• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0-only
2  #define pr_fmt(fmt) "prime numbers: " fmt
3  
4  #include <linux/module.h>
5  #include <linux/mutex.h>
6  #include <linux/prime_numbers.h>
7  #include <linux/slab.h>
8  
9  struct primes {
10  	struct rcu_head rcu;
11  	unsigned long last, sz;
12  	unsigned long primes[];
13  };
14  
15  #if BITS_PER_LONG == 64
16  static const struct primes small_primes = {
17  	.last = 61,
18  	.sz = 64,
19  	.primes = {
20  		BIT(2) |
21  		BIT(3) |
22  		BIT(5) |
23  		BIT(7) |
24  		BIT(11) |
25  		BIT(13) |
26  		BIT(17) |
27  		BIT(19) |
28  		BIT(23) |
29  		BIT(29) |
30  		BIT(31) |
31  		BIT(37) |
32  		BIT(41) |
33  		BIT(43) |
34  		BIT(47) |
35  		BIT(53) |
36  		BIT(59) |
37  		BIT(61)
38  	}
39  };
40  #elif BITS_PER_LONG == 32
41  static const struct primes small_primes = {
42  	.last = 31,
43  	.sz = 32,
44  	.primes = {
45  		BIT(2) |
46  		BIT(3) |
47  		BIT(5) |
48  		BIT(7) |
49  		BIT(11) |
50  		BIT(13) |
51  		BIT(17) |
52  		BIT(19) |
53  		BIT(23) |
54  		BIT(29) |
55  		BIT(31)
56  	}
57  };
58  #else
59  #error "unhandled BITS_PER_LONG"
60  #endif
61  
62  static DEFINE_MUTEX(lock);
63  static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes);
64  
65  static unsigned long selftest_max;
66  
slow_is_prime_number(unsigned long x)67  static bool slow_is_prime_number(unsigned long x)
68  {
69  	unsigned long y = int_sqrt(x);
70  
71  	while (y > 1) {
72  		if ((x % y) == 0)
73  			break;
74  		y--;
75  	}
76  
77  	return y == 1;
78  }
79  
slow_next_prime_number(unsigned long x)80  static unsigned long slow_next_prime_number(unsigned long x)
81  {
82  	while (x < ULONG_MAX && !slow_is_prime_number(++x))
83  		;
84  
85  	return x;
86  }
87  
clear_multiples(unsigned long x,unsigned long * p,unsigned long start,unsigned long end)88  static unsigned long clear_multiples(unsigned long x,
89  				     unsigned long *p,
90  				     unsigned long start,
91  				     unsigned long end)
92  {
93  	unsigned long m;
94  
95  	m = 2 * x;
96  	if (m < start)
97  		m = roundup(start, x);
98  
99  	while (m < end) {
100  		__clear_bit(m, p);
101  		m += x;
102  	}
103  
104  	return x;
105  }
106  
expand_to_next_prime(unsigned long x)107  static bool expand_to_next_prime(unsigned long x)
108  {
109  	const struct primes *p;
110  	struct primes *new;
111  	unsigned long sz, y;
112  
113  	/* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
114  	 * there is always at least one prime p between n and 2n - 2.
115  	 * Equivalently, if n > 1, then there is always at least one prime p
116  	 * such that n < p < 2n.
117  	 *
118  	 * http://mathworld.wolfram.com/BertrandsPostulate.html
119  	 * https://en.wikipedia.org/wiki/Bertrand's_postulate
120  	 */
121  	sz = 2 * x;
122  	if (sz < x)
123  		return false;
124  
125  	sz = round_up(sz, BITS_PER_LONG);
126  	new = kmalloc(sizeof(*new) + bitmap_size(sz),
127  		      GFP_KERNEL | __GFP_NOWARN);
128  	if (!new)
129  		return false;
130  
131  	mutex_lock(&lock);
132  	p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
133  	if (x < p->last) {
134  		kfree(new);
135  		goto unlock;
136  	}
137  
138  	/* Where memory permits, track the primes using the
139  	 * Sieve of Eratosthenes. The sieve is to remove all multiples of known
140  	 * primes from the set, what remains in the set is therefore prime.
