1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6 */
7
8 #define INCLUDE_VERMAGIC
9
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/debugfs.h>
60 #include <uapi/linux/module.h>
61 #include "internal.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/module.h>
65
66 /*
67 * Mutex protects:
68 * 1) List of modules (also safely readable with preempt_disable),
69 * 2) module_use links,
70 * 3) mod_tree.addr_min/mod_tree.addr_max.
71 * (delete and add uses RCU list operations).
72 */
73 DEFINE_MUTEX(module_mutex);
74 LIST_HEAD(modules);
75
76 /* Work queue for freeing init sections in success case */
77 static void do_free_init(struct work_struct *w);
78 static DECLARE_WORK(init_free_wq, do_free_init);
79 static LLIST_HEAD(init_free_list);
80
81 struct mod_tree_root mod_tree __cacheline_aligned = {
82 .addr_min = -1UL,
83 };
84
85 struct symsearch {
86 const struct kernel_symbol *start, *stop;
87 const s32 *crcs;
88 enum mod_license license;
89 };
90
91 /*
92 * Bounds of module memory, for speeding up __module_address.
93 * Protected by module_mutex.
94 */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)95 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
96 unsigned int size, struct mod_tree_root *tree)
97 {
98 unsigned long min = (unsigned long)base;
99 unsigned long max = min + size;
100
101 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
102 if (mod_mem_type_is_core_data(type)) {
103 if (min < tree->data_addr_min)
104 tree->data_addr_min = min;
105 if (max > tree->data_addr_max)
106 tree->data_addr_max = max;
107 return;
108 }
109 #endif
110 if (min < tree->addr_min)
111 tree->addr_min = min;
112 if (max > tree->addr_max)
113 tree->addr_max = max;
114 }
115
mod_update_bounds(struct module * mod)116 static void mod_update_bounds(struct module *mod)
117 {
118 for_each_mod_mem_type(type) {
119 struct module_memory *mod_mem = &mod->mem[type];
120
121 if (mod_mem->size)
122 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
123 }
124 }
125
126 /* Block module loading/unloading? */
127 int modules_disabled;
128 core_param(nomodule, modules_disabled, bint, 0);
129
130 /* Waiting for a module to finish initializing? */
131 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
132
133 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
134
register_module_notifier(struct notifier_block * nb)135 int register_module_notifier(struct notifier_block *nb)
136 {
137 return blocking_notifier_chain_register(&module_notify_list, nb);
138 }
139 EXPORT_SYMBOL(register_module_notifier);
140
unregister_module_notifier(struct notifier_block * nb)141 int unregister_module_notifier(struct notifier_block *nb)
142 {
143 return blocking_notifier_chain_unregister(&module_notify_list, nb);
144 }
145 EXPORT_SYMBOL(unregister_module_notifier);
146
147 /*
148 * We require a truly strong try_module_get(): 0 means success.
149 * Otherwise an error is returned due to ongoing or failed
150 * initialization etc.
151 */
strong_try_module_get(struct module * mod)152 static inline int strong_try_module_get(struct module *mod)
153 {
154 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
155 if (mod && mod->state == MODULE_STATE_COMING)
156 return -EBUSY;
157 if (try_module_get(mod))
158 return 0;
159 else
160 return -ENOENT;
161 }
162
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)163 static inline void add_taint_module(struct module *mod, unsigned flag,
164 enum lockdep_ok lockdep_ok)
165 {
166 add_taint(flag, lockdep_ok);
167 set_bit(flag, &mod->taints);
168 }
169
170 /*
171 * A thread that wants to hold a reference to a module only while it
172 * is running can call this to safely exit.
173 */
__module_put_and_kthread_exit(struct module * mod,long code)174 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
175 {
176 module_put(mod);
177 kthread_exit(code);
178 }
179 EXPORT_SYMBOL(__module_put_and_kthread_exit);
180
181 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)182 static unsigned int find_sec(const struct load_info *info, const char *name)
183 {
184 unsigned int i;
185
186 for (i = 1; i < info->hdr->e_shnum; i++) {
187 Elf_Shdr *shdr = &info->sechdrs[i];
188 /* Alloc bit cleared means "ignore it." */
189 if ((shdr->sh_flags & SHF_ALLOC)
190 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
191 return i;
192 }
193 return 0;
194 }
195
196 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)197 static void *section_addr(const struct load_info *info, const char *name)
198 {
199 /* Section 0 has sh_addr 0. */
200 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
201 }
202
203 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)204 static void *section_objs(const struct load_info *info,
205 const char *name,
206 size_t object_size,
207 unsigned int *num)
208 {
209 unsigned int sec = find_sec(info, name);
210
211 /* Section 0 has sh_addr 0 and sh_size 0. */
212 *num = info->sechdrs[sec].sh_size / object_size;
213 return (void *)info->sechdrs[sec].sh_addr;
214 }
215
216 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)217 static unsigned int find_any_sec(const struct load_info *info, const char *name)
218 {
219 unsigned int i;
220
221 for (i = 1; i < info->hdr->e_shnum; i++) {
222 Elf_Shdr *shdr = &info->sechdrs[i];
223 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
224 return i;
225 }
226 return 0;
227 }
228
229 /*
230 * Find a module section, or NULL. Fill in number of "objects" in section.
231 * Ignores SHF_ALLOC flag.
232 */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)233 static __maybe_unused void *any_section_objs(const struct load_info *info,
234 const char *name,
235 size_t object_size,
236 unsigned int *num)
237 {
238 unsigned int sec = find_any_sec(info, name);
239
240 /* Section 0 has sh_addr 0 and sh_size 0. */
241 *num = info->sechdrs[sec].sh_size / object_size;
242 return (void *)info->sechdrs[sec].sh_addr;
243 }
244
245 #ifndef CONFIG_MODVERSIONS
246 #define symversion(base, idx) NULL
247 #else
248 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
249 #endif
250
kernel_symbol_name(const struct kernel_symbol * sym)251 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
252 {
253 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
254 return offset_to_ptr(&sym->name_offset);
255 #else
256 return sym->name;
257 #endif
258 }
259
kernel_symbol_namespace(const struct kernel_symbol * sym)260 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
261 {
262 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
263 if (!sym->namespace_offset)
264 return NULL;
265 return offset_to_ptr(&sym->namespace_offset);
266 #else
267 return sym->namespace;
268 #endif
269 }
270
cmp_name(const void * name,const void * sym)271 int cmp_name(const void *name, const void *sym)
272 {
273 return strcmp(name, kernel_symbol_name(sym));
274 }
275
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)276 static bool find_exported_symbol_in_section(const struct symsearch *syms,
277 struct module *owner,
278 struct find_symbol_arg *fsa)
279 {
280 struct kernel_symbol *sym;
281
282 if (!fsa->gplok && syms->license == GPL_ONLY)
283 return false;
284
285 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
286 sizeof(struct kernel_symbol), cmp_name);
287 if (!sym)
288 return false;
289
290 fsa->owner = owner;
291 fsa->crc = symversion(syms->crcs, sym - syms->start);
292 fsa->sym = sym;
293 fsa->license = syms->license;
294
295 return true;
296 }
297
298 /*
299 * Find an exported symbol and return it, along with, (optional) crc and
300 * (optional) module which owns it. Needs preempt disabled or module_mutex.
301 */
find_symbol(struct find_symbol_arg * fsa)302 bool find_symbol(struct find_symbol_arg *fsa)
303 {
304 static const struct symsearch arr[] = {
305 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
306 NOT_GPL_ONLY },
307 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
308 __start___kcrctab_gpl,
309 GPL_ONLY },
310 };
311 struct module *mod;
312 unsigned int i;
313
314 module_assert_mutex_or_preempt();
315
316 for (i = 0; i < ARRAY_SIZE(arr); i++)
317 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
318 return true;
319
320 list_for_each_entry_rcu(mod, &modules, list,
321 lockdep_is_held(&module_mutex)) {
322 struct symsearch arr[] = {
323 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
324 NOT_GPL_ONLY },
325 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
326 mod->gpl_crcs,
327 GPL_ONLY },
328 };
329
330 if (mod->state == MODULE_STATE_UNFORMED)
331 continue;
332
333 for (i = 0; i < ARRAY_SIZE(arr); i++)
334 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
335 return true;
336 }
337
338 pr_debug("Failed to find symbol %s\n", fsa->name);
339 return false;
340 }
341
342 /*
343 * Search for module by name: must hold module_mutex (or preempt disabled
344 * for read-only access).
345 */
find_module_all(const char * name,size_t len,bool even_unformed)346 struct module *find_module_all(const char *name, size_t len,
347 bool even_unformed)
348 {
349 struct module *mod;
350
351 module_assert_mutex_or_preempt();
352
353 list_for_each_entry_rcu(mod, &modules, list,
354 lockdep_is_held(&module_mutex)) {
355 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
356 continue;
357 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
358 return mod;
359 }
360 return NULL;
361 }
362
find_module(const char * name)363 struct module *find_module(const char *name)
364 {
365 return find_module_all(name, strlen(name), false);
366 }
367
368 #ifdef CONFIG_SMP
369
mod_percpu(struct module * mod)370 static inline void __percpu *mod_percpu(struct module *mod)
371 {
372 return mod->percpu;
373 }
374
percpu_modalloc(struct module * mod,struct load_info * info)375 static int percpu_modalloc(struct module *mod, struct load_info *info)
376 {
377 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
378 unsigned long align = pcpusec->sh_addralign;
379
380 if (!pcpusec->sh_size)
381 return 0;
382
383 if (align > PAGE_SIZE) {
384 pr_warn("%s: per-cpu alignment %li > %li\n",
385 mod->name, align, PAGE_SIZE);
386 align = PAGE_SIZE;
387 }
388
389 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
390 if (!mod->percpu) {
391 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
392 mod->name, (unsigned long)pcpusec->sh_size);
393 return -ENOMEM;
394 }
395 mod->percpu_size = pcpusec->sh_size;
396 return 0;
397 }
398
percpu_modfree(struct module * mod)399 static void percpu_modfree(struct module *mod)
400 {
401 free_percpu(mod->percpu);
402 }
403
find_pcpusec(struct load_info * info)404 static unsigned int find_pcpusec(struct load_info *info)
405 {
406 return find_sec(info, ".data..percpu");
407 }
408
percpu_modcopy(struct module * mod,const void * from,unsigned long size)409 static void percpu_modcopy(struct module *mod,
410 const void *from, unsigned long size)
411 {
412 int cpu;
413
414 for_each_possible_cpu(cpu)
415 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
416 }
417
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)418 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
419 {
420 struct module *mod;
421 unsigned int cpu;
422
423 preempt_disable();
424
425 list_for_each_entry_rcu(mod, &modules, list) {
426 if (mod->state == MODULE_STATE_UNFORMED)
427 continue;
428 if (!mod->percpu_size)
429 continue;
430 for_each_possible_cpu(cpu) {
431 void *start = per_cpu_ptr(mod->percpu, cpu);
432 void *va = (void *)addr;
433
434 if (va >= start && va < start + mod->percpu_size) {
435 if (can_addr) {
436 *can_addr = (unsigned long) (va - start);
437 *can_addr += (unsigned long)
438 per_cpu_ptr(mod->percpu,
439 get_boot_cpu_id());
440 }
441 preempt_enable();
442 return true;
443 }
444 }
445 }
446
447 preempt_enable();
448 return false;
449 }
450
451 /**
452 * is_module_percpu_address() - test whether address is from module static percpu
453 * @addr: address to test
454 *
455 * Test whether @addr belongs to module static percpu area.
