1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/android_fuse.h>
7 #include <uapi/linux/bpf_perf_event.h>
8 #include <uapi/linux/types.h>
9 #include <linux/seq_file.h>
10 #include <linux/compiler.h>
11 #include <linux/ctype.h>
12 #include <linux/errno.h>
13 #include <linux/slab.h>
14 #include <linux/anon_inodes.h>
15 #include <linux/file.h>
16 #include <linux/uaccess.h>
17 #include <linux/kernel.h>
18 #include <linux/idr.h>
19 #include <linux/sort.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/btf.h>
22 #include <linux/btf_ids.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/skmsg.h>
25 #include <linux/perf_event.h>
26 #include <linux/bsearch.h>
27 #include <linux/kobject.h>
28 #include <linux/sysfs.h>
29
30 #include <net/netfilter/nf_bpf_link.h>
31
32 #include <net/sock.h>
33 #include <net/xdp.h>
34 #include "../tools/lib/bpf/relo_core.h"
35
36 /* BTF (BPF Type Format) is the meta data format which describes
37 * the data types of BPF program/map. Hence, it basically focus
38 * on the C programming language which the modern BPF is primary
39 * using.
40 *
41 * ELF Section:
42 * ~~~~~~~~~~~
43 * The BTF data is stored under the ".BTF" ELF section
44 *
45 * struct btf_type:
46 * ~~~~~~~~~~~~~~~
47 * Each 'struct btf_type' object describes a C data type.
48 * Depending on the type it is describing, a 'struct btf_type'
49 * object may be followed by more data. F.e.
50 * To describe an array, 'struct btf_type' is followed by
51 * 'struct btf_array'.
52 *
53 * 'struct btf_type' and any extra data following it are
54 * 4 bytes aligned.
55 *
56 * Type section:
57 * ~~~~~~~~~~~~~
58 * The BTF type section contains a list of 'struct btf_type' objects.
59 * Each one describes a C type. Recall from the above section
60 * that a 'struct btf_type' object could be immediately followed by extra
61 * data in order to describe some particular C types.
62 *
63 * type_id:
64 * ~~~~~~~
65 * Each btf_type object is identified by a type_id. The type_id
66 * is implicitly implied by the location of the btf_type object in
67 * the BTF type section. The first one has type_id 1. The second
68 * one has type_id 2...etc. Hence, an earlier btf_type has
69 * a smaller type_id.
70 *
71 * A btf_type object may refer to another btf_type object by using
72 * type_id (i.e. the "type" in the "struct btf_type").
73 *
74 * NOTE that we cannot assume any reference-order.
75 * A btf_type object can refer to an earlier btf_type object
76 * but it can also refer to a later btf_type object.
77 *
78 * For example, to describe "const void *". A btf_type
79 * object describing "const" may refer to another btf_type
80 * object describing "void *". This type-reference is done
81 * by specifying type_id:
82 *
83 * [1] CONST (anon) type_id=2
84 * [2] PTR (anon) type_id=0
85 *
86 * The above is the btf_verifier debug log:
87 * - Each line started with "[?]" is a btf_type object
88 * - [?] is the type_id of the btf_type object.
89 * - CONST/PTR is the BTF_KIND_XXX
90 * - "(anon)" is the name of the type. It just
91 * happens that CONST and PTR has no name.
92 * - type_id=XXX is the 'u32 type' in btf_type
93 *
94 * NOTE: "void" has type_id 0
95 *
96 * String section:
97 * ~~~~~~~~~~~~~~
98 * The BTF string section contains the names used by the type section.
99 * Each string is referred by an "offset" from the beginning of the
100 * string section.
101 *
102 * Each string is '\0' terminated.
103 *
104 * The first character in the string section must be '\0'
105 * which is used to mean 'anonymous'. Some btf_type may not
106 * have a name.
107 */
108
109 /* BTF verification:
110 *
111 * To verify BTF data, two passes are needed.
112 *
113 * Pass #1
114 * ~~~~~~~
115 * The first pass is to collect all btf_type objects to
116 * an array: "btf->types".
117 *
118 * Depending on the C type that a btf_type is describing,
119 * a btf_type may be followed by extra data. We don't know
120 * how many btf_type is there, and more importantly we don't
121 * know where each btf_type is located in the type section.
122 *
123 * Without knowing the location of each type_id, most verifications
124 * cannot be done. e.g. an earlier btf_type may refer to a later
125 * btf_type (recall the "const void *" above), so we cannot
126 * check this type-reference in the first pass.
127 *
128 * In the first pass, it still does some verifications (e.g.
129 * checking the name is a valid offset to the string section).
130 *
131 * Pass #2
132 * ~~~~~~~
133 * The main focus is to resolve a btf_type that is referring
134 * to another type.
135 *
136 * We have to ensure the referring type:
137 * 1) does exist in the BTF (i.e. in btf->types[])
138 * 2) does not cause a loop:
139 * struct A {
140 * struct B b;
141 * };
142 *
143 * struct B {
144 * struct A a;
145 * };
146 *
147 * btf_type_needs_resolve() decides if a btf_type needs
148 * to be resolved.
149 *
150 * The needs_resolve type implements the "resolve()" ops which
151 * essentially does a DFS and detects backedge.
152 *
153 * During resolve (or DFS), different C types have different
154 * "RESOLVED" conditions.
155 *
156 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
157 * members because a member is always referring to another
158 * type. A struct's member can be treated as "RESOLVED" if
159 * it is referring to a BTF_KIND_PTR. Otherwise, the
160 * following valid C struct would be rejected:
161 *
162 * struct A {
163 * int m;
164 * struct A *a;
165 * };
166 *
167 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
168 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
169 * detect a pointer loop, e.g.:
170 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
171 * ^ |
172 * +-----------------------------------------+
173 *
174 */
175
176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
180 #define BITS_ROUNDUP_BYTES(bits) \
181 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
182
183 #define BTF_INFO_MASK 0x9f00ffff
184 #define BTF_INT_MASK 0x0fffffff
185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
187
188 /* 16MB for 64k structs and each has 16 members and
189 * a few MB spaces for the string section.
190 * The hard limit is S32_MAX.
191 */
192 #define BTF_MAX_SIZE (16 * 1024 * 1024)
193
194 #define for_each_member_from(i, from, struct_type, member) \
195 for (i = from, member = btf_type_member(struct_type) + from; \
196 i < btf_type_vlen(struct_type); \
197 i++, member++)
198
199 #define for_each_vsi_from(i, from, struct_type, member) \
200 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
201 i < btf_type_vlen(struct_type); \
202 i++, member++)
203
204 DEFINE_IDR(btf_idr);
205 DEFINE_SPINLOCK(btf_idr_lock);
206
207 enum btf_kfunc_hook {
208 BTF_KFUNC_HOOK_COMMON,
209 BTF_KFUNC_HOOK_XDP,
210 BTF_KFUNC_HOOK_TC,
211 BTF_KFUNC_HOOK_STRUCT_OPS,
212 BTF_KFUNC_HOOK_TRACING,
213 BTF_KFUNC_HOOK_SYSCALL,
214 BTF_KFUNC_HOOK_FMODRET,
215 BTF_KFUNC_HOOK_CGROUP_SKB,
216 BTF_KFUNC_HOOK_SCHED_ACT,
217 BTF_KFUNC_HOOK_SK_SKB,
218 BTF_KFUNC_HOOK_SOCKET_FILTER,
219 BTF_KFUNC_HOOK_LWT,
220 BTF_KFUNC_HOOK_NETFILTER,
221 BTF_KFUNC_HOOK_MAX,
222 };
223
224 enum {
225 BTF_KFUNC_SET_MAX_CNT = 256,
226 BTF_DTOR_KFUNC_MAX_CNT = 256,
227 BTF_KFUNC_FILTER_MAX_CNT = 16,
228 };
229
230 struct btf_kfunc_hook_filter {
231 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
232 u32 nr_filters;
233 };
234
235 struct btf_kfunc_set_tab {
236 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
237 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
238 };
239
240 struct btf_id_dtor_kfunc_tab {
241 u32 cnt;
242 struct btf_id_dtor_kfunc dtors[];
243 };
244
245 struct btf {
246 void *data;
247 struct btf_type **types;
248 u32 *resolved_ids;
249 u32 *resolved_sizes;
250 const char *strings;
251 void *nohdr_data;
252 struct btf_header hdr;
253 u32 nr_types; /* includes VOID for base BTF */
254 u32 types_size;
255 u32 data_size;
256 refcount_t refcnt;
257 u32 id;
258 struct rcu_head rcu;
259 struct btf_kfunc_set_tab *kfunc_set_tab;
260 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
261 struct btf_struct_metas *struct_meta_tab;
262
263 /* split BTF support */
264 struct btf *base_btf;
265 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
266 u32 start_str_off; /* first string offset (0 for base BTF) */
267 char name[MODULE_NAME_LEN];
268 bool kernel_btf;
269 };
270
271 enum verifier_phase {
272 CHECK_META,
273 CHECK_TYPE,
274 };
275
276 struct resolve_vertex {
277 const struct btf_type *t;
278 u32 type_id;
279 u16 next_member;
280 };
281
282 enum visit_state {
283 NOT_VISITED,
284 VISITED,
285 RESOLVED,
286 };
287
288 enum resolve_mode {
289 RESOLVE_TBD, /* To Be Determined */
290 RESOLVE_PTR, /* Resolving for Pointer */
291 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
292 * or array
293 */
294 };
295
296 #define MAX_RESOLVE_DEPTH 32
297
298 struct btf_sec_info {
299 u32 off;
300 u32 len;
301 };
302
303 struct btf_verifier_env {
304 struct btf *btf;
305 u8 *visit_states;
306 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
307 struct bpf_verifier_log log;
308 u32 log_type_id;
309 u32 top_stack;
310 enum verifier_phase phase;
311 enum resolve_mode resolve_mode;
312 };
313
314 static const char * const btf_kind_str[NR_BTF_KINDS] = {
315 [BTF_KIND_UNKN] = "UNKNOWN",
316 [BTF_KIND_INT] = "INT",
317 [BTF_KIND_PTR] = "PTR",
318 [BTF_KIND_ARRAY] = "ARRAY",
319 [BTF_KIND_STRUCT] = "STRUCT",
320 [BTF_KIND_UNION] = "UNION",
321 [BTF_KIND_ENUM] = "ENUM",
322 [BTF_KIND_FWD] = "FWD",
323 [BTF_KIND_TYPEDEF] = "TYPEDEF",
324 [BTF_KIND_VOLATILE] = "VOLATILE",
325 [BTF_KIND_CONST] = "CONST",
326 [BTF_KIND_RESTRICT] = "RESTRICT",
327 [BTF_KIND_FUNC] = "FUNC",
328 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
329 [BTF_KIND_VAR] = "VAR",
330 [BTF_KIND_DATASEC] = "DATASEC",
331 [BTF_KIND_FLOAT] = "FLOAT",
332 [BTF_KIND_DECL_TAG] = "DECL_TAG",
333 [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
334 [BTF_KIND_ENUM64] = "ENUM64",
335 };
336
btf_type_str(const struct btf_type * t)337 const char *btf_type_str(const struct btf_type *t)
338 {
339 return btf_kind_str[BTF_INFO_KIND(t->info)];
340 }
341
342 /* Chunk size we use in safe copy of data to be shown. */
343 #define BTF_SHOW_OBJ_SAFE_SIZE 32
344
345 /*
346 * This is the maximum size of a base type value (equivalent to a
347 * 128-bit int); if we are at the end of our safe buffer and have
348 * less than 16 bytes space we can't be assured of being able
349 * to copy the next type safely, so in such cases we will initiate
350 * a new copy.
351 */
352 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
353
354 /* Type name size */
355 #define BTF_SHOW_NAME_SIZE 80
356
357 /*
358 * The suffix of a type that indicates it cannot alias another type when
359 * comparing BTF IDs for kfunc invocations.
360 */
361 #define NOCAST_ALIAS_SUFFIX "___init"
362
363 /*
364 * Common data to all BTF show operations. Private show functions can add
365 * their own data to a structure containing a struct btf_show and consult it
366 * in the show callback. See btf_type_show() below.
367 *
368 * One challenge with showing nested data is we want to skip 0-valued
369 * data, but in order to figure out whether a nested object is all zeros
370 * we need to walk through it. As a result, we need to make two passes
371 * when handling structs, unions and arrays; the first path simply looks
372 * for nonzero data, while the second actually does the display. The first
373 * pass is signalled by show->state.depth_check being set, and if we
374 * encounter a non-zero value we set show->state.depth_to_show to
375 * the depth at which we encountered it. When we have completed the
376 * first pass, we will know if anything needs to be displayed if
377 * depth_to_show > depth. See btf_[struct,array]_show() for the
378 * implementation of this.
379 *
380 * Another problem is we want to ensure the data for display is safe to
381 * access. To support this, the anonymous "struct {} obj" tracks the data
382 * object and our safe copy of it. We copy portions of the data needed
383 * to the object "copy" buffer, but because its size is limited to
384 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
385 * traverse larger objects for display.
386 *
387 * The various data type show functions all start with a call to
388 * btf_show_start_type() which returns a pointer to the safe copy
389 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
390 * raw data itself). btf_show_obj_safe() is responsible for
391 * using copy_from_kernel_nofault() to update the safe data if necessary
392 * as we traverse the object's data. skbuff-like semantics are
393 * used:
394 *
395 * - obj.head points to the start of the toplevel object for display
396 * - obj.size is the size of the toplevel object
397 * - obj.data points to the current point in the original data at
398 * which our safe data starts. obj.data will advance as we copy
399 * portions of the data.
400 *
401 * In most cases a single copy will suffice, but larger data structures
402 * such as "struct task_struct" will require many copies. The logic in
403 * btf_show_obj_safe() handles the logic that determines if a new
404 * copy_from_kernel_nofault() is needed.
405 */
406 struct btf_show {
407 u64 flags;
408 void *target; /* target of show operation (seq file, buffer) */
409 __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
410 const struct btf *btf;
411 /* below are used during iteration */
412 struct {
413 u8 depth;
414 u8 depth_to_show;
415 u8 depth_check;
416 u8 array_member:1,
417 array_terminated:1;
418 u16 array_encoding;
419 u32 type_id;
420 int status; /* non-zero for error */
421 const struct btf_type *type;
422 const struct btf_member *member;
423 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
424 } state;
425 struct {
426 u32 size;
427 void *head;
428 void *data;
429 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
430 } obj;
431 };
432
433 struct btf_kind_operations {
434 s32 (*check_meta)(struct btf_verifier_env *env,
435 const struct btf_type *t,
436 u32 meta_left);
437 int (*resolve)(struct btf_verifier_env *env,
438 const struct resolve_vertex *v);
439 int (*check_member)(struct btf_verifier_env *env,
440 const struct btf_type *struct_type,
441 const struct btf_member *member,
442 const struct btf_type *member_type);
443 int (*check_kflag_member)(struct btf_verifier_env *env,
444 const struct btf_type *struct_type,
445 const struct btf_member *member,
446 const struct btf_type *member_type);
447 void (*log_details)(struct btf_verifier_env *env,
448 const struct btf_type *t);
449 void (*show)(const struct btf *btf, const struct btf_type *t,
450 u32 type_id, void *data, u8 bits_offsets,
451 struct btf_show *show);
452 };
453
454 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
455 static struct btf_type btf_void;
456
457 static int btf_resolve(struct btf_verifier_env *env,
458 const struct btf_type *t, u32 type_id);
459
460 static int btf_func_check(struct btf_verifier_env *env,
461 const struct btf_type *t);
462
btf_type_is_modifier(const struct btf_type * t)463 static bool btf_type_is_modifier(const struct btf_type *t)
464 {
465 /* Some of them is not strictly a C modifier
466 * but they are grouped into the same bucket
467 * for BTF concern:
468 * A type (t) that refers to another
469 * type through t->type AND its size cannot
470 * be determined without following the t->type.
471 *
472 * ptr does not fall into this bucket
473 * because its size is always sizeof(void *).
474 */
475 switch (BTF_INFO_KIND(t->info)) {
476 case BTF_KIND_TYPEDEF:
477 case BTF_KIND_VOLATILE:
478 case BTF_KIND_CONST:
479 case BTF_KIND_RESTRICT:
480 case BTF_KIND_TYPE_TAG:
481 return true;
482 }
483
484 return false;
485 }
486
btf_type_is_void(const struct btf_type * t)487 bool btf_type_is_void(const struct btf_type *t)
488 {
489 return t == &btf_void;
490 }
491
btf_type_is_fwd(const struct btf_type * t)492 static bool btf_type_is_fwd(const struct btf_type *t)
493 {
494 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
495 }
496
btf_type_is_datasec(const struct btf_type * t)497 static bool btf_type_is_datasec(const struct btf_type *t)
498 {
499 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
500 }
501
btf_type_is_decl_tag(const struct btf_type * t)502 static bool btf_type_is_decl_tag(const struct btf_type *t)
503 {
504 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
505 }
506
btf_type_nosize(const struct btf_type * t)507 static bool btf_type_nosize(const struct btf_type *t)
508 {
509 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
510 btf_type_is_func(t) || btf_type_is_func_proto(t) ||
511 btf_type_is_decl_tag(t);
512 }
513
btf_type_nosize_or_null(const struct btf_type * t)514 static bool btf_type_nosize_or_null(const struct btf_type *t)
515 {
516 return !t || btf_type_nosize(t);
517 }
518
btf_type_is_decl_tag_target(const struct btf_type * t)519 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
520 {
521 return btf_type_is_func(t) || btf_type_is_struct(t) ||
522 btf_type_is_var(t) || btf_type_is_typedef(t);
523 }
524
btf_nr_types(const struct btf * btf)525 u32 btf_nr_types(const struct btf *btf)
526 {
527 u32 total = 0;
528
529 while (btf) {
530 total += btf->nr_types;
531 btf = btf->base_btf;
532 }
533
534 return total;
535 }
536
btf_find_by_name_kind(const struct btf * btf,const char * name,u8 kind)537 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
538 {
539 const struct btf_type *t;
540 const char *tname;
541 u32 i, total;
542
543 total = btf_nr_types(btf);
544 for (i = 1; i < total; i++) {
545 t = btf_type_by_id(btf, i);
546 if (BTF_INFO_KIND(t->info) != kind)
547 continue;
548
549 tname = btf_name_by_offset(btf, t->name_off);
550 if (!strcmp(tname, name))
551 return i;
552 }
553
554 return -ENOENT;
555 }
556
bpf_find_btf_id(const char * name,u32 kind,struct btf ** btf_p)557 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
558 {
559 struct btf *btf;
560 s32 ret;
561 int id;
562
563 btf = bpf_get_btf_vmlinux();
564 if (IS_ERR(btf))
565 return PTR_ERR(btf);
566 if (!btf)
567 return -EINVAL;
568
569 ret = btf_find_by_name_kind(btf, name, kind);
570 /* ret is never zero, since btf_find_by_name_kind returns
571 * positive btf_id or negative error.
572 */
573 if (ret > 0) {
574 btf_get(btf);
575 *btf_p = btf;
576 return ret;
577 }
578
579 /* If name is not found in vmlinux's BTF then search in module's BTFs */
580 spin_lock_bh(&btf_idr_lock);
581 idr_for_each_entry(&btf_idr, btf, id) {
582 if (!btf_is_module(btf))
583 continue;
584 /* linear search could be slow hence unlock/lock
585 * the IDR to avoiding holding it for too long
586 */
587 btf_get(btf);
588 spin_unlock_bh(&btf_idr_lock);
589 ret = btf_find_by_name_kind(btf, name, kind);
590 if (ret > 0) {
591 *btf_p = btf;
592 return ret;
593 }
594 btf_put(btf);
595 spin_lock_bh(&btf_idr_lock);
596 }
597 spin_unlock_bh(&btf_idr_lock);
598 return ret;
599 }
600
btf_type_skip_modifiers(const struct btf * btf,u32 id,u32 * res_id)601 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
602 u32 id, u32 *res_id)
603 {
604 const struct btf_type *t = btf_type_by_id(btf, id);
605
606 while (btf_type_is_modifier(t)) {
607 id = t->type;
608 t = btf_type_by_id(btf, t->type);
609 }
610
611 if (res_id)
612 *res_id = id;
613
614 return t;
615 }
616
btf_type_resolve_ptr(const struct btf * btf,u32 id,u32 * res_id)617 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
618 u32 id, u32 *res_id)
619 {
620 const struct btf_type *t;
621
622 t = btf_type_skip_modifiers(btf, id, NULL);
623 if (!btf_type_is_ptr(t))
624 return NULL;
625
626 return btf_type_skip_modifiers(btf, t->type, res_id);
627 }
628
btf_type_resolve_func_ptr(const struct btf * btf,u32 id,u32 * res_id)629 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
630 u32 id, u32 *res_id)
631 {
632 const struct btf_type *ptype;
633
634 ptype = btf_type_resolve_ptr(btf, id, res_id);
635 if (ptype && btf_type_is_func_proto(ptype))
636 return ptype;
637
638 return NULL;
639 }
640
641 /* Types that act only as a source, not sink or intermediate
642 * type when resolving.
643 */
btf_type_is_resolve_source_only(const struct btf_type * t)644 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
645 {
646 return btf_type_is_var(t) ||
647 btf_type_is_decl_tag(t) ||
648 btf_type_is_datasec(t);
649 }
650
651 /* What types need to be resolved?
652 *
653 * btf_type_is_modifier() is an obvious one.
654 *
655 * btf_type_is_struct() because its member refers to
656 * another type (through member->type).
657 *
658 * btf_type_is_var() because the variable refers to
659 * another type. btf_type_is_datasec() holds multiple
660 * btf_type_is_var() types that need resolving.
661 *
662 * btf_type_is_array() because its element (array->type)
663 * refers to another type. Array can be thought of a
664 * special case of struct while array just has the same
665 * member-type repeated by array->nelems of times.
666 */
btf_type_needs_resolve(const struct btf_type * t)667 static bool btf_type_needs_resolve(const struct btf_type *t)
668 {
669 return btf_type_is_modifier(t) ||
670 btf_type_is_ptr(t) ||
671 btf_type_is_struct(t) ||
672 btf_type_is_array(t) ||
673 btf_type_is_var(t) ||
674 btf_type_is_func(t) ||
675 btf_type_is_decl_tag(t) ||
676 btf_type_is_datasec(t);
677 }
678
679 /* t->size can be used */
btf_type_has_size(const struct btf_type * t)680 static bool btf_type_has_size(const struct btf_type *t)
681 {
682 switch (BTF_INFO_KIND(t->info)) {
683 case BTF_KIND_INT:
684 case BTF_KIND_STRUCT:
685 case BTF_KIND_UNION:
686 case BTF_KIND_ENUM:
687 case BTF_KIND_DATASEC:
688 case BTF_KIND_FLOAT:
689 case BTF_KIND_ENUM64:
690 return true;
691 }
692
693 return false;
694 }
695
btf_int_encoding_str(u8 encoding)696 static const char *btf_int_encoding_str(u8 encoding)
697 {
698 if (encoding == 0)
699 return "(none)";
700 else if (encoding == BTF_INT_SIGNED)
701 return "SIGNED";
702 else if (encoding == BTF_INT_CHAR)
703 return "CHAR";
704 else if (encoding == BTF_INT_BOOL)
705 return "BOOL";
706 else
707 return "UNKN";
708 }
709
btf_type_int(const struct btf_type * t)710 static u32 btf_type_int(const struct btf_type *t)
711 {
712 return *(u32 *)(t + 1);
713 }
714
btf_type_array(const struct btf_type * t)715 static const struct btf_array *btf_type_array(const struct btf_type *t)
716 {
717 return (const struct btf_array *)(t + 1);
718 }
719
btf_type_enum(const struct btf_type * t)720 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
721 {
722 return (const struct btf_enum *)(t + 1);
723 }
724
btf_type_var(const struct btf_type * t)725 static const struct btf_var *btf_type_var(const struct btf_type *t)
726 {
727 return (const struct btf_var *)(t + 1);
728 }
729
btf_type_decl_tag(const struct btf_type * t)730 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
731 {
732 return (const struct btf_decl_tag *)(t + 1);
733 }
734
btf_type_enum64(const struct btf_type * t)735 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
736 {
737 return (const struct btf_enum64 *)(t + 1);
738 }
739
btf_type_ops(const struct btf_type * t)740 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
741 {
742 return kind_ops[BTF_INFO_KIND(t->info)];
743 }
744
btf_name_offset_valid(const struct btf * btf,u32 offset)745 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
746 {
747 if (!BTF_STR_OFFSET_VALID(offset))
748 return false;
749
750 while (offset < btf->start_str_off)
751 btf = btf->base_btf;
752
753 offset -= btf->start_str_off;
754 return offset < btf->hdr.str_len;
755 }
756
__btf_name_char_ok(char c,bool first)757 static bool __btf_name_char_ok(char c, bool first)
758 {
759 if ((first ? !isalpha(c) :
760 !isalnum(c)) &&
761 c != '_' &&
762 c != '.')
763 return false;
764 return true;
765 }
766
btf_str_by_offset(const struct btf * btf,u32 offset)767 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
768 {
769 while (offset < btf->start_str_off)
770 btf = btf->base_btf;
771
772 offset -= btf->start_str_off;
773 if (offset < btf->hdr.str_len)
774 return &btf->strings[offset];
775
776 return NULL;
777 }
778
__btf_name_valid(const struct btf * btf,u32 offset)779 static bool __btf_name_valid(const struct btf *btf, u32 offset)
780 {
781 /* offset must be valid */
782 const char *src = btf_str_by_offset(btf, offset);
783 const char *src_limit;
784
785 if (!__btf_name_char_ok(*src, true))
786 return false;
787
788 /* set a limit on identifier length */
789 src_limit = src + KSYM_NAME_LEN;
790 src++;
791 while (*src && src < src_limit) {
792 if (!__btf_name_char_ok(*src, false))
793 return false;
794 src++;
795 }
796
797 return !*src;
798 }
799
btf_name_valid_identifier(const struct btf * btf,u32 offset)800 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
801 {
802 return __btf_name_valid(btf, offset);
803 }
804
btf_name_valid_section(const struct btf * btf,u32 offset)805 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
806 {
807 return __btf_name_valid(btf, offset);
808 }
809
__btf_name_by_offset(const struct btf * btf,u32 offset)810 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
811 {
812 const char *name;
813
814 if (!offset)
815 return "(anon)";
816
817 name = btf_str_by_offset(btf, offset);
818 return name ?: "(invalid-name-offset)";
819 }
820
btf_name_by_offset(const struct btf * btf,u32 offset)821 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
822 {
823 return btf_str_by_offset(btf, offset);
824 }
825
btf_type_by_id(const struct btf * btf,u32 type_id)826 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
827 {
828 while (type_id < btf->start_id)
829 btf = btf->base_btf;
830
831 type_id -= btf->start_id;
832 if (type_id >= btf->nr_types)
833 return NULL;
834 return btf->types[type_id];
835 }
836 EXPORT_SYMBOL_GPL(btf_type_by_id);
837
838 /*
839 * Regular int is not a bit field and it must be either
840 * u8/u16/u32/u64 or __int128.
841 */
btf_type_int_is_regular(const struct btf_type * t)842 static bool btf_type_int_is_regular(const struct btf_type *t)
843 {
844 u8 nr_bits, nr_bytes;
845 u32 int_data;
846
847 int_data = btf_type_int(t);
848 nr_bits = BTF_INT_BITS(int_data);
849 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
850 if (BITS_PER_BYTE_MASKED(nr_bits) ||
851 BTF_INT_OFFSET(int_data) ||
852 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
853 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
854 nr_bytes != (2 * sizeof(u64)))) {
855 return false;
856 }
857
858 return true;
859 }
860
861 /*
862 * Check that given struct member is a regular int with expected
863 * offset and size.
864 */
btf_member_is_reg_int(const struct btf * btf,const struct btf_type * s,const struct btf_member * m,u32 expected_offset,u32 expected_size)865 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
866 const struct btf_member *m,
867 u32 expected_offset, u32 expected_size)
868 {
869 const struct btf_type *t;
870 u32 id, int_data;
871 u8 nr_bits;
872
873 id = m->type;
874 t = btf_type_id_size(btf, &id, NULL);
875 if (!t || !btf_type_is_int(t))
876 return false;
877
878 int_data = btf_type_int(t);
879 nr_bits = BTF_INT_BITS(int_data);
880 if (btf_type_kflag(s)) {
881 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
882 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
883
884 /* if kflag set, int should be a regular int and
885 * bit offset should be at byte boundary.
886 */
887 return !bitfield_size &&
888 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
889 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
890 }
891
892 if (BTF_INT_OFFSET(int_data) ||
893 BITS_PER_BYTE_MASKED(m->offset) ||
894 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
895 BITS_PER_BYTE_MASKED(nr_bits) ||
896 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
897 return false;
898
899 return true;
900 }
901
902 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
btf_type_skip_qualifiers(const struct btf * btf,u32 id)903 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
904 u32 id)
905 {
906 const struct btf_type *t = btf_type_by_id(btf, id);
907
908 while (btf_type_is_modifier(t) &&
909 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
910 t = btf_type_by_id(btf, t->type);
911 }
912
913 return t;
914 }
915
916 #define BTF_SHOW_MAX_ITER 10
917
918 #define BTF_KIND_BIT(kind) (1ULL << kind)
919
920 /*
921 * Populate show->state.name with type name information.
922 * Format of type name is
923 *
924 * [.member_name = ] (type_name)
925 */
btf_show_name(struct btf_show * show)926 static const char *btf_show_name(struct btf_show *show)
927 {
928 /* BTF_MAX_ITER array suffixes "[]" */
929 const char *array_suffixes = "[][][][][][][][][][]";
930 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
931 /* BTF_MAX_ITER pointer suffixes "*" */
932 const char *ptr_suffixes = "**********";
933 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
934 const char *name = NULL, *prefix = "", *parens = "";
935 const struct btf_member *m = show->state.member;
936 const struct btf_type *t;
937 const struct btf_array *array;
938 u32 id = show->state.type_id;
939 const char *member = NULL;
940 bool show_member = false;
941 u64 kinds = 0;
942 int i;
943
944 show->state.name[0] = '\0';
945
946 /*
947 * Don't show type name if we're showing an array member;
948 * in that case we show the array type so don't need to repeat
949 * ourselves for each member.
950 */
951 if (show->state.array_member)
952 return "";
953
954 /* Retrieve member name, if any. */
955 if (m) {
956 member = btf_name_by_offset(show->btf, m->name_off);
957 show_member = strlen(member) > 0;
958 id = m->type;
959 }
960
961 /*
962 * Start with type_id, as we have resolved the struct btf_type *
963 * via btf_modifier_show() past the parent typedef to the child
964 * struct, int etc it is defined as. In such cases, the type_id
965 * still represents the starting type while the struct btf_type *
966 * in our show->state points at the resolved type of the typedef.
967 */
968 t = btf_type_by_id(show->btf, id);
969 if (!t)
970 return "";
971
972 /*
973 * The goal here is to build up the right number of pointer and
974 * array suffixes while ensuring the type name for a typedef
975 * is represented. Along the way we accumulate a list of
976 * BTF kinds we have encountered, since these will inform later
977 * display; for example, pointer types will not require an
978 * opening "{" for struct, we will just display the pointer value.
979 *
980 * We also want to accumulate the right number of pointer or array
981 * indices in the format string while iterating until we get to
982 * the typedef/pointee/array member target type.
983 *
984 * We start by pointing at the end of pointer and array suffix
985 * strings; as we accumulate pointers and arrays we move the pointer
986 * or array string backwards so it will show the expected number of
987 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
988 * and/or arrays and typedefs are supported as a precaution.
989 *
990 * We also want to get typedef name while proceeding to resolve
991 * type it points to so that we can add parentheses if it is a
992 * "typedef struct" etc.
993 */
994 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
995
996 switch (BTF_INFO_KIND(t->info)) {
997 case BTF_KIND_TYPEDEF:
998 if (!name)
999 name = btf_name_by_offset(show->btf,
1000 t->name_off);
1001 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1002 id = t->type;
1003 break;
1004 case BTF_KIND_ARRAY:
1005 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1006 parens = "[";
1007 if (!t)
1008 return "";
1009 array = btf_type_array(t);
1010 if (array_suffix > array_suffixes)
1011 array_suffix -= 2;
1012 id = array->type;
1013 break;
1014 case BTF_KIND_PTR:
1015 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1016 if (ptr_suffix > ptr_suffixes)
1017 ptr_suffix -= 1;
1018 id = t->type;
1019 break;
1020 default:
1021 id = 0;
1022 break;
1023 }
1024 if (!id)
1025 break;
1026 t = btf_type_skip_qualifiers(show->btf, id);
1027 }
1028 /* We may not be able to represent this type; bail to be safe */
1029 if (i == BTF_SHOW_MAX_ITER)
1030 return "";
1031
1032 if (!name)
1033 name = btf_name_by_offset(show->btf, t->name_off);
1034
1035 switch (BTF_INFO_KIND(t->info)) {
1036 case BTF_KIND_STRUCT:
1037 case BTF_KIND_UNION:
1038 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1039 "struct" : "union";
1040 /* if it's an array of struct/union, parens is already set */
1041 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1042 parens = "{";
1043 break;
1044 case BTF_KIND_ENUM:
1045 case BTF_KIND_ENUM64:
1046 prefix = "enum";
1047 break;
1048 default:
1049 break;
1050 }
1051
1052 /* pointer does not require parens */
1053 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1054 parens = "";
1055 /* typedef does not require struct/union/enum prefix */
1056 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1057 prefix = "";
1058
1059 if (!name)
1060 name = "";
1061
1062 /* Even if we don't want type name info, we want parentheses etc */
1063 if (show->flags & BTF_SHOW_NONAME)
1064 snprintf(show->state.name, sizeof(show->state.name), "%s",
1065 parens);
1066 else
1067 snprintf(show->state.name, sizeof(show->state.name),
1068 "%s%s%s(%s%s%s%s%s%s)%s",
1069 /* first 3 strings comprise ".member = " */
1070 show_member ? "." : "",
1071 show_member ? member : "",
1072 show_member ? " = " : "",
1073 /* ...next is our prefix (struct, enum, etc) */
1074 prefix,
1075 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1076 /* ...this is the type name itself */
1077 name,
1078 /* ...suffixed by the appropriate '*', '[]' suffixes */
1079 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1080 array_suffix, parens);
1081
1082 return show->state.name;
1083 }
1084
__btf_show_indent(struct btf_show * show)1085 static const char *__btf_show_indent(struct btf_show *show)
1086 {
1087 const char *indents = " ";
1088 const char *indent = &indents[strlen(indents)];
1089
1090 if ((indent - show->state.depth) >= indents)
1091 return indent - show->state.depth;
1092 return indents;
1093 }
1094
btf_show_indent(struct btf_show * show)1095 static const char *btf_show_indent(struct btf_show *show)
1096 {
1097 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1098 }
1099
btf_show_newline(struct btf_show * show)1100 static const char *btf_show_newline(struct btf_show *show)
1101 {
1102 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1103 }
1104
btf_show_delim(struct btf_show * show)1105 static const char *btf_show_delim(struct btf_show *show)
1106 {
1107 if (show->state.depth == 0)
1108 return "";
1109
1110 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1111 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1112 return "|";
1113
1114 return ",";
1115 }
1116
btf_show(struct btf_show * show,const char * fmt,...)1117 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1118 {
1119 va_list args;
1120
1121 if (!show->state.depth_check) {
1122 va_start(args, fmt);
1123 show->showfn(show, fmt, args);
1124 va_end(args);
1125 }
1126 }
1127
1128 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1129 * format specifiers to the format specifier passed in; these do the work of
1130 * adding indentation, delimiters etc while the caller simply has to specify
1131 * the type value(s) in the format specifier + value(s).
