• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/debugfs.h>
60 #include <uapi/linux/module.h>
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/module.h>
65 
66 /*
67  * Mutex protects:
68  * 1) List of modules (also safely readable with preempt_disable),
69  * 2) module_use links,
70  * 3) mod_tree.addr_min/mod_tree.addr_max.
71  * (delete and add uses RCU list operations).
72  */
73 DEFINE_MUTEX(module_mutex);
74 LIST_HEAD(modules);
75 
76 /* Work queue for freeing init sections in success case */
77 static void do_free_init(struct work_struct *w);
78 static DECLARE_WORK(init_free_wq, do_free_init);
79 static LLIST_HEAD(init_free_list);
80 
81 struct mod_tree_root mod_tree __cacheline_aligned = {
82 	.addr_min = -1UL,
83 };
84 
85 struct symsearch {
86 	const struct kernel_symbol *start, *stop;
87 	const s32 *crcs;
88 	enum mod_license license;
89 };
90 
91 /*
92  * Bounds of module memory, for speeding up __module_address.
93  * Protected by module_mutex.
94  */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)95 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
96 				unsigned int size, struct mod_tree_root *tree)
97 {
98 	unsigned long min = (unsigned long)base;
99 	unsigned long max = min + size;
100 
101 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
102 	if (mod_mem_type_is_core_data(type)) {
103 		if (min < tree->data_addr_min)
104 			tree->data_addr_min = min;
105 		if (max > tree->data_addr_max)
106 			tree->data_addr_max = max;
107 		return;
108 	}
109 #endif
110 	if (min < tree->addr_min)
111 		tree->addr_min = min;
112 	if (max > tree->addr_max)
113 		tree->addr_max = max;
114 }
115 
mod_update_bounds(struct module * mod)116 static void mod_update_bounds(struct module *mod)
117 {
118 	for_each_mod_mem_type(type) {
119 		struct module_memory *mod_mem = &mod->mem[type];
120 
121 		if (mod_mem->size)
122 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
123 	}
124 }
125 
126 /* Block module loading/unloading? */
127 int modules_disabled;
128 core_param(nomodule, modules_disabled, bint, 0);
129 
130 /* Waiting for a module to finish initializing? */
131 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
132 
133 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
134 
register_module_notifier(struct notifier_block * nb)135 int register_module_notifier(struct notifier_block *nb)
136 {
137 	return blocking_notifier_chain_register(&module_notify_list, nb);
138 }
139 EXPORT_SYMBOL(register_module_notifier);
140 
unregister_module_notifier(struct notifier_block * nb)141 int unregister_module_notifier(struct notifier_block *nb)
142 {
143 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
144 }
145 EXPORT_SYMBOL(unregister_module_notifier);
146 
147 /*
148  * We require a truly strong try_module_get(): 0 means success.
149  * Otherwise an error is returned due to ongoing or failed
150  * initialization etc.
151  */
strong_try_module_get(struct module * mod)152 static inline int strong_try_module_get(struct module *mod)
153 {
154 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
155 	if (mod && mod->state == MODULE_STATE_COMING)
156 		return -EBUSY;
157 	if (try_module_get(mod))
158 		return 0;
159 	else
160 		return -ENOENT;
161 }
162 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)163 static inline void add_taint_module(struct module *mod, unsigned flag,
164 				    enum lockdep_ok lockdep_ok)
165 {
166 	add_taint(flag, lockdep_ok);
167 	set_bit(flag, &mod->taints);
168 }
169 
170 /*
171  * A thread that wants to hold a reference to a module only while it
172  * is running can call this to safely exit.
173  */
__module_put_and_kthread_exit(struct module * mod,long code)174 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
175 {
176 	module_put(mod);
177 	kthread_exit(code);
178 }
179 EXPORT_SYMBOL(__module_put_and_kthread_exit);
180 
181 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)182 static unsigned int find_sec(const struct load_info *info, const char *name)
183 {
184 	unsigned int i;
185 
186 	for (i = 1; i < info->hdr->e_shnum; i++) {
187 		Elf_Shdr *shdr = &info->sechdrs[i];
188 		/* Alloc bit cleared means "ignore it." */
189 		if ((shdr->sh_flags & SHF_ALLOC)
190 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
191 			return i;
192 	}
193 	return 0;
194 }
195 
196 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)197 static void *section_addr(const struct load_info *info, const char *name)
198 {
199 	/* Section 0 has sh_addr 0. */
200 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
201 }
202 
203 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)204 static void *section_objs(const struct load_info *info,
205 			  const char *name,
206 			  size_t object_size,
207 			  unsigned int *num)
208 {
209 	unsigned int sec = find_sec(info, name);
210 
211 	/* Section 0 has sh_addr 0 and sh_size 0. */
212 	*num = info->sechdrs[sec].sh_size / object_size;
213 	return (void *)info->sechdrs[sec].sh_addr;
214 }
215 
216 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)217 static unsigned int find_any_sec(const struct load_info *info, const char *name)
218 {
219 	unsigned int i;
220 
221 	for (i = 1; i < info->hdr->e_shnum; i++) {
222 		Elf_Shdr *shdr = &info->sechdrs[i];
223 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
224 			return i;
225 	}
226 	return 0;
227 }
228 
229 /*
230  * Find a module section, or NULL. Fill in number of "objects" in section.
231  * Ignores SHF_ALLOC flag.
232  */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)233 static __maybe_unused void *any_section_objs(const struct load_info *info,
234 					     const char *name,
235 					     size_t object_size,
236 					     unsigned int *num)
237 {
238 	unsigned int sec = find_any_sec(info, name);
239 
240 	/* Section 0 has sh_addr 0 and sh_size 0. */
241 	*num = info->sechdrs[sec].sh_size / object_size;
242 	return (void *)info->sechdrs[sec].sh_addr;
243 }
244 
245 #ifndef CONFIG_MODVERSIONS
246 #define symversion(base, idx) NULL
247 #else
248 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
249 #endif
250 
kernel_symbol_name(const struct kernel_symbol * sym)251 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
252 {
253 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
254 	return offset_to_ptr(&sym->name_offset);
255 #else
256 	return sym->name;
257 #endif
258 }
259 
kernel_symbol_namespace(const struct kernel_symbol * sym)260 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
261 {
262 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
263 	if (!sym->namespace_offset)
264 		return NULL;
265 	return offset_to_ptr(&sym->namespace_offset);
266 #else
267 	return sym->namespace;
268 #endif
269 }
270 
cmp_name(const void * name,const void * sym)271 int cmp_name(const void *name, const void *sym)
272 {
273 	return strcmp(name, kernel_symbol_name(sym));
274 }
275 
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)276 static bool find_exported_symbol_in_section(const struct symsearch *syms,
277 					    struct module *owner,
278 					    struct find_symbol_arg *fsa)
279 {
280 	struct kernel_symbol *sym;
281 
282 	if (!fsa->gplok && syms->license == GPL_ONLY)
283 		return false;
284 
285 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
286 			sizeof(struct kernel_symbol), cmp_name);
287 	if (!sym)
288 		return false;
289 
290 	fsa->owner = owner;
291 	fsa->crc = symversion(syms->crcs, sym - syms->start);
292 	fsa->sym = sym;
293 	fsa->license = syms->license;
294 
295 	return true;
296 }
297 
298 /*
299  * Find an exported symbol and return it, along with, (optional) crc and
300  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
301  */
find_symbol(struct find_symbol_arg * fsa)302 bool find_symbol(struct find_symbol_arg *fsa)
303 {
304 	static const struct symsearch arr[] = {
305 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
306 		  NOT_GPL_ONLY },
307 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
308 		  __start___kcrctab_gpl,
309 		  GPL_ONLY },
310 	};
311 	struct module *mod;
312 	unsigned int i;
313 
314 	module_assert_mutex_or_preempt();
315 
316 	for (i = 0; i < ARRAY_SIZE(arr); i++)
317 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
318 			return true;
319 
320 	list_for_each_entry_rcu(mod, &modules, list,
321 				lockdep_is_held(&module_mutex)) {
322 		struct symsearch arr[] = {
323 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
324 			  NOT_GPL_ONLY },
325 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
326 			  mod->gpl_crcs,
327 			  GPL_ONLY },
328 		};
329 
330 		if (mod->state == MODULE_STATE_UNFORMED)
331 			continue;
332 
333 		for (i = 0; i < ARRAY_SIZE(arr); i++)
334 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
335 				return true;
336 	}
337 
338 	pr_debug("Failed to find symbol %s\n", fsa->name);
339 	return false;
340 }
341 
342 /*
343  * Search for module by name: must hold module_mutex (or preempt disabled
344  * for read-only access).
345  */
find_module_all(const char * name,size_t len,bool even_unformed)346 struct module *find_module_all(const char *name, size_t len,
347 			       bool even_unformed)
348 {
349 	struct module *mod;
350 
351 	module_assert_mutex_or_preempt();
352 
353 	list_for_each_entry_rcu(mod, &modules, list,
354 				lockdep_is_held(&module_mutex)) {
355 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
356 			continue;
357 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
358 			return mod;
359 	}
360 	return NULL;
361 }
362 
find_module(const char * name)363 struct module *find_module(const char *name)
364 {
365 	return find_module_all(name, strlen(name), false);
366 }
367 
368 #ifdef CONFIG_SMP
369 
mod_percpu(struct module * mod)370 static inline void __percpu *mod_percpu(struct module *mod)
371 {
372 	return mod->percpu;
373 }
374 
percpu_modalloc(struct module * mod,struct load_info * info)375 static int percpu_modalloc(struct module *mod, struct load_info *info)
376 {
377 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
378 	unsigned long align = pcpusec->sh_addralign;
379 
380 	if (!pcpusec->sh_size)
381 		return 0;
382 
383 	if (align > PAGE_SIZE) {
384 		pr_warn("%s: per-cpu alignment %li > %li\n",
385 			mod->name, align, PAGE_SIZE);
386 		align = PAGE_SIZE;
387 	}
388 
389 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
390 	if (!mod->percpu) {
391 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
392 			mod->name, (unsigned long)pcpusec->sh_size);
393 		return -ENOMEM;
394 	}
395 	mod->percpu_size = pcpusec->sh_size;
396 	return 0;
397 }
398 
percpu_modfree(struct module * mod)399 static void percpu_modfree(struct module *mod)
400 {
401 	free_percpu(mod->percpu);
402 }
403 
find_pcpusec(struct load_info * info)404 static unsigned int find_pcpusec(struct load_info *info)
405 {
406 	return find_sec(info, ".data..percpu");
407 }
408 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)409 static void percpu_modcopy(struct module *mod,
410 			   const void *from, unsigned long size)
411 {
412 	int cpu;
413 
414 	for_each_possible_cpu(cpu)
415 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
416 }
417 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)418 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
419 {
420 	struct module *mod;
421 	unsigned int cpu;
422 
423 	preempt_disable();
424 
425 	list_for_each_entry_rcu(mod, &modules, list) {
426 		if (mod->state == MODULE_STATE_UNFORMED)
427 			continue;
428 		if (!mod->percpu_size)
429 			continue;
430 		for_each_possible_cpu(cpu) {
431 			void *start = per_cpu_ptr(mod->percpu, cpu);
432 			void *va = (void *)addr;
433 
434 			if (va >= start && va < start + mod->percpu_size) {
435 				if (can_addr) {
436 					*can_addr = (unsigned long) (va - start);
437 					*can_addr += (unsigned long)
438 						per_cpu_ptr(mod->percpu,
439 							    get_boot_cpu_id());
440 				}
441 				preempt_enable();
442 				return true;
443 			}
444 		}
445 	}
446 
447 	preempt_enable();
448 	return false;
449 }
450 
451 /**
452  * is_module_percpu_address() - test whether address is from module static percpu
453  * @addr: address to test
454  *
455  * Test whether @addr belongs to module static percpu area.
456  *
457  * Return: %true if @addr is from module static percpu area
458  */
is_module_percpu_address(unsigned long addr)459 bool is_module_percpu_address(unsigned long addr)
460 {
461 	return __is_module_percpu_address(addr, NULL);
462 }
463 
464 #else /* ... !CONFIG_SMP */
465 
mod_percpu(struct module * mod)466 static inline void __percpu *mod_percpu(struct module *mod)
467 {
468 	return NULL;
469 }
percpu_modalloc(struct module * mod,struct load_info * info)470 static int percpu_modalloc(struct module *mod, struct load_info *info)
471 {
472 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
473 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
474 		return -ENOMEM;
475 	return 0;
476 }
percpu_modfree(struct module * mod)477 static inline void percpu_modfree(struct module *mod)
478 {
479 }
find_pcpusec(struct load_info * info)480 static unsigned int find_pcpusec(struct load_info *info)
481 {
482 	return 0;
483 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)484 static inline void percpu_modcopy(struct module *mod,
485 				  const void *from, unsigned long size)
486 {
487 	/* pcpusec should be 0, and size of that section should be 0. */
488 	BUG_ON(size != 0);
489 }
is_module_percpu_address(unsigned long addr)490 bool is_module_percpu_address(unsigned long addr)
491 {
492 	return false;
493 }
494 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)495 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
496 {
497 	return false;
498 }
499 
500 #endif /* CONFIG_SMP */
501 
502 #define MODINFO_ATTR(field)	\
503 static void setup_modinfo_##field(struct module *mod, const char *s)  \
504 {                                                                     \
505 	mod->field = kstrdup(s, GFP_KERNEL);                          \
506 }                                                                     \
507 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
508 			struct module_kobject *mk, char *buffer)      \
509 {                                                                     \
510 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
511 }                                                                     \
512 static int modinfo_##field##_exists(struct module *mod)               \
513 {                                                                     \
514 	return mod->field != NULL;                                    \
515 }                                                                     \
516 static void free_modinfo_##field(struct module *mod)                  \
517 {                                                                     \
518 	kfree(mod->field);                                            \
519 	mod->field = NULL;                                            \
520 }                                                                     \
521 static struct module_attribute modinfo_##field = {                    \
522 	.attr = { .name = __stringify(field), .mode = 0444 },         \
523 	.show = show_modinfo_##field,                                 \
524 	.setup = setup_modinfo_##field,                               \
525 	.test = modinfo_##field##_exists,                             \
526 	.free = free_modinfo_##field,                                 \
527 };
528 
529 MODINFO_ATTR(version);
530 MODINFO_ATTR(srcversion);
531 MODINFO_ATTR(scmversion);
532 
533 static struct {
534 	char name[MODULE_NAME_LEN + 1];
535 	char taints[MODULE_FLAGS_BUF_SIZE];
536 } last_unloaded_module;
537 
538 #ifdef CONFIG_MODULE_UNLOAD
539 
540 EXPORT_TRACEPOINT_SYMBOL(module_get);
541 
542 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
543 #define MODULE_REF_BASE	1
544 
545 /* Init the unload section of the module. */
module_unload_init(struct module * mod)546 static int module_unload_init(struct module *mod)
547 {
548 	/*
549 	 * Initialize reference counter to MODULE_REF_BASE.
