1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25
26 #include "../../lib/kstrtox.h"
27
28 /* If kernel subsystem is allowing eBPF programs to call this function,
29 * inside its own verifier_ops->get_func_proto() callback it should return
30 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
31 *
32 * Different map implementations will rely on rcu in map methods
33 * lookup/update/delete, therefore eBPF programs must run under rcu lock
34 * if program is allowed to access maps, so check rcu_read_lock_held() or
35 * rcu_read_lock_trace_held() in all three functions.
36 */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)37 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
38 {
39 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
40 !rcu_read_lock_bh_held());
41 return (unsigned long) map->ops->map_lookup_elem(map, key);
42 }
43
44 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
45 .func = bpf_map_lookup_elem,
46 .gpl_only = false,
47 .pkt_access = true,
48 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
49 .arg1_type = ARG_CONST_MAP_PTR,
50 .arg2_type = ARG_PTR_TO_MAP_KEY,
51 };
52
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)53 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
54 void *, value, u64, flags)
55 {
56 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
57 !rcu_read_lock_bh_held());
58 return map->ops->map_update_elem(map, key, value, flags);
59 }
60
61 const struct bpf_func_proto bpf_map_update_elem_proto = {
62 .func = bpf_map_update_elem,
63 .gpl_only = false,
64 .pkt_access = true,
65 .ret_type = RET_INTEGER,
66 .arg1_type = ARG_CONST_MAP_PTR,
67 .arg2_type = ARG_PTR_TO_MAP_KEY,
68 .arg3_type = ARG_PTR_TO_MAP_VALUE,
69 .arg4_type = ARG_ANYTHING,
70 };
71
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)72 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
73 {
74 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
75 !rcu_read_lock_bh_held());
76 return map->ops->map_delete_elem(map, key);
77 }
78
79 const struct bpf_func_proto bpf_map_delete_elem_proto = {
80 .func = bpf_map_delete_elem,
81 .gpl_only = false,
82 .pkt_access = true,
83 .ret_type = RET_INTEGER,
84 .arg1_type = ARG_CONST_MAP_PTR,
85 .arg2_type = ARG_PTR_TO_MAP_KEY,
86 };
87
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)88 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
89 {
90 return map->ops->map_push_elem(map, value, flags);
91 }
92
93 const struct bpf_func_proto bpf_map_push_elem_proto = {
94 .func = bpf_map_push_elem,
95 .gpl_only = false,
96 .pkt_access = true,
97 .ret_type = RET_INTEGER,
98 .arg1_type = ARG_CONST_MAP_PTR,
99 .arg2_type = ARG_PTR_TO_MAP_VALUE,
100 .arg3_type = ARG_ANYTHING,
101 };
102
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)103 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
104 {
105 return map->ops->map_pop_elem(map, value);
106 }
107
108 const struct bpf_func_proto bpf_map_pop_elem_proto = {
109 .func = bpf_map_pop_elem,
110 .gpl_only = false,
111 .ret_type = RET_INTEGER,
112 .arg1_type = ARG_CONST_MAP_PTR,
113 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
114 };
115
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)116 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
117 {
118 return map->ops->map_peek_elem(map, value);
119 }
120
121 const struct bpf_func_proto bpf_map_peek_elem_proto = {
122 .func = bpf_map_peek_elem,
123 .gpl_only = false,
124 .ret_type = RET_INTEGER,
125 .arg1_type = ARG_CONST_MAP_PTR,
126 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
127 };
128
BPF_CALL_3(bpf_map_lookup_percpu_elem,struct bpf_map *,map,void *,key,u32,cpu)129 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
130 {
131 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
132 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
133 }
134
135 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
136 .func = bpf_map_lookup_percpu_elem,
137 .gpl_only = false,
138 .pkt_access = true,
139 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
140 .arg1_type = ARG_CONST_MAP_PTR,
141 .arg2_type = ARG_PTR_TO_MAP_KEY,
142 .arg3_type = ARG_ANYTHING,
143 };
144
145 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
146 .func = bpf_user_rnd_u32,
147 .gpl_only = false,
148 .ret_type = RET_INTEGER,
149 };
150
BPF_CALL_0(bpf_get_smp_processor_id)151 BPF_CALL_0(bpf_get_smp_processor_id)
152 {
153 return smp_processor_id();
154 }
155
156 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
157 .func = bpf_get_smp_processor_id,
158 .gpl_only = false,
159 .ret_type = RET_INTEGER,
160 };
161
BPF_CALL_0(bpf_get_numa_node_id)162 BPF_CALL_0(bpf_get_numa_node_id)
163 {
164 return numa_node_id();
165 }
166
167 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
168 .func = bpf_get_numa_node_id,
169 .gpl_only = false,
170 .ret_type = RET_INTEGER,
171 };
172
BPF_CALL_0(bpf_ktime_get_ns)173 BPF_CALL_0(bpf_ktime_get_ns)
174 {
175 /* NMI safe access to clock monotonic */
176 return ktime_get_mono_fast_ns();
177 }
178
179 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
180 .func = bpf_ktime_get_ns,
181 .gpl_only = false,
182 .ret_type = RET_INTEGER,
183 };
184
BPF_CALL_0(bpf_ktime_get_boot_ns)185 BPF_CALL_0(bpf_ktime_get_boot_ns)
186 {
187 /* NMI safe access to clock boottime */
188 return ktime_get_boot_fast_ns();
189 }
190
191 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
192 .func = bpf_ktime_get_boot_ns,
193 .gpl_only = false,
194 .ret_type = RET_INTEGER,
195 };
196
BPF_CALL_0(bpf_ktime_get_coarse_ns)197 BPF_CALL_0(bpf_ktime_get_coarse_ns)
198 {
199 return ktime_get_coarse_ns();
200 }
201
202 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
203 .func = bpf_ktime_get_coarse_ns,
204 .gpl_only = false,
205 .ret_type = RET_INTEGER,
206 };
207
BPF_CALL_0(bpf_ktime_get_tai_ns)208 BPF_CALL_0(bpf_ktime_get_tai_ns)
209 {
210 /* NMI safe access to clock tai */
211 return ktime_get_tai_fast_ns();
212 }
213
214 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
215 .func = bpf_ktime_get_tai_ns,
216 .gpl_only = false,
217 .ret_type = RET_INTEGER,
218 };
219
BPF_CALL_0(bpf_get_current_pid_tgid)220 BPF_CALL_0(bpf_get_current_pid_tgid)
221 {
222 struct task_struct *task = current;
223
224 if (unlikely(!task))
225 return -EINVAL;
226
227 return (u64) task->tgid << 32 | task->pid;
228 }
229
230 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
231 .func = bpf_get_current_pid_tgid,
232 .gpl_only = false,
233 .ret_type = RET_INTEGER,
234 };
235
BPF_CALL_0(bpf_get_current_uid_gid)236 BPF_CALL_0(bpf_get_current_uid_gid)
237 {
238 struct task_struct *task = current;
239 kuid_t uid;
240 kgid_t gid;
241
242 if (unlikely(!task))
243 return -EINVAL;
244
245 current_uid_gid(&uid, &gid);
246 return (u64) from_kgid(&init_user_ns, gid) << 32 |
247 from_kuid(&init_user_ns, uid);
248 }
249
250 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
251 .func = bpf_get_current_uid_gid,
252 .gpl_only = false,
253 .ret_type = RET_INTEGER,
254 };
255
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)256 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
257 {
258 struct task_struct *task = current;
259
260 if (unlikely(!task))
261 goto err_clear;
262
263 /* Verifier guarantees that size > 0 */
264 strscpy_pad(buf, task->comm, size);
265 return 0;
266 err_clear:
267 memset(buf, 0, size);
268 return -EINVAL;
269 }
270
271 const struct bpf_func_proto bpf_get_current_comm_proto = {
272 .func = bpf_get_current_comm,
273 .gpl_only = false,
274 .ret_type = RET_INTEGER,
275 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
276 .arg2_type = ARG_CONST_SIZE,
277 };
278
279 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
280
__bpf_spin_lock(struct bpf_spin_lock * lock)281 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
282 {
283 arch_spinlock_t *l = (void *)lock;
284 union {
285 __u32 val;
286 arch_spinlock_t lock;
287 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
288
289 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
290 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
291 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
292 preempt_disable();
293 arch_spin_lock(l);
294 }
295
__bpf_spin_unlock(struct bpf_spin_lock * lock)296 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
297 {
298 arch_spinlock_t *l = (void *)lock;
299
300 arch_spin_unlock(l);
301 preempt_enable();
302 }
303
304 #else
305
__bpf_spin_lock(struct bpf_spin_lock * lock)306 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
307 {
308 atomic_t *l = (void *)lock;
309
310 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
311 do {
312 atomic_cond_read_relaxed(l, !VAL);
313 } while (atomic_xchg(l, 1));
314 }
315
__bpf_spin_unlock(struct bpf_spin_lock * lock)316 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
317 {
318 atomic_t *l = (void *)lock;
319
320 atomic_set_release(l, 0);
321 }
322
323 #endif
324
325 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
326
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)327 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
328 {
329 unsigned long flags;
330
331 local_irq_save(flags);
332 __bpf_spin_lock(lock);
333 __this_cpu_write(irqsave_flags, flags);
334 }
335
NOTRACE_BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)336 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
337 {
338 __bpf_spin_lock_irqsave(lock);
339 return 0;
340 }
341
342 const struct bpf_func_proto bpf_spin_lock_proto = {
343 .func = bpf_spin_lock,
344 .gpl_only = false,
345 .ret_type = RET_VOID,
346 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
347 .arg1_btf_id = BPF_PTR_POISON,
348 };
349
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)350 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
351 {
352 unsigned long flags;
353
354 flags = __this_cpu_read(irqsave_flags);
355 __bpf_spin_unlock(lock);
356 local_irq_restore(flags);
357 }
358
NOTRACE_BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)359 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
360 {
361 __bpf_spin_unlock_irqrestore(lock);
362 return 0;
363 }
364
365 const struct bpf_func_proto bpf_spin_unlock_proto = {
366 .func = bpf_spin_unlock,
367 .gpl_only = false,
368 .ret_type = RET_VOID,
369 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
370 .arg1_btf_id = BPF_PTR_POISON,
371 };
372
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)373 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
374 bool lock_src)
375 {
376 struct bpf_spin_lock *lock;
377
378 if (lock_src)
379 lock = src + map->record->spin_lock_off;
380 else
381 lock = dst + map->record->spin_lock_off;
