1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/memblock.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kasan.h>
27 #include <linux/kmsan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/ratelimit.h>
31 #include <linux/oom.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_pinner.h>
50 #include <linux/page_table_check.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/lockdep.h>
54 #include <linux/psi.h>
55 #include <linux/khugepaged.h>
56 #include <linux/delayacct.h>
57 #include <trace/hooks/vmscan.h>
58 #include <trace/hooks/mm.h>
59
60 #include <asm/div64.h>
61 #include "internal.h"
62 #include "shuffle.h"
63 #include "page_reporting.h"
64 #include <trace/hooks/mm.h>
65
66 #undef CREATE_TRACE_POINTS
67 #include <trace/hooks/mm.h>
68
69 #undef CREATE_TRACE_POINTS
70 #include <trace/hooks/mm.h>
71
72 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_page_alloc);
73 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_page_free);
74
75 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
76 typedef int __bitwise fpi_t;
77
78 /* No special request */
79 #define FPI_NONE ((__force fpi_t)0)
80
81 /*
82 * Skip free page reporting notification for the (possibly merged) page.
83 * This does not hinder free page reporting from grabbing the page,
84 * reporting it and marking it "reported" - it only skips notifying
85 * the free page reporting infrastructure about a newly freed page. For
86 * example, used when temporarily pulling a page from a freelist and
87 * putting it back unmodified.
88 */
89 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
90
91 /*
92 * Place the (possibly merged) page to the tail of the freelist. Will ignore
93 * page shuffling (relevant code - e.g., memory onlining - is expected to
94 * shuffle the whole zone).
95 *
96 * Note: No code should rely on this flag for correctness - it's purely
97 * to allow for optimizations when handing back either fresh pages
98 * (memory onlining) or untouched pages (page isolation, free page
99 * reporting).
100 */
101 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
102
103 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
104 static DEFINE_MUTEX(pcp_batch_high_lock);
105 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
106
107 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
108 /*
109 * On SMP, spin_trylock is sufficient protection.
110 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
111 */
112 #define pcp_trylock_prepare(flags) do { } while (0)
113 #define pcp_trylock_finish(flag) do { } while (0)
114 #else
115
116 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
117 #define pcp_trylock_prepare(flags) local_irq_save(flags)
118 #define pcp_trylock_finish(flags) local_irq_restore(flags)
119 #endif
120
121 /*
122 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
123 * a migration causing the wrong PCP to be locked and remote memory being
124 * potentially allocated, pin the task to the CPU for the lookup+lock.
125 * preempt_disable is used on !RT because it is faster than migrate_disable.
126 * migrate_disable is used on RT because otherwise RT spinlock usage is
127 * interfered with and a high priority task cannot preempt the allocator.
128 */
129 #ifndef CONFIG_PREEMPT_RT
130 #define pcpu_task_pin() preempt_disable()
131 #define pcpu_task_unpin() preempt_enable()
132 #else
133 #define pcpu_task_pin() migrate_disable()
134 #define pcpu_task_unpin() migrate_enable()
135 #endif
136
137 /*
138 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
139 * Return value should be used with equivalent unlock helper.
140 */
141 #define pcpu_spin_lock(type, member, ptr) \
142 ({ \
143 type *_ret; \
144 pcpu_task_pin(); \
145 _ret = this_cpu_ptr(ptr); \
146 spin_lock(&_ret->member); \
147 _ret; \
148 })
149
150 #define pcpu_spin_trylock(type, member, ptr) \
151 ({ \
152 type *_ret; \
153 pcpu_task_pin(); \
154 _ret = this_cpu_ptr(ptr); \
155 if (!spin_trylock(&_ret->member)) { \
156 pcpu_task_unpin(); \
157 _ret = NULL; \
158 } \
159 _ret; \
160 })
161
162 #define pcpu_spin_unlock(member, ptr) \
163 ({ \
164 spin_unlock(&ptr->member); \
165 pcpu_task_unpin(); \
166 })
167
168 /* struct per_cpu_pages specific helpers. */
169 #define pcp_spin_lock(ptr) \
170 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
171
172 #define pcp_spin_trylock(ptr) \
173 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
174
175 #define pcp_spin_unlock(ptr) \
176 pcpu_spin_unlock(lock, ptr)
177
178 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
179 DEFINE_PER_CPU(int, numa_node);
180 EXPORT_PER_CPU_SYMBOL(numa_node);
181 #endif
182
183 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
184
185 /*
186 * By default, when restrict_cma_redirect is false, all movable allocations
187 * are eligible for redirection to CMA region (i.e movable allocations are
188 * not restricted from CMA region), when there is sufficient space there.
189 * (see __rmqueue()).
190 *
191 * If restrict_cma_redirect is set to true, only MOVABLE allocations marked
192 * __GFP_CMA are eligible to be redirected to CMA region. These allocations
193 * are redirected if *any* free space is available in the CMA region.
194 */
195 DEFINE_STATIC_KEY_FALSE(restrict_cma_redirect);
196
restrict_cma_redirect_setup(char * str)197 static int __init restrict_cma_redirect_setup(char *str)
198 {
199 #ifdef CONFIG_CMA
200 static_branch_enable(&restrict_cma_redirect);
201 #else
202 pr_warn("CONFIG_CMA not set. Ignoring restrict_cma_redirect option\n");
203 #endif
204 return 1;
205 }
206 __setup("restrict_cma_redirect", restrict_cma_redirect_setup);
207
cma_redirect_restricted(void)208 static inline bool cma_redirect_restricted(void)
209 {
210 return static_key_enabled(&restrict_cma_redirect);
211 }
212
213 /*
214 * Return true if CMA has pcplist. We use the PCP list for CMA only if
215 * this returns true. For now, rather than define a new flag, reuse the
216 * restrict_cma_redirect flag itself to select this behavior.
217 */
cma_has_pcplist(void)218 static inline bool cma_has_pcplist(void)
219 {
220 return static_key_enabled(&restrict_cma_redirect);
221 }
222
223 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
224 /*
225 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
226 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
227 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
228 * defined in <linux/topology.h>.
229 */
230 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
231 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
232 #endif
233
234 static DEFINE_MUTEX(pcpu_drain_mutex);
235
236 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
237 volatile unsigned long latent_entropy __latent_entropy;
238 EXPORT_SYMBOL(latent_entropy);
239 #endif
240
241 /*
242 * Array of node states.
243 */
244 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
245 [N_POSSIBLE] = NODE_MASK_ALL,
246 [N_ONLINE] = { { [0] = 1UL } },
247 #ifndef CONFIG_NUMA
248 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
249 #ifdef CONFIG_HIGHMEM
250 [N_HIGH_MEMORY] = { { [0] = 1UL } },
251 #endif
252 [N_MEMORY] = { { [0] = 1UL } },
253 [N_CPU] = { { [0] = 1UL } },
254 #endif /* NUMA */
255 };
256 EXPORT_SYMBOL(node_states);
257
258 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
259
260 /*
261 * A cached value of the page's pageblock's migratetype, used when the page is
262 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
263 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
264 * Also the migratetype set in the page does not necessarily match the pcplist
265 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
266 * other index - this ensures that it will be put on the correct CMA freelist.
267 */
get_pcppage_migratetype(struct page * page)268 static inline int get_pcppage_migratetype(struct page *page)
269 {
270 return page->index;
271 }
272
set_pcppage_migratetype(struct page * page,int migratetype)273 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
274 {
275 page->index = migratetype;
276 }
277
278 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
279 unsigned int pageblock_order __read_mostly;
280 #endif
281
282 static void __free_pages_ok(struct page *page, unsigned int order,
283 fpi_t fpi_flags);
284
285 /*
286 * results with 256, 32 in the lowmem_reserve sysctl:
287 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
288 * 1G machine -> (16M dma, 784M normal, 224M high)
289 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
290 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
291 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
292 *
293 * TBD: should special case ZONE_DMA32 machines here - in those we normally
294 * don't need any ZONE_NORMAL reservation
295 */
296 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
297 #ifdef CONFIG_ZONE_DMA
298 [ZONE_DMA] = 256,
299 #endif
300 #ifdef CONFIG_ZONE_DMA32
301 [ZONE_DMA32] = 256,
302 #endif
303 [ZONE_NORMAL] = 32,
304 #ifdef CONFIG_HIGHMEM
305 [ZONE_HIGHMEM] = 0,
306 #endif
307 [ZONE_MOVABLE] = 0,
308 };
309
310 char * const zone_names[MAX_NR_ZONES] = {
311 #ifdef CONFIG_ZONE_DMA
312 "DMA",
313 #endif
314 #ifdef CONFIG_ZONE_DMA32
315 "DMA32",
316 #endif
317 "Normal",
318 #ifdef CONFIG_HIGHMEM
319 "HighMem",
320 #endif
321 "Movable",
322 "NoSplit",
323 "NoMerge",
324 #ifdef CONFIG_ZONE_DEVICE
325 "Device",
326 #endif
327 };
328
329 const char * const migratetype_names[MIGRATE_TYPES] = {
330 "Unmovable",
331 "Movable",
332 "Reclaimable",
333 #ifdef CONFIG_CMA
334 "CMA",
335 #endif
336 "HighAtomic",
337 #ifdef CONFIG_MEMORY_ISOLATION
338 "Isolate",
339 #endif
340 };
341
342 int min_free_kbytes = 1024;
343 int user_min_free_kbytes = -1;
344 static int watermark_boost_factor __read_mostly = 15000;
345 static int watermark_scale_factor = 10;
346
347 /* virt_zone is the "real" zone pages in virtual zones are taken from */
348 int virt_zone;
349 EXPORT_SYMBOL(virt_zone);
350
351 #if MAX_NUMNODES > 1
352 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
353 unsigned int nr_online_nodes __read_mostly = 1;
354 EXPORT_SYMBOL(nr_node_ids);
355 EXPORT_SYMBOL(nr_online_nodes);
356 #endif
357
358 static bool page_contains_unaccepted(struct page *page, unsigned int order);
359 static void accept_page(struct page *page, unsigned int order);
360 static bool cond_accept_memory(struct zone *zone, unsigned int order);
361 static inline bool has_unaccepted_memory(void);
362 static bool __free_unaccepted(struct page *page);
363
364 int page_group_by_mobility_disabled __read_mostly;
365
366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
367 /*
368 * During boot we initialize deferred pages on-demand, as needed, but once
369 * page_alloc_init_late() has finished, the deferred pages are all initialized,
370 * and we can permanently disable that path.
371 */
372 DEFINE_STATIC_KEY_TRUE(deferred_pages);
373
deferred_pages_enabled(void)374 static inline bool deferred_pages_enabled(void)
375 {
376 return static_branch_unlikely(&deferred_pages);
377 }
378
379 /*
380 * deferred_grow_zone() is __init, but it is called from
381 * get_page_from_freelist() during early boot until deferred_pages permanently
382 * disables this call. This is why we have refdata wrapper to avoid warning,
383 * and to ensure that the function body gets unloaded.
384 */
385 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)386 _deferred_grow_zone(struct zone *zone, unsigned int order)
387 {
388 return deferred_grow_zone(zone, order);
389 }
390 #else
deferred_pages_enabled(void)391 static inline bool deferred_pages_enabled(void)
392 {
393 return false;
394 }
395 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
396
397 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)398 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
399 unsigned long pfn)
400 {
401 #ifdef CONFIG_SPARSEMEM
402 return section_to_usemap(__pfn_to_section(pfn));
403 #else
404 return page_zone(page)->pageblock_flags;
405 #endif /* CONFIG_SPARSEMEM */
406 }
407
pfn_to_bitidx(const struct page * page,unsigned long pfn)408 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
409 {
410 #ifdef CONFIG_SPARSEMEM
411 pfn &= (PAGES_PER_SECTION-1);
412 #else
413 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
414 #endif /* CONFIG_SPARSEMEM */
415 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
416 }
417
418 /**
419 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
420 * @page: The page within the block of interest
421 * @pfn: The target page frame number
422 * @mask: mask of bits that the caller is interested in
423 *
424 * Return: pageblock_bits flags
425 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)426 unsigned long get_pfnblock_flags_mask(const struct page *page,
427 unsigned long pfn, unsigned long mask)
428 {
429 unsigned long *bitmap;
430 unsigned long bitidx, word_bitidx;
431 unsigned long word;
432
433 bitmap = get_pageblock_bitmap(page, pfn);
434 bitidx = pfn_to_bitidx(page, pfn);
435 word_bitidx = bitidx / BITS_PER_LONG;
436 bitidx &= (BITS_PER_LONG-1);
437 /*
438 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
439 * a consistent read of the memory array, so that results, even though
440 * racy, are not corrupted.
441 */
442 word = READ_ONCE(bitmap[word_bitidx]);
443 return (word >> bitidx) & mask;
444 }
445 EXPORT_SYMBOL_GPL(get_pfnblock_flags_mask);
446
isolate_anon_lru_page(struct page * page)447 int isolate_anon_lru_page(struct page *page)
448 {
449 int ret;
450
451 if (!PageLRU(page) || !PageAnon(page))
452 return -EINVAL;
453
454 if (!get_page_unless_zero(page))
455 return -EINVAL;
456
457 ret = isolate_lru_page(page);
458 put_page(page);
459
460 return ret;
461 }
462 EXPORT_SYMBOL_GPL(isolate_anon_lru_page);
463
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)464 static __always_inline int get_pfnblock_migratetype(const struct page *page,
465 unsigned long pfn)
466 {
467 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
468 }
469
470 /**
471 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @flags: The flags to set
474 * @pfn: The target page frame number
475 * @mask: mask of bits that the caller is interested in
476 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)477 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
478 unsigned long pfn,
479 unsigned long mask)
480 {
481 unsigned long *bitmap;
482 unsigned long bitidx, word_bitidx;
483 unsigned long word;
484
485 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
486 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
494
495 mask <<= bitidx;
496 flags <<= bitidx;
497
498 word = READ_ONCE(bitmap[word_bitidx]);
499 do {
500 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
501 }
502
set_pageblock_migratetype(struct page * page,int migratetype)503 void set_pageblock_migratetype(struct page *page, int migratetype)
504 {
505 if (unlikely(page_group_by_mobility_disabled &&
506 migratetype < MIGRATE_FALLBACKS))
507 migratetype = MIGRATE_UNMOVABLE;
508
509 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
510 page_to_pfn(page), MIGRATETYPE_MASK);
511 }
512
513 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)514 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
515 {
516 int ret;
517 unsigned seq;
518 unsigned long pfn = page_to_pfn(page);
519 unsigned long sp, start_pfn;
520
521 do {
522 seq = zone_span_seqbegin(zone);
523 start_pfn = zone->zone_start_pfn;
524 sp = zone->spanned_pages;
525 ret = !zone_spans_pfn(zone, pfn);
526 } while (zone_span_seqretry(zone, seq));
527
528 if (ret)
529 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
530 pfn, zone_to_nid(zone), zone->name,
531 start_pfn, start_pfn + sp);
532
533 return ret;
534 }
535
536 /*
537 * Temporary debugging check for pages not lying within a given zone.
538 */
bad_range(struct zone * zone,struct page * page)539 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
540 {
541 if (page_outside_zone_boundaries(zone, page))
542 return 1;
543 if (zone != page_zone(page))
544 return 1;
545
546 return 0;
547 }
548 #else
bad_range(struct zone * zone,struct page * page)549 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
550 {
551 return 0;
552 }
553 #endif
554
bad_page(struct page * page,const char * reason)555 static void bad_page(struct page *page, const char *reason)
556 {
557 static unsigned long resume;
558 static unsigned long nr_shown;
559 static unsigned long nr_unshown;
560
561 /*
562 * Allow a burst of 60 reports, then keep quiet for that minute;
563 * or allow a steady drip of one report per second.
564 */
565 if (nr_shown == 60) {
566 if (time_before(jiffies, resume)) {
567 nr_unshown++;
568 goto out;
569 }
570 if (nr_unshown) {
571 pr_alert(
572 "BUG: Bad page state: %lu messages suppressed\n",
573 nr_unshown);
574 nr_unshown = 0;
575 }
576 nr_shown = 0;
577 }
578 if (nr_shown++ == 0)
579 resume = jiffies + 60 * HZ;
580
581 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
582 current->comm, page_to_pfn(page));
583 dump_page(page, reason);
584
585 print_modules();
586 dump_stack();
587 out:
588 /* Leave bad fields for debug, except PageBuddy could make trouble */
589 page_mapcount_reset(page); /* remove PageBuddy */
590 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
591 }
592
order_to_pindex(int migratetype,int order)593 static inline unsigned int order_to_pindex(int migratetype, int order)
594 {
595 #ifdef CONFIG_CMA
596 /*
597 * We shouldn't get here for MIGRATE_CMA if those pages don't
598 * have their own pcp list. For instance, free_unref_page() sets
599 * pcpmigratetype to MIGRATE_MOVABLE.
600 */
601 VM_BUG_ON(!cma_has_pcplist() && migratetype == MIGRATE_CMA);
602 #endif
603
604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
605 if (order > PAGE_ALLOC_COSTLY_ORDER) {
606 unsigned int expected_order = pageblock_order;
607
608 trace_android_vh_customize_thp_pcp_order(&expected_order);
609 VM_BUG_ON(order != expected_order);
610 return NR_LOWORDER_PCP_LISTS;
611 }
612 #else
613 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
614 #endif
615
616 return (MIGRATE_PCPTYPES * order) + migratetype;
617 }
618
pindex_to_order(unsigned int pindex)619 static inline int pindex_to_order(unsigned int pindex)
620 {
621 int order = pindex / MIGRATE_PCPTYPES;
622
623 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
624 if (pindex == NR_LOWORDER_PCP_LISTS) {
625 order = pageblock_order;
626 trace_android_vh_customize_thp_pcp_order(&order);
627 }
628 #else
629 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
630 #endif
631
632 return order;
633 }
634
pcp_allowed_order(unsigned int order)635 static inline bool pcp_allowed_order(unsigned int order)
636 {
637 unsigned int __maybe_unused allowed_order;
638
639 if (order <= PAGE_ALLOC_COSTLY_ORDER)
640 return true;
641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
642 allowed_order = pageblock_order;
643 trace_android_vh_customize_thp_pcp_order(&allowed_order);
644 if (order == allowed_order)
645 return true;
646 #endif
647 return false;
648 }
649
free_the_page(struct page * page,unsigned int order)650 static inline void free_the_page(struct page *page, unsigned int order)
651 {
652 if (pcp_allowed_order(order)) /* Via pcp? */
653 free_unref_page(page, order);
654 else
655 __free_pages_ok(page, order, FPI_NONE);
656 }
657
658 /*
659 * Higher-order pages are called "compound pages". They are structured thusly:
660 *
661 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
662 *
663 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
664 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
665 *
666 * The first tail page's ->compound_order holds the order of allocation.
667 * This usage means that zero-order pages may not be compound.
668 */
669
prep_compound_page(struct page * page,unsigned int order)670 void prep_compound_page(struct page *page, unsigned int order)
671 {
672 int i;
673 int nr_pages = 1 << order;
674
675 __SetPageHead(page);
676 for (i = 1; i < nr_pages; i++)
677 prep_compound_tail(page, i);
678
679 prep_compound_head(page, order);
680 }
681 EXPORT_SYMBOL_GPL(prep_compound_page);
682
destroy_large_folio(struct folio * folio)683 void destroy_large_folio(struct folio *folio)
684 {
685 if (folio_test_hugetlb(folio)) {
686 free_huge_folio(folio);
687 return;
688 }
689
690 if (folio_test_large_rmappable(folio))
691 folio_undo_large_rmappable(folio);
692
693 mem_cgroup_uncharge(folio);
694 free_the_page(&folio->page, folio_order(folio));
695 }
696
set_buddy_order(struct page * page,unsigned int order)697 static inline void set_buddy_order(struct page *page, unsigned int order)
698 {
699 set_page_private(page, order);
700 __SetPageBuddy(page);
701 }
702
703 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)704 static inline struct capture_control *task_capc(struct zone *zone)
705 {
706 struct capture_control *capc = current->capture_control;
707
708 return unlikely(capc) &&
709 !(current->flags & PF_KTHREAD) &&
710 !capc->page &&
711 capc->cc->zone == zone ? capc : NULL;
712 }
713
714 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)715 compaction_capture(struct capture_control *capc, struct page *page,
716 int order, int migratetype)
717 {
718 if (!capc || order != capc->cc->order)
719 return false;
720
721 /* Do not accidentally pollute CMA or isolated regions*/
722 if (is_migrate_cma(migratetype) ||
723 is_migrate_isolate(migratetype))
724 return false;
725
726 /*
727 * Do not let lower order allocations pollute a movable pageblock.