550 	 * refcnt == 0 means module is going.
551 	 */
552 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
553 
554 	INIT_LIST_HEAD(&mod->source_list);
555 	INIT_LIST_HEAD(&mod->target_list);
556 
557 	/* Hold reference count during initialization. */
558 	atomic_inc(&mod->refcnt);
559 
560 	return 0;
561 }
562 
563 /* Does a already use b? */
already_uses(struct module * a,struct module * b)564 static int already_uses(struct module *a, struct module *b)
565 {
566 	struct module_use *use;
567 
568 	list_for_each_entry(use, &b->source_list, source_list) {
569 		if (use->source == a)
570 			return 1;
571 	}
572 	pr_debug("%s does not use %s!\n", a->name, b->name);
573 	return 0;
574 }
575 
576 /*
577  * Module a uses b
578  *  - we add 'a' as a "source", 'b' as a "target" of module use
579  *  - the module_use is added to the list of 'b' sources (so
580  *    'b' can walk the list to see who sourced them), and of 'a'
581  *    targets (so 'a' can see what modules it targets).
582  */
add_module_usage(struct module * a,struct module * b)583 static int add_module_usage(struct module *a, struct module *b)
584 {
585 	struct module_use *use;
586 
587 	pr_debug("Allocating new usage for %s.\n", a->name);
588 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
589 	if (!use)
590 		return -ENOMEM;
591 
592 	use->source = a;
593 	use->target = b;
594 	list_add(&use->source_list, &b->source_list);
595 	list_add(&use->target_list, &a->target_list);
596 	return 0;
597 }
598 
599 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)600 static int ref_module(struct module *a, struct module *b)
601 {
602 	int err;
603 
604 	if (b == NULL || already_uses(a, b))
605 		return 0;
606 
607 	/* If module isn't available, we fail. */
608 	err = strong_try_module_get(b);
609 	if (err)
610 		return err;
611 
612 	err = add_module_usage(a, b);
613 	if (err) {
614 		module_put(b);
615 		return err;
616 	}
617 	return 0;
618 }
619 
620 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)621 static void module_unload_free(struct module *mod)
622 {
623 	struct module_use *use, *tmp;
624 
625 	mutex_lock(&module_mutex);
626 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
627 		struct module *i = use->target;
628 		pr_debug("%s unusing %s\n", mod->name, i->name);
629 		module_put(i);
630 		list_del(&use->source_list);
631 		list_del(&use->target_list);
632 		kfree(use);
633 	}
634 	mutex_unlock(&module_mutex);
635 }
636 
637 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)638 static inline int try_force_unload(unsigned int flags)
639 {
640 	int ret = (flags & O_TRUNC);
641 	if (ret)
642 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
643 	return ret;
644 }
645 #else
try_force_unload(unsigned int flags)646 static inline int try_force_unload(unsigned int flags)
647 {
648 	return 0;
649 }
650 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
651 
652 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)653 static int try_release_module_ref(struct module *mod)
654 {
655 	int ret;
656 
657 	/* Try to decrement refcnt which we set at loading */
658 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
659 	BUG_ON(ret < 0);
660 	if (ret)
661 		/* Someone can put this right now, recover with checking */
662 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
663 
664 	return ret;
665 }
666 
try_stop_module(struct module * mod,int flags,int * forced)667 static int try_stop_module(struct module *mod, int flags, int *forced)
668 {
669 	/* If it's not unused, quit unless we're forcing. */
670 	if (try_release_module_ref(mod) != 0) {
671 		*forced = try_force_unload(flags);
672 		if (!(*forced))
673 			return -EWOULDBLOCK;
674 	}
675 
676 	/* Mark it as dying. */
677 	mod->state = MODULE_STATE_GOING;
678 
679 	return 0;
680 }
681 
682 /**
683  * module_refcount() - return the refcount or -1 if unloading
684  * @mod:	the module we're checking
685  *
686  * Return:
687  *	-1 if the module is in the process of unloading
688  *	otherwise the number of references in the kernel to the module
689  */
module_refcount(struct module * mod)690 int module_refcount(struct module *mod)
691 {
692 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
693 }
694 EXPORT_SYMBOL(module_refcount);
695 
696 /* This exists whether we can unload or not */
697 static void free_module(struct module *mod);
698 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)699 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
700 		unsigned int, flags)
701 {
702 	struct module *mod;
703 	char name[MODULE_NAME_LEN];
704 	char buf[MODULE_FLAGS_BUF_SIZE];
705 	int ret, forced = 0;
706 
707 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
708 		return -EPERM;
709 
710 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
711 		return -EFAULT;
712 	name[MODULE_NAME_LEN-1] = '\0';
713 
714 	audit_log_kern_module(name);
715 
716 	if (mutex_lock_interruptible(&module_mutex) != 0)
717 		return -EINTR;
718 
719 	mod = find_module(name);
720 	if (!mod) {
721 		ret = -ENOENT;
722 		goto out;
723 	}
724 
725 	if (!list_empty(&mod->source_list)) {
726 		/* Other modules depend on us: get rid of them first. */
727 		ret = -EWOULDBLOCK;
728 		goto out;
729 	}
730 
731 	/* Doing init or already dying? */
732 	if (mod->state != MODULE_STATE_LIVE) {
733 		/* FIXME: if (force), slam module count damn the torpedoes */
734 		pr_debug("%s already dying\n", mod->name);
735 		ret = -EBUSY;
736 		goto out;
737 	}
738 
739 	/* If it has an init func, it must have an exit func to unload */
740 	if (mod->init && !mod->exit) {
741 		forced = try_force_unload(flags);
742 		if (!forced) {
743 			/* This module can't be removed */
744 			ret = -EBUSY;
745 			goto out;
746 		}
747 	}
748 
749 	ret = try_stop_module(mod, flags, &forced);
750 	if (ret != 0)
751 		goto out;
752 
753 	mutex_unlock(&module_mutex);
754 	/* Final destruction now no one is using it. */
755 	if (mod->exit != NULL)
756 		mod->exit();
757 	blocking_notifier_call_chain(&module_notify_list,
758 				     MODULE_STATE_GOING, mod);
759 	klp_module_going(mod);
760 	ftrace_release_mod(mod);
761 
762 	async_synchronize_full();
763 
764 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
765 	strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
766 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
767 
768 	free_module(mod);
769 	/* someone could wait for the module in add_unformed_module() */
770 	wake_up_all(&module_wq);
771 	return 0;
772 out:
773 	mutex_unlock(&module_mutex);
774 	return ret;
775 }
776 
__symbol_put(const char * symbol)777 void __symbol_put(const char *symbol)
778 {
779 	struct find_symbol_arg fsa = {
780 		.name	= symbol,
781 		.gplok	= true,
782 	};
783 
784 	preempt_disable();
785 	BUG_ON(!find_symbol(&fsa));
786 	module_put(fsa.owner);
787 	preempt_enable();
788 }
789 EXPORT_SYMBOL(__symbol_put);
790 
791 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)792 void symbol_put_addr(void *addr)
793 {
794 	struct module *modaddr;
795 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
796 
797 	if (core_kernel_text(a))
798 		return;
799 
800 	/*
801 	 * Even though we hold a reference on the module; we still need to
802 	 * disable preemption in order to safely traverse the data structure.
803 	 */
804 	preempt_disable();
805 	modaddr = __module_text_address(a);
806 	BUG_ON(!modaddr);
807 	module_put(modaddr);
808 	preempt_enable();
809 }
810 EXPORT_SYMBOL_GPL(symbol_put_addr);
811 
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)812 static ssize_t show_refcnt(struct module_attribute *mattr,
813 			   struct module_kobject *mk, char *buffer)
814 {
815 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
816 }
817 
818 static struct module_attribute modinfo_refcnt =
819 	__ATTR(refcnt, 0444, show_refcnt, NULL);
820 
__module_get(struct module * module)821 void __module_get(struct module *module)
822 {
823 	if (module) {
824 		atomic_inc(&module->refcnt);
825 		trace_module_get(module, _RET_IP_);
826 	}
827 }
828 EXPORT_SYMBOL(__module_get);
829 
try_module_get(struct module * module)830 bool try_module_get(struct module *module)
831 {
832 	bool ret = true;
833 
834 	if (module) {
835 		/* Note: here, we can fail to get a reference */
836 		if (likely(module_is_live(module) &&
837 			   atomic_inc_not_zero(&module->refcnt) != 0))
838 			trace_module_get(module, _RET_IP_);
839 		else
840 			ret = false;
841 	}
842 	return ret;
843 }
844 EXPORT_SYMBOL(try_module_get);
845 
module_put(struct module * module)846 void module_put(struct module *module)
847 {
848 	int ret;
849 
850 	if (module) {
851 		ret = atomic_dec_if_positive(&module->refcnt);
852 		WARN_ON(ret < 0);	/* Failed to put refcount */
853 		trace_module_put(module, _RET_IP_);
854 	}
855 }
856 EXPORT_SYMBOL(module_put);
857 
858 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)859 static inline void module_unload_free(struct module *mod)
860 {
861 }
862 
ref_module(struct module * a,struct module * b)863 static int ref_module(struct module *a, struct module *b)
864 {
865 	return strong_try_module_get(b);
866 }
867 
module_unload_init(struct module * mod)868 static inline int module_unload_init(struct module *mod)
869 {
870 	return 0;
871 }
872 #endif /* CONFIG_MODULE_UNLOAD */
873 
module_flags_taint(unsigned long taints,char * buf)874 size_t module_flags_taint(unsigned long taints, char *buf)
875 {
876 	size_t l = 0;
877 	int i;
878 
879 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
880 		if (taint_flags[i].module && test_bit(i, &taints))
881 			buf[l++] = taint_flags[i].c_true;
882 	}
883 
884 	return l;
885 }
886 
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)887 static ssize_t show_initstate(struct module_attribute *mattr,
888 			      struct module_kobject *mk, char *buffer)
889 {
890 	const char *state = "unknown";
891 
892 	switch (mk->mod->state) {
893 	case MODULE_STATE_LIVE:
894 		state = "live";
895 		break;
896 	case MODULE_STATE_COMING:
897 		state = "coming";
898 		break;
899 	case MODULE_STATE_GOING:
900 		state = "going";
901 		break;
902 	default:
903 		BUG();
904 	}
905 	return sprintf(buffer, "%s\n", state);
906 }
907 
908 static struct module_attribute modinfo_initstate =
909 	__ATTR(initstate, 0444, show_initstate, NULL);
910 
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)911 static ssize_t store_uevent(struct module_attribute *mattr,
912 			    struct module_kobject *mk,
913 			    const char *buffer, size_t count)
914 {
915 	int rc;
916 
917 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
918 	return rc ? rc : count;
919 }
920 
921 struct module_attribute module_uevent =
922 	__ATTR(uevent, 0200, NULL, store_uevent);
923 
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)924 static ssize_t show_coresize(struct module_attribute *mattr,
925 			     struct module_kobject *mk, char *buffer)
926 {
927 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
928 
929 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
930 		for_class_mod_mem_type(type, core_data)
931 			size += mk->mod->mem[type].size;
932 	}
933 	return sprintf(buffer, "%u\n", size);
934 }
935 
936 static struct module_attribute modinfo_coresize =
937 	__ATTR(coresize, 0444, show_coresize, NULL);
938 
939 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)940 static ssize_t show_datasize(struct module_attribute *mattr,
941 			     struct module_kobject *mk, char *buffer)
942 {
943 	unsigned int size = 0;
944 
945 	for_class_mod_mem_type(type, core_data)
946 		size += mk->mod->mem[type].size;
947 	return sprintf(buffer, "%u\n", size);
948 }
949 
950 static struct module_attribute modinfo_datasize =
951 	__ATTR(datasize, 0444, show_datasize, NULL);
952 #endif
953 
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)954 static ssize_t show_initsize(struct module_attribute *mattr,
955 			     struct module_kobject *mk, char *buffer)
956 {
957 	unsigned int size = 0;
958 
959 	for_class_mod_mem_type(type, init)
960 		size += mk->mod->mem[type].size;
961 	return sprintf(buffer, "%u\n", size);
962 }
963 
964 static struct module_attribute modinfo_initsize =
965 	__ATTR(initsize, 0444, show_initsize, NULL);
966 
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)967 static ssize_t show_taint(struct module_attribute *mattr,
968 			  struct module_kobject *mk, char *buffer)
969 {
970 	size_t l;
971 
972 	l = module_flags_taint(mk->mod->taints, buffer);
973 	buffer[l++] = '\n';
974 	return l;
975 }
976 
977 static struct module_attribute modinfo_taint =
978 	__ATTR(taint, 0444, show_taint, NULL);
979 
980 struct module_attribute *modinfo_attrs[] = {
981 	&module_uevent,
982 	&modinfo_version,
983 	&modinfo_srcversion,
984 	&modinfo_scmversion,
985 	&modinfo_initstate,
986 	&modinfo_coresize,
987 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
988 	&modinfo_datasize,
989 #endif
990 	&modinfo_initsize,
991 	&modinfo_taint,
992 #ifdef CONFIG_MODULE_UNLOAD
993 	&modinfo_refcnt,
994 #endif
995 	NULL,
996 };
997 
998 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
999 
1000 static const char vermagic[] = VERMAGIC_STRING;
1001 
try_to_force_load(struct module * mod,const char * reason)1002 int try_to_force_load(struct module *mod, const char *reason)
1003 {
1004 #ifdef CONFIG_MODULE_FORCE_LOAD
1005 	if (!test_taint(TAINT_FORCED_MODULE))
1006 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1007 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1008 	return 0;
1009 #else
1010 	return -ENOEXEC;
1011 #endif
1012 }
1013 
1014 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1015 char *module_next_tag_pair(char *string, unsigned long *secsize)
1016 {
1017 	/* Skip non-zero chars */
1018 	while (string[0]) {
1019 		string++;
1020 		if ((*secsize)-- <= 1)
1021 			return NULL;
1022 	}
1023 
1024 	/* Skip any zero padding. */
1025 	while (!string[0]) {
1026 		string++;
1027 		if ((*secsize)-- <= 1)
1028 			return NULL;
1029 	}
1030 	return string;
1031 }
1032 
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1033 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1034 			      char *prev)
1035 {
1036 	char *p;
1037 	unsigned int taglen = strlen(tag);
1038 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1039 	unsigned long size = infosec->sh_size;
1040 
1041 	/*
1042 	 * get_modinfo() calls made before rewrite_section_headers()
1043 	 * must use sh_offset, as sh_addr isn't set!