382 preempt_disable();
383 __bpf_spin_lock_irqsave(lock);
384 copy_map_value(map, dst, src);
385 __bpf_spin_unlock_irqrestore(lock);
386 preempt_enable();
387 }
388
BPF_CALL_0(bpf_jiffies64)389 BPF_CALL_0(bpf_jiffies64)
390 {
391 return get_jiffies_64();
392 }
393
394 const struct bpf_func_proto bpf_jiffies64_proto = {
395 .func = bpf_jiffies64,
396 .gpl_only = false,
397 .ret_type = RET_INTEGER,
398 };
399
400 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)401 BPF_CALL_0(bpf_get_current_cgroup_id)
402 {
403 struct cgroup *cgrp;
404 u64 cgrp_id;
405
406 rcu_read_lock();
407 cgrp = task_dfl_cgroup(current);
408 cgrp_id = cgroup_id(cgrp);
409 rcu_read_unlock();
410
411 return cgrp_id;
412 }
413
414 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
415 .func = bpf_get_current_cgroup_id,
416 .gpl_only = false,
417 .ret_type = RET_INTEGER,
418 };
419
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)420 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
421 {
422 struct cgroup *cgrp;
423 struct cgroup *ancestor;
424 u64 cgrp_id;
425
426 rcu_read_lock();
427 cgrp = task_dfl_cgroup(current);
428 ancestor = cgroup_ancestor(cgrp, ancestor_level);
429 cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
430 rcu_read_unlock();
431
432 return cgrp_id;
433 }
434
435 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
436 .func = bpf_get_current_ancestor_cgroup_id,
437 .gpl_only = false,
438 .ret_type = RET_INTEGER,
439 .arg1_type = ARG_ANYTHING,
440 };
441 #endif /* CONFIG_CGROUPS */
442
443 #define BPF_STRTOX_BASE_MASK 0x1F
444
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)445 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
446 unsigned long long *res, bool *is_negative)
447 {
448 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
449 const char *cur_buf = buf;
450 size_t cur_len = buf_len;
451 unsigned int consumed;
452 size_t val_len;
453 char str[64];
454
455 if (!buf || !buf_len || !res || !is_negative)
456 return -EINVAL;
457
458 if (base != 0 && base != 8 && base != 10 && base != 16)
459 return -EINVAL;
460
461 if (flags & ~BPF_STRTOX_BASE_MASK)
462 return -EINVAL;
463
464 while (cur_buf < buf + buf_len && isspace(*cur_buf))
465 ++cur_buf;
466
467 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
468 if (*is_negative)
469 ++cur_buf;
470
471 consumed = cur_buf - buf;
472 cur_len -= consumed;
473 if (!cur_len)
474 return -EINVAL;
475
476 cur_len = min(cur_len, sizeof(str) - 1);
477 memcpy(str, cur_buf, cur_len);
478 str[cur_len] = '\0';
479 cur_buf = str;
480
481 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
482 val_len = _parse_integer(cur_buf, base, res);
483
484 if (val_len & KSTRTOX_OVERFLOW)
485 return -ERANGE;
486
487 if (val_len == 0)
488 return -EINVAL;
489
490 cur_buf += val_len;
491 consumed += cur_buf - str;
492
493 return consumed;
494 }
495
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)496 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
497 long long *res)
498 {
499 unsigned long long _res;
500 bool is_negative;
501 int err;
502
503 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
504 if (err < 0)
505 return err;
506 if (is_negative) {
507 if ((long long)-_res > 0)
508 return -ERANGE;
509 *res = -_res;
510 } else {
511 if ((long long)_res < 0)
512 return -ERANGE;
513 *res = _res;
514 }
515 return err;
516 }
517
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,long *,res)518 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
519 long *, res)
520 {
521 long long _res;
522 int err;
523
524 err = __bpf_strtoll(buf, buf_len, flags, &_res);
525 if (err < 0)
526 return err;
527 if (_res != (long)_res)
528 return -ERANGE;
529 *res = _res;
530 return err;
531 }
532
533 const struct bpf_func_proto bpf_strtol_proto = {
534 .func = bpf_strtol,
535 .gpl_only = false,
536 .ret_type = RET_INTEGER,
537 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
538 .arg2_type = ARG_CONST_SIZE,
539 .arg3_type = ARG_ANYTHING,
540 .arg4_type = ARG_PTR_TO_LONG,
541 };
542
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,unsigned long *,res)543 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
544 unsigned long *, res)
545 {
546 unsigned long long _res;
547 bool is_negative;
548 int err;
549
550 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
551 if (err < 0)
552 return err;
553 if (is_negative)
554 return -EINVAL;
555 if (_res != (unsigned long)_res)
556 return -ERANGE;
557 *res = _res;
558 return err;
559 }
560
561 const struct bpf_func_proto bpf_strtoul_proto = {
562 .func = bpf_strtoul,
563 .gpl_only = false,
564 .ret_type = RET_INTEGER,
565 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
566 .arg2_type = ARG_CONST_SIZE,
567 .arg3_type = ARG_ANYTHING,
568 .arg4_type = ARG_PTR_TO_LONG,
569 };
570
BPF_CALL_3(bpf_strncmp,const char *,s1,u32,s1_sz,const char *,s2)571 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
572 {
573 return strncmp(s1, s2, s1_sz);
574 }
575
576 static const struct bpf_func_proto bpf_strncmp_proto = {
577 .func = bpf_strncmp,
578 .gpl_only = false,
579 .ret_type = RET_INTEGER,
580 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
581 .arg2_type = ARG_CONST_SIZE,
582 .arg3_type = ARG_PTR_TO_CONST_STR,
583 };
584
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)585 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
586 struct bpf_pidns_info *, nsdata, u32, size)
587 {
588 struct task_struct *task = current;
589 struct pid_namespace *pidns;
590 int err = -EINVAL;
591
592 if (unlikely(size != sizeof(struct bpf_pidns_info)))
593 goto clear;
594
595 if (unlikely((u64)(dev_t)dev != dev))
596 goto clear;
597
598 if (unlikely(!task))
599 goto clear;
600
601 pidns = task_active_pid_ns(task);
602 if (unlikely(!pidns)) {
603 err = -ENOENT;
604 goto clear;
605 }
606
607 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
608 goto clear;
609
610 nsdata->pid = task_pid_nr_ns(task, pidns);
611 nsdata->tgid = task_tgid_nr_ns(task, pidns);
612 return 0;
613 clear:
614 memset((void *)nsdata, 0, (size_t) size);
615 return err;
616 }
617
618 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
619 .func = bpf_get_ns_current_pid_tgid,
620 .gpl_only = false,
621 .ret_type = RET_INTEGER,
622 .arg1_type = ARG_ANYTHING,
623 .arg2_type = ARG_ANYTHING,
624 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
625 .arg4_type = ARG_CONST_SIZE,
626 };
627
628 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
629 .func = bpf_get_raw_cpu_id,
630 .gpl_only = false,
631 .ret_type = RET_INTEGER,
632 };
633
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)634 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
635 u64, flags, void *, data, u64, size)
636 {
637 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
638 return -EINVAL;
639
640 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
641 }
642
643 const struct bpf_func_proto bpf_event_output_data_proto = {
644 .func = bpf_event_output_data,
645 .gpl_only = true,
646 .ret_type = RET_INTEGER,
647 .arg1_type = ARG_PTR_TO_CTX,
648 .arg2_type = ARG_CONST_MAP_PTR,
649 .arg3_type = ARG_ANYTHING,
650 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
651 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
652 };
653
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)654 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
655 const void __user *, user_ptr)
656 {
657 int ret = copy_from_user(dst, user_ptr, size);
658
659 if (unlikely(ret)) {
660 memset(dst, 0, size);
661 ret = -EFAULT;
662 }
663
664 return ret;
665 }
666
667 const struct bpf_func_proto bpf_copy_from_user_proto = {
668 .func = bpf_copy_from_user,
669 .gpl_only = false,
670 .might_sleep = true,
671 .ret_type = RET_INTEGER,
672 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
673 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
674 .arg3_type = ARG_ANYTHING,
675 };
676
BPF_CALL_5(bpf_copy_from_user_task,void *,dst,u32,size,const void __user *,user_ptr,struct task_struct *,tsk,u64,flags)677 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
678 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
679 {
680 int ret;
681
682 /* flags is not used yet */
683 if (unlikely(flags))
684 return -EINVAL;
685
686 if (unlikely(!size))
687 return 0;
688
689 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
690 if (ret == size)
691 return 0;
692
693 memset(dst, 0, size);
694 /* Return -EFAULT for partial read */
695 return ret < 0 ? ret : -EFAULT;
696 }
697
698 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
699 .func = bpf_copy_from_user_task,
700 .gpl_only = true,
701 .might_sleep = true,
702 .ret_type = RET_INTEGER,
703 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
704 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
705 .arg3_type = ARG_ANYTHING,
706 .arg4_type = ARG_PTR_TO_BTF_ID,
707 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
708 .arg5_type = ARG_ANYTHING
709 };
710
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)711 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
712 {
713 if (cpu >= nr_cpu_ids)
714 return (unsigned long)NULL;
715
716 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
717 }
718
719 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
720 .func = bpf_per_cpu_ptr,
721 .gpl_only = false,
722 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
723 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
724 .arg2_type = ARG_ANYTHING,
725 };
726
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)727 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
728 {
729 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
730 }
731
732 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
733 .func = bpf_this_cpu_ptr,
734 .gpl_only = false,
735 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
736 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
737 };
738
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)739 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
740 size_t bufsz)
741 {
742 void __user *user_ptr = (__force void __user *)unsafe_ptr;
743
744 buf[0] = 0;
745
746 switch (fmt_ptype) {
747 case 's':
748 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
749 if ((unsigned long)unsafe_ptr < TASK_SIZE)
750 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
751 fallthrough;
752 #endif
753 case 'k':
754 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
755 case 'u':
756 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
757 }
758
759 return -EINVAL;
760 }
761
762 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
763 * arguments representation.
