• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) Yann Collet, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11 #ifndef ZSTD_CWKSP_H
12 #define ZSTD_CWKSP_H
13 
14 /*-*************************************
15 *  Dependencies
16 ***************************************/
17 #include "../common/zstd_internal.h"
18 
19 
20 /*-*************************************
21 *  Constants
22 ***************************************/
23 
24 /* Since the workspace is effectively its own little malloc implementation /
25  * arena, when we run under ASAN, we should similarly insert redzones between
26  * each internal element of the workspace, so ASAN will catch overruns that
27  * reach outside an object but that stay inside the workspace.
28  *
29  * This defines the size of that redzone.
30  */
31 #ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE
32 #define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128
33 #endif
34 
35 
36 /* Set our tables and aligneds to align by 64 bytes */
37 #define ZSTD_CWKSP_ALIGNMENT_BYTES 64
38 
39 /*-*************************************
40 *  Structures
41 ***************************************/
42 typedef enum {
43     ZSTD_cwksp_alloc_objects,
44     ZSTD_cwksp_alloc_buffers,
45     ZSTD_cwksp_alloc_aligned
46 } ZSTD_cwksp_alloc_phase_e;
47 
48 /*
49  * Used to describe whether the workspace is statically allocated (and will not
50  * necessarily ever be freed), or if it's dynamically allocated and we can
51  * expect a well-formed caller to free this.
52  */
53 typedef enum {
54     ZSTD_cwksp_dynamic_alloc,
55     ZSTD_cwksp_static_alloc
56 } ZSTD_cwksp_static_alloc_e;
57 
58 /*
59  * Zstd fits all its internal datastructures into a single continuous buffer,
60  * so that it only needs to perform a single OS allocation (or so that a buffer
61  * can be provided to it and it can perform no allocations at all). This buffer
62  * is called the workspace.
63  *
64  * Several optimizations complicate that process of allocating memory ranges
65  * from this workspace for each internal datastructure:
66  *
67  * - These different internal datastructures have different setup requirements:
68  *
69  *   - The static objects need to be cleared once and can then be trivially
70  *     reused for each compression.
71  *
72  *   - Various buffers don't need to be initialized at all--they are always
73  *     written into before they're read.
74  *
75  *   - The matchstate tables have a unique requirement that they don't need
76  *     their memory to be totally cleared, but they do need the memory to have
77  *     some bound, i.e., a guarantee that all values in the memory they've been
78  *     allocated is less than some maximum value (which is the starting value
79  *     for the indices that they will then use for compression). When this
80  *     guarantee is provided to them, they can use the memory without any setup
81  *     work. When it can't, they have to clear the area.
82  *
83  * - These buffers also have different alignment requirements.
84  *
85  * - We would like to reuse the objects in the workspace for multiple
86  *   compressions without having to perform any expensive reallocation or
87  *   reinitialization work.
88  *
89  * - We would like to be able to efficiently reuse the workspace across
90  *   multiple compressions **even when the compression parameters change** and
91  *   we need to resize some of the objects (where possible).
92  *
93  * To attempt to manage this buffer, given these constraints, the ZSTD_cwksp
94  * abstraction was created. It works as follows:
95  *
96  * Workspace Layout:
97  *
98  * [                        ... workspace ...                         ]
99  * [objects][tables ... ->] free space [<- ... aligned][<- ... buffers]
100  *
101  * The various objects that live in the workspace are divided into the
102  * following categories, and are allocated separately:
103  *
104  * - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict,
105  *   so that literally everything fits in a single buffer. Note: if present,
106  *   this must be the first object in the workspace, since ZSTD_customFree{CCtx,
107  *   CDict}() rely on a pointer comparison to see whether one or two frees are
108  *   required.
109  *
110  * - Fixed size objects: these are fixed-size, fixed-count objects that are
111  *   nonetheless "dynamically" allocated in the workspace so that we can
112  *   control how they're initialized separately from the broader ZSTD_CCtx.
113  *   Examples:
114  *   - Entropy Workspace
115  *   - 2 x ZSTD_compressedBlockState_t
116  *   - CDict dictionary contents
117  *
118  * - Tables: these are any of several different datastructures (hash tables,
119  *   chain tables, binary trees) that all respect a common format: they are
120  *   uint32_t arrays, all of whose values are between 0 and (nextSrc - base).
121  *   Their sizes depend on the cparams. These tables are 64-byte aligned.
122  *
123  * - Aligned: these buffers are used for various purposes that require 4 byte
124  *   alignment, but don't require any initialization before they're used. These
125  *   buffers are each aligned to 64 bytes.