1044 	 */
1045 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1046 
1047 	if (prev) {
1048 		size -= prev - modinfo;
1049 		modinfo = module_next_tag_pair(prev, &size);
1050 	}
1051 
1052 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1053 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1054 			return p + taglen + 1;
1055 	}
1056 	return NULL;
1057 }
1058 
get_modinfo(const struct load_info * info,const char * tag)1059 static char *get_modinfo(const struct load_info *info, const char *tag)
1060 {
1061 	return get_next_modinfo(info, tag, NULL);
1062 }
1063 
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1064 static int verify_namespace_is_imported(const struct load_info *info,
1065 					const struct kernel_symbol *sym,
1066 					struct module *mod)
1067 {
1068 	const char *namespace;
1069 	char *imported_namespace;
1070 
1071 	namespace = kernel_symbol_namespace(sym);
1072 	if (namespace && namespace[0]) {
1073 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1074 			if (strcmp(namespace, imported_namespace) == 0)
1075 				return 0;
1076 		}
1077 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1078 		pr_warn(
1079 #else
1080 		pr_err(
1081 #endif
1082 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1083 			mod->name, kernel_symbol_name(sym), namespace);
1084 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1085 		return -EINVAL;
1086 #endif
1087 	}
1088 	return 0;
1089 }
1090 
inherit_taint(struct module * mod,struct module * owner,const char * name)1091 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1092 {
1093 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1094 		return true;
1095 
1096 	if (mod->using_gplonly_symbols) {
1097 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1098 			mod->name, name, owner->name);
1099 		return false;
1100 	}
1101 
1102 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1103 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1104 			mod->name, name, owner->name);
1105 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1106 	}
1107 	return true;
1108 }
1109 
1110 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1111 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1112 						  const struct load_info *info,
1113 						  const char *name,
1114 						  char ownername[])
1115 {
1116 	bool is_vendor_module;
1117 	bool is_vendor_exported_symbol;
1118 	struct find_symbol_arg fsa = {
1119 		.name	= name,
1120 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1121 		.warn	= true,
1122 	};
1123 	int err;
1124 
1125 	/*
1126 	 * The module_mutex should not be a heavily contended lock;
1127 	 * if we get the occasional sleep here, we'll go an extra iteration
1128 	 * in the wait_event_interruptible(), which is harmless.
1129 	 */
1130 	sched_annotate_sleep();
1131 	mutex_lock(&module_mutex);
1132 	if (!find_symbol(&fsa))
1133 		goto unlock;
1134 
1135 	if (fsa.license == GPL_ONLY)
1136 		mod->using_gplonly_symbols = true;
1137 
1138 	if (!inherit_taint(mod, fsa.owner, name)) {
1139 		fsa.sym = NULL;
1140 		goto getname;
1141 	}
1142 
1143 	if (!check_version(info, name, mod, fsa.crc)) {
1144 		fsa.sym = ERR_PTR(-EINVAL);
1145 		goto getname;
1146 	}
1147 
1148 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1149 	if (err) {
1150 		fsa.sym = ERR_PTR(err);
1151 		goto getname;
1152 	}
1153 
1154 	/*
1155 	 * ANDROID GKI
1156 	 *
1157 	 * Vendor (i.e., unsigned) modules are only permitted to use:
1158 	 *
1159 	 * 1. symbols exported by other vendor (unsigned) modules
1160 	 * 2. unprotected symbols
1161 	 */
1162 	is_vendor_module = !mod->sig_ok;
1163 	is_vendor_exported_symbol = fsa.owner && !fsa.owner->sig_ok;
1164 
1165 	if (is_vendor_module &&
1166 	    !is_vendor_exported_symbol &&
1167 	    !gki_is_module_unprotected_symbol(name)) {
1168 		fsa.sym = ERR_PTR(-EACCES);
1169 		goto getname;
1170 	}
1171 
1172 	err = ref_module(mod, fsa.owner);
1173 	if (err) {
1174 		fsa.sym = ERR_PTR(err);
1175 		goto getname;
1176 	}
1177 
1178 getname:
1179 	/* We must make copy under the lock if we failed to get ref. */
1180 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1181 unlock:
1182 	mutex_unlock(&module_mutex);
1183 	return fsa.sym;
1184 }
1185 
1186 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1187 resolve_symbol_wait(struct module *mod,
1188 		    const struct load_info *info,
1189 		    const char *name)
1190 {
1191 	const struct kernel_symbol *ksym;
1192 	char owner[MODULE_NAME_LEN];
1193 
1194 	if (wait_event_interruptible_timeout(module_wq,
1195 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1196 			|| PTR_ERR(ksym) != -EBUSY,
1197 					     30 * HZ) <= 0) {
1198 		pr_warn("%s: gave up waiting for init of module %s.\n",
1199 			mod->name, owner);
1200 	}
1201 	return ksym;
1202 }
1203 
module_memfree(void * module_region)1204 void __weak module_memfree(void *module_region)
1205 {
1206 	/*
1207 	 * This memory may be RO, and freeing RO memory in an interrupt is not
1208 	 * supported by vmalloc.
1209 	 */
1210 	WARN_ON(in_interrupt());
1211 	vfree(module_region);
1212 }
1213 
module_arch_cleanup(struct module * mod)1214 void __weak module_arch_cleanup(struct module *mod)
1215 {
1216 }
1217 
module_arch_freeing_init(struct module * mod)1218 void __weak module_arch_freeing_init(struct module *mod)
1219 {
1220 }
1221 
mod_mem_use_vmalloc(enum mod_mem_type type)1222 static bool mod_mem_use_vmalloc(enum mod_mem_type type)
1223 {
1224 	return IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC) &&
1225 		mod_mem_type_is_core_data(type);
1226 }
1227 
module_memory_alloc(unsigned int size,enum mod_mem_type type)1228 static void *module_memory_alloc(unsigned int size, enum mod_mem_type type)
1229 {
1230 	if (mod_mem_use_vmalloc(type))
1231 		return vzalloc(size);
1232 	return module_alloc(size);
1233 }
1234 
module_memory_free(void * ptr,enum mod_mem_type type)1235 static void module_memory_free(void *ptr, enum mod_mem_type type)
1236 {
1237 	if (mod_mem_use_vmalloc(type))
1238 		vfree(ptr);
1239 	else
1240 		module_memfree(ptr);
1241 }
1242 
free_mod_mem(struct module * mod)1243 static void free_mod_mem(struct module *mod)
1244 {
1245 	for_each_mod_mem_type(type) {
1246 		struct module_memory *mod_mem = &mod->mem[type];
1247 
1248 		if (type == MOD_DATA)
1249 			continue;
1250 
1251 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1252 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1253 		if (mod_mem->size)
1254 			module_memory_free(mod_mem->base, type);
1255 	}
1256 
1257 	/* MOD_DATA hosts mod, so free it at last */
1258 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1259 	module_memory_free(mod->mem[MOD_DATA].base, MOD_DATA);
1260 }
1261 
1262 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1263 static void free_module(struct module *mod)
1264 {
1265 	trace_module_free(mod);
1266 
1267 	mod_sysfs_teardown(mod);
1268 
1269 	/*
1270 	 * We leave it in list to prevent duplicate loads, but make sure
1271 	 * that noone uses it while it's being deconstructed.
1272 	 */
1273 	mutex_lock(&module_mutex);
1274 	mod->state = MODULE_STATE_UNFORMED;
1275 	mutex_unlock(&module_mutex);
1276 
1277 	/* Arch-specific cleanup. */
1278 	module_arch_cleanup(mod);
1279 
1280 	/* Module unload stuff */
1281 	module_unload_free(mod);
1282 
1283 	/* Free any allocated parameters. */
1284 	destroy_params(mod->kp, mod->num_kp);
1285 
1286 	if (is_livepatch_module(mod))
1287 		free_module_elf(mod);
1288 
1289 	/* Now we can delete it from the lists */
1290 	mutex_lock(&module_mutex);
1291 	/* Unlink carefully: kallsyms could be walking list. */
1292 	list_del_rcu(&mod->list);
1293 	mod_tree_remove(mod);
1294 	/* Remove this module from bug list, this uses list_del_rcu */
1295 	module_bug_cleanup(mod);
1296 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1297 	synchronize_rcu();
1298 	if (try_add_tainted_module(mod))
1299 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1300 		       mod->name);
1301 	mutex_unlock(&module_mutex);
1302 
1303 	/* This may be empty, but that's OK */
1304 	module_arch_freeing_init(mod);
1305 	kfree(mod->args);
1306 	percpu_modfree(mod);
1307 
1308 	free_mod_mem(mod);
1309 }
1310 
__symbol_get(const char * symbol)1311 void *__symbol_get(const char *symbol)
1312 {
1313 	struct find_symbol_arg fsa = {
1314 		.name	= symbol,
1315 		.gplok	= true,
1316 		.warn	= true,
1317 	};
1318 
1319 	preempt_disable();
1320 	if (!find_symbol(&fsa))
1321 		goto fail;
1322 	if (fsa.license != GPL_ONLY) {
1323 		pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1324 			symbol);
1325 		goto fail;
1326 	}
1327 	if (strong_try_module_get(fsa.owner))
1328 		goto fail;
1329 	preempt_enable();
1330 	return (void *)kernel_symbol_value(fsa.sym);
1331 fail:
1332 	preempt_enable();
1333 	return NULL;
1334 }
1335 EXPORT_SYMBOL_GPL(__symbol_get);
1336 
1337 /*
1338  * Ensure that an exported symbol [global namespace] does not already exist
1339  * in the kernel or in some other module's exported symbol table.
1340  *
1341  * You must hold the module_mutex.
1342  */
verify_exported_symbols(struct module * mod)1343 static int verify_exported_symbols(struct module *mod)
1344 {
1345 	unsigned int i;
1346 	const struct kernel_symbol *s;
1347 	struct {
1348 		const struct kernel_symbol *sym;
1349 		unsigned int num;
1350 	} arr[] = {
1351 		{ mod->syms, mod->num_syms },
1352 		{ mod->gpl_syms, mod->num_gpl_syms },
1353 	};
1354 
1355 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1356 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1357 			struct find_symbol_arg fsa = {
1358 				.name	= kernel_symbol_name(s),
1359 				.gplok	= true,
1360 			};
1361 
1362 			if (!mod->sig_ok && gki_is_module_protected_export(
1363 						kernel_symbol_name(s))) {
1364 				pr_err("%s: exports protected symbol %s\n",
1365 				       mod->name, kernel_symbol_name(s));
1366 				return -EACCES;
1367 			}
1368 
1369 			if (find_symbol(&fsa)) {
1370 				pr_err("%s: exports duplicate symbol %s"
1371 				       " (owned by %s)\n",
1372 				       mod->name, kernel_symbol_name(s),
1373 				       module_name(fsa.owner));
1374 				return -ENOEXEC;
1375 			}
1376 		}
1377 	}
1378 	return 0;
1379 }
1380 
ignore_undef_symbol(Elf_Half emachine,const char * name)1381 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1382 {
1383 	/*
1384 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1385 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1386 	 * i386 has a similar problem but may not deserve a fix.
