• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
72  * file-backed pagecache (see mm/vmscan.c).
73  *
74  * PG_error is set to indicate that an I/O error occurred on this page.
75  *
76  * PG_arch_1 is an architecture specific page state bit.  The generic code
77  * guarantees that this bit is cleared for a page when it first is entered into
78  * the page cache.
79  *
80  * PG_hwpoison indicates that a page got corrupted in hardware and contains
81  * data with incorrect ECC bits that triggered a machine check. Accessing is
82  * not safe since it may cause another machine check. Don't touch!
83  */
84 
85 /*
86  * Don't use the pageflags directly.  Use the PageFoo macros.
87  *
88  * The page flags field is split into two parts, the main flags area
89  * which extends from the low bits upwards, and the fields area which
90  * extends from the high bits downwards.
91  *
92  *  | FIELD | ... | FLAGS |
93  *  N-1           ^       0
94  *               (NR_PAGEFLAGS)
95  *
96  * The fields area is reserved for fields mapping zone, node (for NUMA) and
97  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
98  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
99  */
100 enum pageflags {
101 	PG_locked,		/* Page is locked. Don't touch. */
102 	PG_writeback,		/* Page is under writeback */
103 	PG_referenced,
104 	PG_uptodate,
105 	PG_dirty,
106 	PG_lru,
107 	PG_head,		/* Must be in bit 6 */
108 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
109 	PG_active,
110 	PG_workingset,
111 	PG_error,
112 	PG_slab,
113 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
114 	PG_arch_1,
115 	PG_reserved,
116 	PG_private,		/* If pagecache, has fs-private data */
117 	PG_private_2,		/* If pagecache, has fs aux data */
118 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
119 	PG_reclaim,		/* To be reclaimed asap */
120 	PG_swapbacked,		/* Page is backed by RAM/swap */
121 	PG_unevictable,		/* Page is "unevictable"  */
122 #ifdef CONFIG_MMU
123 	PG_mlocked,		/* Page is vma mlocked */
124 #endif
125 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
126 	PG_uncached,		/* Page has been mapped as uncached */
127 #endif
128 #ifdef CONFIG_MEMORY_FAILURE
129 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
130 #endif
131 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
132 	PG_young,
133 	PG_idle,
134 #endif
135 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
136 	PG_arch_2,
137 	PG_arch_3,
138 #endif
139 #ifdef CONFIG_64BIT
140 	PG_oem_reserved_1,
141 	PG_oem_reserved_2,
142 	PG_oem_reserved_3,
143 	PG_oem_reserved_4,
144 #endif
145 	__NR_PAGEFLAGS,
146 
147 	PG_readahead = PG_reclaim,
148 
149 	/*
150 	 * Depending on the way an anonymous folio can be mapped into a page
151 	 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
152 	 * THP), PG_anon_exclusive may be set only for the head page or for
153 	 * tail pages of an anonymous folio. For now, we only expect it to be
154 	 * set on tail pages for PTE-mapped THP.
155 	 */
156 	PG_anon_exclusive = PG_mappedtodisk,
157 
158 	/* Filesystems */
159 	PG_checked = PG_owner_priv_1,
160 
161 	/* SwapBacked */
162 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
163 
164 	/* Two page bits are conscripted by FS-Cache to maintain local caching
165 	 * state.  These bits are set on pages belonging to the netfs's inodes
166 	 * when those inodes are being locally cached.
167 	 */
168 	PG_fscache = PG_private_2,	/* page backed by cache */
169 
170 	/* XEN */
171 	/* Pinned in Xen as a read-only pagetable page. */
172 	PG_pinned = PG_owner_priv_1,
173 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
174 	PG_savepinned = PG_dirty,
175 	/* Has a grant mapping of another (foreign) domain's page. */
176 	PG_foreign = PG_owner_priv_1,
177 	/* Remapped by swiotlb-xen. */
178 	PG_xen_remapped = PG_owner_priv_1,
179 
180 	/* non-lru isolated movable page */
181 	PG_isolated = PG_reclaim,
182 
183 	/* Only valid for buddy pages. Used to track pages that are reported */
184 	PG_reported = PG_uptodate,
185 
186 #ifdef CONFIG_MEMORY_HOTPLUG
187 	/* For self-hosted memmap pages */
188 	PG_vmemmap_self_hosted = PG_owner_priv_1,
189 #endif
190 
191 	/*
192 	 * Flags only valid for compound pages.  Stored in first tail page's
193 	 * flags word.  Cannot use the first 8 flags or any flag marked as
194 	 * PF_ANY.