1132 */
1133 #define btf_show_type_value(show, fmt, value) \
1134 do { \
1135 if ((value) != (__typeof__(value))0 || \
1136 (show->flags & BTF_SHOW_ZERO) || \
1137 show->state.depth == 0) { \
1138 btf_show(show, "%s%s" fmt "%s%s", \
1139 btf_show_indent(show), \
1140 btf_show_name(show), \
1141 value, btf_show_delim(show), \
1142 btf_show_newline(show)); \
1143 if (show->state.depth > show->state.depth_to_show) \
1144 show->state.depth_to_show = show->state.depth; \
1145 } \
1146 } while (0)
1147
1148 #define btf_show_type_values(show, fmt, ...) \
1149 do { \
1150 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1151 btf_show_name(show), \
1152 __VA_ARGS__, btf_show_delim(show), \
1153 btf_show_newline(show)); \
1154 if (show->state.depth > show->state.depth_to_show) \
1155 show->state.depth_to_show = show->state.depth; \
1156 } while (0)
1157
1158 /* How much is left to copy to safe buffer after @data? */
btf_show_obj_size_left(struct btf_show * show,void * data)1159 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1160 {
1161 return show->obj.head + show->obj.size - data;
1162 }
1163
1164 /* Is object pointed to by @data of @size already copied to our safe buffer? */
btf_show_obj_is_safe(struct btf_show * show,void * data,int size)1165 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1166 {
1167 return data >= show->obj.data &&
1168 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1169 }
1170
1171 /*
1172 * If object pointed to by @data of @size falls within our safe buffer, return
1173 * the equivalent pointer to the same safe data. Assumes
1174 * copy_from_kernel_nofault() has already happened and our safe buffer is
1175 * populated.
1176 */
__btf_show_obj_safe(struct btf_show * show,void * data,int size)1177 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1178 {
1179 if (btf_show_obj_is_safe(show, data, size))
1180 return show->obj.safe + (data - show->obj.data);
1181 return NULL;
1182 }
1183
1184 /*
1185 * Return a safe-to-access version of data pointed to by @data.
1186 * We do this by copying the relevant amount of information
1187 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1188 *
1189 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1190 * safe copy is needed.
1191 *
1192 * Otherwise we need to determine if we have the required amount
1193 * of data (determined by the @data pointer and the size of the
1194 * largest base type we can encounter (represented by
1195 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1196 * that we will be able to print some of the current object,
1197 * and if more is needed a copy will be triggered.
1198 * Some objects such as structs will not fit into the buffer;
1199 * in such cases additional copies when we iterate over their
1200 * members may be needed.
1201 *
1202 * btf_show_obj_safe() is used to return a safe buffer for
1203 * btf_show_start_type(); this ensures that as we recurse into
1204 * nested types we always have safe data for the given type.
1205 * This approach is somewhat wasteful; it's possible for example
1206 * that when iterating over a large union we'll end up copying the
1207 * same data repeatedly, but the goal is safety not performance.
1208 * We use stack data as opposed to per-CPU buffers because the
1209 * iteration over a type can take some time, and preemption handling
1210 * would greatly complicate use of the safe buffer.
1211 */
btf_show_obj_safe(struct btf_show * show,const struct btf_type * t,void * data)1212 static void *btf_show_obj_safe(struct btf_show *show,
1213 const struct btf_type *t,
1214 void *data)
1215 {
1216 const struct btf_type *rt;
1217 int size_left, size;
1218 void *safe = NULL;
1219
1220 if (show->flags & BTF_SHOW_UNSAFE)
1221 return data;
1222
1223 rt = btf_resolve_size(show->btf, t, &size);
1224 if (IS_ERR(rt)) {
1225 show->state.status = PTR_ERR(rt);
1226 return NULL;
1227 }
1228
1229 /*
1230 * Is this toplevel object? If so, set total object size and
1231 * initialize pointers. Otherwise check if we still fall within
1232 * our safe object data.
1233 */
1234 if (show->state.depth == 0) {
1235 show->obj.size = size;
1236 show->obj.head = data;
1237 } else {
1238 /*
1239 * If the size of the current object is > our remaining
1240 * safe buffer we _may_ need to do a new copy. However
1241 * consider the case of a nested struct; it's size pushes
1242 * us over the safe buffer limit, but showing any individual
1243 * struct members does not. In such cases, we don't need
1244 * to initiate a fresh copy yet; however we definitely need
1245 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1246 * in our buffer, regardless of the current object size.
1247 * The logic here is that as we resolve types we will
1248 * hit a base type at some point, and we need to be sure
1249 * the next chunk of data is safely available to display
1250 * that type info safely. We cannot rely on the size of
1251 * the current object here because it may be much larger
1252 * than our current buffer (e.g. task_struct is 8k).
1253 * All we want to do here is ensure that we can print the
1254 * next basic type, which we can if either
1255 * - the current type size is within the safe buffer; or
1256 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1257 * the safe buffer.
1258 */
1259 safe = __btf_show_obj_safe(show, data,
1260 min(size,
1261 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1262 }
1263
1264 /*
1265 * We need a new copy to our safe object, either because we haven't
1266 * yet copied and are initializing safe data, or because the data
1267 * we want falls outside the boundaries of the safe object.
1268 */
1269 if (!safe) {
1270 size_left = btf_show_obj_size_left(show, data);
1271 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1272 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1273 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1274 data, size_left);
1275 if (!show->state.status) {
1276 show->obj.data = data;
1277 safe = show->obj.safe;
1278 }
1279 }
1280
1281 return safe;
1282 }
1283
1284 /*
1285 * Set the type we are starting to show and return a safe data pointer
1286 * to be used for showing the associated data.
1287 */
btf_show_start_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1288 static void *btf_show_start_type(struct btf_show *show,
1289 const struct btf_type *t,
1290 u32 type_id, void *data)
1291 {
1292 show->state.type = t;
1293 show->state.type_id = type_id;
1294 show->state.name[0] = '\0';
1295
1296 return btf_show_obj_safe(show, t, data);
1297 }
1298
btf_show_end_type(struct btf_show * show)1299 static void btf_show_end_type(struct btf_show *show)
1300 {
1301 show->state.type = NULL;
1302 show->state.type_id = 0;
1303 show->state.name[0] = '\0';
1304 }
1305
btf_show_start_aggr_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1306 static void *btf_show_start_aggr_type(struct btf_show *show,
1307 const struct btf_type *t,
1308 u32 type_id, void *data)
1309 {
1310 void *safe_data = btf_show_start_type(show, t, type_id, data);
1311
1312 if (!safe_data)
1313 return safe_data;
1314
1315 btf_show(show, "%s%s%s", btf_show_indent(show),
1316 btf_show_name(show),
1317 btf_show_newline(show));
1318 show->state.depth++;
1319 return safe_data;
1320 }
1321
btf_show_end_aggr_type(struct btf_show * show,const char * suffix)1322 static void btf_show_end_aggr_type(struct btf_show *show,
1323 const char *suffix)
1324 {
1325 show->state.depth--;
1326 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1327 btf_show_delim(show), btf_show_newline(show));
1328 btf_show_end_type(show);
1329 }
1330
btf_show_start_member(struct btf_show * show,const struct btf_member * m)1331 static void btf_show_start_member(struct btf_show *show,
1332 const struct btf_member *m)
1333 {
1334 show->state.member = m;
1335 }
1336
btf_show_start_array_member(struct btf_show * show)1337 static void btf_show_start_array_member(struct btf_show *show)
1338 {
1339 show->state.array_member = 1;
1340 btf_show_start_member(show, NULL);
1341 }
1342
btf_show_end_member(struct btf_show * show)1343 static void btf_show_end_member(struct btf_show *show)
1344 {
1345 show->state.member = NULL;
1346 }
1347
btf_show_end_array_member(struct btf_show * show)1348 static void btf_show_end_array_member(struct btf_show *show)
1349 {
1350 show->state.array_member = 0;
1351 btf_show_end_member(show);
1352 }
1353
btf_show_start_array_type(struct btf_show * show,const struct btf_type * t,u32 type_id,u16 array_encoding,void * data)1354 static void *btf_show_start_array_type(struct btf_show *show,
1355 const struct btf_type *t,
1356 u32 type_id,
1357 u16 array_encoding,
1358 void *data)
1359 {
1360 show->state.array_encoding = array_encoding;
1361 show->state.array_terminated = 0;
1362 return btf_show_start_aggr_type(show, t, type_id, data);
1363 }
1364
btf_show_end_array_type(struct btf_show * show)1365 static void btf_show_end_array_type(struct btf_show *show)
1366 {
1367 show->state.array_encoding = 0;
1368 show->state.array_terminated = 0;
1369 btf_show_end_aggr_type(show, "]");
1370 }
1371
btf_show_start_struct_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1372 static void *btf_show_start_struct_type(struct btf_show *show,
1373 const struct btf_type *t,
1374 u32 type_id,
1375 void *data)
1376 {
1377 return btf_show_start_aggr_type(show, t, type_id, data);
1378 }
1379
btf_show_end_struct_type(struct btf_show * show)1380 static void btf_show_end_struct_type(struct btf_show *show)
1381 {
1382 btf_show_end_aggr_type(show, "}");
1383 }
1384
__btf_verifier_log(struct bpf_verifier_log * log,const char * fmt,...)1385 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1386 const char *fmt, ...)
1387 {
1388 va_list args;
1389
1390 va_start(args, fmt);
1391 bpf_verifier_vlog(log, fmt, args);
1392 va_end(args);
1393 }
1394
btf_verifier_log(struct btf_verifier_env * env,const char * fmt,...)1395 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1396 const char *fmt, ...)
1397 {
1398 struct bpf_verifier_log *log = &env->log;
1399 va_list args;
1400
1401 if (!bpf_verifier_log_needed(log))
1402 return;
1403
1404 va_start(args, fmt);
1405 bpf_verifier_vlog(log, fmt, args);
1406 va_end(args);
1407 }
1408
__btf_verifier_log_type(struct btf_verifier_env * env,const struct btf_type * t,bool log_details,const char * fmt,...)1409 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1410 const struct btf_type *t,
1411 bool log_details,
1412 const char *fmt, ...)
1413 {
1414 struct bpf_verifier_log *log = &env->log;
1415 struct btf *btf = env->btf;
1416 va_list args;
1417
1418 if (!bpf_verifier_log_needed(log))
1419 return;
1420
1421 if (log->level == BPF_LOG_KERNEL) {
1422 /* btf verifier prints all types it is processing via
1423 * btf_verifier_log_type(..., fmt = NULL).
1424 * Skip those prints for in-kernel BTF verification.
1425 */
1426 if (!fmt)
1427 return;
1428
1429 /* Skip logging when loading module BTF with mismatches permitted */
1430 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1431 return;
1432 }
1433
1434 __btf_verifier_log(log, "[%u] %s %s%s",
1435 env->log_type_id,
1436 btf_type_str(t),
1437 __btf_name_by_offset(btf, t->name_off),
1438 log_details ? " " : "");
1439
1440 if (log_details)
1441 btf_type_ops(t)->log_details(env, t);
1442
1443 if (fmt && *fmt) {
1444 __btf_verifier_log(log, " ");
1445 va_start(args, fmt);
1446 bpf_verifier_vlog(log, fmt, args);
1447 va_end(args);
1448 }
1449
1450 __btf_verifier_log(log, "\n");
1451 }
1452
1453 #define btf_verifier_log_type(env, t, ...) \
1454 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1455 #define btf_verifier_log_basic(env, t, ...) \
1456 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1457
1458 __printf(4, 5)
btf_verifier_log_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const char * fmt,...)1459 static void btf_verifier_log_member(struct btf_verifier_env *env,
1460 const struct btf_type *struct_type,
1461 const struct btf_member *member,
1462 const char *fmt, ...)
1463 {
1464 struct bpf_verifier_log *log = &env->log;
1465 struct btf *btf = env->btf;
1466 va_list args;
1467
1468 if (!bpf_verifier_log_needed(log))
1469 return;
1470
1471 if (log->level == BPF_LOG_KERNEL) {
1472 if (!fmt)
1473 return;
1474
1475 /* Skip logging when loading module BTF with mismatches permitted */
1476 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1477 return;
1478 }
1479
1480 /* The CHECK_META phase already did a btf dump.
1481 *
1482 * If member is logged again, it must hit an error in
1483 * parsing this member. It is useful to print out which
1484 * struct this member belongs to.
1485 */
1486 if (env->phase != CHECK_META)
1487 btf_verifier_log_type(env, struct_type, NULL);
1488
1489 if (btf_type_kflag(struct_type))
1490 __btf_verifier_log(log,
1491 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1492 __btf_name_by_offset(btf, member->name_off),
1493 member->type,
1494 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1495 BTF_MEMBER_BIT_OFFSET(member->offset));
1496 else
1497 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1498 __btf_name_by_offset(btf, member->name_off),
1499 member->type, member->offset);
1500
1501 if (fmt && *fmt) {
1502 __btf_verifier_log(log, " ");
1503 va_start(args, fmt);
1504 bpf_verifier_vlog(log, fmt, args);
1505 va_end(args);
1506 }
1507
1508 __btf_verifier_log(log, "\n");
1509 }
1510
1511 __printf(4, 5)
btf_verifier_log_vsi(struct btf_verifier_env * env,const struct btf_type * datasec_type,const struct btf_var_secinfo * vsi,const char * fmt,...)1512 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1513 const struct btf_type *datasec_type,
1514 const struct btf_var_secinfo *vsi,
1515 const char *fmt, ...)
1516 {
1517 struct bpf_verifier_log *log = &env->log;
1518 va_list args;
1519
1520 if (!bpf_verifier_log_needed(log))
1521 return;
1522 if (log->level == BPF_LOG_KERNEL && !fmt)
1523 return;
1524 if (env->phase != CHECK_META)
1525 btf_verifier_log_type(env, datasec_type, NULL);
1526
1527 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1528 vsi->type, vsi->offset, vsi->size);
1529 if (fmt && *fmt) {
1530 __btf_verifier_log(log, " ");
1531 va_start(args, fmt);
1532 bpf_verifier_vlog(log, fmt, args);
1533 va_end(args);
1534 }
1535
1536 __btf_verifier_log(log, "\n");
1537 }
1538
btf_verifier_log_hdr(struct btf_verifier_env * env,u32 btf_data_size)1539 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1540 u32 btf_data_size)
1541 {
1542 struct bpf_verifier_log *log = &env->log;
1543 const struct btf *btf = env->btf;
1544 const struct btf_header *hdr;
1545
1546 if (!bpf_verifier_log_needed(log))
1547 return;
1548
1549 if (log->level == BPF_LOG_KERNEL)
1550 return;
1551 hdr = &btf->hdr;
1552 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1553 __btf_verifier_log(log, "version: %u\n", hdr->version);
1554 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1555 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1556 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1557 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1558 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1559 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1560 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1561 }
1562
btf_add_type(struct btf_verifier_env * env,struct btf_type * t)1563 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1564 {
1565 struct btf *btf = env->btf;
1566
1567 if (btf->types_size == btf->nr_types) {
1568 /* Expand 'types' array */
1569
1570 struct btf_type **new_types;
1571 u32 expand_by, new_size;
1572
1573 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1574 btf_verifier_log(env, "Exceeded max num of types");
1575 return -E2BIG;
1576 }
1577
1578 expand_by = max_t(u32, btf->types_size >> 2, 16);
1579 new_size = min_t(u32, BTF_MAX_TYPE,
1580 btf->types_size + expand_by);
1581
1582 new_types = kvcalloc(new_size, sizeof(*new_types),
1583 GFP_KERNEL | __GFP_NOWARN);
1584 if (!new_types)
1585 return -ENOMEM;
1586
1587 if (btf->nr_types == 0) {
1588 if (!btf->base_btf) {
1589 /* lazily init VOID type */
1590 new_types[0] = &btf_void;
1591 btf->nr_types++;
1592 }
1593 } else {
1594 memcpy(new_types, btf->types,
1595 sizeof(*btf->types) * btf->nr_types);
1596 }
1597
1598 kvfree(btf->types);
1599 btf->types = new_types;
1600 btf->types_size = new_size;
1601 }
1602
1603 btf->types[btf->nr_types++] = t;
1604
1605 return 0;
1606 }
1607
btf_alloc_id(struct btf * btf)1608 static int btf_alloc_id(struct btf *btf)
1609 {
1610 int id;
1611
1612 idr_preload(GFP_KERNEL);
1613 spin_lock_bh(&btf_idr_lock);
1614 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1615 if (id > 0)
1616 btf->id = id;
1617 spin_unlock_bh(&btf_idr_lock);
1618 idr_preload_end();
1619
1620 if (WARN_ON_ONCE(!id))
1621 return -ENOSPC;
1622
1623 return id > 0 ? 0 : id;
1624 }
1625
btf_free_id(struct btf * btf)1626 static void btf_free_id(struct btf *btf)
1627 {
1628 unsigned long flags;
1629
1630 /*
1631 * In map-in-map, calling map_delete_elem() on outer
1632 * map will call bpf_map_put on the inner map.
1633 * It will then eventually call btf_free_id()
1634 * on the inner map. Some of the map_delete_elem()
1635 * implementation may have irq disabled, so
1636 * we need to use the _irqsave() version instead
1637 * of the _bh() version.
1638 */
1639 spin_lock_irqsave(&btf_idr_lock, flags);
1640 idr_remove(&btf_idr, btf->id);
1641 spin_unlock_irqrestore(&btf_idr_lock, flags);
1642 }
1643
btf_free_kfunc_set_tab(struct btf * btf)1644 static void btf_free_kfunc_set_tab(struct btf *btf)
1645 {
1646 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1647 int hook;
1648
1649 if (!tab)
1650 return;
1651 /* For module BTF, we directly assign the sets being registered, so
1652 * there is nothing to free except kfunc_set_tab.
1653 */
1654 if (btf_is_module(btf))
1655 goto free_tab;
1656 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1657 kfree(tab->sets[hook]);
1658 free_tab:
1659 kfree(tab);
1660 btf->kfunc_set_tab = NULL;
1661 }
1662
btf_free_dtor_kfunc_tab(struct btf * btf)1663 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1664 {
1665 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1666
1667 if (!tab)
1668 return;
1669 kfree(tab);
1670 btf->dtor_kfunc_tab = NULL;
1671 }
1672
btf_struct_metas_free(struct btf_struct_metas * tab)1673 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1674 {
1675 int i;
1676
1677 if (!tab)
1678 return;
1679 for (i = 0; i < tab->cnt; i++)
1680 btf_record_free(tab->types[i].record);
1681 kfree(tab);
1682 }
1683
btf_free_struct_meta_tab(struct btf * btf)1684 static void btf_free_struct_meta_tab(struct btf *btf)
1685 {
1686 struct btf_struct_metas *tab = btf->struct_meta_tab;
1687
1688 btf_struct_metas_free(tab);
1689 btf->struct_meta_tab = NULL;
1690 }
1691
btf_free(struct btf * btf)1692 static void btf_free(struct btf *btf)
1693 {
1694 btf_free_struct_meta_tab(btf);
1695 btf_free_dtor_kfunc_tab(btf);
1696 btf_free_kfunc_set_tab(btf);
1697 kvfree(btf->types);
1698 kvfree(btf->resolved_sizes);
1699 kvfree(btf->resolved_ids);
1700 kvfree(btf->data);
1701 kfree(btf);
1702 }
1703
btf_free_rcu(struct rcu_head * rcu)1704 static void btf_free_rcu(struct rcu_head *rcu)
1705 {
1706 struct btf *btf = container_of(rcu, struct btf, rcu);
1707
1708 btf_free(btf);
1709 }
1710
btf_get(struct btf * btf)1711 void btf_get(struct btf *btf)
1712 {
1713 refcount_inc(&btf->refcnt);
1714 }
1715
btf_put(struct btf * btf)1716 void btf_put(struct btf *btf)
1717 {
1718 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1719 btf_free_id(btf);
1720 call_rcu(&btf->rcu, btf_free_rcu);
1721 }
1722 }
1723
env_resolve_init(struct btf_verifier_env * env)1724 static int env_resolve_init(struct btf_verifier_env *env)
1725 {
1726 struct btf *btf = env->btf;
1727 u32 nr_types = btf->nr_types;
1728 u32 *resolved_sizes = NULL;
1729 u32 *resolved_ids = NULL;
1730 u8 *visit_states = NULL;
1731
1732 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1733 GFP_KERNEL | __GFP_NOWARN);
1734 if (!resolved_sizes)
1735 goto nomem;
1736
1737 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1738 GFP_KERNEL | __GFP_NOWARN);
1739 if (!resolved_ids)
1740 goto nomem;
1741
1742 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1743 GFP_KERNEL | __GFP_NOWARN);
1744 if (!visit_states)
1745 goto nomem;
1746
1747 btf->resolved_sizes = resolved_sizes;
1748 btf->resolved_ids = resolved_ids;
1749 env->visit_states = visit_states;
1750
1751 return 0;
1752
1753 nomem:
1754 kvfree(resolved_sizes);
1755 kvfree(resolved_ids);
1756 kvfree(visit_states);
1757 return -ENOMEM;
1758 }
1759
btf_verifier_env_free(struct btf_verifier_env * env)1760 static void btf_verifier_env_free(struct btf_verifier_env *env)
1761 {
1762 kvfree(env->visit_states);
1763 kfree(env);
1764 }
1765
env_type_is_resolve_sink(const struct btf_verifier_env * env,const struct btf_type * next_type)1766 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1767 const struct btf_type *next_type)
1768 {
1769 switch (env->resolve_mode) {
1770 case RESOLVE_TBD:
1771 /* int, enum or void is a sink */
1772 return !btf_type_needs_resolve(next_type);
1773 case RESOLVE_PTR:
1774 /* int, enum, void, struct, array, func or func_proto is a sink
1775 * for ptr
1776 */
1777 return !btf_type_is_modifier(next_type) &&
1778 !btf_type_is_ptr(next_type);
1779 case RESOLVE_STRUCT_OR_ARRAY:
1780 /* int, enum, void, ptr, func or func_proto is a sink
1781 * for struct and array
1782 */
1783 return !btf_type_is_modifier(next_type) &&
1784 !btf_type_is_array(next_type) &&
1785 !btf_type_is_struct(next_type);
1786 default:
1787 BUG();
1788 }
1789 }
1790
env_type_is_resolved(const struct btf_verifier_env * env,u32 type_id)1791 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1792 u32 type_id)
1793 {
1794 /* base BTF types should be resolved by now */
1795 if (type_id < env->btf->start_id)
1796 return true;
1797
1798 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1799 }
1800
env_stack_push(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)1801 static int env_stack_push(struct btf_verifier_env *env,
1802 const struct btf_type *t, u32 type_id)
1803 {
1804 const struct btf *btf = env->btf;
1805 struct resolve_vertex *v;
1806
1807 if (env->top_stack == MAX_RESOLVE_DEPTH)
1808 return -E2BIG;
1809
1810 if (type_id < btf->start_id
1811 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1812 return -EEXIST;
1813
1814 env->visit_states[type_id - btf->start_id] = VISITED;
1815
1816 v = &env->stack[env->top_stack++];
1817 v->t = t;
1818 v->type_id = type_id;
1819 v->next_member = 0;
1820
1821 if (env->resolve_mode == RESOLVE_TBD) {
1822 if (btf_type_is_ptr(t))
1823 env->resolve_mode = RESOLVE_PTR;
1824 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1825 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1826 }
1827
1828 return 0;
1829 }
1830
env_stack_set_next_member(struct btf_verifier_env * env,u16 next_member)1831 static void env_stack_set_next_member(struct btf_verifier_env *env,
1832 u16 next_member)
1833 {
1834 env->stack[env->top_stack - 1].next_member = next_member;
1835 }
1836
env_stack_pop_resolved(struct btf_verifier_env * env,u32 resolved_type_id,u32 resolved_size)1837 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1838 u32 resolved_type_id,
1839 u32 resolved_size)
1840 {
1841 u32 type_id = env->stack[--(env->top_stack)].type_id;
1842 struct btf *btf = env->btf;
1843
1844 type_id -= btf->start_id; /* adjust to local type id */
1845 btf->resolved_sizes[type_id] = resolved_size;
1846 btf->resolved_ids[type_id] = resolved_type_id;
1847 env->visit_states[type_id] = RESOLVED;
1848 }
1849
env_stack_peak(struct btf_verifier_env * env)1850 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1851 {
1852 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1853 }
1854
1855 /* Resolve the size of a passed-in "type"
1856 *
1857 * type: is an array (e.g. u32 array[x][y])
1858 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1859 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1860 * corresponds to the return type.
1861 * *elem_type: u32
1862 * *elem_id: id of u32
1863 * *total_nelems: (x * y). Hence, individual elem size is
1864 * (*type_size / *total_nelems)
1865 * *type_id: id of type if it's changed within the function, 0 if not
1866 *
1867 * type: is not an array (e.g. const struct X)
1868 * return type: type "struct X"
1869 * *type_size: sizeof(struct X)
1870 * *elem_type: same as return type ("struct X")
1871 * *elem_id: 0
1872 * *total_nelems: 1
1873 * *type_id: id of type if it's changed within the function, 0 if not
1874 */
1875 static const struct btf_type *
__btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size,const struct btf_type ** elem_type,u32 * elem_id,u32 * total_nelems,u32 * type_id)1876 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1877 u32 *type_size, const struct btf_type **elem_type,
1878 u32 *elem_id, u32 *total_nelems, u32 *type_id)
1879 {
1880 const struct btf_type *array_type = NULL;
1881 const struct btf_array *array = NULL;
1882 u32 i, size, nelems = 1, id = 0;
1883
1884 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1885 switch (BTF_INFO_KIND(type->info)) {
1886 /* type->size can be used */
1887 case BTF_KIND_INT:
1888 case BTF_KIND_STRUCT:
1889 case BTF_KIND_UNION:
1890 case BTF_KIND_ENUM:
1891 case BTF_KIND_FLOAT:
1892 case BTF_KIND_ENUM64:
1893 size = type->size;
1894 goto resolved;
1895
1896 case BTF_KIND_PTR:
1897 size = sizeof(void *);
1898 goto resolved;
1899
1900 /* Modifiers */
1901 case BTF_KIND_TYPEDEF:
1902 case BTF_KIND_VOLATILE:
1903 case BTF_KIND_CONST:
1904 case BTF_KIND_RESTRICT:
1905 case BTF_KIND_TYPE_TAG:
1906 id = type->type;
1907 type = btf_type_by_id(btf, type->type);
1908 break;
1909
1910 case BTF_KIND_ARRAY:
1911 if (!array_type)
1912 array_type = type;
1913 array = btf_type_array(type);
1914 if (nelems && array->nelems > U32_MAX / nelems)
1915 return ERR_PTR(-EINVAL);
1916 nelems *= array->nelems;
1917 type = btf_type_by_id(btf, array->type);
1918 break;
1919
1920 /* type without size */
1921 default:
1922 return ERR_PTR(-EINVAL);
1923 }
1924 }
1925
1926 return ERR_PTR(-EINVAL);
1927
1928 resolved:
1929 if (nelems && size > U32_MAX / nelems)
1930 return ERR_PTR(-EINVAL);
1931
1932 *type_size = nelems * size;
1933 if (total_nelems)
1934 *total_nelems = nelems;
1935 if (elem_type)
1936 *elem_type = type;
1937 if (elem_id)
1938 *elem_id = array ? array->type : 0;
1939 if (type_id && id)
1940 *type_id = id;
1941
1942 return array_type ? : type;
1943 }
1944
1945 const struct btf_type *
btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size)1946 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1947 u32 *type_size)
1948 {
1949 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1950 }
1951
btf_resolved_type_id(const struct btf * btf,u32 type_id)1952 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1953 {
1954 while (type_id < btf->start_id)
1955 btf = btf->base_btf;
1956
1957 return btf->resolved_ids[type_id - btf->start_id];
1958 }
1959
1960 /* The input param "type_id" must point to a needs_resolve type */
btf_type_id_resolve(const struct btf * btf,u32 * type_id)1961 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1962 u32 *type_id)
1963 {
1964 *type_id = btf_resolved_type_id(btf, *type_id);
1965 return btf_type_by_id(btf, *type_id);
1966 }
1967
btf_resolved_type_size(const struct btf * btf,u32 type_id)1968 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1969 {
1970 while (type_id < btf->start_id)
1971 btf = btf->base_btf;
1972
1973 return btf->resolved_sizes[type_id - btf->start_id];
1974 }
1975
btf_type_id_size(const struct btf * btf,u32 * type_id,u32 * ret_size)1976 const struct btf_type *btf_type_id_size(const struct btf *btf,
1977 u32 *type_id, u32 *ret_size)
1978 {
1979 const struct btf_type *size_type;
1980 u32 size_type_id = *type_id;
1981 u32 size = 0;
1982
1983 size_type = btf_type_by_id(btf, size_type_id);
1984 if (btf_type_nosize_or_null(size_type))
1985 return NULL;
1986
1987 if (btf_type_has_size(size_type)) {
1988 size = size_type->size;
1989 } else if (btf_type_is_array(size_type)) {
1990 size = btf_resolved_type_size(btf, size_type_id);
1991 } else if (btf_type_is_ptr(size_type)) {
1992 size = sizeof(void *);
1993 } else {
1994 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1995 !btf_type_is_var(size_type)))
1996 return NULL;
1997
1998 size_type_id = btf_resolved_type_id(btf, size_type_id);
1999 size_type = btf_type_by_id(btf, size_type_id);
2000 if (btf_type_nosize_or_null(size_type))
2001 return NULL;
2002 else if (btf_type_has_size(size_type))
2003 size = size_type->size;
2004 else if (btf_type_is_array(size_type))
2005 size = btf_resolved_type_size(btf, size_type_id);
2006 else if (btf_type_is_ptr(size_type))
2007 size = sizeof(void *);
2008 else
2009 return NULL;
2010 }
2011
2012 *type_id = size_type_id;
2013 if (ret_size)
2014 *ret_size = size;
2015
2016 return size_type;
2017 }
2018
btf_df_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2019 static int btf_df_check_member(struct btf_verifier_env *env,
2020 const struct btf_type *struct_type,
2021 const struct btf_member *member,
2022 const struct btf_type *member_type)
2023 {
2024 btf_verifier_log_basic(env, struct_type,
2025 "Unsupported check_member");
2026 return -EINVAL;
2027 }
2028
btf_df_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2029 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2030 const struct btf_type *struct_type,
2031 const struct btf_member *member,
2032 const struct btf_type *member_type)
2033 {
2034 btf_verifier_log_basic(env, struct_type,
2035 "Unsupported check_kflag_member");
2036 return -EINVAL;
2037 }
2038
2039 /* Used for ptr, array struct/union and float type members.
2040 * int, enum and modifier types have their specific callback functions.
2041 */
btf_generic_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2042 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2043 const struct btf_type *struct_type,
2044 const struct btf_member *member,
2045 const struct btf_type *member_type)
2046 {
2047 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2048 btf_verifier_log_member(env, struct_type, member,
2049 "Invalid member bitfield_size");
2050 return -EINVAL;
2051 }
2052
2053 /* bitfield size is 0, so member->offset represents bit offset only.
2054 * It is safe to call non kflag check_member variants.
2055 */
2056 return btf_type_ops(member_type)->check_member(env, struct_type,
2057 member,
2058 member_type);
2059 }
2060
btf_df_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2061 static int btf_df_resolve(struct btf_verifier_env *env,
2062 const struct resolve_vertex *v)
2063 {
2064 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2065 return -EINVAL;
2066 }
2067
btf_df_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offsets,struct btf_show * show)2068 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2069 u32 type_id, void *data, u8 bits_offsets,
2070 struct btf_show *show)
2071 {
2072 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2073 }
2074
btf_int_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2075 static int btf_int_check_member(struct btf_verifier_env *env,
2076 const struct btf_type *struct_type,
2077 const struct btf_member *member,
2078 const struct btf_type *member_type)
2079 {
2080 u32 int_data = btf_type_int(member_type);
2081 u32 struct_bits_off = member->offset;
2082 u32 struct_size = struct_type->size;
2083 u32 nr_copy_bits;
2084 u32 bytes_offset;
2085
2086 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2087 btf_verifier_log_member(env, struct_type, member,
2088 "bits_offset exceeds U32_MAX");
2089 return -EINVAL;
2090 }
2091
2092 struct_bits_off += BTF_INT_OFFSET(int_data);
2093 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2094 nr_copy_bits = BTF_INT_BITS(int_data) +
2095 BITS_PER_BYTE_MASKED(struct_bits_off);
2096
2097 if (nr_copy_bits > BITS_PER_U128) {
2098 btf_verifier_log_member(env, struct_type, member,
2099 "nr_copy_bits exceeds 128");
2100 return -EINVAL;
2101 }
2102
2103 if (struct_size < bytes_offset ||
2104 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2105 btf_verifier_log_member(env, struct_type, member,
2106 "Member exceeds struct_size");
2107 return -EINVAL;
2108 }
2109
2110 return 0;
2111 }
2112
btf_int_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2113 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2114 const struct btf_type *struct_type,
2115 const struct btf_member *member,
2116 const struct btf_type *member_type)
2117 {
2118 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2119 u32 int_data = btf_type_int(member_type);
2120 u32 struct_size = struct_type->size;
2121 u32 nr_copy_bits;
2122
2123 /* a regular int type is required for the kflag int member */
2124 if (!btf_type_int_is_regular(member_type)) {
2125 btf_verifier_log_member(env, struct_type, member,
2126 "Invalid member base type");
2127 return -EINVAL;
2128 }
2129
2130 /* check sanity of bitfield size */
2131 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2132 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2133 nr_int_data_bits = BTF_INT_BITS(int_data);
2134 if (!nr_bits) {
2135 /* Not a bitfield member, member offset must be at byte
2136 * boundary.