728 * This might let an unmovable request use a reclaimable pageblock
729 * and vice-versa but no more than normal fallback logic which can
730 * have trouble finding a high-order free page.
731 */
732 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
733 return false;
734
735 capc->page = page;
736 return true;
737 }
738
739 #else
task_capc(struct zone * zone)740 static inline struct capture_control *task_capc(struct zone *zone)
741 {
742 return NULL;
743 }
744
745 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)746 compaction_capture(struct capture_control *capc, struct page *page,
747 int order, int migratetype)
748 {
749 return false;
750 }
751 #endif /* CONFIG_COMPACTION */
752
753 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)754 static inline void add_to_free_list(struct page *page, struct zone *zone,
755 unsigned int order, int migratetype)
756 {
757 struct free_area *area = &zone->free_area[order];
758
759 list_add(&page->buddy_list, &area->free_list[migratetype]);
760 area->nr_free++;
761 }
762
763 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)764 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
765 unsigned int order, int migratetype)
766 {
767 struct free_area *area = &zone->free_area[order];
768
769 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
770 area->nr_free++;
771 }
772
773 /*
774 * Used for pages which are on another list. Move the pages to the tail
775 * of the list - so the moved pages won't immediately be considered for
776 * allocation again (e.g., optimization for memory onlining).
777 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)778 static inline void move_to_free_list(struct page *page, struct zone *zone,
779 unsigned int order, int migratetype)
780 {
781 struct free_area *area = &zone->free_area[order];
782
783 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
784 }
785
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)786 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
787 unsigned int order)
788 {
789 /* clear reported state and update reported page count */
790 if (page_reported(page))
791 __ClearPageReported(page);
792
793 list_del(&page->buddy_list);
794 __ClearPageBuddy(page);
795 set_page_private(page, 0);
796 zone->free_area[order].nr_free--;
797 }
798
get_page_from_free_area(struct free_area * area,int migratetype)799 static inline struct page *get_page_from_free_area(struct free_area *area,
800 int migratetype)
801 {
802 return list_first_entry_or_null(&area->free_list[migratetype],
803 struct page, buddy_list);
804 }
805
806 /*
807 * If this is not the largest possible page, check if the buddy
808 * of the next-highest order is free. If it is, it's possible
809 * that pages are being freed that will coalesce soon. In case,
810 * that is happening, add the free page to the tail of the list
811 * so it's less likely to be used soon and more likely to be merged
812 * as a higher order page
813 */
814 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)815 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
816 struct page *page, unsigned int order)
817 {
818 unsigned long higher_page_pfn;
819 struct page *higher_page;
820
821 higher_page_pfn = buddy_pfn & pfn;
822 higher_page = page + (higher_page_pfn - pfn);
823
824 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
825 NULL) != NULL;
826 }
827
zone_max_order(struct zone * zone)828 static int zone_max_order(struct zone *zone)
829 {
830 return zone->order && zone_idx(zone) == ZONE_NOMERGE ? zone->order : MAX_ORDER;
831 }
832
833 /*
834 * Freeing function for a buddy system allocator.
835 *
836 * The concept of a buddy system is to maintain direct-mapped table
837 * (containing bit values) for memory blocks of various "orders".
838 * The bottom level table contains the map for the smallest allocatable
839 * units of memory (here, pages), and each level above it describes
840 * pairs of units from the levels below, hence, "buddies".
841 * At a high level, all that happens here is marking the table entry
842 * at the bottom level available, and propagating the changes upward
843 * as necessary, plus some accounting needed to play nicely with other
844 * parts of the VM system.
845 * At each level, we keep a list of pages, which are heads of continuous
846 * free pages of length of (1 << order) and marked with PageBuddy.
847 * Page's order is recorded in page_private(page) field.
848 * So when we are allocating or freeing one, we can derive the state of the
849 * other. That is, if we allocate a small block, and both were
850 * free, the remainder of the region must be split into blocks.
851 * If a block is freed, and its buddy is also free, then this
852 * triggers coalescing into a block of larger size.
853 *
854 * -- nyc
855 */
856
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)857 static inline void __free_one_page(struct page *page,
858 unsigned long pfn,
859 struct zone *zone, unsigned int order,
860 int migratetype, fpi_t fpi_flags)
861 {
862 struct capture_control *capc = task_capc(zone);
863 unsigned long buddy_pfn = 0;
864 unsigned long combined_pfn;
865 struct page *buddy;
866 bool to_tail;
867 int max_order = zone_max_order(zone);
868
869 VM_BUG_ON(!zone_is_initialized(zone));
870 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
871
872 VM_BUG_ON(migratetype == -1);
873 if (likely(!is_migrate_isolate(migratetype)))
874 __mod_zone_freepage_state(zone, 1 << order, migratetype);
875
876 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
877 VM_BUG_ON_PAGE(bad_range(zone, page), page);
878
879 while (order < max_order) {
880 if (compaction_capture(capc, page, order, migratetype)) {
881 __mod_zone_freepage_state(zone, -(1 << order),
882 migratetype);
883 return;
884 }
885
886 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
887 if (!buddy)
888 goto done_merging;
889
890 if (unlikely(order >= pageblock_order)) {
891 /*
892 * We want to prevent merge between freepages on pageblock
893 * without fallbacks and normal pageblock. Without this,
894 * pageblock isolation could cause incorrect freepage or CMA
895 * accounting or HIGHATOMIC accounting.
896 */
897 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
898
899 if (migratetype != buddy_mt
900 && (!migratetype_is_mergeable(migratetype) ||
901 !migratetype_is_mergeable(buddy_mt)))
902 goto done_merging;
903 }
904
905 /*
906 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
907 * merge with it and move up one order.
908 */
909 if (page_is_guard(buddy))
910 clear_page_guard(zone, buddy, order, migratetype);
911 else
912 del_page_from_free_list(buddy, zone, order);
913 combined_pfn = buddy_pfn & pfn;
914 page = page + (combined_pfn - pfn);
915 pfn = combined_pfn;
916 order++;
917 }
918
919 done_merging:
920 set_buddy_order(page, order);
921
922 if (fpi_flags & FPI_TO_TAIL)
923 to_tail = true;
924 else if (is_shuffle_order(order))
925 to_tail = shuffle_pick_tail();
926 else if (order + 1 >= max_order)
927 to_tail = false;
928 else
929 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
930
931 if (to_tail)
932 add_to_free_list_tail(page, zone, order, migratetype);
933 else
934 add_to_free_list(page, zone, order, migratetype);
935
936 /* Notify page reporting subsystem of freed page */
937 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
938 page_reporting_notify_free(order);
939 }
940
941 /**
942 * split_free_page() -- split a free page at split_pfn_offset
943 * @free_page: the original free page
944 * @order: the order of the page
945 * @split_pfn_offset: split offset within the page
946 *
947 * Return -ENOENT if the free page is changed, otherwise 0
948 *
949 * It is used when the free page crosses two pageblocks with different migratetypes
950 * at split_pfn_offset within the page. The split free page will be put into
951 * separate migratetype lists afterwards. Otherwise, the function achieves
952 * nothing.
953 */
split_free_page(struct page * free_page,unsigned int order,unsigned long split_pfn_offset)954 int split_free_page(struct page *free_page,
955 unsigned int order, unsigned long split_pfn_offset)
956 {
957 struct zone *zone = page_zone(free_page);
958 unsigned long free_page_pfn = page_to_pfn(free_page);
959 unsigned long pfn;
960 unsigned long flags;
961 int free_page_order;
962 int mt;
963 int ret = 0;
964
965 VM_WARN_ON_ONCE_PAGE(!page_can_split(free_page), free_page);
966
967 if (split_pfn_offset == 0)
968 return ret;
969
970 spin_lock_irqsave(&zone->lock, flags);
971
972 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
973 ret = -ENOENT;
974 goto out;
975 }
976
977 mt = get_pfnblock_migratetype(free_page, free_page_pfn);
978 if (likely(!is_migrate_isolate(mt)))
979 __mod_zone_freepage_state(zone, -(1UL << order), mt);
980
981 del_page_from_free_list(free_page, zone, order);
982 for (pfn = free_page_pfn;
983 pfn < free_page_pfn + (1UL << order);) {
984 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
985
986 free_page_order = min_t(unsigned int,
987 pfn ? __ffs(pfn) : order,
988 __fls(split_pfn_offset));
989 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
990 mt, FPI_NONE);
991 pfn += 1UL << free_page_order;
992 split_pfn_offset -= (1UL << free_page_order);
993 /* we have done the first part, now switch to second part */
994 if (split_pfn_offset == 0)
995 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
996 }
997 out:
998 spin_unlock_irqrestore(&zone->lock, flags);
999 return ret;
1000 }
1001 /*
1002 * A bad page could be due to a number of fields. Instead of multiple branches,
1003 * try and check multiple fields with one check. The caller must do a detailed
1004 * check if necessary.
1005 */
page_expected_state(struct page * page,unsigned long check_flags)1006 static inline bool page_expected_state(struct page *page,
1007 unsigned long check_flags)
1008 {
1009 if (unlikely(atomic_read(&page->_mapcount) != -1))
1010 return false;
1011
1012 if (unlikely((unsigned long)page->mapping |
1013 page_ref_count(page) |
1014 #ifdef CONFIG_MEMCG
1015 page->memcg_data |
1016 #endif
1017 (page->flags & check_flags)))
1018 return false;
1019
1020 return true;
1021 }
1022
page_bad_reason(struct page * page,unsigned long flags)1023 static const char *page_bad_reason(struct page *page, unsigned long flags)
1024 {
1025 const char *bad_reason = NULL;
1026
1027 if (unlikely(atomic_read(&page->_mapcount) != -1))
1028 bad_reason = "nonzero mapcount";
1029 if (unlikely(page->mapping != NULL))
1030 bad_reason = "non-NULL mapping";
1031 if (unlikely(page_ref_count(page) != 0))
1032 bad_reason = "nonzero _refcount";
1033 if (unlikely(page->flags & flags)) {
1034 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1035 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1036 else
1037 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1038 }
1039 #ifdef CONFIG_MEMCG
1040 if (unlikely(page->memcg_data))
1041 bad_reason = "page still charged to cgroup";
1042 #endif
1043 return bad_reason;
1044 }
1045
free_page_is_bad_report(struct page * page)1046 static void free_page_is_bad_report(struct page *page)
1047 {
1048 bad_page(page,
1049 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1050 }
1051
free_page_is_bad(struct page * page)1052 static inline bool free_page_is_bad(struct page *page)
1053 {
1054 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1055 return false;
1056
1057 /* Something has gone sideways, find it */
1058 free_page_is_bad_report(page);
1059 return true;
1060 }
1061
is_check_pages_enabled(void)1062 static inline bool is_check_pages_enabled(void)
1063 {
1064 return static_branch_unlikely(&check_pages_enabled);
1065 }
1066
free_tail_page_prepare(struct page * head_page,struct page * page)1067 static int free_tail_page_prepare(struct page *head_page, struct page *page)
1068 {
1069 struct folio *folio = (struct folio *)head_page;
1070 int ret = 1;
1071
1072 /*
1073 * We rely page->lru.next never has bit 0 set, unless the page
1074 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1075 */
1076 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1077
1078 if (!is_check_pages_enabled()) {
1079 ret = 0;
1080 goto out;
1081 }
1082 switch (page - head_page) {
1083 case 1:
1084 /* the first tail page: these may be in place of ->mapping */
1085 if (unlikely(folio_entire_mapcount(folio))) {
1086 bad_page(page, "nonzero entire_mapcount");
1087 goto out;
1088 }
1089 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1090 bad_page(page, "nonzero nr_pages_mapped");
1091 goto out;
1092 }
1093 if (unlikely(atomic_read(&folio->_pincount))) {
1094 bad_page(page, "nonzero pincount");
1095 goto out;
1096 }
1097 if (unlikely(folio->_private_1)) {
1098 bad_page(page, "nonzero _private_1");
1099 goto out;
1100 }
1101 break;
1102 case 2:
1103 /*
1104 * the second tail page: ->mapping is
1105 * deferred_list.next -- ignore value.
1106 */
1107 break;
1108 default:
1109 if (page->mapping != TAIL_MAPPING) {
1110 bad_page(page, "corrupted mapping in tail page");
1111 goto out;
1112 }
1113 break;
1114 }
1115 if (unlikely(!PageTail(page))) {
1116 bad_page(page, "PageTail not set");
1117 goto out;
1118 }
1119 if (unlikely(compound_head(page) != head_page)) {
1120 bad_page(page, "compound_head not consistent");
1121 goto out;
1122 }
1123 ret = 0;
1124 out:
1125 page->mapping = NULL;
1126 clear_compound_head(page);
1127 return ret;
1128 }
1129
1130 /*
1131 * Skip KASAN memory poisoning when either:
1132 *
1133 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1134 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1135 * using page tags instead (see below).
1136 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1137 * that error detection is disabled for accesses via the page address.
1138 *
1139 * Pages will have match-all tags in the following circumstances:
1140 *
1141 * 1. Pages are being initialized for the first time, including during deferred
1142 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1143 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1144 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1145 * 3. The allocation was excluded from being checked due to sampling,
1146 * see the call to kasan_unpoison_pages.
1147 *
1148 * Poisoning pages during deferred memory init will greatly lengthen the
1149 * process and cause problem in large memory systems as the deferred pages
1150 * initialization is done with interrupt disabled.
1151 *
1152 * Assuming that there will be no reference to those newly initialized
1153 * pages before they are ever allocated, this should have no effect on
1154 * KASAN memory tracking as the poison will be properly inserted at page
1155 * allocation time. The only corner case is when pages are allocated by
1156 * on-demand allocation and then freed again before the deferred pages
1157 * initialization is done, but this is not likely to happen.
1158 */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1159 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1160 {
1161 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1162 return deferred_pages_enabled();
1163
1164 return page_kasan_tag(page) == 0xff;
1165 }
1166
kernel_init_pages(struct page * page,int numpages)1167 static void kernel_init_pages(struct page *page, int numpages)
1168 {
1169 int i;
1170
1171 /* s390's use of memset() could override KASAN redzones. */
1172 kasan_disable_current();
1173 for (i = 0; i < numpages; i++)
1174 clear_highpage_kasan_tagged(page + i);
1175 kasan_enable_current();
1176 }
1177
free_pages_prepare(struct page * page,unsigned int order,fpi_t fpi_flags)1178 static __always_inline bool free_pages_prepare(struct page *page,
1179 unsigned int order, fpi_t fpi_flags)
1180 {
1181 int bad = 0;
1182 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1183 bool init = want_init_on_free();
1184
1185 VM_BUG_ON_PAGE(PageTail(page), page);
1186
1187 trace_mm_page_free(page, order);
1188 kmsan_free_page(page, order);
1189
1190 if (unlikely(PageHWPoison(page)) && !order) {
1191 /*
1192 * Do not let hwpoison pages hit pcplists/buddy
1193 * Untie memcg state and reset page's owner
1194 */
1195 if (memcg_kmem_online() && PageMemcgKmem(page))
1196 __memcg_kmem_uncharge_page(page, order);
1197 reset_page_owner(page, order);
1198 free_page_pinner(page, order);
1199 page_table_check_free(page, order);
1200 return false;
1201 }
1202
1203 /*
1204 * Check tail pages before head page information is cleared to
1205 * avoid checking PageCompound for order-0 pages.
1206 */
1207 if (unlikely(order)) {
1208 bool compound = PageCompound(page);
1209 int i;
1210
1211 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1212
1213 if (compound)
1214 page[1].flags &= ~PAGE_FLAGS_SECOND;
1215 for (i = 1; i < (1 << order); i++) {
1216 if (compound)
1217 bad += free_tail_page_prepare(page, page + i);
1218 if (is_check_pages_enabled()) {
1219 if (free_page_is_bad(page + i)) {
1220 bad++;
1221 continue;
1222 }
1223 }
1224 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1225 }
1226 }
1227 if (PageMappingFlags(page))
1228 page->mapping = NULL;
1229 if (memcg_kmem_online() && PageMemcgKmem(page))
1230 __memcg_kmem_uncharge_page(page, order);
1231 if (is_check_pages_enabled()) {
1232 if (free_page_is_bad(page))
1233 bad++;
1234 if (bad)
1235 return false;
1236 }
1237
1238 page_cpupid_reset_last(page);
1239 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1240 reset_page_owner(page, order);
1241 free_page_pinner(page, order);
1242 page_table_check_free(page, order);
1243
1244 if (!PageHighMem(page)) {
1245 debug_check_no_locks_freed(page_address(page),
1246 PAGE_SIZE << order);
1247 debug_check_no_obj_freed(page_address(page),
1248 PAGE_SIZE << order);
1249 }
1250
1251 kernel_poison_pages(page, 1 << order);
1252
1253 /*
1254 * As memory initialization might be integrated into KASAN,
1255 * KASAN poisoning and memory initialization code must be
1256 * kept together to avoid discrepancies in behavior.
1257 *
1258 * With hardware tag-based KASAN, memory tags must be set before the
1259 * page becomes unavailable via debug_pagealloc or arch_free_page.
1260 */
1261 if (!skip_kasan_poison) {
1262 kasan_poison_pages(page, order, init);
1263
1264 /* Memory is already initialized if KASAN did it internally. */
1265 if (kasan_has_integrated_init())
1266 init = false;
1267 }
1268 if (init)
1269 kernel_init_pages(page, 1 << order);
1270
1271 /*
1272 * arch_free_page() can make the page's contents inaccessible. s390
1273 * does this. So nothing which can access the page's contents should
1274 * happen after this.
1275 */
1276 arch_free_page(page, order);
1277
1278 debug_pagealloc_unmap_pages(page, 1 << order);
1279
1280 return true;
1281 }
1282
1283 /*
1284 * Frees a number of pages from the PCP lists
1285 * Assumes all pages on list are in same zone.
1286 * count is the number of pages to free.
1287 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1288 static void free_pcppages_bulk(struct zone *zone, int count,
1289 struct per_cpu_pages *pcp,
1290 int pindex)
1291 {
1292 unsigned long flags;
1293 unsigned int order;
1294 bool isolated_pageblocks;
1295 struct page *page;
1296
1297 /*
1298 * Ensure proper count is passed which otherwise would stuck in the
1299 * below while (list_empty(list)) loop.
