 	if (mm_has_notifiers(range->mm))
492 		__mmu_notifier_invalidate_range_end(range);
493 }
494 
mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct * mm,unsigned long start,unsigned long end)495 static inline void mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm,
496 					unsigned long start, unsigned long end)
497 {
498 	if (mm_has_notifiers(mm))
499 		__mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
500 }
501 
mmu_notifier_subscriptions_init(struct mm_struct * mm)502 static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
503 {
504 	mm->notifier_subscriptions = NULL;
505 }
506 
mmu_notifier_subscriptions_destroy(struct mm_struct * mm)507 static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
508 {
509 	if (mm_has_notifiers(mm))
510 		__mmu_notifier_subscriptions_destroy(mm);
511 }
512 
513 
mmu_notifier_range_init(struct mmu_notifier_range * range,enum mmu_notifier_event event,unsigned flags,struct mm_struct * mm,unsigned long start,unsigned long end)514 static inline void mmu_notifier_range_init(struct mmu_notifier_range *range,
515 					   enum mmu_notifier_event event,
516 					   unsigned flags,
517 					   struct mm_struct *mm,
518 					   unsigned long start,
519 					   unsigned long end)
520 {
521 	range->event = event;
522 	range->mm = mm;
523 	range->start = start;
524 	range->end = end;
525 	range->flags = flags;
526 }
527 
mmu_notifier_range_init_owner(struct mmu_notifier_range * range,enum mmu_notifier_event event,unsigned int flags,struct mm_struct * mm,unsigned long start,unsigned long end,void * owner)528 static inline void mmu_notifier_range_init_owner(
529 			struct mmu_notifier_range *range,
530 			enum mmu_notifier_event event, unsigned int flags,
531 			struct mm_struct *mm, unsigned long start,
532 			unsigned long end, void *owner)
533 {
534 	mmu_notifier_range_init(range, event, flags, mm, start, end);
535 	range->owner = owner;
536 }
537 
538 #define ptep_clear_flush_young_notify(__vma, __address, __ptep)		\
539 ({									\
540 	int __young;							\
541 	struct vm_area_struct *___vma = __vma;				\
542 	unsigned long ___address = __address;				\
543 	__young = ptep_clear_flush_young(___vma, ___address, __ptep);	\
544 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
545 						  ___address,		\
546 						  ___address +		\
547 							PAGE_SIZE);	\
548 	__young;							\
549 })
550 
551 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp)		\
552 ({									\
553 	int __young;							\
554 	struct vm_area_struct *___vma = __vma;				\
555 	unsigned long ___address = __address;				\
556 	__young = pmdp_clear_flush_young(___vma, ___address, __pmdp);	\
557 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
558 						  ___address,		\
559 						  ___address +		\
560 							PMD_SIZE);	\
561 	__young;							\
562 })
563 
564 #define ptep_clear_young_notify(__vma, __address, __ptep)		\
565 ({									\
566 	int __young;							\
567 	struct vm_area_struct *___vma = __vma;				\
568 	unsigned long ___address = __address;				\
569 	__young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
570 	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
571 					    ___address + PAGE_SIZE);	\
572 	__young;							\
573 })
574 
575 #define pmdp_clear_young_notify(__vma, __address, __pmdp)		\
576 ({									\
577 	int __young;							\
578 	struct vm_area_struct *___vma = __vma;				\
579 	unsigned long ___address = __address;				\
580 	__young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
581 	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
582 					    ___address + PMD_SIZE);	\
583 	__young;							\
584 })
585 
586 /*
587  * set_pte_at_notify() sets the pte _after_ running the notifier.
588  * This is safe to start by updating the secondary MMUs, because the primary MMU
589  * pte invalidate must have already happened with a ptep_clear_flush() before
590  * set_pte_at_notify() has been invoked.  Updating the secondary MMUs first is
591  * required when we change both the protection of the mapping from read-only to
592  * read-write and the pfn (like during copy on write page faults). Otherwise the
593  * old page would remain mapped readonly in the secondary MMUs after the new
594  * page is already writable by some CPU through the primary MMU.
595  */
596 #define set_pte_at_notify(__mm, __address, __ptep, __pte)		\
597 ({									\
598 	struct mm_struct *___mm = __mm;					\
599 	unsigned long ___address = __address;				\
600 	pte_t ___pte = __pte;						\
601 									\
602 	mmu_notifier_change_pte(___mm, ___address, ___pte);		\
603 	set_pte_at(___mm, ___address, __ptep, ___pte);			\
604 })
605 
606 #else /* CONFIG_MMU_NOTIFIER */
607 
608 struct mmu_notifier_range {
609 	unsigned long start;
610 	unsigned long end;
611 };
612 
_mmu_notifier_range_init(struct mmu_notifier_range * range,unsigned long start,unsigned long end)613 static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range,
614 					    unsigned long start,
615 					    unsigned long end)
616 {
617 	range->start = start;
618 	range->end = end;
619 }
620 
621 #define mmu_notifier_range_init(range,event,flags,mm,start,end)  \
622 	_mmu_notifier_range_init(range, start, end)
623 #define mmu_notifier_range_init_owner(range, event, flags, mm, start, \
624 					end, owner) \
625 	_mmu_notifier_range_init(range, start, end)
626 
627 static inline bool
mmu_notifier_range_blockable(const struct mmu_notifier_range * range)628 mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
629 {
630 	return true;
631 }
632 
mm_has_notifiers(struct mm_struct * mm)633 static inline int mm_has_notifiers(struct mm_struct *mm)
634 {
635 	return 0;
636 }
637 
mmu_notifier_release(struct mm_struct * mm)638 static inline void mmu_notifier_release(struct mm_struct *mm)
639 {
640 }
641 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long start,unsigned long end)642 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
643 					  unsigned long start,
644 					  unsigned long end)
645 {
646 	return 0;
647 }
648 
mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)649 static inline int mmu_notifier_test_young(struct mm_struct *mm,
650 					  unsigned long address)
651 {
652 	return 0;
653 }
654 
mmu_notifier_change_pte(struct mm_struct * mm,unsigned long address,pte_t pte)655 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
656 					   unsigned long address, pte_t pte)
657 {
658 }
659 
660 static inline void
mmu_notifier_invalidate_range_start(struct mmu_notifier_range * range)661 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
662 {
663 }
664 
665 static inline int
mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range * range)666 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
667 {
668 	return 0;
669 }
670 
671 static inline
mmu_notifier_invalidate_range_end(struct mmu_notifier_range * range)672 void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
673 {
674 }
675 
mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct * mm,unsigned long start,unsigned long end)676 static inline void mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm,
677 				  unsigned long start, unsigned long end)
678 {
679 }
680 
mmu_notifier_subscriptions_init(struct mm_struct * mm)681 static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
682 {
683 }
684 
mmu_notifier_subscriptions_destroy(struct mm_struct * mm)685 static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
686 {
687 }
688 
689 #define mmu_notifier_range_update_to_read_only(r) false
690 
691 #define ptep_clear_flush_young_notify ptep_clear_flush_young
692 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
693 #define ptep_clear_young_notify ptep_test_and_clear_young
694 #define pmdp_clear_young_notify pmdp_test_and_clear_young
695 #define	ptep_clear_flush_notify ptep_clear_flush
696 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
697 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush
698 #define set_pte_at_notify set_pte_at
699 
mmu_notifier_synchronize(void)700 static inline void mmu_notifier_synchronize(void)
701 {
702 }
703 
704 #endif /* CONFIG_MMU_NOTIFIER */
705 
706 #endif /* _LINUX_MMU_NOTIFIER_H */
707