456 *
457 * Return: %true if @addr is from module static percpu area
458 */
is_module_percpu_address(unsigned long addr)459 bool is_module_percpu_address(unsigned long addr)
460 {
461 return __is_module_percpu_address(addr, NULL);
462 }
463
464 #else /* ... !CONFIG_SMP */
465
mod_percpu(struct module * mod)466 static inline void __percpu *mod_percpu(struct module *mod)
467 {
468 return NULL;
469 }
percpu_modalloc(struct module * mod,struct load_info * info)470 static int percpu_modalloc(struct module *mod, struct load_info *info)
471 {
472 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
473 if (info->sechdrs[info->index.pcpu].sh_size != 0)
474 return -ENOMEM;
475 return 0;
476 }
percpu_modfree(struct module * mod)477 static inline void percpu_modfree(struct module *mod)
478 {
479 }
find_pcpusec(struct load_info * info)480 static unsigned int find_pcpusec(struct load_info *info)
481 {
482 return 0;
483 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)484 static inline void percpu_modcopy(struct module *mod,
485 const void *from, unsigned long size)
486 {
487 /* pcpusec should be 0, and size of that section should be 0. */
488 BUG_ON(size != 0);
489 }
is_module_percpu_address(unsigned long addr)490 bool is_module_percpu_address(unsigned long addr)
491 {
492 return false;
493 }
494
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)495 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
496 {
497 return false;
498 }
499
500 #endif /* CONFIG_SMP */
501
502 #define MODINFO_ATTR(field) \
503 static void setup_modinfo_##field(struct module *mod, const char *s) \
504 { \
505 mod->field = kstrdup(s, GFP_KERNEL); \
506 } \
507 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
508 struct module_kobject *mk, char *buffer) \
509 { \
510 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
511 } \
512 static int modinfo_##field##_exists(struct module *mod) \
513 { \
514 return mod->field != NULL; \
515 } \
516 static void free_modinfo_##field(struct module *mod) \
517 { \
518 kfree(mod->field); \
519 mod->field = NULL; \
520 } \
521 static struct module_attribute modinfo_##field = { \
522 .attr = { .name = __stringify(field), .mode = 0444 }, \
523 .show = show_modinfo_##field, \
524 .setup = setup_modinfo_##field, \
525 .test = modinfo_##field##_exists, \
526 .free = free_modinfo_##field, \
527 };
528
529 MODINFO_ATTR(version);
530 MODINFO_ATTR(srcversion);
531 MODINFO_ATTR(scmversion);
532
533 static struct {
534 char name[MODULE_NAME_LEN + 1];
535 char taints[MODULE_FLAGS_BUF_SIZE];
536 } last_unloaded_module;
537
538 #ifdef CONFIG_MODULE_UNLOAD
539
540 EXPORT_TRACEPOINT_SYMBOL(module_get);
541
542 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
543 #define MODULE_REF_BASE 1
544
545 /* Init the unload section of the module. */
module_unload_init(struct module * mod)546 static int module_unload_init(struct module *mod)
547 {
548 /*
549 * Initialize reference counter to MODULE_REF_BASE.
550 * refcnt == 0 means module is going.
551 */
552 atomic_set(&mod->refcnt, MODULE_REF_BASE);
553
554 INIT_LIST_HEAD(&mod->source_list);
555 INIT_LIST_HEAD(&mod->target_list);
556
557 /* Hold reference count during initialization. */
558 atomic_inc(&mod->refcnt);
559
560 return 0;
561 }
562
563 /* Does a already use b? */
already_uses(struct module * a,struct module * b)564 static int already_uses(struct module *a, struct module *b)
565 {
566 struct module_use *use;
567
568 list_for_each_entry(use, &b->source_list, source_list) {
569 if (use->source == a)
570 return 1;
571 }
572 pr_debug("%s does not use %s!\n", a->name, b->name);
573 return 0;
574 }
575
576 /*
577 * Module a uses b
578 * - we add 'a' as a "source", 'b' as a "target" of module use
579 * - the module_use is added to the list of 'b' sources (so
580 * 'b' can walk the list to see who sourced them), and of 'a'
581 * targets (so 'a' can see what modules it targets).
582 */
add_module_usage(struct module * a,struct module * b)583 static int add_module_usage(struct module *a, struct module *b)
584 {
585 struct module_use *use;
586
587 pr_debug("Allocating new usage for %s.\n", a->name);
588 use = kmalloc(sizeof(*use), GFP_ATOMIC);
589 if (!use)
590 return -ENOMEM;
591
592 use->source = a;
593 use->target = b;
594 list_add(&use->source_list, &b->source_list);
595 list_add(&use->target_list, &a->target_list);
596 return 0;
597 }
598
599 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)600 static int ref_module(struct module *a, struct module *b)
601 {
602 int err;
603
604 if (b == NULL || already_uses(a, b))
605 return 0;
606
607 /* If module isn't available, we fail. */
608 err = strong_try_module_get(b);
609 if (err)
610 return err;
611
612 err = add_module_usage(a, b);
613 if (err) {
614 module_put(b);
615 return err;
616 }
617 return 0;
618 }
619
620 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)621 static void module_unload_free(struct module *mod)
622 {
623 struct module_use *use, *tmp;
624
625 mutex_lock(&module_mutex);
626 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
627 struct module *i = use->target;
628 pr_debug("%s unusing %s\n", mod->name, i->name);
629 module_put(i);
630 list_del(&use->source_list);
631 list_del(&use->target_list);
632 kfree(use);
633 }
634 mutex_unlock(&module_mutex);
635 }
636
637 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)638 static inline int try_force_unload(unsigned int flags)
639 {
640 int ret = (flags & O_TRUNC);
641 if (ret)
642 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
643 return ret;
644 }
645 #else
try_force_unload(unsigned int flags)646 static inline int try_force_unload(unsigned int flags)
647 {
648 return 0;
649 }
650 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
651
652 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)653 static int try_release_module_ref(struct module *mod)
654 {
655 int ret;
656
657 /* Try to decrement refcnt which we set at loading */
658 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
659 BUG_ON(ret < 0);
660 if (ret)
661 /* Someone can put this right now, recover with checking */
662 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
663
664 return ret;
665 }
666
try_stop_module(struct module * mod,int flags,int * forced)667 static int try_stop_module(struct module *mod, int flags, int *forced)
668 {
669 /* If it's not unused, quit unless we're forcing. */
670 if (try_release_module_ref(mod) != 0) {
671 *forced = try_force_unload(flags);
672 if (!(*forced))
673 return -EWOULDBLOCK;
674 }
675
676 /* Mark it as dying. */
677 mod->state = MODULE_STATE_GOING;
678
679 return 0;
680 }
681
682 /**
683 * module_refcount() - return the refcount or -1 if unloading
684 * @mod: the module we're checking
685 *
686 * Return:
687 * -1 if the module is in the process of unloading
688 * otherwise the number of references in the kernel to the module
689 */
module_refcount(struct module * mod)690 int module_refcount(struct module *mod)
691 {
692 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
693 }
694 EXPORT_SYMBOL(module_refcount);
695
696 /* This exists whether we can unload or not */
697 static void free_module(struct module *mod);
698
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)699 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
700 unsigned int, flags)
701 {
702 struct module *mod;
703 char name[MODULE_NAME_LEN];
704 char buf[MODULE_FLAGS_BUF_SIZE];
705 int ret, forced = 0;
706
707 if (!capable(CAP_SYS_MODULE) || modules_disabled)
708 return -EPERM;
709
710 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
711 return -EFAULT;
712 name[MODULE_NAME_LEN-1] = '\0';
713
714 audit_log_kern_module(name);
715
716 if (mutex_lock_interruptible(&module_mutex) != 0)
717 return -EINTR;
718
719 mod = find_module(name);
720 if (!mod) {
721 ret = -ENOENT;
722 goto out;
723 }
724
725 if (!list_empty(&mod->source_list)) {
726 /* Other modules depend on us: get rid of them first. */
727 ret = -EWOULDBLOCK;
728 goto out;
729 }
730
731 /* Doing init or already dying? */
732 if (mod->state != MODULE_STATE_LIVE) {
733 /* FIXME: if (force), slam module count damn the torpedoes */
734 pr_debug("%s already dying\n", mod->name);
735 ret = -EBUSY;
736 goto out;
737 }
738
739 /* If it has an init func, it must have an exit func to unload */
740 if (mod->init && !mod->exit) {
741 forced = try_force_unload(flags);
742 if (!forced) {
743 /* This module can't be removed */
744 ret = -EBUSY;
745 goto out;
746 }
747 }
748
749 ret = try_stop_module(mod, flags, &forced);
750 if (ret != 0)
751 goto out;
752
753 mutex_unlock(&module_mutex);
754 /* Final destruction now no one is using it. */
755 if (mod->exit != NULL)
756 mod->exit();
757 blocking_notifier_call_chain(&module_notify_list,
758 MODULE_STATE_GOING, mod);
759 klp_module_going(mod);
760 ftrace_release_mod(mod);
761
762 async_synchronize_full();
763
764 /* Store the name and taints of the last unloaded module for diagnostic purposes */
765 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
766 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
767
768 free_module(mod);
769 /* someone could wait for the module in add_unformed_module() */
770 wake_up_all(&module_wq);
771 return 0;
772 out:
773 mutex_unlock(&module_mutex);
774 return ret;
775 }
776
__symbol_put(const char * symbol)777 void __symbol_put(const char *symbol)
778 {
779 struct find_symbol_arg fsa = {
780 .name = symbol,
781 .gplok = true,
782 };
783
784 preempt_disable();
785 BUG_ON(!find_symbol(&fsa));
786 module_put(fsa.owner);
787 preempt_enable();
788 }
789 EXPORT_SYMBOL(__symbol_put);
790
791 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)792 void symbol_put_addr(void *addr)
793 {
794 struct module *modaddr;
795 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
796
797 if (core_kernel_text(a))
798 return;
799
800 /*
801 * Even though we hold a reference on the module; we still need to
802 * disable preemption in order to safely traverse the data structure.
803 */
804 preempt_disable();
805 modaddr = __module_text_address(a);
806 BUG_ON(!modaddr);
807 module_put(modaddr);
808 preempt_enable();
809 }
810 EXPORT_SYMBOL_GPL(symbol_put_addr);
811
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)812 static ssize_t show_refcnt(struct module_attribute *mattr,
813 struct module_kobject *mk, char *buffer)
814 {
815 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
816 }
817
818 static struct module_attribute modinfo_refcnt =
819 __ATTR(refcnt, 0444, show_refcnt, NULL);
820
__module_get(struct module * module)821 void __module_get(struct module *module)
822 {
823 if (module) {
824 atomic_inc(&module->refcnt);
825 trace_module_get(module, _RET_IP_);
826 }
827 }
828 EXPORT_SYMBOL(__module_get);
829
try_module_get(struct module * module)830 bool try_module_get(struct module *module)
831 {
832 bool ret = true;
833
834 if (module) {
835 /* Note: here, we can fail to get a reference */
836 if (likely(module_is_live(module) &&
837 atomic_inc_not_zero(&module->refcnt) != 0))
838 trace_module_get(module, _RET_IP_);
839 else
840 ret = false;
841 }
842 return ret;
843 }
844 EXPORT_SYMBOL(try_module_get);
845
module_put(struct module * module)846 void module_put(struct module *module)
847 {
848 int ret;
849
850 if (module) {
851 ret = atomic_dec_if_positive(&module->refcnt);
852 WARN_ON(ret < 0); /* Failed to put refcount */
853 trace_module_put(module, _RET_IP_);
854 }
855 }
856 EXPORT_SYMBOL(module_put);
857
858 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)859 static inline void module_unload_free(struct module *mod)
860 {
861 }
862
ref_module(struct module * a,struct module * b)863 static int ref_module(struct module *a, struct module *b)
864 {
865 return strong_try_module_get(b);
866 }
867
module_unload_init(struct module * mod)868 static inline int module_unload_init(struct module *mod)
869 {
870 return 0;
871 }
872 #endif /* CONFIG_MODULE_UNLOAD */
873
module_flags_taint(unsigned long taints,char * buf)874 size_t module_flags_taint(unsigned long taints, char *buf)
875 {
876 size_t l = 0;
877 int i;
878
879 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
880 if (taint_flags[i].module && test_bit(i, &taints))
881 buf[l++] = taint_flags[i].c_true;
882 }
883
884 return l;
885 }
886
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)887 static ssize_t show_initstate(struct module_attribute *mattr,
888 struct module_kobject *mk, char *buffer)
889 {
890 const char *state = "unknown";
891
892 switch (mk->mod->state) {
893 case MODULE_STATE_LIVE:
894 state = "live";
895 break;
896 case MODULE_STATE_COMING:
897 state = "coming";
898 break;
899 case MODULE_STATE_GOING:
900 state = "going";
901 break;
902 default:
903 BUG();
904 }
905 return sprintf(buffer, "%s\n", state);
906 }
907
908 static struct module_attribute modinfo_initstate =
909 __ATTR(initstate, 0444, show_initstate, NULL);
910
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)911 static ssize_t store_uevent(struct module_attribute *mattr,
912 struct module_kobject *mk,
913 const char *buffer, size_t count)
914 {
915 int rc;
916
917 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
918 return rc ? rc : count;
919 }
920
921 struct module_attribute module_uevent =
922 __ATTR(uevent, 0200, NULL, store_uevent);
923
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)924 static ssize_t show_coresize(struct module_attribute *mattr,
925 struct module_kobject *mk, char *buffer)
926 {
927 unsigned int size = mk->mod->mem[MOD_TEXT].size;
928
929 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
930 for_class_mod_mem_type(type, core_data)
931 size += mk->mod->mem[type].size;
932 }
933 return sprintf(buffer, "%u\n", size);
934 }
935
936 static struct module_attribute modinfo_coresize =
937 __ATTR(coresize, 0444, show_coresize, NULL);
938
939 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)940 static ssize_t show_datasize(struct module_attribute *mattr,
941 struct module_kobject *mk, char *buffer)
942 {
943 unsigned int size = 0;
944
945 for_class_mod_mem_type(type, core_data)
946 size += mk->mod->mem[type].size;
947 return sprintf(buffer, "%u\n", size);
948 }
949
950 static struct module_attribute modinfo_datasize =
951 __ATTR(datasize, 0444, show_datasize, NULL);
952 #endif
953
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)954 static ssize_t show_initsize(struct module_attribute *mattr,
955 struct module_kobject *mk, char *buffer)
956 {
957 unsigned int size = 0;
958
959 for_class_mod_mem_type(type, init)
960 size += mk->mod->mem[type].size;
961 return sprintf(buffer, "%u\n", size);
962 }
963
964 static struct module_attribute modinfo_initsize =
965 __ATTR(initsize, 0444, show_initsize, NULL);
966
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)967 static ssize_t show_taint(struct module_attribute *mattr,
968 struct module_kobject *mk, char *buffer)
969 {
970 size_t l;
971
972 l = module_flags_taint(mk->mod->taints, buffer);
973 buffer[l++] = '\n';
974 return l;
975 }
976
977 static struct module_attribute modinfo_taint =
978 __ATTR(taint, 0444, show_taint, NULL);
979
980 struct module_attribute *modinfo_attrs[] = {
981 &module_uevent,
982 &modinfo_version,
983 &modinfo_srcversion,
984 &modinfo_scmversion,
985 &modinfo_initstate,
986 &modinfo_coresize,
987 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
988 &modinfo_datasize,
989 #endif
990 &modinfo_initsize,
991 &modinfo_taint,
992 #ifdef CONFIG_MODULE_UNLOAD
993 &modinfo_refcnt,
994 #endif
995 NULL,
996 };
997
998 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
999
1000 static const char vermagic[] = VERMAGIC_STRING;
1001
try_to_force_load(struct module * mod,const char * reason)1002 int try_to_force_load(struct module *mod, const char *reason)
1003 {
1004 #ifdef CONFIG_MODULE_FORCE_LOAD
1005 if (!test_taint(TAINT_FORCED_MODULE))
1006 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1007 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1008 return 0;
1009 #else
1010 return -ENOEXEC;
1011 #endif
1012 }
1013
1014 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1015 char *module_next_tag_pair(char *string, unsigned long *secsize)
1016 {
1017 /* Skip non-zero chars */
1018 while (string[0]) {
1019 string++;
1020 if ((*secsize)-- <= 1)
1021 return NULL;
1022 }
1023
1024 /* Skip any zero padding. */
1025 while (!string[0]) {
1026 string++;
1027 if ((*secsize)-- <= 1)
1028 return NULL;
1029 }
1030 return string;
1031 }
1032
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1033 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1034 char *prev)
1035 {
1036 char *p;
1037 unsigned int taglen = strlen(tag);
1038 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1039 unsigned long size = infosec->sh_size;
1040
1041 /*
1042 * get_modinfo() calls made before rewrite_section_headers()
1043 * must use sh_offset, as sh_addr isn't set!