195 	 */
196 
197 	/* At least one page in this folio has the hwpoison flag set */
198 	PG_has_hwpoisoned = PG_error,
199 	PG_large_rmappable = PG_workingset, /* anon or file-backed */
200 };
201 
202 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
203 
204 #ifndef __GENERATING_BOUNDS_H
205 
206 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
207 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
208 
209 /*
210  * Return the real head page struct iff the @page is a fake head page, otherwise
211  * return the @page itself. See Documentation/mm/vmemmap_dedup.rst.
212  */
page_fixed_fake_head(const struct page * page)213 static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
214 {
215 	if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
216 		return page;
217 
218 	/*
219 	 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
220 	 * struct page. The alignment check aims to avoid access the fields (
221 	 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
222 	 * cold cacheline in some cases.
223 	 */
224 	if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
225 	    test_bit(PG_head, &page->flags)) {
226 		/*
227 		 * We can safely access the field of the @page[1] with PG_head
228 		 * because the @page is a compound page composed with at least
229 		 * two contiguous pages.
230 		 */
231 		unsigned long head = READ_ONCE(page[1].compound_head);
232 
233 		if (likely(head & 1))
234 			return (const struct page *)(head - 1);
235 	}
236 	return page;
237 }
238 #else
page_fixed_fake_head(const struct page * page)239 static inline const struct page *page_fixed_fake_head(const struct page *page)
240 {
241 	return page;
242 }
243 #endif
244 
page_is_fake_head(struct page * page)245 static __always_inline int page_is_fake_head(struct page *page)
246 {
247 	return page_fixed_fake_head(page) != page;
248 }
249 
_compound_head(const struct page * page)250 static inline unsigned long _compound_head(const struct page *page)
251 {
252 	unsigned long head = READ_ONCE(page->compound_head);
253 
254 	if (unlikely(head & 1))
255 		return head - 1;
256 	return (unsigned long)page_fixed_fake_head(page);
257 }
258 
259 #define compound_head(page)	((typeof(page))_compound_head(page))
260 
261 /**
262  * page_folio - Converts from page to folio.
263  * @p: The page.
264  *
265  * Every page is part of a folio.  This function cannot be called on a
266  * NULL pointer.
267  *
268  * Context: No reference, nor lock is required on @page.  If the caller
269  * does not hold a reference, this call may race with a folio split, so
270  * it should re-check the folio still contains this page after gaining
271  * a reference on the folio.
272  * Return: The folio which contains this page.
273  */
274 #define page_folio(p)		(_Generic((p),				\
275 	const struct page *:	(const struct folio *)_compound_head(p), \
276 	struct page *:		(struct folio *)_compound_head(p)))
277 
278 /**
279  * folio_page - Return a page from a folio.
280  * @folio: The folio.
281  * @n: The page number to return.
282  *
283  * @n is relative to the start of the folio.  This function does not
284  * check that the page number lies within @folio; the caller is presumed
285  * to have a reference to the page.
286  */
287 #define folio_page(folio, n)	nth_page(&(folio)->page, n)
288 
PageTail(struct page * page)289 static __always_inline int PageTail(struct page *page)
290 {
291 	return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
292 }
293 
PageCompound(struct page * page)294 static __always_inline int PageCompound(struct page *page)
295 {
296 	return test_bit(PG_head, &page->flags) ||
297 	       READ_ONCE(page->compound_head) & 1;
298 }
299 
300 #define	PAGE_POISON_PATTERN	-1l
PagePoisoned(const struct page * page)301 static inline int PagePoisoned(const struct page *page)
302 {
303 	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
304 }
305 
306 #ifdef CONFIG_DEBUG_VM
307 void page_init_poison(struct page *page, size_t size);
308 #else
page_init_poison(struct page * page,size_t size)309 static inline void page_init_poison(struct page *page, size_t size)
310 {
311 }
312 #endif
313 
folio_flags(struct folio * folio,unsigned n)314 static unsigned long *folio_flags(struct folio *folio, unsigned n)
315 {
316 	struct page *page = &folio->page;
317 
318 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
319 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
320 	return &page[n].flags;
321 }
322 
323 /*
324  * Page flags policies wrt compound pages
325  *
326  * PF_POISONED_CHECK
327  *     check if this struct page poisoned/uninitialized
328  *
329  * PF_ANY:
330  *     the page flag is relevant for small, head and tail pages.
331  *
332  * PF_HEAD:
333  *     for compound page all operations related to the page flag applied to
334  *     head page.
335  *
336  * PF_ONLY_HEAD:
337  *     for compound page, callers only ever operate on the head page.
338  *
339  * PF_NO_TAIL:
340  *     modifications of the page flag must be done on small or head pages,
341  *     checks can be done on tail pages too.
342  *
343  * PF_NO_COMPOUND:
344  *     the page flag is not relevant for compound pages.
345  *
346  * PF_SECOND:
347  *     the page flag is stored in the first tail page.