1387 	 *
1388 	 * If we ever have to ignore many symbols, consider refactoring the code to
1389 	 * only warn if referenced by a relocation.
1390 	 */
1391 	if (emachine == EM_386 || emachine == EM_X86_64)
1392 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1393 	return false;
1394 }
1395 
1396 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1397 static int simplify_symbols(struct module *mod, const struct load_info *info)
1398 {
1399 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1400 	Elf_Sym *sym = (void *)symsec->sh_addr;
1401 	unsigned long secbase;
1402 	unsigned int i;
1403 	int ret = 0;
1404 	const struct kernel_symbol *ksym;
1405 
1406 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1407 		const char *name = info->strtab + sym[i].st_name;
1408 
1409 		switch (sym[i].st_shndx) {
1410 		case SHN_COMMON:
1411 			/* Ignore common symbols */
1412 			if (!strncmp(name, "__gnu_lto", 9))
1413 				break;
1414 
1415 			/*
1416 			 * We compiled with -fno-common.  These are not
1417 			 * supposed to happen.
1418 			 */
1419 			pr_debug("Common symbol: %s\n", name);
1420 			pr_warn("%s: please compile with -fno-common\n",
1421 			       mod->name);
1422 			ret = -ENOEXEC;
1423 			break;
1424 
1425 		case SHN_ABS:
1426 			/* Don't need to do anything */
1427 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1428 				 (long)sym[i].st_value, name);
1429 			break;
1430 
1431 		case SHN_LIVEPATCH:
1432 			/* Livepatch symbols are resolved by livepatch */
1433 			break;
1434 
1435 		case SHN_UNDEF:
1436 			ksym = resolve_symbol_wait(mod, info, name);
1437 			/* Ok if resolved.  */
1438 			if (ksym && !IS_ERR(ksym)) {
1439 				sym[i].st_value = kernel_symbol_value(ksym);
1440 				break;
1441 			}
1442 
1443 			/* Ok if weak or ignored.  */
1444 			if (!ksym &&
1445 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1446 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1447 				break;
1448 
1449 			if (PTR_ERR(ksym) == -EACCES) {
1450 				ret = -EACCES;
1451 				pr_warn("%s: Protected symbol: %s (err %d)\n",
1452 					mod->name, name, ret);
1453 			} else {
1454 				ret = PTR_ERR(ksym) ?: -ENOENT;
1455 				pr_warn("%s: Unknown symbol %s (err %d)\n",
1456 					mod->name, name, ret);
1457 			}
1458 			break;
1459 
1460 		default:
1461 			/* Divert to percpu allocation if a percpu var. */
1462 			if (sym[i].st_shndx == info->index.pcpu)
1463 				secbase = (unsigned long)mod_percpu(mod);
1464 			else
1465 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1466 			sym[i].st_value += secbase;
1467 			break;
1468 		}
1469 	}
1470 
1471 	return ret;
1472 }
1473 
apply_relocations(struct module * mod,const struct load_info * info)1474 static int apply_relocations(struct module *mod, const struct load_info *info)
1475 {
1476 	unsigned int i;
1477 	int err = 0;
1478 
1479 	/* Now do relocations. */
1480 	for (i = 1; i < info->hdr->e_shnum; i++) {
1481 		unsigned int infosec = info->sechdrs[i].sh_info;
1482 
1483 		/* Not a valid relocation section? */
1484 		if (infosec >= info->hdr->e_shnum)
1485 			continue;
1486 
1487 		/* Don't bother with non-allocated sections */
1488 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1489 			continue;
1490 
1491 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1492 			err = klp_apply_section_relocs(mod, info->sechdrs,
1493 						       info->secstrings,
1494 						       info->strtab,
1495 						       info->index.sym, i,
1496 						       NULL);
1497 		else if (info->sechdrs[i].sh_type == SHT_REL)
1498 			err = apply_relocate(info->sechdrs, info->strtab,
1499 					     info->index.sym, i, mod);
1500 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1501 			err = apply_relocate_add(info->sechdrs, info->strtab,
1502 						 info->index.sym, i, mod);
1503 		if (err < 0)
1504 			break;
1505 	}
1506 	return err;
1507 }
1508 
1509 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1510 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1511 					     unsigned int section)
1512 {
1513 	/* default implementation just returns zero */
1514 	return 0;
1515 }
1516 
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1517 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1518 				Elf_Shdr *sechdr, unsigned int section)
1519 {
1520 	long offset;
1521 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1522 
1523 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1524 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1525 	mod->mem[type].size = offset + sechdr->sh_size;
1526 
1527 	WARN_ON_ONCE(offset & mask);
1528 	return offset | mask;
1529 }
1530 
module_init_layout_section(const char * sname)1531 bool module_init_layout_section(const char *sname)
1532 {
1533 #ifndef CONFIG_MODULE_UNLOAD
1534 	if (module_exit_section(sname))
1535 		return true;
1536 #endif
1537 	return module_init_section(sname);
1538 }
1539 
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1540 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1541 {
1542 	unsigned int m, i;
1543 
1544 	static const unsigned long masks[][2] = {
1545 		/*
1546 		 * NOTE: all executable code must be the first section
1547 		 * in this array; otherwise modify the text_size
1548 		 * finder in the two loops below
1549 		 */
1550 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1551 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1552 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1553 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1554 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1555 	};
1556 	static const int core_m_to_mem_type[] = {
1557 		MOD_TEXT,
1558 		MOD_RODATA,
1559 		MOD_RO_AFTER_INIT,
1560 		MOD_DATA,
1561 		MOD_DATA,
1562 	};
1563 	static const int init_m_to_mem_type[] = {
1564 		MOD_INIT_TEXT,
1565 		MOD_INIT_RODATA,
1566 		MOD_INVALID,
1567 		MOD_INIT_DATA,
1568 		MOD_INIT_DATA,
1569 	};
1570 
1571 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1572 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1573 
1574 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1575 			Elf_Shdr *s = &info->sechdrs[i];
1576 			const char *sname = info->secstrings + s->sh_name;
1577 
1578 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1579 			    || (s->sh_flags & masks[m][1])
1580 			    || s->sh_entsize != ~0UL
1581 			    || is_init != module_init_layout_section(sname))
1582 				continue;
1583 
1584 			if (WARN_ON_ONCE(type == MOD_INVALID))
1585 				continue;
1586 
1587 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1588 			pr_debug("\t%s\n", sname);
1589 		}
1590 	}
1591 }
1592 
1593 /*
1594  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1595  * might -- code, read-only data, read-write data, small data.  Tally
1596  * sizes, and place the offsets into sh_entsize fields: high bit means it
1597  * belongs in init.
1598  */
layout_sections(struct module * mod,struct load_info * info)1599 static void layout_sections(struct module *mod, struct load_info *info)
1600 {
1601 	unsigned int i;
1602 
1603 	for (i = 0; i < info->hdr->e_shnum; i++)
1604 		info->sechdrs[i].sh_entsize = ~0UL;
1605 
1606 	pr_debug("Core section allocation order for %s:\n", mod->name);
1607 	__layout_sections(mod, info, false);
1608 
1609 	pr_debug("Init section allocation order for %s:\n", mod->name);
1610 	__layout_sections(mod, info, true);
1611 }
1612 
module_license_taint_check(struct module * mod,const char * license)1613 static void module_license_taint_check(struct module *mod, const char *license)
1614 {
1615 	if (!license)
1616 		license = "unspecified";
1617 
1618 	if (!license_is_gpl_compatible(license)) {
1619 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1620 			pr_warn("%s: module license '%s' taints kernel.\n",
1621 				mod->name, license);
1622 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1623 				 LOCKDEP_NOW_UNRELIABLE);
1624 	}
1625 }
1626 
setup_modinfo(struct module * mod,struct load_info * info)1627 static void setup_modinfo(struct module *mod, struct load_info *info)
1628 {
1629 	struct module_attribute *attr;
1630 	int i;
1631 
1632 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1633 		if (attr->setup)
1634 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1635 	}
1636 }
1637 
free_modinfo(struct module * mod)1638 static void free_modinfo(struct module *mod)
1639 {
1640 	struct module_attribute *attr;
1641 	int i;
1642 
1643 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1644 		if (attr->free)
1645 			attr->free(mod);
1646 	}
1647 }
1648 
module_alloc(unsigned long size)1649 void * __weak module_alloc(unsigned long size)
1650 {
1651 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
1652 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
1653 			NUMA_NO_NODE, __builtin_return_address(0));
1654 }
1655 
module_init_section(const char * name)1656 bool __weak module_init_section(const char *name)
1657 {
1658 	return strstarts(name, ".init");
1659 }
1660 
module_exit_section(const char * name)1661 bool __weak module_exit_section(const char *name)
1662 {
1663 	return strstarts(name, ".exit");
1664 }
1665 
validate_section_offset(struct load_info * info,Elf_Shdr * shdr)1666 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
1667 {
1668 #if defined(CONFIG_64BIT)
1669 	unsigned long long secend;
1670 #else
1671 	unsigned long secend;
1672 #endif
1673 
1674 	/*
1675 	 * Check for both overflow and offset/size being
1676 	 * too large.
1677 	 */
1678 	secend = shdr->sh_offset + shdr->sh_size;
1679 	if (secend < shdr->sh_offset || secend > info->len)
1680 		return -ENOEXEC;
1681 
1682 	return 0;
1683 }
1684 
1685 /*
1686  * Check userspace passed ELF module against our expectations, and cache
1687  * useful variables for further processing as we go.
1688  *
1689  * This does basic validity checks against section offsets and sizes, the
1690  * section name string table, and the indices used for it (sh_name).
1691  *
1692  * As a last step, since we're already checking the ELF sections we cache
1693  * useful variables which will be used later for our convenience:
1694  *
1695  * 	o pointers to section headers
1696  * 	o cache the modinfo symbol section
1697  * 	o cache the string symbol section
1698  * 	o cache the module section
1699  *
1700  * As a last step we set info->mod to the temporary copy of the module in
1701  * info->hdr. The final one will be allocated in move_module(). Any
1702  * modifications we make to our copy of the module will be carried over
1703  * to the final minted module.
1704  */
elf_validity_cache_copy(struct load_info * info,int flags)1705 static int elf_validity_cache_copy(struct load_info *info, int flags)
1706 {
1707 	unsigned int i;
1708 	Elf_Shdr *shdr, *strhdr;
1709 	int err;
1710 	unsigned int num_mod_secs = 0, mod_idx;
1711 	unsigned int num_info_secs = 0, info_idx;
1712 	unsigned int num_sym_secs = 0, sym_idx;
1713 
1714 	if (info->len < sizeof(*(info->hdr))) {
1715 		pr_err("Invalid ELF header len %lu\n", info->len);
1716 		goto no_exec;
1717 	}
1718 
1719 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1720 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1721 		goto no_exec;
1722 	}
1723 	if (info->hdr->e_type != ET_REL) {
1724 		pr_err("Invalid ELF header type: %u != %u\n",
1725 		       info->hdr->e_type, ET_REL);
1726 		goto no_exec;
1727 	}
1728 	if (!elf_check_arch(info->hdr)) {
1729 		pr_err("Invalid architecture in ELF header: %u\n",
1730 		       info->hdr->e_machine);
1731 		goto no_exec;
1732 	}
1733 	if (!module_elf_check_arch(info->hdr)) {
1734 		pr_err("Invalid module architecture in ELF header: %u\n",
1735 		       info->hdr->e_machine);
1736 		goto no_exec;
1737 	}
1738 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1739 		pr_err("Invalid ELF section header size\n");
1740 		goto no_exec;
1741 	}
1742 
1743 	/*
1744 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1745 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1746 	 * will not overflow unsigned long on any platform.
1747 	 */
1748 	if (info->hdr->e_shoff >= info->len
1749 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1750 		info->len - info->hdr->e_shoff)) {
1751 		pr_err("Invalid ELF section header overflow\n");
1752 		goto no_exec;
1753 	}
1754 
1755 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1756 
1757 	/*
1758 	 * Verify if the section name table index is valid.
1759 	 */
1760 	if (info->hdr->e_shstrndx == SHN_UNDEF
1761 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1762 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1763 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1764 		       info->hdr->e_shnum);
1765 		goto no_exec;
1766 	}
1767 
1768 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1769 	err = validate_section_offset(info, strhdr);
1770 	if (err < 0) {
1771 		pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
1772 		return err;
1773 	}
1774 
1775 	/*
1776 	 * The section name table must be NUL-terminated, as required
1777 	 * by the spec. This makes strcmp and pr_* calls that access
1778 	 * strings in the section safe.
1779 	 */
1780 	info->secstrings = (void *)info->hdr + strhdr->sh_offset;
1781 	if (strhdr->sh_size == 0) {
1782 		pr_err("empty section name table\n");
1783 		goto no_exec;
1784 	}
1785 	if (info->secstrings[strhdr->sh_size - 1] != '\0') {
1786 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1787 		goto no_exec;
1788 	}
1789 
1790 	/*
1791 	 * The code assumes that section 0 has a length of zero and
1792 	 * an addr of zero, so check for it.