1300 */
1301 count = min(pcp->count, count);
1302
1303 /* Ensure requested pindex is drained first. */
1304 pindex = pindex - 1;
1305
1306 spin_lock_irqsave(&zone->lock, flags);
1307 isolated_pageblocks = has_isolate_pageblock(zone);
1308
1309 while (count > 0) {
1310 struct list_head *list;
1311 int nr_pages;
1312
1313 /* Remove pages from lists in a round-robin fashion. */
1314 do {
1315 if (++pindex > NR_PCP_LISTS - 1)
1316 pindex = 0;
1317 list = &pcp->lists[pindex];
1318 } while (list_empty(list));
1319
1320 order = pindex_to_order(pindex);
1321 nr_pages = 1 << order;
1322 do {
1323 int mt;
1324
1325 page = list_last_entry(list, struct page, pcp_list);
1326 mt = get_pcppage_migratetype(page);
1327
1328 /* must delete to avoid corrupting pcp list */
1329 list_del(&page->pcp_list);
1330 count -= nr_pages;
1331 pcp->count -= nr_pages;
1332
1333 /* MIGRATE_ISOLATE page should not go to pcplists */
1334 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1335 /* Pageblock could have been isolated meanwhile */
1336 if (unlikely(isolated_pageblocks))
1337 mt = get_pageblock_migratetype(page);
1338
1339 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1340 trace_mm_page_pcpu_drain(page, order, mt);
1341 } while (count > 0 && !list_empty(list));
1342 }
1343
1344 spin_unlock_irqrestore(&zone->lock, flags);
1345 }
1346
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1347 static void free_one_page(struct zone *zone,
1348 struct page *page, unsigned long pfn,
1349 unsigned int order,
1350 int migratetype, fpi_t fpi_flags)
1351 {
1352 unsigned long flags;
1353
1354 spin_lock_irqsave(&zone->lock, flags);
1355 if (unlikely(has_isolate_pageblock(zone) ||
1356 is_migrate_isolate(migratetype))) {
1357 migratetype = get_pfnblock_migratetype(page, pfn);
1358 }
1359 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1360 spin_unlock_irqrestore(&zone->lock, flags);
1361 }
1362
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1363 static void __free_pages_ok(struct page *page, unsigned int order,
1364 fpi_t fpi_flags)
1365 {
1366 unsigned long flags;
1367 int migratetype;
1368 unsigned long pfn = page_to_pfn(page);
1369 struct zone *zone = page_zone(page);
1370 bool skip_free_unref_page = false;
1371 bool skip_free_pages_prepare = false;
1372 bool skip_free_pages_ok = false;
1373
1374 trace_android_vh_free_pages_prepare_bypass(page, order,
1375 fpi_flags, &skip_free_pages_prepare);
1376 if (skip_free_pages_prepare)
1377 goto skip_prepare;
1378
1379 if (!free_pages_prepare(page, order, fpi_flags))
1380 return;
1381 skip_prepare:
1382 trace_android_vh_free_pages_ok_bypass(page, order,
1383 fpi_flags, &skip_free_pages_ok);
1384 if (skip_free_pages_ok)
1385 return;
1386 /*
1387 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1388 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1389 * This will reduce the lock holding time.
1390 */
1391 migratetype = get_pfnblock_migratetype(page, pfn);
1392 trace_android_vh_free_unref_page_bypass(page, order, migratetype, &skip_free_unref_page);
1393 if (skip_free_unref_page)
1394 return;
1395
1396 spin_lock_irqsave(&zone->lock, flags);
1397 if (unlikely(has_isolate_pageblock(zone) ||
1398 is_migrate_isolate(migratetype))) {
1399 migratetype = get_pfnblock_migratetype(page, pfn);
1400 }
1401 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1402 spin_unlock_irqrestore(&zone->lock, flags);
1403
1404 __count_vm_events(PGFREE, 1 << order);
1405 }
1406
1407 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
free_hpage(struct page * page,fpi_t fpi_flags)1408 void free_hpage(struct page *page, fpi_t fpi_flags)
1409 {
1410 __free_pages_ok(page, HPAGE_PMD_ORDER, fpi_flags);
1411 }
1412 EXPORT_SYMBOL_GPL(free_hpage);
1413 #endif
1414
__free_pages_core(struct page * page,unsigned int order)1415 void __free_pages_core(struct page *page, unsigned int order)
1416 {
1417 unsigned int nr_pages = 1 << order;
1418 struct page *p = page;
1419 unsigned int loop;
1420
1421 /*
1422 * When initializing the memmap, __init_single_page() sets the refcount
1423 * of all pages to 1 ("allocated"/"not free"). We have to set the
1424 * refcount of all involved pages to 0.
1425 */
1426 prefetchw(p);
1427 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1428 prefetchw(p + 1);
1429 __ClearPageReserved(p);
1430 set_page_count(p, 0);
1431 }
1432 __ClearPageReserved(p);
1433 set_page_count(p, 0);
1434
1435 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1436
1437 if (page_contains_unaccepted(page, order)) {
1438 if (order == MAX_ORDER && __free_unaccepted(page))
1439 return;
1440
1441 accept_page(page, order);
1442 }
1443
1444 /*
1445 * Bypass PCP and place fresh pages right to the tail, primarily
1446 * relevant for memory onlining.
1447 */
1448 __free_pages_ok(page, order, FPI_TO_TAIL);
1449 }
1450
1451 /*
1452 * Check that the whole (or subset of) a pageblock given by the interval of
1453 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1454 * with the migration of free compaction scanner.
1455 *
1456 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1457 *
1458 * It's possible on some configurations to have a setup like node0 node1 node0
1459 * i.e. it's possible that all pages within a zones range of pages do not
1460 * belong to a single zone. We assume that a border between node0 and node1
1461 * can occur within a single pageblock, but not a node0 node1 node0
1462 * interleaving within a single pageblock. It is therefore sufficient to check
1463 * the first and last page of a pageblock and avoid checking each individual
1464 * page in a pageblock.
1465 *
1466 * Note: the function may return non-NULL struct page even for a page block
1467 * which contains a memory hole (i.e. there is no physical memory for a subset
1468 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1469 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1470 * even though the start pfn is online and valid. This should be safe most of
1471 * the time because struct pages are still initialized via init_unavailable_range()
1472 * and pfn walkers shouldn't touch any physical memory range for which they do
1473 * not recognize any specific metadata in struct pages.
1474 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1475 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1476 unsigned long end_pfn, struct zone *zone)
1477 {
1478 struct page *start_page;
1479 struct page *end_page;
1480
1481 /* end_pfn is one past the range we are checking */
1482 end_pfn--;
1483
1484 if (!pfn_valid(end_pfn))
1485 return NULL;
1486
1487 start_page = pfn_to_online_page(start_pfn);
1488 if (!start_page)
1489 return NULL;
1490
1491 if (page_zone(start_page) != zone)
1492 return NULL;
1493
1494 end_page = pfn_to_page(end_pfn);
1495
1496 /* This gives a shorter code than deriving page_zone(end_page) */
1497 if (page_zone_id(start_page) != page_zone_id(end_page))
1498 return NULL;
1499
1500 return start_page;
1501 }
1502
1503 /*
1504 * The order of subdivision here is critical for the IO subsystem.
1505 * Please do not alter this order without good reasons and regression
1506 * testing. Specifically, as large blocks of memory are subdivided,
1507 * the order in which smaller blocks are delivered depends on the order
1508 * they're subdivided in this function. This is the primary factor
1509 * influencing the order in which pages are delivered to the IO
1510 * subsystem according to empirical testing, and this is also justified
1511 * by considering the behavior of a buddy system containing a single
1512 * large block of memory acted on by a series of small allocations.
1513 * This behavior is a critical factor in sglist merging's success.
1514 *
1515 * -- nyc
1516 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1517 static inline void expand(struct zone *zone, struct page *page,
1518 int low, int high, int migratetype)
1519 {
1520 unsigned long size = 1 << high;
1521
1522 while (high > low) {
1523 high--;
1524 size >>= 1;
1525 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1526
1527 /*
1528 * Mark as guard pages (or page), that will allow to
1529 * merge back to allocator when buddy will be freed.
1530 * Corresponding page table entries will not be touched,
1531 * pages will stay not present in virtual address space
1532 */
1533 if (set_page_guard(zone, &page[size], high, migratetype))
1534 continue;
1535
1536 add_to_free_list(&page[size], zone, high, migratetype);
1537 set_buddy_order(&page[size], high);
1538 }
1539 }
1540
check_new_page_bad(struct page * page)1541 static void check_new_page_bad(struct page *page)
1542 {
1543 if (unlikely(page->flags & __PG_HWPOISON)) {
1544 /* Don't complain about hwpoisoned pages */
1545 page_mapcount_reset(page); /* remove PageBuddy */
1546 return;
1547 }
1548
1549 bad_page(page,
1550 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1551 }
1552
1553 /*
1554 * This page is about to be returned from the page allocator
1555 */
check_new_page(struct page * page)1556 static int check_new_page(struct page *page)
1557 {
1558 if (likely(page_expected_state(page,
1559 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1560 return 0;
1561
1562 check_new_page_bad(page);
1563 return 1;
1564 }
1565
check_new_pages(struct page * page,unsigned int order)1566 static inline bool check_new_pages(struct page *page, unsigned int order)
1567 {
1568 if (is_check_pages_enabled()) {
1569 for (int i = 0; i < (1 << order); i++) {
1570 struct page *p = page + i;
1571
1572 if (check_new_page(p))
1573 return true;
1574 }
1575 }
1576
1577 return false;
1578 }
1579
should_skip_kasan_unpoison(gfp_t flags)1580 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1581 {
1582 /* Don't skip if a software KASAN mode is enabled. */
1583 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1584 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1585 return false;
1586
1587 /* Skip, if hardware tag-based KASAN is not enabled. */
1588 if (!kasan_hw_tags_enabled())
1589 return true;
1590
1591 /*
1592 * With hardware tag-based KASAN enabled, skip if this has been
1593 * requested via __GFP_SKIP_KASAN.
1594 */
1595 return flags & __GFP_SKIP_KASAN;
1596 }
1597
should_skip_init(gfp_t flags)1598 static inline bool should_skip_init(gfp_t flags)
1599 {
1600 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1601 if (!kasan_hw_tags_enabled())
1602 return false;
1603
1604 /* For hardware tag-based KASAN, skip if requested. */
1605 return (flags & __GFP_SKIP_ZERO);
1606 }
1607
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1608 inline void post_alloc_hook(struct page *page, unsigned int order,
1609 gfp_t gfp_flags)
1610 {
1611 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1612 !should_skip_init(gfp_flags);
1613 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1614 int i;
1615
1616 set_page_private(page, 0);
1617 set_page_refcounted(page);
1618
1619 arch_alloc_page(page, order);
1620 debug_pagealloc_map_pages(page, 1 << order);
1621
1622 /*
1623 * Page unpoisoning must happen before memory initialization.
1624 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1625 * allocations and the page unpoisoning code will complain.
1626 */
1627 kernel_unpoison_pages(page, 1 << order);
1628
1629 /*
1630 * As memory initialization might be integrated into KASAN,
1631 * KASAN unpoisoning and memory initializion code must be
1632 * kept together to avoid discrepancies in behavior.
1633 */
1634
1635 /*
1636 * If memory tags should be zeroed
1637 * (which happens only when memory should be initialized as well).
1638 */
1639 if (zero_tags) {
1640 /* Initialize both memory and memory tags. */
1641 for (i = 0; i != 1 << order; ++i)
1642 tag_clear_highpage(page + i);
1643
1644 /* Take note that memory was initialized by the loop above. */
1645 init = false;
1646 }
1647 if (!should_skip_kasan_unpoison(gfp_flags) &&
1648 kasan_unpoison_pages(page, order, init)) {
1649 /* Take note that memory was initialized by KASAN. */
1650 if (kasan_has_integrated_init())
1651 init = false;
1652 } else {
1653 /*
1654 * If memory tags have not been set by KASAN, reset the page
1655 * tags to ensure page_address() dereferencing does not fault.
1656 */
1657 for (i = 0; i != 1 << order; ++i)
1658 page_kasan_tag_reset(page + i);
1659 }
1660 /* If memory is still not initialized, initialize it now. */
1661 if (init)
1662 kernel_init_pages(page, 1 << order);
1663
1664 set_page_owner(page, order, gfp_flags);
1665 page_table_check_alloc(page, order);
1666 }
1667
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1668 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1669 unsigned int alloc_flags)
1670 {
1671 post_alloc_hook(page, order, gfp_flags);
1672
1673 if (order && (gfp_flags & __GFP_COMP))
1674 prep_compound_page(page, order);
1675
1676 /*
1677 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1678 * allocate the page. The expectation is that the caller is taking
1679 * steps that will free more memory. The caller should avoid the page
1680 * being used for !PFMEMALLOC purposes.
1681 */
1682 if (alloc_flags & ALLOC_NO_WATERMARKS)
1683 set_page_pfmemalloc(page);
1684 else
1685 clear_page_pfmemalloc(page);
1686 trace_android_vh_test_clear_look_around_ref(page);
1687 }
1688
1689 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
prep_new_hpage(struct page * page,gfp_t gfp_flags,unsigned int alloc_flags)1690 void prep_new_hpage(struct page *page, gfp_t gfp_flags, unsigned int alloc_flags)
1691 {
1692 return prep_new_page(page, HPAGE_PMD_ORDER, gfp_flags, alloc_flags);
1693 }
1694 EXPORT_SYMBOL_GPL(prep_new_hpage);
1695 #endif
1696
1697 /*
1698 * Go through the free lists for the given migratetype and remove
1699 * the smallest available page from the freelists
1700 */
1701 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1702 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1703 int migratetype)
1704 {
1705 unsigned int current_order;
1706 struct free_area *area;
1707 struct page *page;
1708
1709 VM_WARN_ON_ONCE(!zone_is_suitable(zone, order));
1710
1711 /* Find a page of the appropriate size in the preferred list */
1712 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1713 area = &(zone->free_area[current_order]);
1714 page = get_page_from_free_area(area, migratetype);
1715 if (!page)
1716 continue;
1717 del_page_from_free_list(page, zone, current_order);
1718 expand(zone, page, order, current_order, migratetype);
1719 set_pcppage_migratetype(page, migratetype);
1720 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1721 pcp_allowed_order(order) &&
1722 migratetype < MIGRATE_PCPTYPES);
1723 return page;
1724 }
1725
1726 return NULL;
1727 }
1728
1729
1730 /*
1731 * This array describes the order lists are fallen back to when
1732 * the free lists for the desirable migrate type are depleted
1733 *
1734 * The other migratetypes do not have fallbacks.
1735 */
1736 static int fallbacks[MIGRATE_TYPES][MIGRATE_FALLBACKS - 1] = {
1737 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1738 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1739 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1740 };
1741
1742 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1743 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1744 unsigned int order)
1745 {
1746 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1747 }
1748 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1749 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1750 unsigned int order) { return NULL; }
1751 #endif
1752
1753 /*
1754 * Move the free pages in a range to the freelist tail of the requested type.
1755 * Note that start_page and end_pages are not aligned on a pageblock
1756 * boundary. If alignment is required, use move_freepages_block()
1757 */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)1758 static int move_freepages(struct zone *zone,
1759 unsigned long start_pfn, unsigned long end_pfn,
1760 int migratetype, int *num_movable)
1761 {
1762 struct page *page;
1763 unsigned long pfn;
1764 unsigned int order;
1765 int pages_moved = 0;
1766
1767 for (pfn = start_pfn; pfn <= end_pfn;) {
1768 page = pfn_to_page(pfn);
1769 if (!PageBuddy(page)) {
1770 /*
1771 * We assume that pages that could be isolated for
1772 * migration are movable. But we don't actually try
1773 * isolating, as that would be expensive.
1774 */
1775 if (num_movable &&
1776 (PageLRU(page) || __PageMovable(page)))
1777 (*num_movable)++;
1778 pfn++;
1779 continue;
1780 }
1781
1782 /* Make sure we are not inadvertently changing nodes */
1783 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1784 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1785
1786 order = buddy_order(page);
1787 move_to_free_list(page, zone, order, migratetype);
1788 pfn += 1 << order;
1789 pages_moved += 1 << order;
1790 }
1791
1792 return pages_moved;
1793 }
1794
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)1795 int move_freepages_block(struct zone *zone, struct page *page,
1796 int migratetype, int *num_movable)
1797 {
1798 unsigned long start_pfn, end_pfn, pfn;
1799
1800 if (num_movable)
1801 *num_movable = 0;
1802
1803 pfn = page_to_pfn(page);
1804 start_pfn = pageblock_start_pfn(pfn);
1805 end_pfn = pageblock_end_pfn(pfn) - 1;
1806
1807 /* Do not cross zone boundaries */
1808 if (!zone_spans_pfn(zone, start_pfn))
1809 start_pfn = pfn;
1810 if (!zone_spans_pfn(zone, end_pfn))
1811 return 0;
1812
1813 return move_freepages(zone, start_pfn, end_pfn, migratetype,
1814 num_movable);
1815 }
1816
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1817 static void change_pageblock_range(struct page *pageblock_page,
1818 int start_order, int migratetype)
1819 {
1820 int nr_pageblocks = 1 << (start_order - pageblock_order);
1821
1822 while (nr_pageblocks--) {
1823 set_pageblock_migratetype(pageblock_page, migratetype);
1824 pageblock_page += pageblock_nr_pages;
1825 }
1826 }
1827
1828 /*
1829 * When we are falling back to another migratetype during allocation, try to
1830 * steal extra free pages from the same pageblocks to satisfy further
1831 * allocations, instead of polluting multiple pageblocks.
1832 *
1833 * If we are stealing a relatively large buddy page, it is likely there will
1834 * be more free pages in the pageblock, so try to steal them all. For
1835 * reclaimable and unmovable allocations, we steal regardless of page size,
1836 * as fragmentation caused by those allocations polluting movable pageblocks
1837 * is worse than movable allocations stealing from unmovable and reclaimable
1838 * pageblocks.
1839 */
can_steal_fallback(unsigned int order,int start_mt)1840 static bool can_steal_fallback(unsigned int order, int start_mt)
1841 {
1842 /*
1843 * Leaving this order check is intended, although there is
1844 * relaxed order check in next check. The reason is that
1845 * we can actually steal whole pageblock if this condition met,
1846 * but, below check doesn't guarantee it and that is just heuristic
1847 * so could be changed anytime.
1848 */
1849 if (order >= pageblock_order)
1850 return true;
1851
1852 if (order >= pageblock_order / 2 ||
1853 start_mt == MIGRATE_RECLAIMABLE ||
1854 start_mt == MIGRATE_UNMOVABLE ||
1855 page_group_by_mobility_disabled)
1856 return true;
1857
1858 return false;
1859 }
1860
boost_watermark(struct zone * zone)1861 static inline bool boost_watermark(struct zone *zone)
1862 {
1863 unsigned long max_boost;
1864
1865 if (!watermark_boost_factor)
1866 return false;
1867 /*
1868 * Don't bother in zones that are unlikely to produce results.
1869 * On small machines, including kdump capture kernels running
1870 * in a small area, boosting the watermark can cause an out of
1871 * memory situation immediately.
1872 */
1873 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1874 return false;
1875
1876 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1877 watermark_boost_factor, 10000);
1878
1879 /*
1880 * high watermark may be uninitialised if fragmentation occurs
1881 * very early in boot so do not boost. We do not fall
1882 * through and boost by pageblock_nr_pages as failing
1883 * allocations that early means that reclaim is not going
1884 * to help and it may even be impossible to reclaim the
1885 * boosted watermark resulting in a hang.
1886 */
1887 if (!max_boost)
1888 return false;
1889
1890 max_boost = max(pageblock_nr_pages, max_boost);
1891
1892 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1893 max_boost);
1894
1895 return true;
1896 }
1897
1898 /*
1899 * This function implements actual steal behaviour. If order is large enough,
1900 * we can steal whole pageblock. If not, we first move freepages in this
1901 * pageblock to our migratetype and determine how many already-allocated pages
1902 * are there in the pageblock with a compatible migratetype. If at least half
1903 * of pages are free or compatible, we can change migratetype of the pageblock
1904 * itself, so pages freed in the future will be put on the correct free list.
1905 */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)1906 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1907 unsigned int alloc_flags, int start_type, bool whole_block)
1908 {
1909 unsigned int current_order = buddy_order(page);
1910 int free_pages, movable_pages, alike_pages;
1911 int old_block_type;
1912
1913 old_block_type = get_pageblock_migratetype(page);
1914
1915 /*
1916 * This can happen due to races and we want to prevent broken
1917 * highatomic accounting.
1918 */
1919 if (is_migrate_highatomic(old_block_type))
1920 goto single_page;
1921
1922 /* Take ownership for orders >= pageblock_order */
1923 if (current_order >= pageblock_order) {
1924 change_pageblock_range(page, current_order, start_type);
1925 goto single_page;
1926 }
1927
1928 /*
1929 * Boost watermarks to increase reclaim pressure to reduce the
1930 * likelihood of future fallbacks. Wake kswapd now as the node
1931 * may be balanced overall and kswapd will not wake naturally.
1932 */
1933 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1934 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1935
1936 /* We are not allowed to try stealing from the whole block */
1937 if (!whole_block)
1938 goto single_page;
1939
1940 free_pages = move_freepages_block(zone, page, start_type,
1941 &movable_pages);
1942 /* moving whole block can fail due to zone boundary conditions */
1943 if (!free_pages)
1944 goto single_page;
1945
1946 /*
1947 * Determine how many pages are compatible with our allocation.