348  */
349 #define PF_POISONED_CHECK(page) ({					\
350 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
351 		page; })
352 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
353 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
354 #define PF_ONLY_HEAD(page, enforce) ({					\
355 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
356 		PF_POISONED_CHECK(page); })
357 #define PF_NO_TAIL(page, enforce) ({					\
358 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
359 		PF_POISONED_CHECK(compound_head(page)); })
360 #define PF_NO_COMPOUND(page, enforce) ({				\
361 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
362 		PF_POISONED_CHECK(page); })
363 #define PF_SECOND(page, enforce) ({					\
364 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
365 		PF_POISONED_CHECK(&page[1]); })
366 
367 /* Which page is the flag stored in */
368 #define FOLIO_PF_ANY		0
369 #define FOLIO_PF_HEAD		0
370 #define FOLIO_PF_ONLY_HEAD	0
371 #define FOLIO_PF_NO_TAIL	0
372 #define FOLIO_PF_NO_COMPOUND	0
373 #define FOLIO_PF_SECOND		1
374 
375 /*
376  * Macros to create function definitions for page flags
377  */
378 #define TESTPAGEFLAG(uname, lname, policy)				\
379 static __always_inline bool folio_test_##lname(struct folio *folio)	\
380 { return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
381 static __always_inline int Page##uname(struct page *page)		\
382 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
383 
384 #define SETPAGEFLAG(uname, lname, policy)				\
385 static __always_inline							\
386 void folio_set_##lname(struct folio *folio)				\
387 { set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
388 static __always_inline void SetPage##uname(struct page *page)		\
389 { set_bit(PG_##lname, &policy(page, 1)->flags); }
390 
391 #define CLEARPAGEFLAG(uname, lname, policy)				\
392 static __always_inline							\
393 void folio_clear_##lname(struct folio *folio)				\
394 { clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
395 static __always_inline void ClearPage##uname(struct page *page)		\
396 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
397 
398 #define __SETPAGEFLAG(uname, lname, policy)				\
399 static __always_inline							\
400 void __folio_set_##lname(struct folio *folio)				\
401 { __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
402 static __always_inline void __SetPage##uname(struct page *page)		\
403 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
404 
405 #define __CLEARPAGEFLAG(uname, lname, policy)				\
406 static __always_inline							\
407 void __folio_clear_##lname(struct folio *folio)				\
408 { __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
409 static __always_inline void __ClearPage##uname(struct page *page)	\
410 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
411 
412 #define TESTSETFLAG(uname, lname, policy)				\
413 static __always_inline							\
414 bool folio_test_set_##lname(struct folio *folio)			\
415 { return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
416 static __always_inline int TestSetPage##uname(struct page *page)	\
417 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
418 
419 #define TESTCLEARFLAG(uname, lname, policy)				\
420 static __always_inline							\
421 bool folio_test_clear_##lname(struct folio *folio)			\
422 { return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
423 static __always_inline int TestClearPage##uname(struct page *page)	\
424 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
425 
426 #define PAGEFLAG(uname, lname, policy)					\
427 	TESTPAGEFLAG(uname, lname, policy)				\
428 	SETPAGEFLAG(uname, lname, policy)				\
429 	CLEARPAGEFLAG(uname, lname, policy)
430 
431 #define __PAGEFLAG(uname, lname, policy)				\
432 	TESTPAGEFLAG(uname, lname, policy)				\
433 	__SETPAGEFLAG(uname, lname, policy)				\
434 	__CLEARPAGEFLAG(uname, lname, policy)
435 
436 #define TESTSCFLAG(uname, lname, policy)				\
437 	TESTSETFLAG(uname, lname, policy)				\
438 	TESTCLEARFLAG(uname, lname, policy)
439 
440 #define FOLIO_TEST_FLAG_FALSE(name)					\
441 static inline bool folio_test_##name(const struct folio *folio)		\
442 { return false; }
443 #define FOLIO_SET_FLAG_NOOP(name)					\
444 static inline void folio_set_##name(struct folio *folio) { }
445 #define FOLIO_CLEAR_FLAG_NOOP(name)					\
446 static inline void folio_clear_##name(struct folio *folio) { }
447 #define __FOLIO_SET_FLAG_NOOP(name)					\
448 static inline void __folio_set_##name(struct folio *folio) { }
449 #define __FOLIO_CLEAR_FLAG_NOOP(name)					\
450 static inline void __folio_clear_##name(struct folio *folio) { }
451 #define FOLIO_TEST_SET_FLAG_FALSE(name)					\
452 static inline bool folio_test_set_##name(struct folio *folio)		\
453 { return false; }
454 #define FOLIO_TEST_CLEAR_FLAG_FALSE(name)				\
455 static inline bool folio_test_clear_##name(struct folio *folio)		\
456 { return false; }
457 
458 #define FOLIO_FLAG_FALSE(name)						\
459 FOLIO_TEST_FLAG_FALSE(name)						\
460 FOLIO_SET_FLAG_NOOP(name)						\
461 FOLIO_CLEAR_FLAG_NOOP(name)
462 
463 #define TESTPAGEFLAG_FALSE(uname, lname)				\
464 FOLIO_TEST_FLAG_FALSE(lname)						\
465 static inline int Page##uname(const struct page *page) { return 0; }
466 
467 #define SETPAGEFLAG_NOOP(uname, lname)					\
468 FOLIO_SET_FLAG_NOOP(lname)						\
469 static inline void SetPage##uname(struct page *page) {  }
470 
471 #define CLEARPAGEFLAG_NOOP(uname, lname)				\
472 FOLIO_CLEAR_FLAG_NOOP(lname)						\
473 static inline void ClearPage##uname(struct page *page) {  }
474 
475 #define __CLEARPAGEFLAG_NOOP(uname, lname)				\
476 __FOLIO_CLEAR_FLAG_NOOP(lname)						\
477 static inline void __ClearPage##uname(struct page *page) {  }
478 
479 #define TESTSETFLAG_FALSE(uname, lname)					\
480 FOLIO_TEST_SET_FLAG_FALSE(lname)					\
481 static inline int TestSetPage##uname(struct page *page) { return 0; }