764 */
765 #define MAX_BPRINTF_BIN_ARGS 512
766
767 /* Support executing three nested bprintf helper calls on a given CPU */
768 #define MAX_BPRINTF_NEST_LEVEL 3
769 struct bpf_bprintf_buffers {
770 char bin_args[MAX_BPRINTF_BIN_ARGS];
771 char buf[MAX_BPRINTF_BUF];
772 };
773
774 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
775 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
776
try_get_buffers(struct bpf_bprintf_buffers ** bufs)777 static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
778 {
779 int nest_level;
780
781 preempt_disable();
782 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
783 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
784 this_cpu_dec(bpf_bprintf_nest_level);
785 preempt_enable();
786 return -EBUSY;
787 }
788 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
789
790 return 0;
791 }
792
bpf_bprintf_cleanup(struct bpf_bprintf_data * data)793 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
794 {
795 if (!data->bin_args && !data->buf)
796 return;
797 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
798 return;
799 this_cpu_dec(bpf_bprintf_nest_level);
800 preempt_enable();
801 }
802
803 /*
804 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
805 *
806 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
807 *
808 * This can be used in two ways:
809 * - Format string verification only: when data->get_bin_args is false
810 * - Arguments preparation: in addition to the above verification, it writes in
811 * data->bin_args a binary representation of arguments usable by bstr_printf
812 * where pointers from BPF have been sanitized.
813 *
814 * In argument preparation mode, if 0 is returned, safe temporary buffers are
815 * allocated and bpf_bprintf_cleanup should be called to free them after use.
816 */
bpf_bprintf_prepare(char * fmt,u32 fmt_size,const u64 * raw_args,u32 num_args,struct bpf_bprintf_data * data)817 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
818 u32 num_args, struct bpf_bprintf_data *data)
819 {
820 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
821 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
822 struct bpf_bprintf_buffers *buffers = NULL;
823 size_t sizeof_cur_arg, sizeof_cur_ip;
824 int err, i, num_spec = 0;
825 u64 cur_arg;
826 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
827
828 fmt_end = strnchr(fmt, fmt_size, 0);
829 if (!fmt_end)
830 return -EINVAL;
831 fmt_size = fmt_end - fmt;
832
833 if (get_buffers && try_get_buffers(&buffers))
834 return -EBUSY;
835
836 if (data->get_bin_args) {
837 if (num_args)
838 tmp_buf = buffers->bin_args;
839 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
840 data->bin_args = (u32 *)tmp_buf;
841 }
842
843 if (data->get_buf)
844 data->buf = buffers->buf;
845
846 for (i = 0; i < fmt_size; i++) {
847 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
848 err = -EINVAL;
849 goto out;
850 }
851
852 if (fmt[i] != '%')
853 continue;
854
855 if (fmt[i + 1] == '%') {
856 i++;
857 continue;
858 }
859
860 if (num_spec >= num_args) {
861 err = -EINVAL;
862 goto out;
863 }
864
865 /* The string is zero-terminated so if fmt[i] != 0, we can
866 * always access fmt[i + 1], in the worst case it will be a 0
867 */
868 i++;
869
870 /* skip optional "[0 +-][num]" width formatting field */
871 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
872 fmt[i] == ' ')
873 i++;
874 if (fmt[i] >= '1' && fmt[i] <= '9') {
875 i++;
876 while (fmt[i] >= '0' && fmt[i] <= '9')
877 i++;
878 }
879
880 if (fmt[i] == 'p') {
881 sizeof_cur_arg = sizeof(long);
882
883 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
884 fmt[i + 2] == 's') {
885 fmt_ptype = fmt[i + 1];
886 i += 2;
887 goto fmt_str;
888 }
889
890 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
891 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
892 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
893 fmt[i + 1] == 'S') {
894 /* just kernel pointers */
895 if (tmp_buf)
896 cur_arg = raw_args[num_spec];
897 i++;
898 goto nocopy_fmt;
899 }
900
901 if (fmt[i + 1] == 'B') {
902 if (tmp_buf) {
903 err = snprintf(tmp_buf,
904 (tmp_buf_end - tmp_buf),
905 "%pB",
906 (void *)(long)raw_args[num_spec]);
907 tmp_buf += (err + 1);
908 }
909
910 i++;
911 num_spec++;
912 continue;
913 }
914
915 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
916 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
917 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
918 err = -EINVAL;
919 goto out;
920 }
921
922 i += 2;
923 if (!tmp_buf)
924 goto nocopy_fmt;
925
926 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
927 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
928 err = -ENOSPC;
929 goto out;
930 }
931
932 unsafe_ptr = (char *)(long)raw_args[num_spec];
933 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
934 sizeof_cur_ip);
935 if (err < 0)
936 memset(cur_ip, 0, sizeof_cur_ip);
937
938 /* hack: bstr_printf expects IP addresses to be
939 * pre-formatted as strings, ironically, the easiest way
940 * to do that is to call snprintf.
941 */
942 ip_spec[2] = fmt[i - 1];
943 ip_spec[3] = fmt[i];
944 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
945 ip_spec, &cur_ip);
946
947 tmp_buf += err + 1;
948 num_spec++;
949
950 continue;
951 } else if (fmt[i] == 's') {
952 fmt_ptype = fmt[i];
953 fmt_str:
954 if (fmt[i + 1] != 0 &&
955 !isspace(fmt[i + 1]) &&
956 !ispunct(fmt[i + 1])) {
957 err = -EINVAL;
958 goto out;
959 }
960
961 if (!tmp_buf)
962 goto nocopy_fmt;
963
964 if (tmp_buf_end == tmp_buf) {
965 err = -ENOSPC;
966 goto out;
967 }
968
969 unsafe_ptr = (char *)(long)raw_args[num_spec];
970 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
971 fmt_ptype,
972 tmp_buf_end - tmp_buf);
973 if (err < 0) {
974 tmp_buf[0] = '\0';
975 err = 1;
976 }
977
978 tmp_buf += err;
979 num_spec++;
980
981 continue;
982 } else if (fmt[i] == 'c') {
983 if (!tmp_buf)
984 goto nocopy_fmt;
985
986 if (tmp_buf_end == tmp_buf) {
987 err = -ENOSPC;
988 goto out;
989 }
990
991 *tmp_buf = raw_args[num_spec];
992 tmp_buf++;
993 num_spec++;
994
995 continue;
996 }
997
998 sizeof_cur_arg = sizeof(int);
999
1000 if (fmt[i] == 'l') {
1001 sizeof_cur_arg = sizeof(long);
1002 i++;
1003 }
1004 if (fmt[i] == 'l') {
1005 sizeof_cur_arg = sizeof(long long);
1006 i++;
1007 }
1008
1009 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1010 fmt[i] != 'x' && fmt[i] != 'X') {
1011 err = -EINVAL;
1012 goto out;
1013 }
1014
1015 if (tmp_buf)
1016 cur_arg = raw_args[num_spec];
1017 nocopy_fmt:
1018 if (tmp_buf) {
1019 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1020 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1021 err = -ENOSPC;
1022 goto out;
1023 }
1024
1025 if (sizeof_cur_arg == 8) {
1026 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1027 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1028 } else {
1029 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1030 }
1031 tmp_buf += sizeof_cur_arg;
1032 }
1033 num_spec++;
1034 }
1035
1036 err = 0;
1037 out:
1038 if (err)
1039 bpf_bprintf_cleanup(data);
1040 return err;
1041 }
1042
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,args,u32,data_len)1043 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1044 const void *, args, u32, data_len)
1045 {
1046 struct bpf_bprintf_data data = {
1047 .get_bin_args = true,
1048 };
1049 int err, num_args;
1050
1051 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1052 (data_len && !args))
1053 return -EINVAL;
1054 num_args = data_len / 8;
1055
1056 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1057 * can safely give an unbounded size.
1058 */
1059 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1060 if (err < 0)
1061 return err;
1062
1063 err = bstr_printf(str, str_size, fmt, data.bin_args);
1064
1065 bpf_bprintf_cleanup(&data);
1066
1067 return err + 1;
1068 }
1069
1070 const struct bpf_func_proto bpf_snprintf_proto = {
1071 .func = bpf_snprintf,
1072 .gpl_only = true,
1073 .ret_type = RET_INTEGER,
1074 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1075 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1076 .arg3_type = ARG_PTR_TO_CONST_STR,
1077 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1078 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1079 };
1080
1081 struct bpf_async_cb {
1082 struct bpf_map *map;
1083 struct bpf_prog *prog;
1084 void __rcu *callback_fn;
1085 void *value;
1086 struct rcu_head rcu;
1087 u64 flags;
1088 };
1089
1090 /* BPF map elements can contain 'struct bpf_timer'.
1091 * Such map owns all of its BPF timers.
1092 * 'struct bpf_timer' is allocated as part of map element allocation
1093 * and it's zero initialized.
1094 * That space is used to keep 'struct bpf_async_kern'.
1095 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1096 * remembers 'struct bpf_map *' pointer it's part of.
1097 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1098 * bpf_timer_start() arms the timer.
1099 * If user space reference to a map goes to zero at this point
1100 * ops->map_release_uref callback is responsible for cancelling the timers,
1101 * freeing their memory, and decrementing prog's refcnts.
1102 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1103 * Inner maps can contain bpf timers as well. ops->map_release_uref is
1104 * freeing the timers when inner map is replaced or deleted by user space.
1105 */
1106 struct bpf_hrtimer {
1107 struct bpf_async_cb cb;
1108 struct hrtimer timer;
1109 atomic_t cancelling;
1110 };
1111
1112 /* the actual struct hidden inside uapi struct bpf_timer */
1113 struct bpf_async_kern {
1114 union {
1115 struct bpf_async_cb *cb;
1116 struct bpf_hrtimer *timer;
1117 };
1118 /* bpf_spin_lock is used here instead of spinlock_t to make
1119 * sure that it always fits into space reserved by struct bpf_timer
1120 * regardless of LOCKDEP and spinlock debug flags.