1793 	 */
1794 	if (info->sechdrs[0].sh_type != SHT_NULL
1795 	    || info->sechdrs[0].sh_size != 0
1796 	    || info->sechdrs[0].sh_addr != 0) {
1797 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1798 		       info->sechdrs[0].sh_type);
1799 		goto no_exec;
1800 	}
1801 
1802 	for (i = 1; i < info->hdr->e_shnum; i++) {
1803 		shdr = &info->sechdrs[i];
1804 		switch (shdr->sh_type) {
1805 		case SHT_NULL:
1806 		case SHT_NOBITS:
1807 			continue;
1808 		case SHT_SYMTAB:
1809 			if (shdr->sh_link == SHN_UNDEF
1810 			    || shdr->sh_link >= info->hdr->e_shnum) {
1811 				pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
1812 				       shdr->sh_link, shdr->sh_link,
1813 				       info->hdr->e_shnum);
1814 				goto no_exec;
1815 			}
1816 			num_sym_secs++;
1817 			sym_idx = i;
1818 			fallthrough;
1819 		default:
1820 			err = validate_section_offset(info, shdr);
1821 			if (err < 0) {
1822 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1823 					i, shdr->sh_type);
1824 				return err;
1825 			}
1826 			if (strcmp(info->secstrings + shdr->sh_name,
1827 				   ".gnu.linkonce.this_module") == 0) {
1828 				num_mod_secs++;
1829 				mod_idx = i;
1830 			} else if (strcmp(info->secstrings + shdr->sh_name,
1831 				   ".modinfo") == 0) {
1832 				num_info_secs++;
1833 				info_idx = i;
1834 			}
1835 
1836 			if (shdr->sh_flags & SHF_ALLOC) {
1837 				if (shdr->sh_name >= strhdr->sh_size) {
1838 					pr_err("Invalid ELF section name in module (section %u type %u)\n",
1839 					       i, shdr->sh_type);
1840 					return -ENOEXEC;
1841 				}
1842 			}
1843 			break;
1844 		}
1845 	}
1846 
1847 	if (num_info_secs > 1) {
1848 		pr_err("Only one .modinfo section must exist.\n");
1849 		goto no_exec;
1850 	} else if (num_info_secs == 1) {
1851 		/* Try to find a name early so we can log errors with a module name */
1852 		info->index.info = info_idx;
1853 		info->name = get_modinfo(info, "name");
1854 	}
1855 
1856 	if (num_sym_secs != 1) {
1857 		pr_warn("%s: module has no symbols (stripped?)\n",
1858 			info->name ?: "(missing .modinfo section or name field)");
1859 		goto no_exec;
1860 	}
1861 
1862 	/* Sets internal symbols and strings. */
1863 	info->index.sym = sym_idx;
1864 	shdr = &info->sechdrs[sym_idx];
1865 	info->index.str = shdr->sh_link;
1866 	info->strtab = (char *)info->hdr + info->sechdrs[info->index.str].sh_offset;
1867 
1868 	/*
1869 	 * The ".gnu.linkonce.this_module" ELF section is special. It is
1870 	 * what modpost uses to refer to __this_module and let's use rely
1871 	 * on THIS_MODULE to point to &__this_module properly. The kernel's
1872 	 * modpost declares it on each modules's *.mod.c file. If the struct
1873 	 * module of the kernel changes a full kernel rebuild is required.
1874 	 *
1875 	 * We have a few expectaions for this special section, the following
1876 	 * code validates all this for us:
1877 	 *
1878 	 *   o Only one section must exist
1879 	 *   o We expect the kernel to always have to allocate it: SHF_ALLOC
1880 	 *   o The section size must match the kernel's run time's struct module
1881 	 *     size
1882 	 */
1883 	if (num_mod_secs != 1) {
1884 		pr_err("module %s: Only one .gnu.linkonce.this_module section must exist.\n",
1885 		       info->name ?: "(missing .modinfo section or name field)");
1886 		goto no_exec;
1887 	}
1888 
1889 	shdr = &info->sechdrs[mod_idx];
1890 
1891 	/*
1892 	 * This is already implied on the switch above, however let's be
1893 	 * pedantic about it.
1894 	 */
1895 	if (shdr->sh_type == SHT_NOBITS) {
1896 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1897 		       info->name ?: "(missing .modinfo section or name field)");
1898 		goto no_exec;
1899 	}
1900 
1901 	if (!(shdr->sh_flags & SHF_ALLOC)) {
1902 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
1903 		       info->name ?: "(missing .modinfo section or name field)");
1904 		goto no_exec;
1905 	}
1906 
1907 	if (shdr->sh_size != sizeof(struct module)) {
1908 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
1909 		       info->name ?: "(missing .modinfo section or name field)");
1910 		goto no_exec;
1911 	}
1912 
1913 	info->index.mod = mod_idx;
1914 
1915 	/* This is temporary: point mod into copy of data. */
1916 	info->mod = (void *)info->hdr + shdr->sh_offset;
1917 
1918 	/*
1919 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
1920 	 * on-disk struct mod 'name' field.
1921 	 */
1922 	if (!info->name)
1923 		info->name = info->mod->name;
1924 
1925 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
1926 		info->index.vers = 0; /* Pretend no __versions section! */
1927 	else
1928 		info->index.vers = find_sec(info, "__versions");
1929 
1930 	info->index.pcpu = find_pcpusec(info);
1931 
1932 	return 0;
1933 
1934 no_exec:
1935 	return -ENOEXEC;
1936 }
1937 
1938 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
1939 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)1940 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
1941 {
1942 	do {
1943 		unsigned long n = min(len, COPY_CHUNK_SIZE);
1944 
1945 		if (copy_from_user(dst, usrc, n) != 0)
1946 			return -EFAULT;
1947 		cond_resched();
1948 		dst += n;
1949 		usrc += n;
1950 		len -= n;
1951 	} while (len);
1952 	return 0;
1953 }
1954 
check_modinfo_livepatch(struct module * mod,struct load_info * info)1955 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
1956 {
1957 	if (!get_modinfo(info, "livepatch"))
1958 		/* Nothing more to do */
1959 		return 0;
1960 
1961 	if (set_livepatch_module(mod))
1962 		return 0;
1963 
1964 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
1965 	       mod->name);
1966 	return -ENOEXEC;
1967 }
1968 
check_modinfo_retpoline(struct module * mod,struct load_info * info)1969 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
1970 {
1971 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
1972 		return;
1973 
1974 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
1975 		mod->name);
1976 }
1977 
1978 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)1979 static int copy_module_from_user(const void __user *umod, unsigned long len,
1980 				  struct load_info *info)
1981 {
1982 	int err;
1983 
1984 	info->len = len;
1985 	if (info->len < sizeof(*(info->hdr)))
1986 		return -ENOEXEC;
1987 
1988 	err = security_kernel_load_data(LOADING_MODULE, true);
1989 	if (err)
1990 		return err;
1991 
1992 	/* Suck in entire file: we'll want most of it. */
1993 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
1994 	if (!info->hdr)
1995 		return -ENOMEM;
1996 
1997 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
1998 		err = -EFAULT;
1999 		goto out;
2000 	}
2001 
2002 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2003 					     LOADING_MODULE, "init_module");
2004 out:
2005 	if (err)
2006 		vfree(info->hdr);
2007 
2008 	return err;
2009 }
2010 
free_copy(struct load_info * info,int flags)2011 static void free_copy(struct load_info *info, int flags)
2012 {
2013 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2014 		module_decompress_cleanup(info);
2015 	else
2016 		vfree(info->hdr);
2017 }
2018 
rewrite_section_headers(struct load_info * info,int flags)2019 static int rewrite_section_headers(struct load_info *info, int flags)
2020 {
2021 	unsigned int i;
2022 
2023 	/* This should always be true, but let's be sure. */
2024 	info->sechdrs[0].sh_addr = 0;
2025 
2026 	for (i = 1; i < info->hdr->e_shnum; i++) {
2027 		Elf_Shdr *shdr = &info->sechdrs[i];
2028 
2029 		/*
2030 		 * Mark all sections sh_addr with their address in the
2031 		 * temporary image.
2032 		 */
2033 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2034 
2035 	}
2036 
2037 	/* Track but don't keep modinfo and version sections. */
2038 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2039 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2040 
2041 	return 0;
2042 }
2043 
2044 /*
2045  * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2046 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2047 {
2048 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2049 
2050 	if (!get_modinfo(info, "intree")) {
2051 		if (!test_taint(TAINT_OOT_MODULE))
2052 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2053 				mod->name);
2054 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2055 	}
2056 
2057 	check_modinfo_retpoline(mod, info);
2058 
2059 	if (get_modinfo(info, "staging")) {
2060 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2061 		pr_warn("%s: module is from the staging directory, the quality "
2062 			"is unknown, you have been warned.\n", mod->name);
2063 	}
2064 
2065 	if (is_livepatch_module(mod)) {
2066 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2067 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2068 				mod->name);
2069 	}
2070 
2071 	module_license_taint_check(mod, get_modinfo(info, "license"));
2072 
2073 	if (get_modinfo(info, "test")) {
2074 		if (!test_taint(TAINT_TEST))
2075 			pr_warn("%s: loading test module taints kernel.\n",
2076 				mod->name);
2077 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2078 	}
2079 #ifdef CONFIG_MODULE_SIG
2080 	mod->sig_ok = info->sig_ok;
2081 	if (!mod->sig_ok) {
2082 		pr_notice_once("%s: module verification failed: signature "
2083 			       "and/or required key missing - tainting "
2084 			       "kernel\n", mod->name);
2085 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2086 	}
2087 #else
2088 	mod->sig_ok = 0;
2089 #endif
2090 
2091 	/*
2092 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2093 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2094 	 * using GPL-only symbols it needs.
2095 	 */
2096 	if (strcmp(mod->name, "ndiswrapper") == 0)
2097 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2098 
2099 	/* driverloader was caught wrongly pretending to be under GPL */
2100 	if (strcmp(mod->name, "driverloader") == 0)
2101 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2102 				 LOCKDEP_NOW_UNRELIABLE);
2103 
2104 	/* lve claims to be GPL but upstream won't provide source */
2105 	if (strcmp(mod->name, "lve") == 0)
2106 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2107 				 LOCKDEP_NOW_UNRELIABLE);
2108 
2109 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2110 		pr_warn("%s: module license taints kernel.\n", mod->name);
2111 
2112 }
2113 
check_modinfo(struct module * mod,struct load_info * info,int flags)2114 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2115 {
2116 	const char *modmagic = get_modinfo(info, "vermagic");
2117 	int err;
2118 
2119 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2120 		modmagic = NULL;
2121 
2122 	/* This is allowed: modprobe --force will invalidate it. */
2123 	if (!modmagic) {
2124 		err = try_to_force_load(mod, "bad vermagic");
2125 		if (err)
2126 			return err;
2127 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2128 		pr_err("%s: version magic '%s' should be '%s'\n",
2129 		       info->name, modmagic, vermagic);
2130 		return -ENOEXEC;
2131 	}
2132 
2133 	err = check_modinfo_livepatch(mod, info);
2134 	if (err)
2135 		return err;
2136 
2137 	return 0;
2138 }
2139 
find_module_sections(struct module * mod,struct load_info * info)2140 static int find_module_sections(struct module *mod, struct load_info *info)
2141 {
2142 	mod->kp = section_objs(info, "__param",
2143 			       sizeof(*mod->kp), &mod->num_kp);
2144 	mod->syms = section_objs(info, "__ksymtab",
2145 				 sizeof(*mod->syms), &mod->num_syms);
2146 	mod->crcs = section_addr(info, "__kcrctab");
2147 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2148 				     sizeof(*mod->gpl_syms),
2149 				     &mod->num_gpl_syms);
2150 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2151 
2152 #ifdef CONFIG_CONSTRUCTORS
2153 	mod->ctors = section_objs(info, ".ctors",
2154 				  sizeof(*mod->ctors), &mod->num_ctors);
2155 	if (!mod->ctors)
2156 		mod->ctors = section_objs(info, ".init_array",
2157 				sizeof(*mod->ctors), &mod->num_ctors);
2158 	else if (find_sec(info, ".init_array")) {
2159 		/*
2160 		 * This shouldn't happen with same compiler and binutils
2161 		 * building all parts of the module.