482 
483 #define TESTCLEARFLAG_FALSE(uname, lname)				\
484 FOLIO_TEST_CLEAR_FLAG_FALSE(lname)					\
485 static inline int TestClearPage##uname(struct page *page) { return 0; }
486 
487 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
488 	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
489 
490 #define TESTSCFLAG_FALSE(uname, lname)					\
491 	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
492 
493 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
494 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
495 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
496 PAGEFLAG(Referenced, referenced, PF_HEAD)
497 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
498 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
499 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
500 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
501 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
502 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
503 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
504 	TESTCLEARFLAG(Active, active, PF_HEAD)
505 PAGEFLAG(Workingset, workingset, PF_HEAD)
506 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
507 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
508 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
509 
510 /* Xen */
511 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
512 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
513 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
514 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
PAGEFLAG(XenRemapped,xen_remapped,PF_NO_COMPOUND)515 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
516 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
517 
518 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
519 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
520 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
521 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
522 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
523 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
524 
525 /*
526  * Private page markings that may be used by the filesystem that owns the page
527  * for its own purposes.
528  * - PG_private and PG_private_2 cause release_folio() and co to be invoked
529  */
530 PAGEFLAG(Private, private, PF_ANY)
531 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
532 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
533 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
534 
535 /*
536  * Only test-and-set exist for PG_writeback.  The unconditional operators are
537  * risky: they bypass page accounting.
538  */
539 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
540 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
541 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
542 
543 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
544 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
545 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
546 PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
547 	TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
548 
549 #ifdef CONFIG_HIGHMEM
550 /*
551  * Must use a macro here due to header dependency issues. page_zone() is not
552  * available at this point.
553  */
554 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
555 #define folio_test_highmem(__f)	is_highmem_idx(folio_zonenum(__f))
556 #else
557 PAGEFLAG_FALSE(HighMem, highmem)
558 #endif
559 
560 #ifdef CONFIG_SWAP
561 static __always_inline bool folio_test_swapcache(struct folio *folio)
562 {
563 	return folio_test_swapbacked(folio) &&
564 			test_bit(PG_swapcache, folio_flags(folio, 0));
565 }
566 
PageSwapCache(struct page * page)567 static __always_inline bool PageSwapCache(struct page *page)
568 {
569 	return folio_test_swapcache(page_folio(page));
570 }
571 
572 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
573 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
574 #else
575 PAGEFLAG_FALSE(SwapCache, swapcache)
576 #endif
577 
578 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
579 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
580 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
581 
582 #ifdef CONFIG_MMU
583 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
584 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
585 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
586 #else
587 PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
588 	TESTSCFLAG_FALSE(Mlocked, mlocked)
589 #endif
590 
591 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
592 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
593 #else
594 PAGEFLAG_FALSE(Uncached, uncached)
595 #endif
596 
597 #ifdef CONFIG_MEMORY_FAILURE
598 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
599 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
600 #define __PG_HWPOISON (1UL << PG_hwpoison)
601 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
602 extern void SetPageHWPoisonTakenOff(struct page *page);
603 extern void ClearPageHWPoisonTakenOff(struct page *page);
604 extern bool take_page_off_buddy(struct page *page);
605 extern bool put_page_back_buddy(struct page *page);
606 #else
607 PAGEFLAG_FALSE(HWPoison, hwpoison)
608 #define __PG_HWPOISON 0
609 #endif
610 
611 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
TESTPAGEFLAG(Young,young,PF_ANY)612 TESTPAGEFLAG(Young, young, PF_ANY)
613 SETPAGEFLAG(Young, young, PF_ANY)
614 TESTCLEARFLAG(Young, young, PF_ANY)
615 PAGEFLAG(Idle, idle, PF_ANY)
616 #endif
617 
618 /*
619  * PageReported() is used to track reported free pages within the Buddy
620  * allocator. We can use the non-atomic version of the test and set
621  * operations as both should be shielded with the zone lock to prevent
622  * any possible races on the setting or clearing of the bit.