141  	 */
142  	bitmap_fill(new->primes, sz);
143  	bitmap_copy(new->primes, p->primes, p->sz);
144  	for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1))
145  		new->last = clear_multiples(y, new->primes, p->sz, sz);
146  	new->sz = sz;
147  
148  	BUG_ON(new->last <= x);
149  
150  	rcu_assign_pointer(primes, new);
151  	if (p != &small_primes)
152  		kfree_rcu((struct primes *)p, rcu);
153  
154  unlock:
155  	mutex_unlock(&lock);
156  	return true;
157  }
158  
free_primes(void)159  static void free_primes(void)
160  {
161  	const struct primes *p;
162  
163  	mutex_lock(&lock);
164  	p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
165  	if (p != &small_primes) {
166  		rcu_assign_pointer(primes, &small_primes);
167  		kfree_rcu((struct primes *)p, rcu);
168  	}
169  	mutex_unlock(&lock);
170  }
171  
172  /**
173   * next_prime_number - return the next prime number
174   * @x: the starting point for searching to test
175   *
176   * A prime number is an integer greater than 1 that is only divisible by
177   * itself and 1.  The set of prime numbers is computed using the Sieve of
178   * Eratoshenes (on finding a prime, all multiples of that prime are removed
179   * from the set) enabling a fast lookup of the next prime number larger than
180   * @x. If the sieve fails (memory limitation), the search falls back to using
181   * slow trial-divison, up to the value of ULONG_MAX (which is reported as the
182   * final prime as a sentinel).
183   *
184   * Returns: the next prime number larger than @x
185   */
next_prime_number(unsigned long x)186  unsigned long next_prime_number(unsigned long x)
187  {
188  	const struct primes *p;
189  
190  	rcu_read_lock();
191  	p = rcu_dereference(primes);
192  	while (x >= p->last) {
193  		rcu_read_unlock();
194  
195  		if (!expand_to_next_prime(x))
196  			return slow_next_prime_number(x);
197  
198  		rcu_read_lock();
199  		p = rcu_dereference(primes);
200  	}
201  	x = find_next_bit(p->primes, p->last, x + 1);
202  	rcu_read_unlock();
203  
204  	return x;
205  }
206  EXPORT_SYMBOL(next_prime_number);
207  
208  /**
209   * is_prime_number - test whether the given number is prime
210   * @x: the number to test
211   *
212   * A prime number is an integer greater than 1 that is only divisible by
213   * itself and 1. Internally a cache of prime numbers is kept (to speed up
214   * searching for sequential primes, see next_prime_number()), but if the number
215   * falls outside of that cache, its primality is tested using trial-divison.
216   *
217   * Returns: true if @x is prime, false for composite numbers.
218   */
is_prime_number(unsigned long x)219  bool is_prime_number(unsigned long x)
220  {
221  	const struct primes *p;
222  	bool result;
223  
224  	rcu_read_lock();
225  	p = rcu_dereference(primes);
226  	while (x >= p->sz) {
227  		rcu_read_unlock();
228  
229  		if (!expand_to_next_prime(x))
230  			return slow_is_prime_number(x);
231  
232  		rcu_read_lock();
233  		p = rcu_dereference(primes);
234  	}
235  	result = test_bit(x, p->primes);
236  	rcu_read_unlock();
237  
238  	return result;
239  }
240  EXPORT_SYMBOL(is_prime_number);
241  
dump_primes(void)242  static void dump_primes(void)
243  {
244  	const struct primes *p;
245  	char *buf;
246  
247  	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
248  
249  	rcu_read_lock();
250  	p = rcu_dereference(primes);
251  
252  	if (buf)
253  		bitmap_print_to_pagebuf(true, buf, p->primes, p->sz);
254  	pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s\n",
255  		p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf);
256  
257  	rcu_read_unlock();
258  
259  	kfree(buf);
260  }
261  
selftest(unsigned long max)262  static int selftest(unsigned long max)
263  {
264  	unsigned long x, last;
265  
266  	if (!max)
267  		return 0;
268  
269  	for (last = 0, x = 2; x < max; x++) {
270  		bool slow = slow_is_prime_number(x);
271  		bool fast = is_prime_number(x);
272  
273  		if (slow != fast) {
274  			pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!\n",
275  			       x, slow ? "yes" : "no", fast ? "yes" : "no");
276  			goto err;
277  		}
278  
279  		if (!slow)
280  			continue;
281  
282  		if (next_prime_number(last) != x) {
283  			pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu\n",
284  			       last, x, next_prime_number(last));
285  			goto err;
286  		}
287  		last = x;
288  	}
289  
290  	pr_info("%s(%lu) passed, last prime was %lu\n", __func__, x, last);
291  	return 0;
292  
293  err:
294  	dump_primes();
295  	return -EINVAL;
296  }
297  
primes_init(void)298  static int __init primes_init(void)
299  {
300  	return selftest(selftest_max);
301  }
302  
primes_exit(void)303  static void __exit primes_exit(void)
304  {
305  	free_primes();
306  }
307  
308  module_init(primes_init);
309  module_exit(primes_exit);
310  
311  module_param_named(selftest, selftest_max, ulong, 0400);
312  
313  MODULE_AUTHOR("Intel Corporation");
314  MODULE_LICENSE("GPL");
315