126  *
127  * - Buffers: these buffers are used for various purposes that don't require
128  *   any alignment or initialization before they're used. This means they can
129  *   be moved around at no cost for a new compression.
130  *
131  * Allocating Memory:
132  *
133  * The various types of objects must be allocated in order, so they can be
134  * correctly packed into the workspace buffer. That order is:
135  *
136  * 1. Objects
137  * 2. Buffers
138  * 3. Aligned/Tables
139  *
140  * Attempts to reserve objects of different types out of order will fail.
141  */
142 typedef struct {
143     void* workspace;
144     void* workspaceEnd;
145 
146     void* objectEnd;
147     void* tableEnd;
148     void* tableValidEnd;
149     void* allocStart;
150 
151     BYTE allocFailed;
152     int workspaceOversizedDuration;
153     ZSTD_cwksp_alloc_phase_e phase;
154     ZSTD_cwksp_static_alloc_e isStatic;
155 } ZSTD_cwksp;
156 
157 /*-*************************************
158 *  Functions
159 ***************************************/
160 
161 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws);
162 
ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp * ws)163 MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
164     (void)ws;
165     assert(ws->workspace <= ws->objectEnd);
166     assert(ws->objectEnd <= ws->tableEnd);
167     assert(ws->objectEnd <= ws->tableValidEnd);
168     assert(ws->tableEnd <= ws->allocStart);
169     assert(ws->tableValidEnd <= ws->allocStart);
170     assert(ws->allocStart <= ws->workspaceEnd);
171 }
172 
173 /*
174  * Align must be a power of 2.
175  */
ZSTD_cwksp_align(size_t size,size_t const align)176 MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t const align) {
177     size_t const mask = align - 1;
178     assert((align & mask) == 0);
179     return (size + mask) & ~mask;
180 }
181 
182 /*
183  * Use this to determine how much space in the workspace we will consume to
184  * allocate this object. (Normally it should be exactly the size of the object,
185  * but under special conditions, like ASAN, where we pad each object, it might
186  * be larger.)
187  *
188  * Since tables aren't currently redzoned, you don't need to call through this
189  * to figure out how much space you need for the matchState tables. Everything
190  * else is though.
191  *
192  * Do not use for sizing aligned buffers. Instead, use ZSTD_cwksp_aligned_alloc_size().
193  */
ZSTD_cwksp_alloc_size(size_t size)194 MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) {
195     if (size == 0)
196         return 0;
197     return size;
198 }
199 
200 /*
201  * Returns an adjusted alloc size that is the nearest larger multiple of 64 bytes.
202  * Used to determine the number of bytes required for a given "aligned".
203  */
ZSTD_cwksp_aligned_alloc_size(size_t size)204 MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size) {
205     return ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(size, ZSTD_CWKSP_ALIGNMENT_BYTES));
206 }
207 
208 /*
209  * Returns the amount of additional space the cwksp must allocate
210  * for internal purposes (currently only alignment).
211  */
ZSTD_cwksp_slack_space_required(void)212 MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) {
213     /* For alignment, the wksp will always allocate an additional n_1=[1, 64] bytes
214      * to align the beginning of tables section, as well as another n_2=[0, 63] bytes
215      * to align the beginning of the aligned section.
216      *
217      * n_1 + n_2 == 64 bytes if the cwksp is freshly allocated, due to tables and
218      * aligneds being sized in multiples of 64 bytes.
219      */
220     size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES;
221     return slackSpace;
222 }
223 
224 
225 /*
226  * Return the number of additional bytes required to align a pointer to the given number of bytes.
227  * alignBytes must be a power of two.
228  */
ZSTD_cwksp_bytes_to_align_ptr(void * ptr,const size_t alignBytes)229 MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignBytes) {
230     size_t const alignBytesMask = alignBytes - 1;
231     size_t const bytes = (alignBytes - ((size_t)ptr & (alignBytesMask))) & alignBytesMask;
232     assert((alignBytes & alignBytesMask) == 0);
233     assert(bytes != ZSTD_CWKSP_ALIGNMENT_BYTES);
234     return bytes;
235 }
236 
237 /*
238  * Internal function. Do not use directly.
239  * Reserves the given number of bytes within the aligned/buffer segment of the wksp,
240  * which counts from the end of the wksp (as opposed to the object/table segment).
241  *
242  * Returns a pointer to the beginning of that space.