623  */
624 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
625 
626 #ifdef CONFIG_MEMORY_HOTPLUG
627 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY)
628 #else
629 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
630 #endif
631 
632 /*
633  * On an anonymous page mapped into a user virtual memory area,
634  * page->mapping points to its anon_vma, not to a struct address_space;
635  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
636  *
637  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
638  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
639  * bit; and then page->mapping points, not to an anon_vma, but to a private
640  * structure which KSM associates with that merged page.  See ksm.h.
641  *
642  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
643  * page and then page->mapping points to a struct movable_operations.
644  *
645  * Please note that, confusingly, "page_mapping" refers to the inode
646  * address_space which maps the page from disk; whereas "page_mapped"
647  * refers to user virtual address space into which the page is mapped.
648  *
649  * For slab pages, since slab reuses the bits in struct page to store its
650  * internal states, the page->mapping does not exist as such, nor do these
651  * flags below.  So in order to avoid testing non-existent bits, please
652  * make sure that PageSlab(page) actually evaluates to false before calling
653  * the following functions (e.g., PageAnon).  See mm/slab.h.
654  */
655 #define PAGE_MAPPING_ANON	0x1
656 #define PAGE_MAPPING_MOVABLE	0x2
657 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
658 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
659 
660 /*
661  * Different with flags above, this flag is used only for fsdax mode.  It
662  * indicates that this page->mapping is now under reflink case.
663  */
664 #define PAGE_MAPPING_DAX_SHARED	((void *)0x1)
665 
666 static __always_inline bool folio_mapping_flags(struct folio *folio)
667 {
668 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0;
669 }
670 
PageMappingFlags(struct page * page)671 static __always_inline int PageMappingFlags(struct page *page)
672 {
673 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
674 }
675 
folio_test_anon(struct folio * folio)676 static __always_inline bool folio_test_anon(struct folio *folio)
677 {
678 	return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
679 }
680 
PageAnon(struct page * page)681 static __always_inline bool PageAnon(struct page *page)
682 {
683 	return folio_test_anon(page_folio(page));
684 }
685 
__folio_test_movable(const struct folio * folio)686 static __always_inline bool __folio_test_movable(const struct folio *folio)
687 {
688 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
689 			PAGE_MAPPING_MOVABLE;
690 }
691 
__PageMovable(struct page * page)692 static __always_inline int __PageMovable(struct page *page)
693 {
694 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
695 				PAGE_MAPPING_MOVABLE;
696 }
697 
698 #ifdef CONFIG_KSM
699 /*
700  * A KSM page is one of those write-protected "shared pages" or "merged pages"
701  * which KSM maps into multiple mms, wherever identical anonymous page content
702  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
703  * anon_vma, but to that page's node of the stable tree.
704  */
folio_test_ksm(struct folio * folio)705 static __always_inline bool folio_test_ksm(struct folio *folio)
706 {
707 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
708 				PAGE_MAPPING_KSM;
709 }
710 
PageKsm(struct page * page)711 static __always_inline bool PageKsm(struct page *page)
712 {
713 	return folio_test_ksm(page_folio(page));
714 }
715 #else
716 TESTPAGEFLAG_FALSE(Ksm, ksm)
717 #endif
718 
719 u64 stable_page_flags(struct page *page);
720 
721 /**
722  * folio_test_uptodate - Is this folio up to date?
723  * @folio: The folio.
724  *
725  * The uptodate flag is set on a folio when every byte in the folio is
726  * at least as new as the corresponding bytes on storage.  Anonymous
727  * and CoW folios are always uptodate.  If the folio is not uptodate,
728  * some of the bytes in it may be; see the is_partially_uptodate()
729  * address_space operation.
730  */
folio_test_uptodate(struct folio * folio)731 static inline bool folio_test_uptodate(struct folio *folio)
732 {
733 	bool ret = test_bit(PG_uptodate, folio_flags(folio, 0));
734 	/*
735 	 * Must ensure that the data we read out of the folio is loaded
736 	 * _after_ we've loaded folio->flags to check the uptodate bit.
737 	 * We can skip the barrier if the folio is not uptodate, because
738 	 * we wouldn't be reading anything from it.
739 	 *
740 	 * See folio_mark_uptodate() for the other side of the story.