2137 */
2138 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2139 btf_verifier_log_member(env, struct_type, member,
2140 "Invalid member offset");
2141 return -EINVAL;
2142 }
2143
2144 nr_bits = nr_int_data_bits;
2145 } else if (nr_bits > nr_int_data_bits) {
2146 btf_verifier_log_member(env, struct_type, member,
2147 "Invalid member bitfield_size");
2148 return -EINVAL;
2149 }
2150
2151 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2152 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2153 if (nr_copy_bits > BITS_PER_U128) {
2154 btf_verifier_log_member(env, struct_type, member,
2155 "nr_copy_bits exceeds 128");
2156 return -EINVAL;
2157 }
2158
2159 if (struct_size < bytes_offset ||
2160 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2161 btf_verifier_log_member(env, struct_type, member,
2162 "Member exceeds struct_size");
2163 return -EINVAL;
2164 }
2165
2166 return 0;
2167 }
2168
btf_int_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2169 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2170 const struct btf_type *t,
2171 u32 meta_left)
2172 {
2173 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2174 u16 encoding;
2175
2176 if (meta_left < meta_needed) {
2177 btf_verifier_log_basic(env, t,
2178 "meta_left:%u meta_needed:%u",
2179 meta_left, meta_needed);
2180 return -EINVAL;
2181 }
2182
2183 if (btf_type_vlen(t)) {
2184 btf_verifier_log_type(env, t, "vlen != 0");
2185 return -EINVAL;
2186 }
2187
2188 if (btf_type_kflag(t)) {
2189 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2190 return -EINVAL;
2191 }
2192
2193 int_data = btf_type_int(t);
2194 if (int_data & ~BTF_INT_MASK) {
2195 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2196 int_data);
2197 return -EINVAL;
2198 }
2199
2200 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2201
2202 if (nr_bits > BITS_PER_U128) {
2203 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2204 BITS_PER_U128);
2205 return -EINVAL;
2206 }
2207
2208 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2209 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2210 return -EINVAL;
2211 }
2212
2213 /*
2214 * Only one of the encoding bits is allowed and it
2215 * should be sufficient for the pretty print purpose (i.e. decoding).
2216 * Multiple bits can be allowed later if it is found
2217 * to be insufficient.
2218 */
2219 encoding = BTF_INT_ENCODING(int_data);
2220 if (encoding &&
2221 encoding != BTF_INT_SIGNED &&
2222 encoding != BTF_INT_CHAR &&
2223 encoding != BTF_INT_BOOL) {
2224 btf_verifier_log_type(env, t, "Unsupported encoding");
2225 return -ENOTSUPP;
2226 }
2227
2228 btf_verifier_log_type(env, t, NULL);
2229
2230 return meta_needed;
2231 }
2232
btf_int_log(struct btf_verifier_env * env,const struct btf_type * t)2233 static void btf_int_log(struct btf_verifier_env *env,
2234 const struct btf_type *t)
2235 {
2236 int int_data = btf_type_int(t);
2237
2238 btf_verifier_log(env,
2239 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2240 t->size, BTF_INT_OFFSET(int_data),
2241 BTF_INT_BITS(int_data),
2242 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2243 }
2244
btf_int128_print(struct btf_show * show,void * data)2245 static void btf_int128_print(struct btf_show *show, void *data)
2246 {
2247 /* data points to a __int128 number.
2248 * Suppose
2249 * int128_num = *(__int128 *)data;
2250 * The below formulas shows what upper_num and lower_num represents:
2251 * upper_num = int128_num >> 64;
2252 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2253 */
2254 u64 upper_num, lower_num;
2255
2256 #ifdef __BIG_ENDIAN_BITFIELD
2257 upper_num = *(u64 *)data;
2258 lower_num = *(u64 *)(data + 8);
2259 #else
2260 upper_num = *(u64 *)(data + 8);
2261 lower_num = *(u64 *)data;
2262 #endif
2263 if (upper_num == 0)
2264 btf_show_type_value(show, "0x%llx", lower_num);
2265 else
2266 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2267 lower_num);
2268 }
2269
btf_int128_shift(u64 * print_num,u16 left_shift_bits,u16 right_shift_bits)2270 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2271 u16 right_shift_bits)
2272 {
2273 u64 upper_num, lower_num;
2274
2275 #ifdef __BIG_ENDIAN_BITFIELD
2276 upper_num = print_num[0];
2277 lower_num = print_num[1];
2278 #else
2279 upper_num = print_num[1];
2280 lower_num = print_num[0];
2281 #endif
2282
2283 /* shake out un-needed bits by shift/or operations */
2284 if (left_shift_bits >= 64) {
2285 upper_num = lower_num << (left_shift_bits - 64);
2286 lower_num = 0;
2287 } else {
2288 upper_num = (upper_num << left_shift_bits) |
2289 (lower_num >> (64 - left_shift_bits));
2290 lower_num = lower_num << left_shift_bits;
2291 }
2292
2293 if (right_shift_bits >= 64) {
2294 lower_num = upper_num >> (right_shift_bits - 64);
2295 upper_num = 0;
2296 } else {
2297 lower_num = (lower_num >> right_shift_bits) |
2298 (upper_num << (64 - right_shift_bits));
2299 upper_num = upper_num >> right_shift_bits;
2300 }
2301
2302 #ifdef __BIG_ENDIAN_BITFIELD
2303 print_num[0] = upper_num;
2304 print_num[1] = lower_num;
2305 #else
2306 print_num[0] = lower_num;
2307 print_num[1] = upper_num;
2308 #endif
2309 }
2310
btf_bitfield_show(void * data,u8 bits_offset,u8 nr_bits,struct btf_show * show)2311 static void btf_bitfield_show(void *data, u8 bits_offset,
2312 u8 nr_bits, struct btf_show *show)
2313 {
2314 u16 left_shift_bits, right_shift_bits;
2315 u8 nr_copy_bytes;
2316 u8 nr_copy_bits;
2317 u64 print_num[2] = {};
2318
2319 nr_copy_bits = nr_bits + bits_offset;
2320 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2321
2322 memcpy(print_num, data, nr_copy_bytes);
2323
2324 #ifdef __BIG_ENDIAN_BITFIELD
2325 left_shift_bits = bits_offset;
2326 #else
2327 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2328 #endif
2329 right_shift_bits = BITS_PER_U128 - nr_bits;
2330
2331 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2332 btf_int128_print(show, print_num);
2333 }
2334
2335
btf_int_bits_show(const struct btf * btf,const struct btf_type * t,void * data,u8 bits_offset,struct btf_show * show)2336 static void btf_int_bits_show(const struct btf *btf,
2337 const struct btf_type *t,
2338 void *data, u8 bits_offset,
2339 struct btf_show *show)
2340 {
2341 u32 int_data = btf_type_int(t);
2342 u8 nr_bits = BTF_INT_BITS(int_data);
2343 u8 total_bits_offset;
2344
2345 /*
2346 * bits_offset is at most 7.
2347 * BTF_INT_OFFSET() cannot exceed 128 bits.
2348 */
2349 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2350 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2351 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2352 btf_bitfield_show(data, bits_offset, nr_bits, show);
2353 }
2354
btf_int_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2355 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2356 u32 type_id, void *data, u8 bits_offset,
2357 struct btf_show *show)
2358 {
2359 u32 int_data = btf_type_int(t);
2360 u8 encoding = BTF_INT_ENCODING(int_data);
2361 bool sign = encoding & BTF_INT_SIGNED;
2362 u8 nr_bits = BTF_INT_BITS(int_data);
2363 void *safe_data;
2364
2365 safe_data = btf_show_start_type(show, t, type_id, data);
2366 if (!safe_data)
2367 return;
2368
2369 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2370 BITS_PER_BYTE_MASKED(nr_bits)) {
2371 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2372 goto out;
2373 }
2374
2375 switch (nr_bits) {
2376 case 128:
2377 btf_int128_print(show, safe_data);
2378 break;
2379 case 64:
2380 if (sign)
2381 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2382 else
2383 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2384 break;
2385 case 32:
2386 if (sign)
2387 btf_show_type_value(show, "%d", *(s32 *)safe_data);
2388 else
2389 btf_show_type_value(show, "%u", *(u32 *)safe_data);
2390 break;
2391 case 16:
2392 if (sign)
2393 btf_show_type_value(show, "%d", *(s16 *)safe_data);
2394 else
2395 btf_show_type_value(show, "%u", *(u16 *)safe_data);
2396 break;
2397 case 8:
2398 if (show->state.array_encoding == BTF_INT_CHAR) {
2399 /* check for null terminator */
2400 if (show->state.array_terminated)
2401 break;
2402 if (*(char *)data == '\0') {
2403 show->state.array_terminated = 1;
2404 break;
2405 }
2406 if (isprint(*(char *)data)) {
2407 btf_show_type_value(show, "'%c'",
2408 *(char *)safe_data);
2409 break;
2410 }
2411 }
2412 if (sign)
2413 btf_show_type_value(show, "%d", *(s8 *)safe_data);
2414 else
2415 btf_show_type_value(show, "%u", *(u8 *)safe_data);
2416 break;
2417 default:
2418 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2419 break;
2420 }
2421 out:
2422 btf_show_end_type(show);
2423 }
2424
2425 static const struct btf_kind_operations int_ops = {
2426 .check_meta = btf_int_check_meta,
2427 .resolve = btf_df_resolve,
2428 .check_member = btf_int_check_member,
2429 .check_kflag_member = btf_int_check_kflag_member,
2430 .log_details = btf_int_log,
2431 .show = btf_int_show,
2432 };
2433
btf_modifier_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2434 static int btf_modifier_check_member(struct btf_verifier_env *env,
2435 const struct btf_type *struct_type,
2436 const struct btf_member *member,
2437 const struct btf_type *member_type)
2438 {
2439 const struct btf_type *resolved_type;
2440 u32 resolved_type_id = member->type;
2441 struct btf_member resolved_member;
2442 struct btf *btf = env->btf;
2443
2444 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2445 if (!resolved_type) {
2446 btf_verifier_log_member(env, struct_type, member,
2447 "Invalid member");
2448 return -EINVAL;
2449 }
2450
2451 resolved_member = *member;
2452 resolved_member.type = resolved_type_id;
2453
2454 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2455 &resolved_member,
2456 resolved_type);
2457 }
2458
btf_modifier_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2459 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2460 const struct btf_type *struct_type,
2461 const struct btf_member *member,
2462 const struct btf_type *member_type)
2463 {
2464 const struct btf_type *resolved_type;
2465 u32 resolved_type_id = member->type;
2466 struct btf_member resolved_member;
2467 struct btf *btf = env->btf;
2468
2469 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2470 if (!resolved_type) {
2471 btf_verifier_log_member(env, struct_type, member,
2472 "Invalid member");
2473 return -EINVAL;
2474 }
2475
2476 resolved_member = *member;
2477 resolved_member.type = resolved_type_id;
2478
2479 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2480 &resolved_member,
2481 resolved_type);
2482 }
2483
btf_ptr_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2484 static int btf_ptr_check_member(struct btf_verifier_env *env,
2485 const struct btf_type *struct_type,
2486 const struct btf_member *member,
2487 const struct btf_type *member_type)
2488 {
2489 u32 struct_size, struct_bits_off, bytes_offset;
2490
2491 struct_size = struct_type->size;
2492 struct_bits_off = member->offset;
2493 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2494
2495 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2496 btf_verifier_log_member(env, struct_type, member,
2497 "Member is not byte aligned");
2498 return -EINVAL;
2499 }
2500
2501 if (struct_size - bytes_offset < sizeof(void *)) {
2502 btf_verifier_log_member(env, struct_type, member,
2503 "Member exceeds struct_size");
2504 return -EINVAL;
2505 }
2506
2507 return 0;
2508 }
2509
btf_ref_type_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2510 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2511 const struct btf_type *t,
2512 u32 meta_left)
2513 {
2514 const char *value;
2515
2516 if (btf_type_vlen(t)) {
2517 btf_verifier_log_type(env, t, "vlen != 0");
2518 return -EINVAL;
2519 }
2520
2521 if (btf_type_kflag(t)) {
2522 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2523 return -EINVAL;
2524 }
2525
2526 if (!BTF_TYPE_ID_VALID(t->type)) {
2527 btf_verifier_log_type(env, t, "Invalid type_id");
2528 return -EINVAL;
2529 }
2530
2531 /* typedef/type_tag type must have a valid name, and other ref types,
2532 * volatile, const, restrict, should have a null name.
2533 */
2534 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2535 if (!t->name_off ||
2536 !btf_name_valid_identifier(env->btf, t->name_off)) {
2537 btf_verifier_log_type(env, t, "Invalid name");
2538 return -EINVAL;
2539 }
2540 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2541 value = btf_name_by_offset(env->btf, t->name_off);
2542 if (!value || !value[0]) {
2543 btf_verifier_log_type(env, t, "Invalid name");
2544 return -EINVAL;
2545 }
2546 } else {
2547 if (t->name_off) {
2548 btf_verifier_log_type(env, t, "Invalid name");
2549 return -EINVAL;
2550 }
2551 }
2552
2553 btf_verifier_log_type(env, t, NULL);
2554
2555 return 0;
2556 }
2557
btf_modifier_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2558 static int btf_modifier_resolve(struct btf_verifier_env *env,
2559 const struct resolve_vertex *v)
2560 {
2561 const struct btf_type *t = v->t;
2562 const struct btf_type *next_type;
2563 u32 next_type_id = t->type;
2564 struct btf *btf = env->btf;
2565
2566 next_type = btf_type_by_id(btf, next_type_id);
2567 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2568 btf_verifier_log_type(env, v->t, "Invalid type_id");
2569 return -EINVAL;
2570 }
2571
2572 if (!env_type_is_resolve_sink(env, next_type) &&
2573 !env_type_is_resolved(env, next_type_id))
2574 return env_stack_push(env, next_type, next_type_id);
2575
2576 /* Figure out the resolved next_type_id with size.
2577 * They will be stored in the current modifier's
2578 * resolved_ids and resolved_sizes such that it can
2579 * save us a few type-following when we use it later (e.g. in
2580 * pretty print).
2581 */
2582 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2583 if (env_type_is_resolved(env, next_type_id))
2584 next_type = btf_type_id_resolve(btf, &next_type_id);
2585
2586 /* "typedef void new_void", "const void"...etc */
2587 if (!btf_type_is_void(next_type) &&
2588 !btf_type_is_fwd(next_type) &&
2589 !btf_type_is_func_proto(next_type)) {
2590 btf_verifier_log_type(env, v->t, "Invalid type_id");
2591 return -EINVAL;
2592 }
2593 }
2594
2595 env_stack_pop_resolved(env, next_type_id, 0);
2596
2597 return 0;
2598 }
2599
btf_var_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2600 static int btf_var_resolve(struct btf_verifier_env *env,
2601 const struct resolve_vertex *v)
2602 {
2603 const struct btf_type *next_type;
2604 const struct btf_type *t = v->t;
2605 u32 next_type_id = t->type;
2606 struct btf *btf = env->btf;
2607
2608 next_type = btf_type_by_id(btf, next_type_id);
2609 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2610 btf_verifier_log_type(env, v->t, "Invalid type_id");
2611 return -EINVAL;
2612 }
2613
2614 if (!env_type_is_resolve_sink(env, next_type) &&
2615 !env_type_is_resolved(env, next_type_id))
2616 return env_stack_push(env, next_type, next_type_id);
2617
2618 if (btf_type_is_modifier(next_type)) {
2619 const struct btf_type *resolved_type;
2620 u32 resolved_type_id;
2621
2622 resolved_type_id = next_type_id;
2623 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2624
2625 if (btf_type_is_ptr(resolved_type) &&
2626 !env_type_is_resolve_sink(env, resolved_type) &&
2627 !env_type_is_resolved(env, resolved_type_id))
2628 return env_stack_push(env, resolved_type,
2629 resolved_type_id);
2630 }
2631
2632 /* We must resolve to something concrete at this point, no
2633 * forward types or similar that would resolve to size of
2634 * zero is allowed.
2635 */
2636 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2637 btf_verifier_log_type(env, v->t, "Invalid type_id");
2638 return -EINVAL;
2639 }
2640
2641 env_stack_pop_resolved(env, next_type_id, 0);
2642
2643 return 0;
2644 }
2645
btf_ptr_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2646 static int btf_ptr_resolve(struct btf_verifier_env *env,
2647 const struct resolve_vertex *v)
2648 {
2649 const struct btf_type *next_type;
2650 const struct btf_type *t = v->t;
2651 u32 next_type_id = t->type;
2652 struct btf *btf = env->btf;
2653
2654 next_type = btf_type_by_id(btf, next_type_id);
2655 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2656 btf_verifier_log_type(env, v->t, "Invalid type_id");
2657 return -EINVAL;
2658 }
2659
2660 if (!env_type_is_resolve_sink(env, next_type) &&
2661 !env_type_is_resolved(env, next_type_id))
2662 return env_stack_push(env, next_type, next_type_id);
2663
2664 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2665 * the modifier may have stopped resolving when it was resolved
2666 * to a ptr (last-resolved-ptr).
2667 *
2668 * We now need to continue from the last-resolved-ptr to
2669 * ensure the last-resolved-ptr will not referring back to
2670 * the current ptr (t).
2671 */
2672 if (btf_type_is_modifier(next_type)) {
2673 const struct btf_type *resolved_type;
2674 u32 resolved_type_id;
2675
2676 resolved_type_id = next_type_id;
2677 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2678
2679 if (btf_type_is_ptr(resolved_type) &&
2680 !env_type_is_resolve_sink(env, resolved_type) &&
2681 !env_type_is_resolved(env, resolved_type_id))
2682 return env_stack_push(env, resolved_type,
2683 resolved_type_id);
2684 }
2685
2686 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2687 if (env_type_is_resolved(env, next_type_id))
2688 next_type = btf_type_id_resolve(btf, &next_type_id);
2689
2690 if (!btf_type_is_void(next_type) &&
2691 !btf_type_is_fwd(next_type) &&
2692 !btf_type_is_func_proto(next_type)) {
2693 btf_verifier_log_type(env, v->t, "Invalid type_id");
2694 return -EINVAL;
2695 }
2696 }
2697
2698 env_stack_pop_resolved(env, next_type_id, 0);
2699
2700 return 0;
2701 }
2702
btf_modifier_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2703 static void btf_modifier_show(const struct btf *btf,
2704 const struct btf_type *t,
2705 u32 type_id, void *data,
2706 u8 bits_offset, struct btf_show *show)
2707 {
2708 if (btf->resolved_ids)
2709 t = btf_type_id_resolve(btf, &type_id);
2710 else
2711 t = btf_type_skip_modifiers(btf, type_id, NULL);
2712
2713 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2714 }
2715
btf_var_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2716 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2717 u32 type_id, void *data, u8 bits_offset,
2718 struct btf_show *show)
2719 {
2720 t = btf_type_id_resolve(btf, &type_id);
2721
2722 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2723 }
2724
btf_ptr_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2725 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2726 u32 type_id, void *data, u8 bits_offset,
2727 struct btf_show *show)
2728 {
2729 void *safe_data;
2730
2731 safe_data = btf_show_start_type(show, t, type_id, data);
2732 if (!safe_data)
2733 return;
2734
2735 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2736 if (show->flags & BTF_SHOW_PTR_RAW)
2737 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2738 else
2739 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2740 btf_show_end_type(show);
2741 }
2742
btf_ref_type_log(struct btf_verifier_env * env,const struct btf_type * t)2743 static void btf_ref_type_log(struct btf_verifier_env *env,
2744 const struct btf_type *t)
2745 {
2746 btf_verifier_log(env, "type_id=%u", t->type);
2747 }
2748
2749 static struct btf_kind_operations modifier_ops = {
2750 .check_meta = btf_ref_type_check_meta,
2751 .resolve = btf_modifier_resolve,
2752 .check_member = btf_modifier_check_member,
2753 .check_kflag_member = btf_modifier_check_kflag_member,
2754 .log_details = btf_ref_type_log,
2755 .show = btf_modifier_show,
2756 };
2757
2758 static struct btf_kind_operations ptr_ops = {
2759 .check_meta = btf_ref_type_check_meta,
2760 .resolve = btf_ptr_resolve,
2761 .check_member = btf_ptr_check_member,
2762 .check_kflag_member = btf_generic_check_kflag_member,
2763 .log_details = btf_ref_type_log,
2764 .show = btf_ptr_show,
2765 };
2766
btf_fwd_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2767 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2768 const struct btf_type *t,
2769 u32 meta_left)
2770 {
2771 if (btf_type_vlen(t)) {
2772 btf_verifier_log_type(env, t, "vlen != 0");
2773 return -EINVAL;
2774 }
2775
2776 if (t->type) {
2777 btf_verifier_log_type(env, t, "type != 0");
2778 return -EINVAL;
2779 }
2780
2781 /* fwd type must have a valid name */
2782 if (!t->name_off ||
2783 !btf_name_valid_identifier(env->btf, t->name_off)) {
2784 btf_verifier_log_type(env, t, "Invalid name");
2785 return -EINVAL;
2786 }
2787
2788 btf_verifier_log_type(env, t, NULL);
2789
2790 return 0;
2791 }
2792
btf_fwd_type_log(struct btf_verifier_env * env,const struct btf_type * t)2793 static void btf_fwd_type_log(struct btf_verifier_env *env,
2794 const struct btf_type *t)
2795 {
2796 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2797 }
2798
2799 static struct btf_kind_operations fwd_ops = {
2800 .check_meta = btf_fwd_check_meta,
2801 .resolve = btf_df_resolve,
2802 .check_member = btf_df_check_member,
2803 .check_kflag_member = btf_df_check_kflag_member,
2804 .log_details = btf_fwd_type_log,
2805 .show = btf_df_show,
2806 };
2807
btf_array_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2808 static int btf_array_check_member(struct btf_verifier_env *env,
2809 const struct btf_type *struct_type,
2810 const struct btf_member *member,
2811 const struct btf_type *member_type)
2812 {
2813 u32 struct_bits_off = member->offset;
2814 u32 struct_size, bytes_offset;
2815 u32 array_type_id, array_size;
2816 struct btf *btf = env->btf;
2817
2818 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2819 btf_verifier_log_member(env, struct_type, member,
2820 "Member is not byte aligned");
2821 return -EINVAL;
2822 }
2823
2824 array_type_id = member->type;
2825 btf_type_id_size(btf, &array_type_id, &array_size);
2826 struct_size = struct_type->size;
2827 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2828 if (struct_size - bytes_offset < array_size) {
2829 btf_verifier_log_member(env, struct_type, member,
2830 "Member exceeds struct_size");
2831 return -EINVAL;
2832 }
2833
2834 return 0;
2835 }
2836
btf_array_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2837 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2838 const struct btf_type *t,
2839 u32 meta_left)
2840 {
2841 const struct btf_array *array = btf_type_array(t);
2842 u32 meta_needed = sizeof(*array);
2843
2844 if (meta_left < meta_needed) {
2845 btf_verifier_log_basic(env, t,
2846 "meta_left:%u meta_needed:%u",
2847 meta_left, meta_needed);
2848 return -EINVAL;
2849 }
2850
2851 /* array type should not have a name */
2852 if (t->name_off) {
2853 btf_verifier_log_type(env, t, "Invalid name");
2854 return -EINVAL;
2855 }
2856
2857 if (btf_type_vlen(t)) {
2858 btf_verifier_log_type(env, t, "vlen != 0");
2859 return -EINVAL;
2860 }
2861
2862 if (btf_type_kflag(t)) {
2863 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2864 return -EINVAL;
2865 }
2866
2867 if (t->size) {
2868 btf_verifier_log_type(env, t, "size != 0");
2869 return -EINVAL;
2870 }
2871
2872 /* Array elem type and index type cannot be in type void,
2873 * so !array->type and !array->index_type are not allowed.
2874 */
2875 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2876 btf_verifier_log_type(env, t, "Invalid elem");
2877 return -EINVAL;
2878 }
2879
2880 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2881 btf_verifier_log_type(env, t, "Invalid index");
2882 return -EINVAL;
2883 }
2884
2885 btf_verifier_log_type(env, t, NULL);
2886
2887 return meta_needed;
2888 }
2889
btf_array_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2890 static int btf_array_resolve(struct btf_verifier_env *env,
2891 const struct resolve_vertex *v)
2892 {
2893 const struct btf_array *array = btf_type_array(v->t);
2894 const struct btf_type *elem_type, *index_type;
2895 u32 elem_type_id, index_type_id;
2896 struct btf *btf = env->btf;
2897 u32 elem_size;
2898
2899 /* Check array->index_type */
2900 index_type_id = array->index_type;
2901 index_type = btf_type_by_id(btf, index_type_id);
2902 if (btf_type_nosize_or_null(index_type) ||
2903 btf_type_is_resolve_source_only(index_type)) {
2904 btf_verifier_log_type(env, v->t, "Invalid index");
2905 return -EINVAL;
2906 }
2907
2908 if (!env_type_is_resolve_sink(env, index_type) &&
2909 !env_type_is_resolved(env, index_type_id))
2910 return env_stack_push(env, index_type, index_type_id);
2911
2912 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2913 if (!index_type || !btf_type_is_int(index_type) ||
2914 !btf_type_int_is_regular(index_type)) {
2915 btf_verifier_log_type(env, v->t, "Invalid index");
2916 return -EINVAL;
2917 }
2918
2919 /* Check array->type */
2920 elem_type_id = array->type;
2921 elem_type = btf_type_by_id(btf, elem_type_id);
2922 if (btf_type_nosize_or_null(elem_type) ||
2923 btf_type_is_resolve_source_only(elem_type)) {
2924 btf_verifier_log_type(env, v->t,
2925 "Invalid elem");
2926 return -EINVAL;
2927 }
2928
2929 if (!env_type_is_resolve_sink(env, elem_type) &&
2930 !env_type_is_resolved(env, elem_type_id))
2931 return env_stack_push(env, elem_type, elem_type_id);
2932
2933 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2934 if (!elem_type) {
2935 btf_verifier_log_type(env, v->t, "Invalid elem");
2936 return -EINVAL;
2937 }
2938
2939 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2940 btf_verifier_log_type(env, v->t, "Invalid array of int");
2941 return -EINVAL;
2942 }
2943
2944 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2945 btf_verifier_log_type(env, v->t,
2946 "Array size overflows U32_MAX");
2947 return -EINVAL;
2948 }
2949
2950 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2951
2952 return 0;
2953 }
2954
btf_array_log(struct btf_verifier_env * env,const struct btf_type * t)2955 static void btf_array_log(struct btf_verifier_env *env,
2956 const struct btf_type *t)
2957 {
2958 const struct btf_array *array = btf_type_array(t);
2959
2960 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2961 array->type, array->index_type, array->nelems);
2962 }
2963
__btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2964 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2965 u32 type_id, void *data, u8 bits_offset,
2966 struct btf_show *show)
2967 {
2968 const struct btf_array *array = btf_type_array(t);
2969 const struct btf_kind_operations *elem_ops;
2970 const struct btf_type *elem_type;
2971 u32 i, elem_size = 0, elem_type_id;
2972 u16 encoding = 0;
2973
2974 elem_type_id = array->type;
2975 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2976 if (elem_type && btf_type_has_size(elem_type))
2977 elem_size = elem_type->size;
2978
2979 if (elem_type && btf_type_is_int(elem_type)) {
2980 u32 int_type = btf_type_int(elem_type);
2981
2982 encoding = BTF_INT_ENCODING(int_type);
2983
2984 /*
2985 * BTF_INT_CHAR encoding never seems to be set for
2986 * char arrays, so if size is 1 and element is
2987 * printable as a char, we'll do that.
2988 */
2989 if (elem_size == 1)
2990 encoding = BTF_INT_CHAR;
2991 }
2992
2993 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2994 return;
2995
2996 if (!elem_type)
2997 goto out;
2998 elem_ops = btf_type_ops(elem_type);
2999
3000 for (i = 0; i < array->nelems; i++) {
3001
3002 btf_show_start_array_member(show);
3003
3004 elem_ops->show(btf, elem_type, elem_type_id, data,
3005 bits_offset, show);
3006 data += elem_size;
3007
3008 btf_show_end_array_member(show);
3009
3010 if (show->state.array_terminated)
3011 break;
3012 }
3013 out:
3014 btf_show_end_array_type(show);
3015 }
3016
btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3017 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3018 u32 type_id, void *data, u8 bits_offset,
3019 struct btf_show *show)
3020 {
3021 const struct btf_member *m = show->state.member;
3022
3023 /*
3024 * First check if any members would be shown (are non-zero).
3025 * See comments above "struct btf_show" definition for more
3026 * details on how this works at a high-level.
3027 */
3028 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3029 if (!show->state.depth_check) {
3030 show->state.depth_check = show->state.depth + 1;
3031 show->state.depth_to_show = 0;
3032 }
3033 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3034 show->state.member = m;
3035
3036 if (show->state.depth_check != show->state.depth + 1)
3037 return;
3038 show->state.depth_check = 0;
3039
3040 if (show->state.depth_to_show <= show->state.depth)
3041 return;
3042 /*
3043 * Reaching here indicates we have recursed and found
3044 * non-zero array member(s).
3045 */
3046 }
3047 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3048 }
3049
3050 static struct btf_kind_operations array_ops = {
3051 .check_meta = btf_array_check_meta,
3052 .resolve = btf_array_resolve,
3053 .check_member = btf_array_check_member,
3054 .check_kflag_member = btf_generic_check_kflag_member,
3055 .log_details = btf_array_log,
3056 .show = btf_array_show,
3057 };
3058
btf_struct_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3059 static int btf_struct_check_member(struct btf_verifier_env *env,
3060 const struct btf_type *struct_type,
3061 const struct btf_member *member,
3062 const struct btf_type *member_type)
3063 {
3064 u32 struct_bits_off = member->offset;
3065 u32 struct_size, bytes_offset;
3066
3067 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3068 btf_verifier_log_member(env, struct_type, member,
3069 "Member is not byte aligned");
3070 return -EINVAL;
3071 }
3072
3073 struct_size = struct_type->size;
3074 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3075 if (struct_size - bytes_offset < member_type->size) {
3076 btf_verifier_log_member(env, struct_type, member,
3077 "Member exceeds struct_size");
3078 return -EINVAL;
3079 }
3080
3081 return 0;
3082 }
3083
btf_struct_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3084 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3085 const struct btf_type *t,
3086 u32 meta_left)
3087 {
3088 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3089 const struct btf_member *member;
3090 u32 meta_needed, last_offset;
3091 struct btf *btf = env->btf;
3092 u32 struct_size = t->size;
3093 u32 offset;
3094 u16 i;
3095
3096 meta_needed = btf_type_vlen(t) * sizeof(*member);
3097 if (meta_left < meta_needed) {
3098 btf_verifier_log_basic(env, t,
3099 "meta_left:%u meta_needed:%u",
3100 meta_left, meta_needed);
3101 return -EINVAL;
3102 }
3103
3104 /* struct type either no name or a valid one */
3105 if (t->name_off &&
3106 !btf_name_valid_identifier(env->btf, t->name_off)) {
3107 btf_verifier_log_type(env, t, "Invalid name");
3108 return -EINVAL;
3109 }
3110
3111 btf_verifier_log_type(env, t, NULL);
3112
3113 last_offset = 0;
3114 for_each_member(i, t, member) {
3115 if (!btf_name_offset_valid(btf, member->name_off)) {
3116 btf_verifier_log_member(env, t, member,
3117 "Invalid member name_offset:%u",
3118 member->name_off);
3119 return -EINVAL;
3120 }
3121
3122 /* struct member either no name or a valid one */
3123 if (member->name_off &&
3124 !btf_name_valid_identifier(btf, member->name_off)) {
3125 btf_verifier_log_member(env, t, member, "Invalid name");
3126 return -EINVAL;
3127 }
3128 /* A member cannot be in type void */
3129 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3130 btf_verifier_log_member(env, t, member,
3131 "Invalid type_id");
3132 return -EINVAL;
3133 }
3134
3135 offset = __btf_member_bit_offset(t, member);
3136 if (is_union && offset) {
3137 btf_verifier_log_member(env, t, member,
3138 "Invalid member bits_offset");
3139 return -EINVAL;
3140 }
3141
3142 /*
3143 * ">" instead of ">=" because the last member could be
3144 * "char a[0];"
3145 */
3146 if (last_offset > offset) {
3147 btf_verifier_log_member(env, t, member,
3148 "Invalid member bits_offset");
3149 return -EINVAL;
3150 }
3151
3152 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3153 btf_verifier_log_member(env, t, member,
3154 "Member bits_offset exceeds its struct size");
3155 return -EINVAL;
3156 }
3157
3158 btf_verifier_log_member(env, t, member, NULL);
3159 last_offset = offset;
3160 }
3161
3162 return meta_needed;
3163 }
3164
btf_struct_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)3165 static int btf_struct_resolve(struct btf_verifier_env *env,
3166 const struct resolve_vertex *v)
3167 {
3168 const struct btf_member *member;
3169 int err;
3170 u16 i;
3171
3172 /* Before continue resolving the next_member,
3173 * ensure the last member is indeed resolved to a
3174 * type with size info.