2162 		 */
2163 		pr_warn("%s: has both .ctors and .init_array.\n",
2164 		       mod->name);
2165 		return -EINVAL;
2166 	}
2167 #endif
2168 
2169 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2170 						&mod->noinstr_text_size);
2171 
2172 #ifdef CONFIG_TRACEPOINTS
2173 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2174 					     sizeof(*mod->tracepoints_ptrs),
2175 					     &mod->num_tracepoints);
2176 #endif
2177 #ifdef CONFIG_TREE_SRCU
2178 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2179 					     sizeof(*mod->srcu_struct_ptrs),
2180 					     &mod->num_srcu_structs);
2181 #endif
2182 #ifdef CONFIG_BPF_EVENTS
2183 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2184 					   sizeof(*mod->bpf_raw_events),
2185 					   &mod->num_bpf_raw_events);
2186 #endif
2187 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2188 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2189 #endif
2190 #ifdef CONFIG_JUMP_LABEL
2191 	mod->jump_entries = section_objs(info, "__jump_table",
2192 					sizeof(*mod->jump_entries),
2193 					&mod->num_jump_entries);
2194 #endif
2195 #ifdef CONFIG_EVENT_TRACING
2196 	mod->trace_events = section_objs(info, "_ftrace_events",
2197 					 sizeof(*mod->trace_events),
2198 					 &mod->num_trace_events);
2199 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2200 					sizeof(*mod->trace_evals),
2201 					&mod->num_trace_evals);
2202 #endif
2203 #ifdef CONFIG_TRACING
2204 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2205 					 sizeof(*mod->trace_bprintk_fmt_start),
2206 					 &mod->num_trace_bprintk_fmt);
2207 #endif
2208 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2209 	/* sechdrs[0].sh_size is always zero */
2210 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2211 					     sizeof(*mod->ftrace_callsites),
2212 					     &mod->num_ftrace_callsites);
2213 #endif
2214 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2215 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2216 					    sizeof(*mod->ei_funcs),
2217 					    &mod->num_ei_funcs);
2218 #endif
2219 #ifdef CONFIG_KPROBES
2220 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2221 						&mod->kprobes_text_size);
2222 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2223 						sizeof(unsigned long),
2224 						&mod->num_kprobe_blacklist);
2225 #endif
2226 #ifdef CONFIG_PRINTK_INDEX
2227 	mod->printk_index_start = section_objs(info, ".printk_index",
2228 					       sizeof(*mod->printk_index_start),
2229 					       &mod->printk_index_size);
2230 #endif
2231 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2232 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2233 					      sizeof(*mod->static_call_sites),
2234 					      &mod->num_static_call_sites);
2235 #endif
2236 #if IS_ENABLED(CONFIG_KUNIT)
2237 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2238 					      sizeof(*mod->kunit_suites),
2239 					      &mod->num_kunit_suites);
2240 #endif
2241 
2242 	mod->extable = section_objs(info, "__ex_table",
2243 				    sizeof(*mod->extable), &mod->num_exentries);
2244 
2245 	if (section_addr(info, "__obsparm"))
2246 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2247 
2248 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2249 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2250 					      sizeof(*mod->dyndbg_info.descs),
2251 					      &mod->dyndbg_info.num_descs);
2252 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2253 						sizeof(*mod->dyndbg_info.classes),
2254 						&mod->dyndbg_info.num_classes);
2255 #endif
2256 
2257 	return 0;
2258 }
2259 
move_module(struct module * mod,struct load_info * info)2260 static int move_module(struct module *mod, struct load_info *info)
2261 {
2262 	int i;
2263 	void *ptr;
2264 	enum mod_mem_type t = 0;
2265 	int ret = -ENOMEM;
2266 
2267 	for_each_mod_mem_type(type) {
2268 		if (!mod->mem[type].size) {
2269 			mod->mem[type].base = NULL;
2270 			continue;
2271 		}
2272 		mod->mem[type].size = PAGE_ALIGN(mod->mem[type].size);
2273 		ptr = module_memory_alloc(mod->mem[type].size, type);
2274 		/*
2275                  * The pointer to these blocks of memory are stored on the module
2276                  * structure and we keep that around so long as the module is
2277                  * around. We only free that memory when we unload the module.
2278                  * Just mark them as not being a leak then. The .init* ELF
2279                  * sections *do* get freed after boot so we *could* treat them
2280                  * slightly differently with kmemleak_ignore() and only grey
2281                  * them out as they work as typical memory allocations which
2282                  * *do* eventually get freed, but let's just keep things simple
2283                  * and avoid *any* false positives.
2284 		 */
2285 		kmemleak_not_leak(ptr);
2286 		if (!ptr) {
2287 			t = type;
2288 			goto out_enomem;
2289 		}
2290 		memset(ptr, 0, mod->mem[type].size);
2291 		mod->mem[type].base = ptr;
2292 	}
2293 
2294 	/* Transfer each section which specifies SHF_ALLOC */
2295 	pr_debug("Final section addresses for %s:\n", mod->name);
2296 	for (i = 0; i < info->hdr->e_shnum; i++) {
2297 		void *dest;
2298 		Elf_Shdr *shdr = &info->sechdrs[i];
2299 		enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2300 
2301 		if (!(shdr->sh_flags & SHF_ALLOC))
2302 			continue;
2303 
2304 		dest = mod->mem[type].base + (shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK);
2305 
2306 		if (shdr->sh_type != SHT_NOBITS) {
2307 			/*
2308 			 * Our ELF checker already validated this, but let's
2309 			 * be pedantic and make the goal clearer. We actually
2310 			 * end up copying over all modifications made to the
2311 			 * userspace copy of the entire struct module.
2312 			 */
2313 			if (i == info->index.mod &&
2314 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2315 				ret = -ENOEXEC;
2316 				goto out_enomem;
2317 			}
2318 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2319 		}
2320 		/*
2321 		 * Update the userspace copy's ELF section address to point to
2322 		 * our newly allocated memory as a pure convenience so that
2323 		 * users of info can keep taking advantage and using the newly
2324 		 * minted official memory area.
2325 		 */
2326 		shdr->sh_addr = (unsigned long)dest;
2327 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2328 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2329 	}
2330 
2331 	return 0;
2332 out_enomem:
2333 	for (t--; t >= 0; t--)
2334 		module_memory_free(mod->mem[t].base, t);
2335 	return ret;
2336 }
2337 
check_export_symbol_versions(struct module * mod)2338 static int check_export_symbol_versions(struct module *mod)
2339 {
2340 #ifdef CONFIG_MODVERSIONS
2341 	if ((mod->num_syms && !mod->crcs) ||
2342 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2343 		return try_to_force_load(mod,
2344 					 "no versions for exported symbols");
2345 	}
2346 #endif
2347 	return 0;
2348 }
2349 
flush_module_icache(const struct module * mod)2350 static void flush_module_icache(const struct module *mod)
2351 {
2352 	/*
2353 	 * Flush the instruction cache, since we've played with text.
2354 	 * Do it before processing of module parameters, so the module
2355 	 * can provide parameter accessor functions of its own.
2356 	 */
2357 	for_each_mod_mem_type(type) {
2358 		const struct module_memory *mod_mem = &mod->mem[type];
2359 
2360 		if (mod_mem->size) {
2361 			flush_icache_range((unsigned long)mod_mem->base,
2362 					   (unsigned long)mod_mem->base + mod_mem->size);
2363 		}
2364 	}
2365 }
2366 
module_elf_check_arch(Elf_Ehdr * hdr)2367 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2368 {
2369 	return true;
2370 }
2371 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2372 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2373 				     Elf_Shdr *sechdrs,
2374 				     char *secstrings,
2375 				     struct module *mod)
2376 {
2377 	return 0;
2378 }
2379 
2380 /* module_blacklist is a comma-separated list of module names */
2381 static char *module_blacklist;
blacklisted(const char * module_name)2382 static bool blacklisted(const char *module_name)
2383 {
2384 	const char *p;
2385 	size_t len;
2386 
2387 	if (!module_blacklist)
2388 		return false;
2389 
2390 	for (p = module_blacklist; *p; p += len) {
2391 		len = strcspn(p, ",");
2392 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2393 			return true;
2394 		if (p[len] == ',')
2395 			len++;
2396 	}
2397 	return false;
2398 }
2399 core_param(module_blacklist, module_blacklist, charp, 0400);
2400 
layout_and_allocate(struct load_info * info,int flags)2401 static struct module *layout_and_allocate(struct load_info *info, int flags)
2402 {
2403 	struct module *mod;
2404 	unsigned int ndx;
2405 	int err;
2406 
2407 	/* Allow arches to frob section contents and sizes.  */
2408 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2409 					info->secstrings, info->mod);
2410 	if (err < 0)
2411 		return ERR_PTR(err);
2412 
2413 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2414 					  info->secstrings, info->mod);
2415 	if (err < 0)
2416 		return ERR_PTR(err);
2417 
2418 	/* We will do a special allocation for per-cpu sections later. */
2419 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2420 
2421 	/*
2422 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2423 	 * layout_sections() can put it in the right place.
2424 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2425 	 */
2426 	ndx = find_sec(info, ".data..ro_after_init");
2427 	if (ndx)
2428 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2429 	/*
2430 	 * Mark the __jump_table section as ro_after_init as well: these data
2431 	 * structures are never modified, with the exception of entries that
2432 	 * refer to code in the __init section, which are annotated as such
2433 	 * at module load time.
2434 	 */
2435 	ndx = find_sec(info, "__jump_table");
2436 	if (ndx)
2437 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2438 
2439 	/*
2440 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2441 	 * this is done generically; there doesn't appear to be any
2442 	 * special cases for the architectures.
2443 	 */
2444 	layout_sections(info->mod, info);
2445 	layout_symtab(info->mod, info);
2446 
2447 	/* Allocate and move to the final place */
2448 	err = move_module(info->mod, info);
2449 	if (err)
2450 		return ERR_PTR(err);
2451 
2452 	/* Module has been copied to its final place now: return it. */
2453 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2454 	kmemleak_load_module(mod, info);
2455 	return mod;
2456 }
2457 
2458 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2459 static void module_deallocate(struct module *mod, struct load_info *info)
2460 {
2461 	percpu_modfree(mod);
2462 	module_arch_freeing_init(mod);
2463 
2464 	free_mod_mem(mod);
2465 }
2466 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2467 int __weak module_finalize(const Elf_Ehdr *hdr,
2468 			   const Elf_Shdr *sechdrs,
2469 			   struct module *me)
2470 {
2471 	return 0;
2472 }
2473 
post_relocation(struct module * mod,const struct load_info * info)2474 static int post_relocation(struct module *mod, const struct load_info *info)
2475 {
2476 	/* Sort exception table now relocations are done. */
2477 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2478 
2479 	/* Copy relocated percpu area over. */
2480 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2481 		       info->sechdrs[info->index.pcpu].sh_size);
2482 
2483 	/* Setup kallsyms-specific fields. */
2484 	add_kallsyms(mod, info);
2485 
2486 	/* Arch-specific module finalizing. */
2487 	return module_finalize(info->hdr, info->sechdrs, mod);
2488 }
2489 
2490 /* Call module constructors. */
do_mod_ctors(struct module * mod)2491 static void do_mod_ctors(struct module *mod)
2492 {
2493 #ifdef CONFIG_CONSTRUCTORS
2494 	unsigned long i;
2495 
2496 	for (i = 0; i < mod->num_ctors; i++)
2497 		mod->ctors[i]();
2498 #endif
2499 }
2500 
2501 /* For freeing module_init on success, in case kallsyms traversing */
2502 struct mod_initfree {
2503 	struct llist_node node;
2504 	void *init_text;
2505 	void *init_data;
2506 	void *init_rodata;
2507 };
2508 
do_free_init(struct work_struct * w)2509 static void do_free_init(struct work_struct *w)
2510 {
2511 	struct llist_node *pos, *n, *list;
2512 	struct mod_initfree *initfree;
2513 
2514 	list = llist_del_all(&init_free_list);
2515 
2516 	synchronize_rcu();
2517 
2518 	llist_for_each_safe(pos, n, list) {
2519 		initfree = container_of(pos, struct mod_initfree, node);
2520 		module_memfree(initfree->init_text);
2521 		module_memfree(initfree->init_data);
2522 		module_memfree(initfree->init_rodata);
2523 		kfree(initfree);
2524 	}
2525 }
2526 
flush_module_init_free_work(void)2527 void flush_module_init_free_work(void)
2528 {
2529 	flush_work(&init_free_wq);
2530 }
2531 
2532 #undef MODULE_PARAM_PREFIX
2533 #define MODULE_PARAM_PREFIX "module."
2534 /* Default value for module->async_probe_requested */
2535 static bool async_probe;
2536 module_param(async_probe, bool, 0644);
2537 
2538 /*
2539  * This is where the real work happens.
2540  *
2541  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2542  * helper command 'lx-symbols'.
2543  */
do_init_module(struct module * mod)2544 static noinline int do_init_module(struct module *mod)
2545 {
2546 	int ret = 0;
2547 	struct mod_initfree *freeinit;
2548 #if defined(CONFIG_MODULE_STATS)
2549 	unsigned int text_size = 0, total_size = 0;
2550 
2551 	for_each_mod_mem_type(type) {
2552 		const struct module_memory *mod_mem = &mod->mem[type];
2553 		if (mod_mem->size) {
2554 			total_size += mod_mem->size;
2555 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2556 				text_size += mod_mem->size;
2557 		}
2558 	}
2559 #endif
2560 
2561 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2562 	if (!freeinit) {
2563 		ret = -ENOMEM;
2564 		goto fail;
2565 	}
2566 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2567 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2568 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2569 
2570 	do_mod_ctors(mod);
2571 	/* Start the module */
2572 	if (mod->init != NULL)
2573 		ret = do_one_initcall(mod->init);
2574 	if (ret < 0) {
2575 		goto fail_free_freeinit;
2576 	}
2577 	if (ret > 0) {
2578 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2579 			"follow 0/-E convention\n"
2580 			"%s: loading module anyway...\n",
2581 			__func__, mod->name, ret, __func__);
2582 		dump_stack();
2583 	}
2584 
2585 	/* Now it's a first class citizen! */
2586 	mod->state = MODULE_STATE_LIVE;
2587 	blocking_notifier_call_chain(&module_notify_list,
2588 				     MODULE_STATE_LIVE, mod);
2589 
2590 	/* Delay uevent until module has finished its init routine */
2591 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2592 
2593 	/*
2594 	 * We need to finish all async code before the module init sequence
2595 	 * is done. This has potential to deadlock if synchronous module
2596 	 * loading is requested from async (which is not allowed!).
2597 	 *
2598 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2599 	 * request_module() from async workers") for more details.