1121 */
1122 struct bpf_spin_lock lock;
1123 } __attribute__((aligned(8)));
1124
1125 enum bpf_async_type {
1126 BPF_ASYNC_TYPE_TIMER = 0,
1127 };
1128
1129 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1130
bpf_timer_cb(struct hrtimer * hrtimer)1131 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1132 {
1133 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1134 struct bpf_map *map = t->cb.map;
1135 void *value = t->cb.value;
1136 bpf_callback_t callback_fn;
1137 void *key;
1138 u32 idx;
1139
1140 BTF_TYPE_EMIT(struct bpf_timer);
1141 callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1142 if (!callback_fn)
1143 goto out;
1144
1145 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1146 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1147 * Remember the timer this callback is servicing to prevent
1148 * deadlock if callback_fn() calls bpf_timer_cancel() or
1149 * bpf_map_delete_elem() on the same timer.
1150 */
1151 this_cpu_write(hrtimer_running, t);
1152 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1153 struct bpf_array *array = container_of(map, struct bpf_array, map);
1154
1155 /* compute the key */
1156 idx = ((char *)value - array->value) / array->elem_size;
1157 key = &idx;
1158 } else { /* hash or lru */
1159 key = value - round_up(map->key_size, 8);
1160 }
1161
1162 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1163 /* The verifier checked that return value is zero. */
1164
1165 this_cpu_write(hrtimer_running, NULL);
1166 out:
1167 return HRTIMER_NORESTART;
1168 }
1169
__bpf_async_init(struct bpf_async_kern * async,struct bpf_map * map,u64 flags,enum bpf_async_type type)1170 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1171 enum bpf_async_type type)
1172 {
1173 struct bpf_async_cb *cb;
1174 struct bpf_hrtimer *t;
1175 clockid_t clockid;
1176 size_t size;
1177 int ret = 0;
1178
1179 if (in_nmi())
1180 return -EOPNOTSUPP;
1181
1182 switch (type) {
1183 case BPF_ASYNC_TYPE_TIMER:
1184 size = sizeof(struct bpf_hrtimer);
1185 break;
1186 default:
1187 return -EINVAL;
1188 }
1189
1190 __bpf_spin_lock_irqsave(&async->lock);
1191 t = async->timer;
1192 if (t) {
1193 ret = -EBUSY;
1194 goto out;
1195 }
1196
1197 /* allocate hrtimer via map_kmalloc to use memcg accounting */
1198 cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node);
1199 if (!cb) {
1200 ret = -ENOMEM;
1201 goto out;
1202 }
1203
1204 if (type == BPF_ASYNC_TYPE_TIMER) {
1205 clockid = flags & (MAX_CLOCKS - 1);
1206 t = (struct bpf_hrtimer *)cb;
1207
1208 atomic_set(&t->cancelling, 0);
1209 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1210 t->timer.function = bpf_timer_cb;
1211 cb->value = (void *)async - map->record->timer_off;
1212 }
1213 cb->map = map;
1214 cb->prog = NULL;
1215 cb->flags = flags;
1216 rcu_assign_pointer(cb->callback_fn, NULL);
1217
1218 WRITE_ONCE(async->cb, cb);
1219 /* Guarantee the order between async->cb and map->usercnt. So
1220 * when there are concurrent uref release and bpf timer init, either
1221 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1222 * timer or atomic64_read() below returns a zero usercnt.
1223 */
1224 smp_mb();
1225 if (!atomic64_read(&map->usercnt)) {
1226 /* maps with timers must be either held by user space
1227 * or pinned in bpffs.
1228 */
1229 WRITE_ONCE(async->cb, NULL);
1230 kfree(cb);
1231 ret = -EPERM;
1232 }
1233 out:
1234 __bpf_spin_unlock_irqrestore(&async->lock);
1235 return ret;
1236 }
1237
BPF_CALL_3(bpf_timer_init,struct bpf_async_kern *,timer,struct bpf_map *,map,u64,flags)1238 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1239 u64, flags)
1240 {
1241 clock_t clockid = flags & (MAX_CLOCKS - 1);
1242
1243 BUILD_BUG_ON(MAX_CLOCKS != 16);
1244 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1245 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1246
1247 if (flags >= MAX_CLOCKS ||
1248 /* similar to timerfd except _ALARM variants are not supported */
1249 (clockid != CLOCK_MONOTONIC &&
1250 clockid != CLOCK_REALTIME &&
1251 clockid != CLOCK_BOOTTIME))
1252 return -EINVAL;
1253
1254 return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1255 }
1256
1257 static const struct bpf_func_proto bpf_timer_init_proto = {
1258 .func = bpf_timer_init,
1259 .gpl_only = true,
1260 .ret_type = RET_INTEGER,
1261 .arg1_type = ARG_PTR_TO_TIMER,
1262 .arg2_type = ARG_CONST_MAP_PTR,
1263 .arg3_type = ARG_ANYTHING,
1264 };
1265
BPF_CALL_3(bpf_timer_set_callback,struct bpf_async_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1266 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1267 struct bpf_prog_aux *, aux)
1268 {
1269 struct bpf_prog *prev, *prog = aux->prog;
1270 struct bpf_hrtimer *t;
1271 int ret = 0;
1272
1273 if (in_nmi())
1274 return -EOPNOTSUPP;
1275 __bpf_spin_lock_irqsave(&timer->lock);
1276 t = timer->timer;
1277 if (!t) {
1278 ret = -EINVAL;
1279 goto out;
1280 }
1281 if (!atomic64_read(&t->cb.map->usercnt)) {
1282 /* maps with timers must be either held by user space
1283 * or pinned in bpffs. Otherwise timer might still be
1284 * running even when bpf prog is detached and user space
1285 * is gone, since map_release_uref won't ever be called.
1286 */
1287 ret = -EPERM;
1288 goto out;
1289 }
1290 prev = t->cb.prog;
1291 if (prev != prog) {
1292 /* Bump prog refcnt once. Every bpf_timer_set_callback()
1293 * can pick different callback_fn-s within the same prog.
1294 */
1295 prog = bpf_prog_inc_not_zero(prog);
1296 if (IS_ERR(prog)) {
1297 ret = PTR_ERR(prog);
1298 goto out;
1299 }
1300 if (prev)
1301 /* Drop prev prog refcnt when swapping with new prog */
1302 bpf_prog_put(prev);
1303 t->cb.prog = prog;
1304 }
1305 rcu_assign_pointer(t->cb.callback_fn, callback_fn);
1306 out:
1307 __bpf_spin_unlock_irqrestore(&timer->lock);
1308 return ret;
1309 }
1310
1311 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1312 .func = bpf_timer_set_callback,
1313 .gpl_only = true,
1314 .ret_type = RET_INTEGER,
1315 .arg1_type = ARG_PTR_TO_TIMER,
1316 .arg2_type = ARG_PTR_TO_FUNC,
1317 };
1318
BPF_CALL_3(bpf_timer_start,struct bpf_async_kern *,timer,u64,nsecs,u64,flags)1319 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1320 {
1321 struct bpf_hrtimer *t;
1322 int ret = 0;
1323 enum hrtimer_mode mode;
1324
1325 if (in_nmi())
1326 return -EOPNOTSUPP;
1327 if (flags > BPF_F_TIMER_ABS)
1328 return -EINVAL;
1329 __bpf_spin_lock_irqsave(&timer->lock);
1330 t = timer->timer;
1331 if (!t || !t->cb.prog) {
1332 ret = -EINVAL;
1333 goto out;
1334 }
1335
1336 if (flags & BPF_F_TIMER_ABS)
1337 mode = HRTIMER_MODE_ABS_SOFT;
1338 else
1339 mode = HRTIMER_MODE_REL_SOFT;
1340
1341 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1342 out:
1343 __bpf_spin_unlock_irqrestore(&timer->lock);
1344 return ret;
1345 }
1346
1347 static const struct bpf_func_proto bpf_timer_start_proto = {
1348 .func = bpf_timer_start,
1349 .gpl_only = true,
1350 .ret_type = RET_INTEGER,
1351 .arg1_type = ARG_PTR_TO_TIMER,
1352 .arg2_type = ARG_ANYTHING,
1353 .arg3_type = ARG_ANYTHING,
1354 };
1355
drop_prog_refcnt(struct bpf_async_cb * async)1356 static void drop_prog_refcnt(struct bpf_async_cb *async)
1357 {
1358 struct bpf_prog *prog = async->prog;
1359
1360 if (prog) {
1361 bpf_prog_put(prog);
1362 async->prog = NULL;
1363 rcu_assign_pointer(async->callback_fn, NULL);
1364 }
1365 }
1366
BPF_CALL_1(bpf_timer_cancel,struct bpf_async_kern *,timer)1367 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1368 {
1369 struct bpf_hrtimer *t, *cur_t;
1370 bool inc = false;
1371 int ret = 0;
1372
1373 if (in_nmi())
1374 return -EOPNOTSUPP;
1375 rcu_read_lock();
1376 __bpf_spin_lock_irqsave(&timer->lock);
1377 t = timer->timer;
1378 if (!t) {
1379 ret = -EINVAL;
1380 goto out;
1381 }
1382
1383 cur_t = this_cpu_read(hrtimer_running);
1384 if (cur_t == t) {
1385 /* If bpf callback_fn is trying to bpf_timer_cancel()
1386 * its own timer the hrtimer_cancel() will deadlock
1387 * since it waits for callback_fn to finish.
1388 */
1389 ret = -EDEADLK;
1390 goto out;
1391 }
1392
1393 /* Only account in-flight cancellations when invoked from a timer
1394 * callback, since we want to avoid waiting only if other _callbacks_
1395 * are waiting on us, to avoid introducing lockups. Non-callback paths
1396 * are ok, since nobody would synchronously wait for their completion.
1397 */
1398 if (!cur_t)
1399 goto drop;
1400 atomic_inc(&t->cancelling);
1401 /* Need full barrier after relaxed atomic_inc */
1402 smp_mb__after_atomic();
1403 inc = true;
1404 if (atomic_read(&cur_t->cancelling)) {
1405 /* We're cancelling timer t, while some other timer callback is
1406 * attempting to cancel us. In such a case, it might be possible
1407 * that timer t belongs to the other callback, or some other
1408 * callback waiting upon it (creating transitive dependencies
1409 * upon us), and we will enter a deadlock if we continue
1410 * cancelling and waiting for it synchronously, since it might
1411 * do the same. Bail!