1044 */
1045 char *modinfo = (char *)info->hdr + infosec->sh_offset;
1046
1047 if (prev) {
1048 size -= prev - modinfo;
1049 modinfo = module_next_tag_pair(prev, &size);
1050 }
1051
1052 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1053 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1054 return p + taglen + 1;
1055 }
1056 return NULL;
1057 }
1058
get_modinfo(const struct load_info * info,const char * tag)1059 static char *get_modinfo(const struct load_info *info, const char *tag)
1060 {
1061 return get_next_modinfo(info, tag, NULL);
1062 }
1063
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1064 static int verify_namespace_is_imported(const struct load_info *info,
1065 const struct kernel_symbol *sym,
1066 struct module *mod)
1067 {
1068 const char *namespace;
1069 char *imported_namespace;
1070
1071 namespace = kernel_symbol_namespace(sym);
1072 if (namespace && namespace[0]) {
1073 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1074 if (strcmp(namespace, imported_namespace) == 0)
1075 return 0;
1076 }
1077 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1078 pr_warn(
1079 #else
1080 pr_err(
1081 #endif
1082 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1083 mod->name, kernel_symbol_name(sym), namespace);
1084 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1085 return -EINVAL;
1086 #endif
1087 }
1088 return 0;
1089 }
1090
inherit_taint(struct module * mod,struct module * owner,const char * name)1091 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1092 {
1093 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1094 return true;
1095
1096 if (mod->using_gplonly_symbols) {
1097 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1098 mod->name, name, owner->name);
1099 return false;
1100 }
1101
1102 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1103 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1104 mod->name, name, owner->name);
1105 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1106 }
1107 return true;
1108 }
1109
1110 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1111 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1112 const struct load_info *info,
1113 const char *name,
1114 char ownername[])
1115 {
1116 bool is_vendor_module;
1117 bool is_vendor_exported_symbol;
1118 struct find_symbol_arg fsa = {
1119 .name = name,
1120 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1121 .warn = true,
1122 };
1123 int err;
1124
1125 /*
1126 * The module_mutex should not be a heavily contended lock;
1127 * if we get the occasional sleep here, we'll go an extra iteration
1128 * in the wait_event_interruptible(), which is harmless.
1129 */
1130 sched_annotate_sleep();
1131 mutex_lock(&module_mutex);
1132 if (!find_symbol(&fsa))
1133 goto unlock;
1134
1135 if (fsa.license == GPL_ONLY)
1136 mod->using_gplonly_symbols = true;
1137
1138 if (!inherit_taint(mod, fsa.owner, name)) {
1139 fsa.sym = NULL;
1140 goto getname;
1141 }
1142
1143 if (!check_version(info, name, mod, fsa.crc)) {
1144 fsa.sym = ERR_PTR(-EINVAL);
1145 goto getname;
1146 }
1147
1148 err = verify_namespace_is_imported(info, fsa.sym, mod);
1149 if (err) {
1150 fsa.sym = ERR_PTR(err);
1151 goto getname;
1152 }
1153
1154 /*
1155 * ANDROID GKI
1156 *
1157 * Vendor (i.e., unsigned) modules are only permitted to use:
1158 *
1159 * 1. symbols exported by other vendor (unsigned) modules
1160 * 2. unprotected symbols
1161 */
1162 is_vendor_module = !mod->sig_ok;
1163 is_vendor_exported_symbol = fsa.owner && !fsa.owner->sig_ok;
1164
1165 if (is_vendor_module &&
1166 !is_vendor_exported_symbol &&
1167 !gki_is_module_unprotected_symbol(name)) {
1168 fsa.sym = ERR_PTR(-EACCES);
1169 goto getname;
1170 }
1171
1172 err = ref_module(mod, fsa.owner);
1173 if (err) {
1174 fsa.sym = ERR_PTR(err);
1175 goto getname;
1176 }
1177
1178 getname:
1179 /* We must make copy under the lock if we failed to get ref. */
1180 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1181 unlock:
1182 mutex_unlock(&module_mutex);
1183 return fsa.sym;
1184 }
1185
1186 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1187 resolve_symbol_wait(struct module *mod,
1188 const struct load_info *info,
1189 const char *name)
1190 {
1191 const struct kernel_symbol *ksym;
1192 char owner[MODULE_NAME_LEN];
1193
1194 if (wait_event_interruptible_timeout(module_wq,
1195 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1196 || PTR_ERR(ksym) != -EBUSY,
1197 30 * HZ) <= 0) {
1198 pr_warn("%s: gave up waiting for init of module %s.\n",
1199 mod->name, owner);
1200 }
1201 return ksym;
1202 }
1203
module_memfree(void * module_region)1204 void __weak module_memfree(void *module_region)
1205 {
1206 /*
1207 * This memory may be RO, and freeing RO memory in an interrupt is not
1208 * supported by vmalloc.
1209 */
1210 WARN_ON(in_interrupt());
1211 vfree(module_region);
1212 }
1213
module_arch_cleanup(struct module * mod)1214 void __weak module_arch_cleanup(struct module *mod)
1215 {
1216 }
1217
module_arch_freeing_init(struct module * mod)1218 void __weak module_arch_freeing_init(struct module *mod)
1219 {
1220 }
1221
mod_mem_use_vmalloc(enum mod_mem_type type)1222 static bool mod_mem_use_vmalloc(enum mod_mem_type type)
1223 {
1224 return IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC) &&
1225 mod_mem_type_is_core_data(type);
1226 }
1227
module_memory_alloc(unsigned int size,enum mod_mem_type type)1228 static void *module_memory_alloc(unsigned int size, enum mod_mem_type type)
1229 {
1230 if (mod_mem_use_vmalloc(type))
1231 return vzalloc(size);
1232 return module_alloc(size);
1233 }
1234
module_memory_free(void * ptr,enum mod_mem_type type)1235 static void module_memory_free(void *ptr, enum mod_mem_type type)
1236 {
1237 if (mod_mem_use_vmalloc(type))
1238 vfree(ptr);
1239 else
1240 module_memfree(ptr);
1241 }
1242
free_mod_mem(struct module * mod)1243 static void free_mod_mem(struct module *mod)
1244 {
1245 for_each_mod_mem_type(type) {
1246 struct module_memory *mod_mem = &mod->mem[type];
1247
1248 if (type == MOD_DATA)
1249 continue;
1250
1251 /* Free lock-classes; relies on the preceding sync_rcu(). */
1252 lockdep_free_key_range(mod_mem->base, mod_mem->size);
1253 if (mod_mem->size)
1254 module_memory_free(mod_mem->base, type);
1255 }
1256
1257 /* MOD_DATA hosts mod, so free it at last */
1258 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1259 module_memory_free(mod->mem[MOD_DATA].base, MOD_DATA);
1260 }
1261
1262 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1263 static void free_module(struct module *mod)
1264 {
1265 trace_module_free(mod);
1266
1267 mod_sysfs_teardown(mod);
1268
1269 /*
1270 * We leave it in list to prevent duplicate loads, but make sure
1271 * that noone uses it while it's being deconstructed.
1272 */
1273 mutex_lock(&module_mutex);
1274 mod->state = MODULE_STATE_UNFORMED;
1275 mutex_unlock(&module_mutex);
1276
1277 /* Arch-specific cleanup. */
1278 module_arch_cleanup(mod);
1279
1280 /* Module unload stuff */
1281 module_unload_free(mod);
1282
1283 /* Free any allocated parameters. */
1284 destroy_params(mod->kp, mod->num_kp);
1285
1286 if (is_livepatch_module(mod))
1287 free_module_elf(mod);
1288
1289 /* Now we can delete it from the lists */
1290 mutex_lock(&module_mutex);
1291 /* Unlink carefully: kallsyms could be walking list. */
1292 list_del_rcu(&mod->list);
1293 mod_tree_remove(mod);
1294 /* Remove this module from bug list, this uses list_del_rcu */
1295 module_bug_cleanup(mod);
1296 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1297 synchronize_rcu();
1298 if (try_add_tainted_module(mod))
1299 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1300 mod->name);
1301 mutex_unlock(&module_mutex);
1302
1303 /* This may be empty, but that's OK */
1304 module_arch_freeing_init(mod);
1305 kfree(mod->args);
1306 percpu_modfree(mod);
1307
1308 free_mod_mem(mod);
1309 }
1310
__symbol_get(const char * symbol)1311 void *__symbol_get(const char *symbol)
1312 {
1313 struct find_symbol_arg fsa = {
1314 .name = symbol,
1315 .gplok = true,
1316 .warn = true,
1317 };
1318
1319 preempt_disable();
1320 if (!find_symbol(&fsa))
1321 goto fail;
1322 if (fsa.license != GPL_ONLY) {
1323 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1324 symbol);
1325 goto fail;
1326 }
1327 if (strong_try_module_get(fsa.owner))
1328 goto fail;
1329 preempt_enable();
1330 return (void *)kernel_symbol_value(fsa.sym);
1331 fail:
1332 preempt_enable();
1333 return NULL;
1334 }
1335 EXPORT_SYMBOL_GPL(__symbol_get);
1336
1337 /*
1338 * Ensure that an exported symbol [global namespace] does not already exist
1339 * in the kernel or in some other module's exported symbol table.
1340 *
1341 * You must hold the module_mutex.
1342 */
verify_exported_symbols(struct module * mod)1343 static int verify_exported_symbols(struct module *mod)
1344 {
1345 unsigned int i;
1346 const struct kernel_symbol *s;
1347 struct {
1348 const struct kernel_symbol *sym;
1349 unsigned int num;
1350 } arr[] = {
1351 { mod->syms, mod->num_syms },
1352 { mod->gpl_syms, mod->num_gpl_syms },
1353 };
1354
1355 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1356 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1357 struct find_symbol_arg fsa = {
1358 .name = kernel_symbol_name(s),
1359 .gplok = true,
1360 };
1361
1362 if (!mod->sig_ok && gki_is_module_protected_export(
1363 kernel_symbol_name(s))) {
1364 pr_err("%s: exports protected symbol %s\n",
1365 mod->name, kernel_symbol_name(s));
1366 return -EACCES;
1367 }
1368
1369 if (find_symbol(&fsa)) {
1370 pr_err("%s: exports duplicate symbol %s"
1371 " (owned by %s)\n",
1372 mod->name, kernel_symbol_name(s),
1373 module_name(fsa.owner));
1374 return -ENOEXEC;
1375 }
1376 }
1377 }
1378 return 0;
1379 }
1380
ignore_undef_symbol(Elf_Half emachine,const char * name)1381 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1382 {
1383 /*
1384 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1385 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1386 * i386 has a similar problem but may not deserve a fix.