2600 	 */
2601 	if (!mod->async_probe_requested)
2602 		async_synchronize_full();
2603 
2604 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
2605 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
2606 	mutex_lock(&module_mutex);
2607 	/* Drop initial reference. */
2608 	module_put(mod);
2609 	trim_init_extable(mod);
2610 #ifdef CONFIG_KALLSYMS
2611 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
2612 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2613 #endif
2614 	module_enable_ro(mod, true);
2615 	mod_tree_remove_init(mod);
2616 	module_arch_freeing_init(mod);
2617 	for_class_mod_mem_type(type, init) {
2618 		mod->mem[type].base = NULL;
2619 		mod->mem[type].size = 0;
2620 	}
2621 
2622 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2623 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
2624 	mod->btf_data = NULL;
2625 #endif
2626 	/*
2627 	 * We want to free module_init, but be aware that kallsyms may be
2628 	 * walking this with preempt disabled.  In all the failure paths, we
2629 	 * call synchronize_rcu(), but we don't want to slow down the success
2630 	 * path. module_memfree() cannot be called in an interrupt, so do the
2631 	 * work and call synchronize_rcu() in a work queue.
2632 	 *
2633 	 * Note that module_alloc() on most architectures creates W+X page
2634 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
2635 	 * code such as mark_rodata_ro() which depends on those mappings to
2636 	 * be cleaned up needs to sync with the queued work by invoking
2637 	 * flush_module_init_free_work().
2638 	 */
2639 	if (llist_add(&freeinit->node, &init_free_list))
2640 		schedule_work(&init_free_wq);
2641 
2642 	mutex_unlock(&module_mutex);
2643 	wake_up_all(&module_wq);
2644 
2645 	mod_stat_add_long(text_size, &total_text_size);
2646 	mod_stat_add_long(total_size, &total_mod_size);
2647 
2648 	mod_stat_inc(&modcount);
2649 
2650 	return 0;
2651 
2652 fail_free_freeinit:
2653 	kfree(freeinit);
2654 fail:
2655 	/* Try to protect us from buggy refcounters. */
2656 	mod->state = MODULE_STATE_GOING;
2657 	synchronize_rcu();
2658 	module_put(mod);
2659 	blocking_notifier_call_chain(&module_notify_list,
2660 				     MODULE_STATE_GOING, mod);
2661 	klp_module_going(mod);
2662 	ftrace_release_mod(mod);
2663 	free_module(mod);
2664 	wake_up_all(&module_wq);
2665 
2666 	return ret;
2667 }
2668 
may_init_module(void)2669 static int may_init_module(void)
2670 {
2671 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
2672 		return -EPERM;
2673 
2674 	return 0;
2675 }
2676 
2677 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)2678 static bool finished_loading(const char *name)
2679 {
2680 	struct module *mod;
2681 	bool ret;
2682 
2683 	/*
2684 	 * The module_mutex should not be a heavily contended lock;
2685 	 * if we get the occasional sleep here, we'll go an extra iteration
2686 	 * in the wait_event_interruptible(), which is harmless.
2687 	 */
2688 	sched_annotate_sleep();
2689 	mutex_lock(&module_mutex);
2690 	mod = find_module_all(name, strlen(name), true);
2691 	ret = !mod || mod->state == MODULE_STATE_LIVE
2692 		|| mod->state == MODULE_STATE_GOING;
2693 	mutex_unlock(&module_mutex);
2694 
2695 	return ret;
2696 }
2697 
2698 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)2699 static int module_patient_check_exists(const char *name,
2700 				       enum fail_dup_mod_reason reason)
2701 {
2702 	struct module *old;
2703 	int err = 0;
2704 
2705 	old = find_module_all(name, strlen(name), true);
2706 	if (old == NULL)
2707 		return 0;
2708 
2709 	if (old->state == MODULE_STATE_COMING ||
2710 	    old->state == MODULE_STATE_UNFORMED) {
2711 		/* Wait in case it fails to load. */
2712 		mutex_unlock(&module_mutex);
2713 		err = wait_event_interruptible(module_wq,
2714 				       finished_loading(name));
2715 		mutex_lock(&module_mutex);
2716 		if (err)
2717 			return err;
2718 
2719 		/* The module might have gone in the meantime. */
2720 		old = find_module_all(name, strlen(name), true);
2721 	}
2722 
2723 	if (try_add_failed_module(name, reason))
2724 		pr_warn("Could not add fail-tracking for module: %s\n", name);
2725 
2726 	/*
2727 	 * We are here only when the same module was being loaded. Do
2728 	 * not try to load it again right now. It prevents long delays
2729 	 * caused by serialized module load failures. It might happen
2730 	 * when more devices of the same type trigger load of
2731 	 * a particular module.
2732 	 */
2733 	if (old && old->state == MODULE_STATE_LIVE)
2734 		return -EEXIST;
2735 	return -EBUSY;
2736 }
2737 
2738 /*
2739  * We try to place it in the list now to make sure it's unique before
2740  * we dedicate too many resources.  In particular, temporary percpu
2741  * memory exhaustion.
2742  */
add_unformed_module(struct module * mod)2743 static int add_unformed_module(struct module *mod)
2744 {
2745 	int err;
2746 
2747 	mod->state = MODULE_STATE_UNFORMED;
2748 
2749 	mutex_lock(&module_mutex);
2750 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
2751 	if (err)
2752 		goto out;
2753 
2754 	mod_update_bounds(mod);
2755 	list_add_rcu(&mod->list, &modules);
2756 	mod_tree_insert(mod);
2757 	err = 0;
2758 
2759 out:
2760 	mutex_unlock(&module_mutex);
2761 	return err;
2762 }
2763 
complete_formation(struct module * mod,struct load_info * info)2764 static int complete_formation(struct module *mod, struct load_info *info)
2765 {
2766 	int err;
2767 
2768 	mutex_lock(&module_mutex);
2769 
2770 	/* Find duplicate symbols (must be called under lock). */
2771 	err = verify_exported_symbols(mod);
2772 	if (err < 0)
2773 		goto out;
2774 
2775 	/* These rely on module_mutex for list integrity. */
2776 	module_bug_finalize(info->hdr, info->sechdrs, mod);
2777 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
2778 
2779 	module_enable_ro(mod, false);
2780 	module_enable_nx(mod);
2781 	module_enable_x(mod);
2782 
2783 	/*
2784 	 * Mark state as coming so strong_try_module_get() ignores us,
2785 	 * but kallsyms etc. can see us.
2786 	 */
2787 	mod->state = MODULE_STATE_COMING;
2788 	mutex_unlock(&module_mutex);
2789 
2790 	return 0;
2791 
2792 out:
2793 	mutex_unlock(&module_mutex);
2794 	return err;
2795 }
2796 
prepare_coming_module(struct module * mod)2797 static int prepare_coming_module(struct module *mod)
2798 {
2799 	int err;
2800 
2801 	ftrace_module_enable(mod);
2802 	err = klp_module_coming(mod);
2803 	if (err)
2804 		return err;
2805 
2806 	err = blocking_notifier_call_chain_robust(&module_notify_list,
2807 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
2808 	err = notifier_to_errno(err);
2809 	if (err)
2810 		klp_module_going(mod);
2811 
2812 	return err;
2813 }
2814 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)2815 static int unknown_module_param_cb(char *param, char *val, const char *modname,
2816 				   void *arg)
2817 {
2818 	struct module *mod = arg;
2819 	int ret;
2820 
2821 	if (strcmp(param, "async_probe") == 0) {
2822 		if (kstrtobool(val, &mod->async_probe_requested))
2823 			mod->async_probe_requested = true;
2824 		return 0;
2825 	}
2826 
2827 	/* Check for magic 'dyndbg' arg */
2828 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
2829 	if (ret != 0)
2830 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
2831 	return 0;
2832 }
2833 
2834 /* Module within temporary copy, this doesn't do any allocation  */
early_mod_check(struct load_info * info,int flags)2835 static int early_mod_check(struct load_info *info, int flags)
2836 {
2837 	int err;
2838 
2839 	/*
2840 	 * Now that we know we have the correct module name, check
2841 	 * if it's blacklisted.
2842 	 */
2843 	if (blacklisted(info->name)) {
2844 		pr_err("Module %s is blacklisted\n", info->name);
2845 		return -EPERM;
2846 	}
2847 
2848 	err = rewrite_section_headers(info, flags);
2849 	if (err)
2850 		return err;
2851 
2852 	/* Check module struct version now, before we try to use module. */
2853 	if (!check_modstruct_version(info, info->mod))
2854 		return -ENOEXEC;
2855 
2856 	err = check_modinfo(info->mod, info, flags);
2857 	if (err)
2858 		return err;
2859 
2860 	mutex_lock(&module_mutex);
2861 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
2862 	mutex_unlock(&module_mutex);
2863 
2864 	return err;
2865 }
2866 
2867 /*
2868  * Allocate and load the module: note that size of section 0 is always
2869  * zero, and we rely on this for optional sections.
2870  */
load_module(struct load_info * info,const char __user * uargs,int flags)2871 static int load_module(struct load_info *info, const char __user *uargs,
2872 		       int flags)
2873 {
2874 	struct module *mod;
2875 	bool module_allocated = false;
2876 	long err = 0;
2877 	char *after_dashes;
2878 
2879 	/*
2880 	 * Do the signature check (if any) first. All that
2881 	 * the signature check needs is info->len, it does
2882 	 * not need any of the section info. That can be
2883 	 * set up later. This will minimize the chances
2884 	 * of a corrupt module causing problems before
2885 	 * we even get to the signature check.
2886 	 *
2887 	 * The check will also adjust info->len by stripping
2888 	 * off the sig length at the end of the module, making
2889 	 * checks against info->len more correct.
2890 	 */
2891 	err = module_sig_check(info, flags);
2892 	if (err)
2893 		goto free_copy;
2894 
2895 	/*
2896 	 * Do basic sanity checks against the ELF header and
2897 	 * sections. Cache useful sections and set the
2898 	 * info->mod to the userspace passed struct module.
2899 	 */
2900 	err = elf_validity_cache_copy(info, flags);
2901 	if (err)
2902 		goto free_copy;
2903 
2904 	err = early_mod_check(info, flags);
2905 	if (err)
2906 		goto free_copy;
2907 
2908 	/* Figure out module layout, and allocate all the memory. */
2909 	mod = layout_and_allocate(info, flags);
2910 	if (IS_ERR(mod)) {
2911 		err = PTR_ERR(mod);
2912 		goto free_copy;
2913 	}
2914 
2915 	module_allocated = true;
2916 
2917 	audit_log_kern_module(mod->name);
2918 
2919 	/* Reserve our place in the list. */
2920 	err = add_unformed_module(mod);
2921 	if (err)
2922 		goto free_module;
2923 
2924 	/*
2925 	 * We are tainting your kernel if your module gets into
2926 	 * the modules linked list somehow.
2927 	 */
2928 	module_augment_kernel_taints(mod, info);
2929 
2930 	/* To avoid stressing percpu allocator, do this once we're unique. */
2931 	err = percpu_modalloc(mod, info);
2932 	if (err)
2933 		goto unlink_mod;
2934 
2935 	/* Now module is in final location, initialize linked lists, etc. */
2936 	err = module_unload_init(mod);
2937 	if (err)
2938 		goto unlink_mod;
2939 
2940 	init_param_lock(mod);
2941 
2942 	/*
2943 	 * Now we've got everything in the final locations, we can
2944 	 * find optional sections.