1412 */
1413 ret = -EDEADLK;
1414 goto out;
1415 }
1416 drop:
1417 drop_prog_refcnt(&t->cb);
1418 out:
1419 __bpf_spin_unlock_irqrestore(&timer->lock);
1420 /* Cancel the timer and wait for associated callback to finish
1421 * if it was running.
1422 */
1423 ret = ret ?: hrtimer_cancel(&t->timer);
1424 if (inc)
1425 atomic_dec(&t->cancelling);
1426 rcu_read_unlock();
1427 return ret;
1428 }
1429
1430 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1431 .func = bpf_timer_cancel,
1432 .gpl_only = true,
1433 .ret_type = RET_INTEGER,
1434 .arg1_type = ARG_PTR_TO_TIMER,
1435 };
1436
1437 /* This function is called by map_delete/update_elem for individual element and
1438 * by ops->map_release_uref when the user space reference to a map reaches zero.
1439 */
bpf_timer_cancel_and_free(void * val)1440 void bpf_timer_cancel_and_free(void *val)
1441 {
1442 struct bpf_async_kern *timer = val;
1443 struct bpf_hrtimer *t;
1444
1445 /* Performance optimization: read timer->timer without lock first. */
1446 if (!READ_ONCE(timer->timer))
1447 return;
1448
1449 __bpf_spin_lock_irqsave(&timer->lock);
1450 /* re-read it under lock */
1451 t = timer->timer;
1452 if (!t)
1453 goto out;
1454 drop_prog_refcnt(&t->cb);
1455 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1456 * this timer, since it won't be initialized.
1457 */
1458 WRITE_ONCE(timer->timer, NULL);
1459 out:
1460 __bpf_spin_unlock_irqrestore(&timer->lock);
1461 if (!t)
1462 return;
1463 /* Cancel the timer and wait for callback to complete if it was running.
1464 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1465 * right after for both preallocated and non-preallocated maps.
1466 * The timer->timer = NULL was already done and no code path can
1467 * see address 't' anymore.
1468 *
1469 * Check that bpf_map_delete/update_elem() wasn't called from timer
1470 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1471 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1472 * return -1). Though callback_fn is still running on this cpu it's
1473 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1474 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1475 * since timer->timer = NULL was already done. The timer will be
1476 * effectively cancelled because bpf_timer_cb() will return
1477 * HRTIMER_NORESTART.
1478 */
1479 if (this_cpu_read(hrtimer_running) != t)
1480 hrtimer_cancel(&t->timer);
1481 kfree_rcu(t, cb.rcu);
1482 }
1483
BPF_CALL_2(bpf_kptr_xchg,void *,map_value,void *,ptr)1484 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1485 {
1486 unsigned long *kptr = map_value;
1487
1488 return xchg(kptr, (unsigned long)ptr);
1489 }
1490
1491 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1492 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1493 * denote type that verifier will determine.
1494 */
1495 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1496 .func = bpf_kptr_xchg,
1497 .gpl_only = false,
1498 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
1499 .ret_btf_id = BPF_PTR_POISON,
1500 .arg1_type = ARG_PTR_TO_KPTR,
1501 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1502 .arg2_btf_id = BPF_PTR_POISON,
1503 };
1504
1505 /* Since the upper 8 bits of dynptr->size is reserved, the
1506 * maximum supported size is 2^24 - 1.
1507 */
1508 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1509 #define DYNPTR_TYPE_SHIFT 28
1510 #define DYNPTR_SIZE_MASK 0xFFFFFF
1511 #define DYNPTR_RDONLY_BIT BIT(31)
1512
__bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern * ptr)1513 static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1514 {
1515 return ptr->size & DYNPTR_RDONLY_BIT;
1516 }
1517
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)1518 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1519 {
1520 ptr->size |= DYNPTR_RDONLY_BIT;
1521 }
1522
bpf_dynptr_set_type(struct bpf_dynptr_kern * ptr,enum bpf_dynptr_type type)1523 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1524 {
1525 ptr->size |= type << DYNPTR_TYPE_SHIFT;
1526 }
1527
bpf_dynptr_get_type(const struct bpf_dynptr_kern * ptr)1528 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1529 {
1530 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1531 }
1532
__bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)1533 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1534 {
1535 return ptr->size & DYNPTR_SIZE_MASK;
1536 }
1537
bpf_dynptr_set_size(struct bpf_dynptr_kern * ptr,u32 new_size)1538 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1539 {
1540 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1541
1542 ptr->size = new_size | metadata;
1543 }
1544
bpf_dynptr_check_size(u32 size)1545 int bpf_dynptr_check_size(u32 size)
1546 {
1547 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1548 }
1549
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)1550 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1551 enum bpf_dynptr_type type, u32 offset, u32 size)
1552 {
1553 ptr->data = data;
1554 ptr->offset = offset;
1555 ptr->size = size;
1556 bpf_dynptr_set_type(ptr, type);
1557 }
1558
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)1559 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1560 {
1561 memset(ptr, 0, sizeof(*ptr));
1562 }
1563
bpf_dynptr_check_off_len(const struct bpf_dynptr_kern * ptr,u32 offset,u32 len)1564 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1565 {
1566 u32 size = __bpf_dynptr_size(ptr);
1567
1568 if (len > size || offset > size - len)
1569 return -E2BIG;
1570
1571 return 0;
1572 }
1573
BPF_CALL_4(bpf_dynptr_from_mem,void *,data,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)1574 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1575 {
1576 int err;
1577
1578 BTF_TYPE_EMIT(struct bpf_dynptr);
1579
1580 err = bpf_dynptr_check_size(size);
1581 if (err)
1582 goto error;
1583
1584 /* flags is currently unsupported */
1585 if (flags) {
1586 err = -EINVAL;
1587 goto error;
1588 }
1589
1590 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1591
1592 return 0;
1593
1594 error:
1595 bpf_dynptr_set_null(ptr);
1596 return err;
1597 }
1598
1599 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1600 .func = bpf_dynptr_from_mem,
1601 .gpl_only = false,
1602 .ret_type = RET_INTEGER,
1603 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1604 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1605 .arg3_type = ARG_ANYTHING,
1606 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1607 };
1608
BPF_CALL_5(bpf_dynptr_read,void *,dst,u32,len,const struct bpf_dynptr_kern *,src,u32,offset,u64,flags)1609 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1610 u32, offset, u64, flags)
1611 {
1612 enum bpf_dynptr_type type;
1613 int err;
1614
1615 if (!src->data || flags)
1616 return -EINVAL;
1617
1618 err = bpf_dynptr_check_off_len(src, offset, len);
1619 if (err)
1620 return err;
1621
1622 type = bpf_dynptr_get_type(src);
1623
1624 switch (type) {
1625 case BPF_DYNPTR_TYPE_LOCAL:
1626 case BPF_DYNPTR_TYPE_RINGBUF:
1627 /* Source and destination may possibly overlap, hence use memmove to
1628 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1629 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1630 */
1631 memmove(dst, src->data + src->offset + offset, len);
1632 return 0;
1633 case BPF_DYNPTR_TYPE_SKB:
1634 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1635 case BPF_DYNPTR_TYPE_XDP:
1636 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1637 default:
1638 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1639 return -EFAULT;
1640 }
1641 }
1642
1643 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1644 .func = bpf_dynptr_read,
1645 .gpl_only = false,
1646 .ret_type = RET_INTEGER,
1647 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1648 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1649 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1650 .arg4_type = ARG_ANYTHING,
1651 .arg5_type = ARG_ANYTHING,
1652 };
1653
BPF_CALL_5(bpf_dynptr_write,const struct bpf_dynptr_kern *,dst,u32,offset,void *,src,u32,len,u64,flags)1654 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1655 u32, len, u64, flags)
1656 {
1657 enum bpf_dynptr_type type;
1658 int err;
1659
1660 if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1661 return -EINVAL;
1662
1663 err = bpf_dynptr_check_off_len(dst, offset, len);
1664 if (err)
1665 return err;
1666
1667 type = bpf_dynptr_get_type(dst);
1668
1669 switch (type) {
1670 case BPF_DYNPTR_TYPE_LOCAL:
1671 case BPF_DYNPTR_TYPE_RINGBUF:
1672 if (flags)
1673 return -EINVAL;
1674 /* Source and destination may possibly overlap, hence use memmove to
1675 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1676 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1677 */
1678 memmove(dst->data + dst->offset + offset, src, len);