1387 *
1388 * If we ever have to ignore many symbols, consider refactoring the code to
1389 * only warn if referenced by a relocation.
1390 */
1391 if (emachine == EM_386 || emachine == EM_X86_64)
1392 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1393 return false;
1394 }
1395
1396 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1397 static int simplify_symbols(struct module *mod, const struct load_info *info)
1398 {
1399 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1400 Elf_Sym *sym = (void *)symsec->sh_addr;
1401 unsigned long secbase;
1402 unsigned int i;
1403 int ret = 0;
1404 const struct kernel_symbol *ksym;
1405
1406 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1407 const char *name = info->strtab + sym[i].st_name;
1408
1409 switch (sym[i].st_shndx) {
1410 case SHN_COMMON:
1411 /* Ignore common symbols */
1412 if (!strncmp(name, "__gnu_lto", 9))
1413 break;
1414
1415 /*
1416 * We compiled with -fno-common. These are not
1417 * supposed to happen.
1418 */
1419 pr_debug("Common symbol: %s\n", name);
1420 pr_warn("%s: please compile with -fno-common\n",
1421 mod->name);
1422 ret = -ENOEXEC;
1423 break;
1424
1425 case SHN_ABS:
1426 /* Don't need to do anything */
1427 pr_debug("Absolute symbol: 0x%08lx %s\n",
1428 (long)sym[i].st_value, name);
1429 break;
1430
1431 case SHN_LIVEPATCH:
1432 /* Livepatch symbols are resolved by livepatch */
1433 break;
1434
1435 case SHN_UNDEF:
1436 ksym = resolve_symbol_wait(mod, info, name);
1437 /* Ok if resolved. */
1438 if (ksym && !IS_ERR(ksym)) {
1439 sym[i].st_value = kernel_symbol_value(ksym);
1440 break;
1441 }
1442
1443 /* Ok if weak or ignored. */
1444 if (!ksym &&
1445 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1446 ignore_undef_symbol(info->hdr->e_machine, name)))
1447 break;
1448
1449 if (PTR_ERR(ksym) == -EACCES) {
1450 ret = -EACCES;
1451 pr_warn("%s: Protected symbol: %s (err %d)\n",
1452 mod->name, name, ret);
1453 } else {
1454 ret = PTR_ERR(ksym) ?: -ENOENT;
1455 pr_warn("%s: Unknown symbol %s (err %d)\n",
1456 mod->name, name, ret);
1457 }
1458 break;
1459
1460 default:
1461 /* Divert to percpu allocation if a percpu var. */
1462 if (sym[i].st_shndx == info->index.pcpu)
1463 secbase = (unsigned long)mod_percpu(mod);
1464 else
1465 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1466 sym[i].st_value += secbase;
1467 break;
1468 }
1469 }
1470
1471 return ret;
1472 }
1473
apply_relocations(struct module * mod,const struct load_info * info)1474 static int apply_relocations(struct module *mod, const struct load_info *info)
1475 {
1476 unsigned int i;
1477 int err = 0;
1478
1479 /* Now do relocations. */
1480 for (i = 1; i < info->hdr->e_shnum; i++) {
1481 unsigned int infosec = info->sechdrs[i].sh_info;
1482
1483 /* Not a valid relocation section? */
1484 if (infosec >= info->hdr->e_shnum)
1485 continue;
1486
1487 /* Don't bother with non-allocated sections */
1488 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1489 continue;
1490
1491 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1492 err = klp_apply_section_relocs(mod, info->sechdrs,
1493 info->secstrings,
1494 info->strtab,
1495 info->index.sym, i,
1496 NULL);
1497 else if (info->sechdrs[i].sh_type == SHT_REL)
1498 err = apply_relocate(info->sechdrs, info->strtab,
1499 info->index.sym, i, mod);
1500 else if (info->sechdrs[i].sh_type == SHT_RELA)
1501 err = apply_relocate_add(info->sechdrs, info->strtab,
1502 info->index.sym, i, mod);
1503 if (err < 0)
1504 break;
1505 }
1506 return err;
1507 }
1508
1509 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1510 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1511 unsigned int section)
1512 {
1513 /* default implementation just returns zero */
1514 return 0;
1515 }
1516
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1517 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1518 Elf_Shdr *sechdr, unsigned int section)
1519 {
1520 long offset;
1521 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1522
1523 mod->mem[type].size += arch_mod_section_prepend(mod, section);
1524 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1525 mod->mem[type].size = offset + sechdr->sh_size;
1526
1527 WARN_ON_ONCE(offset & mask);
1528 return offset | mask;
1529 }
1530
module_init_layout_section(const char * sname)1531 bool module_init_layout_section(const char *sname)
1532 {
1533 #ifndef CONFIG_MODULE_UNLOAD
1534 if (module_exit_section(sname))
1535 return true;
1536 #endif
1537 return module_init_section(sname);
1538 }
1539
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1540 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1541 {
1542 unsigned int m, i;
1543
1544 static const unsigned long masks[][2] = {
1545 /*
1546 * NOTE: all executable code must be the first section
1547 * in this array; otherwise modify the text_size
1548 * finder in the two loops below
1549 */
1550 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1551 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1552 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1553 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1554 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1555 };
1556 static const int core_m_to_mem_type[] = {
1557 MOD_TEXT,
1558 MOD_RODATA,
1559 MOD_RO_AFTER_INIT,
1560 MOD_DATA,
1561 MOD_DATA,
1562 };
1563 static const int init_m_to_mem_type[] = {
1564 MOD_INIT_TEXT,
1565 MOD_INIT_RODATA,
1566 MOD_INVALID,
1567 MOD_INIT_DATA,
1568 MOD_INIT_DATA,
1569 };
1570
1571 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1572 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1573
1574 for (i = 0; i < info->hdr->e_shnum; ++i) {
1575 Elf_Shdr *s = &info->sechdrs[i];
1576 const char *sname = info->secstrings + s->sh_name;
1577
1578 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1579 || (s->sh_flags & masks[m][1])
1580 || s->sh_entsize != ~0UL
1581 || is_init != module_init_layout_section(sname))
1582 continue;
1583
1584 if (WARN_ON_ONCE(type == MOD_INVALID))
1585 continue;
1586
1587 s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1588 pr_debug("\t%s\n", sname);
1589 }
1590 }
1591 }
1592
1593 /*
1594 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1595 * might -- code, read-only data, read-write data, small data. Tally
1596 * sizes, and place the offsets into sh_entsize fields: high bit means it
1597 * belongs in init.
1598 */
layout_sections(struct module * mod,struct load_info * info)1599 static void layout_sections(struct module *mod, struct load_info *info)
1600 {
1601 unsigned int i;
1602
1603 for (i = 0; i < info->hdr->e_shnum; i++)
1604 info->sechdrs[i].sh_entsize = ~0UL;
1605
1606 pr_debug("Core section allocation order for %s:\n", mod->name);
1607 __layout_sections(mod, info, false);
1608
1609 pr_debug("Init section allocation order for %s:\n", mod->name);
1610 __layout_sections(mod, info, true);
1611 }
1612
module_license_taint_check(struct module * mod,const char * license)1613 static void module_license_taint_check(struct module *mod, const char *license)
1614 {
1615 if (!license)
1616 license = "unspecified";
1617
1618 if (!license_is_gpl_compatible(license)) {
1619 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1620 pr_warn("%s: module license '%s' taints kernel.\n",
1621 mod->name, license);
1622 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1623 LOCKDEP_NOW_UNRELIABLE);
1624 }
1625 }
1626
setup_modinfo(struct module * mod,struct load_info * info)1627 static void setup_modinfo(struct module *mod, struct load_info *info)
1628 {
1629 struct module_attribute *attr;
1630 int i;
1631
1632 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1633 if (attr->setup)
1634 attr->setup(mod, get_modinfo(info, attr->attr.name));
1635 }
1636 }
1637
free_modinfo(struct module * mod)1638 static void free_modinfo(struct module *mod)
1639 {
1640 struct module_attribute *attr;
1641 int i;
1642
1643 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1644 if (attr->free)
1645 attr->free(mod);
1646 }
1647 }
1648
module_alloc(unsigned long size)1649 void * __weak module_alloc(unsigned long size)
1650 {
1651 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
1652 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
1653 NUMA_NO_NODE, __builtin_return_address(0));
1654 }
1655
module_init_section(const char * name)1656 bool __weak module_init_section(const char *name)
1657 {
1658 return strstarts(name, ".init");
1659 }
1660
module_exit_section(const char * name)1661 bool __weak module_exit_section(const char *name)
1662 {
1663 return strstarts(name, ".exit");
1664 }
1665
validate_section_offset(struct load_info * info,Elf_Shdr * shdr)1666 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
1667 {
1668 #if defined(CONFIG_64BIT)
1669 unsigned long long secend;
1670 #else
1671 unsigned long secend;
1672 #endif
1673
1674 /*
1675 * Check for both overflow and offset/size being
1676 * too large.
1677 */
1678 secend = shdr->sh_offset + shdr->sh_size;
1679 if (secend < shdr->sh_offset || secend > info->len)
1680 return -ENOEXEC;
1681
1682 return 0;
1683 }
1684
1685 /*
1686 * Check userspace passed ELF module against our expectations, and cache
1687 * useful variables for further processing as we go.
1688 *
1689 * This does basic validity checks against section offsets and sizes, the
1690 * section name string table, and the indices used for it (sh_name).
1691 *
1692 * As a last step, since we're already checking the ELF sections we cache
1693 * useful variables which will be used later for our convenience:
1694 *
1695 * o pointers to section headers
1696 * o cache the modinfo symbol section
1697 * o cache the string symbol section
1698 * o cache the module section
1699 *
1700 * As a last step we set info->mod to the temporary copy of the module in
1701 * info->hdr. The final one will be allocated in move_module(). Any
1702 * modifications we make to our copy of the module will be carried over
1703 * to the final minted module.
1704 */
elf_validity_cache_copy(struct load_info * info,int flags)1705 static int elf_validity_cache_copy(struct load_info *info, int flags)
1706 {
1707 unsigned int i;
1708 Elf_Shdr *shdr, *strhdr;
1709 int err;
1710 unsigned int num_mod_secs = 0, mod_idx;
1711 unsigned int num_info_secs = 0, info_idx;
1712 unsigned int num_sym_secs = 0, sym_idx;
1713
1714 if (info->len < sizeof(*(info->hdr))) {
1715 pr_err("Invalid ELF header len %lu\n", info->len);
1716 goto no_exec;
1717 }
1718
1719 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1720 pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1721 goto no_exec;
1722 }
1723 if (info->hdr->e_type != ET_REL) {
1724 pr_err("Invalid ELF header type: %u != %u\n",
1725 info->hdr->e_type, ET_REL);
1726 goto no_exec;
1727 }
1728 if (!elf_check_arch(info->hdr)) {
1729 pr_err("Invalid architecture in ELF header: %u\n",
1730 info->hdr->e_machine);
1731 goto no_exec;
1732 }
1733 if (!module_elf_check_arch(info->hdr)) {
1734 pr_err("Invalid module architecture in ELF header: %u\n",
1735 info->hdr->e_machine);
1736 goto no_exec;
1737 }
1738 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1739 pr_err("Invalid ELF section header size\n");
1740 goto no_exec;
1741 }
1742
1743 /*
1744 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1745 * known and small. So e_shnum * sizeof(Elf_Shdr)
1746 * will not overflow unsigned long on any platform.
1747 */
1748 if (info->hdr->e_shoff >= info->len
1749 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1750 info->len - info->hdr->e_shoff)) {
1751 pr_err("Invalid ELF section header overflow\n");
1752 goto no_exec;
1753 }
1754
1755 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1756
1757 /*
1758 * Verify if the section name table index is valid.
1759 */
1760 if (info->hdr->e_shstrndx == SHN_UNDEF
1761 || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1762 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1763 info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1764 info->hdr->e_shnum);
1765 goto no_exec;
1766 }
1767
1768 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1769 err = validate_section_offset(info, strhdr);
1770 if (err < 0) {
1771 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
1772 return err;
1773 }
1774
1775 /*
1776 * The section name table must be NUL-terminated, as required
1777 * by the spec. This makes strcmp and pr_* calls that access
1778 * strings in the section safe.
1779 */
1780 info->secstrings = (void *)info->hdr + strhdr->sh_offset;
1781 if (strhdr->sh_size == 0) {
1782 pr_err("empty section name table\n");
1783 goto no_exec;
1784 }
1785 if (info->secstrings[strhdr->sh_size - 1] != '\0') {
1786 pr_err("ELF Spec violation: section name table isn't null terminated\n");
1787 goto no_exec;
1788 }
1789
1790 /*
1791 * The code assumes that section 0 has a length of zero and
1792 * an addr of zero, so check for it.