3175 */
3176 if (v->next_member) {
3177 const struct btf_type *last_member_type;
3178 const struct btf_member *last_member;
3179 u32 last_member_type_id;
3180
3181 last_member = btf_type_member(v->t) + v->next_member - 1;
3182 last_member_type_id = last_member->type;
3183 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3184 last_member_type_id)))
3185 return -EINVAL;
3186
3187 last_member_type = btf_type_by_id(env->btf,
3188 last_member_type_id);
3189 if (btf_type_kflag(v->t))
3190 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3191 last_member,
3192 last_member_type);
3193 else
3194 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3195 last_member,
3196 last_member_type);
3197 if (err)
3198 return err;
3199 }
3200
3201 for_each_member_from(i, v->next_member, v->t, member) {
3202 u32 member_type_id = member->type;
3203 const struct btf_type *member_type = btf_type_by_id(env->btf,
3204 member_type_id);
3205
3206 if (btf_type_nosize_or_null(member_type) ||
3207 btf_type_is_resolve_source_only(member_type)) {
3208 btf_verifier_log_member(env, v->t, member,
3209 "Invalid member");
3210 return -EINVAL;
3211 }
3212
3213 if (!env_type_is_resolve_sink(env, member_type) &&
3214 !env_type_is_resolved(env, member_type_id)) {
3215 env_stack_set_next_member(env, i + 1);
3216 return env_stack_push(env, member_type, member_type_id);
3217 }
3218
3219 if (btf_type_kflag(v->t))
3220 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3221 member,
3222 member_type);
3223 else
3224 err = btf_type_ops(member_type)->check_member(env, v->t,
3225 member,
3226 member_type);
3227 if (err)
3228 return err;
3229 }
3230
3231 env_stack_pop_resolved(env, 0, 0);
3232
3233 return 0;
3234 }
3235
btf_struct_log(struct btf_verifier_env * env,const struct btf_type * t)3236 static void btf_struct_log(struct btf_verifier_env *env,
3237 const struct btf_type *t)
3238 {
3239 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3240 }
3241
3242 enum {
3243 BTF_FIELD_IGNORE = 0,
3244 BTF_FIELD_FOUND = 1,
3245 };
3246
3247 struct btf_field_info {
3248 enum btf_field_type type;
3249 u32 off;
3250 union {
3251 struct {
3252 u32 type_id;
3253 } kptr;
3254 struct {
3255 const char *node_name;
3256 u32 value_btf_id;
3257 } graph_root;
3258 };
3259 };
3260
btf_find_struct(const struct btf * btf,const struct btf_type * t,u32 off,int sz,enum btf_field_type field_type,struct btf_field_info * info)3261 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3262 u32 off, int sz, enum btf_field_type field_type,
3263 struct btf_field_info *info)
3264 {
3265 if (!__btf_type_is_struct(t))
3266 return BTF_FIELD_IGNORE;
3267 if (t->size != sz)
3268 return BTF_FIELD_IGNORE;
3269 info->type = field_type;
3270 info->off = off;
3271 return BTF_FIELD_FOUND;
3272 }
3273
btf_find_kptr(const struct btf * btf,const struct btf_type * t,u32 off,int sz,struct btf_field_info * info)3274 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3275 u32 off, int sz, struct btf_field_info *info)
3276 {
3277 enum btf_field_type type;
3278 u32 res_id;
3279
3280 /* Permit modifiers on the pointer itself */
3281 if (btf_type_is_volatile(t))
3282 t = btf_type_by_id(btf, t->type);
3283 /* For PTR, sz is always == 8 */
3284 if (!btf_type_is_ptr(t))
3285 return BTF_FIELD_IGNORE;
3286 t = btf_type_by_id(btf, t->type);
3287
3288 if (!btf_type_is_type_tag(t))
3289 return BTF_FIELD_IGNORE;
3290 /* Reject extra tags */
3291 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3292 return -EINVAL;
3293 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3294 type = BPF_KPTR_UNREF;
3295 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3296 type = BPF_KPTR_REF;
3297 else
3298 return -EINVAL;
3299
3300 /* Get the base type */
3301 t = btf_type_skip_modifiers(btf, t->type, &res_id);
3302 /* Only pointer to struct is allowed */
3303 if (!__btf_type_is_struct(t))
3304 return -EINVAL;
3305
3306 info->type = type;
3307 info->off = off;
3308 info->kptr.type_id = res_id;
3309 return BTF_FIELD_FOUND;
3310 }
3311
btf_find_decl_tag_value(const struct btf * btf,const struct btf_type * pt,int comp_idx,const char * tag_key)3312 static const char *btf_find_decl_tag_value(const struct btf *btf,
3313 const struct btf_type *pt,
3314 int comp_idx, const char *tag_key)
3315 {
3316 int i;
3317
3318 for (i = 1; i < btf_nr_types(btf); i++) {
3319 const struct btf_type *t = btf_type_by_id(btf, i);
3320 int len = strlen(tag_key);
3321
3322 if (!btf_type_is_decl_tag(t))
3323 continue;
3324 if (pt != btf_type_by_id(btf, t->type) ||
3325 btf_type_decl_tag(t)->component_idx != comp_idx)
3326 continue;
3327 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3328 continue;
3329 return __btf_name_by_offset(btf, t->name_off) + len;
3330 }
3331 return NULL;
3332 }
3333
3334 static int
btf_find_graph_root(const struct btf * btf,const struct btf_type * pt,const struct btf_type * t,int comp_idx,u32 off,int sz,struct btf_field_info * info,enum btf_field_type head_type)3335 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3336 const struct btf_type *t, int comp_idx, u32 off,
3337 int sz, struct btf_field_info *info,
3338 enum btf_field_type head_type)
3339 {
3340 const char *node_field_name;
3341 const char *value_type;
3342 s32 id;
3343
3344 if (!__btf_type_is_struct(t))
3345 return BTF_FIELD_IGNORE;
3346 if (t->size != sz)
3347 return BTF_FIELD_IGNORE;
3348 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3349 if (!value_type)
3350 return -EINVAL;
3351 node_field_name = strstr(value_type, ":");
3352 if (!node_field_name)
3353 return -EINVAL;
3354 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3355 if (!value_type)
3356 return -ENOMEM;
3357 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3358 kfree(value_type);
3359 if (id < 0)
3360 return id;
3361 node_field_name++;
3362 if (str_is_empty(node_field_name))
3363 return -EINVAL;
3364 info->type = head_type;
3365 info->off = off;
3366 info->graph_root.value_btf_id = id;
3367 info->graph_root.node_name = node_field_name;
3368 return BTF_FIELD_FOUND;
3369 }
3370
3371 #define field_mask_test_name(field_type, field_type_str) \
3372 if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3373 type = field_type; \
3374 goto end; \
3375 }
3376
btf_get_field_type(const char * name,u32 field_mask,u32 * seen_mask,int * align,int * sz)3377 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3378 int *align, int *sz)
3379 {
3380 int type = 0;
3381
3382 if (field_mask & BPF_SPIN_LOCK) {
3383 if (!strcmp(name, "bpf_spin_lock")) {
3384 if (*seen_mask & BPF_SPIN_LOCK)
3385 return -E2BIG;
3386 *seen_mask |= BPF_SPIN_LOCK;
3387 type = BPF_SPIN_LOCK;
3388 goto end;
3389 }
3390 }
3391 if (field_mask & BPF_TIMER) {
3392 if (!strcmp(name, "bpf_timer")) {
3393 if (*seen_mask & BPF_TIMER)
3394 return -E2BIG;
3395 *seen_mask |= BPF_TIMER;
3396 type = BPF_TIMER;
3397 goto end;
3398 }
3399 }
3400 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3401 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3402 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root");
3403 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node");
3404 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount");
3405
3406 /* Only return BPF_KPTR when all other types with matchable names fail */
3407 if (field_mask & BPF_KPTR) {
3408 type = BPF_KPTR_REF;
3409 goto end;
3410 }
3411 return 0;
3412 end:
3413 *sz = btf_field_type_size(type);
3414 *align = btf_field_type_align(type);
3415 return type;
3416 }
3417
3418 #undef field_mask_test_name
3419
btf_find_struct_field(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt)3420 static int btf_find_struct_field(const struct btf *btf,
3421 const struct btf_type *t, u32 field_mask,
3422 struct btf_field_info *info, int info_cnt)
3423 {
3424 int ret, idx = 0, align, sz, field_type;
3425 const struct btf_member *member;
3426 struct btf_field_info tmp;
3427 u32 i, off, seen_mask = 0;
3428
3429 for_each_member(i, t, member) {
3430 const struct btf_type *member_type = btf_type_by_id(btf,
3431 member->type);
3432
3433 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3434 field_mask, &seen_mask, &align, &sz);
3435 if (field_type == 0)
3436 continue;
3437 if (field_type < 0)
3438 return field_type;
3439
3440 off = __btf_member_bit_offset(t, member);
3441 if (off % 8)
3442 /* valid C code cannot generate such BTF */
3443 return -EINVAL;
3444 off /= 8;
3445 if (off % align)
3446 continue;
3447
3448 switch (field_type) {
3449 case BPF_SPIN_LOCK:
3450 case BPF_TIMER:
3451 case BPF_LIST_NODE:
3452 case BPF_RB_NODE:
3453 case BPF_REFCOUNT:
3454 ret = btf_find_struct(btf, member_type, off, sz, field_type,
3455 idx < info_cnt ? &info[idx] : &tmp);
3456 if (ret < 0)
3457 return ret;
3458 break;
3459 case BPF_KPTR_UNREF:
3460 case BPF_KPTR_REF:
3461 ret = btf_find_kptr(btf, member_type, off, sz,
3462 idx < info_cnt ? &info[idx] : &tmp);
3463 if (ret < 0)
3464 return ret;
3465 break;
3466 case BPF_LIST_HEAD:
3467 case BPF_RB_ROOT:
3468 ret = btf_find_graph_root(btf, t, member_type,
3469 i, off, sz,
3470 idx < info_cnt ? &info[idx] : &tmp,
3471 field_type);
3472 if (ret < 0)
3473 return ret;
3474 break;
3475 default:
3476 return -EFAULT;
3477 }
3478
3479 if (ret == BTF_FIELD_IGNORE)
3480 continue;
3481 if (idx >= info_cnt)
3482 return -E2BIG;
3483 ++idx;
3484 }
3485 return idx;
3486 }
3487
btf_find_datasec_var(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt)3488 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3489 u32 field_mask, struct btf_field_info *info,
3490 int info_cnt)
3491 {
3492 int ret, idx = 0, align, sz, field_type;
3493 const struct btf_var_secinfo *vsi;
3494 struct btf_field_info tmp;
3495 u32 i, off, seen_mask = 0;
3496
3497 for_each_vsi(i, t, vsi) {
3498 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3499 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3500
3501 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3502 field_mask, &seen_mask, &align, &sz);
3503 if (field_type == 0)
3504 continue;
3505 if (field_type < 0)
3506 return field_type;
3507
3508 off = vsi->offset;
3509 if (vsi->size != sz)
3510 continue;
3511 if (off % align)
3512 continue;
3513
3514 switch (field_type) {
3515 case BPF_SPIN_LOCK:
3516 case BPF_TIMER:
3517 case BPF_LIST_NODE:
3518 case BPF_RB_NODE:
3519 case BPF_REFCOUNT:
3520 ret = btf_find_struct(btf, var_type, off, sz, field_type,
3521 idx < info_cnt ? &info[idx] : &tmp);
3522 if (ret < 0)
3523 return ret;
3524 break;
3525 case BPF_KPTR_UNREF:
3526 case BPF_KPTR_REF:
3527 ret = btf_find_kptr(btf, var_type, off, sz,
3528 idx < info_cnt ? &info[idx] : &tmp);
3529 if (ret < 0)
3530 return ret;
3531 break;
3532 case BPF_LIST_HEAD:
3533 case BPF_RB_ROOT:
3534 ret = btf_find_graph_root(btf, var, var_type,
3535 -1, off, sz,
3536 idx < info_cnt ? &info[idx] : &tmp,
3537 field_type);
3538 if (ret < 0)
3539 return ret;
3540 break;
3541 default:
3542 return -EFAULT;
3543 }
3544
3545 if (ret == BTF_FIELD_IGNORE)
3546 continue;
3547 if (idx >= info_cnt)
3548 return -E2BIG;
3549 ++idx;
3550 }
3551 return idx;
3552 }
3553
btf_find_field(const struct btf * btf,const struct btf_type * t,u32 field_mask,struct btf_field_info * info,int info_cnt)3554 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3555 u32 field_mask, struct btf_field_info *info,
3556 int info_cnt)
3557 {
3558 if (__btf_type_is_struct(t))
3559 return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3560 else if (btf_type_is_datasec(t))
3561 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3562 return -EINVAL;
3563 }
3564
btf_parse_kptr(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)3565 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3566 struct btf_field_info *info)
3567 {
3568 struct module *mod = NULL;
3569 const struct btf_type *t;
3570 /* If a matching btf type is found in kernel or module BTFs, kptr_ref
3571 * is that BTF, otherwise it's program BTF
3572 */
3573 struct btf *kptr_btf;
3574 int ret;
3575 s32 id;
3576
3577 /* Find type in map BTF, and use it to look up the matching type
3578 * in vmlinux or module BTFs, by name and kind.
3579 */
3580 t = btf_type_by_id(btf, info->kptr.type_id);
3581 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3582 &kptr_btf);
3583 if (id == -ENOENT) {
3584 /* btf_parse_kptr should only be called w/ btf = program BTF */
3585 WARN_ON_ONCE(btf_is_kernel(btf));
3586
3587 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3588 * kptr allocated via bpf_obj_new
3589 */
3590 field->kptr.dtor = NULL;
3591 id = info->kptr.type_id;
3592 kptr_btf = (struct btf *)btf;
3593 btf_get(kptr_btf);
3594 goto found_dtor;
3595 }
3596 if (id < 0)
3597 return id;
3598
3599 /* Find and stash the function pointer for the destruction function that
3600 * needs to be eventually invoked from the map free path.
3601 */
3602 if (info->type == BPF_KPTR_REF) {
3603 const struct btf_type *dtor_func;
3604 const char *dtor_func_name;
3605 unsigned long addr;
3606 s32 dtor_btf_id;
3607
3608 /* This call also serves as a whitelist of allowed objects that
3609 * can be used as a referenced pointer and be stored in a map at
3610 * the same time.
3611 */
3612 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3613 if (dtor_btf_id < 0) {
3614 ret = dtor_btf_id;
3615 goto end_btf;
3616 }
3617
3618 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3619 if (!dtor_func) {
3620 ret = -ENOENT;
3621 goto end_btf;
3622 }
3623
3624 if (btf_is_module(kptr_btf)) {
3625 mod = btf_try_get_module(kptr_btf);
3626 if (!mod) {
3627 ret = -ENXIO;
3628 goto end_btf;
3629 }
3630 }
3631
3632 /* We already verified dtor_func to be btf_type_is_func
3633 * in register_btf_id_dtor_kfuncs.
3634 */
3635 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3636 addr = kallsyms_lookup_name(dtor_func_name);
3637 if (!addr) {
3638 ret = -EINVAL;
3639 goto end_mod;
3640 }
3641 field->kptr.dtor = (void *)addr;
3642 }
3643
3644 found_dtor:
3645 field->kptr.btf_id = id;
3646 field->kptr.btf = kptr_btf;
3647 field->kptr.module = mod;
3648 return 0;
3649 end_mod:
3650 module_put(mod);
3651 end_btf:
3652 btf_put(kptr_btf);
3653 return ret;
3654 }
3655
btf_parse_graph_root(const struct btf * btf,struct btf_field * field,struct btf_field_info * info,const char * node_type_name,size_t node_type_align)3656 static int btf_parse_graph_root(const struct btf *btf,
3657 struct btf_field *field,
3658 struct btf_field_info *info,
3659 const char *node_type_name,
3660 size_t node_type_align)
3661 {
3662 const struct btf_type *t, *n = NULL;
3663 const struct btf_member *member;
3664 u32 offset;
3665 int i;
3666
3667 t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3668 /* We've already checked that value_btf_id is a struct type. We
3669 * just need to figure out the offset of the list_node, and
3670 * verify its type.
3671 */
3672 for_each_member(i, t, member) {
3673 if (strcmp(info->graph_root.node_name,
3674 __btf_name_by_offset(btf, member->name_off)))
3675 continue;
3676 /* Invalid BTF, two members with same name */
3677 if (n)
3678 return -EINVAL;
3679 n = btf_type_by_id(btf, member->type);
3680 if (!__btf_type_is_struct(n))
3681 return -EINVAL;
3682 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3683 return -EINVAL;
3684 offset = __btf_member_bit_offset(n, member);
3685 if (offset % 8)
3686 return -EINVAL;
3687 offset /= 8;
3688 if (offset % node_type_align)
3689 return -EINVAL;
3690
3691 field->graph_root.btf = (struct btf *)btf;
3692 field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3693 field->graph_root.node_offset = offset;
3694 }
3695 if (!n)
3696 return -ENOENT;
3697 return 0;
3698 }
3699
btf_parse_list_head(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)3700 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3701 struct btf_field_info *info)
3702 {
3703 return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3704 __alignof__(struct bpf_list_node));
3705 }
3706
btf_parse_rb_root(const struct btf * btf,struct btf_field * field,struct btf_field_info * info)3707 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3708 struct btf_field_info *info)
3709 {
3710 return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3711 __alignof__(struct bpf_rb_node));
3712 }
3713
btf_field_cmp(const void * _a,const void * _b,const void * priv)3714 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3715 {
3716 const struct btf_field *a = (const struct btf_field *)_a;
3717 const struct btf_field *b = (const struct btf_field *)_b;
3718
3719 if (a->offset < b->offset)
3720 return -1;
3721 else if (a->offset > b->offset)
3722 return 1;
3723 return 0;
3724 }
3725
btf_parse_fields(const struct btf * btf,const struct btf_type * t,u32 field_mask,u32 value_size)3726 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3727 u32 field_mask, u32 value_size)
3728 {
3729 struct btf_field_info info_arr[BTF_FIELDS_MAX];
3730 u32 next_off = 0, field_type_size;
3731 struct btf_record *rec;
3732 int ret, i, cnt;
3733
3734 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3735 if (ret < 0)
3736 return ERR_PTR(ret);
3737 if (!ret)
3738 return NULL;
3739
3740 cnt = ret;
3741 /* This needs to be kzalloc to zero out padding and unused fields, see
3742 * comment in btf_record_equal.
3743 */
3744 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3745 if (!rec)
3746 return ERR_PTR(-ENOMEM);
3747
3748 rec->spin_lock_off = -EINVAL;
3749 rec->timer_off = -EINVAL;
3750 rec->refcount_off = -EINVAL;
3751 for (i = 0; i < cnt; i++) {
3752 field_type_size = btf_field_type_size(info_arr[i].type);
3753 if (info_arr[i].off + field_type_size > value_size) {
3754 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3755 ret = -EFAULT;
3756 goto end;
3757 }
3758 if (info_arr[i].off < next_off) {
3759 ret = -EEXIST;
3760 goto end;
3761 }
3762 next_off = info_arr[i].off + field_type_size;
3763
3764 rec->field_mask |= info_arr[i].type;
3765 rec->fields[i].offset = info_arr[i].off;
3766 rec->fields[i].type = info_arr[i].type;
3767 rec->fields[i].size = field_type_size;
3768
3769 switch (info_arr[i].type) {
3770 case BPF_SPIN_LOCK:
3771 WARN_ON_ONCE(rec->spin_lock_off >= 0);
3772 /* Cache offset for faster lookup at runtime */
3773 rec->spin_lock_off = rec->fields[i].offset;
3774 break;
3775 case BPF_TIMER:
3776 WARN_ON_ONCE(rec->timer_off >= 0);
3777 /* Cache offset for faster lookup at runtime */
3778 rec->timer_off = rec->fields[i].offset;
3779 break;
3780 case BPF_REFCOUNT:
3781 WARN_ON_ONCE(rec->refcount_off >= 0);
3782 /* Cache offset for faster lookup at runtime */
3783 rec->refcount_off = rec->fields[i].offset;
3784 break;
3785 case BPF_KPTR_UNREF:
3786 case BPF_KPTR_REF:
3787 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3788 if (ret < 0)
3789 goto end;
3790 break;
3791 case BPF_LIST_HEAD:
3792 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3793 if (ret < 0)
3794 goto end;
3795 break;
3796 case BPF_RB_ROOT:
3797 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3798 if (ret < 0)
3799 goto end;
3800 break;
3801 case BPF_LIST_NODE:
3802 case BPF_RB_NODE:
3803 break;
3804 default:
3805 ret = -EFAULT;
3806 goto end;
3807 }
3808 rec->cnt++;
3809 }
3810
3811 /* bpf_{list_head, rb_node} require bpf_spin_lock */
3812 if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
3813 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3814 ret = -EINVAL;
3815 goto end;
3816 }
3817
3818 if (rec->refcount_off < 0 &&
3819 btf_record_has_field(rec, BPF_LIST_NODE) &&
3820 btf_record_has_field(rec, BPF_RB_NODE)) {
3821 ret = -EINVAL;
3822 goto end;
3823 }
3824
3825 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
3826 NULL, rec);
3827
3828 return rec;
3829 end:
3830 btf_record_free(rec);
3831 return ERR_PTR(ret);
3832 }
3833
3834 #define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT)
3835 #define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE)
3836
btf_check_and_fixup_fields(const struct btf * btf,struct btf_record * rec)3837 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3838 {
3839 int i;
3840
3841 /* There are three types that signify ownership of some other type:
3842 * kptr_ref, bpf_list_head, bpf_rb_root.
3843 * kptr_ref only supports storing kernel types, which can't store
3844 * references to program allocated local types.
3845 *
3846 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3847 * does not form cycles.
3848 */
3849 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK))
3850 return 0;
3851 for (i = 0; i < rec->cnt; i++) {
3852 struct btf_struct_meta *meta;
3853 u32 btf_id;
3854
3855 if (!(rec->fields[i].type & GRAPH_ROOT_MASK))
3856 continue;
3857 btf_id = rec->fields[i].graph_root.value_btf_id;
3858 meta = btf_find_struct_meta(btf, btf_id);
3859 if (!meta)
3860 return -EFAULT;
3861 rec->fields[i].graph_root.value_rec = meta->record;
3862
3863 /* We need to set value_rec for all root types, but no need
3864 * to check ownership cycle for a type unless it's also a
3865 * node type.
3866 */
3867 if (!(rec->field_mask & GRAPH_NODE_MASK))
3868 continue;
3869
3870 /* We need to ensure ownership acyclicity among all types. The
3871 * proper way to do it would be to topologically sort all BTF
3872 * IDs based on the ownership edges, since there can be multiple
3873 * bpf_{list_head,rb_node} in a type. Instead, we use the
3874 * following resaoning:
3875 *
3876 * - A type can only be owned by another type in user BTF if it
3877 * has a bpf_{list,rb}_node. Let's call these node types.
3878 * - A type can only _own_ another type in user BTF if it has a
3879 * bpf_{list_head,rb_root}. Let's call these root types.
3880 *
3881 * We ensure that if a type is both a root and node, its
3882 * element types cannot be root types.
3883 *
3884 * To ensure acyclicity:
3885 *
3886 * When A is an root type but not a node, its ownership
3887 * chain can be:
3888 * A -> B -> C
3889 * Where:
3890 * - A is an root, e.g. has bpf_rb_root.
3891 * - B is both a root and node, e.g. has bpf_rb_node and
3892 * bpf_list_head.
3893 * - C is only an root, e.g. has bpf_list_node
3894 *
3895 * When A is both a root and node, some other type already
3896 * owns it in the BTF domain, hence it can not own
3897 * another root type through any of the ownership edges.
3898 * A -> B
3899 * Where:
3900 * - A is both an root and node.
3901 * - B is only an node.
3902 */
3903 if (meta->record->field_mask & GRAPH_ROOT_MASK)
3904 return -ELOOP;
3905 }
3906 return 0;
3907 }
3908
__btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3909 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3910 u32 type_id, void *data, u8 bits_offset,
3911 struct btf_show *show)
3912 {
3913 const struct btf_member *member;
3914 void *safe_data;
3915 u32 i;
3916
3917 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3918 if (!safe_data)
3919 return;
3920
3921 for_each_member(i, t, member) {
3922 const struct btf_type *member_type = btf_type_by_id(btf,
3923 member->type);
3924 const struct btf_kind_operations *ops;
3925 u32 member_offset, bitfield_size;
3926 u32 bytes_offset;
3927 u8 bits8_offset;
3928
3929 btf_show_start_member(show, member);
3930
3931 member_offset = __btf_member_bit_offset(t, member);
3932 bitfield_size = __btf_member_bitfield_size(t, member);
3933 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3934 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3935 if (bitfield_size) {
3936 safe_data = btf_show_start_type(show, member_type,
3937 member->type,
3938 data + bytes_offset);
3939 if (safe_data)
3940 btf_bitfield_show(safe_data,
3941 bits8_offset,
3942 bitfield_size, show);
3943 btf_show_end_type(show);
3944 } else {
3945 ops = btf_type_ops(member_type);
3946 ops->show(btf, member_type, member->type,
3947 data + bytes_offset, bits8_offset, show);
3948 }
3949
3950 btf_show_end_member(show);
3951 }
3952
3953 btf_show_end_struct_type(show);
3954 }
3955
btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3956 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3957 u32 type_id, void *data, u8 bits_offset,
3958 struct btf_show *show)
3959 {
3960 const struct btf_member *m = show->state.member;
3961
3962 /*
3963 * First check if any members would be shown (are non-zero).
3964 * See comments above "struct btf_show" definition for more
3965 * details on how this works at a high-level.
3966 */
3967 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3968 if (!show->state.depth_check) {
3969 show->state.depth_check = show->state.depth + 1;
3970 show->state.depth_to_show = 0;
3971 }
3972 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3973 /* Restore saved member data here */
3974 show->state.member = m;
3975 if (show->state.depth_check != show->state.depth + 1)
3976 return;
3977 show->state.depth_check = 0;
3978
3979 if (show->state.depth_to_show <= show->state.depth)
3980 return;
3981 /*
3982 * Reaching here indicates we have recursed and found
3983 * non-zero child values.
3984 */
3985 }
3986
3987 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3988 }
3989
3990 static struct btf_kind_operations struct_ops = {
3991 .check_meta = btf_struct_check_meta,
3992 .resolve = btf_struct_resolve,
3993 .check_member = btf_struct_check_member,
3994 .check_kflag_member = btf_generic_check_kflag_member,
3995 .log_details = btf_struct_log,
3996 .show = btf_struct_show,
3997 };
3998
btf_enum_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3999 static int btf_enum_check_member(struct btf_verifier_env *env,
4000 const struct btf_type *struct_type,
4001 const struct btf_member *member,
4002 const struct btf_type *member_type)
4003 {
4004 u32 struct_bits_off = member->offset;
4005 u32 struct_size, bytes_offset;
4006
4007 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4008 btf_verifier_log_member(env, struct_type, member,
4009 "Member is not byte aligned");
4010 return -EINVAL;
4011 }
4012
4013 struct_size = struct_type->size;
4014 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4015 if (struct_size - bytes_offset < member_type->size) {
4016 btf_verifier_log_member(env, struct_type, member,
4017 "Member exceeds struct_size");
4018 return -EINVAL;
4019 }
4020
4021 return 0;
4022 }
4023
btf_enum_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)4024 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4025 const struct btf_type *struct_type,
4026 const struct btf_member *member,
4027 const struct btf_type *member_type)
4028 {
4029 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4030 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4031
4032 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4033 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4034 if (!nr_bits) {
4035 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4036 btf_verifier_log_member(env, struct_type, member,
4037 "Member is not byte aligned");
4038 return -EINVAL;
4039 }
4040
4041 nr_bits = int_bitsize;
4042 } else if (nr_bits > int_bitsize) {
4043 btf_verifier_log_member(env, struct_type, member,
4044 "Invalid member bitfield_size");
4045 return -EINVAL;
4046 }
4047
4048 struct_size = struct_type->size;
4049 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4050 if (struct_size < bytes_end) {
4051 btf_verifier_log_member(env, struct_type, member,
4052 "Member exceeds struct_size");
4053 return -EINVAL;
4054 }
4055
4056 return 0;
4057 }
4058
btf_enum_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4059 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4060 const struct btf_type *t,
4061 u32 meta_left)
4062 {
4063 const struct btf_enum *enums = btf_type_enum(t);
4064 struct btf *btf = env->btf;
4065 const char *fmt_str;
4066 u16 i, nr_enums;
4067 u32 meta_needed;
4068
4069 nr_enums = btf_type_vlen(t);
4070 meta_needed = nr_enums * sizeof(*enums);
4071
4072 if (meta_left < meta_needed) {
4073 btf_verifier_log_basic(env, t,
4074 "meta_left:%u meta_needed:%u",
4075 meta_left, meta_needed);
4076 return -EINVAL;
4077 }
4078
4079 if (t->size > 8 || !is_power_of_2(t->size)) {
4080 btf_verifier_log_type(env, t, "Unexpected size");
4081 return -EINVAL;
4082 }
4083
4084 /* enum type either no name or a valid one */
4085 if (t->name_off &&
4086 !btf_name_valid_identifier(env->btf, t->name_off)) {
4087 btf_verifier_log_type(env, t, "Invalid name");
4088 return -EINVAL;
4089 }
4090
4091 btf_verifier_log_type(env, t, NULL);
4092
4093 for (i = 0; i < nr_enums; i++) {
4094 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4095 btf_verifier_log(env, "\tInvalid name_offset:%u",
4096 enums[i].name_off);
4097 return -EINVAL;
4098 }
4099
4100 /* enum member must have a valid name */
4101 if (!enums[i].name_off ||
4102 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4103 btf_verifier_log_type(env, t, "Invalid name");
4104 return -EINVAL;
4105 }
4106
4107 if (env->log.level == BPF_LOG_KERNEL)
4108 continue;
4109 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4110 btf_verifier_log(env, fmt_str,
4111 __btf_name_by_offset(btf, enums[i].name_off),
4112 enums[i].val);
4113 }
4114
4115 return meta_needed;
4116 }
4117
btf_enum_log(struct btf_verifier_env * env,const struct btf_type * t)4118 static void btf_enum_log(struct btf_verifier_env *env,
4119 const struct btf_type *t)
4120 {
4121 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4122 }
4123
btf_enum_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4124 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4125 u32 type_id, void *data, u8 bits_offset,
4126 struct btf_show *show)
4127 {
4128 const struct btf_enum *enums = btf_type_enum(t);
4129 u32 i, nr_enums = btf_type_vlen(t);
4130 void *safe_data;
4131 int v;
4132
4133 safe_data = btf_show_start_type(show, t, type_id, data);
4134 if (!safe_data)
4135 return;
4136
4137 v = *(int *)safe_data;
4138
4139 for (i = 0; i < nr_enums; i++) {
4140 if (v != enums[i].val)
4141 continue;
4142
4143 btf_show_type_value(show, "%s",
4144 __btf_name_by_offset(btf,
4145 enums[i].name_off));
4146
4147 btf_show_end_type(show);
4148 return;
4149 }
4150
4151 if (btf_type_kflag(t))
4152 btf_show_type_value(show, "%d", v);
4153 else
4154 btf_show_type_value(show, "%u", v);
4155 btf_show_end_type(show);
4156 }
4157
4158 static struct btf_kind_operations enum_ops = {
4159 .check_meta = btf_enum_check_meta,
4160 .resolve = btf_df_resolve,
4161 .check_member = btf_enum_check_member,
4162 .check_kflag_member = btf_enum_check_kflag_member,
4163 .log_details = btf_enum_log,
4164 .show = btf_enum_show,
4165 };
4166
btf_enum64_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4167 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4168 const struct btf_type *t,
4169 u32 meta_left)
4170 {
4171 const struct btf_enum64 *enums = btf_type_enum64(t);
4172 struct btf *btf = env->btf;
4173 const char *fmt_str;
4174 u16 i, nr_enums;
4175 u32 meta_needed;
4176
4177 nr_enums = btf_type_vlen(t);
4178 meta_needed = nr_enums * sizeof(*enums);
4179
4180 if (meta_left < meta_needed) {
4181 btf_verifier_log_basic(env, t,
4182 "meta_left:%u meta_needed:%u",
4183 meta_left, meta_needed);
4184 return -EINVAL;
4185 }
4186
4187 if (t->size > 8 || !is_power_of_2(t->size)) {
4188 btf_verifier_log_type(env, t, "Unexpected size");
4189 return -EINVAL;
4190 }
4191
4192 /* enum type either no name or a valid one */
4193 if (t->name_off &&
4194 !btf_name_valid_identifier(env->btf, t->name_off)) {
4195 btf_verifier_log_type(env, t, "Invalid name");
4196 return -EINVAL;
4197 }
4198
4199 btf_verifier_log_type(env, t, NULL);
4200
4201 for (i = 0; i < nr_enums; i++) {
4202 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4203 btf_verifier_log(env, "\tInvalid name_offset:%u",
4204 enums[i].name_off);
4205 return -EINVAL;
4206 }
4207
4208 /* enum member must have a valid name */
4209 if (!enums[i].name_off ||
4210 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4211 btf_verifier_log_type(env, t, "Invalid name");
4212 return -EINVAL;
4213 }
4214
4215 if (env->log.level == BPF_LOG_KERNEL)
4216 continue;
4217
4218 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4219 btf_verifier_log(env, fmt_str,
4220 __btf_name_by_offset(btf, enums[i].name_off),
4221 btf_enum64_value(enums + i));
4222 }
4223
4224 return meta_needed;
4225 }
4226
btf_enum64_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4227 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4228 u32 type_id, void *data, u8 bits_offset,
4229 struct btf_show *show)
4230 {
4231 const struct btf_enum64 *enums = btf_type_enum64(t);
4232 u32 i, nr_enums = btf_type_vlen(t);
4233 void *safe_data;
4234 s64 v;
4235
4236 safe_data = btf_show_start_type(show, t, type_id, data);
4237 if (!safe_data)
4238 return;
4239
4240 v = *(u64 *)safe_data;
4241
4242 for (i = 0; i < nr_enums; i++) {
4243 if (v != btf_enum64_value(enums + i))
4244 continue;
4245
4246 btf_show_type_value(show, "%s",
4247 __btf_name_by_offset(btf,
4248 enums[i].name_off));
4249
4250 btf_show_end_type(show);
4251 return;
4252 }
4253
4254 if (btf_type_kflag(t))
4255 btf_show_type_value(show, "%lld", v);
4256 else
4257 btf_show_type_value(show, "%llu", v);
4258 btf_show_end_type(show);
4259 }
4260
4261 static struct btf_kind_operations enum64_ops = {
4262 .check_meta = btf_enum64_check_meta,
4263 .resolve = btf_df_resolve,
4264 .check_member = btf_enum_check_member,
4265 .check_kflag_member = btf_enum_check_kflag_member,
4266 .log_details = btf_enum_log,
4267 .show = btf_enum64_show,
4268 };
4269
btf_func_proto_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4270 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4271 const struct btf_type *t,
4272 u32 meta_left)
4273 {
4274 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4275
4276 if (meta_left < meta_needed) {
4277 btf_verifier_log_basic(env, t,
4278 "meta_left:%u meta_needed:%u",
4279 meta_left, meta_needed);
4280 return -EINVAL;
4281 }
4282
4283 if (t->name_off) {
4284 btf_verifier_log_type(env, t, "Invalid name");
4285 return -EINVAL;
4286 }
4287
4288 if (btf_type_kflag(t)) {
4289 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4290 return -EINVAL;
4291 }
4292
4293 btf_verifier_log_type(env, t, NULL);
4294
4295 return meta_needed;
4296 }
4297
btf_func_proto_log(struct btf_verifier_env * env,const struct btf_type * t)4298 static void btf_func_proto_log(struct btf_verifier_env *env,
4299 const struct btf_type *t)
4300 {
4301 const struct btf_param *args = (const struct btf_param *)(t + 1);
4302 u16 nr_args = btf_type_vlen(t), i;
4303
4304 btf_verifier_log(env, "return=%u args=(", t->type);
4305 if (!nr_args) {
4306 btf_verifier_log(env, "void");
4307 goto done;
4308 }
4309
4310 if (nr_args == 1 && !args[0].type) {
4311 /* Only one vararg */
4312 btf_verifier_log(env, "vararg");
4313 goto done;
4314 }
4315
4316 btf_verifier_log(env, "%u %s", args[0].type,
4317 __btf_name_by_offset(env->btf,
4318 args[0].name_off));
4319 for (i = 1; i < nr_args - 1; i++)
4320 btf_verifier_log(env, ", %u %s", args[i].type,
4321 __btf_name_by_offset(env->btf,
4322 args[i].name_off));
4323
4324 if (nr_args > 1) {
4325 const struct btf_param *last_arg = &args[nr_args - 1];
4326
4327 if (last_arg->type)
4328 btf_verifier_log(env, ", %u %s", last_arg->type,
4329 __btf_name_by_offset(env->btf,
4330 last_arg->name_off));
4331 else
4332 btf_verifier_log(env, ", vararg");
4333 }
4334
4335 done:
4336 btf_verifier_log(env, ")");
4337 }
4338
4339 static struct btf_kind_operations func_proto_ops = {
4340 .check_meta = btf_func_proto_check_meta,
4341 .resolve = btf_df_resolve,
4342 /*
4343 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4344 * a struct's member.