1679 return 0;
1680 case BPF_DYNPTR_TYPE_SKB:
1681 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1682 flags);
1683 case BPF_DYNPTR_TYPE_XDP:
1684 if (flags)
1685 return -EINVAL;
1686 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1687 default:
1688 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1689 return -EFAULT;
1690 }
1691 }
1692
1693 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1694 .func = bpf_dynptr_write,
1695 .gpl_only = false,
1696 .ret_type = RET_INTEGER,
1697 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1698 .arg2_type = ARG_ANYTHING,
1699 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1700 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
1701 .arg5_type = ARG_ANYTHING,
1702 };
1703
BPF_CALL_3(bpf_dynptr_data,const struct bpf_dynptr_kern *,ptr,u32,offset,u32,len)1704 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1705 {
1706 enum bpf_dynptr_type type;
1707 int err;
1708
1709 if (!ptr->data)
1710 return 0;
1711
1712 err = bpf_dynptr_check_off_len(ptr, offset, len);
1713 if (err)
1714 return 0;
1715
1716 if (__bpf_dynptr_is_rdonly(ptr))
1717 return 0;
1718
1719 type = bpf_dynptr_get_type(ptr);
1720
1721 switch (type) {
1722 case BPF_DYNPTR_TYPE_LOCAL:
1723 case BPF_DYNPTR_TYPE_RINGBUF:
1724 return (unsigned long)(ptr->data + ptr->offset + offset);
1725 case BPF_DYNPTR_TYPE_SKB:
1726 case BPF_DYNPTR_TYPE_XDP:
1727 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1728 return 0;
1729 default:
1730 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1731 return 0;
1732 }
1733 }
1734
1735 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1736 .func = bpf_dynptr_data,
1737 .gpl_only = false,
1738 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1739 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1740 .arg2_type = ARG_ANYTHING,
1741 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1742 };
1743
1744 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1745 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1746 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1747 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1748 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1749 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1750 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1751
1752 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)1753 bpf_base_func_proto(enum bpf_func_id func_id)
1754 {
1755 switch (func_id) {
1756 case BPF_FUNC_map_lookup_elem:
1757 return &bpf_map_lookup_elem_proto;
1758 case BPF_FUNC_map_update_elem:
1759 return &bpf_map_update_elem_proto;
1760 case BPF_FUNC_map_delete_elem:
1761 return &bpf_map_delete_elem_proto;
1762 case BPF_FUNC_map_push_elem:
1763 return &bpf_map_push_elem_proto;
1764 case BPF_FUNC_map_pop_elem:
1765 return &bpf_map_pop_elem_proto;
1766 case BPF_FUNC_map_peek_elem:
1767 return &bpf_map_peek_elem_proto;
1768 case BPF_FUNC_map_lookup_percpu_elem:
1769 return &bpf_map_lookup_percpu_elem_proto;
1770 case BPF_FUNC_get_prandom_u32:
1771 return &bpf_get_prandom_u32_proto;
1772 case BPF_FUNC_get_smp_processor_id:
1773 return &bpf_get_raw_smp_processor_id_proto;
1774 case BPF_FUNC_get_numa_node_id:
1775 return &bpf_get_numa_node_id_proto;
1776 case BPF_FUNC_tail_call:
1777 return &bpf_tail_call_proto;
1778 case BPF_FUNC_ktime_get_ns:
1779 return &bpf_ktime_get_ns_proto;
1780 case BPF_FUNC_ktime_get_boot_ns:
1781 return &bpf_ktime_get_boot_ns_proto;
1782 case BPF_FUNC_ktime_get_tai_ns:
1783 return &bpf_ktime_get_tai_ns_proto;
1784 case BPF_FUNC_ringbuf_output:
1785 return &bpf_ringbuf_output_proto;
1786 case BPF_FUNC_ringbuf_reserve:
1787 return &bpf_ringbuf_reserve_proto;
1788 case BPF_FUNC_ringbuf_submit:
1789 return &bpf_ringbuf_submit_proto;
1790 case BPF_FUNC_ringbuf_discard:
1791 return &bpf_ringbuf_discard_proto;
1792 case BPF_FUNC_ringbuf_query:
1793 return &bpf_ringbuf_query_proto;
1794 case BPF_FUNC_strncmp:
1795 return &bpf_strncmp_proto;
1796 case BPF_FUNC_strtol:
1797 return &bpf_strtol_proto;
1798 case BPF_FUNC_strtoul:
1799 return &bpf_strtoul_proto;
1800 default:
1801 break;
1802 }
1803
1804 if (!bpf_capable())
1805 return NULL;
1806
1807 switch (func_id) {
1808 case BPF_FUNC_spin_lock:
1809 return &bpf_spin_lock_proto;
1810 case BPF_FUNC_spin_unlock:
1811 return &bpf_spin_unlock_proto;
1812 case BPF_FUNC_jiffies64:
1813 return &bpf_jiffies64_proto;
1814 case BPF_FUNC_per_cpu_ptr:
1815 return &bpf_per_cpu_ptr_proto;
1816 case BPF_FUNC_this_cpu_ptr:
1817 return &bpf_this_cpu_ptr_proto;
1818 case BPF_FUNC_timer_init:
1819 return &bpf_timer_init_proto;
1820 case BPF_FUNC_timer_set_callback:
1821 return &bpf_timer_set_callback_proto;
1822 case BPF_FUNC_timer_start:
1823 return &bpf_timer_start_proto;
1824 case BPF_FUNC_timer_cancel:
1825 return &bpf_timer_cancel_proto;
1826 case BPF_FUNC_kptr_xchg:
1827 return &bpf_kptr_xchg_proto;
1828 case BPF_FUNC_for_each_map_elem:
1829 return &bpf_for_each_map_elem_proto;
1830 case BPF_FUNC_loop:
1831 return &bpf_loop_proto;
1832 case BPF_FUNC_user_ringbuf_drain:
1833 return &bpf_user_ringbuf_drain_proto;
1834 case BPF_FUNC_ringbuf_reserve_dynptr:
1835 return &bpf_ringbuf_reserve_dynptr_proto;
1836 case BPF_FUNC_ringbuf_submit_dynptr:
1837 return &bpf_ringbuf_submit_dynptr_proto;
1838 case BPF_FUNC_ringbuf_discard_dynptr:
1839 return &bpf_ringbuf_discard_dynptr_proto;
1840 case BPF_FUNC_dynptr_from_mem:
1841 return &bpf_dynptr_from_mem_proto;
1842 case BPF_FUNC_dynptr_read:
1843 return &bpf_dynptr_read_proto;
1844 case BPF_FUNC_dynptr_write:
1845 return &bpf_dynptr_write_proto;
1846 case BPF_FUNC_dynptr_data:
1847 return &bpf_dynptr_data_proto;
1848 #ifdef CONFIG_CGROUPS
1849 case BPF_FUNC_cgrp_storage_get:
1850 return &bpf_cgrp_storage_get_proto;
1851 case BPF_FUNC_cgrp_storage_delete:
1852 return &bpf_cgrp_storage_delete_proto;
1853 case BPF_FUNC_get_current_cgroup_id:
1854 return &bpf_get_current_cgroup_id_proto;
1855 case BPF_FUNC_get_current_ancestor_cgroup_id:
1856 return &bpf_get_current_ancestor_cgroup_id_proto;
1857 #endif
1858 default:
1859 break;
1860 }
1861
1862 if (!perfmon_capable())
1863 return NULL;
1864
1865 switch (func_id) {
1866 case BPF_FUNC_trace_printk:
1867 return bpf_get_trace_printk_proto();
1868 case BPF_FUNC_get_current_task:
1869 return &bpf_get_current_task_proto;
1870 case BPF_FUNC_get_current_task_btf:
1871 return &bpf_get_current_task_btf_proto;
1872 case BPF_FUNC_probe_read_user:
1873 return &bpf_probe_read_user_proto;
1874 case BPF_FUNC_probe_read_kernel:
1875 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1876 NULL : &bpf_probe_read_kernel_proto;
1877 case BPF_FUNC_probe_read_user_str:
1878 return &bpf_probe_read_user_str_proto;
1879 case BPF_FUNC_probe_read_kernel_str:
1880 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1881 NULL : &bpf_probe_read_kernel_str_proto;
1882 case BPF_FUNC_snprintf_btf:
1883 return &bpf_snprintf_btf_proto;
1884 case BPF_FUNC_snprintf:
1885 return &bpf_snprintf_proto;
1886 case BPF_FUNC_task_pt_regs:
1887 return &bpf_task_pt_regs_proto;
1888 case BPF_FUNC_trace_vprintk:
1889 return bpf_get_trace_vprintk_proto();
1890 default:
1891 return NULL;
1892 }
1893 }
1894
1895 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec);
1896
bpf_list_head_free(const struct btf_field * field,void * list_head,struct bpf_spin_lock * spin_lock)1897 void bpf_list_head_free(const struct btf_field *field, void *list_head,
1898 struct bpf_spin_lock *spin_lock)
1899 {
1900 struct list_head *head = list_head, *orig_head = list_head;
1901
1902 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
1903 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
1904
1905 /* Do the actual list draining outside the lock to not hold the lock for
1906 * too long, and also prevent deadlocks if tracing programs end up
1907 * executing on entry/exit of functions called inside the critical
1908 * section, and end up doing map ops that call bpf_list_head_free for
1909 * the same map value again.
1910 */
1911 __bpf_spin_lock_irqsave(spin_lock);
1912 if (!head->next || list_empty(head))
1913 goto unlock;
1914 head = head->next;
1915 unlock:
1916 INIT_LIST_HEAD(orig_head);
1917 __bpf_spin_unlock_irqrestore(spin_lock);
1918
1919 while (head != orig_head) {
1920 void *obj = head;
1921
1922 obj -= field->graph_root.node_offset;
1923 head = head->next;
1924 /* The contained type can also have resources, including a
1925 * bpf_list_head which needs to be freed.
1926 */
1927 migrate_disable();
1928 __bpf_obj_drop_impl(obj, field->graph_root.value_rec);
1929 migrate_enable();
1930 }
1931 }
1932
1933 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
1934 * 'rb_node *', so field name of rb_node within containing struct is not
1935 * needed.