1793 */
1794 if (info->sechdrs[0].sh_type != SHT_NULL
1795 || info->sechdrs[0].sh_size != 0
1796 || info->sechdrs[0].sh_addr != 0) {
1797 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1798 info->sechdrs[0].sh_type);
1799 goto no_exec;
1800 }
1801
1802 for (i = 1; i < info->hdr->e_shnum; i++) {
1803 shdr = &info->sechdrs[i];
1804 switch (shdr->sh_type) {
1805 case SHT_NULL:
1806 case SHT_NOBITS:
1807 continue;
1808 case SHT_SYMTAB:
1809 if (shdr->sh_link == SHN_UNDEF
1810 || shdr->sh_link >= info->hdr->e_shnum) {
1811 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
1812 shdr->sh_link, shdr->sh_link,
1813 info->hdr->e_shnum);
1814 goto no_exec;
1815 }
1816 num_sym_secs++;
1817 sym_idx = i;
1818 fallthrough;
1819 default:
1820 err = validate_section_offset(info, shdr);
1821 if (err < 0) {
1822 pr_err("Invalid ELF section in module (section %u type %u)\n",
1823 i, shdr->sh_type);
1824 return err;
1825 }
1826 if (strcmp(info->secstrings + shdr->sh_name,
1827 ".gnu.linkonce.this_module") == 0) {
1828 num_mod_secs++;
1829 mod_idx = i;
1830 } else if (strcmp(info->secstrings + shdr->sh_name,
1831 ".modinfo") == 0) {
1832 num_info_secs++;
1833 info_idx = i;
1834 }
1835
1836 if (shdr->sh_flags & SHF_ALLOC) {
1837 if (shdr->sh_name >= strhdr->sh_size) {
1838 pr_err("Invalid ELF section name in module (section %u type %u)\n",
1839 i, shdr->sh_type);
1840 return -ENOEXEC;
1841 }
1842 }
1843 break;
1844 }
1845 }
1846
1847 if (num_info_secs > 1) {
1848 pr_err("Only one .modinfo section must exist.\n");
1849 goto no_exec;
1850 } else if (num_info_secs == 1) {
1851 /* Try to find a name early so we can log errors with a module name */
1852 info->index.info = info_idx;
1853 info->name = get_modinfo(info, "name");
1854 }
1855
1856 if (num_sym_secs != 1) {
1857 pr_warn("%s: module has no symbols (stripped?)\n",
1858 info->name ?: "(missing .modinfo section or name field)");
1859 goto no_exec;
1860 }
1861
1862 /* Sets internal symbols and strings. */
1863 info->index.sym = sym_idx;
1864 shdr = &info->sechdrs[sym_idx];
1865 info->index.str = shdr->sh_link;
1866 info->strtab = (char *)info->hdr + info->sechdrs[info->index.str].sh_offset;
1867
1868 /*
1869 * The ".gnu.linkonce.this_module" ELF section is special. It is
1870 * what modpost uses to refer to __this_module and let's use rely
1871 * on THIS_MODULE to point to &__this_module properly. The kernel's
1872 * modpost declares it on each modules's *.mod.c file. If the struct
1873 * module of the kernel changes a full kernel rebuild is required.
1874 *
1875 * We have a few expectaions for this special section, the following
1876 * code validates all this for us:
1877 *
1878 * o Only one section must exist
1879 * o We expect the kernel to always have to allocate it: SHF_ALLOC
1880 * o The section size must match the kernel's run time's struct module
1881 * size
1882 */
1883 if (num_mod_secs != 1) {
1884 pr_err("module %s: Only one .gnu.linkonce.this_module section must exist.\n",
1885 info->name ?: "(missing .modinfo section or name field)");
1886 goto no_exec;
1887 }
1888
1889 shdr = &info->sechdrs[mod_idx];
1890
1891 /*
1892 * This is already implied on the switch above, however let's be
1893 * pedantic about it.
1894 */
1895 if (shdr->sh_type == SHT_NOBITS) {
1896 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1897 info->name ?: "(missing .modinfo section or name field)");
1898 goto no_exec;
1899 }
1900
1901 if (!(shdr->sh_flags & SHF_ALLOC)) {
1902 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
1903 info->name ?: "(missing .modinfo section or name field)");
1904 goto no_exec;
1905 }
1906
1907 if (shdr->sh_size != sizeof(struct module)) {
1908 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
1909 info->name ?: "(missing .modinfo section or name field)");
1910 goto no_exec;
1911 }
1912
1913 info->index.mod = mod_idx;
1914
1915 /* This is temporary: point mod into copy of data. */
1916 info->mod = (void *)info->hdr + shdr->sh_offset;
1917
1918 /*
1919 * If we didn't load the .modinfo 'name' field earlier, fall back to
1920 * on-disk struct mod 'name' field.
1921 */
1922 if (!info->name)
1923 info->name = info->mod->name;
1924
1925 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
1926 info->index.vers = 0; /* Pretend no __versions section! */
1927 else
1928 info->index.vers = find_sec(info, "__versions");
1929
1930 info->index.pcpu = find_pcpusec(info);
1931
1932 return 0;
1933
1934 no_exec:
1935 return -ENOEXEC;
1936 }
1937
1938 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
1939
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)1940 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
1941 {
1942 do {
1943 unsigned long n = min(len, COPY_CHUNK_SIZE);
1944
1945 if (copy_from_user(dst, usrc, n) != 0)
1946 return -EFAULT;
1947 cond_resched();
1948 dst += n;
1949 usrc += n;
1950 len -= n;
1951 } while (len);
1952 return 0;
1953 }
1954
check_modinfo_livepatch(struct module * mod,struct load_info * info)1955 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
1956 {
1957 if (!get_modinfo(info, "livepatch"))
1958 /* Nothing more to do */
1959 return 0;
1960
1961 if (set_livepatch_module(mod))
1962 return 0;
1963
1964 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
1965 mod->name);
1966 return -ENOEXEC;
1967 }
1968
check_modinfo_retpoline(struct module * mod,struct load_info * info)1969 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
1970 {
1971 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
1972 return;
1973
1974 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
1975 mod->name);
1976 }
1977
1978 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)1979 static int copy_module_from_user(const void __user *umod, unsigned long len,
1980 struct load_info *info)
1981 {
1982 int err;
1983
1984 info->len = len;
1985 if (info->len < sizeof(*(info->hdr)))
1986 return -ENOEXEC;
1987
1988 err = security_kernel_load_data(LOADING_MODULE, true);
1989 if (err)
1990 return err;
1991
1992 /* Suck in entire file: we'll want most of it. */
1993 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
1994 if (!info->hdr)
1995 return -ENOMEM;
1996
1997 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
1998 err = -EFAULT;
1999 goto out;
2000 }
2001
2002 err = security_kernel_post_load_data((char *)info->hdr, info->len,
2003 LOADING_MODULE, "init_module");
2004 out:
2005 if (err)
2006 vfree(info->hdr);
2007
2008 return err;
2009 }
2010
free_copy(struct load_info * info,int flags)2011 static void free_copy(struct load_info *info, int flags)
2012 {
2013 if (flags & MODULE_INIT_COMPRESSED_FILE)
2014 module_decompress_cleanup(info);
2015 else
2016 vfree(info->hdr);
2017 }
2018
rewrite_section_headers(struct load_info * info,int flags)2019 static int rewrite_section_headers(struct load_info *info, int flags)
2020 {
2021 unsigned int i;
2022
2023 /* This should always be true, but let's be sure. */
2024 info->sechdrs[0].sh_addr = 0;
2025
2026 for (i = 1; i < info->hdr->e_shnum; i++) {
2027 Elf_Shdr *shdr = &info->sechdrs[i];
2028
2029 /*
2030 * Mark all sections sh_addr with their address in the
2031 * temporary image.
2032 */
2033 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2034
2035 }
2036
2037 /* Track but don't keep modinfo and version sections. */
2038 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2039 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2040
2041 return 0;
2042 }
2043
2044 /*
2045 * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2046 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2047 {
2048 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2049
2050 if (!get_modinfo(info, "intree")) {
2051 if (!test_taint(TAINT_OOT_MODULE))
2052 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2053 mod->name);
2054 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2055 }
2056
2057 check_modinfo_retpoline(mod, info);
2058
2059 if (get_modinfo(info, "staging")) {
2060 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2061 pr_warn("%s: module is from the staging directory, the quality "
2062 "is unknown, you have been warned.\n", mod->name);
2063 }
2064
2065 if (is_livepatch_module(mod)) {
2066 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2067 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2068 mod->name);
2069 }
2070
2071 module_license_taint_check(mod, get_modinfo(info, "license"));
2072
2073 if (get_modinfo(info, "test")) {
2074 if (!test_taint(TAINT_TEST))
2075 pr_warn("%s: loading test module taints kernel.\n",
2076 mod->name);
2077 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2078 }
2079 #ifdef CONFIG_MODULE_SIG
2080 mod->sig_ok = info->sig_ok;
2081 if (!mod->sig_ok) {
2082 pr_notice_once("%s: module verification failed: signature "
2083 "and/or required key missing - tainting "
2084 "kernel\n", mod->name);
2085 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2086 }
2087 #else
2088 mod->sig_ok = 0;
2089 #endif
2090
2091 /*
2092 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2093 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2094 * using GPL-only symbols it needs.
2095 */
2096 if (strcmp(mod->name, "ndiswrapper") == 0)
2097 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2098
2099 /* driverloader was caught wrongly pretending to be under GPL */
2100 if (strcmp(mod->name, "driverloader") == 0)
2101 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2102 LOCKDEP_NOW_UNRELIABLE);
2103
2104 /* lve claims to be GPL but upstream won't provide source */
2105 if (strcmp(mod->name, "lve") == 0)
2106 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2107 LOCKDEP_NOW_UNRELIABLE);
2108
2109 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2110 pr_warn("%s: module license taints kernel.\n", mod->name);
2111
2112 }
2113
check_modinfo(struct module * mod,struct load_info * info,int flags)2114 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2115 {
2116 const char *modmagic = get_modinfo(info, "vermagic");
2117 int err;
2118
2119 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2120 modmagic = NULL;
2121
2122 /* This is allowed: modprobe --force will invalidate it. */
2123 if (!modmagic) {
2124 err = try_to_force_load(mod, "bad vermagic");
2125 if (err)
2126 return err;
2127 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2128 pr_err("%s: version magic '%s' should be '%s'\n",
2129 info->name, modmagic, vermagic);
2130 return -ENOEXEC;
2131 }
2132
2133 err = check_modinfo_livepatch(mod, info);
2134 if (err)
2135 return err;
2136
2137 return 0;
2138 }
2139
find_module_sections(struct module * mod,struct load_info * info)2140 static int find_module_sections(struct module *mod, struct load_info *info)
2141 {
2142 mod->kp = section_objs(info, "__param",
2143 sizeof(*mod->kp), &mod->num_kp);
2144 mod->syms = section_objs(info, "__ksymtab",
2145 sizeof(*mod->syms), &mod->num_syms);
2146 mod->crcs = section_addr(info, "__kcrctab");
2147 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2148 sizeof(*mod->gpl_syms),
2149 &mod->num_gpl_syms);
2150 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2151
2152 #ifdef CONFIG_CONSTRUCTORS
2153 mod->ctors = section_objs(info, ".ctors",
2154 sizeof(*mod->ctors), &mod->num_ctors);
2155 if (!mod->ctors)
2156 mod->ctors = section_objs(info, ".init_array",
2157 sizeof(*mod->ctors), &mod->num_ctors);
2158 else if (find_sec(info, ".init_array")) {
2159 /*
2160 * This shouldn't happen with same compiler and binutils
2161 * building all parts of the module.