1948 * For movable allocation, it's the number of movable pages which
1949 * we just obtained. For other types it's a bit more tricky.
1950 */
1951 if (start_type == MIGRATE_MOVABLE) {
1952 alike_pages = movable_pages;
1953 } else {
1954 /*
1955 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1956 * to MOVABLE pageblock, consider all non-movable pages as
1957 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1958 * vice versa, be conservative since we can't distinguish the
1959 * exact migratetype of non-movable pages.
1960 */
1961 if (old_block_type == MIGRATE_MOVABLE)
1962 alike_pages = pageblock_nr_pages
1963 - (free_pages + movable_pages);
1964 else
1965 alike_pages = 0;
1966 }
1967 /*
1968 * If a sufficient number of pages in the block are either free or of
1969 * compatible migratability as our allocation, claim the whole block.
1970 */
1971 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1972 page_group_by_mobility_disabled)
1973 set_pageblock_migratetype(page, start_type);
1974
1975 return;
1976
1977 single_page:
1978 move_to_free_list(page, zone, current_order, start_type);
1979 }
1980
1981 /*
1982 * Check whether there is a suitable fallback freepage with requested order.
1983 * If only_stealable is true, this function returns fallback_mt only if
1984 * we can steal other freepages all together. This would help to reduce
1985 * fragmentation due to mixed migratetype pages in one pageblock.
1986 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1987 int find_suitable_fallback(struct free_area *area, unsigned int order,
1988 int migratetype, bool only_stealable, bool *can_steal)
1989 {
1990 int i;
1991 int fallback_mt;
1992
1993 if (area->nr_free == 0)
1994 return -1;
1995
1996 *can_steal = false;
1997 for (i = 0; i < MIGRATE_FALLBACKS - 1 ; i++) {
1998 fallback_mt = fallbacks[migratetype][i];
1999 if (free_area_empty(area, fallback_mt))
2000 continue;
2001
2002 if (can_steal_fallback(order, migratetype))
2003 *can_steal = true;
2004
2005 if (!only_stealable)
2006 return fallback_mt;
2007
2008 if (*can_steal)
2009 return fallback_mt;
2010 }
2011
2012 return -1;
2013 }
2014
2015 /*
2016 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2017 * there are no empty page blocks that contain a page with a suitable order
2018 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone)2019 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
2020 {
2021 int mt;
2022 unsigned long max_managed, flags;
2023
2024 /*
2025 * The number reserved as: minimum is 1 pageblock, maximum is
2026 * roughly 1% of a zone. But if 1% of a zone falls below a
2027 * pageblock size, then don't reserve any pageblocks.
2028 * Check is race-prone but harmless.
2029 */
2030 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2031 return;
2032 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2033 if (zone->nr_reserved_highatomic >= max_managed)
2034 return;
2035
2036 spin_lock_irqsave(&zone->lock, flags);
2037
2038 /* Recheck the nr_reserved_highatomic limit under the lock */
2039 if (zone->nr_reserved_highatomic >= max_managed)
2040 goto out_unlock;
2041
2042 /* Yoink! */
2043 mt = get_pageblock_migratetype(page);
2044 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2045 if (migratetype_is_mergeable(mt)) {
2046 zone->nr_reserved_highatomic += pageblock_nr_pages;
2047 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2048 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2049 }
2050
2051 out_unlock:
2052 spin_unlock_irqrestore(&zone->lock, flags);
2053 }
2054
2055 /*
2056 * Used when an allocation is about to fail under memory pressure. This
2057 * potentially hurts the reliability of high-order allocations when under
2058 * intense memory pressure but failed atomic allocations should be easier
2059 * to recover from than an OOM.
2060 *
2061 * If @force is true, try to unreserve a pageblock even though highatomic
2062 * pageblock is exhausted.
2063 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2064 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2065 bool force)
2066 {
2067 struct zonelist *zonelist = ac->zonelist;
2068 unsigned long flags;
2069 struct zoneref *z;
2070 struct zone *zone;
2071 struct page *page;
2072 int order;
2073 bool ret;
2074 bool skip_unreserve_highatomic = false;
2075
2076 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2077 ac->nodemask) {
2078 /*
2079 * Preserve at least one pageblock unless memory pressure
2080 * is really high.
2081 */
2082 if (!force && zone->nr_reserved_highatomic <=
2083 pageblock_nr_pages)
2084 continue;
2085
2086 trace_android_vh_unreserve_highatomic_bypass(force, zone,
2087 &skip_unreserve_highatomic);
2088 if (skip_unreserve_highatomic)
2089 continue;
2090
2091 spin_lock_irqsave(&zone->lock, flags);
2092 for (order = 0; order < NR_PAGE_ORDERS; order++) {
2093 struct free_area *area = &(zone->free_area[order]);
2094
2095 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2096 if (!page)
2097 continue;
2098
2099 /*
2100 * In page freeing path, migratetype change is racy so
2101 * we can counter several free pages in a pageblock
2102 * in this loop although we changed the pageblock type
2103 * from highatomic to ac->migratetype. So we should
2104 * adjust the count once.
2105 */
2106 if (is_migrate_highatomic_page(page)) {
2107 /*
2108 * It should never happen but changes to
2109 * locking could inadvertently allow a per-cpu
2110 * drain to add pages to MIGRATE_HIGHATOMIC
2111 * while unreserving so be safe and watch for
2112 * underflows.
2113 */
2114 zone->nr_reserved_highatomic -= min(
2115 pageblock_nr_pages,
2116 zone->nr_reserved_highatomic);
2117 }
2118
2119 /*
2120 * Convert to ac->migratetype and avoid the normal
2121 * pageblock stealing heuristics. Minimally, the caller
2122 * is doing the work and needs the pages. More
2123 * importantly, if the block was always converted to
2124 * MIGRATE_UNMOVABLE or another type then the number
2125 * of pageblocks that cannot be completely freed
2126 * may increase.
2127 */
2128 set_pageblock_migratetype(page, ac->migratetype);
2129 ret = move_freepages_block(zone, page, ac->migratetype,
2130 NULL);
2131 if (ret) {
2132 spin_unlock_irqrestore(&zone->lock, flags);
2133 return ret;
2134 }
2135 }
2136 spin_unlock_irqrestore(&zone->lock, flags);
2137 }
2138
2139 return false;
2140 }
2141
2142 /*
2143 * Try finding a free buddy page on the fallback list and put it on the free
2144 * list of requested migratetype, possibly along with other pages from the same
2145 * block, depending on fragmentation avoidance heuristics. Returns true if
2146 * fallback was found so that __rmqueue_smallest() can grab it.
2147 *
2148 * The use of signed ints for order and current_order is a deliberate
2149 * deviation from the rest of this file, to make the for loop
2150 * condition simpler.
2151 */
2152 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2153 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2154 unsigned int alloc_flags)
2155 {
2156 struct free_area *area;
2157 int current_order;
2158 int min_order = order;
2159 struct page *page;
2160 int fallback_mt;
2161 bool can_steal;
2162
2163 /*
2164 * Do not steal pages from freelists belonging to other pageblocks
2165 * i.e. orders < pageblock_order. If there are no local zones free,
2166 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2167 */
2168 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2169 min_order = pageblock_order;
2170
2171 /*
2172 * Find the largest available free page in the other list. This roughly
2173 * approximates finding the pageblock with the most free pages, which
2174 * would be too costly to do exactly.
2175 */
2176 for (current_order = MAX_ORDER; current_order >= min_order;
2177 --current_order) {
2178 area = &(zone->free_area[current_order]);
2179 fallback_mt = find_suitable_fallback(area, current_order,
2180 start_migratetype, false, &can_steal);
2181 if (fallback_mt == -1)
2182 continue;
2183
2184 /*
2185 * We cannot steal all free pages from the pageblock and the
2186 * requested migratetype is movable. In that case it's better to
2187 * steal and split the smallest available page instead of the
2188 * largest available page, because even if the next movable
2189 * allocation falls back into a different pageblock than this
2190 * one, it won't cause permanent fragmentation.
2191 */
2192 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2193 && current_order > order)
2194 goto find_smallest;
2195
2196 goto do_steal;
2197 }
2198
2199 return false;
2200
2201 find_smallest:
2202 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2203 area = &(zone->free_area[current_order]);
2204 fallback_mt = find_suitable_fallback(area, current_order,
2205 start_migratetype, false, &can_steal);
2206 if (fallback_mt != -1)
2207 break;
2208 }
2209
2210 /*
2211 * This should not happen - we already found a suitable fallback
2212 * when looking for the largest page.
2213 */
2214 VM_BUG_ON(current_order > MAX_ORDER);
2215
2216 do_steal:
2217 page = get_page_from_free_area(area, fallback_mt);
2218
2219 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2220 can_steal);
2221
2222 trace_mm_page_alloc_extfrag(page, order, current_order,
2223 start_migratetype, fallback_mt);
2224
2225 return true;
2226
2227 }
2228
2229 /*
2230 * Do the hard work of removing an element from the buddy allocator.
2231 * Call me with the zone->lock already held.
2232 */
2233 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2234 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2235 unsigned int alloc_flags)
2236 {
2237 struct page *page;
2238
2239 if (IS_ENABLED(CONFIG_CMA)) {
2240 /*
2241 * Balance movable allocations between regular and CMA areas by
2242 * allocating from CMA when over half of the zone's free memory
2243 * is in the CMA area.
2244 */
2245 if (!cma_redirect_restricted() && alloc_flags & ALLOC_CMA &&
2246 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2247 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2248 page = __rmqueue_cma_fallback(zone, order);
2249 if (page)
2250 return page;
2251 }
2252 }
2253 retry:
2254 page = __rmqueue_smallest(zone, order, migratetype);
2255 if (unlikely(!page)) {
2256 if (!cma_redirect_restricted() && alloc_flags & ALLOC_CMA)
2257 page = __rmqueue_cma_fallback(zone, order);
2258
2259 if (!page && __rmqueue_fallback(zone, order, migratetype,
2260 alloc_flags))
2261 goto retry;
2262 }
2263 return page;
2264 }
2265
2266 /*
2267 * Obtain a specified number of elements from the buddy allocator, all under
2268 * a single hold of the lock, for efficiency. Add them to the supplied list.
2269 * Returns the number of new pages which were placed at *list.
2270 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2271 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2272 unsigned long count, struct list_head *list,
2273 int migratetype, unsigned int alloc_flags)
2274 {
2275 unsigned long flags;
2276 int i;
2277
2278 spin_lock_irqsave(&zone->lock, flags);
2279 for (i = 0; i < count; ++i) {
2280 struct page *page;
2281
2282 /*
2283 * If CMA redirect is restricted, use CMA region only for
2284 * MIGRATE_CMA pages. cma_rediret_restricted() is false
2285 * if CONFIG_CMA is not set.
2286 */
2287 if (cma_redirect_restricted() && is_migrate_cma(migratetype))
2288 page = __rmqueue_cma_fallback(zone, order);
2289 else
2290 page = __rmqueue(zone, order, migratetype, alloc_flags);
2291
2292 if (unlikely(page == NULL))
2293 break;
2294
2295 /*
2296 * Split buddy pages returned by expand() are received here in
2297 * physical page order. The page is added to the tail of
2298 * caller's list. From the callers perspective, the linked list
2299 * is ordered by page number under some conditions. This is
2300 * useful for IO devices that can forward direction from the
2301 * head, thus also in the physical page order. This is useful
2302 * for IO devices that can merge IO requests if the physical
2303 * pages are ordered properly.
2304 */
2305 list_add_tail(&page->pcp_list, list);
2306 if (is_migrate_cma(get_pcppage_migratetype(page)))
2307 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2308 -(1 << order));
2309 }
2310
2311 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2312 spin_unlock_irqrestore(&zone->lock, flags);
2313
2314 return i;
2315 }
2316
2317 #ifdef CONFIG_NUMA
2318 /*
2319 * Called from the vmstat counter updater to drain pagesets of this
2320 * currently executing processor on remote nodes after they have
2321 * expired.
2322 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2323 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2324 {
2325 int to_drain, batch;
2326
2327 batch = READ_ONCE(pcp->batch);
2328 to_drain = min(pcp->count, batch);
2329 if (to_drain > 0) {
2330 spin_lock(&pcp->lock);
2331 free_pcppages_bulk(zone, to_drain, pcp, 0);
2332 spin_unlock(&pcp->lock);
2333 }
2334 }
2335 #endif
2336
2337 /*
2338 * Drain pcplists of the indicated processor and zone.
2339 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2340 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2341 {
2342 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2343 int count;
2344
2345 do {
2346 spin_lock(&pcp->lock);
2347 count = pcp->count;
2348 if (count) {
2349 int to_drain = min(count,
2350 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2351
2352 free_pcppages_bulk(zone, to_drain, pcp, 0);
2353 count -= to_drain;
2354 }
2355 spin_unlock(&pcp->lock);
2356 } while (count);
2357 }
2358
2359 /*
2360 * Drain pcplists of all zones on the indicated processor.
2361 */
drain_pages(unsigned int cpu)2362 static void drain_pages(unsigned int cpu)
2363 {
2364 struct zone *zone;
2365
2366 for_each_populated_zone(zone) {
2367 drain_pages_zone(cpu, zone);
2368 }
2369 }
2370
2371 /*
2372 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2373 */
drain_local_pages(struct zone * zone)2374 void drain_local_pages(struct zone *zone)
2375 {
2376 int cpu = smp_processor_id();
2377
2378 if (zone)
2379 drain_pages_zone(cpu, zone);
2380 else
2381 drain_pages(cpu);
2382 }
2383
2384 /*
2385 * The implementation of drain_all_pages(), exposing an extra parameter to
2386 * drain on all cpus.
2387 *
2388 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2389 * not empty. The check for non-emptiness can however race with a free to
2390 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2391 * that need the guarantee that every CPU has drained can disable the
2392 * optimizing racy check.
2393 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2394 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2395 {
2396 int cpu;
2397
2398 /*
2399 * Allocate in the BSS so we won't require allocation in
2400 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2401 */
2402 static cpumask_t cpus_with_pcps;
2403
2404 /*
2405 * Do not drain if one is already in progress unless it's specific to
2406 * a zone. Such callers are primarily CMA and memory hotplug and need
2407 * the drain to be complete when the call returns.
2408 */
2409 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2410 if (!zone)
2411 return;
2412 mutex_lock(&pcpu_drain_mutex);
2413 }
2414
2415 /*
2416 * We don't care about racing with CPU hotplug event
2417 * as offline notification will cause the notified
2418 * cpu to drain that CPU pcps and on_each_cpu_mask
2419 * disables preemption as part of its processing
2420 */
2421 for_each_online_cpu(cpu) {
2422 struct per_cpu_pages *pcp;
2423 struct zone *z;
2424 bool has_pcps = false;
2425
2426 if (force_all_cpus) {
2427 /*
2428 * The pcp.count check is racy, some callers need a
2429 * guarantee that no cpu is missed.
2430 */
2431 has_pcps = true;
2432 } else if (zone) {
2433 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2434 if (pcp->count)
2435 has_pcps = true;
2436 } else {
2437 for_each_populated_zone(z) {
2438 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2439 if (pcp->count) {
2440 has_pcps = true;
2441 break;
2442 }
2443 }
2444 }
2445
2446 if (has_pcps)
2447 cpumask_set_cpu(cpu, &cpus_with_pcps);
2448 else
2449 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2450 }
2451
2452 for_each_cpu(cpu, &cpus_with_pcps) {
2453 if (zone)
2454 drain_pages_zone(cpu, zone);
2455 else
2456 drain_pages(cpu);
2457 }
2458
2459 mutex_unlock(&pcpu_drain_mutex);
2460 }
2461
2462 /*
2463 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2464 *
2465 * When zone parameter is non-NULL, spill just the single zone's pages.
2466 */
drain_all_pages(struct zone * zone)2467 void drain_all_pages(struct zone *zone)
2468 {
2469 __drain_all_pages(zone, false);
2470 }
2471
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)2472 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2473 unsigned int order)
2474 {
2475 int migratetype;
2476
2477 if (!free_pages_prepare(page, order, FPI_NONE))
2478 return false;
2479
2480 migratetype = get_pfnblock_migratetype(page, pfn);
2481 set_pcppage_migratetype(page, migratetype);
2482 return true;
2483 }
2484
nr_pcp_free(struct per_cpu_pages * pcp,int high,bool free_high)2485 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2486 {
2487 int min_nr_free, max_nr_free;
2488 int batch = READ_ONCE(pcp->batch);
2489
2490 /* Free everything if batch freeing high-order pages. */
2491 if (unlikely(free_high))
2492 return pcp->count;
2493
2494 /* Check for PCP disabled or boot pageset */
2495 if (unlikely(high < batch))
2496 return 1;
2497
2498 /* Leave at least pcp->batch pages on the list */
2499 min_nr_free = batch;
2500 max_nr_free = high - batch;
2501
2502 /*
2503 * Double the number of pages freed each time there is subsequent
2504 * freeing of pages without any allocation.
2505 */
2506 batch <<= pcp->free_factor;
2507 if (batch < max_nr_free && pcp->free_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2508 pcp->free_factor++;
2509 batch = clamp(batch, min_nr_free, max_nr_free);
2510
2511 return batch;
2512 }
2513
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,bool free_high)2514 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2515 bool free_high)
2516 {
2517 int high = READ_ONCE(pcp->high);
2518
2519 if (unlikely(!high || free_high))
2520 return 0;
2521
2522 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2523 return high;
2524
2525 /*
2526 * If reclaim is active, limit the number of pages that can be
2527 * stored on pcp lists
2528 */
2529 return min(READ_ONCE(pcp->batch) << 2, high);
2530 }
2531
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2532 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2533 struct page *page, int migratetype,
2534 unsigned int order)
2535 {
2536 int high;
2537 int pindex;
2538 bool free_high;
2539
2540 __count_vm_events(PGFREE, 1 << order);
2541 pindex = order_to_pindex(migratetype, order);
2542 list_add(&page->pcp_list, &pcp->lists[pindex]);
2543 pcp->count += 1 << order;
2544
2545 /*
2546 * As high-order pages other than THP's stored on PCP can contribute
2547 * to fragmentation, limit the number stored when PCP is heavily
2548 * freeing without allocation. The remainder after bulk freeing
2549 * stops will be drained from vmstat refresh context.
2550 */
2551 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2552
2553 high = nr_pcp_high(pcp, zone, free_high);
2554 if (pcp->count >= high) {
2555 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2556 }
2557 }
2558
2559 /*
2560 * Free a pcp page
2561 */
free_unref_page(struct page * page,unsigned int order)2562 void free_unref_page(struct page *page, unsigned int order)
2563 {
2564 unsigned long __maybe_unused UP_flags;
2565 struct per_cpu_pages *pcp;
2566 struct zone *zone;
2567 unsigned long pfn = page_to_pfn(page);
2568 int migratetype, pcpmigratetype;
2569 bool skip_free_unref_page = false;
2570
2571 if (!free_unref_page_prepare(page, pfn, order))
2572 return;
2573
2574 /*
2575 * We only track unmovable, reclaimable, movable and if restrict cma
2576 * fallback flag is set, CMA on pcp lists.
2577 * Place ISOLATE pages on the isolated list because they are being
2578 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2579 * get those areas back if necessary. Otherwise, we may have to free
2580 * excessively into the page allocator
2581 */
2582 migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2583 trace_android_vh_free_unref_page_bypass(page, order, migratetype, &skip_free_unref_page);
2584 if (skip_free_unref_page)
2585 return;
2586 if (unlikely(migratetype > MIGRATE_RECLAIMABLE)) {
2587 if (unlikely(is_migrate_isolate(migratetype))) {
2588 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2589 return;
2590 }
2591 #ifdef CONFIG_CMA
2592 if (!cma_has_pcplist() || migratetype != MIGRATE_CMA)
2593 #endif
2594 pcpmigratetype = MIGRATE_MOVABLE;
2595 }
2596
2597 zone = page_zone(page);
2598 pcp_trylock_prepare(UP_flags);
2599 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2600 if (pcp) {
2601 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2602 pcp_spin_unlock(pcp);
2603 } else {
2604 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2605 }
2606 pcp_trylock_finish(UP_flags);
2607 }
2608
2609 /*
2610 * Free a list of 0-order pages
2611 */
free_unref_page_list(struct list_head * list)2612 void free_unref_page_list(struct list_head *list)
2613 {
2614 unsigned long __maybe_unused UP_flags;
2615 struct page *page, *next;
2616 struct per_cpu_pages *pcp = NULL;
2617 struct zone *locked_zone = NULL;
2618 int batch_count = 0;
2619 int migratetype;
2620
2621 /* Prepare pages for freeing */
2622 list_for_each_entry_safe(page, next, list, lru) {
2623 unsigned long pfn = page_to_pfn(page);
2624 if (!free_unref_page_prepare(page, pfn, 0)) {
2625 list_del(&page->lru);
2626 continue;
2627 }
2628
2629 /*
2630 * Free isolated pages directly to the allocator, see
2631 * comment in free_unref_page.