741 	 */
742 	if (ret)
743 		smp_rmb();
744 
745 	return ret;
746 }
747 
PageUptodate(struct page * page)748 static inline int PageUptodate(struct page *page)
749 {
750 	return folio_test_uptodate(page_folio(page));
751 }
752 
__folio_mark_uptodate(struct folio * folio)753 static __always_inline void __folio_mark_uptodate(struct folio *folio)
754 {
755 	smp_wmb();
756 	__set_bit(PG_uptodate, folio_flags(folio, 0));
757 }
758 
folio_mark_uptodate(struct folio * folio)759 static __always_inline void folio_mark_uptodate(struct folio *folio)
760 {
761 	/*
762 	 * Memory barrier must be issued before setting the PG_uptodate bit,
763 	 * so that all previous stores issued in order to bring the folio
764 	 * uptodate are actually visible before folio_test_uptodate becomes true.
765 	 */
766 	smp_wmb();
767 	set_bit(PG_uptodate, folio_flags(folio, 0));
768 }
769 
__SetPageUptodate(struct page * page)770 static __always_inline void __SetPageUptodate(struct page *page)
771 {
772 	__folio_mark_uptodate((struct folio *)page);
773 }
774 
SetPageUptodate(struct page * page)775 static __always_inline void SetPageUptodate(struct page *page)
776 {
777 	folio_mark_uptodate((struct folio *)page);
778 }
779 
780 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
781 
782 bool __folio_start_writeback(struct folio *folio, bool keep_write);
783 bool set_page_writeback(struct page *page);
784 
785 #define folio_start_writeback(folio)			\
786 	__folio_start_writeback(folio, false)
787 #define folio_start_writeback_keepwrite(folio)	\
788 	__folio_start_writeback(folio, true)
789 
test_set_page_writeback(struct page * page)790 static inline bool test_set_page_writeback(struct page *page)
791 {
792 	return set_page_writeback(page);
793 }
794 
folio_test_head(struct folio * folio)795 static __always_inline bool folio_test_head(struct folio *folio)
796 {
797 	return test_bit(PG_head, folio_flags(folio, FOLIO_PF_ANY));
798 }
799 
PageHead(struct page * page)800 static __always_inline int PageHead(struct page *page)
801 {
802 	PF_POISONED_CHECK(page);
803 	return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
804 }
805 
__SETPAGEFLAG(Head,head,PF_ANY)806 __SETPAGEFLAG(Head, head, PF_ANY)
807 __CLEARPAGEFLAG(Head, head, PF_ANY)
808 CLEARPAGEFLAG(Head, head, PF_ANY)
809 
810 /**
811  * folio_test_large() - Does this folio contain more than one page?
812  * @folio: The folio to test.
813  *
814  * Return: True if the folio is larger than one page.
815  */
816 static inline bool folio_test_large(struct folio *folio)
817 {
818 	return folio_test_head(folio);
819 }
820 
set_compound_head(struct page * page,struct page * head)821 static __always_inline void set_compound_head(struct page *page, struct page *head)
822 {
823 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
824 }
825 
clear_compound_head(struct page * page)826 static __always_inline void clear_compound_head(struct page *page)
827 {
828 	WRITE_ONCE(page->compound_head, 0);
829 }
830 
831 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)832 static inline void ClearPageCompound(struct page *page)
833 {
834 	BUG_ON(!PageHead(page));
835 	ClearPageHead(page);
836 }
PAGEFLAG(LargeRmappable,large_rmappable,PF_SECOND)837 PAGEFLAG(LargeRmappable, large_rmappable, PF_SECOND)
838 #else
839 TESTPAGEFLAG_FALSE(LargeRmappable, large_rmappable)
840 #endif
841 
842 #define PG_head_mask ((1UL << PG_head))
843 
844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
845 /*
846  * PageHuge() only returns true for hugetlbfs pages, but not for
847  * normal or transparent huge pages.
848  *
849  * PageTransHuge() returns true for both transparent huge and
850  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
851  * called only in the core VM paths where hugetlbfs pages can't exist.
852  */
853 static inline int PageTransHuge(struct page *page)
854 {
855 	VM_BUG_ON_PAGE(PageTail(page), page);
856 	return PageHead(page);
857 }
858 
859 /*
860  * PageTransCompound returns true for both transparent huge pages
861  * and hugetlbfs pages, so it should only be called when it's known
862  * that hugetlbfs pages aren't involved.
863  */
PageTransCompound(struct page * page)864 static inline int PageTransCompound(struct page *page)
865 {
866 	return PageCompound(page);
867 }
868 
869 /*
870  * PageTransTail returns true for both transparent huge pages
871  * and hugetlbfs pages, so it should only be called when it's known
872  * that hugetlbfs pages aren't involved.