1936 *
1937 * Since bpf_rb_tree's node type has a corresponding struct btf_field with
1938 * graph_root.node_offset, it's not necessary to know field name
1939 * or type of node struct
1940 */
1941 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
1942 for (pos = rb_first_postorder(root); \
1943 pos && ({ n = rb_next_postorder(pos); 1; }); \
1944 pos = n)
1945
bpf_rb_root_free(const struct btf_field * field,void * rb_root,struct bpf_spin_lock * spin_lock)1946 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
1947 struct bpf_spin_lock *spin_lock)
1948 {
1949 struct rb_root_cached orig_root, *root = rb_root;
1950 struct rb_node *pos, *n;
1951 void *obj;
1952
1953 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
1954 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
1955
1956 __bpf_spin_lock_irqsave(spin_lock);
1957 orig_root = *root;
1958 *root = RB_ROOT_CACHED;
1959 __bpf_spin_unlock_irqrestore(spin_lock);
1960
1961 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
1962 obj = pos;
1963 obj -= field->graph_root.node_offset;
1964
1965
1966 migrate_disable();
1967 __bpf_obj_drop_impl(obj, field->graph_root.value_rec);
1968 migrate_enable();
1969 }
1970 }
1971
1972 __diag_push();
1973 __diag_ignore_all("-Wmissing-prototypes",
1974 "Global functions as their definitions will be in vmlinux BTF");
1975
bpf_obj_new_impl(u64 local_type_id__k,void * meta__ign)1976 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
1977 {
1978 struct btf_struct_meta *meta = meta__ign;
1979 u64 size = local_type_id__k;
1980 void *p;
1981
1982 p = bpf_mem_alloc(&bpf_global_ma, size);
1983 if (!p)
1984 return NULL;
1985 if (meta)
1986 bpf_obj_init(meta->record, p);
1987 return p;
1988 }
1989
1990 /* Must be called under migrate_disable(), as required by bpf_mem_free */
__bpf_obj_drop_impl(void * p,const struct btf_record * rec)1991 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec)
1992 {
1993 if (rec && rec->refcount_off >= 0 &&
1994 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
1995 /* Object is refcounted and refcount_dec didn't result in 0
1996 * refcount. Return without freeing the object
1997 */
1998 return;
1999 }
2000
2001 if (rec)
2002 bpf_obj_free_fields(rec, p);
2003
2004 if (rec && rec->refcount_off >= 0)
2005 bpf_mem_free_rcu(&bpf_global_ma, p);
2006 else
2007 bpf_mem_free(&bpf_global_ma, p);
2008 }
2009
bpf_obj_drop_impl(void * p__alloc,void * meta__ign)2010 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2011 {
2012 struct btf_struct_meta *meta = meta__ign;
2013 void *p = p__alloc;
2014
2015 __bpf_obj_drop_impl(p, meta ? meta->record : NULL);
2016 }
2017
bpf_refcount_acquire_impl(void * p__refcounted_kptr,void * meta__ign)2018 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2019 {
2020 struct btf_struct_meta *meta = meta__ign;
2021 struct bpf_refcount *ref;
2022
2023 /* Could just cast directly to refcount_t *, but need some code using
2024 * bpf_refcount type so that it is emitted in vmlinux BTF
2025 */
2026 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2027 if (!refcount_inc_not_zero((refcount_t *)ref))
2028 return NULL;
2029
2030 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2031 * in verifier.c
2032 */
2033 return (void *)p__refcounted_kptr;
2034 }
2035
__bpf_list_add(struct bpf_list_node_kern * node,struct bpf_list_head * head,bool tail,struct btf_record * rec,u64 off)2036 static int __bpf_list_add(struct bpf_list_node_kern *node,
2037 struct bpf_list_head *head,
2038 bool tail, struct btf_record *rec, u64 off)
2039 {
2040 struct list_head *n = &node->list_head, *h = (void *)head;
2041
2042 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2043 * called on its fields, so init here
2044 */
2045 if (unlikely(!h->next))
2046 INIT_LIST_HEAD(h);
2047
2048 /* node->owner != NULL implies !list_empty(n), no need to separately
2049 * check the latter
2050 */
2051 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2052 /* Only called from BPF prog, no need to migrate_disable */
2053 __bpf_obj_drop_impl((void *)n - off, rec);
2054 return -EINVAL;
2055 }
2056
2057 tail ? list_add_tail(n, h) : list_add(n, h);
2058 WRITE_ONCE(node->owner, head);
2059
2060 return 0;
2061 }
2062
bpf_list_push_front_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2063 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2064 struct bpf_list_node *node,
2065 void *meta__ign, u64 off)
2066 {
2067 struct bpf_list_node_kern *n = (void *)node;
2068 struct btf_struct_meta *meta = meta__ign;
2069
2070 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2071 }
2072
bpf_list_push_back_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2073 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2074 struct bpf_list_node *node,
2075 void *meta__ign, u64 off)
2076 {
2077 struct bpf_list_node_kern *n = (void *)node;
2078 struct btf_struct_meta *meta = meta__ign;
2079
2080 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2081 }
2082
__bpf_list_del(struct bpf_list_head * head,bool tail)2083 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2084 {
2085 struct list_head *n, *h = (void *)head;
2086 struct bpf_list_node_kern *node;
2087
2088 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2089 * called on its fields, so init here
2090 */
2091 if (unlikely(!h->next))
2092 INIT_LIST_HEAD(h);
2093 if (list_empty(h))
2094 return NULL;
2095
2096 n = tail ? h->prev : h->next;
2097 node = container_of(n, struct bpf_list_node_kern, list_head);
2098 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2099 return NULL;
2100
2101 list_del_init(n);
2102 WRITE_ONCE(node->owner, NULL);
2103 return (struct bpf_list_node *)n;
2104 }
2105
bpf_list_pop_front(struct bpf_list_head * head)2106 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2107 {
2108 return __bpf_list_del(head, false);
2109 }
2110
bpf_list_pop_back(struct bpf_list_head * head)2111 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2112 {
2113 return __bpf_list_del(head, true);
2114 }
2115
bpf_rbtree_remove(struct bpf_rb_root * root,struct bpf_rb_node * node)2116 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2117 struct bpf_rb_node *node)
2118 {
2119 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2120 struct rb_root_cached *r = (struct rb_root_cached *)root;
2121 struct rb_node *n = &node_internal->rb_node;
2122
2123 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2124 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2125 */
2126 if (READ_ONCE(node_internal->owner) != root)
2127 return NULL;
2128
2129 rb_erase_cached(n, r);
2130 RB_CLEAR_NODE(n);
2131 WRITE_ONCE(node_internal->owner, NULL);
2132 return (struct bpf_rb_node *)n;
2133 }
2134
2135 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2136 * program
2137 */
__bpf_rbtree_add(struct bpf_rb_root * root,struct bpf_rb_node_kern * node,void * less,struct btf_record * rec,u64 off)2138 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2139 struct bpf_rb_node_kern *node,
2140 void *less, struct btf_record *rec, u64 off)
2141 {
2142 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2143 struct rb_node *parent = NULL, *n = &node->rb_node;
2144 bpf_callback_t cb = (bpf_callback_t)less;
2145 bool leftmost = true;
2146
2147 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2148 * check the latter
2149 */
2150 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2151 /* Only called from BPF prog, no need to migrate_disable */
2152 __bpf_obj_drop_impl((void *)n - off, rec);
2153 return -EINVAL;
2154 }
2155
2156 while (*link) {
2157 parent = *link;
2158 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2159 link = &parent->rb_left;
2160 } else {
2161 link = &parent->rb_right;
2162 leftmost = false;
2163 }
2164 }
2165
2166 rb_link_node(n, parent, link);
2167 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2168 WRITE_ONCE(node->owner, root);
2169 return 0;
2170 }
2171
bpf_rbtree_add_impl(struct bpf_rb_root * root,struct bpf_rb_node * node,bool (less)(struct bpf_rb_node * a,const struct bpf_rb_node * b),void * meta__ign,u64 off)2172 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2173 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2174 void *meta__ign, u64 off)
2175 {
2176 struct btf_struct_meta *meta = meta__ign;
2177 struct bpf_rb_node_kern *n = (void *)node;
2178
2179 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2180 }
2181
bpf_rbtree_first(struct bpf_rb_root * root)2182 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2183 {
2184 struct rb_root_cached *r = (struct rb_root_cached *)root;
2185
2186 return (struct bpf_rb_node *)rb_first_cached(r);
2187 }
2188
2189 /**
2190 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2191 * kfunc which is not stored in a map as a kptr, must be released by calling
2192 * bpf_task_release().
2193 * @p: The task on which a reference is being acquired.
2194 */
bpf_task_acquire(struct task_struct * p)2195 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2196 {
2197 if (refcount_inc_not_zero(&p->rcu_users))
2198 return p;
2199 return NULL;
2200 }
2201
2202 /**
2203 * bpf_task_release - Release the reference acquired on a task.
2204 * @p: The task on which a reference is being released.
2205 */
bpf_task_release(struct task_struct * p)2206 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2207 {
2208 put_task_struct_rcu_user(p);
2209 }
2210
2211 #ifdef CONFIG_CGROUPS
2212 /**
2213 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2214 * this kfunc which is not stored in a map as a kptr, must be released by
2215 * calling bpf_cgroup_release().
2216 * @cgrp: The cgroup on which a reference is being acquired.
2217 */
bpf_cgroup_acquire(struct cgroup * cgrp)2218 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2219 {
2220 return cgroup_tryget(cgrp) ? cgrp : NULL;
2221 }
2222
2223 /**
2224 * bpf_cgroup_release - Release the reference acquired on a cgroup.
2225 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2226 * not be freed until the current grace period has ended, even if its refcount
2227 * drops to 0.
2228 * @cgrp: The cgroup on which a reference is being released.
2229 */
bpf_cgroup_release(struct cgroup * cgrp)2230 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2231 {
2232 cgroup_put(cgrp);
2233 }
2234
2235 /**
2236 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2237 * array. A cgroup returned by this kfunc which is not subsequently stored in a
2238 * map, must be released by calling bpf_cgroup_release().
2239 * @cgrp: The cgroup for which we're performing a lookup.
2240 * @level: The level of ancestor to look up.
2241 */
bpf_cgroup_ancestor(struct cgroup * cgrp,int level)2242 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2243 {
2244 struct cgroup *ancestor;
2245
2246 if (level > cgrp->level || level < 0)
2247 return NULL;
2248
2249 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2250 ancestor = cgrp->ancestors[level];
2251 if (!cgroup_tryget(ancestor))
2252 return NULL;
2253 return ancestor;
2254 }
2255
2256 /**
2257 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2258 * kfunc which is not subsequently stored in a map, must be released by calling
2259 * bpf_cgroup_release().
2260 * @cgid: cgroup id.
2261 */
bpf_cgroup_from_id(u64 cgid)2262 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2263 {
2264 struct cgroup *cgrp;
2265
2266 cgrp = cgroup_get_from_id(cgid);
2267 if (IS_ERR(cgrp))
2268 return NULL;
2269 return cgrp;
2270 }
2271
2272 /**
2273 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2274 * task's membership of cgroup ancestry.
2275 * @task: the task to be tested
2276 * @ancestor: possible ancestor of @task's cgroup
2277 *
2278 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2279 * It follows all the same rules as cgroup_is_descendant, and only applies
2280 * to the default hierarchy.
2281 */
bpf_task_under_cgroup(struct task_struct * task,struct cgroup * ancestor)2282 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2283 struct cgroup *ancestor)
2284 {
2285 long ret;
2286
2287 rcu_read_lock();
2288 ret = task_under_cgroup_hierarchy(task, ancestor);
2289 rcu_read_unlock();
2290 return ret;
2291 }
2292 #endif /* CONFIG_CGROUPS */
2293
2294 /**
2295 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2296 * in the root pid namespace idr. If a task is returned, it must either be
2297 * stored in a map, or released with bpf_task_release().