2632 */
2633 migratetype = get_pcppage_migratetype(page);
2634 if (unlikely(is_migrate_isolate(migratetype))) {
2635 list_del(&page->lru);
2636 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2637 continue;
2638 }
2639 }
2640
2641 list_for_each_entry_safe(page, next, list, lru) {
2642 struct zone *zone = page_zone(page);
2643
2644 list_del(&page->lru);
2645 migratetype = get_pcppage_migratetype(page);
2646
2647 /*
2648 * Either different zone requiring a different pcp lock or
2649 * excessive lock hold times when freeing a large list of
2650 * pages.
2651 */
2652 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2653 if (pcp) {
2654 pcp_spin_unlock(pcp);
2655 pcp_trylock_finish(UP_flags);
2656 }
2657
2658 batch_count = 0;
2659
2660 /*
2661 * trylock is necessary as pages may be getting freed
2662 * from IRQ or SoftIRQ context after an IO completion.
2663 */
2664 pcp_trylock_prepare(UP_flags);
2665 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2666 if (unlikely(!pcp)) {
2667 pcp_trylock_finish(UP_flags);
2668 free_one_page(zone, page, page_to_pfn(page),
2669 0, migratetype, FPI_NONE);
2670 locked_zone = NULL;
2671 continue;
2672 }
2673 locked_zone = zone;
2674 }
2675
2676 /*
2677 * Non-isolated types over MIGRATE_PCPTYPES get added
2678 * to the MIGRATE_MOVABLE pcp list.
2679 */
2680 if (unlikely(migratetype > MIGRATE_RECLAIMABLE)) {
2681 #ifdef CONFIG_CMA
2682 if (!cma_has_pcplist() || migratetype != MIGRATE_CMA)
2683 #endif
2684 migratetype = MIGRATE_MOVABLE;
2685 }
2686
2687 trace_mm_page_free_batched(page);
2688 free_unref_page_commit(zone, pcp, page, migratetype, 0);
2689 batch_count++;
2690 }
2691
2692 if (pcp) {
2693 pcp_spin_unlock(pcp);
2694 pcp_trylock_finish(UP_flags);
2695 }
2696 }
2697
2698 /*
2699 * split_page takes a non-compound higher-order page, and splits it into
2700 * n (1<<order) sub-pages: page[0..n]
2701 * Each sub-page must be freed individually.
2702 *
2703 * Note: this is probably too low level an operation for use in drivers.
2704 * Please consult with lkml before using this in your driver.
2705 */
split_page(struct page * page,unsigned int order)2706 void split_page(struct page *page, unsigned int order)
2707 {
2708 int i;
2709
2710 VM_BUG_ON_PAGE(PageCompound(page), page);
2711 VM_BUG_ON_PAGE(!page_count(page), page);
2712
2713 for (i = 1; i < (1 << order); i++)
2714 set_page_refcounted(page + i);
2715 split_page_owner(page, 1 << order);
2716 split_page_memcg(page, 1 << order);
2717 }
2718 EXPORT_SYMBOL_GPL(split_page);
2719
__isolate_free_page(struct page * page,unsigned int order)2720 int __isolate_free_page(struct page *page, unsigned int order)
2721 {
2722 struct zone *zone = page_zone(page);
2723 int mt = get_pageblock_migratetype(page);
2724
2725 if (!is_migrate_isolate(mt)) {
2726 unsigned long watermark;
2727 /*
2728 * Obey watermarks as if the page was being allocated. We can
2729 * emulate a high-order watermark check with a raised order-0
2730 * watermark, because we already know our high-order page
2731 * exists.
2732 */
2733 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2734 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2735 return 0;
2736
2737 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2738 }
2739
2740 del_page_from_free_list(page, zone, order);
2741
2742 /*
2743 * Set the pageblock if the isolated page is at least half of a
2744 * pageblock
2745 */
2746 if (order >= pageblock_order - 1) {
2747 struct page *endpage = page + (1 << order) - 1;
2748 for (; page < endpage; page += pageblock_nr_pages) {
2749 int mt = get_pageblock_migratetype(page);
2750 /*
2751 * Only change normal pageblocks (i.e., they can merge
2752 * with others)
2753 */
2754 if (migratetype_is_mergeable(mt))
2755 set_pageblock_migratetype(page,
2756 MIGRATE_MOVABLE);
2757 }
2758 }
2759
2760 return 1UL << order;
2761 }
2762
2763 /**
2764 * __putback_isolated_page - Return a now-isolated page back where we got it
2765 * @page: Page that was isolated
2766 * @order: Order of the isolated page
2767 * @mt: The page's pageblock's migratetype
2768 *
2769 * This function is meant to return a page pulled from the free lists via
2770 * __isolate_free_page back to the free lists they were pulled from.
2771 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2772 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2773 {
2774 struct zone *zone = page_zone(page);
2775
2776 /* zone lock should be held when this function is called */
2777 lockdep_assert_held(&zone->lock);
2778
2779 /* Return isolated page to tail of freelist. */
2780 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2781 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2782 }
2783
2784 /*
2785 * Update NUMA hit/miss statistics
2786 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2787 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2788 long nr_account)
2789 {
2790 #ifdef CONFIG_NUMA
2791 enum numa_stat_item local_stat = NUMA_LOCAL;
2792
2793 /* skip numa counters update if numa stats is disabled */
2794 if (!static_branch_likely(&vm_numa_stat_key))
2795 return;
2796
2797 if (zone_to_nid(z) != numa_node_id())
2798 local_stat = NUMA_OTHER;
2799
2800 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2801 __count_numa_events(z, NUMA_HIT, nr_account);
2802 else {
2803 __count_numa_events(z, NUMA_MISS, nr_account);
2804 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2805 }
2806 __count_numa_events(z, local_stat, nr_account);
2807 #endif
2808 }
2809
2810 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2811 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2812 unsigned int order, unsigned int alloc_flags,
2813 int migratetype)
2814 {
2815 struct page *page;
2816 unsigned long flags;
2817
2818 do {
2819 page = NULL;
2820 spin_lock_irqsave(&zone->lock, flags);
2821 if (alloc_flags & ALLOC_HIGHATOMIC)
2822 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2823 if (!page) {
2824 if (cma_redirect_restricted() &&
2825 alloc_flags & ALLOC_CMA)
2826 page = __rmqueue_cma_fallback(zone, order);
2827
2828 if (!page)
2829 page = __rmqueue(zone, order, migratetype,
2830 alloc_flags);
2831 /*
2832 * If the allocation fails, allow OOM handling access
2833 * to HIGHATOMIC reserves as failing now is worse than
2834 * failing a high-order atomic allocation in the
2835 * future.
2836 */
2837 if (!page && (alloc_flags & ALLOC_OOM))
2838 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2839
2840 if (!page) {
2841 spin_unlock_irqrestore(&zone->lock, flags);
2842 return NULL;
2843 }
2844 }
2845 __mod_zone_freepage_state(zone, -(1 << order),
2846 get_pcppage_migratetype(page));
2847 spin_unlock_irqrestore(&zone->lock, flags);
2848 } while (check_new_pages(page, order));
2849
2850 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2851 zone_statistics(preferred_zone, zone, 1);
2852
2853 return page;
2854 }
2855
2856 /* Remove page from the per-cpu list, caller must protect the list */
2857 static inline
___rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2858 struct page *___rmqueue_pcplist(struct zone *zone, unsigned int order,
2859 int migratetype,
2860 unsigned int alloc_flags,
2861 struct per_cpu_pages *pcp,
2862 struct list_head *list)
2863 {
2864 struct page *page;
2865
2866 do {
2867 if (list_empty(list)) {
2868 int batch = READ_ONCE(pcp->batch);
2869 int alloced;
2870
2871 trace_android_vh_rmqueue_bulk_bypass(order, pcp, migratetype, list);
2872 if (!list_empty(list))
2873 goto get_list;
2874 /*
2875 * Scale batch relative to order if batch implies
2876 * free pages can be stored on the PCP. Batch can
2877 * be 1 for small zones or for boot pagesets which
2878 * should never store free pages as the pages may
2879 * belong to arbitrary zones.
2880 */
2881 if (batch > 1)
2882 batch = max(batch >> order, 2);
2883 alloced = rmqueue_bulk(zone, order,
2884 batch, list,
2885 migratetype, alloc_flags);
2886
2887 pcp->count += alloced << order;
2888 if (unlikely(list_empty(list)))
2889 return NULL;
2890 }
2891
2892 get_list:
2893 page = list_first_entry(list, struct page, pcp_list);
2894 list_del(&page->pcp_list);
2895 pcp->count -= 1 << order;
2896 } while (check_new_pages(page, order));
2897
2898 return page;
2899 }
2900
2901 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2902 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2903 int migratetype,
2904 unsigned int alloc_flags,
2905 struct per_cpu_pages *pcp,
2906 struct list_head *list)
2907 {
2908
2909 if (cma_redirect_restricted() && alloc_flags & ALLOC_CMA) {
2910 struct page *page;
2911 int cma_migratetype;
2912
2913 /* Use CMA pcp list */
2914 cma_migratetype = get_cma_migrate_type();
2915 list = &pcp->lists[order_to_pindex(cma_migratetype, order)];
2916 page = ___rmqueue_pcplist(zone, order, cma_migratetype,
2917 alloc_flags, pcp, list);
2918 if (page)
2919 return page;
2920 }
2921
2922 return ___rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp,
2923 list);
2924 }
2925
2926 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2927 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2928 struct zone *zone, unsigned int order,
2929 int migratetype, unsigned int alloc_flags)
2930 {
2931 struct per_cpu_pages *pcp;
2932 struct list_head *list;
2933 struct page *page;
2934 unsigned long __maybe_unused UP_flags;
2935
2936 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2937 pcp_trylock_prepare(UP_flags);
2938 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2939 if (!pcp) {
2940 pcp_trylock_finish(UP_flags);
2941 return NULL;
2942 }
2943
2944 /*
2945 * On allocation, reduce the number of pages that are batch freed.
2946 * See nr_pcp_free() where free_factor is increased for subsequent
2947 * frees.
2948 */
2949 pcp->free_factor >>= 1;
2950 list = &pcp->lists[order_to_pindex(migratetype, order)];
2951 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2952 pcp_spin_unlock(pcp);
2953 pcp_trylock_finish(UP_flags);
2954 if (page) {
2955 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2956 zone_statistics(preferred_zone, zone, 1);
2957 }
2958 return page;
2959 }
2960
2961 /*
2962 * Allocate a page from the given zone.
2963 * Use pcplists for THP or "cheap" high-order allocations.
2964 */
2965
2966 /*
2967 * Do not instrument rmqueue() with KMSAN. This function may call
2968 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2969 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2970 * may call rmqueue() again, which will result in a deadlock.
2971 */
2972 __no_sanitize_memory
2973 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)2974 struct page *rmqueue(struct zone *preferred_zone,
2975 struct zone *zone, unsigned int order,
2976 gfp_t gfp_flags, unsigned int alloc_flags,
2977 int migratetype)
2978 {
2979 struct page *page;
2980
2981 /*
2982 * We most definitely don't want callers attempting to
2983 * allocate greater than order-1 page units with __GFP_NOFAIL.
2984 */
2985 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2986
2987 if (likely(pcp_allowed_order(order))) {
2988 page = rmqueue_pcplist(preferred_zone, zone, order,
2989 migratetype, alloc_flags);
2990 if (likely(page))
2991 goto out;
2992 }
2993
2994 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2995 migratetype);
2996
2997 out:
2998 /* Separate test+clear to avoid unnecessary atomics */
2999 if ((alloc_flags & ALLOC_KSWAPD) &&
3000 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3001 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3002 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3003 }
3004
3005 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3006 return page;
3007 }
3008
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3009 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3010 {
3011 return __should_fail_alloc_page(gfp_mask, order);
3012 }
3013 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3014
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3015 static inline long __zone_watermark_unusable_free(struct zone *z,
3016 unsigned int order, unsigned int alloc_flags)
3017 {
3018 long unusable_free = (1 << order) - 1;
3019
3020 /*
3021 * If the caller does not have rights to reserves below the min
3022 * watermark then subtract the high-atomic reserves. This will
3023 * over-estimate the size of the atomic reserve but it avoids a search.
3024 */
3025 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3026 unusable_free += z->nr_reserved_highatomic;
3027
3028 #ifdef CONFIG_CMA
3029 /* If allocation can't use CMA areas don't use free CMA pages */
3030 if (!(alloc_flags & ALLOC_CMA))
3031 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3032 #endif
3033
3034 return unusable_free;
3035 }
3036
3037 /*
3038 * Return true if free base pages are above 'mark'. For high-order checks it
3039 * will return true of the order-0 watermark is reached and there is at least
3040 * one free page of a suitable size. Checking now avoids taking the zone lock
3041 * to check in the allocation paths if no pages are free.
3042 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3043 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3044 int highest_zoneidx, unsigned int alloc_flags,
3045 long free_pages)
3046 {
3047 long min = mark;
3048 int o;
3049
3050 if (!zone_is_suitable(z, order))
3051 return false;
3052
3053 /* free_pages may go negative - that's OK */
3054 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3055
3056 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3057 /*
3058 * __GFP_HIGH allows access to 50% of the min reserve as well
3059 * as OOM.
3060 */
3061 if (alloc_flags & ALLOC_MIN_RESERVE) {
3062 min -= min / 2;
3063
3064 /*
3065 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3066 * access more reserves than just __GFP_HIGH. Other
3067 * non-blocking allocations requests such as GFP_NOWAIT
3068 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3069 * access to the min reserve.
3070 */
3071 if (alloc_flags & ALLOC_NON_BLOCK)
3072 min -= min / 4;
3073 }
3074
3075 /*
3076 * OOM victims can try even harder than the normal reserve
3077 * users on the grounds that it's definitely going to be in
3078 * the exit path shortly and free memory. Any allocation it
3079 * makes during the free path will be small and short-lived.
3080 */
3081 if (alloc_flags & ALLOC_OOM)
3082 min -= min / 2;
3083 }
3084
3085 /*
3086 * Check watermarks for an order-0 allocation request. If these
3087 * are not met, then a high-order request also cannot go ahead
3088 * even if a suitable page happened to be free.
3089 */
3090 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3091 return false;
3092
3093 /* If this is an order-0 request then the watermark is fine */
3094 if (!order)
3095 return true;
3096
3097 /* For a high-order request, check at least one suitable page is free */
3098 for (o = order; o < NR_PAGE_ORDERS; o++) {
3099 struct free_area *area = &z->free_area[o];
3100 int mt;
3101
3102 if (!area->nr_free)
3103 continue;
3104
3105 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3106 #ifdef CONFIG_CMA
3107 /*
3108 * Note that this check is needed only
3109 * when MIGRATE_CMA < MIGRATE_PCPTYPES.
3110 */
3111 if (mt == MIGRATE_CMA)
3112 continue;
3113 #endif
3114 if (!free_area_empty(area, mt))
3115 return true;
3116 }
3117
3118 #ifdef CONFIG_CMA
3119 if ((alloc_flags & ALLOC_CMA) &&
3120 !free_area_empty(area, MIGRATE_CMA)) {
3121 return true;
3122 }
3123 #endif
3124 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3125 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3126 return true;
3127 }
3128 }
3129 return false;
3130 }
3131
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3132 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3133 int highest_zoneidx, unsigned int alloc_flags)
3134 {
3135 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3136 zone_page_state(z, NR_FREE_PAGES));
3137 }
3138
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3139 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3140 unsigned long mark, int highest_zoneidx,
3141 unsigned int alloc_flags, gfp_t gfp_mask)
3142 {
3143 long free_pages;
3144
3145 if (!zone_is_suitable(z, order))
3146 return false;
3147
3148 free_pages = zone_page_state(z, NR_FREE_PAGES);
3149
3150 /*
3151 * Fast check for order-0 only. If this fails then the reserves
3152 * need to be calculated.
3153 */
3154 if (!order) {
3155 long usable_free;
3156 long reserved;
3157
3158 usable_free = free_pages;
3159 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3160
3161 /* reserved may over estimate high-atomic reserves. */
3162 usable_free -= min(usable_free, reserved);
3163 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3164 return true;
3165 }
3166
3167 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3168 free_pages))
3169 return true;
3170
3171 /*
3172 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3173 * when checking the min watermark. The min watermark is the
3174 * point where boosting is ignored so that kswapd is woken up
3175 * when below the low watermark.
3176 */
3177 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3178 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3179 mark = z->_watermark[WMARK_MIN];
3180 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3181 alloc_flags, free_pages);
3182 }
3183
3184 return false;
3185 }
3186
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3187 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3188 unsigned long mark, int highest_zoneidx)
3189 {
3190 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3191
3192 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3193 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3194
3195 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3196 free_pages);
3197 }
3198
3199 #ifdef CONFIG_NUMA
3200 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3201
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3202 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3203 {
3204 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3205 node_reclaim_distance;
3206 }
3207 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3208 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3209 {
3210 return true;
3211 }
3212 #endif /* CONFIG_NUMA */
3213
3214 /*
3215 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3216 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3217 * premature use of a lower zone may cause lowmem pressure problems that
3218 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3219 * probably too small. It only makes sense to spread allocations to avoid
3220 * fragmentation between the Normal and DMA32 zones.
3221 */
3222 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3223 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3224 {
3225 unsigned int alloc_flags;
3226
3227 /*
3228 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3229 * to save a branch.
3230 */
3231 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3232
3233 #ifdef CONFIG_ZONE_DMA32
3234 if (!zone)
3235 return alloc_flags;
3236
3237 if (zone_idx(zone) != ZONE_NORMAL)
3238 return alloc_flags;
3239
3240 /*
3241 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3242 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3243 * on UMA that if Normal is populated then so is DMA32.
3244 */
3245 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3246 if (nr_online_nodes > 1 && !populated_zone(--zone))
3247 return alloc_flags;
3248
3249 alloc_flags |= ALLOC_NOFRAGMENT;
3250 #endif /* CONFIG_ZONE_DMA32 */
3251 return alloc_flags;
3252 }
3253
3254 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3255 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3256 unsigned int alloc_flags)
3257 {
3258 #ifdef CONFIG_CMA
3259 /*
3260 * If cma_redirect_restricted is true, set ALLOC_CMA only for
3261 * movable allocations that have __GFP_CMA.
3262 */
3263 if ((!cma_redirect_restricted() || gfp_mask & __GFP_CMA) &&
3264 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3265 alloc_flags |= ALLOC_CMA;
3266 #endif
3267 return alloc_flags;
3268 }
3269
3270 /*
3271 * get_page_from_freelist goes through the zonelist trying to allocate
3272 * a page.
3273 */
3274 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3275 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3276 const struct alloc_context *ac)
3277 {
3278 struct zoneref *z;
3279 struct zone *zone;
3280 struct pglist_data *last_pgdat = NULL;
3281 bool last_pgdat_dirty_ok = false;
3282 bool no_fallback;
3283
3284 retry:
3285 /*
3286 * Scan zonelist, looking for a zone with enough free.