243  */
244 MEM_STATIC void*
ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp * ws,size_t const bytes)245 ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes)
246 {
247     void* const alloc = (BYTE*)ws->allocStart - bytes;
248     void* const bottom = ws->tableEnd;
249     DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining",
250         alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
251     ZSTD_cwksp_assert_internal_consistency(ws);
252     assert(alloc >= bottom);
253     if (alloc < bottom) {
254         DEBUGLOG(4, "cwksp: alloc failed!");
255         ws->allocFailed = 1;
256         return NULL;
257     }
258     /* the area is reserved from the end of wksp.
259      * If it overlaps with tableValidEnd, it voids guarantees on values' range */
260     if (alloc < ws->tableValidEnd) {
261         ws->tableValidEnd = alloc;
262     }
263     ws->allocStart = alloc;
264     return alloc;
265 }
266 
267 /*
268  * Moves the cwksp to the next phase, and does any necessary allocations.
269  * cwksp initialization must necessarily go through each phase in order.
270  * Returns a 0 on success, or zstd error
271  */
272 MEM_STATIC size_t
ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp * ws,ZSTD_cwksp_alloc_phase_e phase)273 ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase)
274 {
275     assert(phase >= ws->phase);
276     if (phase > ws->phase) {
277         /* Going from allocating objects to allocating buffers */
278         if (ws->phase < ZSTD_cwksp_alloc_buffers &&
279                 phase >= ZSTD_cwksp_alloc_buffers) {
280             ws->tableValidEnd = ws->objectEnd;
281         }
282 
283         /* Going from allocating buffers to allocating aligneds/tables */
284         if (ws->phase < ZSTD_cwksp_alloc_aligned &&
285                 phase >= ZSTD_cwksp_alloc_aligned) {
286             {   /* Align the start of the "aligned" to 64 bytes. Use [1, 64] bytes. */
287                 size_t const bytesToAlign =
288                     ZSTD_CWKSP_ALIGNMENT_BYTES - ZSTD_cwksp_bytes_to_align_ptr(ws->allocStart, ZSTD_CWKSP_ALIGNMENT_BYTES);
289                 DEBUGLOG(5, "reserving aligned alignment addtl space: %zu", bytesToAlign);
290                 ZSTD_STATIC_ASSERT((ZSTD_CWKSP_ALIGNMENT_BYTES & (ZSTD_CWKSP_ALIGNMENT_BYTES - 1)) == 0); /* power of 2 */
291                 RETURN_ERROR_IF(!ZSTD_cwksp_reserve_internal_buffer_space(ws, bytesToAlign),
292                                 memory_allocation, "aligned phase - alignment initial allocation failed!");
293             }
294             {   /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */
295                 void* const alloc = ws->objectEnd;
296                 size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES);
297                 void* const objectEnd = (BYTE*)alloc + bytesToAlign;
298                 DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign);
299                 RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation,
300                                 "table phase - alignment initial allocation failed!");
301                 ws->objectEnd = objectEnd;
302                 ws->tableEnd = objectEnd;  /* table area starts being empty */
303                 if (ws->tableValidEnd < ws->tableEnd) {
304                     ws->tableValidEnd = ws->tableEnd;
305         }   }   }
306         ws->phase = phase;
307         ZSTD_cwksp_assert_internal_consistency(ws);
308     }
309     return 0;
310 }
311 
312 /*
313  * Returns whether this object/buffer/etc was allocated in this workspace.
314  */
ZSTD_cwksp_owns_buffer(const ZSTD_cwksp * ws,const void * ptr)315 MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr)
316 {
317     return (ptr != NULL) && (ws->workspace <= ptr) && (ptr <= ws->workspaceEnd);
318 }
319 
320 /*
321  * Internal function. Do not use directly.
322  */
323 MEM_STATIC void*
ZSTD_cwksp_reserve_internal(ZSTD_cwksp * ws,size_t bytes,ZSTD_cwksp_alloc_phase_e phase)324 ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase)
325 {
326     void* alloc;
327     if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) {
328         return NULL;
329     }
330 
331 
332     alloc = ZSTD_cwksp_reserve_internal_buffer_space(ws, bytes);
333 
334 
335     return alloc;
336 }
337 
338 /*
339  * Reserves and returns unaligned memory.
340  */
ZSTD_cwksp_reserve_buffer(ZSTD_cwksp * ws,size_t bytes)341 MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes)
342 {
343     return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers);
344 }
345 
346 /*
347  * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
348  */
ZSTD_cwksp_reserve_aligned(ZSTD_cwksp * ws,size_t bytes)349 MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes)
350 {
351     void* ptr = ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES),
352                                             ZSTD_cwksp_alloc_aligned);
353     assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
354     return ptr;
355 }
356 
357 /*
358  * Aligned on 64 bytes. These buffers have the special property that
359  * their values remain constrained, allowing us to re-use them without
360  * memset()-ing them.