4345 *
4346 * It should be a function pointer instead.
4347 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4348 *
4349 * Hence, there is no btf_func_check_member().
4350 */
4351 .check_member = btf_df_check_member,
4352 .check_kflag_member = btf_df_check_kflag_member,
4353 .log_details = btf_func_proto_log,
4354 .show = btf_df_show,
4355 };
4356
btf_func_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4357 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4358 const struct btf_type *t,
4359 u32 meta_left)
4360 {
4361 if (!t->name_off ||
4362 !btf_name_valid_identifier(env->btf, t->name_off)) {
4363 btf_verifier_log_type(env, t, "Invalid name");
4364 return -EINVAL;
4365 }
4366
4367 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4368 btf_verifier_log_type(env, t, "Invalid func linkage");
4369 return -EINVAL;
4370 }
4371
4372 if (btf_type_kflag(t)) {
4373 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4374 return -EINVAL;
4375 }
4376
4377 btf_verifier_log_type(env, t, NULL);
4378
4379 return 0;
4380 }
4381
btf_func_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4382 static int btf_func_resolve(struct btf_verifier_env *env,
4383 const struct resolve_vertex *v)
4384 {
4385 const struct btf_type *t = v->t;
4386 u32 next_type_id = t->type;
4387 int err;
4388
4389 err = btf_func_check(env, t);
4390 if (err)
4391 return err;
4392
4393 env_stack_pop_resolved(env, next_type_id, 0);
4394 return 0;
4395 }
4396
4397 static struct btf_kind_operations func_ops = {
4398 .check_meta = btf_func_check_meta,
4399 .resolve = btf_func_resolve,
4400 .check_member = btf_df_check_member,
4401 .check_kflag_member = btf_df_check_kflag_member,
4402 .log_details = btf_ref_type_log,
4403 .show = btf_df_show,
4404 };
4405
btf_var_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4406 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4407 const struct btf_type *t,
4408 u32 meta_left)
4409 {
4410 const struct btf_var *var;
4411 u32 meta_needed = sizeof(*var);
4412
4413 if (meta_left < meta_needed) {
4414 btf_verifier_log_basic(env, t,
4415 "meta_left:%u meta_needed:%u",
4416 meta_left, meta_needed);
4417 return -EINVAL;
4418 }
4419
4420 if (btf_type_vlen(t)) {
4421 btf_verifier_log_type(env, t, "vlen != 0");
4422 return -EINVAL;
4423 }
4424
4425 if (btf_type_kflag(t)) {
4426 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4427 return -EINVAL;
4428 }
4429
4430 if (!t->name_off ||
4431 !__btf_name_valid(env->btf, t->name_off)) {
4432 btf_verifier_log_type(env, t, "Invalid name");
4433 return -EINVAL;
4434 }
4435
4436 /* A var cannot be in type void */
4437 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4438 btf_verifier_log_type(env, t, "Invalid type_id");
4439 return -EINVAL;
4440 }
4441
4442 var = btf_type_var(t);
4443 if (var->linkage != BTF_VAR_STATIC &&
4444 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4445 btf_verifier_log_type(env, t, "Linkage not supported");
4446 return -EINVAL;
4447 }
4448
4449 btf_verifier_log_type(env, t, NULL);
4450
4451 return meta_needed;
4452 }
4453
btf_var_log(struct btf_verifier_env * env,const struct btf_type * t)4454 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4455 {
4456 const struct btf_var *var = btf_type_var(t);
4457
4458 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4459 }
4460
4461 static const struct btf_kind_operations var_ops = {
4462 .check_meta = btf_var_check_meta,
4463 .resolve = btf_var_resolve,
4464 .check_member = btf_df_check_member,
4465 .check_kflag_member = btf_df_check_kflag_member,
4466 .log_details = btf_var_log,
4467 .show = btf_var_show,
4468 };
4469
btf_datasec_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4470 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4471 const struct btf_type *t,
4472 u32 meta_left)
4473 {
4474 const struct btf_var_secinfo *vsi;
4475 u64 last_vsi_end_off = 0, sum = 0;
4476 u32 i, meta_needed;
4477
4478 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4479 if (meta_left < meta_needed) {
4480 btf_verifier_log_basic(env, t,
4481 "meta_left:%u meta_needed:%u",
4482 meta_left, meta_needed);
4483 return -EINVAL;
4484 }
4485
4486 if (!t->size) {
4487 btf_verifier_log_type(env, t, "size == 0");
4488 return -EINVAL;
4489 }
4490
4491 if (btf_type_kflag(t)) {
4492 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4493 return -EINVAL;
4494 }
4495
4496 if (!t->name_off ||
4497 !btf_name_valid_section(env->btf, t->name_off)) {
4498 btf_verifier_log_type(env, t, "Invalid name");
4499 return -EINVAL;
4500 }
4501
4502 btf_verifier_log_type(env, t, NULL);
4503
4504 for_each_vsi(i, t, vsi) {
4505 /* A var cannot be in type void */
4506 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4507 btf_verifier_log_vsi(env, t, vsi,
4508 "Invalid type_id");
4509 return -EINVAL;
4510 }
4511
4512 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4513 btf_verifier_log_vsi(env, t, vsi,
4514 "Invalid offset");
4515 return -EINVAL;
4516 }
4517
4518 if (!vsi->size || vsi->size > t->size) {
4519 btf_verifier_log_vsi(env, t, vsi,
4520 "Invalid size");
4521 return -EINVAL;
4522 }
4523
4524 last_vsi_end_off = vsi->offset + vsi->size;
4525 if (last_vsi_end_off > t->size) {
4526 btf_verifier_log_vsi(env, t, vsi,
4527 "Invalid offset+size");
4528 return -EINVAL;
4529 }
4530
4531 btf_verifier_log_vsi(env, t, vsi, NULL);
4532 sum += vsi->size;
4533 }
4534
4535 if (t->size < sum) {
4536 btf_verifier_log_type(env, t, "Invalid btf_info size");
4537 return -EINVAL;
4538 }
4539
4540 return meta_needed;
4541 }
4542
btf_datasec_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4543 static int btf_datasec_resolve(struct btf_verifier_env *env,
4544 const struct resolve_vertex *v)
4545 {
4546 const struct btf_var_secinfo *vsi;
4547 struct btf *btf = env->btf;
4548 u16 i;
4549
4550 env->resolve_mode = RESOLVE_TBD;
4551 for_each_vsi_from(i, v->next_member, v->t, vsi) {
4552 u32 var_type_id = vsi->type, type_id, type_size = 0;
4553 const struct btf_type *var_type = btf_type_by_id(env->btf,
4554 var_type_id);
4555 if (!var_type || !btf_type_is_var(var_type)) {
4556 btf_verifier_log_vsi(env, v->t, vsi,
4557 "Not a VAR kind member");
4558 return -EINVAL;
4559 }
4560
4561 if (!env_type_is_resolve_sink(env, var_type) &&
4562 !env_type_is_resolved(env, var_type_id)) {
4563 env_stack_set_next_member(env, i + 1);
4564 return env_stack_push(env, var_type, var_type_id);
4565 }
4566
4567 type_id = var_type->type;
4568 if (!btf_type_id_size(btf, &type_id, &type_size)) {
4569 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4570 return -EINVAL;
4571 }
4572
4573 if (vsi->size < type_size) {
4574 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4575 return -EINVAL;
4576 }
4577 }
4578
4579 env_stack_pop_resolved(env, 0, 0);
4580 return 0;
4581 }
4582
btf_datasec_log(struct btf_verifier_env * env,const struct btf_type * t)4583 static void btf_datasec_log(struct btf_verifier_env *env,
4584 const struct btf_type *t)
4585 {
4586 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4587 }
4588
btf_datasec_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4589 static void btf_datasec_show(const struct btf *btf,
4590 const struct btf_type *t, u32 type_id,
4591 void *data, u8 bits_offset,
4592 struct btf_show *show)
4593 {
4594 const struct btf_var_secinfo *vsi;
4595 const struct btf_type *var;
4596 u32 i;
4597
4598 if (!btf_show_start_type(show, t, type_id, data))
4599 return;
4600
4601 btf_show_type_value(show, "section (\"%s\") = {",
4602 __btf_name_by_offset(btf, t->name_off));
4603 for_each_vsi(i, t, vsi) {
4604 var = btf_type_by_id(btf, vsi->type);
4605 if (i)
4606 btf_show(show, ",");
4607 btf_type_ops(var)->show(btf, var, vsi->type,
4608 data + vsi->offset, bits_offset, show);
4609 }
4610 btf_show_end_type(show);
4611 }
4612
4613 static const struct btf_kind_operations datasec_ops = {
4614 .check_meta = btf_datasec_check_meta,
4615 .resolve = btf_datasec_resolve,
4616 .check_member = btf_df_check_member,
4617 .check_kflag_member = btf_df_check_kflag_member,
4618 .log_details = btf_datasec_log,
4619 .show = btf_datasec_show,
4620 };
4621
btf_float_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4622 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4623 const struct btf_type *t,
4624 u32 meta_left)
4625 {
4626 if (btf_type_vlen(t)) {
4627 btf_verifier_log_type(env, t, "vlen != 0");
4628 return -EINVAL;
4629 }
4630
4631 if (btf_type_kflag(t)) {
4632 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4633 return -EINVAL;
4634 }
4635
4636 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4637 t->size != 16) {
4638 btf_verifier_log_type(env, t, "Invalid type_size");
4639 return -EINVAL;
4640 }
4641
4642 btf_verifier_log_type(env, t, NULL);
4643
4644 return 0;
4645 }
4646
btf_float_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)4647 static int btf_float_check_member(struct btf_verifier_env *env,
4648 const struct btf_type *struct_type,
4649 const struct btf_member *member,
4650 const struct btf_type *member_type)
4651 {
4652 u64 start_offset_bytes;
4653 u64 end_offset_bytes;
4654 u64 misalign_bits;
4655 u64 align_bytes;
4656 u64 align_bits;
4657
4658 /* Different architectures have different alignment requirements, so
4659 * here we check only for the reasonable minimum. This way we ensure
4660 * that types after CO-RE can pass the kernel BTF verifier.
4661 */
4662 align_bytes = min_t(u64, sizeof(void *), member_type->size);
4663 align_bits = align_bytes * BITS_PER_BYTE;
4664 div64_u64_rem(member->offset, align_bits, &misalign_bits);
4665 if (misalign_bits) {
4666 btf_verifier_log_member(env, struct_type, member,
4667 "Member is not properly aligned");
4668 return -EINVAL;
4669 }
4670
4671 start_offset_bytes = member->offset / BITS_PER_BYTE;
4672 end_offset_bytes = start_offset_bytes + member_type->size;
4673 if (end_offset_bytes > struct_type->size) {
4674 btf_verifier_log_member(env, struct_type, member,
4675 "Member exceeds struct_size");
4676 return -EINVAL;
4677 }
4678
4679 return 0;
4680 }
4681
btf_float_log(struct btf_verifier_env * env,const struct btf_type * t)4682 static void btf_float_log(struct btf_verifier_env *env,
4683 const struct btf_type *t)
4684 {
4685 btf_verifier_log(env, "size=%u", t->size);
4686 }
4687
4688 static const struct btf_kind_operations float_ops = {
4689 .check_meta = btf_float_check_meta,
4690 .resolve = btf_df_resolve,
4691 .check_member = btf_float_check_member,
4692 .check_kflag_member = btf_generic_check_kflag_member,
4693 .log_details = btf_float_log,
4694 .show = btf_df_show,
4695 };
4696
btf_decl_tag_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4697 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4698 const struct btf_type *t,
4699 u32 meta_left)
4700 {
4701 const struct btf_decl_tag *tag;
4702 u32 meta_needed = sizeof(*tag);
4703 s32 component_idx;
4704 const char *value;
4705
4706 if (meta_left < meta_needed) {
4707 btf_verifier_log_basic(env, t,
4708 "meta_left:%u meta_needed:%u",
4709 meta_left, meta_needed);
4710 return -EINVAL;
4711 }
4712
4713 value = btf_name_by_offset(env->btf, t->name_off);
4714 if (!value || !value[0]) {
4715 btf_verifier_log_type(env, t, "Invalid value");
4716 return -EINVAL;
4717 }
4718
4719 if (btf_type_vlen(t)) {
4720 btf_verifier_log_type(env, t, "vlen != 0");
4721 return -EINVAL;
4722 }
4723
4724 if (btf_type_kflag(t)) {
4725 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4726 return -EINVAL;
4727 }
4728
4729 component_idx = btf_type_decl_tag(t)->component_idx;
4730 if (component_idx < -1) {
4731 btf_verifier_log_type(env, t, "Invalid component_idx");
4732 return -EINVAL;
4733 }
4734
4735 btf_verifier_log_type(env, t, NULL);
4736
4737 return meta_needed;
4738 }
4739
btf_decl_tag_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4740 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4741 const struct resolve_vertex *v)
4742 {
4743 const struct btf_type *next_type;
4744 const struct btf_type *t = v->t;
4745 u32 next_type_id = t->type;
4746 struct btf *btf = env->btf;
4747 s32 component_idx;
4748 u32 vlen;
4749
4750 next_type = btf_type_by_id(btf, next_type_id);
4751 if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4752 btf_verifier_log_type(env, v->t, "Invalid type_id");
4753 return -EINVAL;
4754 }
4755
4756 if (!env_type_is_resolve_sink(env, next_type) &&
4757 !env_type_is_resolved(env, next_type_id))
4758 return env_stack_push(env, next_type, next_type_id);
4759
4760 component_idx = btf_type_decl_tag(t)->component_idx;
4761 if (component_idx != -1) {
4762 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4763 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4764 return -EINVAL;
4765 }
4766
4767 if (btf_type_is_struct(next_type)) {
4768 vlen = btf_type_vlen(next_type);
4769 } else {
4770 /* next_type should be a function */
4771 next_type = btf_type_by_id(btf, next_type->type);
4772 vlen = btf_type_vlen(next_type);
4773 }
4774
4775 if ((u32)component_idx >= vlen) {
4776 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4777 return -EINVAL;
4778 }
4779 }
4780
4781 env_stack_pop_resolved(env, next_type_id, 0);
4782
4783 return 0;
4784 }
4785
btf_decl_tag_log(struct btf_verifier_env * env,const struct btf_type * t)4786 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4787 {
4788 btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4789 btf_type_decl_tag(t)->component_idx);
4790 }
4791
4792 static const struct btf_kind_operations decl_tag_ops = {
4793 .check_meta = btf_decl_tag_check_meta,
4794 .resolve = btf_decl_tag_resolve,
4795 .check_member = btf_df_check_member,
4796 .check_kflag_member = btf_df_check_kflag_member,
4797 .log_details = btf_decl_tag_log,
4798 .show = btf_df_show,
4799 };
4800
btf_func_proto_check(struct btf_verifier_env * env,const struct btf_type * t)4801 static int btf_func_proto_check(struct btf_verifier_env *env,
4802 const struct btf_type *t)
4803 {
4804 const struct btf_type *ret_type;
4805 const struct btf_param *args;
4806 const struct btf *btf;
4807 u16 nr_args, i;
4808 int err;
4809
4810 btf = env->btf;
4811 args = (const struct btf_param *)(t + 1);
4812 nr_args = btf_type_vlen(t);
4813
4814 /* Check func return type which could be "void" (t->type == 0) */
4815 if (t->type) {
4816 u32 ret_type_id = t->type;
4817
4818 ret_type = btf_type_by_id(btf, ret_type_id);
4819 if (!ret_type) {
4820 btf_verifier_log_type(env, t, "Invalid return type");
4821 return -EINVAL;
4822 }
4823
4824 if (btf_type_is_resolve_source_only(ret_type)) {
4825 btf_verifier_log_type(env, t, "Invalid return type");
4826 return -EINVAL;
4827 }
4828
4829 if (btf_type_needs_resolve(ret_type) &&
4830 !env_type_is_resolved(env, ret_type_id)) {
4831 err = btf_resolve(env, ret_type, ret_type_id);
4832 if (err)
4833 return err;
4834 }
4835
4836 /* Ensure the return type is a type that has a size */
4837 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4838 btf_verifier_log_type(env, t, "Invalid return type");
4839 return -EINVAL;
4840 }
4841 }
4842
4843 if (!nr_args)
4844 return 0;
4845
4846 /* Last func arg type_id could be 0 if it is a vararg */
4847 if (!args[nr_args - 1].type) {
4848 if (args[nr_args - 1].name_off) {
4849 btf_verifier_log_type(env, t, "Invalid arg#%u",
4850 nr_args);
4851 return -EINVAL;
4852 }
4853 nr_args--;
4854 }
4855
4856 for (i = 0; i < nr_args; i++) {
4857 const struct btf_type *arg_type;
4858 u32 arg_type_id;
4859
4860 arg_type_id = args[i].type;
4861 arg_type = btf_type_by_id(btf, arg_type_id);
4862 if (!arg_type) {
4863 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4864 return -EINVAL;
4865 }
4866
4867 if (btf_type_is_resolve_source_only(arg_type)) {
4868 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4869 return -EINVAL;
4870 }
4871
4872 if (args[i].name_off &&
4873 (!btf_name_offset_valid(btf, args[i].name_off) ||
4874 !btf_name_valid_identifier(btf, args[i].name_off))) {
4875 btf_verifier_log_type(env, t,
4876 "Invalid arg#%u", i + 1);
4877 return -EINVAL;
4878 }
4879
4880 if (btf_type_needs_resolve(arg_type) &&
4881 !env_type_is_resolved(env, arg_type_id)) {
4882 err = btf_resolve(env, arg_type, arg_type_id);
4883 if (err)
4884 return err;
4885 }
4886
4887 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4888 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4889 return -EINVAL;
4890 }
4891 }
4892
4893 return 0;
4894 }
4895
btf_func_check(struct btf_verifier_env * env,const struct btf_type * t)4896 static int btf_func_check(struct btf_verifier_env *env,
4897 const struct btf_type *t)
4898 {
4899 const struct btf_type *proto_type;
4900 const struct btf_param *args;
4901 const struct btf *btf;
4902 u16 nr_args, i;
4903
4904 btf = env->btf;
4905 proto_type = btf_type_by_id(btf, t->type);
4906
4907 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4908 btf_verifier_log_type(env, t, "Invalid type_id");
4909 return -EINVAL;
4910 }
4911
4912 args = (const struct btf_param *)(proto_type + 1);
4913 nr_args = btf_type_vlen(proto_type);
4914 for (i = 0; i < nr_args; i++) {
4915 if (!args[i].name_off && args[i].type) {
4916 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4917 return -EINVAL;
4918 }
4919 }
4920
4921 return 0;
4922 }
4923
4924 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4925 [BTF_KIND_INT] = &int_ops,
4926 [BTF_KIND_PTR] = &ptr_ops,
4927 [BTF_KIND_ARRAY] = &array_ops,
4928 [BTF_KIND_STRUCT] = &struct_ops,
4929 [BTF_KIND_UNION] = &struct_ops,
4930 [BTF_KIND_ENUM] = &enum_ops,
4931 [BTF_KIND_FWD] = &fwd_ops,
4932 [BTF_KIND_TYPEDEF] = &modifier_ops,
4933 [BTF_KIND_VOLATILE] = &modifier_ops,
4934 [BTF_KIND_CONST] = &modifier_ops,
4935 [BTF_KIND_RESTRICT] = &modifier_ops,
4936 [BTF_KIND_FUNC] = &func_ops,
4937 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4938 [BTF_KIND_VAR] = &var_ops,
4939 [BTF_KIND_DATASEC] = &datasec_ops,
4940 [BTF_KIND_FLOAT] = &float_ops,
4941 [BTF_KIND_DECL_TAG] = &decl_tag_ops,
4942 [BTF_KIND_TYPE_TAG] = &modifier_ops,
4943 [BTF_KIND_ENUM64] = &enum64_ops,
4944 };
4945
btf_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4946 static s32 btf_check_meta(struct btf_verifier_env *env,
4947 const struct btf_type *t,
4948 u32 meta_left)
4949 {
4950 u32 saved_meta_left = meta_left;
4951 s32 var_meta_size;
4952
4953 if (meta_left < sizeof(*t)) {
4954 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4955 env->log_type_id, meta_left, sizeof(*t));
4956 return -EINVAL;
4957 }
4958 meta_left -= sizeof(*t);
4959
4960 if (t->info & ~BTF_INFO_MASK) {
4961 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4962 env->log_type_id, t->info);
4963 return -EINVAL;
4964 }
4965
4966 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4967 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4968 btf_verifier_log(env, "[%u] Invalid kind:%u",
4969 env->log_type_id, BTF_INFO_KIND(t->info));
4970 return -EINVAL;
4971 }
4972
4973 if (!btf_name_offset_valid(env->btf, t->name_off)) {
4974 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4975 env->log_type_id, t->name_off);
4976 return -EINVAL;
4977 }
4978
4979 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4980 if (var_meta_size < 0)
4981 return var_meta_size;
4982
4983 meta_left -= var_meta_size;
4984
4985 return saved_meta_left - meta_left;
4986 }
4987
btf_check_all_metas(struct btf_verifier_env * env)4988 static int btf_check_all_metas(struct btf_verifier_env *env)
4989 {
4990 struct btf *btf = env->btf;
4991 struct btf_header *hdr;
4992 void *cur, *end;
4993
4994 hdr = &btf->hdr;
4995 cur = btf->nohdr_data + hdr->type_off;
4996 end = cur + hdr->type_len;
4997
4998 env->log_type_id = btf->base_btf ? btf->start_id : 1;
4999 while (cur < end) {
5000 struct btf_type *t = cur;
5001 s32 meta_size;
5002
5003 meta_size = btf_check_meta(env, t, end - cur);
5004 if (meta_size < 0)
5005 return meta_size;
5006
5007 btf_add_type(env, t);
5008 cur += meta_size;
5009 env->log_type_id++;
5010 }
5011
5012 return 0;
5013 }
5014
btf_resolve_valid(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)5015 static bool btf_resolve_valid(struct btf_verifier_env *env,
5016 const struct btf_type *t,
5017 u32 type_id)
5018 {
5019 struct btf *btf = env->btf;
5020
5021 if (!env_type_is_resolved(env, type_id))
5022 return false;
5023
5024 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5025 return !btf_resolved_type_id(btf, type_id) &&
5026 !btf_resolved_type_size(btf, type_id);
5027
5028 if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5029 return btf_resolved_type_id(btf, type_id) &&
5030 !btf_resolved_type_size(btf, type_id);
5031
5032 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5033 btf_type_is_var(t)) {
5034 t = btf_type_id_resolve(btf, &type_id);
5035 return t &&
5036 !btf_type_is_modifier(t) &&
5037 !btf_type_is_var(t) &&
5038 !btf_type_is_datasec(t);
5039 }
5040
5041 if (btf_type_is_array(t)) {
5042 const struct btf_array *array = btf_type_array(t);
5043 const struct btf_type *elem_type;
5044 u32 elem_type_id = array->type;
5045 u32 elem_size;
5046
5047 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5048 return elem_type && !btf_type_is_modifier(elem_type) &&
5049 (array->nelems * elem_size ==
5050 btf_resolved_type_size(btf, type_id));
5051 }
5052
5053 return false;
5054 }
5055
btf_resolve(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)5056 static int btf_resolve(struct btf_verifier_env *env,
5057 const struct btf_type *t, u32 type_id)
5058 {
5059 u32 save_log_type_id = env->log_type_id;
5060 const struct resolve_vertex *v;
5061 int err = 0;
5062
5063 env->resolve_mode = RESOLVE_TBD;
5064 env_stack_push(env, t, type_id);
5065 while (!err && (v = env_stack_peak(env))) {
5066 env->log_type_id = v->type_id;
5067 err = btf_type_ops(v->t)->resolve(env, v);
5068 }
5069
5070 env->log_type_id = type_id;
5071 if (err == -E2BIG) {
5072 btf_verifier_log_type(env, t,
5073 "Exceeded max resolving depth:%u",
5074 MAX_RESOLVE_DEPTH);
5075 } else if (err == -EEXIST) {
5076 btf_verifier_log_type(env, t, "Loop detected");
5077 }
5078
5079 /* Final sanity check */
5080 if (!err && !btf_resolve_valid(env, t, type_id)) {
5081 btf_verifier_log_type(env, t, "Invalid resolve state");
5082 err = -EINVAL;
5083 }
5084
5085 env->log_type_id = save_log_type_id;
5086 return err;
5087 }
5088
btf_check_all_types(struct btf_verifier_env * env)5089 static int btf_check_all_types(struct btf_verifier_env *env)
5090 {
5091 struct btf *btf = env->btf;
5092 const struct btf_type *t;
5093 u32 type_id, i;
5094 int err;
5095
5096 err = env_resolve_init(env);
5097 if (err)
5098 return err;
5099
5100 env->phase++;
5101 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5102 type_id = btf->start_id + i;
5103 t = btf_type_by_id(btf, type_id);
5104
5105 env->log_type_id = type_id;
5106 if (btf_type_needs_resolve(t) &&
5107 !env_type_is_resolved(env, type_id)) {
5108 err = btf_resolve(env, t, type_id);
5109 if (err)
5110 return err;
5111 }
5112
5113 if (btf_type_is_func_proto(t)) {
5114 err = btf_func_proto_check(env, t);
5115 if (err)
5116 return err;
5117 }
5118 }
5119
5120 return 0;
5121 }
5122
btf_parse_type_sec(struct btf_verifier_env * env)5123 static int btf_parse_type_sec(struct btf_verifier_env *env)
5124 {
5125 const struct btf_header *hdr = &env->btf->hdr;
5126 int err;
5127
5128 /* Type section must align to 4 bytes */
5129 if (hdr->type_off & (sizeof(u32) - 1)) {
5130 btf_verifier_log(env, "Unaligned type_off");
5131 return -EINVAL;
5132 }
5133
5134 if (!env->btf->base_btf && !hdr->type_len) {
5135 btf_verifier_log(env, "No type found");
5136 return -EINVAL;
5137 }
5138
5139 err = btf_check_all_metas(env);
5140 if (err)
5141 return err;
5142
5143 return btf_check_all_types(env);
5144 }
5145
btf_parse_str_sec(struct btf_verifier_env * env)5146 static int btf_parse_str_sec(struct btf_verifier_env *env)
5147 {
5148 const struct btf_header *hdr;
5149 struct btf *btf = env->btf;
5150 const char *start, *end;
5151
5152 hdr = &btf->hdr;
5153 start = btf->nohdr_data + hdr->str_off;
5154 end = start + hdr->str_len;
5155
5156 if (end != btf->data + btf->data_size) {
5157 btf_verifier_log(env, "String section is not at the end");
5158 return -EINVAL;
5159 }
5160
5161 btf->strings = start;
5162
5163 if (btf->base_btf && !hdr->str_len)
5164 return 0;
5165 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5166 btf_verifier_log(env, "Invalid string section");
5167 return -EINVAL;
5168 }
5169 if (!btf->base_btf && start[0]) {
5170 btf_verifier_log(env, "Invalid string section");
5171 return -EINVAL;
5172 }
5173
5174 return 0;
5175 }
5176
5177 static const size_t btf_sec_info_offset[] = {
5178 offsetof(struct btf_header, type_off),
5179 offsetof(struct btf_header, str_off),
5180 };
5181
btf_sec_info_cmp(const void * a,const void * b)5182 static int btf_sec_info_cmp(const void *a, const void *b)
5183 {
5184 const struct btf_sec_info *x = a;
5185 const struct btf_sec_info *y = b;
5186
5187 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5188 }
5189
btf_check_sec_info(struct btf_verifier_env * env,u32 btf_data_size)5190 static int btf_check_sec_info(struct btf_verifier_env *env,
5191 u32 btf_data_size)
5192 {
5193 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5194 u32 total, expected_total, i;
5195 const struct btf_header *hdr;
5196 const struct btf *btf;
5197
5198 btf = env->btf;
5199 hdr = &btf->hdr;
5200
5201 /* Populate the secs from hdr */
5202 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5203 secs[i] = *(struct btf_sec_info *)((void *)hdr +
5204 btf_sec_info_offset[i]);
5205
5206 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5207 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5208
5209 /* Check for gaps and overlap among sections */
5210 total = 0;
5211 expected_total = btf_data_size - hdr->hdr_len;
5212 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5213 if (expected_total < secs[i].off) {
5214 btf_verifier_log(env, "Invalid section offset");
5215 return -EINVAL;
5216 }
5217 if (total < secs[i].off) {
5218 /* gap */
5219 btf_verifier_log(env, "Unsupported section found");
5220 return -EINVAL;
5221 }
5222 if (total > secs[i].off) {
5223 btf_verifier_log(env, "Section overlap found");
5224 return -EINVAL;
5225 }
5226 if (expected_total - total < secs[i].len) {
5227 btf_verifier_log(env,
5228 "Total section length too long");
5229 return -EINVAL;
5230 }
5231 total += secs[i].len;
5232 }
5233
5234 /* There is data other than hdr and known sections */
5235 if (expected_total != total) {
5236 btf_verifier_log(env, "Unsupported section found");
5237 return -EINVAL;
5238 }
5239
5240 return 0;
5241 }
5242
btf_parse_hdr(struct btf_verifier_env * env)5243 static int btf_parse_hdr(struct btf_verifier_env *env)
5244 {
5245 u32 hdr_len, hdr_copy, btf_data_size;
5246 const struct btf_header *hdr;
5247 struct btf *btf;
5248
5249 btf = env->btf;
5250 btf_data_size = btf->data_size;
5251
5252 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5253 btf_verifier_log(env, "hdr_len not found");
5254 return -EINVAL;
5255 }
5256
5257 hdr = btf->data;
5258 hdr_len = hdr->hdr_len;
5259 if (btf_data_size < hdr_len) {
5260 btf_verifier_log(env, "btf_header not found");
5261 return -EINVAL;
5262 }
5263
5264 /* Ensure the unsupported header fields are zero */
5265 if (hdr_len > sizeof(btf->hdr)) {
5266 u8 *expected_zero = btf->data + sizeof(btf->hdr);
5267 u8 *end = btf->data + hdr_len;
5268
5269 for (; expected_zero < end; expected_zero++) {
5270 if (*expected_zero) {
5271 btf_verifier_log(env, "Unsupported btf_header");
5272 return -E2BIG;
5273 }
5274 }
5275 }
5276
5277 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5278 memcpy(&btf->hdr, btf->data, hdr_copy);
5279
5280 hdr = &btf->hdr;
5281
5282 btf_verifier_log_hdr(env, btf_data_size);
5283
5284 if (hdr->magic != BTF_MAGIC) {
5285 btf_verifier_log(env, "Invalid magic");
5286 return -EINVAL;
5287 }
5288
5289 if (hdr->version != BTF_VERSION) {
5290 btf_verifier_log(env, "Unsupported version");
5291 return -ENOTSUPP;
5292 }
5293
5294 if (hdr->flags) {
5295 btf_verifier_log(env, "Unsupported flags");
5296 return -ENOTSUPP;
5297 }
5298
5299 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5300 btf_verifier_log(env, "No data");
5301 return -EINVAL;
5302 }
5303
5304 return btf_check_sec_info(env, btf_data_size);
5305 }
5306
5307 static const char *alloc_obj_fields[] = {
5308 "bpf_spin_lock",
5309 "bpf_list_head",
5310 "bpf_list_node",
5311 "bpf_rb_root",
5312 "bpf_rb_node",
5313 "bpf_refcount",
5314 };
5315
5316 static struct btf_struct_metas *
btf_parse_struct_metas(struct bpf_verifier_log * log,struct btf * btf)5317 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5318 {
5319 union {
5320 struct btf_id_set set;
5321 struct {
5322 u32 _cnt;
5323 u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5324 } _arr;
5325 } aof;
5326 struct btf_struct_metas *tab = NULL;
5327 int i, n, id, ret;
5328
5329 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5330 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5331
5332 memset(&aof, 0, sizeof(aof));
5333 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5334 /* Try to find whether this special type exists in user BTF, and
5335 * if so remember its ID so we can easily find it among members
5336 * of structs that we iterate in the next loop.