2298 * @pid: The pid of the task being looked up.
2299 */
bpf_task_from_pid(s32 pid)2300 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2301 {
2302 struct task_struct *p;
2303
2304 rcu_read_lock();
2305 p = find_task_by_pid_ns(pid, &init_pid_ns);
2306 if (p)
2307 p = bpf_task_acquire(p);
2308 rcu_read_unlock();
2309
2310 return p;
2311 }
2312
2313 /**
2314 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2315 * @ptr: The dynptr whose data slice to retrieve
2316 * @offset: Offset into the dynptr
2317 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2318 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2319 * length of the requested slice. This must be a constant.
2320 *
2321 * For non-skb and non-xdp type dynptrs, there is no difference between
2322 * bpf_dynptr_slice and bpf_dynptr_data.
2323 *
2324 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2325 *
2326 * If the intention is to write to the data slice, please use
2327 * bpf_dynptr_slice_rdwr.
2328 *
2329 * The user must check that the returned pointer is not null before using it.
2330 *
2331 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2332 * does not change the underlying packet data pointers, so a call to
2333 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2334 * the bpf program.
2335 *
2336 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2337 * data slice (can be either direct pointer to the data or a pointer to the user
2338 * provided buffer, with its contents containing the data, if unable to obtain
2339 * direct pointer)
2340 */
bpf_dynptr_slice(const struct bpf_dynptr_kern * ptr,u32 offset,void * buffer__opt,u32 buffer__szk)2341 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset,
2342 void *buffer__opt, u32 buffer__szk)
2343 {
2344 enum bpf_dynptr_type type;
2345 u32 len = buffer__szk;
2346 int err;
2347
2348 if (!ptr->data)
2349 return NULL;
2350
2351 err = bpf_dynptr_check_off_len(ptr, offset, len);
2352 if (err)
2353 return NULL;
2354
2355 type = bpf_dynptr_get_type(ptr);
2356
2357 switch (type) {
2358 case BPF_DYNPTR_TYPE_LOCAL:
2359 case BPF_DYNPTR_TYPE_RINGBUF:
2360 return ptr->data + ptr->offset + offset;
2361 case BPF_DYNPTR_TYPE_SKB:
2362 if (buffer__opt)
2363 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2364 else
2365 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2366 case BPF_DYNPTR_TYPE_XDP:
2367 {
2368 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2369 if (!IS_ERR_OR_NULL(xdp_ptr))
2370 return xdp_ptr;
2371
2372 if (!buffer__opt)
2373 return NULL;
2374 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2375 return buffer__opt;
2376 }
2377 default:
2378 WARN_ONCE(true, "unknown dynptr type %d\n", type);
2379 return NULL;
2380 }
2381 }
2382
2383 /**
2384 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2385 * @ptr: The dynptr whose data slice to retrieve
2386 * @offset: Offset into the dynptr
2387 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2388 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2389 * length of the requested slice. This must be a constant.
2390 *
2391 * For non-skb and non-xdp type dynptrs, there is no difference between
2392 * bpf_dynptr_slice and bpf_dynptr_data.
2393 *
2394 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2395 *
2396 * The returned pointer is writable and may point to either directly the dynptr
2397 * data at the requested offset or to the buffer if unable to obtain a direct
2398 * data pointer to (example: the requested slice is to the paged area of an skb
2399 * packet). In the case where the returned pointer is to the buffer, the user
2400 * is responsible for persisting writes through calling bpf_dynptr_write(). This
2401 * usually looks something like this pattern:
2402 *
2403 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2404 * if (!eth)
2405 * return TC_ACT_SHOT;
2406 *
2407 * // mutate eth header //
2408 *
2409 * if (eth == buffer)
2410 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2411 *
2412 * Please note that, as in the example above, the user must check that the
2413 * returned pointer is not null before using it.
2414 *
2415 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2416 * does not change the underlying packet data pointers, so a call to
2417 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2418 * the bpf program.
2419 *
2420 * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2421 * data slice (can be either direct pointer to the data or a pointer to the user
2422 * provided buffer, with its contents containing the data, if unable to obtain
2423 * direct pointer)
2424 */
bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern * ptr,u32 offset,void * buffer__opt,u32 buffer__szk)2425 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset,
2426 void *buffer__opt, u32 buffer__szk)
2427 {
2428 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2429 return NULL;
2430
2431 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2432 *
2433 * For skb-type dynptrs, it is safe to write into the returned pointer
2434 * if the bpf program allows skb data writes. There are two possiblities
2435 * that may occur when calling bpf_dynptr_slice_rdwr:
2436 *
2437 * 1) The requested slice is in the head of the skb. In this case, the
2438 * returned pointer is directly to skb data, and if the skb is cloned, the
2439 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2440 * The pointer can be directly written into.
2441 *
2442 * 2) Some portion of the requested slice is in the paged buffer area.
2443 * In this case, the requested data will be copied out into the buffer
2444 * and the returned pointer will be a pointer to the buffer. The skb
2445 * will not be pulled. To persist the write, the user will need to call
2446 * bpf_dynptr_write(), which will pull the skb and commit the write.
2447 *
2448 * Similarly for xdp programs, if the requested slice is not across xdp
2449 * fragments, then a direct pointer will be returned, otherwise the data
2450 * will be copied out into the buffer and the user will need to call
2451 * bpf_dynptr_write() to commit changes.
2452 */
2453 return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk);
2454 }
2455
bpf_dynptr_adjust(struct bpf_dynptr_kern * ptr,u32 start,u32 end)2456 __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end)
2457 {
2458 u32 size;
2459
2460 if (!ptr->data || start > end)
2461 return -EINVAL;
2462
2463 size = __bpf_dynptr_size(ptr);
2464
2465 if (start > size || end > size)
2466 return -ERANGE;
2467
2468 ptr->offset += start;
2469 bpf_dynptr_set_size(ptr, end - start);
2470
2471 return 0;
2472 }
2473
bpf_dynptr_is_null(struct bpf_dynptr_kern * ptr)2474 __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr)
2475 {
2476 return !ptr->data;
2477 }
2478
bpf_dynptr_is_rdonly(struct bpf_dynptr_kern * ptr)2479 __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
2480 {
2481 if (!ptr->data)
2482 return false;
2483
2484 return __bpf_dynptr_is_rdonly(ptr);
2485 }
2486
bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)2487 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
2488 {
2489 if (!ptr->data)
2490 return -EINVAL;
2491
2492 return __bpf_dynptr_size(ptr);
2493 }
2494
bpf_dynptr_clone(struct bpf_dynptr_kern * ptr,struct bpf_dynptr_kern * clone__uninit)2495 __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr,
2496 struct bpf_dynptr_kern *clone__uninit)
2497 {
2498 if (!ptr->data) {
2499 bpf_dynptr_set_null(clone__uninit);
2500 return -EINVAL;
2501 }
2502
2503 *clone__uninit = *ptr;
2504
2505 return 0;
2506 }
2507
bpf_cast_to_kern_ctx(void * obj)2508 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2509 {
2510 return obj;
2511 }
2512
bpf_rdonly_cast(void * obj__ign,u32 btf_id__k)2513 __bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k)
2514 {
2515 return obj__ign;
2516 }
2517
bpf_rcu_read_lock(void)2518 __bpf_kfunc void bpf_rcu_read_lock(void)
2519 {
2520 rcu_read_lock();
2521 }
2522
bpf_rcu_read_unlock(void)2523 __bpf_kfunc void bpf_rcu_read_unlock(void)
2524 {
2525 rcu_read_unlock();
2526 }
2527
2528 __diag_pop();
2529
2530 BTF_SET8_START(generic_btf_ids)
2531 #ifdef CONFIG_KEXEC_CORE
2532 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
2533 #endif
2534 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2535 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
2536 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL)
2537 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
2538 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
2539 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
2540 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
2541 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2542 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
2543 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
2544 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
2545 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
2546
2547 #ifdef CONFIG_CGROUPS
2548 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2549 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
2550 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2551 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
2552 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
2553 #endif
2554 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
2555 BTF_SET8_END(generic_btf_ids)
2556
2557 static const struct btf_kfunc_id_set generic_kfunc_set = {
2558 .owner = THIS_MODULE,
2559 .set = &generic_btf_ids,
2560 };
2561
2562
2563 BTF_ID_LIST(generic_dtor_ids)
2564 BTF_ID(struct, task_struct)
2565 BTF_ID(func, bpf_task_release)
2566 #ifdef CONFIG_CGROUPS
2567 BTF_ID(struct, cgroup)
2568 BTF_ID(func, bpf_cgroup_release)
2569 #endif
2570
2571 BTF_SET8_START(common_btf_ids)
2572 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
2573 BTF_ID_FLAGS(func, bpf_rdonly_cast)
2574 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
2575 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
2576 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
2577 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
2578 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
2579 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
2580 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
2581 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
2582 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
2583 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
2584 BTF_ID_FLAGS(func, bpf_dynptr_size)
2585 BTF_ID_FLAGS(func, bpf_dynptr_clone)
2586 BTF_SET8_END(common_btf_ids)
2587
2588 static const struct btf_kfunc_id_set common_kfunc_set = {
2589 .owner = THIS_MODULE,
2590 .set = &common_btf_ids,
2591 };
2592
kfunc_init(void)2593 static int __init kfunc_init(void)
2594 {
2595 int ret;
2596 const struct btf_id_dtor_kfunc generic_dtors[] = {
2597 {
2598 .btf_id = generic_dtor_ids[0],
2599 .kfunc_btf_id = generic_dtor_ids[1]
2600 },
2601 #ifdef CONFIG_CGROUPS
2602 {
2603 .btf_id = generic_dtor_ids[2],
2604 .kfunc_btf_id = generic_dtor_ids[3]
2605 },
2606 #endif
2607 };
2608
2609 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
2610 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
2611 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
2612 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
2613 ARRAY_SIZE(generic_dtors),
2614 THIS_MODULE);
2615 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
2616 }
2617
2618 late_initcall(kfunc_init);
2619