361  */
ZSTD_cwksp_reserve_table(ZSTD_cwksp * ws,size_t bytes)362 MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes)
363 {
364     const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned;
365     void* alloc;
366     void* end;
367     void* top;
368 
369     if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase))) {
370         return NULL;
371     }
372     alloc = ws->tableEnd;
373     end = (BYTE *)alloc + bytes;
374     top = ws->allocStart;
375 
376     DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining",
377         alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
378     assert((bytes & (sizeof(U32)-1)) == 0);
379     ZSTD_cwksp_assert_internal_consistency(ws);
380     assert(end <= top);
381     if (end > top) {
382         DEBUGLOG(4, "cwksp: table alloc failed!");
383         ws->allocFailed = 1;
384         return NULL;
385     }
386     ws->tableEnd = end;
387 
388 
389     assert((bytes & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
390     assert(((size_t)alloc & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
391     return alloc;
392 }
393 
394 /*
395  * Aligned on sizeof(void*).
396  * Note : should happen only once, at workspace first initialization
397  */
ZSTD_cwksp_reserve_object(ZSTD_cwksp * ws,size_t bytes)398 MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes)
399 {
400     size_t const roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*));
401     void* alloc = ws->objectEnd;
402     void* end = (BYTE*)alloc + roundedBytes;
403 
404 
405     DEBUGLOG(4,
406         "cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining",
407         alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes);
408     assert((size_t)alloc % ZSTD_ALIGNOF(void*) == 0);
409     assert(bytes % ZSTD_ALIGNOF(void*) == 0);
410     ZSTD_cwksp_assert_internal_consistency(ws);
411     /* we must be in the first phase, no advance is possible */
412     if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) {
413         DEBUGLOG(3, "cwksp: object alloc failed!");
414         ws->allocFailed = 1;
415         return NULL;
416     }
417     ws->objectEnd = end;
418     ws->tableEnd = end;
419     ws->tableValidEnd = end;
420 
421 
422     return alloc;
423 }
424 
ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp * ws)425 MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws)
426 {
427     DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");
428 
429 
430     assert(ws->tableValidEnd >= ws->objectEnd);
431     assert(ws->tableValidEnd <= ws->allocStart);
432     ws->tableValidEnd = ws->objectEnd;
433     ZSTD_cwksp_assert_internal_consistency(ws);
434 }
435 
ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp * ws)436 MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) {
437     DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean");
438     assert(ws->tableValidEnd >= ws->objectEnd);
439     assert(ws->tableValidEnd <= ws->allocStart);
440     if (ws->tableValidEnd < ws->tableEnd) {
441         ws->tableValidEnd = ws->tableEnd;
442     }
443     ZSTD_cwksp_assert_internal_consistency(ws);
444 }
445 
446 /*
447  * Zero the part of the allocated tables not already marked clean.
448  */
ZSTD_cwksp_clean_tables(ZSTD_cwksp * ws)449 MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) {
450     DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables");
451     assert(ws->tableValidEnd >= ws->objectEnd);
452     assert(ws->tableValidEnd <= ws->allocStart);
453     if (ws->tableValidEnd < ws->tableEnd) {
454         ZSTD_memset(ws->tableValidEnd, 0, (BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd);
455     }
456     ZSTD_cwksp_mark_tables_clean(ws);
457 }
458 
459 /*
460  * Invalidates table allocations.
461  * All other allocations remain valid.
462  */
ZSTD_cwksp_clear_tables(ZSTD_cwksp * ws)463 MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) {
464     DEBUGLOG(4, "cwksp: clearing tables!");
465 
466 
467     ws->tableEnd = ws->objectEnd;
468     ZSTD_cwksp_assert_internal_consistency(ws);
469 }
470 
471 /*
472  * Invalidates all buffer, aligned, and table allocations.
473  * Object allocations remain valid.
474  */
ZSTD_cwksp_clear(ZSTD_cwksp * ws)475 MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
476     DEBUGLOG(4, "cwksp: clearing!");
477 
478 
479 
480     ws->tableEnd = ws->objectEnd;
481     ws->allocStart = ws->workspaceEnd;
482     ws->allocFailed = 0;
483     if (ws->phase > ZSTD_cwksp_alloc_buffers) {
484         ws->phase = ZSTD_cwksp_alloc_buffers;
485     }
486     ZSTD_cwksp_assert_internal_consistency(ws);
487 }
488 
489 /*
490  * The provided workspace takes ownership of the buffer [start, start+size).