3287 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3288 */
3289 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3290 z = ac->preferred_zoneref;
3291 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3292 ac->nodemask) {
3293 struct page *page;
3294 unsigned long mark;
3295
3296 if (!zone_is_suitable(zone, order))
3297 continue;
3298
3299 if (cpusets_enabled() &&
3300 (alloc_flags & ALLOC_CPUSET) &&
3301 !__cpuset_zone_allowed(zone, gfp_mask))
3302 continue;
3303 /*
3304 * When allocating a page cache page for writing, we
3305 * want to get it from a node that is within its dirty
3306 * limit, such that no single node holds more than its
3307 * proportional share of globally allowed dirty pages.
3308 * The dirty limits take into account the node's
3309 * lowmem reserves and high watermark so that kswapd
3310 * should be able to balance it without having to
3311 * write pages from its LRU list.
3312 *
3313 * XXX: For now, allow allocations to potentially
3314 * exceed the per-node dirty limit in the slowpath
3315 * (spread_dirty_pages unset) before going into reclaim,
3316 * which is important when on a NUMA setup the allowed
3317 * nodes are together not big enough to reach the
3318 * global limit. The proper fix for these situations
3319 * will require awareness of nodes in the
3320 * dirty-throttling and the flusher threads.
3321 */
3322 if (ac->spread_dirty_pages) {
3323 if (last_pgdat != zone->zone_pgdat) {
3324 last_pgdat = zone->zone_pgdat;
3325 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3326 }
3327
3328 if (!last_pgdat_dirty_ok)
3329 continue;
3330 }
3331
3332 if (no_fallback && nr_online_nodes > 1 &&
3333 zone != ac->preferred_zoneref->zone) {
3334 int local_nid;
3335
3336 /*
3337 * If moving to a remote node, retry but allow
3338 * fragmenting fallbacks. Locality is more important
3339 * than fragmentation avoidance.
3340 */
3341 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3342 if (zone_to_nid(zone) != local_nid) {
3343 alloc_flags &= ~ALLOC_NOFRAGMENT;
3344 goto retry;
3345 }
3346 }
3347
3348 cond_accept_memory(zone, order);
3349
3350 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3351 trace_android_vh_get_page_wmark(alloc_flags, &mark);
3352 if (!zone_watermark_fast(zone, order, mark,
3353 ac->highest_zoneidx, alloc_flags,
3354 gfp_mask)) {
3355 int ret;
3356
3357 if (cond_accept_memory(zone, order))
3358 goto try_this_zone;
3359
3360 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3361 /*
3362 * Watermark failed for this zone, but see if we can
3363 * grow this zone if it contains deferred pages.
3364 */
3365 if (deferred_pages_enabled()) {
3366 if (_deferred_grow_zone(zone, order))
3367 goto try_this_zone;
3368 }
3369 #endif
3370 /* Checked here to keep the fast path fast */
3371 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3372 if (alloc_flags & ALLOC_NO_WATERMARKS)
3373 goto try_this_zone;
3374
3375 if (!node_reclaim_enabled() ||
3376 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3377 continue;
3378
3379 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3380 switch (ret) {
3381 case NODE_RECLAIM_NOSCAN:
3382 /* did not scan */
3383 continue;
3384 case NODE_RECLAIM_FULL:
3385 /* scanned but unreclaimable */
3386 continue;
3387 default:
3388 /* did we reclaim enough */
3389 if (zone_watermark_ok(zone, order, mark,
3390 ac->highest_zoneidx, alloc_flags))
3391 goto try_this_zone;
3392
3393 continue;
3394 }
3395 }
3396
3397 try_this_zone:
3398 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3399 gfp_mask, alloc_flags, ac->migratetype);
3400 if (page) {
3401 prep_new_page(page, order, gfp_mask, alloc_flags);
3402
3403 /*
3404 * If this is a high-order atomic allocation then check
3405 * if the pageblock should be reserved for the future
3406 */
3407 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3408 reserve_highatomic_pageblock(page, zone);
3409
3410 return page;
3411 } else {
3412 if (cond_accept_memory(zone, order))
3413 goto try_this_zone;
3414
3415 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3416 /* Try again if zone has deferred pages */
3417 if (deferred_pages_enabled()) {
3418 if (_deferred_grow_zone(zone, order))
3419 goto try_this_zone;
3420 }
3421 #endif
3422 }
3423 }
3424
3425 /*
3426 * It's possible on a UMA machine to get through all zones that are
3427 * fragmented. If avoiding fragmentation, reset and try again.
3428 */
3429 if (no_fallback) {
3430 alloc_flags &= ~ALLOC_NOFRAGMENT;
3431 goto retry;
3432 }
3433
3434 return NULL;
3435 }
3436
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3437 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3438 {
3439 unsigned int filter = SHOW_MEM_FILTER_NODES;
3440 bool bypass = false;
3441
3442 trace_android_vh_warn_alloc_show_mem_bypass(&bypass);
3443 if (bypass)
3444 return;
3445 /*
3446 * This documents exceptions given to allocations in certain
3447 * contexts that are allowed to allocate outside current's set
3448 * of allowed nodes.
3449 */
3450 if (!(gfp_mask & __GFP_NOMEMALLOC))
3451 if (tsk_is_oom_victim(current) ||
3452 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3453 filter &= ~SHOW_MEM_FILTER_NODES;
3454 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3455 filter &= ~SHOW_MEM_FILTER_NODES;
3456
3457 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3458 }
3459
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3460 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3461 {
3462 struct va_format vaf;
3463 va_list args;
3464 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3465
3466 trace_android_vh_warn_alloc_tune_ratelimit(&nopage_rs);
3467 if ((gfp_mask & __GFP_NOWARN) ||
3468 !__ratelimit(&nopage_rs) ||
3469 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3470 return;
3471
3472 va_start(args, fmt);
3473 vaf.fmt = fmt;
3474 vaf.va = &args;
3475 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3476 current->comm, &vaf, gfp_mask, &gfp_mask,
3477 nodemask_pr_args(nodemask));
3478 va_end(args);
3479
3480 cpuset_print_current_mems_allowed();
3481 pr_cont("\n");
3482 dump_stack();
3483 warn_alloc_show_mem(gfp_mask, nodemask);
3484 }
3485
3486 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3487 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3488 unsigned int alloc_flags,
3489 const struct alloc_context *ac)
3490 {
3491 struct page *page;
3492
3493 page = get_page_from_freelist(gfp_mask, order,
3494 alloc_flags|ALLOC_CPUSET, ac);
3495 /*
3496 * fallback to ignore cpuset restriction if our nodes
3497 * are depleted
3498 */
3499 if (!page)
3500 page = get_page_from_freelist(gfp_mask, order,
3501 alloc_flags, ac);
3502
3503 return page;
3504 }
3505
3506 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3507 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3508 const struct alloc_context *ac, unsigned long *did_some_progress)
3509 {
3510 struct oom_control oc = {
3511 .zonelist = ac->zonelist,
3512 .nodemask = ac->nodemask,
3513 .memcg = NULL,
3514 .gfp_mask = gfp_mask,
3515 .order = order,
3516 };
3517 struct page *page;
3518
3519 *did_some_progress = 0;
3520
3521 /*
3522 * Acquire the oom lock. If that fails, somebody else is
3523 * making progress for us.
3524 */
3525 if (!mutex_trylock(&oom_lock)) {
3526 *did_some_progress = 1;
3527 schedule_timeout_uninterruptible(1);
3528 trace_android_vh_mm_may_oom_exit(&oc, *did_some_progress);
3529 return NULL;
3530 }
3531
3532 /*
3533 * Go through the zonelist yet one more time, keep very high watermark
3534 * here, this is only to catch a parallel oom killing, we must fail if
3535 * we're still under heavy pressure. But make sure that this reclaim
3536 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3537 * allocation which will never fail due to oom_lock already held.
3538 */
3539 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3540 ~__GFP_DIRECT_RECLAIM, order,
3541 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3542 if (page)
3543 goto out;
3544
3545 /* Coredumps can quickly deplete all memory reserves */
3546 if (current->flags & PF_DUMPCORE)
3547 goto out;
3548 /* The OOM killer will not help higher order allocs */
3549 if (order > PAGE_ALLOC_COSTLY_ORDER)
3550 goto out;
3551 /*
3552 * We have already exhausted all our reclaim opportunities without any
3553 * success so it is time to admit defeat. We will skip the OOM killer
3554 * because it is very likely that the caller has a more reasonable
3555 * fallback than shooting a random task.
3556 *
3557 * The OOM killer may not free memory on a specific node.
3558 */
3559 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3560 goto out;
3561 /* The OOM killer does not needlessly kill tasks for lowmem */
3562 if (ac->highest_zoneidx < ZONE_NORMAL)
3563 goto out;
3564 if (pm_suspended_storage())
3565 goto out;
3566 /*
3567 * XXX: GFP_NOFS allocations should rather fail than rely on
3568 * other request to make a forward progress.
3569 * We are in an unfortunate situation where out_of_memory cannot
3570 * do much for this context but let's try it to at least get
3571 * access to memory reserved if the current task is killed (see
3572 * out_of_memory). Once filesystems are ready to handle allocation
3573 * failures more gracefully we should just bail out here.
3574 */
3575
3576 /* Exhausted what can be done so it's blame time */
3577 if (out_of_memory(&oc) ||
3578 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3579 *did_some_progress = 1;
3580
3581 /*
3582 * Help non-failing allocations by giving them access to memory
3583 * reserves
3584 */
3585 if (gfp_mask & __GFP_NOFAIL)
3586 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3587 ALLOC_NO_WATERMARKS, ac);
3588 }
3589 out:
3590 mutex_unlock(&oom_lock);
3591 trace_android_vh_mm_may_oom_exit(&oc, *did_some_progress);
3592 return page;
3593 }
3594
3595 /*
3596 * Maximum number of compaction retries with a progress before OOM
3597 * killer is consider as the only way to move forward.
3598 */
3599 #define MAX_COMPACT_RETRIES 16
3600
3601 #ifdef CONFIG_COMPACTION
3602 /* Try memory compaction for high-order allocations before reclaim */
3603 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3604 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3605 unsigned int alloc_flags, const struct alloc_context *ac,
3606 enum compact_priority prio, enum compact_result *compact_result)
3607 {
3608 struct page *page = NULL;
3609 unsigned long pflags;
3610 unsigned int noreclaim_flag;
3611
3612 if (!order)
3613 return NULL;
3614
3615 psi_memstall_enter(&pflags);
3616 delayacct_compact_start();
3617 noreclaim_flag = memalloc_noreclaim_save();
3618
3619 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3620 prio, &page);
3621
3622 memalloc_noreclaim_restore(noreclaim_flag);
3623 psi_memstall_leave(&pflags);
3624 delayacct_compact_end();
3625
3626 if (*compact_result == COMPACT_SKIPPED)
3627 return NULL;
3628 /*
3629 * At least in one zone compaction wasn't deferred or skipped, so let's
3630 * count a compaction stall
3631 */
3632 count_vm_event(COMPACTSTALL);
3633
3634 /* Prep a captured page if available */
3635 if (page)
3636 prep_new_page(page, order, gfp_mask, alloc_flags);
3637
3638 /* Try get a page from the freelist if available */
3639 if (!page)
3640 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3641
3642 if (page) {
3643 struct zone *zone = page_zone(page);
3644
3645 zone->compact_blockskip_flush = false;
3646 compaction_defer_reset(zone, order, true);
3647 count_vm_event(COMPACTSUCCESS);
3648 return page;
3649 }
3650
3651 /*
3652 * It's bad if compaction run occurs and fails. The most likely reason
3653 * is that pages exist, but not enough to satisfy watermarks.
3654 */
3655 count_vm_event(COMPACTFAIL);
3656
3657 cond_resched();
3658
3659 return NULL;
3660 }
3661
3662 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3663 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3664 enum compact_result compact_result,
3665 enum compact_priority *compact_priority,
3666 int *compaction_retries)
3667 {
3668 int max_retries = MAX_COMPACT_RETRIES;
3669 int min_priority;
3670 bool ret = false;
3671 int retries = *compaction_retries;
3672 enum compact_priority priority = *compact_priority;
3673
3674 if (!order)
3675 return false;
3676
3677 if (fatal_signal_pending(current))
3678 return false;
3679
3680 /*
3681 * Compaction was skipped due to a lack of free order-0
3682 * migration targets. Continue if reclaim can help.
3683 */
3684 if (compact_result == COMPACT_SKIPPED) {
3685 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3686 goto out;
3687 }
3688
3689 /*
3690 * Compaction managed to coalesce some page blocks, but the
3691 * allocation failed presumably due to a race. Retry some.
3692 */
3693 if (compact_result == COMPACT_SUCCESS) {
3694 /*
3695 * !costly requests are much more important than
3696 * __GFP_RETRY_MAYFAIL costly ones because they are de
3697 * facto nofail and invoke OOM killer to move on while
3698 * costly can fail and users are ready to cope with
3699 * that. 1/4 retries is rather arbitrary but we would
3700 * need much more detailed feedback from compaction to
3701 * make a better decision.
3702 */
3703 if (order > PAGE_ALLOC_COSTLY_ORDER)
3704 max_retries /= 4;
3705
3706 if (++(*compaction_retries) <= max_retries) {
3707 ret = true;
3708 goto out;
3709 }
3710 }
3711
3712 /*
3713 * Compaction failed. Retry with increasing priority.
3714 */
3715 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3716 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3717
3718 if (*compact_priority > min_priority) {
3719 (*compact_priority)--;
3720 *compaction_retries = 0;
3721 ret = true;
3722 }
3723 out:
3724 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3725 return ret;
3726 }
3727 #else
3728 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3729 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3730 unsigned int alloc_flags, const struct alloc_context *ac,
3731 enum compact_priority prio, enum compact_result *compact_result)
3732 {
3733 *compact_result = COMPACT_SKIPPED;
3734 return NULL;
3735 }
3736
3737 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3738 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3739 enum compact_result compact_result,
3740 enum compact_priority *compact_priority,
3741 int *compaction_retries)
3742 {
3743 struct zone *zone;
3744 struct zoneref *z;
3745
3746 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3747 return false;
3748
3749 /*
3750 * There are setups with compaction disabled which would prefer to loop
3751 * inside the allocator rather than hit the oom killer prematurely.
3752 * Let's give them a good hope and keep retrying while the order-0
3753 * watermarks are OK.
3754 */
3755 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3756 ac->highest_zoneidx, ac->nodemask) {
3757 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3758 ac->highest_zoneidx, alloc_flags))
3759 return true;
3760 }
3761 return false;
3762 }
3763 #endif /* CONFIG_COMPACTION */
3764
3765 #ifdef CONFIG_LOCKDEP
3766 static struct lockdep_map __fs_reclaim_map =
3767 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3768
__need_reclaim(gfp_t gfp_mask)3769 static bool __need_reclaim(gfp_t gfp_mask)
3770 {
3771 /* no reclaim without waiting on it */
3772 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3773 return false;
3774
3775 /* this guy won't enter reclaim */
3776 if (current->flags & PF_MEMALLOC)
3777 return false;
3778
3779 if (gfp_mask & __GFP_NOLOCKDEP)
3780 return false;
3781
3782 return true;
3783 }
3784
__fs_reclaim_acquire(unsigned long ip)3785 void __fs_reclaim_acquire(unsigned long ip)
3786 {
3787 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3788 }
3789
__fs_reclaim_release(unsigned long ip)3790 void __fs_reclaim_release(unsigned long ip)
3791 {
3792 lock_release(&__fs_reclaim_map, ip);
3793 }
3794
fs_reclaim_acquire(gfp_t gfp_mask)3795 void fs_reclaim_acquire(gfp_t gfp_mask)
3796 {
3797 gfp_mask = current_gfp_context(gfp_mask);
3798
3799 if (__need_reclaim(gfp_mask)) {
3800 if (gfp_mask & __GFP_FS)
3801 __fs_reclaim_acquire(_RET_IP_);
3802
3803 #ifdef CONFIG_MMU_NOTIFIER
3804 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3805 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3806 #endif
3807
3808 }
3809 }
3810 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3811
fs_reclaim_release(gfp_t gfp_mask)3812 void fs_reclaim_release(gfp_t gfp_mask)
3813 {
3814 gfp_mask = current_gfp_context(gfp_mask);
3815
3816 if (__need_reclaim(gfp_mask)) {
3817 if (gfp_mask & __GFP_FS)
3818 __fs_reclaim_release(_RET_IP_);
3819 }
3820 }
3821 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3822 #endif
3823
3824 /*
3825 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3826 * have been rebuilt so allocation retries. Reader side does not lock and
3827 * retries the allocation if zonelist changes. Writer side is protected by the
3828 * embedded spin_lock.
3829 */
3830 static DEFINE_SEQLOCK(zonelist_update_seq);
3831
zonelist_iter_begin(void)3832 static unsigned int zonelist_iter_begin(void)
3833 {
3834 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3835 return read_seqbegin(&zonelist_update_seq);
3836
3837 return 0;
3838 }
3839
check_retry_zonelist(unsigned int seq)3840 static unsigned int check_retry_zonelist(unsigned int seq)
3841 {
3842 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3843 return read_seqretry(&zonelist_update_seq, seq);
3844
3845 return seq;
3846 }
3847
3848 /* Perform direct synchronous page reclaim */
3849 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3850 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3851 const struct alloc_context *ac)
3852 {
3853 unsigned int noreclaim_flag;
3854 unsigned long progress;
3855
3856 cond_resched();
3857
3858 /* We now go into synchronous reclaim */
3859 cpuset_memory_pressure_bump();
3860 fs_reclaim_acquire(gfp_mask);
3861 noreclaim_flag = memalloc_noreclaim_save();
3862
3863 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3864 ac->nodemask);
3865
3866 memalloc_noreclaim_restore(noreclaim_flag);
3867 fs_reclaim_release(gfp_mask);
3868
3869 cond_resched();
3870
3871 return progress;
3872 }
3873
3874 /* The really slow allocator path where we enter direct reclaim */
3875 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3876 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3877 unsigned int alloc_flags, const struct alloc_context *ac,
3878 unsigned long *did_some_progress)
3879 {
3880 int retry_times = 0;
3881 struct page *page = NULL;
3882 unsigned long pflags;
3883 bool drained = false;
3884 bool skip_pcp_drain = false;
3885
3886 trace_android_vh_mm_direct_reclaim_enter(order);
3887 psi_memstall_enter(&pflags);
3888 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3889 if (unlikely(!(*did_some_progress)))
3890 goto out;
3891
3892 retry:
3893 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3894
3895 /*
3896 * If an allocation failed after direct reclaim, it could be because
3897 * pages are pinned on the per-cpu lists or in high alloc reserves.
3898 * Shrink them and try again
3899 */
3900 if (!page && !drained) {
3901 unreserve_highatomic_pageblock(ac, false);
3902 trace_android_vh_drain_all_pages_bypass(gfp_mask, order,
3903 alloc_flags, ac->migratetype, *did_some_progress, &skip_pcp_drain);
3904 if (!skip_pcp_drain)
3905 drain_all_pages(NULL);
3906 drained = true;
3907 ++retry_times;
3908 goto retry;
3909 }
3910 out:
3911 psi_memstall_leave(&pflags);
3912 trace_android_vh_mm_direct_reclaim_exit(*did_some_progress, retry_times);
3913 return page;
3914 }
3915
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3916 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3917 const struct alloc_context *ac)
3918 {
3919 struct zoneref *z;
3920 struct zone *zone;
3921 pg_data_t *last_pgdat = NULL;
3922 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3923
3924 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3925 ac->nodemask) {
3926 if (!managed_zone(zone))
3927 continue;
3928 if (last_pgdat != zone->zone_pgdat) {
3929 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3930 last_pgdat = zone->zone_pgdat;
3931 }
3932 }
3933 }
3934
3935 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3936 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3937 {
3938 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3939
3940 /*
3941 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3942 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3943 * to save two branches.
3944 */
3945 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3946 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3947
3948 /*
3949 * The caller may dip into page reserves a bit more if the caller
3950 * cannot run direct reclaim, or if the caller has realtime scheduling
3951 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3952 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3953 */
3954 alloc_flags |= (__force int)
3955 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3956
3957 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3958 /*
3959 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3960 * if it can't schedule.
3961 */
3962 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3963 alloc_flags |= ALLOC_NON_BLOCK;
3964
3965 if (order > 0)
3966 alloc_flags |= ALLOC_HIGHATOMIC;
3967 }
3968
3969 /*
3970 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3971 * GFP_ATOMIC) rather than fail, see the comment for
3972 * cpuset_node_allowed().