2162 */
2163 pr_warn("%s: has both .ctors and .init_array.\n",
2164 mod->name);
2165 return -EINVAL;
2166 }
2167 #endif
2168
2169 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2170 &mod->noinstr_text_size);
2171
2172 #ifdef CONFIG_TRACEPOINTS
2173 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2174 sizeof(*mod->tracepoints_ptrs),
2175 &mod->num_tracepoints);
2176 #endif
2177 #ifdef CONFIG_TREE_SRCU
2178 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2179 sizeof(*mod->srcu_struct_ptrs),
2180 &mod->num_srcu_structs);
2181 #endif
2182 #ifdef CONFIG_BPF_EVENTS
2183 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2184 sizeof(*mod->bpf_raw_events),
2185 &mod->num_bpf_raw_events);
2186 #endif
2187 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2188 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2189 #endif
2190 #ifdef CONFIG_JUMP_LABEL
2191 mod->jump_entries = section_objs(info, "__jump_table",
2192 sizeof(*mod->jump_entries),
2193 &mod->num_jump_entries);
2194 #endif
2195 #ifdef CONFIG_EVENT_TRACING
2196 mod->trace_events = section_objs(info, "_ftrace_events",
2197 sizeof(*mod->trace_events),
2198 &mod->num_trace_events);
2199 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2200 sizeof(*mod->trace_evals),
2201 &mod->num_trace_evals);
2202 #endif
2203 #ifdef CONFIG_TRACING
2204 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2205 sizeof(*mod->trace_bprintk_fmt_start),
2206 &mod->num_trace_bprintk_fmt);
2207 #endif
2208 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2209 /* sechdrs[0].sh_size is always zero */
2210 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2211 sizeof(*mod->ftrace_callsites),
2212 &mod->num_ftrace_callsites);
2213 #endif
2214 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2215 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2216 sizeof(*mod->ei_funcs),
2217 &mod->num_ei_funcs);
2218 #endif
2219 #ifdef CONFIG_KPROBES
2220 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2221 &mod->kprobes_text_size);
2222 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2223 sizeof(unsigned long),
2224 &mod->num_kprobe_blacklist);
2225 #endif
2226 #ifdef CONFIG_PRINTK_INDEX
2227 mod->printk_index_start = section_objs(info, ".printk_index",
2228 sizeof(*mod->printk_index_start),
2229 &mod->printk_index_size);
2230 #endif
2231 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2232 mod->static_call_sites = section_objs(info, ".static_call_sites",
2233 sizeof(*mod->static_call_sites),
2234 &mod->num_static_call_sites);
2235 #endif
2236 #if IS_ENABLED(CONFIG_KUNIT)
2237 mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2238 sizeof(*mod->kunit_suites),
2239 &mod->num_kunit_suites);
2240 #endif
2241
2242 mod->extable = section_objs(info, "__ex_table",
2243 sizeof(*mod->extable), &mod->num_exentries);
2244
2245 if (section_addr(info, "__obsparm"))
2246 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2247
2248 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2249 mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2250 sizeof(*mod->dyndbg_info.descs),
2251 &mod->dyndbg_info.num_descs);
2252 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2253 sizeof(*mod->dyndbg_info.classes),
2254 &mod->dyndbg_info.num_classes);
2255 #endif
2256
2257 return 0;
2258 }
2259
move_module(struct module * mod,struct load_info * info)2260 static int move_module(struct module *mod, struct load_info *info)
2261 {
2262 int i;
2263 void *ptr;
2264 enum mod_mem_type t = 0;
2265 int ret = -ENOMEM;
2266
2267 for_each_mod_mem_type(type) {
2268 if (!mod->mem[type].size) {
2269 mod->mem[type].base = NULL;
2270 continue;
2271 }
2272 mod->mem[type].size = PAGE_ALIGN(mod->mem[type].size);
2273 ptr = module_memory_alloc(mod->mem[type].size, type);
2274 /*
2275 * The pointer to these blocks of memory are stored on the module
2276 * structure and we keep that around so long as the module is
2277 * around. We only free that memory when we unload the module.
2278 * Just mark them as not being a leak then. The .init* ELF
2279 * sections *do* get freed after boot so we *could* treat them
2280 * slightly differently with kmemleak_ignore() and only grey
2281 * them out as they work as typical memory allocations which
2282 * *do* eventually get freed, but let's just keep things simple
2283 * and avoid *any* false positives.
2284 */
2285 kmemleak_not_leak(ptr);
2286 if (!ptr) {
2287 t = type;
2288 goto out_enomem;
2289 }
2290 memset(ptr, 0, mod->mem[type].size);
2291 mod->mem[type].base = ptr;
2292 }
2293
2294 /* Transfer each section which specifies SHF_ALLOC */
2295 pr_debug("Final section addresses for %s:\n", mod->name);
2296 for (i = 0; i < info->hdr->e_shnum; i++) {
2297 void *dest;
2298 Elf_Shdr *shdr = &info->sechdrs[i];
2299 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2300
2301 if (!(shdr->sh_flags & SHF_ALLOC))
2302 continue;
2303
2304 dest = mod->mem[type].base + (shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK);
2305
2306 if (shdr->sh_type != SHT_NOBITS) {
2307 /*
2308 * Our ELF checker already validated this, but let's
2309 * be pedantic and make the goal clearer. We actually
2310 * end up copying over all modifications made to the
2311 * userspace copy of the entire struct module.
2312 */
2313 if (i == info->index.mod &&
2314 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2315 ret = -ENOEXEC;
2316 goto out_enomem;
2317 }
2318 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2319 }
2320 /*
2321 * Update the userspace copy's ELF section address to point to
2322 * our newly allocated memory as a pure convenience so that
2323 * users of info can keep taking advantage and using the newly
2324 * minted official memory area.
2325 */
2326 shdr->sh_addr = (unsigned long)dest;
2327 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2328 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2329 }
2330
2331 return 0;
2332 out_enomem:
2333 for (t--; t >= 0; t--)
2334 module_memory_free(mod->mem[t].base, t);
2335 return ret;
2336 }
2337
check_export_symbol_versions(struct module * mod)2338 static int check_export_symbol_versions(struct module *mod)
2339 {
2340 #ifdef CONFIG_MODVERSIONS
2341 if ((mod->num_syms && !mod->crcs) ||
2342 (mod->num_gpl_syms && !mod->gpl_crcs)) {
2343 return try_to_force_load(mod,
2344 "no versions for exported symbols");
2345 }
2346 #endif
2347 return 0;
2348 }
2349
flush_module_icache(const struct module * mod)2350 static void flush_module_icache(const struct module *mod)
2351 {
2352 /*
2353 * Flush the instruction cache, since we've played with text.
2354 * Do it before processing of module parameters, so the module
2355 * can provide parameter accessor functions of its own.
2356 */
2357 for_each_mod_mem_type(type) {
2358 const struct module_memory *mod_mem = &mod->mem[type];
2359
2360 if (mod_mem->size) {
2361 flush_icache_range((unsigned long)mod_mem->base,
2362 (unsigned long)mod_mem->base + mod_mem->size);
2363 }
2364 }
2365 }
2366
module_elf_check_arch(Elf_Ehdr * hdr)2367 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2368 {
2369 return true;
2370 }
2371
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2372 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2373 Elf_Shdr *sechdrs,
2374 char *secstrings,
2375 struct module *mod)
2376 {
2377 return 0;
2378 }
2379
2380 /* module_blacklist is a comma-separated list of module names */
2381 static char *module_blacklist;
blacklisted(const char * module_name)2382 static bool blacklisted(const char *module_name)
2383 {
2384 const char *p;
2385 size_t len;
2386
2387 if (!module_blacklist)
2388 return false;
2389
2390 for (p = module_blacklist; *p; p += len) {
2391 len = strcspn(p, ",");
2392 if (strlen(module_name) == len && !memcmp(module_name, p, len))
2393 return true;
2394 if (p[len] == ',')
2395 len++;
2396 }
2397 return false;
2398 }
2399 core_param(module_blacklist, module_blacklist, charp, 0400);
2400
layout_and_allocate(struct load_info * info,int flags)2401 static struct module *layout_and_allocate(struct load_info *info, int flags)
2402 {
2403 struct module *mod;
2404 unsigned int ndx;
2405 int err;
2406
2407 /* Allow arches to frob section contents and sizes. */
2408 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2409 info->secstrings, info->mod);
2410 if (err < 0)
2411 return ERR_PTR(err);
2412
2413 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2414 info->secstrings, info->mod);
2415 if (err < 0)
2416 return ERR_PTR(err);
2417
2418 /* We will do a special allocation for per-cpu sections later. */
2419 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2420
2421 /*
2422 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2423 * layout_sections() can put it in the right place.
2424 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2425 */
2426 ndx = find_sec(info, ".data..ro_after_init");
2427 if (ndx)
2428 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2429 /*
2430 * Mark the __jump_table section as ro_after_init as well: these data
2431 * structures are never modified, with the exception of entries that
2432 * refer to code in the __init section, which are annotated as such
2433 * at module load time.
2434 */
2435 ndx = find_sec(info, "__jump_table");
2436 if (ndx)
2437 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2438
2439 /*
2440 * Determine total sizes, and put offsets in sh_entsize. For now
2441 * this is done generically; there doesn't appear to be any
2442 * special cases for the architectures.
2443 */
2444 layout_sections(info->mod, info);
2445 layout_symtab(info->mod, info);
2446
2447 /* Allocate and move to the final place */
2448 err = move_module(info->mod, info);
2449 if (err)
2450 return ERR_PTR(err);
2451
2452 /* Module has been copied to its final place now: return it. */
2453 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2454 kmemleak_load_module(mod, info);
2455 return mod;
2456 }
2457
2458 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2459 static void module_deallocate(struct module *mod, struct load_info *info)
2460 {
2461 percpu_modfree(mod);
2462 module_arch_freeing_init(mod);
2463
2464 free_mod_mem(mod);
2465 }
2466
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2467 int __weak module_finalize(const Elf_Ehdr *hdr,
2468 const Elf_Shdr *sechdrs,
2469 struct module *me)
2470 {
2471 return 0;
2472 }
2473
post_relocation(struct module * mod,const struct load_info * info)2474 static int post_relocation(struct module *mod, const struct load_info *info)
2475 {
2476 /* Sort exception table now relocations are done. */
2477 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2478
2479 /* Copy relocated percpu area over. */
2480 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2481 info->sechdrs[info->index.pcpu].sh_size);
2482
2483 /* Setup kallsyms-specific fields. */
2484 add_kallsyms(mod, info);
2485
2486 /* Arch-specific module finalizing. */
2487 return module_finalize(info->hdr, info->sechdrs, mod);
2488 }
2489
2490 /* Call module constructors. */
do_mod_ctors(struct module * mod)2491 static void do_mod_ctors(struct module *mod)
2492 {
2493 #ifdef CONFIG_CONSTRUCTORS
2494 unsigned long i;
2495
2496 for (i = 0; i < mod->num_ctors; i++)
2497 mod->ctors[i]();
2498 #endif
2499 }
2500
2501 /* For freeing module_init on success, in case kallsyms traversing */
2502 struct mod_initfree {
2503 struct llist_node node;
2504 void *init_text;
2505 void *init_data;
2506 void *init_rodata;
2507 };
2508
do_free_init(struct work_struct * w)2509 static void do_free_init(struct work_struct *w)
2510 {
2511 struct llist_node *pos, *n, *list;
2512 struct mod_initfree *initfree;
2513
2514 list = llist_del_all(&init_free_list);
2515
2516 synchronize_rcu();
2517
2518 llist_for_each_safe(pos, n, list) {
2519 initfree = container_of(pos, struct mod_initfree, node);
2520 module_memfree(initfree->init_text);
2521 module_memfree(initfree->init_data);
2522 module_memfree(initfree->init_rodata);
2523 kfree(initfree);
2524 }
2525 }
2526
flush_module_init_free_work(void)2527 void flush_module_init_free_work(void)
2528 {
2529 flush_work(&init_free_wq);
2530 }
2531
2532 #undef MODULE_PARAM_PREFIX
2533 #define MODULE_PARAM_PREFIX "module."
2534 /* Default value for module->async_probe_requested */
2535 static bool async_probe;
2536 module_param(async_probe, bool, 0644);
2537
2538 /*
2539 * This is where the real work happens.
2540 *
2541 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2542 * helper command 'lx-symbols'.
2543 */
do_init_module(struct module * mod)2544 static noinline int do_init_module(struct module *mod)
2545 {
2546 int ret = 0;
2547 struct mod_initfree *freeinit;
2548 #if defined(CONFIG_MODULE_STATS)
2549 unsigned int text_size = 0, total_size = 0;
2550
2551 for_each_mod_mem_type(type) {
2552 const struct module_memory *mod_mem = &mod->mem[type];
2553 if (mod_mem->size) {
2554 total_size += mod_mem->size;
2555 if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2556 text_size += mod_mem->size;
2557 }
2558 }
2559 #endif
2560
2561 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2562 if (!freeinit) {
2563 ret = -ENOMEM;
2564 goto fail;
2565 }
2566 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2567 freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2568 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2569
2570 do_mod_ctors(mod);
2571 /* Start the module */
2572 if (mod->init != NULL)
2573 ret = do_one_initcall(mod->init);
2574 if (ret < 0) {
2575 goto fail_free_freeinit;
2576 }
2577 if (ret > 0) {
2578 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2579 "follow 0/-E convention\n"
2580 "%s: loading module anyway...\n",
2581 __func__, mod->name, ret, __func__);
2582 dump_stack();
2583 }
2584
2585 /* Now it's a first class citizen! */
2586 mod->state = MODULE_STATE_LIVE;
2587 blocking_notifier_call_chain(&module_notify_list,
2588 MODULE_STATE_LIVE, mod);
2589
2590 /* Delay uevent until module has finished its init routine */
2591 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2592
2593 /*
2594 * We need to finish all async code before the module init sequence
2595 * is done. This has potential to deadlock if synchronous module
2596 * loading is requested from async (which is not allowed!).