873  */
PageTransTail(struct page * page)874 static inline int PageTransTail(struct page *page)
875 {
876 	return PageTail(page);
877 }
878 #else
879 TESTPAGEFLAG_FALSE(TransHuge, transhuge)
880 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
881 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
882 TESTPAGEFLAG_FALSE(TransTail, transtail)
883 #endif
884 
885 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
886 /*
887  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
888  * compound page.
889  *
890  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
891  */
PAGEFLAG(HasHWPoisoned,has_hwpoisoned,PF_SECOND)892 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
893 	TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
894 #else
895 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
896 	TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
897 #endif
898 
899 /*
900  * For pages that are never mapped to userspace (and aren't PageSlab),
901  * page_type may be used.  Because it is initialised to -1, we invert the
902  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
903  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
904  * low bits so that an underflow or overflow of _mapcount won't be
905  * mistaken for a page type value.
906  */
907 
908 #define PAGE_TYPE_BASE	0xf0000000
909 /* Reserve		0x0000007f to catch underflows of _mapcount */
910 #define PAGE_MAPCOUNT_RESERVE	-128
911 #define PG_buddy	0x00000080
912 #define PG_offline	0x00000100
913 #define PG_table	0x00000200
914 #define PG_guard	0x00000400
915 #define PG_hugetlb	0x00000800
916 
917 #define PageType(page, flag)						\
918 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
919 #define folio_test_type(folio, flag)					\
920 	((folio->page.page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
921 
922 static inline int page_type_has_type(unsigned int page_type)
923 {
924 	return (int)page_type < PAGE_MAPCOUNT_RESERVE;
925 }
926 
page_has_type(struct page * page)927 static inline int page_has_type(struct page *page)
928 {
929 	return page_type_has_type(page->page_type);
930 }
931 
932 #define FOLIO_TYPE_OPS(lname, fname)					\
933 static __always_inline bool folio_test_##fname(const struct folio *folio)\
934 {									\
935 	return folio_test_type(folio, PG_##lname);			\
936 }									\
937 static __always_inline void __folio_set_##fname(struct folio *folio)	\
938 {									\
939 	VM_BUG_ON_FOLIO(!folio_test_type(folio, 0), folio);		\
940 	folio->page.page_type &= ~PG_##lname;				\
941 }									\
942 static __always_inline void __folio_clear_##fname(struct folio *folio)	\
943 {									\
944 	VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio);		\
945 	folio->page.page_type |= PG_##lname;				\
946 }
947 
948 #define PAGE_TYPE_OPS(uname, lname, fname)				\
949 FOLIO_TYPE_OPS(lname, fname)						\
950 static __always_inline int Page##uname(const struct page *page)		\
951 {									\
952 	return PageType(page, PG_##lname);				\
953 }									\
954 static __always_inline void __SetPage##uname(struct page *page)		\
955 {									\
956 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
957 	page->page_type &= ~PG_##lname;					\
958 }									\
959 static __always_inline void __ClearPage##uname(struct page *page)	\
960 {									\
961 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
962 	page->page_type |= PG_##lname;					\
963 }
964 
965 /*
966  * PageBuddy() indicates that the page is free and in the buddy system
967  * (see mm/page_alloc.c).
968  */
969 PAGE_TYPE_OPS(Buddy, buddy, buddy)
970 
971 /*
972  * PageOffline() indicates that the page is logically offline although the
973  * containing section is online. (e.g. inflated in a balloon driver or
974  * not onlined when onlining the section).
975  * The content of these pages is effectively stale. Such pages should not
976  * be touched (read/write/dump/save) except by their owner.
977  *
978  * If a driver wants to allow to offline unmovable PageOffline() pages without
979  * putting them back to the buddy, it can do so via the memory notifier by
980  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
981  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
982  * pages (now with a reference count of zero) are treated like free pages,
983  * allowing the containing memory block to get offlined. A driver that
984  * relies on this feature is aware that re-onlining the memory block will
985  * require to re-set the pages PageOffline() and not giving them to the
986  * buddy via online_page_callback_t.
987  *
988  * There are drivers that mark a page PageOffline() and expect there won't be
989  * any further access to page content. PFN walkers that read content of random
990  * pages should check PageOffline() and synchronize with such drivers using
991  * page_offline_freeze()/page_offline_thaw().
992  */
993 PAGE_TYPE_OPS(Offline, offline, offline)
994 
995 extern void page_offline_freeze(void);
996 extern void page_offline_thaw(void);
997 extern void page_offline_begin(void);
998 extern void page_offline_end(void);
999 
1000 /*
1001  * Marks pages in use as page tables.
1002  */
PAGE_TYPE_OPS(Table,table,pgtable)1003 PAGE_TYPE_OPS(Table, table, pgtable)
1004 
1005 /*
1006  * Marks guardpages used with debug_pagealloc.