3973 */
3974 if (alloc_flags & ALLOC_MIN_RESERVE)
3975 alloc_flags &= ~ALLOC_CPUSET;
3976 } else if (unlikely(rt_task(current)) && in_task())
3977 alloc_flags |= ALLOC_MIN_RESERVE;
3978
3979 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3980
3981 if (!(gfp_mask & __GFP_DIRECT_RECLAIM) && gfp_order_zone(gfp_mask, order) > ZONE_MOVABLE)
3982 alloc_flags |= ALLOC_KSWAPD;
3983
3984 return alloc_flags;
3985 }
3986
oom_reserves_allowed(struct task_struct * tsk)3987 static bool oom_reserves_allowed(struct task_struct *tsk)
3988 {
3989 if (!tsk_is_oom_victim(tsk))
3990 return false;
3991
3992 /*
3993 * !MMU doesn't have oom reaper so give access to memory reserves
3994 * only to the thread with TIF_MEMDIE set
3995 */
3996 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3997 return false;
3998
3999 return true;
4000 }
4001
4002 /*
4003 * Distinguish requests which really need access to full memory
4004 * reserves from oom victims which can live with a portion of it
4005 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4006 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4007 {
4008 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4009 return 0;
4010 if (gfp_mask & __GFP_MEMALLOC)
4011 return ALLOC_NO_WATERMARKS;
4012 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4013 return ALLOC_NO_WATERMARKS;
4014 if (!in_interrupt()) {
4015 if (current->flags & PF_MEMALLOC)
4016 return ALLOC_NO_WATERMARKS;
4017 else if (oom_reserves_allowed(current))
4018 return ALLOC_OOM;
4019 }
4020
4021 return 0;
4022 }
4023
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4024 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4025 {
4026 return !!__gfp_pfmemalloc_flags(gfp_mask);
4027 }
4028
4029 /*
4030 * Checks whether it makes sense to retry the reclaim to make a forward progress
4031 * for the given allocation request.
4032 *
4033 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4034 * without success, or when we couldn't even meet the watermark if we
4035 * reclaimed all remaining pages on the LRU lists.
4036 *
4037 * Returns true if a retry is viable or false to enter the oom path.
4038 */
4039 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4040 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4041 struct alloc_context *ac, int alloc_flags,
4042 bool did_some_progress, int *no_progress_loops)
4043 {
4044 struct zone *zone;
4045 struct zoneref *z;
4046 bool ret = false;
4047
4048 /*
4049 * Costly allocations might have made a progress but this doesn't mean
4050 * their order will become available due to high fragmentation so
4051 * always increment the no progress counter for them
4052 */
4053 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4054 *no_progress_loops = 0;
4055 else
4056 (*no_progress_loops)++;
4057
4058 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4059 goto out;
4060
4061
4062 /*
4063 * Keep reclaiming pages while there is a chance this will lead
4064 * somewhere. If none of the target zones can satisfy our allocation
4065 * request even if all reclaimable pages are considered then we are
4066 * screwed and have to go OOM.
4067 */
4068 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4069 ac->highest_zoneidx, ac->nodemask) {
4070 unsigned long available;
4071 unsigned long reclaimable;
4072 unsigned long min_wmark = min_wmark_pages(zone);
4073 bool wmark;
4074
4075 available = reclaimable = zone_reclaimable_pages(zone);
4076 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4077
4078 /*
4079 * Would the allocation succeed if we reclaimed all
4080 * reclaimable pages?
4081 */
4082 wmark = __zone_watermark_ok(zone, order, min_wmark,
4083 ac->highest_zoneidx, alloc_flags, available);
4084 trace_reclaim_retry_zone(z, order, reclaimable,
4085 available, min_wmark, *no_progress_loops, wmark);
4086 if (wmark) {
4087 ret = true;
4088 break;
4089 }
4090 }
4091
4092 /*
4093 * Memory allocation/reclaim might be called from a WQ context and the
4094 * current implementation of the WQ concurrency control doesn't
4095 * recognize that a particular WQ is congested if the worker thread is
4096 * looping without ever sleeping. Therefore we have to do a short sleep
4097 * here rather than calling cond_resched().
4098 */
4099 if (current->flags & PF_WQ_WORKER)
4100 schedule_timeout_uninterruptible(1);
4101 else
4102 cond_resched();
4103 out:
4104 /* Before OOM, exhaust highatomic_reserve */
4105 if (!ret)
4106 return unreserve_highatomic_pageblock(ac, true);
4107
4108 return ret;
4109 }
4110
4111 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4112 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4113 {
4114 /*
4115 * It's possible that cpuset's mems_allowed and the nodemask from
4116 * mempolicy don't intersect. This should be normally dealt with by
4117 * policy_nodemask(), but it's possible to race with cpuset update in
4118 * such a way the check therein was true, and then it became false
4119 * before we got our cpuset_mems_cookie here.
4120 * This assumes that for all allocations, ac->nodemask can come only
4121 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4122 * when it does not intersect with the cpuset restrictions) or the
4123 * caller can deal with a violated nodemask.
4124 */
4125 if (cpusets_enabled() && ac->nodemask &&
4126 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4127 ac->nodemask = NULL;
4128 return true;
4129 }
4130
4131 /*
4132 * When updating a task's mems_allowed or mempolicy nodemask, it is
4133 * possible to race with parallel threads in such a way that our
4134 * allocation can fail while the mask is being updated. If we are about
4135 * to fail, check if the cpuset changed during allocation and if so,
4136 * retry.
4137 */
4138 if (read_mems_allowed_retry(cpuset_mems_cookie))
4139 return true;
4140
4141 return false;
4142 }
4143
4144 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4145 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4146 struct alloc_context *ac)
4147 {
4148 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4149 bool can_compact = gfp_compaction_allowed(gfp_mask);
4150 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4151 struct page *page = NULL;
4152 unsigned int alloc_flags;
4153 unsigned long did_some_progress = 0;
4154 enum compact_priority compact_priority;
4155 enum compact_result compact_result;
4156 int compaction_retries;
4157 int no_progress_loops;
4158 unsigned int cpuset_mems_cookie;
4159 unsigned int zonelist_iter_cookie;
4160 int reserve_flags;
4161 unsigned long alloc_start = jiffies;
4162 bool should_alloc_retry = false;
4163 unsigned long direct_reclaim_retries = 0;
4164 unsigned long pages_reclaimed = 0;
4165 int retry_loop_count = 0;
4166 u64 stime = 0;
4167
4168 trace_android_vh_alloc_pages_slowpath_start(&stime);
4169 restart:
4170 compaction_retries = 0;
4171 no_progress_loops = 0;
4172 compact_priority = DEF_COMPACT_PRIORITY;
4173 cpuset_mems_cookie = read_mems_allowed_begin();
4174 zonelist_iter_cookie = zonelist_iter_begin();
4175
4176 /*
4177 * The fast path uses conservative alloc_flags to succeed only until
4178 * kswapd needs to be woken up, and to avoid the cost of setting up
4179 * alloc_flags precisely. So we do that now.
4180 */
4181 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4182
4183 /*
4184 * We need to recalculate the starting point for the zonelist iterator
4185 * because we might have used different nodemask in the fast path, or
4186 * there was a cpuset modification and we are retrying - otherwise we
4187 * could end up iterating over non-eligible zones endlessly.
4188 */
4189 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4190 ac->highest_zoneidx, ac->nodemask);
4191 if (!ac->preferred_zoneref->zone)
4192 goto nopage;
4193
4194 /*
4195 * Check for insane configurations where the cpuset doesn't contain
4196 * any suitable zone to satisfy the request - e.g. non-movable
4197 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4198 */
4199 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4200 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4201 ac->highest_zoneidx,
4202 &cpuset_current_mems_allowed);
4203 if (!z->zone)
4204 goto nopage;
4205 }
4206
4207 if (alloc_flags & ALLOC_KSWAPD)
4208 wake_all_kswapds(order, gfp_mask, ac);
4209
4210 if (can_direct_reclaim && !direct_reclaim_retries && !(current->flags & PF_MEMALLOC))
4211 trace_android_vh_alloc_pages_adjust_wmark(gfp_mask, order, &alloc_flags);
4212
4213 /*
4214 * The adjusted alloc_flags might result in immediate success, so try
4215 * that first
4216 */
4217 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4218 if (page)
4219 goto got_pg;
4220
4221 /*
4222 * For costly allocations, try direct compaction first, as it's likely
4223 * that we have enough base pages and don't need to reclaim. For non-
4224 * movable high-order allocations, do that as well, as compaction will
4225 * try prevent permanent fragmentation by migrating from blocks of the
4226 * same migratetype.
4227 * Don't try this for allocations that are allowed to ignore
4228 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4229 */
4230 if (can_direct_reclaim && can_compact &&
4231 (costly_order ||
4232 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4233 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4234 page = __alloc_pages_direct_compact(gfp_mask, order,
4235 alloc_flags, ac,
4236 INIT_COMPACT_PRIORITY,
4237 &compact_result);
4238 if (page)
4239 goto got_pg;
4240
4241 /*
4242 * Checks for costly allocations with __GFP_NORETRY, which
4243 * includes some THP page fault allocations
4244 */
4245 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4246 /*
4247 * If allocating entire pageblock(s) and compaction
4248 * failed because all zones are below low watermarks
4249 * or is prohibited because it recently failed at this
4250 * order, fail immediately unless the allocator has
4251 * requested compaction and reclaim retry.
4252 *
4253 * Reclaim is
4254 * - potentially very expensive because zones are far
4255 * below their low watermarks or this is part of very
4256 * bursty high order allocations,
4257 * - not guaranteed to help because isolate_freepages()
4258 * may not iterate over freed pages as part of its
4259 * linear scan, and
4260 * - unlikely to make entire pageblocks free on its
4261 * own.
4262 */
4263 if (compact_result == COMPACT_SKIPPED ||
4264 compact_result == COMPACT_DEFERRED)
4265 goto nopage;
4266
4267 /*
4268 * Looks like reclaim/compaction is worth trying, but
4269 * sync compaction could be very expensive, so keep
4270 * using async compaction.
4271 */
4272 compact_priority = INIT_COMPACT_PRIORITY;
4273 }
4274 }
4275
4276 retry:
4277 retry_loop_count++;
4278 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4279 if (alloc_flags & ALLOC_KSWAPD)
4280 wake_all_kswapds(order, gfp_mask, ac);
4281
4282 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4283 if (reserve_flags)
4284 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4285 (alloc_flags & ALLOC_KSWAPD);
4286
4287 /*
4288 * Reset the nodemask and zonelist iterators if memory policies can be
4289 * ignored. These allocations are high priority and system rather than
4290 * user oriented.
4291 */
4292 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4293 ac->nodemask = NULL;
4294 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4295 ac->highest_zoneidx, ac->nodemask);
4296 }
4297
4298 /* Attempt with potentially adjusted zonelist and alloc_flags */
4299 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4300 if (page)
4301 goto got_pg;
4302
4303 /* Caller is not willing to reclaim, we can't balance anything */
4304 if (!can_direct_reclaim)
4305 goto nopage;
4306
4307 /* Avoid recursion of direct reclaim */
4308 if (current->flags & PF_MEMALLOC)
4309 goto nopage;
4310
4311 trace_android_vh_should_alloc_pages_retry(gfp_mask, order, &alloc_flags,
4312 ac->migratetype, ac->preferred_zoneref->zone, &page, &should_alloc_retry);
4313 if (should_alloc_retry)
4314 goto retry;
4315
4316 trace_android_vh_alloc_pages_reclaim_bypass(gfp_mask, order,
4317 alloc_flags, ac->migratetype, &page);
4318
4319 if (page)
4320 goto got_pg;
4321
4322 if (direct_reclaim_retries < ULONG_MAX)
4323 direct_reclaim_retries++;
4324
4325 /* Try direct reclaim and then allocating */
4326 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4327 &did_some_progress);
4328 pages_reclaimed += did_some_progress;
4329 if (page)
4330 goto got_pg;
4331
4332 /* Try direct compaction and then allocating */
4333 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4334 compact_priority, &compact_result);
4335 if (page)
4336 goto got_pg;
4337
4338 /* Do not loop if specifically requested */
4339 if (gfp_mask & __GFP_NORETRY)
4340 goto nopage;
4341
4342 /*
4343 * Do not retry costly high order allocations unless they are
4344 * __GFP_RETRY_MAYFAIL and we can compact
4345 */
4346 if (costly_order && (!can_compact ||
4347 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4348 goto nopage;
4349
4350 trace_android_vh_alloc_pages_reset_wmark(gfp_mask, order,
4351 &alloc_flags, &did_some_progress, &no_progress_loops, direct_reclaim_retries);
4352
4353 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4354 did_some_progress > 0, &no_progress_loops))
4355 goto retry;
4356
4357 /*
4358 * It doesn't make any sense to retry for the compaction if the order-0
4359 * reclaim is not able to make any progress because the current
4360 * implementation of the compaction depends on the sufficient amount
4361 * of free memory (see __compaction_suitable)
4362 */
4363 if (did_some_progress > 0 && can_compact &&
4364 should_compact_retry(ac, order, alloc_flags,
4365 compact_result, &compact_priority,
4366 &compaction_retries))
4367 goto retry;
4368
4369
4370 /*
4371 * Deal with possible cpuset update races or zonelist updates to avoid
4372 * a unnecessary OOM kill.
4373 */
4374 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4375 check_retry_zonelist(zonelist_iter_cookie))
4376 goto restart;
4377
4378 /* Reclaim has failed us, start killing things */
4379 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4380 if (page)
4381 goto got_pg;
4382
4383 /* Avoid allocations with no watermarks from looping endlessly */
4384 if (tsk_is_oom_victim(current) &&
4385 (alloc_flags & ALLOC_OOM ||
4386 (gfp_mask & __GFP_NOMEMALLOC)))
4387 goto nopage;
4388
4389 /* Retry as long as the OOM killer is making progress */
4390 if (did_some_progress) {
4391 no_progress_loops = 0;
4392 goto retry;
4393 }
4394
4395 nopage:
4396 /*
4397 * Deal with possible cpuset update races or zonelist updates to avoid
4398 * a unnecessary OOM kill.
4399 */
4400 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4401 check_retry_zonelist(zonelist_iter_cookie))
4402 goto restart;
4403
4404 /*
4405 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4406 * we always retry
4407 */
4408 if (gfp_mask & __GFP_NOFAIL) {
4409 /*
4410 * All existing users of the __GFP_NOFAIL are blockable, so warn
4411 * of any new users that actually require GFP_NOWAIT
4412 */
4413 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4414 goto fail;
4415
4416 /*
4417 * PF_MEMALLOC request from this context is rather bizarre
4418 * because we cannot reclaim anything and only can loop waiting
4419 * for somebody to do a work for us
4420 */
4421 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4422
4423 /*
4424 * non failing costly orders are a hard requirement which we
4425 * are not prepared for much so let's warn about these users
4426 * so that we can identify them and convert them to something
4427 * else.
4428 */
4429 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4430
4431 /*
4432 * Help non-failing allocations by giving some access to memory
4433 * reserves normally used for high priority non-blocking
4434 * allocations but do not use ALLOC_NO_WATERMARKS because this
4435 * could deplete whole memory reserves which would just make
4436 * the situation worse.
4437 */
4438 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4439 if (page)
4440 goto got_pg;
4441
4442 cond_resched();
4443 goto retry;
4444 }
4445 fail:
4446 trace_android_vh_alloc_pages_failure_bypass(gfp_mask, order,
4447 alloc_flags, ac->migratetype, &page);
4448 if (page)
4449 goto got_pg;
4450
4451 warn_alloc(gfp_mask, ac->nodemask,
4452 "page allocation failure: order:%u", order);
4453 got_pg:
4454 trace_android_vh_alloc_pages_slowpath(gfp_mask, order, alloc_start);
4455 trace_android_vh_alloc_pages_slowpath_end(&gfp_mask, order, alloc_start,
4456 stime, did_some_progress, pages_reclaimed, retry_loop_count);
4457 return page;
4458 }
4459
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4460 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4461 int preferred_nid, nodemask_t *nodemask,
4462 struct alloc_context *ac, gfp_t *alloc_gfp,
4463 unsigned int *alloc_flags)
4464 {
4465 ac->highest_zoneidx = gfp_zone(gfp_mask);
4466 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4467 ac->nodemask = nodemask;
4468 ac->migratetype = gfp_migratetype(gfp_mask);
4469
4470 if (cpusets_enabled()) {
4471 *alloc_gfp |= __GFP_HARDWALL;
4472 /*
4473 * When we are in the interrupt context, it is irrelevant
4474 * to the current task context. It means that any node ok.
4475 */
4476 if (in_task() && !ac->nodemask)
4477 ac->nodemask = &cpuset_current_mems_allowed;
4478 else
4479 *alloc_flags |= ALLOC_CPUSET;
4480 }
4481
4482 might_alloc(gfp_mask);
4483
4484 if (should_fail_alloc_page(gfp_mask, order))
4485 return false;
4486
4487 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4488
4489 /* Dirty zone balancing only done in the fast path */
4490 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4491
4492 /*
4493 * The preferred zone is used for statistics but crucially it is
4494 * also used as the starting point for the zonelist iterator. It
4495 * may get reset for allocations that ignore memory policies.
4496 */
4497 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4498 ac->highest_zoneidx, ac->nodemask);
4499
4500 return true;
4501 }
4502
4503 /*
4504 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4505 * @gfp: GFP flags for the allocation
4506 * @preferred_nid: The preferred NUMA node ID to allocate from
4507 * @nodemask: Set of nodes to allocate from, may be NULL
4508 * @nr_pages: The number of pages desired on the list or array
4509 * @page_list: Optional list to store the allocated pages
4510 * @page_array: Optional array to store the pages
4511 *
4512 * This is a batched version of the page allocator that attempts to
4513 * allocate nr_pages quickly. Pages are added to page_list if page_list
4514 * is not NULL, otherwise it is assumed that the page_array is valid.
4515 *
4516 * For lists, nr_pages is the number of pages that should be allocated.
4517 *
4518 * For arrays, only NULL elements are populated with pages and nr_pages
4519 * is the maximum number of pages that will be stored in the array.
4520 *
4521 * Returns the number of pages on the list or array.
4522 */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)4523 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4524 nodemask_t *nodemask, int nr_pages,
4525 struct list_head *page_list,
4526 struct page **page_array)
4527 {
4528 struct page *page;
4529 unsigned long __maybe_unused UP_flags;
4530 struct zone *zone;
4531 struct zoneref *z;
4532 struct per_cpu_pages *pcp;
4533 struct list_head *pcp_list;
4534 struct alloc_context ac;
4535 gfp_t alloc_gfp;
4536 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4537 int nr_populated = 0, nr_account = 0;
4538
4539 /*
4540 * Skip populated array elements to determine if any pages need
4541 * to be allocated before disabling IRQs.
4542 */
4543 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4544 nr_populated++;
4545
4546 /* No pages requested? */
4547 if (unlikely(nr_pages <= 0))
4548 goto out;
4549
4550 /* Already populated array? */
4551 if (unlikely(page_array && nr_pages - nr_populated == 0))
4552 goto out;
4553
4554 /* Bulk allocator does not support memcg accounting. */
4555 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4556 goto failed;
4557
4558 /* Use the single page allocator for one page. */
4559 if (nr_pages - nr_populated == 1)
4560 goto failed;
4561
4562 #ifdef CONFIG_PAGE_OWNER
4563 /*
4564 * PAGE_OWNER may recurse into the allocator to allocate space to
4565 * save the stack with pagesets.lock held. Releasing/reacquiring
4566 * removes much of the performance benefit of bulk allocation so
4567 * force the caller to allocate one page at a time as it'll have
4568 * similar performance to added complexity to the bulk allocator.