2597 *
2598 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2599 * request_module() from async workers") for more details.
2600 */
2601 if (!mod->async_probe_requested)
2602 async_synchronize_full();
2603
2604 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
2605 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
2606 mutex_lock(&module_mutex);
2607 /* Drop initial reference. */
2608 module_put(mod);
2609 trim_init_extable(mod);
2610 #ifdef CONFIG_KALLSYMS
2611 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
2612 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2613 #endif
2614 module_enable_ro(mod, true);
2615 mod_tree_remove_init(mod);
2616 module_arch_freeing_init(mod);
2617 for_class_mod_mem_type(type, init) {
2618 mod->mem[type].base = NULL;
2619 mod->mem[type].size = 0;
2620 }
2621
2622 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2623 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
2624 mod->btf_data = NULL;
2625 #endif
2626 /*
2627 * We want to free module_init, but be aware that kallsyms may be
2628 * walking this with preempt disabled. In all the failure paths, we
2629 * call synchronize_rcu(), but we don't want to slow down the success
2630 * path. module_memfree() cannot be called in an interrupt, so do the
2631 * work and call synchronize_rcu() in a work queue.
2632 *
2633 * Note that module_alloc() on most architectures creates W+X page
2634 * mappings which won't be cleaned up until do_free_init() runs. Any
2635 * code such as mark_rodata_ro() which depends on those mappings to
2636 * be cleaned up needs to sync with the queued work by invoking
2637 * flush_module_init_free_work().
2638 */
2639 if (llist_add(&freeinit->node, &init_free_list))
2640 schedule_work(&init_free_wq);
2641
2642 mutex_unlock(&module_mutex);
2643 wake_up_all(&module_wq);
2644
2645 mod_stat_add_long(text_size, &total_text_size);
2646 mod_stat_add_long(total_size, &total_mod_size);
2647
2648 mod_stat_inc(&modcount);
2649
2650 return 0;
2651
2652 fail_free_freeinit:
2653 kfree(freeinit);
2654 fail:
2655 /* Try to protect us from buggy refcounters. */
2656 mod->state = MODULE_STATE_GOING;
2657 synchronize_rcu();
2658 module_put(mod);
2659 blocking_notifier_call_chain(&module_notify_list,
2660 MODULE_STATE_GOING, mod);
2661 klp_module_going(mod);
2662 ftrace_release_mod(mod);
2663 free_module(mod);
2664 wake_up_all(&module_wq);
2665
2666 return ret;
2667 }
2668
may_init_module(void)2669 static int may_init_module(void)
2670 {
2671 if (!capable(CAP_SYS_MODULE) || modules_disabled)
2672 return -EPERM;
2673
2674 return 0;
2675 }
2676
2677 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)2678 static bool finished_loading(const char *name)
2679 {
2680 struct module *mod;
2681 bool ret;
2682
2683 /*
2684 * The module_mutex should not be a heavily contended lock;
2685 * if we get the occasional sleep here, we'll go an extra iteration
2686 * in the wait_event_interruptible(), which is harmless.
2687 */
2688 sched_annotate_sleep();
2689 mutex_lock(&module_mutex);
2690 mod = find_module_all(name, strlen(name), true);
2691 ret = !mod || mod->state == MODULE_STATE_LIVE
2692 || mod->state == MODULE_STATE_GOING;
2693 mutex_unlock(&module_mutex);
2694
2695 return ret;
2696 }
2697
2698 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)2699 static int module_patient_check_exists(const char *name,
2700 enum fail_dup_mod_reason reason)
2701 {
2702 struct module *old;
2703 int err = 0;
2704
2705 old = find_module_all(name, strlen(name), true);
2706 if (old == NULL)
2707 return 0;
2708
2709 if (old->state == MODULE_STATE_COMING ||
2710 old->state == MODULE_STATE_UNFORMED) {
2711 /* Wait in case it fails to load. */
2712 mutex_unlock(&module_mutex);
2713 err = wait_event_interruptible(module_wq,
2714 finished_loading(name));
2715 mutex_lock(&module_mutex);
2716 if (err)
2717 return err;
2718
2719 /* The module might have gone in the meantime. */
2720 old = find_module_all(name, strlen(name), true);
2721 }
2722
2723 if (try_add_failed_module(name, reason))
2724 pr_warn("Could not add fail-tracking for module: %s\n", name);
2725
2726 /*
2727 * We are here only when the same module was being loaded. Do
2728 * not try to load it again right now. It prevents long delays
2729 * caused by serialized module load failures. It might happen
2730 * when more devices of the same type trigger load of
2731 * a particular module.
2732 */
2733 if (old && old->state == MODULE_STATE_LIVE)
2734 return -EEXIST;
2735 return -EBUSY;
2736 }
2737
2738 /*
2739 * We try to place it in the list now to make sure it's unique before
2740 * we dedicate too many resources. In particular, temporary percpu
2741 * memory exhaustion.
2742 */
add_unformed_module(struct module * mod)2743 static int add_unformed_module(struct module *mod)
2744 {
2745 int err;
2746
2747 mod->state = MODULE_STATE_UNFORMED;
2748
2749 mutex_lock(&module_mutex);
2750 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
2751 if (err)
2752 goto out;
2753
2754 mod_update_bounds(mod);
2755 list_add_rcu(&mod->list, &modules);
2756 mod_tree_insert(mod);
2757 err = 0;
2758
2759 out:
2760 mutex_unlock(&module_mutex);
2761 return err;
2762 }
2763
complete_formation(struct module * mod,struct load_info * info)2764 static int complete_formation(struct module *mod, struct load_info *info)
2765 {
2766 int err;
2767
2768 mutex_lock(&module_mutex);
2769
2770 /* Find duplicate symbols (must be called under lock). */
2771 err = verify_exported_symbols(mod);
2772 if (err < 0)
2773 goto out;
2774
2775 /* These rely on module_mutex for list integrity. */
2776 module_bug_finalize(info->hdr, info->sechdrs, mod);
2777 module_cfi_finalize(info->hdr, info->sechdrs, mod);
2778
2779 module_enable_ro(mod, false);
2780 module_enable_nx(mod);
2781 module_enable_x(mod);
2782
2783 /*
2784 * Mark state as coming so strong_try_module_get() ignores us,
2785 * but kallsyms etc. can see us.
2786 */
2787 mod->state = MODULE_STATE_COMING;
2788 mutex_unlock(&module_mutex);
2789
2790 return 0;
2791
2792 out:
2793 mutex_unlock(&module_mutex);
2794 return err;
2795 }
2796
prepare_coming_module(struct module * mod)2797 static int prepare_coming_module(struct module *mod)
2798 {
2799 int err;
2800
2801 ftrace_module_enable(mod);
2802 err = klp_module_coming(mod);
2803 if (err)
2804 return err;
2805
2806 err = blocking_notifier_call_chain_robust(&module_notify_list,
2807 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
2808 err = notifier_to_errno(err);
2809 if (err)
2810 klp_module_going(mod);
2811
2812 return err;
2813 }
2814
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)2815 static int unknown_module_param_cb(char *param, char *val, const char *modname,
2816 void *arg)
2817 {
2818 struct module *mod = arg;
2819 int ret;
2820
2821 if (strcmp(param, "async_probe") == 0) {
2822 if (kstrtobool(val, &mod->async_probe_requested))
2823 mod->async_probe_requested = true;
2824 return 0;
2825 }
2826
2827 /* Check for magic 'dyndbg' arg */
2828 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
2829 if (ret != 0)
2830 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
2831 return 0;
2832 }
2833
2834 /* Module within temporary copy, this doesn't do any allocation */
early_mod_check(struct load_info * info,int flags)2835 static int early_mod_check(struct load_info *info, int flags)
2836 {
2837 int err;
2838
2839 /*
2840 * Now that we know we have the correct module name, check
2841 * if it's blacklisted.
2842 */
2843 if (blacklisted(info->name)) {
2844 pr_err("Module %s is blacklisted\n", info->name);
2845 return -EPERM;
2846 }
2847
2848 err = rewrite_section_headers(info, flags);
2849 if (err)
2850 return err;
2851
2852 /* Check module struct version now, before we try to use module. */
2853 if (!check_modstruct_version(info, info->mod))
2854 return -ENOEXEC;
2855
2856 err = check_modinfo(info->mod, info, flags);
2857 if (err)
2858 return err;
2859
2860 mutex_lock(&module_mutex);
2861 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
2862 mutex_unlock(&module_mutex);
2863
2864 return err;
2865 }
2866
2867 /*
2868 * Allocate and load the module: note that size of section 0 is always
2869 * zero, and we rely on this for optional sections.
2870 */
load_module(struct load_info * info,const char __user * uargs,int flags)2871 static int load_module(struct load_info *info, const char __user *uargs,
2872 int flags)
2873 {
2874 struct module *mod;
2875 bool module_allocated = false;
2876 long err = 0;
2877 char *after_dashes;
2878
2879 /*
2880 * Do the signature check (if any) first. All that
2881 * the signature check needs is info->len, it does
2882 * not need any of the section info. That can be
2883 * set up later. This will minimize the chances
2884 * of a corrupt module causing problems before
2885 * we even get to the signature check.
2886 *
2887 * The check will also adjust info->len by stripping
2888 * off the sig length at the end of the module, making
2889 * checks against info->len more correct.
2890 */
2891 err = module_sig_check(info, flags);
2892 if (err)
2893 goto free_copy;
2894
2895 /*
2896 * Do basic sanity checks against the ELF header and
2897 * sections. Cache useful sections and set the
2898 * info->mod to the userspace passed struct module.
2899 */
2900 err = elf_validity_cache_copy(info, flags);
2901 if (err)
2902 goto free_copy;
2903
2904 err = early_mod_check(info, flags);
2905 if (err)
2906 goto free_copy;
2907
2908 /* Figure out module layout, and allocate all the memory. */
2909 mod = layout_and_allocate(info, flags);
2910 if (IS_ERR(mod)) {
2911 err = PTR_ERR(mod);
2912 goto free_copy;
2913 }
2914
2915 module_allocated = true;
2916
2917 audit_log_kern_module(mod->name);
2918
2919 /* Reserve our place in the list. */
2920 err = add_unformed_module(mod);
2921 if (err)
2922 goto free_module;
2923
2924 /*
2925 * We are tainting your kernel if your module gets into
2926 * the modules linked list somehow.
2927 */
2928 module_augment_kernel_taints(mod, info);
2929
2930 /* To avoid stressing percpu allocator, do this once we're unique. */
2931 err = percpu_modalloc(mod, info);
2932 if (err)
2933 goto unlink_mod;
2934
2935 /* Now module is in final location, initialize linked lists, etc. */
2936 err = module_unload_init(mod);
2937 if (err)
2938 goto unlink_mod;
2939
2940 init_param_lock(mod);
2941
2942 /*
2943 * Now we've got everything in the final locations, we can
2944 * find optional sections.