5337 */
5338 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5339 if (id < 0)
5340 continue;
5341 aof.set.ids[aof.set.cnt++] = id;
5342 }
5343
5344 if (!aof.set.cnt)
5345 return NULL;
5346 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5347
5348 n = btf_nr_types(btf);
5349 for (i = 1; i < n; i++) {
5350 struct btf_struct_metas *new_tab;
5351 const struct btf_member *member;
5352 struct btf_struct_meta *type;
5353 struct btf_record *record;
5354 const struct btf_type *t;
5355 int j, tab_cnt;
5356
5357 t = btf_type_by_id(btf, i);
5358 if (!t) {
5359 ret = -EINVAL;
5360 goto free;
5361 }
5362 if (!__btf_type_is_struct(t))
5363 continue;
5364
5365 cond_resched();
5366
5367 for_each_member(j, t, member) {
5368 if (btf_id_set_contains(&aof.set, member->type))
5369 goto parse;
5370 }
5371 continue;
5372 parse:
5373 tab_cnt = tab ? tab->cnt : 0;
5374 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5375 GFP_KERNEL | __GFP_NOWARN);
5376 if (!new_tab) {
5377 ret = -ENOMEM;
5378 goto free;
5379 }
5380 if (!tab)
5381 new_tab->cnt = 0;
5382 tab = new_tab;
5383
5384 type = &tab->types[tab->cnt];
5385 type->btf_id = i;
5386 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5387 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
5388 /* The record cannot be unset, treat it as an error if so */
5389 if (IS_ERR_OR_NULL(record)) {
5390 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5391 goto free;
5392 }
5393 type->record = record;
5394 tab->cnt++;
5395 }
5396 return tab;
5397 free:
5398 btf_struct_metas_free(tab);
5399 return ERR_PTR(ret);
5400 }
5401
btf_find_struct_meta(const struct btf * btf,u32 btf_id)5402 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5403 {
5404 struct btf_struct_metas *tab;
5405
5406 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5407 tab = btf->struct_meta_tab;
5408 if (!tab)
5409 return NULL;
5410 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5411 }
5412
btf_check_type_tags(struct btf_verifier_env * env,struct btf * btf,int start_id)5413 static int btf_check_type_tags(struct btf_verifier_env *env,
5414 struct btf *btf, int start_id)
5415 {
5416 int i, n, good_id = start_id - 1;
5417 bool in_tags;
5418
5419 n = btf_nr_types(btf);
5420 for (i = start_id; i < n; i++) {
5421 const struct btf_type *t;
5422 int chain_limit = 32;
5423 u32 cur_id = i;
5424
5425 t = btf_type_by_id(btf, i);
5426 if (!t)
5427 return -EINVAL;
5428 if (!btf_type_is_modifier(t))
5429 continue;
5430
5431 cond_resched();
5432
5433 in_tags = btf_type_is_type_tag(t);
5434 while (btf_type_is_modifier(t)) {
5435 if (!chain_limit--) {
5436 btf_verifier_log(env, "Max chain length or cycle detected");
5437 return -ELOOP;
5438 }
5439 if (btf_type_is_type_tag(t)) {
5440 if (!in_tags) {
5441 btf_verifier_log(env, "Type tags don't precede modifiers");
5442 return -EINVAL;
5443 }
5444 } else if (in_tags) {
5445 in_tags = false;
5446 }
5447 if (cur_id <= good_id)
5448 break;
5449 /* Move to next type */
5450 cur_id = t->type;
5451 t = btf_type_by_id(btf, cur_id);
5452 if (!t)
5453 return -EINVAL;
5454 }
5455 good_id = i;
5456 }
5457 return 0;
5458 }
5459
finalize_log(struct bpf_verifier_log * log,bpfptr_t uattr,u32 uattr_size)5460 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5461 {
5462 u32 log_true_size;
5463 int err;
5464
5465 err = bpf_vlog_finalize(log, &log_true_size);
5466
5467 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5468 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5469 &log_true_size, sizeof(log_true_size)))
5470 err = -EFAULT;
5471
5472 return err;
5473 }
5474
btf_parse(const union bpf_attr * attr,bpfptr_t uattr,u32 uattr_size)5475 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5476 {
5477 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5478 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5479 struct btf_struct_metas *struct_meta_tab;
5480 struct btf_verifier_env *env = NULL;
5481 struct btf *btf = NULL;
5482 u8 *data;
5483 int err, ret;
5484
5485 if (attr->btf_size > BTF_MAX_SIZE)
5486 return ERR_PTR(-E2BIG);
5487
5488 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5489 if (!env)
5490 return ERR_PTR(-ENOMEM);
5491
5492 /* user could have requested verbose verifier output
5493 * and supplied buffer to store the verification trace
5494 */
5495 err = bpf_vlog_init(&env->log, attr->btf_log_level,
5496 log_ubuf, attr->btf_log_size);
5497 if (err)
5498 goto errout_free;
5499
5500 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5501 if (!btf) {
5502 err = -ENOMEM;
5503 goto errout;
5504 }
5505 env->btf = btf;
5506
5507 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5508 if (!data) {
5509 err = -ENOMEM;
5510 goto errout;
5511 }
5512
5513 btf->data = data;
5514 btf->data_size = attr->btf_size;
5515
5516 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5517 err = -EFAULT;
5518 goto errout;
5519 }
5520
5521 err = btf_parse_hdr(env);
5522 if (err)
5523 goto errout;
5524
5525 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5526
5527 err = btf_parse_str_sec(env);
5528 if (err)
5529 goto errout;
5530
5531 err = btf_parse_type_sec(env);
5532 if (err)
5533 goto errout;
5534
5535 err = btf_check_type_tags(env, btf, 1);
5536 if (err)
5537 goto errout;
5538
5539 struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5540 if (IS_ERR(struct_meta_tab)) {
5541 err = PTR_ERR(struct_meta_tab);
5542 goto errout;
5543 }
5544 btf->struct_meta_tab = struct_meta_tab;
5545
5546 if (struct_meta_tab) {
5547 int i;
5548
5549 for (i = 0; i < struct_meta_tab->cnt; i++) {
5550 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5551 if (err < 0)
5552 goto errout_meta;
5553 }
5554 }
5555
5556 err = finalize_log(&env->log, uattr, uattr_size);
5557 if (err)
5558 goto errout_free;
5559
5560 btf_verifier_env_free(env);
5561 refcount_set(&btf->refcnt, 1);
5562 return btf;
5563
5564 errout_meta:
5565 btf_free_struct_meta_tab(btf);
5566 errout:
5567 /* overwrite err with -ENOSPC or -EFAULT */
5568 ret = finalize_log(&env->log, uattr, uattr_size);
5569 if (ret)
5570 err = ret;
5571 errout_free:
5572 btf_verifier_env_free(env);
5573 if (btf)
5574 btf_free(btf);
5575 return ERR_PTR(err);
5576 }
5577
5578 extern char __weak __start_BTF[];
5579 extern char __weak __stop_BTF[];
5580 extern struct btf *btf_vmlinux;
5581
5582 #define BPF_MAP_TYPE(_id, _ops)
5583 #define BPF_LINK_TYPE(_id, _name)
5584 static union {
5585 struct bpf_ctx_convert {
5586 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5587 prog_ctx_type _id##_prog; \
5588 kern_ctx_type _id##_kern;
5589 #include <linux/bpf_types.h>
5590 #undef BPF_PROG_TYPE
5591 } *__t;
5592 /* 't' is written once under lock. Read many times. */
5593 const struct btf_type *t;
5594 } bpf_ctx_convert;
5595 enum {
5596 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5597 __ctx_convert##_id,
5598 #include <linux/bpf_types.h>
5599 #undef BPF_PROG_TYPE
5600 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
5601 };
5602 static u8 bpf_ctx_convert_map[] = {
5603 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5604 [_id] = __ctx_convert##_id,
5605 #include <linux/bpf_types.h>
5606 #undef BPF_PROG_TYPE
5607 0, /* avoid empty array */
5608 };
5609 #undef BPF_MAP_TYPE
5610 #undef BPF_LINK_TYPE
5611
5612 const struct btf_member *
btf_get_prog_ctx_type(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)5613 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5614 const struct btf_type *t, enum bpf_prog_type prog_type,
5615 int arg)
5616 {
5617 const struct btf_type *conv_struct;
5618 const struct btf_type *ctx_struct;
5619 const struct btf_member *ctx_type;
5620 const char *tname, *ctx_tname;
5621
5622 conv_struct = bpf_ctx_convert.t;
5623 if (!conv_struct) {
5624 bpf_log(log, "btf_vmlinux is malformed\n");
5625 return NULL;
5626 }
5627 t = btf_type_by_id(btf, t->type);
5628 while (btf_type_is_modifier(t))
5629 t = btf_type_by_id(btf, t->type);
5630 if (!btf_type_is_struct(t)) {
5631 /* Only pointer to struct is supported for now.
5632 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5633 * is not supported yet.
5634 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5635 */
5636 return NULL;
5637 }
5638 tname = btf_name_by_offset(btf, t->name_off);
5639 if (!tname) {
5640 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5641 return NULL;
5642 }
5643 /* prog_type is valid bpf program type. No need for bounds check. */
5644 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5645 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5646 * Like 'struct __sk_buff'
5647 */
5648 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5649 if (!ctx_struct)
5650 /* should not happen */
5651 return NULL;
5652 again:
5653 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5654 if (!ctx_tname) {
5655 /* should not happen */
5656 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5657 return NULL;
5658 }
5659 /* only compare that prog's ctx type name is the same as
5660 * kernel expects. No need to compare field by field.
5661 * It's ok for bpf prog to do:
5662 * struct __sk_buff {};
5663 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5664 * { // no fields of skb are ever used }
5665 */
5666 if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5667 return ctx_type;
5668 if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5669 return ctx_type;
5670 if (strcmp(ctx_tname, tname)) {
5671 /* bpf_user_pt_regs_t is a typedef, so resolve it to
5672 * underlying struct and check name again
5673 */
5674 if (!btf_type_is_modifier(ctx_struct))
5675 return NULL;
5676 while (btf_type_is_modifier(ctx_struct))
5677 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
5678 goto again;
5679 }
5680 return ctx_type;
5681 }
5682
btf_translate_to_vmlinux(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)5683 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5684 struct btf *btf,
5685 const struct btf_type *t,
5686 enum bpf_prog_type prog_type,
5687 int arg)
5688 {
5689 const struct btf_member *prog_ctx_type, *kern_ctx_type;
5690
5691 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5692 if (!prog_ctx_type)
5693 return -ENOENT;
5694 kern_ctx_type = prog_ctx_type + 1;
5695 return kern_ctx_type->type;
5696 }
5697
get_kern_ctx_btf_id(struct bpf_verifier_log * log,enum bpf_prog_type prog_type)5698 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5699 {
5700 const struct btf_member *kctx_member;
5701 const struct btf_type *conv_struct;
5702 const struct btf_type *kctx_type;
5703 u32 kctx_type_id;
5704
5705 conv_struct = bpf_ctx_convert.t;
5706 /* get member for kernel ctx type */
5707 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5708 kctx_type_id = kctx_member->type;
5709 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5710 if (!btf_type_is_struct(kctx_type)) {
5711 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5712 return -EINVAL;
5713 }
5714
5715 return kctx_type_id;
5716 }
5717
5718 BTF_ID_LIST(bpf_ctx_convert_btf_id)
BTF_ID(struct,bpf_ctx_convert)5719 BTF_ID(struct, bpf_ctx_convert)
5720
5721 struct btf *btf_parse_vmlinux(void)
5722 {
5723 struct btf_verifier_env *env = NULL;
5724 struct bpf_verifier_log *log;
5725 struct btf *btf = NULL;
5726 int err;
5727
5728 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5729 if (!env)
5730 return ERR_PTR(-ENOMEM);
5731
5732 log = &env->log;
5733 log->level = BPF_LOG_KERNEL;
5734
5735 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5736 if (!btf) {
5737 err = -ENOMEM;
5738 goto errout;
5739 }
5740 env->btf = btf;
5741
5742 btf->data = __start_BTF;
5743 btf->data_size = __stop_BTF - __start_BTF;
5744 btf->kernel_btf = true;
5745 snprintf(btf->name, sizeof(btf->name), "vmlinux");
5746
5747 err = btf_parse_hdr(env);
5748 if (err)
5749 goto errout;
5750
5751 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5752
5753 err = btf_parse_str_sec(env);
5754 if (err)
5755 goto errout;
5756
5757 err = btf_check_all_metas(env);
5758 if (err)
5759 goto errout;
5760
5761 err = btf_check_type_tags(env, btf, 1);
5762 if (err)
5763 goto errout;
5764
5765 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
5766 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5767
5768 bpf_struct_ops_init(btf, log);
5769
5770 refcount_set(&btf->refcnt, 1);
5771
5772 err = btf_alloc_id(btf);
5773 if (err)
5774 goto errout;
5775
5776 btf_verifier_env_free(env);
5777 return btf;
5778
5779 errout:
5780 btf_verifier_env_free(env);
5781 if (btf) {
5782 kvfree(btf->types);
5783 kfree(btf);
5784 }
5785 return ERR_PTR(err);
5786 }
5787
5788 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5789
btf_parse_module(const char * module_name,const void * data,unsigned int data_size)5790 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5791 {
5792 struct btf_verifier_env *env = NULL;
5793 struct bpf_verifier_log *log;
5794 struct btf *btf = NULL, *base_btf;
5795 int err;
5796
5797 base_btf = bpf_get_btf_vmlinux();
5798 if (IS_ERR(base_btf))
5799 return base_btf;
5800 if (!base_btf)
5801 return ERR_PTR(-EINVAL);
5802
5803 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5804 if (!env)
5805 return ERR_PTR(-ENOMEM);
5806
5807 log = &env->log;
5808 log->level = BPF_LOG_KERNEL;
5809
5810 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5811 if (!btf) {
5812 err = -ENOMEM;
5813 goto errout;
5814 }
5815 env->btf = btf;
5816
5817 btf->base_btf = base_btf;
5818 btf->start_id = base_btf->nr_types;
5819 btf->start_str_off = base_btf->hdr.str_len;
5820 btf->kernel_btf = true;
5821 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5822
5823 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5824 if (!btf->data) {
5825 err = -ENOMEM;
5826 goto errout;
5827 }
5828 memcpy(btf->data, data, data_size);
5829 btf->data_size = data_size;
5830
5831 err = btf_parse_hdr(env);
5832 if (err)
5833 goto errout;
5834
5835 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5836
5837 err = btf_parse_str_sec(env);
5838 if (err)
5839 goto errout;
5840
5841 err = btf_check_all_metas(env);
5842 if (err)
5843 goto errout;
5844
5845 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5846 if (err)
5847 goto errout;
5848
5849 btf_verifier_env_free(env);
5850 refcount_set(&btf->refcnt, 1);
5851 return btf;
5852
5853 errout:
5854 btf_verifier_env_free(env);
5855 if (btf) {
5856 kvfree(btf->data);
5857 kvfree(btf->types);
5858 kfree(btf);
5859 }
5860 return ERR_PTR(err);
5861 }
5862
5863 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5864
bpf_prog_get_target_btf(const struct bpf_prog * prog)5865 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5866 {
5867 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5868
5869 if (tgt_prog)
5870 return tgt_prog->aux->btf;
5871 else
5872 return prog->aux->attach_btf;
5873 }
5874
is_int_ptr(struct btf * btf,const struct btf_type * t)5875 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
5876 {
5877 /* skip modifiers */
5878 t = btf_type_skip_modifiers(btf, t->type, NULL);
5879
5880 return btf_type_is_int(t);
5881 }
5882
get_ctx_arg_idx(struct btf * btf,const struct btf_type * func_proto,int off)5883 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5884 int off)
5885 {
5886 const struct btf_param *args;
5887 const struct btf_type *t;
5888 u32 offset = 0, nr_args;
5889 int i;
5890
5891 if (!func_proto)
5892 return off / 8;
5893
5894 nr_args = btf_type_vlen(func_proto);
5895 args = (const struct btf_param *)(func_proto + 1);
5896 for (i = 0; i < nr_args; i++) {
5897 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5898 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5899 if (off < offset)
5900 return i;
5901 }
5902
5903 t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5904 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5905 if (off < offset)
5906 return nr_args;
5907
5908 return nr_args + 1;
5909 }
5910
prog_args_trusted(const struct bpf_prog * prog)5911 static bool prog_args_trusted(const struct bpf_prog *prog)
5912 {
5913 enum bpf_attach_type atype = prog->expected_attach_type;
5914
5915 switch (prog->type) {
5916 case BPF_PROG_TYPE_TRACING:
5917 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
5918 case BPF_PROG_TYPE_LSM:
5919 return bpf_lsm_is_trusted(prog);
5920 case BPF_PROG_TYPE_STRUCT_OPS:
5921 return true;
5922 default:
5923 return false;
5924 }
5925 }
5926
btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5927 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5928 const struct bpf_prog *prog,
5929 struct bpf_insn_access_aux *info)
5930 {
5931 const struct btf_type *t = prog->aux->attach_func_proto;
5932 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5933 struct btf *btf = bpf_prog_get_target_btf(prog);
5934 const char *tname = prog->aux->attach_func_name;
5935 struct bpf_verifier_log *log = info->log;
5936 const struct btf_param *args;
5937 const char *tag_value;
5938 u32 nr_args, arg;
5939 int i, ret;
5940
5941 if (off % 8) {
5942 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
5943 tname, off);
5944 return false;
5945 }
5946 arg = get_ctx_arg_idx(btf, t, off);
5947 args = (const struct btf_param *)(t + 1);
5948 /* if (t == NULL) Fall back to default BPF prog with
5949 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5950 */
5951 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
5952 if (prog->aux->attach_btf_trace) {
5953 /* skip first 'void *__data' argument in btf_trace_##name typedef */
5954 args++;
5955 nr_args--;
5956 }
5957
5958 if (arg > nr_args) {
5959 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5960 tname, arg + 1);
5961 return false;
5962 }
5963
5964 if (arg == nr_args) {
5965 switch (prog->expected_attach_type) {
5966 case BPF_LSM_CGROUP:
5967 case BPF_LSM_MAC:
5968 case BPF_TRACE_FEXIT:
5969 /* When LSM programs are attached to void LSM hooks
5970 * they use FEXIT trampolines and when attached to
5971 * int LSM hooks, they use MODIFY_RETURN trampolines.
5972 *
5973 * While the LSM programs are BPF_MODIFY_RETURN-like
5974 * the check:
5975 *
5976 * if (ret_type != 'int')
5977 * return -EINVAL;
5978 *
5979 * is _not_ done here. This is still safe as LSM hooks
5980 * have only void and int return types.
5981 */
5982 if (!t)
5983 return true;
5984 t = btf_type_by_id(btf, t->type);
5985 break;
5986 case BPF_MODIFY_RETURN:
5987 /* For now the BPF_MODIFY_RETURN can only be attached to
5988 * functions that return an int.
5989 */
5990 if (!t)
5991 return false;
5992
5993 t = btf_type_skip_modifiers(btf, t->type, NULL);
5994 if (!btf_type_is_small_int(t)) {
5995 bpf_log(log,
5996 "ret type %s not allowed for fmod_ret\n",
5997 btf_type_str(t));
5998 return false;
5999 }
6000 break;
6001 default:
6002 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6003 tname, arg + 1);
6004 return false;
6005 }
6006 } else {
6007 if (!t)
6008 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6009 return true;
6010 t = btf_type_by_id(btf, args[arg].type);
6011 }
6012
6013 /* skip modifiers */
6014 while (btf_type_is_modifier(t))
6015 t = btf_type_by_id(btf, t->type);
6016 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6017 /* accessing a scalar */
6018 return true;
6019 if (!btf_type_is_ptr(t)) {
6020 bpf_log(log,
6021 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6022 tname, arg,
6023 __btf_name_by_offset(btf, t->name_off),
6024 btf_type_str(t));
6025 return false;
6026 }
6027
6028 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6029 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6030 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6031 u32 type, flag;
6032
6033 type = base_type(ctx_arg_info->reg_type);
6034 flag = type_flag(ctx_arg_info->reg_type);
6035 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6036 (flag & PTR_MAYBE_NULL)) {
6037 info->reg_type = ctx_arg_info->reg_type;
6038 return true;
6039 }
6040 }
6041
6042 if (t->type == 0)
6043 /* This is a pointer to void.
6044 * It is the same as scalar from the verifier safety pov.
6045 * No further pointer walking is allowed.
6046 */
6047 return true;
6048
6049 if (is_int_ptr(btf, t))
6050 return true;
6051
6052 /* this is a pointer to another type */
6053 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6054 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6055
6056 if (ctx_arg_info->offset == off) {
6057 if (!ctx_arg_info->btf_id) {
6058 bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6059 return false;
6060 }
6061
6062 info->reg_type = ctx_arg_info->reg_type;
6063 info->btf = btf_vmlinux;
6064 info->btf_id = ctx_arg_info->btf_id;
6065 return true;
6066 }
6067 }
6068
6069 info->reg_type = PTR_TO_BTF_ID;
6070 if (prog_args_trusted(prog))
6071 info->reg_type |= PTR_TRUSTED;
6072
6073 if (tgt_prog) {
6074 enum bpf_prog_type tgt_type;
6075
6076 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6077 tgt_type = tgt_prog->aux->saved_dst_prog_type;
6078 else
6079 tgt_type = tgt_prog->type;
6080
6081 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6082 if (ret > 0) {
6083 info->btf = btf_vmlinux;
6084 info->btf_id = ret;
6085 return true;
6086 } else {
6087 return false;
6088 }
6089 }
6090
6091 info->btf = btf;
6092 info->btf_id = t->type;
6093 t = btf_type_by_id(btf, t->type);
6094
6095 if (btf_type_is_type_tag(t)) {
6096 tag_value = __btf_name_by_offset(btf, t->name_off);
6097 if (strcmp(tag_value, "user") == 0)
6098 info->reg_type |= MEM_USER;
6099 if (strcmp(tag_value, "percpu") == 0)
6100 info->reg_type |= MEM_PERCPU;
6101 }
6102
6103 /* skip modifiers */
6104 while (btf_type_is_modifier(t)) {
6105 info->btf_id = t->type;
6106 t = btf_type_by_id(btf, t->type);
6107 }
6108 if (!btf_type_is_struct(t)) {
6109 bpf_log(log,
6110 "func '%s' arg%d type %s is not a struct\n",
6111 tname, arg, btf_type_str(t));
6112 return false;
6113 }
6114 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6115 tname, arg, info->btf_id, btf_type_str(t),
6116 __btf_name_by_offset(btf, t->name_off));
6117 return true;
6118 }
6119
6120 enum bpf_struct_walk_result {
6121 /* < 0 error */
6122 WALK_SCALAR = 0,
6123 WALK_PTR,
6124 WALK_STRUCT,
6125 };
6126
btf_struct_walk(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)6127 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6128 const struct btf_type *t, int off, int size,
6129 u32 *next_btf_id, enum bpf_type_flag *flag,
6130 const char **field_name)
6131 {
6132 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6133 const struct btf_type *mtype, *elem_type = NULL;
6134 const struct btf_member *member;
6135 const char *tname, *mname, *tag_value;
6136 u32 vlen, elem_id, mid;
6137
6138 again:
6139 if (btf_type_is_modifier(t))
6140 t = btf_type_skip_modifiers(btf, t->type, NULL);
6141 tname = __btf_name_by_offset(btf, t->name_off);
6142 if (!btf_type_is_struct(t)) {
6143 bpf_log(log, "Type '%s' is not a struct\n", tname);
6144 return -EINVAL;
6145 }
6146
6147 vlen = btf_type_vlen(t);
6148 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6149 /*
6150 * walking unions yields untrusted pointers
6151 * with exception of __bpf_md_ptr and other
6152 * unions with a single member
6153 */
6154 *flag |= PTR_UNTRUSTED;
6155
6156 if (off + size > t->size) {
6157 /* If the last element is a variable size array, we may
6158 * need to relax the rule.
6159 */
6160 struct btf_array *array_elem;
6161
6162 if (vlen == 0)
6163 goto error;
6164
6165 member = btf_type_member(t) + vlen - 1;
6166 mtype = btf_type_skip_modifiers(btf, member->type,
6167 NULL);
6168 if (!btf_type_is_array(mtype))
6169 goto error;
6170
6171 array_elem = (struct btf_array *)(mtype + 1);
6172 if (array_elem->nelems != 0)
6173 goto error;
6174
6175 moff = __btf_member_bit_offset(t, member) / 8;
6176 if (off < moff)
6177 goto error;
6178
6179 /* allow structure and integer */
6180 t = btf_type_skip_modifiers(btf, array_elem->type,
6181 NULL);
6182
6183 if (btf_type_is_int(t))
6184 return WALK_SCALAR;
6185
6186 if (!btf_type_is_struct(t))
6187 goto error;
6188
6189 off = (off - moff) % t->size;
6190 goto again;
6191
6192 error:
6193 bpf_log(log, "access beyond struct %s at off %u size %u\n",
6194 tname, off, size);
6195 return -EACCES;
6196 }
6197
6198 for_each_member(i, t, member) {
6199 /* offset of the field in bytes */
6200 moff = __btf_member_bit_offset(t, member) / 8;
6201 if (off + size <= moff)
6202 /* won't find anything, field is already too far */
6203 break;
6204
6205 if (__btf_member_bitfield_size(t, member)) {
6206 u32 end_bit = __btf_member_bit_offset(t, member) +
6207 __btf_member_bitfield_size(t, member);
6208
6209 /* off <= moff instead of off == moff because clang
6210 * does not generate a BTF member for anonymous
6211 * bitfield like the ":16" here:
6212 * struct {
6213 * int :16;
6214 * int x:8;
6215 * };
6216 */
6217 if (off <= moff &&
6218 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6219 return WALK_SCALAR;
6220
6221 /* off may be accessing a following member
6222 *
6223 * or
6224 *
6225 * Doing partial access at either end of this
6226 * bitfield. Continue on this case also to
6227 * treat it as not accessing this bitfield
6228 * and eventually error out as field not
6229 * found to keep it simple.
6230 * It could be relaxed if there was a legit
6231 * partial access case later.
6232 */
6233 continue;
6234 }
6235
6236 /* In case of "off" is pointing to holes of a struct */
6237 if (off < moff)
6238 break;
6239
6240 /* type of the field */
6241 mid = member->type;
6242 mtype = btf_type_by_id(btf, member->type);
6243 mname = __btf_name_by_offset(btf, member->name_off);
6244
6245 mtype = __btf_resolve_size(btf, mtype, &msize,
6246 &elem_type, &elem_id, &total_nelems,
6247 &mid);
6248 if (IS_ERR(mtype)) {
6249 bpf_log(log, "field %s doesn't have size\n", mname);
6250 return -EFAULT;
6251 }
6252
6253 mtrue_end = moff + msize;
6254 if (off >= mtrue_end)
6255 /* no overlap with member, keep iterating */
6256 continue;
6257
6258 if (btf_type_is_array(mtype)) {
6259 u32 elem_idx;
6260
6261 /* __btf_resolve_size() above helps to
6262 * linearize a multi-dimensional array.
6263 *
6264 * The logic here is treating an array
6265 * in a struct as the following way:
6266 *
6267 * struct outer {
6268 * struct inner array[2][2];
6269 * };
6270 *
6271 * looks like:
6272 *
6273 * struct outer {
6274 * struct inner array_elem0;
6275 * struct inner array_elem1;
6276 * struct inner array_elem2;
6277 * struct inner array_elem3;
6278 * };
6279 *
6280 * When accessing outer->array[1][0], it moves
6281 * moff to "array_elem2", set mtype to
6282 * "struct inner", and msize also becomes
6283 * sizeof(struct inner). Then most of the
6284 * remaining logic will fall through without
6285 * caring the current member is an array or
6286 * not.
6287 *
6288 * Unlike mtype/msize/moff, mtrue_end does not
6289 * change. The naming difference ("_true") tells
6290 * that it is not always corresponding to
6291 * the current mtype/msize/moff.
6292 * It is the true end of the current
6293 * member (i.e. array in this case). That
6294 * will allow an int array to be accessed like
6295 * a scratch space,
6296 * i.e. allow access beyond the size of
6297 * the array's element as long as it is
6298 * within the mtrue_end boundary.
6299 */
6300
6301 /* skip empty array */
6302 if (moff == mtrue_end)
6303 continue;
6304
6305 msize /= total_nelems;
6306 elem_idx = (off - moff) / msize;
6307 moff += elem_idx * msize;
6308 mtype = elem_type;
6309 mid = elem_id;
6310 }
6311
6312 /* the 'off' we're looking for is either equal to start
6313 * of this field or inside of this struct
6314 */
6315 if (btf_type_is_struct(mtype)) {
6316 /* our field must be inside that union or struct */
6317 t = mtype;
6318
6319 /* return if the offset matches the member offset */
6320 if (off == moff) {
6321 *next_btf_id = mid;
6322 return WALK_STRUCT;
6323 }
6324
6325 /* adjust offset we're looking for */
6326 off -= moff;
6327 goto again;
6328 }
6329
6330 if (btf_type_is_ptr(mtype)) {
6331 const struct btf_type *stype, *t;
6332 enum bpf_type_flag tmp_flag = 0;
6333 u32 id;
6334
6335 if (msize != size || off != moff) {
6336 bpf_log(log,
6337 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6338 mname, moff, tname, off, size);
6339 return -EACCES;
6340 }
6341
6342 /* check type tag */
6343 t = btf_type_by_id(btf, mtype->type);
6344 if (btf_type_is_type_tag(t)) {
6345 tag_value = __btf_name_by_offset(btf, t->name_off);
6346 /* check __user tag */
6347 if (strcmp(tag_value, "user") == 0)
6348 tmp_flag = MEM_USER;
6349 /* check __percpu tag */
6350 if (strcmp(tag_value, "percpu") == 0)
6351 tmp_flag = MEM_PERCPU;
6352 /* check __rcu tag */
6353 if (strcmp(tag_value, "rcu") == 0)
6354 tmp_flag = MEM_RCU;
6355 }
6356
6357 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6358 if (btf_type_is_struct(stype)) {
6359 *next_btf_id = id;
6360 *flag |= tmp_flag;
6361 if (field_name)
6362 *field_name = mname;
6363 return WALK_PTR;
6364 }
6365 }
6366
6367 /* Allow more flexible access within an int as long as
6368 * it is within mtrue_end.
6369 * Since mtrue_end could be the end of an array,
6370 * that also allows using an array of int as a scratch
6371 * space. e.g. skb->cb[].
6372 */
6373 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
6374 bpf_log(log,
6375 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6376 mname, mtrue_end, tname, off, size);
6377 return -EACCES;
6378 }
6379
6380 return WALK_SCALAR;
6381 }
6382 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6383 return -EINVAL;
6384 }
6385
btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size,enum bpf_access_type atype __maybe_unused,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)6386 int btf_struct_access(struct bpf_verifier_log *log,
6387 const struct bpf_reg_state *reg,
6388 int off, int size, enum bpf_access_type atype __maybe_unused,
6389 u32 *next_btf_id, enum bpf_type_flag *flag,
6390 const char **field_name)
6391 {
6392 const struct btf *btf = reg->btf;
6393 enum bpf_type_flag tmp_flag = 0;
6394 const struct btf_type *t;
6395 u32 id = reg->btf_id;
6396 int err;
6397
6398 while (type_is_alloc(reg->type)) {
6399 struct btf_struct_meta *meta;
6400 struct btf_record *rec;
6401 int i;
6402
6403 meta = btf_find_struct_meta(btf, id);
6404 if (!meta)
6405 break;
6406 rec = meta->record;
6407 for (i = 0; i < rec->cnt; i++) {
6408 struct btf_field *field = &rec->fields[i];
6409 u32 offset = field->offset;
6410 if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6411 bpf_log(log,
6412 "direct access to %s is disallowed\n",
6413 btf_field_type_name(field->type));
6414 return -EACCES;
6415 }
6416 }
6417 break;
6418 }
6419
6420 t = btf_type_by_id(btf, id);
6421 do {
6422 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6423
6424 switch (err) {
6425 case WALK_PTR:
6426 /* For local types, the destination register cannot
6427 * become a pointer again.
6428 */
6429 if (type_is_alloc(reg->type))
6430 return SCALAR_VALUE;
6431 /* If we found the pointer or scalar on t+off,
6432 * we're done.
6433 */
6434 *next_btf_id = id;
6435 *flag = tmp_flag;
6436 return PTR_TO_BTF_ID;
6437 case WALK_SCALAR:
6438 return SCALAR_VALUE;
6439 case WALK_STRUCT:
6440 /* We found nested struct, so continue the search
6441 * by diving in it. At this point the offset is
6442 * aligned with the new type, so set it to 0.
6443 */
6444 t = btf_type_by_id(btf, id);
6445 off = 0;
6446 break;
6447 default:
6448 /* It's either error or unknown return value..
6449 * scream and leave.
6450 */
6451 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6452 return -EINVAL;
6453 return err;
6454 }
6455 } while (t);
6456
6457 return -EINVAL;
6458 }
6459
6460 /* Check that two BTF types, each specified as an BTF object + id, are exactly
6461 * the same. Trivial ID check is not enough due to module BTFs, because we can
6462 * end up with two different module BTFs, but IDs point to the common type in
6463 * vmlinux BTF.
6464 */
btf_types_are_same(const struct btf * btf1,u32 id1,const struct btf * btf2,u32 id2)6465 bool btf_types_are_same(const struct btf *btf1, u32 id1,
6466 const struct btf *btf2, u32 id2)
6467 {
6468 if (id1 != id2)
6469 return false;
6470 if (btf1 == btf2)
6471 return true;
6472 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6473 }
6474
btf_struct_ids_match(struct bpf_verifier_log * log,const struct btf * btf,u32 id,int off,const struct btf * need_btf,u32 need_type_id,bool strict)6475 bool btf_struct_ids_match(struct bpf_verifier_log *log,
6476 const struct btf *btf, u32 id, int off,
6477 const struct btf *need_btf, u32 need_type_id,
6478 bool strict)
6479 {
6480 const struct btf_type *type;
6481 enum bpf_type_flag flag = 0;
6482 int err;
6483
6484 /* Are we already done? */
6485 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6486 return true;
6487 /* In case of strict type match, we do not walk struct, the top level
6488 * type match must succeed. When strict is true, off should have already
6489 * been 0.