1007  */
1008 PAGE_TYPE_OPS(Guard, guard, guard)
1009 
1010 #ifdef CONFIG_HUGETLB_PAGE
1011 FOLIO_TYPE_OPS(hugetlb, hugetlb)
1012 #else
1013 FOLIO_TEST_FLAG_FALSE(hugetlb)
1014 #endif
1015 
1016 /**
1017  * PageHuge - Determine if the page belongs to hugetlbfs
1018  * @page: The page to test.
1019  *
1020  * Context: Any context.
1021  * Return: True for hugetlbfs pages, false for anon pages or pages
1022  * belonging to other filesystems.
1023  */
1024 static inline bool PageHuge(const struct page *page)
1025 {
1026 	return folio_test_hugetlb(page_folio(page));
1027 }
1028 
1029 /*
1030  * Check if a page is currently marked HWPoisoned. Note that this check is
1031  * best effort only and inherently racy: there is no way to synchronize with
1032  * failing hardware.
1033  */
is_page_hwpoison(struct page * page)1034 static inline bool is_page_hwpoison(struct page *page)
1035 {
1036 	if (PageHWPoison(page))
1037 		return true;
1038 	return PageHuge(page) && PageHWPoison(compound_head(page));
1039 }
1040 
1041 extern bool is_free_buddy_page(struct page *page);
1042 
1043 PAGEFLAG(Isolated, isolated, PF_ANY);
1044 
PageAnonExclusive(struct page * page)1045 static __always_inline int PageAnonExclusive(struct page *page)
1046 {
1047 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1048 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1049 	return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1050 }
1051 
SetPageAnonExclusive(struct page * page)1052 static __always_inline void SetPageAnonExclusive(struct page *page)
1053 {
1054 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1055 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1056 	set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1057 }
1058 
ClearPageAnonExclusive(struct page * page)1059 static __always_inline void ClearPageAnonExclusive(struct page *page)
1060 {
1061 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1062 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1063 	clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1064 }
1065 
__ClearPageAnonExclusive(struct page * page)1066 static __always_inline void __ClearPageAnonExclusive(struct page *page)
1067 {
1068 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1069 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1070 	__clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1071 }
1072 
1073 #ifdef CONFIG_MMU
1074 #define __PG_MLOCKED		(1UL << PG_mlocked)
1075 #else
1076 #define __PG_MLOCKED		0
1077 #endif
1078 
1079 /*
1080  * Flags checked when a page is freed.  Pages being freed should not have
1081  * these flags set.  If they are, there is a problem.
1082  */
1083 #define PAGE_FLAGS_CHECK_AT_FREE				\
1084 	(1UL << PG_lru		| 1UL << PG_locked	|	\
1085 	 1UL << PG_private	| 1UL << PG_private_2	|	\
1086 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
1087 	 1UL << PG_slab		| 1UL << PG_active 	|	\
1088 	 1UL << PG_unevictable	| __PG_MLOCKED | LRU_GEN_MASK)
1089 
1090 /*
1091  * Flags checked when a page is prepped for return by the page allocator.
1092  * Pages being prepped should not have these flags set.  If they are set,
1093  * there has been a kernel bug or struct page corruption.
1094  *
1095  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1096  * alloc-free cycle to prevent from reusing the page.
1097  */
1098 #define PAGE_FLAGS_CHECK_AT_PREP	\
1099 	((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK)
1100 
1101 /*
1102  * Flags stored in the second page of a compound page.  They may overlap
1103  * the CHECK_AT_FREE flags above, so need to be cleared.
1104  */
1105 #define PAGE_FLAGS_SECOND						\
1106 	(0xffUL /* order */		| 1UL << PG_has_hwpoisoned |	\
1107 	 1UL << PG_large_rmappable)
1108 
1109 #define PAGE_FLAGS_PRIVATE				\
1110 	(1UL << PG_private | 1UL << PG_private_2)
1111 /**
1112  * page_has_private - Determine if page has private stuff
1113  * @page: The page to be checked
1114  *
1115  * Determine if a page has private stuff, indicating that release routines
1116  * should be invoked upon it.
1117  */
page_has_private(struct page * page)1118 static inline int page_has_private(struct page *page)
1119 {
1120 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
1121 }
1122 
folio_has_private(struct folio * folio)1123 static inline bool folio_has_private(struct folio *folio)
1124 {
1125 	return page_has_private(&folio->page);
1126 }
1127 
1128 #undef PF_ANY
1129 #undef PF_HEAD
1130 #undef PF_ONLY_HEAD
1131 #undef PF_NO_TAIL
1132 #undef PF_NO_COMPOUND
1133 #undef PF_SECOND
1134 #endif /* !__GENERATING_BOUNDS_H */
1135 
1136 #endif	/* PAGE_FLAGS_H */
1137