491  * Any existing values in the workspace are ignored (the previously managed
492  * buffer, if present, must be separately freed).
493  */
ZSTD_cwksp_init(ZSTD_cwksp * ws,void * start,size_t size,ZSTD_cwksp_static_alloc_e isStatic)494 MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) {
495     DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size);
496     assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
497     ws->workspace = start;
498     ws->workspaceEnd = (BYTE*)start + size;
499     ws->objectEnd = ws->workspace;
500     ws->tableValidEnd = ws->objectEnd;
501     ws->phase = ZSTD_cwksp_alloc_objects;
502     ws->isStatic = isStatic;
503     ZSTD_cwksp_clear(ws);
504     ws->workspaceOversizedDuration = 0;
505     ZSTD_cwksp_assert_internal_consistency(ws);
506 }
507 
ZSTD_cwksp_create(ZSTD_cwksp * ws,size_t size,ZSTD_customMem customMem)508 MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) {
509     void* workspace = ZSTD_customMalloc(size, customMem);
510     DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size);
511     RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!");
512     ZSTD_cwksp_init(ws, workspace, size, ZSTD_cwksp_dynamic_alloc);
513     return 0;
514 }
515 
ZSTD_cwksp_free(ZSTD_cwksp * ws,ZSTD_customMem customMem)516 MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) {
517     void *ptr = ws->workspace;
518     DEBUGLOG(4, "cwksp: freeing workspace");
519     ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp));
520     ZSTD_customFree(ptr, customMem);
521 }
522 
523 /*
524  * Moves the management of a workspace from one cwksp to another. The src cwksp
525  * is left in an invalid state (src must be re-init()'ed before it's used again).
526  */
ZSTD_cwksp_move(ZSTD_cwksp * dst,ZSTD_cwksp * src)527 MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) {
528     *dst = *src;
529     ZSTD_memset(src, 0, sizeof(ZSTD_cwksp));
530 }
531 
ZSTD_cwksp_sizeof(const ZSTD_cwksp * ws)532 MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
533     return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
534 }
535 
ZSTD_cwksp_used(const ZSTD_cwksp * ws)536 MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) {
537     return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace)
538          + (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart);
539 }
540 
ZSTD_cwksp_reserve_failed(const ZSTD_cwksp * ws)541 MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
542     return ws->allocFailed;
543 }
544 
545 /*-*************************************
546 *  Functions Checking Free Space
547 ***************************************/
548 
549 /* ZSTD_alignmentSpaceWithinBounds() :
550  * Returns if the estimated space needed for a wksp is within an acceptable limit of the
551  * actual amount of space used.
552  */
ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp * const ws,size_t const estimatedSpace,int resizedWorkspace)553 MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp* const ws,
554                                                         size_t const estimatedSpace, int resizedWorkspace) {
555     if (resizedWorkspace) {
556         /* Resized/newly allocated wksp should have exact bounds */
557         return ZSTD_cwksp_used(ws) == estimatedSpace;
558     } else {
559         /* Due to alignment, when reusing a workspace, we can actually consume 63 fewer or more bytes
560          * than estimatedSpace. See the comments in zstd_cwksp.h for details.
561          */
562         return (ZSTD_cwksp_used(ws) >= estimatedSpace - 63) && (ZSTD_cwksp_used(ws) <= estimatedSpace + 63);
563     }
564 }
565 
566 
ZSTD_cwksp_available_space(ZSTD_cwksp * ws)567 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) {
568     return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd);
569 }
570 
ZSTD_cwksp_check_available(ZSTD_cwksp * ws,size_t additionalNeededSpace)571 MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
572     return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace;
573 }
574 
ZSTD_cwksp_check_too_large(ZSTD_cwksp * ws,size_t additionalNeededSpace)575 MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
576     return ZSTD_cwksp_check_available(
577         ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR);
578 }
579 
ZSTD_cwksp_check_wasteful(ZSTD_cwksp * ws,size_t additionalNeededSpace)580 MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
581     return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)
582         && ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION;
583 }
584 
ZSTD_cwksp_bump_oversized_duration(ZSTD_cwksp * ws,size_t additionalNeededSpace)585 MEM_STATIC void ZSTD_cwksp_bump_oversized_duration(
586         ZSTD_cwksp* ws, size_t additionalNeededSpace) {
587     if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) {
588         ws->workspaceOversizedDuration++;
589     } else {
590         ws->workspaceOversizedDuration = 0;
591     }
592 }
593 
594 
595 #endif /* ZSTD_CWKSP_H */
596