6490 */
6491 if (strict)
6492 return false;
6493 again:
6494 type = btf_type_by_id(btf, id);
6495 if (!type)
6496 return false;
6497 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6498 if (err != WALK_STRUCT)
6499 return false;
6500
6501 /* We found nested struct object. If it matches
6502 * the requested ID, we're done. Otherwise let's
6503 * continue the search with offset 0 in the new
6504 * type.
6505 */
6506 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6507 off = 0;
6508 goto again;
6509 }
6510
6511 return true;
6512 }
6513
__get_type_size(struct btf * btf,u32 btf_id,const struct btf_type ** ret_type)6514 static int __get_type_size(struct btf *btf, u32 btf_id,
6515 const struct btf_type **ret_type)
6516 {
6517 const struct btf_type *t;
6518
6519 *ret_type = btf_type_by_id(btf, 0);
6520 if (!btf_id)
6521 /* void */
6522 return 0;
6523 t = btf_type_by_id(btf, btf_id);
6524 while (t && btf_type_is_modifier(t))
6525 t = btf_type_by_id(btf, t->type);
6526 if (!t)
6527 return -EINVAL;
6528 *ret_type = t;
6529 if (btf_type_is_ptr(t))
6530 /* kernel size of pointer. Not BPF's size of pointer*/
6531 return sizeof(void *);
6532 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6533 return t->size;
6534 return -EINVAL;
6535 }
6536
__get_type_fmodel_flags(const struct btf_type * t)6537 static u8 __get_type_fmodel_flags(const struct btf_type *t)
6538 {
6539 u8 flags = 0;
6540
6541 if (__btf_type_is_struct(t))
6542 flags |= BTF_FMODEL_STRUCT_ARG;
6543 if (btf_type_is_signed_int(t))
6544 flags |= BTF_FMODEL_SIGNED_ARG;
6545
6546 return flags;
6547 }
6548
btf_distill_func_proto(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * func,const char * tname,struct btf_func_model * m)6549 int btf_distill_func_proto(struct bpf_verifier_log *log,
6550 struct btf *btf,
6551 const struct btf_type *func,
6552 const char *tname,
6553 struct btf_func_model *m)
6554 {
6555 const struct btf_param *args;
6556 const struct btf_type *t;
6557 u32 i, nargs;
6558 int ret;
6559
6560 if (!func) {
6561 /* BTF function prototype doesn't match the verifier types.
6562 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6563 */
6564 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6565 m->arg_size[i] = 8;
6566 m->arg_flags[i] = 0;
6567 }
6568 m->ret_size = 8;
6569 m->ret_flags = 0;
6570 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6571 return 0;
6572 }
6573 args = (const struct btf_param *)(func + 1);
6574 nargs = btf_type_vlen(func);
6575 if (nargs > MAX_BPF_FUNC_ARGS) {
6576 bpf_log(log,
6577 "The function %s has %d arguments. Too many.\n",
6578 tname, nargs);
6579 return -EINVAL;
6580 }
6581 ret = __get_type_size(btf, func->type, &t);
6582 if (ret < 0 || __btf_type_is_struct(t)) {
6583 bpf_log(log,
6584 "The function %s return type %s is unsupported.\n",
6585 tname, btf_type_str(t));
6586 return -EINVAL;
6587 }
6588 m->ret_size = ret;
6589 m->ret_flags = __get_type_fmodel_flags(t);
6590
6591 for (i = 0; i < nargs; i++) {
6592 if (i == nargs - 1 && args[i].type == 0) {
6593 bpf_log(log,
6594 "The function %s with variable args is unsupported.\n",
6595 tname);
6596 return -EINVAL;
6597 }
6598 ret = __get_type_size(btf, args[i].type, &t);
6599
6600 /* No support of struct argument size greater than 16 bytes */
6601 if (ret < 0 || ret > 16) {
6602 bpf_log(log,
6603 "The function %s arg%d type %s is unsupported.\n",
6604 tname, i, btf_type_str(t));
6605 return -EINVAL;
6606 }
6607 if (ret == 0) {
6608 bpf_log(log,
6609 "The function %s has malformed void argument.\n",
6610 tname);
6611 return -EINVAL;
6612 }
6613 m->arg_size[i] = ret;
6614 m->arg_flags[i] = __get_type_fmodel_flags(t);
6615 }
6616 m->nr_args = nargs;
6617 return 0;
6618 }
6619
6620 /* Compare BTFs of two functions assuming only scalars and pointers to context.
6621 * t1 points to BTF_KIND_FUNC in btf1
6622 * t2 points to BTF_KIND_FUNC in btf2
6623 * Returns:
6624 * EINVAL - function prototype mismatch
6625 * EFAULT - verifier bug
6626 * 0 - 99% match. The last 1% is validated by the verifier.
6627 */
btf_check_func_type_match(struct bpf_verifier_log * log,struct btf * btf1,const struct btf_type * t1,struct btf * btf2,const struct btf_type * t2)6628 static int btf_check_func_type_match(struct bpf_verifier_log *log,
6629 struct btf *btf1, const struct btf_type *t1,
6630 struct btf *btf2, const struct btf_type *t2)
6631 {
6632 const struct btf_param *args1, *args2;
6633 const char *fn1, *fn2, *s1, *s2;
6634 u32 nargs1, nargs2, i;
6635
6636 fn1 = btf_name_by_offset(btf1, t1->name_off);
6637 fn2 = btf_name_by_offset(btf2, t2->name_off);
6638
6639 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6640 bpf_log(log, "%s() is not a global function\n", fn1);
6641 return -EINVAL;
6642 }
6643 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6644 bpf_log(log, "%s() is not a global function\n", fn2);
6645 return -EINVAL;
6646 }
6647
6648 t1 = btf_type_by_id(btf1, t1->type);
6649 if (!t1 || !btf_type_is_func_proto(t1))
6650 return -EFAULT;
6651 t2 = btf_type_by_id(btf2, t2->type);
6652 if (!t2 || !btf_type_is_func_proto(t2))
6653 return -EFAULT;
6654
6655 args1 = (const struct btf_param *)(t1 + 1);
6656 nargs1 = btf_type_vlen(t1);
6657 args2 = (const struct btf_param *)(t2 + 1);
6658 nargs2 = btf_type_vlen(t2);
6659
6660 if (nargs1 != nargs2) {
6661 bpf_log(log, "%s() has %d args while %s() has %d args\n",
6662 fn1, nargs1, fn2, nargs2);
6663 return -EINVAL;
6664 }
6665
6666 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6667 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6668 if (t1->info != t2->info) {
6669 bpf_log(log,
6670 "Return type %s of %s() doesn't match type %s of %s()\n",
6671 btf_type_str(t1), fn1,
6672 btf_type_str(t2), fn2);
6673 return -EINVAL;
6674 }
6675
6676 for (i = 0; i < nargs1; i++) {
6677 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6678 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6679
6680 if (t1->info != t2->info) {
6681 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6682 i, fn1, btf_type_str(t1),
6683 fn2, btf_type_str(t2));
6684 return -EINVAL;
6685 }
6686 if (btf_type_has_size(t1) && t1->size != t2->size) {
6687 bpf_log(log,
6688 "arg%d in %s() has size %d while %s() has %d\n",
6689 i, fn1, t1->size,
6690 fn2, t2->size);
6691 return -EINVAL;
6692 }
6693
6694 /* global functions are validated with scalars and pointers
6695 * to context only. And only global functions can be replaced.
6696 * Hence type check only those types.
6697 */
6698 if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6699 continue;
6700 if (!btf_type_is_ptr(t1)) {
6701 bpf_log(log,
6702 "arg%d in %s() has unrecognized type\n",
6703 i, fn1);
6704 return -EINVAL;
6705 }
6706 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6707 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6708 if (!btf_type_is_struct(t1)) {
6709 bpf_log(log,
6710 "arg%d in %s() is not a pointer to context\n",
6711 i, fn1);
6712 return -EINVAL;
6713 }
6714 if (!btf_type_is_struct(t2)) {
6715 bpf_log(log,
6716 "arg%d in %s() is not a pointer to context\n",
6717 i, fn2);
6718 return -EINVAL;
6719 }
6720 /* This is an optional check to make program writing easier.
6721 * Compare names of structs and report an error to the user.
6722 * btf_prepare_func_args() already checked that t2 struct
6723 * is a context type. btf_prepare_func_args() will check
6724 * later that t1 struct is a context type as well.
6725 */
6726 s1 = btf_name_by_offset(btf1, t1->name_off);
6727 s2 = btf_name_by_offset(btf2, t2->name_off);
6728 if (strcmp(s1, s2)) {
6729 bpf_log(log,
6730 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6731 i, fn1, s1, fn2, s2);
6732 return -EINVAL;
6733 }
6734 }
6735 return 0;
6736 }
6737
6738 /* Compare BTFs of given program with BTF of target program */
btf_check_type_match(struct bpf_verifier_log * log,const struct bpf_prog * prog,struct btf * btf2,const struct btf_type * t2)6739 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6740 struct btf *btf2, const struct btf_type *t2)
6741 {
6742 struct btf *btf1 = prog->aux->btf;
6743 const struct btf_type *t1;
6744 u32 btf_id = 0;
6745
6746 if (!prog->aux->func_info) {
6747 bpf_log(log, "Program extension requires BTF\n");
6748 return -EINVAL;
6749 }
6750
6751 btf_id = prog->aux->func_info[0].type_id;
6752 if (!btf_id)
6753 return -EFAULT;
6754
6755 t1 = btf_type_by_id(btf1, btf_id);
6756 if (!t1 || !btf_type_is_func(t1))
6757 return -EFAULT;
6758
6759 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6760 }
6761
btf_check_func_arg_match(struct bpf_verifier_env * env,const struct btf * btf,u32 func_id,struct bpf_reg_state * regs,bool ptr_to_mem_ok,bool processing_call)6762 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6763 const struct btf *btf, u32 func_id,
6764 struct bpf_reg_state *regs,
6765 bool ptr_to_mem_ok,
6766 bool processing_call)
6767 {
6768 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6769 struct bpf_verifier_log *log = &env->log;
6770 const char *func_name, *ref_tname;
6771 const struct btf_type *t, *ref_t;
6772 const struct btf_param *args;
6773 u32 i, nargs, ref_id;
6774 int ret;
6775
6776 t = btf_type_by_id(btf, func_id);
6777 if (!t || !btf_type_is_func(t)) {
6778 /* These checks were already done by the verifier while loading
6779 * struct bpf_func_info or in add_kfunc_call().
6780 */
6781 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6782 func_id);
6783 return -EFAULT;
6784 }
6785 func_name = btf_name_by_offset(btf, t->name_off);
6786
6787 t = btf_type_by_id(btf, t->type);
6788 if (!t || !btf_type_is_func_proto(t)) {
6789 bpf_log(log, "Invalid BTF of func %s\n", func_name);
6790 return -EFAULT;
6791 }
6792 args = (const struct btf_param *)(t + 1);
6793 nargs = btf_type_vlen(t);
6794 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6795 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
6796 MAX_BPF_FUNC_REG_ARGS);
6797 return -EINVAL;
6798 }
6799
6800 /* check that BTF function arguments match actual types that the
6801 * verifier sees.
6802 */
6803 for (i = 0; i < nargs; i++) {
6804 enum bpf_arg_type arg_type = ARG_DONTCARE;
6805 u32 regno = i + 1;
6806 struct bpf_reg_state *reg = ®s[regno];
6807
6808 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6809 if (btf_type_is_scalar(t)) {
6810 if (reg->type == SCALAR_VALUE)
6811 continue;
6812 bpf_log(log, "R%d is not a scalar\n", regno);
6813 return -EINVAL;
6814 }
6815
6816 if (!btf_type_is_ptr(t)) {
6817 bpf_log(log, "Unrecognized arg#%d type %s\n",
6818 i, btf_type_str(t));
6819 return -EINVAL;
6820 }
6821
6822 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
6823 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6824
6825 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
6826 if (ret < 0)
6827 return ret;
6828
6829 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6830 /* If function expects ctx type in BTF check that caller
6831 * is passing PTR_TO_CTX.
6832 */
6833 if (reg->type != PTR_TO_CTX) {
6834 bpf_log(log,
6835 "arg#%d expected pointer to ctx, but got %s\n",
6836 i, btf_type_str(t));
6837 return -EINVAL;
6838 }
6839 } else if (ptr_to_mem_ok && processing_call) {
6840 const struct btf_type *resolve_ret;
6841 u32 type_size;
6842
6843 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6844 if (IS_ERR(resolve_ret)) {
6845 bpf_log(log,
6846 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6847 i, btf_type_str(ref_t), ref_tname,
6848 PTR_ERR(resolve_ret));
6849 return -EINVAL;
6850 }
6851
6852 if (check_mem_reg(env, reg, regno, type_size))
6853 return -EINVAL;
6854 } else {
6855 bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i,
6856 func_name, func_id);
6857 return -EINVAL;
6858 }
6859 }
6860
6861 return 0;
6862 }
6863
6864 /* Compare BTF of a function declaration with given bpf_reg_state.
6865 * Returns:
6866 * EFAULT - there is a verifier bug. Abort verification.
6867 * EINVAL - there is a type mismatch or BTF is not available.
6868 * 0 - BTF matches with what bpf_reg_state expects.
6869 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6870 */
btf_check_subprog_arg_match(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * regs)6871 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6872 struct bpf_reg_state *regs)
6873 {
6874 struct bpf_prog *prog = env->prog;
6875 struct btf *btf = prog->aux->btf;
6876 bool is_global;
6877 u32 btf_id;
6878 int err;
6879
6880 if (!prog->aux->func_info)
6881 return -EINVAL;
6882
6883 btf_id = prog->aux->func_info[subprog].type_id;
6884 if (!btf_id)
6885 return -EFAULT;
6886
6887 if (prog->aux->func_info_aux[subprog].unreliable)
6888 return -EINVAL;
6889
6890 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6891 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false);
6892
6893 /* Compiler optimizations can remove arguments from static functions
6894 * or mismatched type can be passed into a global function.
6895 * In such cases mark the function as unreliable from BTF point of view.
6896 */
6897 if (err)
6898 prog->aux->func_info_aux[subprog].unreliable = true;
6899 return err;
6900 }
6901
6902 /* Compare BTF of a function call with given bpf_reg_state.
6903 * Returns:
6904 * EFAULT - there is a verifier bug. Abort verification.
6905 * EINVAL - there is a type mismatch or BTF is not available.
6906 * 0 - BTF matches with what bpf_reg_state expects.
6907 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6908 *
6909 * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6910 * because btf_check_func_arg_match() is still doing both. Once that
6911 * function is split in 2, we can call from here btf_check_subprog_arg_match()
6912 * first, and then treat the calling part in a new code path.
6913 */
btf_check_subprog_call(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * regs)6914 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6915 struct bpf_reg_state *regs)
6916 {
6917 struct bpf_prog *prog = env->prog;
6918 struct btf *btf = prog->aux->btf;
6919 bool is_global;
6920 u32 btf_id;
6921 int err;
6922
6923 if (!prog->aux->func_info)
6924 return -EINVAL;
6925
6926 btf_id = prog->aux->func_info[subprog].type_id;
6927 if (!btf_id)
6928 return -EFAULT;
6929
6930 if (prog->aux->func_info_aux[subprog].unreliable)
6931 return -EINVAL;
6932
6933 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6934 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true);
6935
6936 /* Compiler optimizations can remove arguments from static functions
6937 * or mismatched type can be passed into a global function.
6938 * In such cases mark the function as unreliable from BTF point of view.
6939 */
6940 if (err)
6941 prog->aux->func_info_aux[subprog].unreliable = true;
6942 return err;
6943 }
6944
6945 /* Convert BTF of a function into bpf_reg_state if possible
6946 * Returns:
6947 * EFAULT - there is a verifier bug. Abort verification.
6948 * EINVAL - cannot convert BTF.
6949 * 0 - Successfully converted BTF into bpf_reg_state
6950 * (either PTR_TO_CTX or SCALAR_VALUE).
6951 */
btf_prepare_func_args(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * regs)6952 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6953 struct bpf_reg_state *regs)
6954 {
6955 struct bpf_verifier_log *log = &env->log;
6956 struct bpf_prog *prog = env->prog;
6957 enum bpf_prog_type prog_type = prog->type;
6958 struct btf *btf = prog->aux->btf;
6959 const struct btf_param *args;
6960 const struct btf_type *t, *ref_t;
6961 u32 i, nargs, btf_id;
6962 const char *tname;
6963
6964 if (!prog->aux->func_info ||
6965 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6966 bpf_log(log, "Verifier bug\n");
6967 return -EFAULT;
6968 }
6969
6970 btf_id = prog->aux->func_info[subprog].type_id;
6971 if (!btf_id) {
6972 bpf_log(log, "Global functions need valid BTF\n");
6973 return -EFAULT;
6974 }
6975
6976 t = btf_type_by_id(btf, btf_id);
6977 if (!t || !btf_type_is_func(t)) {
6978 /* These checks were already done by the verifier while loading
6979 * struct bpf_func_info
6980 */
6981 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6982 subprog);
6983 return -EFAULT;
6984 }
6985 tname = btf_name_by_offset(btf, t->name_off);
6986
6987 if (log->level & BPF_LOG_LEVEL)
6988 bpf_log(log, "Validating %s() func#%d...\n",
6989 tname, subprog);
6990
6991 if (prog->aux->func_info_aux[subprog].unreliable) {
6992 bpf_log(log, "Verifier bug in function %s()\n", tname);
6993 return -EFAULT;
6994 }
6995 if (prog_type == BPF_PROG_TYPE_EXT)
6996 prog_type = prog->aux->dst_prog->type;
6997
6998 t = btf_type_by_id(btf, t->type);
6999 if (!t || !btf_type_is_func_proto(t)) {
7000 bpf_log(log, "Invalid type of function %s()\n", tname);
7001 return -EFAULT;
7002 }
7003 args = (const struct btf_param *)(t + 1);
7004 nargs = btf_type_vlen(t);
7005 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7006 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7007 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7008 return -EINVAL;
7009 }
7010 /* check that function returns int */
7011 t = btf_type_by_id(btf, t->type);
7012 while (btf_type_is_modifier(t))
7013 t = btf_type_by_id(btf, t->type);
7014 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7015 bpf_log(log,
7016 "Global function %s() doesn't return scalar. Only those are supported.\n",
7017 tname);
7018 return -EINVAL;
7019 }
7020 /* Convert BTF function arguments into verifier types.
7021 * Only PTR_TO_CTX and SCALAR are supported atm.
7022 */
7023 for (i = 0; i < nargs; i++) {
7024 struct bpf_reg_state *reg = ®s[i + 1];
7025
7026 t = btf_type_by_id(btf, args[i].type);
7027 while (btf_type_is_modifier(t))
7028 t = btf_type_by_id(btf, t->type);
7029 if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7030 reg->type = SCALAR_VALUE;
7031 continue;
7032 }
7033 if (btf_type_is_ptr(t)) {
7034 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
7035 reg->type = PTR_TO_CTX;
7036 continue;
7037 }
7038
7039 t = btf_type_skip_modifiers(btf, t->type, NULL);
7040
7041 ref_t = btf_resolve_size(btf, t, ®->mem_size);
7042 if (IS_ERR(ref_t)) {
7043 bpf_log(log,
7044 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7045 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7046 PTR_ERR(ref_t));
7047 return -EINVAL;
7048 }
7049
7050 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
7051 reg->id = ++env->id_gen;
7052
7053 continue;
7054 }
7055 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7056 i, btf_type_str(t), tname);
7057 return -EINVAL;
7058 }
7059 return 0;
7060 }
7061
btf_type_show(const struct btf * btf,u32 type_id,void * obj,struct btf_show * show)7062 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7063 struct btf_show *show)
7064 {
7065 const struct btf_type *t = btf_type_by_id(btf, type_id);
7066
7067 show->btf = btf;
7068 memset(&show->state, 0, sizeof(show->state));
7069 memset(&show->obj, 0, sizeof(show->obj));
7070
7071 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7072 }
7073
btf_seq_show(struct btf_show * show,const char * fmt,va_list args)7074 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt,
7075 va_list args)
7076 {
7077 seq_vprintf((struct seq_file *)show->target, fmt, args);
7078 }
7079
btf_type_seq_show_flags(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m,u64 flags)7080 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7081 void *obj, struct seq_file *m, u64 flags)
7082 {
7083 struct btf_show sseq;
7084
7085 sseq.target = m;
7086 sseq.showfn = btf_seq_show;
7087 sseq.flags = flags;
7088
7089 btf_type_show(btf, type_id, obj, &sseq);
7090
7091 return sseq.state.status;
7092 }
7093
btf_type_seq_show(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m)7094 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7095 struct seq_file *m)
7096 {
7097 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
7098 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7099 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7100 }
7101
7102 struct btf_show_snprintf {
7103 struct btf_show show;
7104 int len_left; /* space left in string */
7105 int len; /* length we would have written */
7106 };
7107
btf_snprintf_show(struct btf_show * show,const char * fmt,va_list args)7108 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7109 va_list args)
7110 {
7111 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7112 int len;
7113
7114 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7115
7116 if (len < 0) {
7117 ssnprintf->len_left = 0;
7118 ssnprintf->len = len;
7119 } else if (len >= ssnprintf->len_left) {
7120 /* no space, drive on to get length we would have written */
7121 ssnprintf->len_left = 0;
7122 ssnprintf->len += len;
7123 } else {
7124 ssnprintf->len_left -= len;
7125 ssnprintf->len += len;
7126 show->target += len;
7127 }
7128 }
7129
btf_type_snprintf_show(const struct btf * btf,u32 type_id,void * obj,char * buf,int len,u64 flags)7130 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7131 char *buf, int len, u64 flags)
7132 {
7133 struct btf_show_snprintf ssnprintf;
7134
7135 ssnprintf.show.target = buf;
7136 ssnprintf.show.flags = flags;
7137 ssnprintf.show.showfn = btf_snprintf_show;
7138 ssnprintf.len_left = len;
7139 ssnprintf.len = 0;
7140
7141 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7142
7143 /* If we encountered an error, return it. */
7144 if (ssnprintf.show.state.status)
7145 return ssnprintf.show.state.status;
7146
7147 /* Otherwise return length we would have written */
7148 return ssnprintf.len;
7149 }
7150
7151 #ifdef CONFIG_PROC_FS
bpf_btf_show_fdinfo(struct seq_file * m,struct file * filp)7152 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7153 {
7154 const struct btf *btf = filp->private_data;
7155
7156 seq_printf(m, "btf_id:\t%u\n", btf->id);
7157 }
7158 #endif
7159
btf_release(struct inode * inode,struct file * filp)7160 static int btf_release(struct inode *inode, struct file *filp)
7161 {
7162 btf_put(filp->private_data);
7163 return 0;
7164 }
7165
7166 const struct file_operations btf_fops = {
7167 #ifdef CONFIG_PROC_FS
7168 .show_fdinfo = bpf_btf_show_fdinfo,
7169 #endif
7170 .release = btf_release,
7171 };
7172
__btf_new_fd(struct btf * btf)7173 static int __btf_new_fd(struct btf *btf)
7174 {
7175 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7176 }
7177
btf_new_fd(const union bpf_attr * attr,bpfptr_t uattr,u32 uattr_size)7178 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7179 {
7180 struct btf *btf;
7181 int ret;
7182
7183 btf = btf_parse(attr, uattr, uattr_size);
7184 if (IS_ERR(btf))
7185 return PTR_ERR(btf);
7186
7187 ret = btf_alloc_id(btf);
7188 if (ret) {
7189 btf_free(btf);
7190 return ret;
7191 }
7192
7193 /*
7194 * The BTF ID is published to the userspace.
7195 * All BTF free must go through call_rcu() from
7196 * now on (i.e. free by calling btf_put()).
7197 */
7198
7199 ret = __btf_new_fd(btf);
7200 if (ret < 0)
7201 btf_put(btf);
7202
7203 return ret;
7204 }
7205
btf_get_by_fd(int fd)7206 struct btf *btf_get_by_fd(int fd)
7207 {
7208 struct btf *btf;
7209 struct fd f;
7210
7211 f = fdget(fd);
7212
7213 if (!f.file)
7214 return ERR_PTR(-EBADF);
7215
7216 if (f.file->f_op != &btf_fops) {
7217 fdput(f);
7218 return ERR_PTR(-EINVAL);
7219 }
7220
7221 btf = f.file->private_data;
7222 refcount_inc(&btf->refcnt);
7223 fdput(f);
7224
7225 return btf;
7226 }
7227
btf_get_info_by_fd(const struct btf * btf,const union bpf_attr * attr,union bpf_attr __user * uattr)7228 int btf_get_info_by_fd(const struct btf *btf,
7229 const union bpf_attr *attr,
7230 union bpf_attr __user *uattr)
7231 {
7232 struct bpf_btf_info __user *uinfo;
7233 struct bpf_btf_info info;
7234 u32 info_copy, btf_copy;
7235 void __user *ubtf;
7236 char __user *uname;
7237 u32 uinfo_len, uname_len, name_len;
7238 int ret = 0;
7239
7240 uinfo = u64_to_user_ptr(attr->info.info);
7241 uinfo_len = attr->info.info_len;
7242
7243 info_copy = min_t(u32, uinfo_len, sizeof(info));
7244 memset(&info, 0, sizeof(info));
7245 if (copy_from_user(&info, uinfo, info_copy))
7246 return -EFAULT;
7247
7248 info.id = btf->id;
7249 ubtf = u64_to_user_ptr(info.btf);
7250 btf_copy = min_t(u32, btf->data_size, info.btf_size);
7251 if (copy_to_user(ubtf, btf->data, btf_copy))
7252 return -EFAULT;
7253 info.btf_size = btf->data_size;
7254
7255 info.kernel_btf = btf->kernel_btf;
7256
7257 uname = u64_to_user_ptr(info.name);
7258 uname_len = info.name_len;
7259 if (!uname ^ !uname_len)
7260 return -EINVAL;
7261
7262 name_len = strlen(btf->name);
7263 info.name_len = name_len;
7264
7265 if (uname) {
7266 if (uname_len >= name_len + 1) {
7267 if (copy_to_user(uname, btf->name, name_len + 1))
7268 return -EFAULT;
7269 } else {
7270 char zero = '\0';
7271
7272 if (copy_to_user(uname, btf->name, uname_len - 1))
7273 return -EFAULT;
7274 if (put_user(zero, uname + uname_len - 1))
7275 return -EFAULT;
7276 /* let user-space know about too short buffer */
7277 ret = -ENOSPC;
7278 }
7279 }
7280
7281 if (copy_to_user(uinfo, &info, info_copy) ||
7282 put_user(info_copy, &uattr->info.info_len))
7283 return -EFAULT;
7284
7285 return ret;
7286 }
7287
btf_get_fd_by_id(u32 id)7288 int btf_get_fd_by_id(u32 id)
7289 {
7290 struct btf *btf;
7291 int fd;
7292
7293 rcu_read_lock();
7294 btf = idr_find(&btf_idr, id);
7295 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7296 btf = ERR_PTR(-ENOENT);
7297 rcu_read_unlock();
7298
7299 if (IS_ERR(btf))
7300 return PTR_ERR(btf);
7301
7302 fd = __btf_new_fd(btf);
7303 if (fd < 0)
7304 btf_put(btf);
7305
7306 return fd;
7307 }
7308
btf_obj_id(const struct btf * btf)7309 u32 btf_obj_id(const struct btf *btf)
7310 {
7311 return btf->id;
7312 }
7313
btf_is_kernel(const struct btf * btf)7314 bool btf_is_kernel(const struct btf *btf)
7315 {
7316 return btf->kernel_btf;
7317 }
7318
btf_is_module(const struct btf * btf)7319 bool btf_is_module(const struct btf *btf)
7320 {
7321 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7322 }
7323
7324 enum {
7325 BTF_MODULE_F_LIVE = (1 << 0),
7326 };
7327
7328 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7329 struct btf_module {
7330 struct list_head list;
7331 struct module *module;
7332 struct btf *btf;
7333 struct bin_attribute *sysfs_attr;
7334 int flags;
7335 };
7336
7337 static LIST_HEAD(btf_modules);
7338 static DEFINE_MUTEX(btf_module_mutex);
7339
7340 static ssize_t
btf_module_read(struct file * file,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t len)7341 btf_module_read(struct file *file, struct kobject *kobj,
7342 struct bin_attribute *bin_attr,
7343 char *buf, loff_t off, size_t len)
7344 {
7345 const struct btf *btf = bin_attr->private;
7346
7347 memcpy(buf, btf->data + off, len);
7348 return len;
7349 }
7350
7351 static void purge_cand_cache(struct btf *btf);
7352
btf_module_notify(struct notifier_block * nb,unsigned long op,void * module)7353 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7354 void *module)
7355 {
7356 struct btf_module *btf_mod, *tmp;
7357 struct module *mod = module;
7358 struct btf *btf;
7359 int err = 0;
7360
7361 if (mod->btf_data_size == 0 ||
7362 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7363 op != MODULE_STATE_GOING))
7364 goto out;
7365
7366 switch (op) {
7367 case MODULE_STATE_COMING:
7368 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7369 if (!btf_mod) {
7370 err = -ENOMEM;
7371 goto out;
7372 }
7373 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7374 if (IS_ERR(btf)) {
7375 kfree(btf_mod);
7376 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7377 pr_warn("failed to validate module [%s] BTF: %ld\n",
7378 mod->name, PTR_ERR(btf));
7379 err = PTR_ERR(btf);
7380 } else {
7381 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7382 }
7383 goto out;
7384 }
7385 err = btf_alloc_id(btf);
7386 if (err) {
7387 btf_free(btf);
7388 kfree(btf_mod);
7389 goto out;
7390 }
7391
7392 purge_cand_cache(NULL);
7393 mutex_lock(&btf_module_mutex);
7394 btf_mod->module = module;
7395 btf_mod->btf = btf;
7396 list_add(&btf_mod->list, &btf_modules);
7397 mutex_unlock(&btf_module_mutex);
7398
7399 if (IS_ENABLED(CONFIG_SYSFS)) {
7400 struct bin_attribute *attr;
7401
7402 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7403 if (!attr)
7404 goto out;
7405
7406 sysfs_bin_attr_init(attr);
7407 attr->attr.name = btf->name;
7408 attr->attr.mode = 0444;
7409 attr->size = btf->data_size;
7410 attr->private = btf;
7411 attr->read = btf_module_read;
7412
7413 err = sysfs_create_bin_file(btf_kobj, attr);
7414 if (err) {
7415 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7416 mod->name, err);
7417 kfree(attr);
7418 err = 0;
7419 goto out;
7420 }
7421
7422 btf_mod->sysfs_attr = attr;
7423 }
7424
7425 break;
7426 case MODULE_STATE_LIVE:
7427 mutex_lock(&btf_module_mutex);
7428 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7429 if (btf_mod->module != module)
7430 continue;
7431
7432 btf_mod->flags |= BTF_MODULE_F_LIVE;
7433 break;
7434 }
7435 mutex_unlock(&btf_module_mutex);
7436 break;
7437 case MODULE_STATE_GOING:
7438 mutex_lock(&btf_module_mutex);
7439 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7440 if (btf_mod->module != module)
7441 continue;
7442
7443 list_del(&btf_mod->list);
7444 if (btf_mod->sysfs_attr)
7445 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7446 purge_cand_cache(btf_mod->btf);
7447 btf_put(btf_mod->btf);
7448 kfree(btf_mod->sysfs_attr);
7449 kfree(btf_mod);
7450 break;
7451 }
7452 mutex_unlock(&btf_module_mutex);
7453 break;
7454 }
7455 out:
7456 return notifier_from_errno(err);
7457 }
7458
7459 static struct notifier_block btf_module_nb = {
7460 .notifier_call = btf_module_notify,
7461 };
7462
btf_module_init(void)7463 static int __init btf_module_init(void)
7464 {
7465 register_module_notifier(&btf_module_nb);
7466 return 0;
7467 }
7468
7469 fs_initcall(btf_module_init);
7470 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7471
btf_try_get_module(const struct btf * btf)7472 struct module *btf_try_get_module(const struct btf *btf)
7473 {
7474 struct module *res = NULL;
7475 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7476 struct btf_module *btf_mod, *tmp;
7477
7478 mutex_lock(&btf_module_mutex);
7479 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7480 if (btf_mod->btf != btf)
7481 continue;
7482
7483 /* We must only consider module whose __init routine has
7484 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7485 * which is set from the notifier callback for
7486 * MODULE_STATE_LIVE.
7487 */
7488 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7489 res = btf_mod->module;
7490
7491 break;
7492 }
7493 mutex_unlock(&btf_module_mutex);
7494 #endif
7495
7496 return res;
7497 }
7498
7499 /* Returns struct btf corresponding to the struct module.
7500 * This function can return NULL or ERR_PTR.