2945 	 */
2946 	err = find_module_sections(mod, info);
2947 	if (err)
2948 		goto free_unload;
2949 
2950 	err = check_export_symbol_versions(mod);
2951 	if (err)
2952 		goto free_unload;
2953 
2954 	/* Set up MODINFO_ATTR fields */
2955 	setup_modinfo(mod, info);
2956 
2957 	/* Fix up syms, so that st_value is a pointer to location. */
2958 	err = simplify_symbols(mod, info);
2959 	if (err < 0)
2960 		goto free_modinfo;
2961 
2962 	err = apply_relocations(mod, info);
2963 	if (err < 0)
2964 		goto free_modinfo;
2965 
2966 	err = post_relocation(mod, info);
2967 	if (err < 0)
2968 		goto free_modinfo;
2969 
2970 	flush_module_icache(mod);
2971 
2972 	/* Now copy in args */
2973 	mod->args = strndup_user(uargs, ~0UL >> 1);
2974 	if (IS_ERR(mod->args)) {
2975 		err = PTR_ERR(mod->args);
2976 		goto free_arch_cleanup;
2977 	}
2978 
2979 	init_build_id(mod, info);
2980 
2981 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
2982 	ftrace_module_init(mod);
2983 
2984 	/* Finally it's fully formed, ready to start executing. */
2985 	err = complete_formation(mod, info);
2986 	if (err)
2987 		goto ddebug_cleanup;
2988 
2989 	err = prepare_coming_module(mod);
2990 	if (err)
2991 		goto bug_cleanup;
2992 
2993 	mod->async_probe_requested = async_probe;
2994 
2995 	/* Module is ready to execute: parsing args may do that. */
2996 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2997 				  -32768, 32767, mod,
2998 				  unknown_module_param_cb);
2999 	if (IS_ERR(after_dashes)) {
3000 		err = PTR_ERR(after_dashes);
3001 		goto coming_cleanup;
3002 	} else if (after_dashes) {
3003 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3004 		       mod->name, after_dashes);
3005 	}
3006 
3007 	/* Link in to sysfs. */
3008 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3009 	if (err < 0)
3010 		goto coming_cleanup;
3011 
3012 	if (is_livepatch_module(mod)) {
3013 		err = copy_module_elf(mod, info);
3014 		if (err < 0)
3015 			goto sysfs_cleanup;
3016 	}
3017 
3018 	/* Get rid of temporary copy. */
3019 	free_copy(info, flags);
3020 
3021 	/* Done! */
3022 	trace_module_load(mod);
3023 
3024 	return do_init_module(mod);
3025 
3026  sysfs_cleanup:
3027 	mod_sysfs_teardown(mod);
3028  coming_cleanup:
3029 	mod->state = MODULE_STATE_GOING;
3030 	destroy_params(mod->kp, mod->num_kp);
3031 	blocking_notifier_call_chain(&module_notify_list,
3032 				     MODULE_STATE_GOING, mod);
3033 	klp_module_going(mod);
3034  bug_cleanup:
3035 	mod->state = MODULE_STATE_GOING;
3036 	/* module_bug_cleanup needs module_mutex protection */
3037 	mutex_lock(&module_mutex);
3038 	module_bug_cleanup(mod);
3039 	mutex_unlock(&module_mutex);
3040 
3041  ddebug_cleanup:
3042 	ftrace_release_mod(mod);
3043 	synchronize_rcu();
3044 	kfree(mod->args);
3045  free_arch_cleanup:
3046 	module_arch_cleanup(mod);
3047  free_modinfo:
3048 	free_modinfo(mod);
3049  free_unload:
3050 	module_unload_free(mod);
3051  unlink_mod:
3052 	mutex_lock(&module_mutex);
3053 	/* Unlink carefully: kallsyms could be walking list. */
3054 	list_del_rcu(&mod->list);
3055 	mod_tree_remove(mod);
3056 	wake_up_all(&module_wq);
3057 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3058 	synchronize_rcu();
3059 	mutex_unlock(&module_mutex);
3060  free_module:
3061 	mod_stat_bump_invalid(info, flags);
3062 	/* Free lock-classes; relies on the preceding sync_rcu() */
3063 	for_class_mod_mem_type(type, core_data) {
3064 		lockdep_free_key_range(mod->mem[type].base,
3065 				       mod->mem[type].size);
3066 	}
3067 
3068 	module_deallocate(mod, info);
3069  free_copy:
3070 	/*
3071 	 * The info->len is always set. We distinguish between
3072 	 * failures once the proper module was allocated and
3073 	 * before that.
3074 	 */
3075 	if (!module_allocated)
3076 		mod_stat_bump_becoming(info, flags);
3077 	free_copy(info, flags);
3078 	return err;
3079 }
3080 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3081 SYSCALL_DEFINE3(init_module, void __user *, umod,
3082 		unsigned long, len, const char __user *, uargs)
3083 {
3084 	int err;
3085 	struct load_info info = { };
3086 
3087 	err = may_init_module();
3088 	if (err)
3089 		return err;
3090 
3091 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3092 	       umod, len, uargs);
3093 
3094 	err = copy_module_from_user(umod, len, &info);
3095 	if (err) {
3096 		mod_stat_inc(&failed_kreads);
3097 		mod_stat_add_long(len, &invalid_kread_bytes);
3098 		return err;
3099 	}
3100 
3101 	return load_module(&info, uargs, 0);
3102 }
3103 
3104 struct idempotent {
3105 	const void *cookie;
3106 	struct hlist_node entry;
3107 	struct completion complete;
3108 	int ret;
3109 };
3110 
3111 #define IDEM_HASH_BITS 8
3112 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3113 static DEFINE_SPINLOCK(idem_lock);
3114 
idempotent(struct idempotent * u,const void * cookie)3115 static bool idempotent(struct idempotent *u, const void *cookie)
3116 {
3117 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3118 	struct hlist_head *head = idem_hash + hash;
3119 	struct idempotent *existing;
3120 	bool first;
3121 
3122 	u->ret = -EINTR;
3123 	u->cookie = cookie;
3124 	init_completion(&u->complete);
3125 
3126 	spin_lock(&idem_lock);
3127 	first = true;
3128 	hlist_for_each_entry(existing, head, entry) {
3129 		if (existing->cookie != cookie)
3130 			continue;
3131 		first = false;
3132 		break;
3133 	}
3134 	hlist_add_head(&u->entry, idem_hash + hash);
3135 	spin_unlock(&idem_lock);
3136 
3137 	return !first;
3138 }
3139 
3140 /*
3141  * We were the first one with 'cookie' on the list, and we ended
3142  * up completing the operation. We now need to walk the list,
3143  * remove everybody - which includes ourselves - fill in the return
3144  * value, and then complete the operation.
3145  */
idempotent_complete(struct idempotent * u,int ret)3146 static int idempotent_complete(struct idempotent *u, int ret)
3147 {
3148 	const void *cookie = u->cookie;
3149 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3150 	struct hlist_head *head = idem_hash + hash;
3151 	struct hlist_node *next;
3152 	struct idempotent *pos;
3153 
3154 	spin_lock(&idem_lock);
3155 	hlist_for_each_entry_safe(pos, next, head, entry) {
3156 		if (pos->cookie != cookie)
3157 			continue;
3158 		hlist_del_init(&pos->entry);
3159 		pos->ret = ret;
3160 		complete(&pos->complete);
3161 	}
3162 	spin_unlock(&idem_lock);
3163 	return ret;
3164 }
3165 
3166 /*
3167  * Wait for the idempotent worker.
3168  *
3169  * If we get interrupted, we need to remove ourselves from the
3170  * the idempotent list, and the completion may still come in.
3171  *
3172  * The 'idem_lock' protects against the race, and 'idem.ret' was
3173  * initialized to -EINTR and is thus always the right return
3174  * value even if the idempotent work then completes between
3175  * the wait_for_completion and the cleanup.
3176  */
idempotent_wait_for_completion(struct idempotent * u)3177 static int idempotent_wait_for_completion(struct idempotent *u)
3178 {
3179 	if (wait_for_completion_interruptible(&u->complete)) {
3180 		spin_lock(&idem_lock);
3181 		if (!hlist_unhashed(&u->entry))
3182 			hlist_del(&u->entry);
3183 		spin_unlock(&idem_lock);
3184 	}
3185 	return u->ret;
3186 }
3187 
init_module_from_file(struct file * f,const char __user * uargs,int flags)3188 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3189 {
3190 	struct load_info info = { };
3191 	void *buf = NULL;
3192 	int len;
3193 
3194 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3195 	if (len < 0) {
3196 		mod_stat_inc(&failed_kreads);
3197 		return len;
3198 	}
3199 
3200 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3201 		int err = module_decompress(&info, buf, len);
3202 		vfree(buf); /* compressed data is no longer needed */
3203 		if (err) {
3204 			mod_stat_inc(&failed_decompress);
3205 			mod_stat_add_long(len, &invalid_decompress_bytes);
3206 			return err;
3207 		}
3208 	} else {
3209 		info.hdr = buf;
3210 		info.len = len;
3211 	}
3212 
3213 	return load_module(&info, uargs, flags);
3214 }
3215 
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3216 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3217 {
3218 	struct idempotent idem;
3219 
3220 	if (!f || !(f->f_mode & FMODE_READ))
3221 		return -EBADF;
3222 
3223 	/* Are we the winners of the race and get to do this? */
3224 	if (!idempotent(&idem, file_inode(f))) {
3225 		int ret = init_module_from_file(f, uargs, flags);
3226 		return idempotent_complete(&idem, ret);
3227 	}
3228 
3229 	/*
3230 	 * Somebody else won the race and is loading the module.
3231 	 */
3232 	return idempotent_wait_for_completion(&idem);
3233 }
3234 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3235 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3236 {
3237 	int err;
3238 	struct fd f;
3239 
3240 	err = may_init_module();
3241 	if (err)
3242 		return err;
3243 
3244 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3245 
3246 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3247 		      |MODULE_INIT_IGNORE_VERMAGIC
3248 		      |MODULE_INIT_COMPRESSED_FILE))
3249 		return -EINVAL;
3250 
3251 	f = fdget(fd);
3252 	err = idempotent_init_module(f.file, uargs, flags);
3253 	fdput(f);
3254 	return err;
3255 }
3256 
3257 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3258 char *module_flags(struct module *mod, char *buf, bool show_state)
3259 {
3260 	int bx = 0;
3261 
3262 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3263 	if (!mod->taints && !show_state)
3264 		goto out;
3265 	if (mod->taints ||
3266 	    mod->state == MODULE_STATE_GOING ||
3267 	    mod->state == MODULE_STATE_COMING) {
3268 		buf[bx++] = '(';
3269 		bx += module_flags_taint(mod->taints, buf + bx);
3270 		/* Show a - for module-is-being-unloaded */
3271 		if (mod->state == MODULE_STATE_GOING && show_state)
3272 			buf[bx++] = '-';
3273 		/* Show a + for module-is-being-loaded */
3274 		if (mod->state == MODULE_STATE_COMING && show_state)
3275 			buf[bx++] = '+';
3276 		buf[bx++] = ')';
3277 	}
3278 out:
3279 	buf[bx] = '\0';
3280 
3281 	return buf;
3282 }
3283 
3284 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3285 const struct exception_table_entry *search_module_extables(unsigned long addr)
3286 {
3287 	const struct exception_table_entry *e = NULL;
3288 	struct module *mod;
3289 
3290 	preempt_disable();
3291 	mod = __module_address(addr);
3292 	if (!mod)
3293 		goto out;
3294 
3295 	if (!mod->num_exentries)
3296 		goto out;
3297 
3298 	e = search_extable(mod->extable,
3299 			   mod->num_exentries,
3300 			   addr);
3301 out:
3302 	preempt_enable();
3303 
3304 	/*
3305 	 * Now, if we found one, we are running inside it now, hence
3306 	 * we cannot unload the module, hence no refcnt needed.
3307 	 */
3308 	return e;
3309 }
3310 
3311 /**
3312  * is_module_address() - is this address inside a module?
3313  * @addr: the address to check.
3314  *
3315  * See is_module_text_address() if you simply want to see if the address
3316  * is code (not data).
3317  */
is_module_address(unsigned long addr)3318 bool is_module_address(unsigned long addr)
3319 {
3320 	bool ret;
3321 
3322 	preempt_disable();
3323 	ret = __module_address(addr) != NULL;
3324 	preempt_enable();
3325 
3326 	return ret;
3327 }
3328 
3329 /**
3330  * __module_address() - get the module which contains an address.
3331  * @addr: the address.
3332  *
3333  * Must be called with preempt disabled or module mutex held so that
3334  * module doesn't get freed during this.
3335  */
__module_address(unsigned long addr)3336 struct module *__module_address(unsigned long addr)
3337 {
3338 	struct module *mod;
3339 
3340 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3341 		goto lookup;
3342 
3343 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3344 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3345 		goto lookup;
3346 #endif
3347 
3348 	return NULL;
3349 
3350 lookup:
3351 	module_assert_mutex_or_preempt();
3352 
3353 	mod = mod_find(addr, &mod_tree);
3354 	if (mod) {
3355 		BUG_ON(!within_module(addr, mod));
3356 		if (mod->state == MODULE_STATE_UNFORMED)
3357 			mod = NULL;
3358 	}
3359 	return mod;
3360 }
3361 
3362 /**
3363  * is_module_text_address() - is this address inside module code?
3364  * @addr: the address to check.
3365  *
3366  * See is_module_address() if you simply want to see if the address is
3367  * anywhere in a module.  See kernel_text_address() for testing if an
3368  * address corresponds to kernel or module code.
3369  */
is_module_text_address(unsigned long addr)3370 bool is_module_text_address(unsigned long addr)
3371 {
3372 	bool ret;
3373 
3374 	preempt_disable();
3375 	ret = __module_text_address(addr) != NULL;
3376 	preempt_enable();
3377 
3378 	return ret;
3379 }
3380 
3381 /**
3382  * __module_text_address() - get the module whose code contains an address.
3383  * @addr: the address.
3384  *
3385  * Must be called with preempt disabled or module mutex held so that
3386  * module doesn't get freed during this.
3387  */
__module_text_address(unsigned long addr)3388 struct module *__module_text_address(unsigned long addr)
3389 {
3390 	struct module *mod = __module_address(addr);
3391 	if (mod) {
3392 		/* Make sure it's within the text section. */
3393 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3394 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3395 			mod = NULL;
3396 	}
3397 	return mod;
3398 }
3399 
3400 /* Don't grab lock, we're oopsing. */
print_modules(void)3401 void print_modules(void)
3402 {
3403 	struct module *mod;
3404 	char buf[MODULE_FLAGS_BUF_SIZE];
3405 
3406 	printk(KERN_DEFAULT "Modules linked in:");
3407 	/* Most callers should already have preempt disabled, but make sure */
3408 	preempt_disable();
3409 	list_for_each_entry_rcu(mod, &modules, list) {
3410 		if (mod->state == MODULE_STATE_UNFORMED)
3411 			continue;
3412 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3413 	}
3414 
3415 	print_unloaded_tainted_modules();
3416 	preempt_enable();
3417 	if (last_unloaded_module.name[0])
3418 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3419 			last_unloaded_module.taints);
3420 	pr_cont("\n");
3421 }
3422 
3423 #ifdef CONFIG_MODULE_DEBUGFS
3424 struct dentry *mod_debugfs_root;
3425 
module_debugfs_init(void)3426 static int module_debugfs_init(void)
3427 {
3428 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3429 	return 0;
3430 }
3431 module_init(module_debugfs_init);
3432 #endif
3433