2945 */
2946 err = find_module_sections(mod, info);
2947 if (err)
2948 goto free_unload;
2949
2950 err = check_export_symbol_versions(mod);
2951 if (err)
2952 goto free_unload;
2953
2954 /* Set up MODINFO_ATTR fields */
2955 setup_modinfo(mod, info);
2956
2957 /* Fix up syms, so that st_value is a pointer to location. */
2958 err = simplify_symbols(mod, info);
2959 if (err < 0)
2960 goto free_modinfo;
2961
2962 err = apply_relocations(mod, info);
2963 if (err < 0)
2964 goto free_modinfo;
2965
2966 err = post_relocation(mod, info);
2967 if (err < 0)
2968 goto free_modinfo;
2969
2970 flush_module_icache(mod);
2971
2972 /* Now copy in args */
2973 mod->args = strndup_user(uargs, ~0UL >> 1);
2974 if (IS_ERR(mod->args)) {
2975 err = PTR_ERR(mod->args);
2976 goto free_arch_cleanup;
2977 }
2978
2979 init_build_id(mod, info);
2980
2981 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
2982 ftrace_module_init(mod);
2983
2984 /* Finally it's fully formed, ready to start executing. */
2985 err = complete_formation(mod, info);
2986 if (err)
2987 goto ddebug_cleanup;
2988
2989 err = prepare_coming_module(mod);
2990 if (err)
2991 goto bug_cleanup;
2992
2993 mod->async_probe_requested = async_probe;
2994
2995 /* Module is ready to execute: parsing args may do that. */
2996 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2997 -32768, 32767, mod,
2998 unknown_module_param_cb);
2999 if (IS_ERR(after_dashes)) {
3000 err = PTR_ERR(after_dashes);
3001 goto coming_cleanup;
3002 } else if (after_dashes) {
3003 pr_warn("%s: parameters '%s' after `--' ignored\n",
3004 mod->name, after_dashes);
3005 }
3006
3007 /* Link in to sysfs. */
3008 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3009 if (err < 0)
3010 goto coming_cleanup;
3011
3012 if (is_livepatch_module(mod)) {
3013 err = copy_module_elf(mod, info);
3014 if (err < 0)
3015 goto sysfs_cleanup;
3016 }
3017
3018 /* Get rid of temporary copy. */
3019 free_copy(info, flags);
3020
3021 /* Done! */
3022 trace_module_load(mod);
3023
3024 return do_init_module(mod);
3025
3026 sysfs_cleanup:
3027 mod_sysfs_teardown(mod);
3028 coming_cleanup:
3029 mod->state = MODULE_STATE_GOING;
3030 destroy_params(mod->kp, mod->num_kp);
3031 blocking_notifier_call_chain(&module_notify_list,
3032 MODULE_STATE_GOING, mod);
3033 klp_module_going(mod);
3034 bug_cleanup:
3035 mod->state = MODULE_STATE_GOING;
3036 /* module_bug_cleanup needs module_mutex protection */
3037 mutex_lock(&module_mutex);
3038 module_bug_cleanup(mod);
3039 mutex_unlock(&module_mutex);
3040
3041 ddebug_cleanup:
3042 ftrace_release_mod(mod);
3043 synchronize_rcu();
3044 kfree(mod->args);
3045 free_arch_cleanup:
3046 module_arch_cleanup(mod);
3047 free_modinfo:
3048 free_modinfo(mod);
3049 free_unload:
3050 module_unload_free(mod);
3051 unlink_mod:
3052 mutex_lock(&module_mutex);
3053 /* Unlink carefully: kallsyms could be walking list. */
3054 list_del_rcu(&mod->list);
3055 mod_tree_remove(mod);
3056 wake_up_all(&module_wq);
3057 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3058 synchronize_rcu();
3059 mutex_unlock(&module_mutex);
3060 free_module:
3061 mod_stat_bump_invalid(info, flags);
3062 /* Free lock-classes; relies on the preceding sync_rcu() */
3063 for_class_mod_mem_type(type, core_data) {
3064 lockdep_free_key_range(mod->mem[type].base,
3065 mod->mem[type].size);
3066 }
3067
3068 module_deallocate(mod, info);
3069 free_copy:
3070 /*
3071 * The info->len is always set. We distinguish between
3072 * failures once the proper module was allocated and
3073 * before that.
3074 */
3075 if (!module_allocated)
3076 mod_stat_bump_becoming(info, flags);
3077 free_copy(info, flags);
3078 return err;
3079 }
3080
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3081 SYSCALL_DEFINE3(init_module, void __user *, umod,
3082 unsigned long, len, const char __user *, uargs)
3083 {
3084 int err;
3085 struct load_info info = { };
3086
3087 err = may_init_module();
3088 if (err)
3089 return err;
3090
3091 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3092 umod, len, uargs);
3093
3094 err = copy_module_from_user(umod, len, &info);
3095 if (err) {
3096 mod_stat_inc(&failed_kreads);
3097 mod_stat_add_long(len, &invalid_kread_bytes);
3098 return err;
3099 }
3100
3101 return load_module(&info, uargs, 0);
3102 }
3103
3104 struct idempotent {
3105 const void *cookie;
3106 struct hlist_node entry;
3107 struct completion complete;
3108 int ret;
3109 };
3110
3111 #define IDEM_HASH_BITS 8
3112 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3113 static DEFINE_SPINLOCK(idem_lock);
3114
idempotent(struct idempotent * u,const void * cookie)3115 static bool idempotent(struct idempotent *u, const void *cookie)
3116 {
3117 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3118 struct hlist_head *head = idem_hash + hash;
3119 struct idempotent *existing;
3120 bool first;
3121
3122 u->ret = -EINTR;
3123 u->cookie = cookie;
3124 init_completion(&u->complete);
3125
3126 spin_lock(&idem_lock);
3127 first = true;
3128 hlist_for_each_entry(existing, head, entry) {
3129 if (existing->cookie != cookie)
3130 continue;
3131 first = false;
3132 break;
3133 }
3134 hlist_add_head(&u->entry, idem_hash + hash);
3135 spin_unlock(&idem_lock);
3136
3137 return !first;
3138 }
3139
3140 /*
3141 * We were the first one with 'cookie' on the list, and we ended
3142 * up completing the operation. We now need to walk the list,
3143 * remove everybody - which includes ourselves - fill in the return
3144 * value, and then complete the operation.
3145 */
idempotent_complete(struct idempotent * u,int ret)3146 static int idempotent_complete(struct idempotent *u, int ret)
3147 {
3148 const void *cookie = u->cookie;
3149 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3150 struct hlist_head *head = idem_hash + hash;
3151 struct hlist_node *next;
3152 struct idempotent *pos;
3153
3154 spin_lock(&idem_lock);
3155 hlist_for_each_entry_safe(pos, next, head, entry) {
3156 if (pos->cookie != cookie)
3157 continue;
3158 hlist_del_init(&pos->entry);
3159 pos->ret = ret;
3160 complete(&pos->complete);
3161 }
3162 spin_unlock(&idem_lock);
3163 return ret;
3164 }
3165
3166 /*
3167 * Wait for the idempotent worker.
3168 *
3169 * If we get interrupted, we need to remove ourselves from the
3170 * the idempotent list, and the completion may still come in.
3171 *
3172 * The 'idem_lock' protects against the race, and 'idem.ret' was
3173 * initialized to -EINTR and is thus always the right return
3174 * value even if the idempotent work then completes between
3175 * the wait_for_completion and the cleanup.
3176 */
idempotent_wait_for_completion(struct idempotent * u)3177 static int idempotent_wait_for_completion(struct idempotent *u)
3178 {
3179 if (wait_for_completion_interruptible(&u->complete)) {
3180 spin_lock(&idem_lock);
3181 if (!hlist_unhashed(&u->entry))
3182 hlist_del(&u->entry);
3183 spin_unlock(&idem_lock);
3184 }
3185 return u->ret;
3186 }
3187
init_module_from_file(struct file * f,const char __user * uargs,int flags)3188 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3189 {
3190 struct load_info info = { };
3191 void *buf = NULL;
3192 int len;
3193
3194 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3195 if (len < 0) {
3196 mod_stat_inc(&failed_kreads);
3197 return len;
3198 }
3199
3200 if (flags & MODULE_INIT_COMPRESSED_FILE) {
3201 int err = module_decompress(&info, buf, len);
3202 vfree(buf); /* compressed data is no longer needed */
3203 if (err) {
3204 mod_stat_inc(&failed_decompress);
3205 mod_stat_add_long(len, &invalid_decompress_bytes);
3206 return err;
3207 }
3208 } else {
3209 info.hdr = buf;
3210 info.len = len;
3211 }
3212
3213 return load_module(&info, uargs, flags);
3214 }
3215
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3216 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3217 {
3218 struct idempotent idem;
3219
3220 if (!f || !(f->f_mode & FMODE_READ))
3221 return -EBADF;
3222
3223 /* Are we the winners of the race and get to do this? */
3224 if (!idempotent(&idem, file_inode(f))) {
3225 int ret = init_module_from_file(f, uargs, flags);
3226 return idempotent_complete(&idem, ret);
3227 }
3228
3229 /*
3230 * Somebody else won the race and is loading the module.
3231 */
3232 return idempotent_wait_for_completion(&idem);
3233 }
3234
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3235 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3236 {
3237 int err;
3238 struct fd f;
3239
3240 err = may_init_module();
3241 if (err)
3242 return err;
3243
3244 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3245
3246 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3247 |MODULE_INIT_IGNORE_VERMAGIC
3248 |MODULE_INIT_COMPRESSED_FILE))
3249 return -EINVAL;
3250
3251 f = fdget(fd);
3252 err = idempotent_init_module(f.file, uargs, flags);
3253 fdput(f);
3254 return err;
3255 }
3256
3257 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3258 char *module_flags(struct module *mod, char *buf, bool show_state)
3259 {
3260 int bx = 0;
3261
3262 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3263 if (!mod->taints && !show_state)
3264 goto out;
3265 if (mod->taints ||
3266 mod->state == MODULE_STATE_GOING ||
3267 mod->state == MODULE_STATE_COMING) {
3268 buf[bx++] = '(';
3269 bx += module_flags_taint(mod->taints, buf + bx);
3270 /* Show a - for module-is-being-unloaded */
3271 if (mod->state == MODULE_STATE_GOING && show_state)
3272 buf[bx++] = '-';
3273 /* Show a + for module-is-being-loaded */
3274 if (mod->state == MODULE_STATE_COMING && show_state)
3275 buf[bx++] = '+';
3276 buf[bx++] = ')';
3277 }
3278 out:
3279 buf[bx] = '\0';
3280
3281 return buf;
3282 }
3283
3284 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3285 const struct exception_table_entry *search_module_extables(unsigned long addr)
3286 {
3287 const struct exception_table_entry *e = NULL;
3288 struct module *mod;
3289
3290 preempt_disable();
3291 mod = __module_address(addr);
3292 if (!mod)
3293 goto out;
3294
3295 if (!mod->num_exentries)
3296 goto out;
3297
3298 e = search_extable(mod->extable,
3299 mod->num_exentries,
3300 addr);
3301 out:
3302 preempt_enable();
3303
3304 /*
3305 * Now, if we found one, we are running inside it now, hence
3306 * we cannot unload the module, hence no refcnt needed.
3307 */
3308 return e;
3309 }
3310
3311 /**
3312 * is_module_address() - is this address inside a module?
3313 * @addr: the address to check.
3314 *
3315 * See is_module_text_address() if you simply want to see if the address
3316 * is code (not data).
3317 */
is_module_address(unsigned long addr)3318 bool is_module_address(unsigned long addr)
3319 {
3320 bool ret;
3321
3322 preempt_disable();
3323 ret = __module_address(addr) != NULL;
3324 preempt_enable();
3325
3326 return ret;
3327 }
3328
3329 /**
3330 * __module_address() - get the module which contains an address.
3331 * @addr: the address.
3332 *
3333 * Must be called with preempt disabled or module mutex held so that
3334 * module doesn't get freed during this.
3335 */
__module_address(unsigned long addr)3336 struct module *__module_address(unsigned long addr)
3337 {
3338 struct module *mod;
3339
3340 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3341 goto lookup;
3342
3343 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3344 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3345 goto lookup;
3346 #endif
3347
3348 return NULL;
3349
3350 lookup:
3351 module_assert_mutex_or_preempt();
3352
3353 mod = mod_find(addr, &mod_tree);
3354 if (mod) {
3355 BUG_ON(!within_module(addr, mod));
3356 if (mod->state == MODULE_STATE_UNFORMED)
3357 mod = NULL;
3358 }
3359 return mod;
3360 }
3361
3362 /**
3363 * is_module_text_address() - is this address inside module code?
3364 * @addr: the address to check.
3365 *
3366 * See is_module_address() if you simply want to see if the address is
3367 * anywhere in a module. See kernel_text_address() for testing if an
3368 * address corresponds to kernel or module code.
3369 */
is_module_text_address(unsigned long addr)3370 bool is_module_text_address(unsigned long addr)
3371 {
3372 bool ret;
3373
3374 preempt_disable();
3375 ret = __module_text_address(addr) != NULL;
3376 preempt_enable();
3377
3378 return ret;
3379 }
3380
3381 /**
3382 * __module_text_address() - get the module whose code contains an address.
3383 * @addr: the address.
3384 *
3385 * Must be called with preempt disabled or module mutex held so that
3386 * module doesn't get freed during this.
3387 */
__module_text_address(unsigned long addr)3388 struct module *__module_text_address(unsigned long addr)
3389 {
3390 struct module *mod = __module_address(addr);
3391 if (mod) {
3392 /* Make sure it's within the text section. */
3393 if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3394 !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3395 mod = NULL;
3396 }
3397 return mod;
3398 }
3399
3400 /* Don't grab lock, we're oopsing. */
print_modules(void)3401 void print_modules(void)
3402 {
3403 struct module *mod;
3404 char buf[MODULE_FLAGS_BUF_SIZE];
3405
3406 printk(KERN_DEFAULT "Modules linked in:");
3407 /* Most callers should already have preempt disabled, but make sure */
3408 preempt_disable();
3409 list_for_each_entry_rcu(mod, &modules, list) {
3410 if (mod->state == MODULE_STATE_UNFORMED)
3411 continue;
3412 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3413 }
3414
3415 print_unloaded_tainted_modules();
3416 preempt_enable();
3417 if (last_unloaded_module.name[0])
3418 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3419 last_unloaded_module.taints);
3420 pr_cont("\n");
3421 }
3422
3423 #ifdef CONFIG_MODULE_DEBUGFS
3424 struct dentry *mod_debugfs_root;
3425
module_debugfs_init(void)3426 static int module_debugfs_init(void)
3427 {
3428 mod_debugfs_root = debugfs_create_dir("modules", NULL);
3429 return 0;
3430 }
3431 module_init(module_debugfs_init);
3432 #endif
3433