7501 */
btf_get_module_btf(const struct module * module)7502 static struct btf *btf_get_module_btf(const struct module *module)
7503 {
7504 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7505 struct btf_module *btf_mod, *tmp;
7506 #endif
7507 struct btf *btf = NULL;
7508
7509 if (!module) {
7510 btf = bpf_get_btf_vmlinux();
7511 if (!IS_ERR_OR_NULL(btf))
7512 btf_get(btf);
7513 return btf;
7514 }
7515
7516 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7517 mutex_lock(&btf_module_mutex);
7518 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7519 if (btf_mod->module != module)
7520 continue;
7521
7522 btf_get(btf_mod->btf);
7523 btf = btf_mod->btf;
7524 break;
7525 }
7526 mutex_unlock(&btf_module_mutex);
7527 #endif
7528
7529 return btf;
7530 }
7531
BPF_CALL_4(bpf_btf_find_by_name_kind,char *,name,int,name_sz,u32,kind,int,flags)7532 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7533 {
7534 struct btf *btf = NULL;
7535 int btf_obj_fd = 0;
7536 long ret;
7537
7538 if (flags)
7539 return -EINVAL;
7540
7541 if (name_sz <= 1 || name[name_sz - 1])
7542 return -EINVAL;
7543
7544 ret = bpf_find_btf_id(name, kind, &btf);
7545 if (ret > 0 && btf_is_module(btf)) {
7546 btf_obj_fd = __btf_new_fd(btf);
7547 if (btf_obj_fd < 0) {
7548 btf_put(btf);
7549 return btf_obj_fd;
7550 }
7551 return ret | (((u64)btf_obj_fd) << 32);
7552 }
7553 if (ret > 0)
7554 btf_put(btf);
7555 return ret;
7556 }
7557
7558 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7559 .func = bpf_btf_find_by_name_kind,
7560 .gpl_only = false,
7561 .ret_type = RET_INTEGER,
7562 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7563 .arg2_type = ARG_CONST_SIZE,
7564 .arg3_type = ARG_ANYTHING,
7565 .arg4_type = ARG_ANYTHING,
7566 };
7567
BTF_ID_LIST_GLOBAL(btf_tracing_ids,MAX_BTF_TRACING_TYPE)7568 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7569 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7570 BTF_TRACING_TYPE_xxx
7571 #undef BTF_TRACING_TYPE
7572
7573 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7574 const struct btf_type *func, u32 func_flags)
7575 {
7576 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7577 const char *name, *sfx, *iter_name;
7578 const struct btf_param *arg;
7579 const struct btf_type *t;
7580 char exp_name[128];
7581 u32 nr_args;
7582
7583 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7584 if (!flags || (flags & (flags - 1)))
7585 return -EINVAL;
7586
7587 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7588 nr_args = btf_type_vlen(func);
7589 if (nr_args < 1)
7590 return -EINVAL;
7591
7592 arg = &btf_params(func)[0];
7593 t = btf_type_skip_modifiers(btf, arg->type, NULL);
7594 if (!t || !btf_type_is_ptr(t))
7595 return -EINVAL;
7596 t = btf_type_skip_modifiers(btf, t->type, NULL);
7597 if (!t || !__btf_type_is_struct(t))
7598 return -EINVAL;
7599
7600 name = btf_name_by_offset(btf, t->name_off);
7601 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7602 return -EINVAL;
7603
7604 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7605 * fit nicely in stack slots
7606 */
7607 if (t->size == 0 || (t->size % 8))
7608 return -EINVAL;
7609
7610 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7611 * naming pattern
7612 */
7613 iter_name = name + sizeof(ITER_PREFIX) - 1;
7614 if (flags & KF_ITER_NEW)
7615 sfx = "new";
7616 else if (flags & KF_ITER_NEXT)
7617 sfx = "next";
7618 else /* (flags & KF_ITER_DESTROY) */
7619 sfx = "destroy";
7620
7621 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
7622 if (strcmp(func_name, exp_name))
7623 return -EINVAL;
7624
7625 /* only iter constructor should have extra arguments */
7626 if (!(flags & KF_ITER_NEW) && nr_args != 1)
7627 return -EINVAL;
7628
7629 if (flags & KF_ITER_NEXT) {
7630 /* bpf_iter_<type>_next() should return pointer */
7631 t = btf_type_skip_modifiers(btf, func->type, NULL);
7632 if (!t || !btf_type_is_ptr(t))
7633 return -EINVAL;
7634 }
7635
7636 if (flags & KF_ITER_DESTROY) {
7637 /* bpf_iter_<type>_destroy() should return void */
7638 t = btf_type_by_id(btf, func->type);
7639 if (!t || !btf_type_is_void(t))
7640 return -EINVAL;
7641 }
7642
7643 return 0;
7644 }
7645
btf_check_kfunc_protos(struct btf * btf,u32 func_id,u32 func_flags)7646 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7647 {
7648 const struct btf_type *func;
7649 const char *func_name;
7650 int err;
7651
7652 /* any kfunc should be FUNC -> FUNC_PROTO */
7653 func = btf_type_by_id(btf, func_id);
7654 if (!func || !btf_type_is_func(func))
7655 return -EINVAL;
7656
7657 /* sanity check kfunc name */
7658 func_name = btf_name_by_offset(btf, func->name_off);
7659 if (!func_name || !func_name[0])
7660 return -EINVAL;
7661
7662 func = btf_type_by_id(btf, func->type);
7663 if (!func || !btf_type_is_func_proto(func))
7664 return -EINVAL;
7665
7666 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7667 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7668 if (err)
7669 return err;
7670 }
7671
7672 return 0;
7673 }
7674
7675 /* Kernel Function (kfunc) BTF ID set registration API */
7676
btf_populate_kfunc_set(struct btf * btf,enum btf_kfunc_hook hook,const struct btf_kfunc_id_set * kset)7677 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7678 const struct btf_kfunc_id_set *kset)
7679 {
7680 struct btf_kfunc_hook_filter *hook_filter;
7681 struct btf_id_set8 *add_set = kset->set;
7682 bool vmlinux_set = !btf_is_module(btf);
7683 bool add_filter = !!kset->filter;
7684 struct btf_kfunc_set_tab *tab;
7685 struct btf_id_set8 *set;
7686 u32 set_cnt;
7687 int ret;
7688
7689 if (hook >= BTF_KFUNC_HOOK_MAX) {
7690 ret = -EINVAL;
7691 goto end;
7692 }
7693
7694 if (!add_set->cnt)
7695 return 0;
7696
7697 tab = btf->kfunc_set_tab;
7698
7699 if (tab && add_filter) {
7700 u32 i;
7701
7702 hook_filter = &tab->hook_filters[hook];
7703 for (i = 0; i < hook_filter->nr_filters; i++) {
7704 if (hook_filter->filters[i] == kset->filter) {
7705 add_filter = false;
7706 break;
7707 }
7708 }
7709
7710 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
7711 ret = -E2BIG;
7712 goto end;
7713 }
7714 }
7715
7716 if (!tab) {
7717 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7718 if (!tab)
7719 return -ENOMEM;
7720 btf->kfunc_set_tab = tab;
7721 }
7722
7723 set = tab->sets[hook];
7724 /* Warn when register_btf_kfunc_id_set is called twice for the same hook
7725 * for module sets.
7726 */
7727 if (WARN_ON_ONCE(set && !vmlinux_set)) {
7728 ret = -EINVAL;
7729 goto end;
7730 }
7731
7732 /* We don't need to allocate, concatenate, and sort module sets, because
7733 * only one is allowed per hook. Hence, we can directly assign the
7734 * pointer and return.
7735 */
7736 if (!vmlinux_set) {
7737 tab->sets[hook] = add_set;
7738 goto do_add_filter;
7739 }
7740
7741 /* In case of vmlinux sets, there may be more than one set being
7742 * registered per hook. To create a unified set, we allocate a new set
7743 * and concatenate all individual sets being registered. While each set
7744 * is individually sorted, they may become unsorted when concatenated,
7745 * hence re-sorting the final set again is required to make binary
7746 * searching the set using btf_id_set8_contains function work.
7747 */
7748 set_cnt = set ? set->cnt : 0;
7749
7750 if (set_cnt > U32_MAX - add_set->cnt) {
7751 ret = -EOVERFLOW;
7752 goto end;
7753 }
7754
7755 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7756 ret = -E2BIG;
7757 goto end;
7758 }
7759
7760 /* Grow set */
7761 set = krealloc(tab->sets[hook],
7762 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7763 GFP_KERNEL | __GFP_NOWARN);
7764 if (!set) {
7765 ret = -ENOMEM;
7766 goto end;
7767 }
7768
7769 /* For newly allocated set, initialize set->cnt to 0 */
7770 if (!tab->sets[hook])
7771 set->cnt = 0;
7772 tab->sets[hook] = set;
7773
7774 /* Concatenate the two sets */
7775 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7776 set->cnt += add_set->cnt;
7777
7778 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
7779
7780 do_add_filter:
7781 if (add_filter) {
7782 hook_filter = &tab->hook_filters[hook];
7783 hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
7784 }
7785 return 0;
7786 end:
7787 btf_free_kfunc_set_tab(btf);
7788 return ret;
7789 }
7790
__btf_kfunc_id_set_contains(const struct btf * btf,enum btf_kfunc_hook hook,u32 kfunc_btf_id,const struct bpf_prog * prog)7791 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7792 enum btf_kfunc_hook hook,
7793 u32 kfunc_btf_id,
7794 const struct bpf_prog *prog)
7795 {
7796 struct btf_kfunc_hook_filter *hook_filter;
7797 struct btf_id_set8 *set;
7798 u32 *id, i;
7799
7800 if (hook >= BTF_KFUNC_HOOK_MAX)
7801 return NULL;
7802 if (!btf->kfunc_set_tab)
7803 return NULL;
7804 hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
7805 for (i = 0; i < hook_filter->nr_filters; i++) {
7806 if (hook_filter->filters[i](prog, kfunc_btf_id))
7807 return NULL;
7808 }
7809 set = btf->kfunc_set_tab->sets[hook];
7810 if (!set)
7811 return NULL;
7812 id = btf_id_set8_contains(set, kfunc_btf_id);
7813 if (!id)
7814 return NULL;
7815 /* The flags for BTF ID are located next to it */
7816 return id + 1;
7817 }
7818
bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)7819 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7820 {
7821 switch (prog_type) {
7822 case BPF_PROG_TYPE_UNSPEC:
7823 return BTF_KFUNC_HOOK_COMMON;
7824 case BPF_PROG_TYPE_XDP:
7825 return BTF_KFUNC_HOOK_XDP;
7826 case BPF_PROG_TYPE_SCHED_CLS:
7827 return BTF_KFUNC_HOOK_TC;
7828 case BPF_PROG_TYPE_STRUCT_OPS:
7829 return BTF_KFUNC_HOOK_STRUCT_OPS;
7830 case BPF_PROG_TYPE_TRACING:
7831 case BPF_PROG_TYPE_LSM:
7832 return BTF_KFUNC_HOOK_TRACING;
7833 case BPF_PROG_TYPE_SYSCALL:
7834 return BTF_KFUNC_HOOK_SYSCALL;
7835 case BPF_PROG_TYPE_CGROUP_SKB:
7836 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7837 return BTF_KFUNC_HOOK_CGROUP_SKB;
7838 case BPF_PROG_TYPE_SCHED_ACT:
7839 return BTF_KFUNC_HOOK_SCHED_ACT;
7840 case BPF_PROG_TYPE_SK_SKB:
7841 return BTF_KFUNC_HOOK_SK_SKB;
7842 case BPF_PROG_TYPE_SOCKET_FILTER:
7843 return BTF_KFUNC_HOOK_SOCKET_FILTER;
7844 case BPF_PROG_TYPE_LWT_OUT:
7845 case BPF_PROG_TYPE_LWT_IN:
7846 case BPF_PROG_TYPE_LWT_XMIT:
7847 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
7848 return BTF_KFUNC_HOOK_LWT;
7849 case BPF_PROG_TYPE_NETFILTER:
7850 return BTF_KFUNC_HOOK_NETFILTER;
7851 default:
7852 return BTF_KFUNC_HOOK_MAX;
7853 }
7854 }
7855
7856 /* Caution:
7857 * Reference to the module (obtained using btf_try_get_module) corresponding to
7858 * the struct btf *MUST* be held when calling this function from verifier
7859 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7860 * keeping the reference for the duration of the call provides the necessary
7861 * protection for looking up a well-formed btf->kfunc_set_tab.
7862 */
btf_kfunc_id_set_contains(const struct btf * btf,u32 kfunc_btf_id,const struct bpf_prog * prog)7863 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7864 u32 kfunc_btf_id,
7865 const struct bpf_prog *prog)
7866 {
7867 enum bpf_prog_type prog_type = resolve_prog_type(prog);
7868 enum btf_kfunc_hook hook;
7869 u32 *kfunc_flags;
7870
7871 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
7872 if (kfunc_flags)
7873 return kfunc_flags;
7874
7875 hook = bpf_prog_type_to_kfunc_hook(prog_type);
7876 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
7877 }
7878
btf_kfunc_is_modify_return(const struct btf * btf,u32 kfunc_btf_id,const struct bpf_prog * prog)7879 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
7880 const struct bpf_prog *prog)
7881 {
7882 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
7883 }
7884
__register_btf_kfunc_id_set(enum btf_kfunc_hook hook,const struct btf_kfunc_id_set * kset)7885 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7886 const struct btf_kfunc_id_set *kset)
7887 {
7888 struct btf *btf;
7889 int ret, i;
7890
7891 btf = btf_get_module_btf(kset->owner);
7892 if (!btf) {
7893 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7894 pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7895 return -ENOENT;
7896 }
7897 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
7898 pr_warn("missing module BTF, cannot register kfuncs\n");
7899 return 0;
7900 }
7901 if (IS_ERR(btf))
7902 return PTR_ERR(btf);
7903
7904 for (i = 0; i < kset->set->cnt; i++) {
7905 ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id,
7906 kset->set->pairs[i].flags);
7907 if (ret)
7908 goto err_out;
7909 }
7910
7911 ret = btf_populate_kfunc_set(btf, hook, kset);
7912
7913 err_out:
7914 btf_put(btf);
7915 return ret;
7916 }
7917
7918 /* This function must be invoked only from initcalls/module init functions */
register_btf_kfunc_id_set(enum bpf_prog_type prog_type,const struct btf_kfunc_id_set * kset)7919 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7920 const struct btf_kfunc_id_set *kset)
7921 {
7922 enum btf_kfunc_hook hook;
7923
7924 hook = bpf_prog_type_to_kfunc_hook(prog_type);
7925 return __register_btf_kfunc_id_set(hook, kset);
7926 }
7927 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7928
7929 /* This function must be invoked only from initcalls/module init functions */
register_btf_fmodret_id_set(const struct btf_kfunc_id_set * kset)7930 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7931 {
7932 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
7933 }
7934 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7935
btf_find_dtor_kfunc(struct btf * btf,u32 btf_id)7936 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7937 {
7938 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7939 struct btf_id_dtor_kfunc *dtor;
7940
7941 if (!tab)
7942 return -ENOENT;
7943 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7944 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7945 */
7946 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7947 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7948 if (!dtor)
7949 return -ENOENT;
7950 return dtor->kfunc_btf_id;
7951 }
7952
btf_check_dtor_kfuncs(struct btf * btf,const struct btf_id_dtor_kfunc * dtors,u32 cnt)7953 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7954 {
7955 const struct btf_type *dtor_func, *dtor_func_proto, *t;
7956 const struct btf_param *args;
7957 s32 dtor_btf_id;
7958 u32 nr_args, i;
7959
7960 for (i = 0; i < cnt; i++) {
7961 dtor_btf_id = dtors[i].kfunc_btf_id;
7962
7963 dtor_func = btf_type_by_id(btf, dtor_btf_id);
7964 if (!dtor_func || !btf_type_is_func(dtor_func))
7965 return -EINVAL;
7966
7967 dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7968 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7969 return -EINVAL;
7970
7971 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7972 t = btf_type_by_id(btf, dtor_func_proto->type);
7973 if (!t || !btf_type_is_void(t))
7974 return -EINVAL;
7975
7976 nr_args = btf_type_vlen(dtor_func_proto);
7977 if (nr_args != 1)
7978 return -EINVAL;
7979 args = btf_params(dtor_func_proto);
7980 t = btf_type_by_id(btf, args[0].type);
7981 /* Allow any pointer type, as width on targets Linux supports
7982 * will be same for all pointer types (i.e. sizeof(void *))
7983 */
7984 if (!t || !btf_type_is_ptr(t))
7985 return -EINVAL;
7986 }
7987 return 0;
7988 }
7989
7990 /* This function must be invoked only from initcalls/module init functions */
register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc * dtors,u32 add_cnt,struct module * owner)7991 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7992 struct module *owner)
7993 {
7994 struct btf_id_dtor_kfunc_tab *tab;
7995 struct btf *btf;
7996 u32 tab_cnt;
7997 int ret;
7998
7999 btf = btf_get_module_btf(owner);
8000 if (!btf) {
8001 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8002 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
8003 return -ENOENT;
8004 }
8005 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
8006 pr_err("missing module BTF, cannot register dtor kfuncs\n");
8007 return -ENOENT;
8008 }
8009 return 0;
8010 }
8011 if (IS_ERR(btf))
8012 return PTR_ERR(btf);
8013
8014 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8015 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8016 ret = -E2BIG;
8017 goto end;
8018 }
8019
8020 /* Ensure that the prototype of dtor kfuncs being registered is sane */
8021 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8022 if (ret < 0)
8023 goto end;
8024
8025 tab = btf->dtor_kfunc_tab;
8026 /* Only one call allowed for modules */
8027 if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8028 ret = -EINVAL;
8029 goto end;
8030 }
8031
8032 tab_cnt = tab ? tab->cnt : 0;
8033 if (tab_cnt > U32_MAX - add_cnt) {
8034 ret = -EOVERFLOW;
8035 goto end;
8036 }
8037 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8038 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8039 ret = -E2BIG;
8040 goto end;
8041 }
8042
8043 tab = krealloc(btf->dtor_kfunc_tab,
8044 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8045 GFP_KERNEL | __GFP_NOWARN);
8046 if (!tab) {
8047 ret = -ENOMEM;
8048 goto end;
8049 }
8050
8051 if (!btf->dtor_kfunc_tab)
8052 tab->cnt = 0;
8053 btf->dtor_kfunc_tab = tab;
8054
8055 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8056 tab->cnt += add_cnt;
8057
8058 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8059
8060 end:
8061 if (ret)
8062 btf_free_dtor_kfunc_tab(btf);
8063 btf_put(btf);
8064 return ret;
8065 }
8066 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8067
8068 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8069
8070 /* Check local and target types for compatibility. This check is used for
8071 * type-based CO-RE relocations and follow slightly different rules than
8072 * field-based relocations. This function assumes that root types were already
8073 * checked for name match. Beyond that initial root-level name check, names
8074 * are completely ignored. Compatibility rules are as follows:
8075 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8076 * kind should match for local and target types (i.e., STRUCT is not
8077 * compatible with UNION);
8078 * - for ENUMs/ENUM64s, the size is ignored;
8079 * - for INT, size and signedness are ignored;
8080 * - for ARRAY, dimensionality is ignored, element types are checked for
8081 * compatibility recursively;
8082 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
8083 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8084 * - FUNC_PROTOs are compatible if they have compatible signature: same
8085 * number of input args and compatible return and argument types.
8086 * These rules are not set in stone and probably will be adjusted as we get
8087 * more experience with using BPF CO-RE relocations.
8088 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)8089 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8090 const struct btf *targ_btf, __u32 targ_id)
8091 {
8092 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8093 MAX_TYPES_ARE_COMPAT_DEPTH);
8094 }
8095
8096 #define MAX_TYPES_MATCH_DEPTH 2
8097
bpf_core_types_match(const struct btf * local_btf,u32 local_id,const struct btf * targ_btf,u32 targ_id)8098 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8099 const struct btf *targ_btf, u32 targ_id)
8100 {
8101 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8102 MAX_TYPES_MATCH_DEPTH);
8103 }
8104
bpf_core_is_flavor_sep(const char * s)8105 static bool bpf_core_is_flavor_sep(const char *s)
8106 {
8107 /* check X___Y name pattern, where X and Y are not underscores */
8108 return s[0] != '_' && /* X */
8109 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
8110 s[4] != '_'; /* Y */
8111 }
8112
bpf_core_essential_name_len(const char * name)8113 size_t bpf_core_essential_name_len(const char *name)
8114 {
8115 size_t n = strlen(name);
8116 int i;
8117
8118 for (i = n - 5; i >= 0; i--) {
8119 if (bpf_core_is_flavor_sep(name + i))
8120 return i + 1;
8121 }
8122 return n;
8123 }
8124
8125 struct bpf_cand_cache {
8126 const char *name;
8127 u32 name_len;
8128 u16 kind;
8129 u16 cnt;
8130 struct {
8131 const struct btf *btf;
8132 u32 id;
8133 } cands[];
8134 };
8135
bpf_free_cands(struct bpf_cand_cache * cands)8136 static void bpf_free_cands(struct bpf_cand_cache *cands)
8137 {
8138 if (!cands->cnt)
8139 /* empty candidate array was allocated on stack */
8140 return;
8141 kfree(cands);
8142 }
8143
bpf_free_cands_from_cache(struct bpf_cand_cache * cands)8144 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8145 {
8146 kfree(cands->name);
8147 kfree(cands);
8148 }
8149
8150 #define VMLINUX_CAND_CACHE_SIZE 31
8151 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8152
8153 #define MODULE_CAND_CACHE_SIZE 31
8154 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8155
8156 static DEFINE_MUTEX(cand_cache_mutex);
8157
__print_cand_cache(struct bpf_verifier_log * log,struct bpf_cand_cache ** cache,int cache_size)8158 static void __print_cand_cache(struct bpf_verifier_log *log,
8159 struct bpf_cand_cache **cache,
8160 int cache_size)
8161 {
8162 struct bpf_cand_cache *cc;
8163 int i, j;
8164
8165 for (i = 0; i < cache_size; i++) {
8166 cc = cache[i];
8167 if (!cc)
8168 continue;
8169 bpf_log(log, "[%d]%s(", i, cc->name);
8170 for (j = 0; j < cc->cnt; j++) {
8171 bpf_log(log, "%d", cc->cands[j].id);
8172 if (j < cc->cnt - 1)
8173 bpf_log(log, " ");
8174 }
8175 bpf_log(log, "), ");
8176 }
8177 }
8178
print_cand_cache(struct bpf_verifier_log * log)8179 static void print_cand_cache(struct bpf_verifier_log *log)
8180 {
8181 mutex_lock(&cand_cache_mutex);
8182 bpf_log(log, "vmlinux_cand_cache:");
8183 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8184 bpf_log(log, "\nmodule_cand_cache:");
8185 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8186 bpf_log(log, "\n");
8187 mutex_unlock(&cand_cache_mutex);
8188 }
8189
hash_cands(struct bpf_cand_cache * cands)8190 static u32 hash_cands(struct bpf_cand_cache *cands)
8191 {
8192 return jhash(cands->name, cands->name_len, 0);
8193 }
8194
check_cand_cache(struct bpf_cand_cache * cands,struct bpf_cand_cache ** cache,int cache_size)8195 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8196 struct bpf_cand_cache **cache,
8197 int cache_size)
8198 {
8199 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8200
8201 if (cc && cc->name_len == cands->name_len &&
8202 !strncmp(cc->name, cands->name, cands->name_len))
8203 return cc;
8204 return NULL;
8205 }
8206
sizeof_cands(int cnt)8207 static size_t sizeof_cands(int cnt)
8208 {
8209 return offsetof(struct bpf_cand_cache, cands[cnt]);
8210 }
8211
populate_cand_cache(struct bpf_cand_cache * cands,struct bpf_cand_cache ** cache,int cache_size)8212 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8213 struct bpf_cand_cache **cache,
8214 int cache_size)
8215 {
8216 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8217
8218 if (*cc) {
8219 bpf_free_cands_from_cache(*cc);
8220 *cc = NULL;
8221 }
8222 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8223 if (!new_cands) {
8224 bpf_free_cands(cands);
8225 return ERR_PTR(-ENOMEM);
8226 }
8227 /* strdup the name, since it will stay in cache.
8228 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8229 */
8230 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8231 bpf_free_cands(cands);
8232 if (!new_cands->name) {
8233 kfree(new_cands);
8234 return ERR_PTR(-ENOMEM);
8235 }
8236 *cc = new_cands;
8237 return new_cands;
8238 }
8239
8240 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
__purge_cand_cache(struct btf * btf,struct bpf_cand_cache ** cache,int cache_size)8241 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8242 int cache_size)
8243 {
8244 struct bpf_cand_cache *cc;
8245 int i, j;
8246
8247 for (i = 0; i < cache_size; i++) {
8248 cc = cache[i];
8249 if (!cc)
8250 continue;
8251 if (!btf) {
8252 /* when new module is loaded purge all of module_cand_cache,
8253 * since new module might have candidates with the name
8254 * that matches cached cands.
8255 */
8256 bpf_free_cands_from_cache(cc);
8257 cache[i] = NULL;
8258 continue;
8259 }
8260 /* when module is unloaded purge cache entries
8261 * that match module's btf
8262 */
8263 for (j = 0; j < cc->cnt; j++)
8264 if (cc->cands[j].btf == btf) {
8265 bpf_free_cands_from_cache(cc);
8266 cache[i] = NULL;
8267 break;
8268 }
8269 }
8270
8271 }
8272
purge_cand_cache(struct btf * btf)8273 static void purge_cand_cache(struct btf *btf)
8274 {
8275 mutex_lock(&cand_cache_mutex);
8276 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8277 mutex_unlock(&cand_cache_mutex);
8278 }
8279 #endif
8280
8281 static struct bpf_cand_cache *
bpf_core_add_cands(struct bpf_cand_cache * cands,const struct btf * targ_btf,int targ_start_id)8282 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8283 int targ_start_id)
8284 {
8285 struct bpf_cand_cache *new_cands;
8286 const struct btf_type *t;
8287 const char *targ_name;
8288 size_t targ_essent_len;
8289 int n, i;
8290
8291 n = btf_nr_types(targ_btf);
8292 for (i = targ_start_id; i < n; i++) {
8293 t = btf_type_by_id(targ_btf, i);
8294 if (btf_kind(t) != cands->kind)
8295 continue;
8296
8297 targ_name = btf_name_by_offset(targ_btf, t->name_off);
8298 if (!targ_name)
8299 continue;
8300
8301 /* the resched point is before strncmp to make sure that search
8302 * for non-existing name will have a chance to schedule().
8303 */
8304 cond_resched();
8305
8306 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8307 continue;
8308
8309 targ_essent_len = bpf_core_essential_name_len(targ_name);
8310 if (targ_essent_len != cands->name_len)
8311 continue;
8312
8313 /* most of the time there is only one candidate for a given kind+name pair */
8314 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8315 if (!new_cands) {
8316 bpf_free_cands(cands);
8317 return ERR_PTR(-ENOMEM);
8318 }
8319
8320 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8321 bpf_free_cands(cands);
8322 cands = new_cands;
8323 cands->cands[cands->cnt].btf = targ_btf;
8324 cands->cands[cands->cnt].id = i;
8325 cands->cnt++;
8326 }
8327 return cands;
8328 }
8329
8330 static struct bpf_cand_cache *
bpf_core_find_cands(struct bpf_core_ctx * ctx,u32 local_type_id)8331 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8332 {
8333 struct bpf_cand_cache *cands, *cc, local_cand = {};
8334 const struct btf *local_btf = ctx->btf;
8335 const struct btf_type *local_type;
8336 const struct btf *main_btf;
8337 size_t local_essent_len;
8338 struct btf *mod_btf;
8339 const char *name;
8340 int id;
8341
8342 main_btf = bpf_get_btf_vmlinux();
8343 if (IS_ERR(main_btf))
8344 return ERR_CAST(main_btf);
8345 if (!main_btf)
8346 return ERR_PTR(-EINVAL);
8347
8348 local_type = btf_type_by_id(local_btf, local_type_id);
8349 if (!local_type)
8350 return ERR_PTR(-EINVAL);
8351
8352 name = btf_name_by_offset(local_btf, local_type->name_off);
8353 if (str_is_empty(name))
8354 return ERR_PTR(-EINVAL);
8355 local_essent_len = bpf_core_essential_name_len(name);
8356
8357 cands = &local_cand;
8358 cands->name = name;
8359 cands->kind = btf_kind(local_type);
8360 cands->name_len = local_essent_len;
8361
8362 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8363 /* cands is a pointer to stack here */
8364 if (cc) {
8365 if (cc->cnt)
8366 return cc;
8367 goto check_modules;
8368 }
8369
8370 /* Attempt to find target candidates in vmlinux BTF first */
8371 cands = bpf_core_add_cands(cands, main_btf, 1);
8372 if (IS_ERR(cands))
8373 return ERR_CAST(cands);
8374
8375 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8376
8377 /* populate cache even when cands->cnt == 0 */
8378 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8379 if (IS_ERR(cc))
8380 return ERR_CAST(cc);
8381
8382 /* if vmlinux BTF has any candidate, don't go for module BTFs */
8383 if (cc->cnt)
8384 return cc;
8385
8386 check_modules:
8387 /* cands is a pointer to stack here and cands->cnt == 0 */
8388 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8389 if (cc)
8390 /* if cache has it return it even if cc->cnt == 0 */
8391 return cc;
8392
8393 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8394 spin_lock_bh(&btf_idr_lock);
8395 idr_for_each_entry(&btf_idr, mod_btf, id) {
8396 if (!btf_is_module(mod_btf))
8397 continue;
8398 /* linear search could be slow hence unlock/lock
8399 * the IDR to avoiding holding it for too long
8400 */
8401 btf_get(mod_btf);
8402 spin_unlock_bh(&btf_idr_lock);
8403 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8404 btf_put(mod_btf);
8405 if (IS_ERR(cands))
8406 return ERR_CAST(cands);
8407 spin_lock_bh(&btf_idr_lock);
8408 }
8409 spin_unlock_bh(&btf_idr_lock);
8410 /* cands is a pointer to kmalloced memory here if cands->cnt > 0
8411 * or pointer to stack if cands->cnd == 0.
8412 * Copy it into the cache even when cands->cnt == 0 and
8413 * return the result.
8414 */
8415 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8416 }
8417
bpf_core_apply(struct bpf_core_ctx * ctx,const struct bpf_core_relo * relo,int relo_idx,void * insn)8418 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8419 int relo_idx, void *insn)
8420 {
8421 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8422 struct bpf_core_cand_list cands = {};
8423 struct bpf_core_relo_res targ_res;
8424 struct bpf_core_spec *specs;
8425 int err;
8426
8427 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8428 * into arrays of btf_ids of struct fields and array indices.
8429 */
8430 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8431 if (!specs)
8432 return -ENOMEM;
8433
8434 if (need_cands) {
8435 struct bpf_cand_cache *cc;
8436 int i;
8437
8438 mutex_lock(&cand_cache_mutex);
8439 cc = bpf_core_find_cands(ctx, relo->type_id);
8440 if (IS_ERR(cc)) {
8441 bpf_log(ctx->log, "target candidate search failed for %d\n",
8442 relo->type_id);
8443 err = PTR_ERR(cc);
8444 goto out;
8445 }
8446 if (cc->cnt) {
8447 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8448 if (!cands.cands) {
8449 err = -ENOMEM;
8450 goto out;
8451 }
8452 }
8453 for (i = 0; i < cc->cnt; i++) {
8454 bpf_log(ctx->log,
8455 "CO-RE relocating %s %s: found target candidate [%d]\n",
8456 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8457 cands.cands[i].btf = cc->cands[i].btf;
8458 cands.cands[i].id = cc->cands[i].id;
8459 }
8460 cands.len = cc->cnt;
8461 /* cand_cache_mutex needs to span the cache lookup and
8462 * copy of btf pointer into bpf_core_cand_list,
8463 * since module can be unloaded while bpf_core_calc_relo_insn
8464 * is working with module's btf.
8465 */
8466 }
8467
8468 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8469 &targ_res);
8470 if (err)
8471 goto out;
8472
8473 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8474 &targ_res);
8475
8476 out:
8477 kfree(specs);
8478 if (need_cands) {
8479 kfree(cands.cands);
8480 mutex_unlock(&cand_cache_mutex);
8481 if (ctx->log->level & BPF_LOG_LEVEL2)
8482 print_cand_cache(ctx->log);
8483 }
8484 return err;
8485 }
8486
btf_nested_type_is_trusted(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,const char * field_name,u32 btf_id,const char * suffix)8487 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8488 const struct bpf_reg_state *reg,
8489 const char *field_name, u32 btf_id, const char *suffix)
8490 {
8491 struct btf *btf = reg->btf;
8492 const struct btf_type *walk_type, *safe_type;
8493 const char *tname;
8494 char safe_tname[64];
8495 long ret, safe_id;
8496 const struct btf_member *member;
8497 u32 i;
8498
8499 walk_type = btf_type_by_id(btf, reg->btf_id);
8500 if (!walk_type)
8501 return false;
8502
8503 tname = btf_name_by_offset(btf, walk_type->name_off);
8504
8505 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8506 if (ret >= sizeof(safe_tname))
8507 return false;
8508
8509 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8510 if (safe_id < 0)
8511 return false;
8512
8513 safe_type = btf_type_by_id(btf, safe_id);
8514 if (!safe_type)
8515 return false;
8516
8517 for_each_member(i, safe_type, member) {
8518 const char *m_name = __btf_name_by_offset(btf, member->name_off);
8519 const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8520 u32 id;
8521
8522 if (!btf_type_is_ptr(mtype))
8523 continue;
8524
8525 btf_type_skip_modifiers(btf, mtype->type, &id);
8526 /* If we match on both type and name, the field is considered trusted. */
8527 if (btf_id == id && !strcmp(field_name, m_name))
8528 return true;
8529 }
8530
8531 return false;
8532 }
8533
btf_type_ids_nocast_alias(struct bpf_verifier_log * log,const struct btf * reg_btf,u32 reg_id,const struct btf * arg_btf,u32 arg_id)8534 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8535 const struct btf *reg_btf, u32 reg_id,
8536 const struct btf *arg_btf, u32 arg_id)
8537 {
8538 const char *reg_name, *arg_name, *search_needle;
8539 const struct btf_type *reg_type, *arg_type;
8540 int reg_len, arg_len, cmp_len;
8541 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8542
8543 reg_type = btf_type_by_id(reg_btf, reg_id);
8544 if (!reg_type)
8545 return false;
8546
8547 arg_type = btf_type_by_id(arg_btf, arg_id);
8548 if (!arg_type)
8549 return false;
8550
8551 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8552 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8553
8554 reg_len = strlen(reg_name);
8555 arg_len = strlen(arg_name);
8556
8557 /* Exactly one of the two type names may be suffixed with ___init, so
8558 * if the strings are the same size, they can't possibly be no-cast
8559 * aliases of one another. If you have two of the same type names, e.g.
8560 * they're both nf_conn___init, it would be improper to return true
8561 * because they are _not_ no-cast aliases, they are the same type.
8562 */
8563 if (reg_len == arg_len)
8564 return false;
8565
8566 /* Either of the two names must be the other name, suffixed with ___init. */
8567 if ((reg_len != arg_len + pattern_len) &&
8568 (arg_len != reg_len + pattern_len))
8569 return false;
8570
8571 if (reg_len < arg_len) {
8572 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8573 cmp_len = reg_len;
8574 } else {
8575 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8576 cmp_len = arg_len;
8577 }
8578
8579 if (!search_needle)
8580 return false;
8581
8582 /* ___init suffix must come at the end of the name */
8583 if (*(search_needle + pattern_len) != '\0')
8584 return false;
8585
8586 return !strncmp(reg_name, arg_name, cmp_len);
8587 }
8588