4569 */
4570 if (static_branch_unlikely(&page_owner_inited))
4571 goto failed;
4572 #endif
4573
4574 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4575 gfp &= gfp_allowed_mask;
4576 alloc_gfp = gfp;
4577 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4578 goto out;
4579 gfp = alloc_gfp;
4580
4581 /* Find an allowed local zone that meets the low watermark. */
4582 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4583 unsigned long mark;
4584
4585 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4586 !__cpuset_zone_allowed(zone, gfp)) {
4587 continue;
4588 }
4589
4590 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4591 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4592 goto failed;
4593 }
4594
4595 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4596 if (zone_watermark_fast(zone, 0, mark,
4597 zonelist_zone_idx(ac.preferred_zoneref),
4598 alloc_flags, gfp)) {
4599 break;
4600 }
4601 }
4602
4603 /*
4604 * If there are no allowed local zones that meets the watermarks then
4605 * try to allocate a single page and reclaim if necessary.
4606 */
4607 if (unlikely(!zone))
4608 goto failed;
4609
4610 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4611 pcp_trylock_prepare(UP_flags);
4612 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4613 if (!pcp)
4614 goto failed_irq;
4615
4616 /* Attempt the batch allocation */
4617 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4618 while (nr_populated < nr_pages) {
4619
4620 /* Skip existing pages */
4621 if (page_array && page_array[nr_populated]) {
4622 nr_populated++;
4623 continue;
4624 }
4625
4626 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4627 pcp, pcp_list);
4628 if (unlikely(!page)) {
4629 /* Try and allocate at least one page */
4630 if (!nr_account) {
4631 pcp_spin_unlock(pcp);
4632 goto failed_irq;
4633 }
4634 break;
4635 }
4636 nr_account++;
4637
4638 prep_new_page(page, 0, gfp, 0);
4639 if (page_list)
4640 list_add(&page->lru, page_list);
4641 else
4642 page_array[nr_populated] = page;
4643 nr_populated++;
4644 }
4645
4646 pcp_spin_unlock(pcp);
4647 pcp_trylock_finish(UP_flags);
4648
4649 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4650 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4651
4652 out:
4653 return nr_populated;
4654
4655 failed_irq:
4656 pcp_trylock_finish(UP_flags);
4657
4658 failed:
4659 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4660 if (page) {
4661 if (page_list)
4662 list_add(&page->lru, page_list);
4663 else
4664 page_array[nr_populated] = page;
4665 nr_populated++;
4666 }
4667
4668 goto out;
4669 }
4670 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4671
4672 /*
4673 * This is the 'heart' of the zoned buddy allocator.
4674 */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4675 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4676 nodemask_t *nodemask)
4677 {
4678 struct page *page = NULL;
4679 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4680 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4681 struct alloc_context ac = { };
4682
4683 /*
4684 * There are several places where we assume that the order value is sane
4685 * so bail out early if the request is out of bound.
4686 */
4687 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4688 return NULL;
4689
4690 gfp &= gfp_allowed_mask;
4691 /*
4692 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4693 * resp. GFP_NOIO which has to be inherited for all allocation requests
4694 * from a particular context which has been marked by
4695 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4696 * movable zones are not used during allocation.
4697 */
4698 gfp = current_gfp_context(gfp);
4699 alloc_gfp = gfp;
4700 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4701 &alloc_gfp, &alloc_flags))
4702 return NULL;
4703
4704 trace_android_rvh_try_alloc_pages_gfp(&page, order, gfp, gfp_zone(gfp));
4705 if (page)
4706 goto out;
4707 /*
4708 * Forbid the first pass from falling back to types that fragment
4709 * memory until all local zones are considered.
4710 */
4711 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4712
4713 /* First allocation attempt */
4714 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4715 if (likely(page))
4716 goto out;
4717
4718 alloc_gfp = gfp;
4719 ac.spread_dirty_pages = false;
4720
4721 /*
4722 * Restore the original nodemask if it was potentially replaced with
4723 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4724 */
4725 ac.nodemask = nodemask;
4726 trace_android_vh_customize_alloc_gfp(&alloc_gfp, order);
4727
4728 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4729
4730 out:
4731 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4732 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4733 __free_pages(page, order);
4734 page = NULL;
4735 }
4736
4737 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4738 kmsan_alloc_page(page, order, alloc_gfp);
4739
4740 return page;
4741 }
4742 EXPORT_SYMBOL(__alloc_pages);
4743
__folio_alloc(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4744 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4745 nodemask_t *nodemask)
4746 {
4747 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4748 preferred_nid, nodemask);
4749 struct folio *folio = (struct folio *)page;
4750
4751 if (folio && order > 1)
4752 folio_prep_large_rmappable(folio);
4753 return folio;
4754 }
4755 EXPORT_SYMBOL(__folio_alloc);
4756
4757 /*
4758 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4759 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4760 * you need to access high mem.
4761 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4762 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4763 {
4764 struct page *page;
4765
4766 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4767 if (!page)
4768 return 0;
4769 return (unsigned long) page_address(page);
4770 }
4771 EXPORT_SYMBOL(__get_free_pages);
4772
get_zeroed_page(gfp_t gfp_mask)4773 unsigned long get_zeroed_page(gfp_t gfp_mask)
4774 {
4775 return __get_free_page(gfp_mask | __GFP_ZERO);
4776 }
4777 EXPORT_SYMBOL(get_zeroed_page);
4778
4779 /**
4780 * __free_pages - Free pages allocated with alloc_pages().
4781 * @page: The page pointer returned from alloc_pages().
4782 * @order: The order of the allocation.
4783 *
4784 * This function can free multi-page allocations that are not compound
4785 * pages. It does not check that the @order passed in matches that of
4786 * the allocation, so it is easy to leak memory. Freeing more memory
4787 * than was allocated will probably emit a warning.
4788 *
4789 * If the last reference to this page is speculative, it will be released
4790 * by put_page() which only frees the first page of a non-compound
4791 * allocation. To prevent the remaining pages from being leaked, we free
4792 * the subsequent pages here. If you want to use the page's reference
4793 * count to decide when to free the allocation, you should allocate a
4794 * compound page, and use put_page() instead of __free_pages().
4795 *
4796 * Context: May be called in interrupt context or while holding a normal
4797 * spinlock, but not in NMI context or while holding a raw spinlock.
4798 */
__free_pages(struct page * page,unsigned int order)4799 void __free_pages(struct page *page, unsigned int order)
4800 {
4801 /* get PageHead before we drop reference */
4802 int head = PageHead(page);
4803
4804 if (put_page_testzero(page))
4805 free_the_page(page, order);
4806 else if (!head)
4807 while (order-- > 0)
4808 free_the_page(page + (1 << order), order);
4809 }
4810 EXPORT_SYMBOL(__free_pages);
4811
free_pages(unsigned long addr,unsigned int order)4812 void free_pages(unsigned long addr, unsigned int order)
4813 {
4814 if (addr != 0) {
4815 VM_BUG_ON(!virt_addr_valid((void *)addr));
4816 __free_pages(virt_to_page((void *)addr), order);
4817 }
4818 }
4819
4820 EXPORT_SYMBOL(free_pages);
4821
4822 /*
4823 * Page Fragment:
4824 * An arbitrary-length arbitrary-offset area of memory which resides
4825 * within a 0 or higher order page. Multiple fragments within that page
4826 * are individually refcounted, in the page's reference counter.
4827 *
4828 * The page_frag functions below provide a simple allocation framework for
4829 * page fragments. This is used by the network stack and network device
4830 * drivers to provide a backing region of memory for use as either an
4831 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4832 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4833 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4834 gfp_t gfp_mask)
4835 {
4836 struct page *page = NULL;
4837 gfp_t gfp = gfp_mask;
4838
4839 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4840 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4841 __GFP_NOMEMALLOC;
4842 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4843 PAGE_FRAG_CACHE_MAX_ORDER);
4844 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4845 #endif
4846 if (unlikely(!page))
4847 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4848
4849 nc->va = page ? page_address(page) : NULL;
4850
4851 return page;
4852 }
4853
__page_frag_cache_drain(struct page * page,unsigned int count)4854 void __page_frag_cache_drain(struct page *page, unsigned int count)
4855 {
4856 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4857
4858 if (page_ref_sub_and_test(page, count))
4859 free_the_page(page, compound_order(page));
4860 }
4861 EXPORT_SYMBOL(__page_frag_cache_drain);
4862
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)4863 void *page_frag_alloc_align(struct page_frag_cache *nc,
4864 unsigned int fragsz, gfp_t gfp_mask,
4865 unsigned int align_mask)
4866 {
4867 unsigned int size = PAGE_SIZE;
4868 struct page *page;
4869 int offset;
4870
4871 if (unlikely(!nc->va)) {
4872 refill:
4873 page = __page_frag_cache_refill(nc, gfp_mask);
4874 if (!page)
4875 return NULL;
4876
4877 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4878 /* if size can vary use size else just use PAGE_SIZE */
4879 size = nc->size;
4880 #endif
4881 /* Even if we own the page, we do not use atomic_set().
4882 * This would break get_page_unless_zero() users.
4883 */
4884 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4885
4886 /* reset page count bias and offset to start of new frag */
4887 nc->pfmemalloc = page_is_pfmemalloc(page);
4888 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4889 nc->offset = size;
4890 }
4891
4892 offset = nc->offset - fragsz;
4893 if (unlikely(offset < 0)) {
4894 page = virt_to_page(nc->va);
4895
4896 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4897 goto refill;
4898
4899 if (unlikely(nc->pfmemalloc)) {
4900 free_the_page(page, compound_order(page));
4901 goto refill;
4902 }
4903
4904 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4905 /* if size can vary use size else just use PAGE_SIZE */
4906 size = nc->size;
4907 #endif
4908 /* OK, page count is 0, we can safely set it */
4909 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4910
4911 /* reset page count bias and offset to start of new frag */
4912 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4913 offset = size - fragsz;
4914 if (unlikely(offset < 0)) {
4915 /*
4916 * The caller is trying to allocate a fragment
4917 * with fragsz > PAGE_SIZE but the cache isn't big
4918 * enough to satisfy the request, this may
4919 * happen in low memory conditions.
4920 * We don't release the cache page because
4921 * it could make memory pressure worse
4922 * so we simply return NULL here.
4923 */
4924 return NULL;
4925 }
4926 }
4927
4928 nc->pagecnt_bias--;
4929 offset &= align_mask;
4930 nc->offset = offset;
4931
4932 return nc->va + offset;
4933 }
4934 EXPORT_SYMBOL(page_frag_alloc_align);
4935
4936 /*
4937 * Frees a page fragment allocated out of either a compound or order 0 page.
4938 */
page_frag_free(void * addr)4939 void page_frag_free(void *addr)
4940 {
4941 struct page *page = virt_to_head_page(addr);
4942
4943 if (unlikely(put_page_testzero(page)))
4944 free_the_page(page, compound_order(page));
4945 }
4946 EXPORT_SYMBOL(page_frag_free);
4947
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4948 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4949 size_t size)
4950 {
4951 if (addr) {
4952 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4953 struct page *page = virt_to_page((void *)addr);
4954 struct page *last = page + nr;
4955
4956 split_page_owner(page, 1 << order);
4957 split_page_memcg(page, 1 << order);
4958 while (page < --last)
4959 set_page_refcounted(last);
4960
4961 last = page + (1UL << order);
4962 for (page += nr; page < last; page++)
4963 __free_pages_ok(page, 0, FPI_TO_TAIL);
4964 }
4965 return (void *)addr;
4966 }
4967
4968 /**
4969 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4970 * @size: the number of bytes to allocate
4971 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4972 *
4973 * This function is similar to alloc_pages(), except that it allocates the
4974 * minimum number of pages to satisfy the request. alloc_pages() can only
4975 * allocate memory in power-of-two pages.
4976 *
4977 * This function is also limited by MAX_ORDER.
4978 *
4979 * Memory allocated by this function must be released by free_pages_exact().
4980 *
4981 * Return: pointer to the allocated area or %NULL in case of error.
4982 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4983 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4984 {
4985 unsigned int order = get_order(size);
4986 unsigned long addr;
4987
4988 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4989 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4990
4991 addr = __get_free_pages(gfp_mask, order);
4992 return make_alloc_exact(addr, order, size);
4993 }
4994 EXPORT_SYMBOL(alloc_pages_exact);
4995
4996 /**
4997 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4998 * pages on a node.
4999 * @nid: the preferred node ID where memory should be allocated
5000 * @size: the number of bytes to allocate
5001 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5002 *
5003 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5004 * back.
5005 *
5006 * Return: pointer to the allocated area or %NULL in case of error.
5007 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)5008 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5009 {
5010 unsigned int order = get_order(size);
5011 struct page *p;
5012
5013 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5014 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5015
5016 p = alloc_pages_node(nid, gfp_mask, order);
5017 if (!p)
5018 return NULL;
5019 return make_alloc_exact((unsigned long)page_address(p), order, size);
5020 }
5021
5022 /**
5023 * free_pages_exact - release memory allocated via alloc_pages_exact()
5024 * @virt: the value returned by alloc_pages_exact.
5025 * @size: size of allocation, same value as passed to alloc_pages_exact().
5026 *
5027 * Release the memory allocated by a previous call to alloc_pages_exact.
5028 */
free_pages_exact(void * virt,size_t size)5029 void free_pages_exact(void *virt, size_t size)
5030 {
5031 unsigned long addr = (unsigned long)virt;
5032 unsigned long end = addr + PAGE_ALIGN(size);
5033
5034 while (addr < end) {
5035 free_page(addr);
5036 addr += PAGE_SIZE;
5037 }
5038 }
5039 EXPORT_SYMBOL(free_pages_exact);
5040
5041 /**
5042 * nr_free_zone_pages - count number of pages beyond high watermark
5043 * @offset: The zone index of the highest zone
5044 *
5045 * nr_free_zone_pages() counts the number of pages which are beyond the
5046 * high watermark within all zones at or below a given zone index. For each
5047 * zone, the number of pages is calculated as:
5048 *
5049 * nr_free_zone_pages = managed_pages - high_pages
5050 *
5051 * Return: number of pages beyond high watermark.
5052 */
nr_free_zone_pages(int offset)5053 static unsigned long nr_free_zone_pages(int offset)
5054 {
5055 struct zoneref *z;
5056 struct zone *zone;
5057
5058 /* Just pick one node, since fallback list is circular */
5059 unsigned long sum = 0;
5060
5061 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5062
5063 for_each_zone_zonelist(zone, z, zonelist, offset) {
5064 unsigned long size = zone_managed_pages(zone);
5065 unsigned long high = high_wmark_pages(zone);
5066 if (size > high)
5067 sum += size - high;
5068 }
5069
5070 return sum;
5071 }
5072
5073 /**
5074 * nr_free_buffer_pages - count number of pages beyond high watermark
5075 *
5076 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5077 * watermark within ZONE_DMA and ZONE_NORMAL.
5078 *
5079 * Return: number of pages beyond high watermark within ZONE_DMA and
5080 * ZONE_NORMAL.
5081 */
nr_free_buffer_pages(void)5082 unsigned long nr_free_buffer_pages(void)
5083 {
5084 return nr_free_zone_pages(gfp_zone(GFP_USER));
5085 }
5086 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5087
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5088 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5089 {
5090 zoneref->zone = zone;
5091 zoneref->zone_idx = zone_idx(zone);
5092 }
5093
5094 /*
5095 * Builds allocation fallback zone lists.
5096 *
5097 * Add all populated zones of a node to the zonelist.
5098 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5099 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5100 {
5101 struct zone *zone;
5102 enum zone_type zone_type = MAX_NR_ZONES;
5103 int nr_zones = 0;
5104
5105 do {
5106 zone_type--;
5107 zone = pgdat->node_zones + zone_type;
5108 if (populated_zone(zone)) {
5109 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5110 check_highest_zone(zone_type);
5111 }
5112 } while (zone_type);
5113
5114 return nr_zones;
5115 }
5116
5117 #ifdef CONFIG_NUMA
5118
__parse_numa_zonelist_order(char * s)5119 static int __parse_numa_zonelist_order(char *s)
5120 {
5121 /*
5122 * We used to support different zonelists modes but they turned
5123 * out to be just not useful. Let's keep the warning in place
5124 * if somebody still use the cmd line parameter so that we do
5125 * not fail it silently
5126 */
5127 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5128 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5129 return -EINVAL;
5130 }
5131 return 0;
5132 }
5133
5134 static char numa_zonelist_order[] = "Node";
5135 #define NUMA_ZONELIST_ORDER_LEN 16
5136 /*
5137 * sysctl handler for numa_zonelist_order
5138 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5139 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
5140 void *buffer, size_t *length, loff_t *ppos)
5141 {
5142 if (write)
5143 return __parse_numa_zonelist_order(buffer);
5144 return proc_dostring(table, write, buffer, length, ppos);
5145 }
5146
5147 static int node_load[MAX_NUMNODES];
5148
5149 /**
5150 * find_next_best_node - find the next node that should appear in a given node's fallback list
5151 * @node: node whose fallback list we're appending
5152 * @used_node_mask: nodemask_t of already used nodes
5153 *
5154 * We use a number of factors to determine which is the next node that should
5155 * appear on a given node's fallback list. The node should not have appeared
5156 * already in @node's fallback list, and it should be the next closest node
5157 * according to the distance array (which contains arbitrary distance values
5158 * from each node to each node in the system), and should also prefer nodes
5159 * with no CPUs, since presumably they'll have very little allocation pressure
5160 * on them otherwise.
5161 *
5162 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5163 */
find_next_best_node(int node,nodemask_t * used_node_mask)5164 int find_next_best_node(int node, nodemask_t *used_node_mask)
5165 {
5166 int n, val;
5167 int min_val = INT_MAX;
5168 int best_node = NUMA_NO_NODE;
5169
5170 /* Use the local node if we haven't already */
5171 if (!node_isset(node, *used_node_mask)) {
5172 node_set(node, *used_node_mask);
5173 return node;
5174 }
5175
5176 for_each_node_state(n, N_MEMORY) {
5177
5178 /* Don't want a node to appear more than once */
5179 if (node_isset(n, *used_node_mask))
5180 continue;
5181
5182 /* Use the distance array to find the distance */
5183 val = node_distance(node, n);
5184
5185 /* Penalize nodes under us ("prefer the next node") */
5186 val += (n < node);
5187
5188 /* Give preference to headless and unused nodes */
5189 if (!cpumask_empty(cpumask_of_node(n)))
5190 val += PENALTY_FOR_NODE_WITH_CPUS;
5191
5192 /* Slight preference for less loaded node */
5193 val *= MAX_NUMNODES;
5194 val += node_load[n];
5195
5196 if (val < min_val) {
5197 min_val = val;
5198 best_node = n;
5199 }
5200 }
5201
5202 if (best_node >= 0)
5203 node_set(best_node, *used_node_mask);
5204
5205 return best_node;
5206 }
5207
5208
5209 /*
5210 * Build zonelists ordered by node and zones within node.
5211 * This results in maximum locality--normal zone overflows into local
5212 * DMA zone, if any--but risks exhausting DMA zone.
5213 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5214 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5215 unsigned nr_nodes)
5216 {
5217 struct zoneref *zonerefs;
5218 int i;
5219
5220 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5221
5222 for (i = 0; i < nr_nodes; i++) {
5223 int nr_zones;
5224
5225 pg_data_t *node = NODE_DATA(node_order[i]);
5226
5227 nr_zones = build_zonerefs_node(node, zonerefs);
5228 zonerefs += nr_zones;
5229 }
5230 zonerefs->zone = NULL;
5231 zonerefs->zone_idx = 0;
5232 }
5233
5234 /*
5235 * Build gfp_thisnode zonelists
5236 */
build_thisnode_zonelists(pg_data_t * pgdat)5237 static void build_thisnode_zonelists(pg_data_t *pgdat)
5238 {
5239 struct zoneref *zonerefs;
5240 int nr_zones;
5241
5242 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5243 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5244 zonerefs += nr_zones;
5245 zonerefs->zone = NULL;
5246 zonerefs->zone_idx = 0;
5247 }
5248
5249 /*
5250 * Build zonelists ordered by zone and nodes within zones.
5251 * This results in conserving DMA zone[s] until all Normal memory is
5252 * exhausted, but results in overflowing to remote node while memory
5253 * may still exist in local DMA zone.
5254 */
5255
build_zonelists(pg_data_t * pgdat)5256 static void build_zonelists(pg_data_t *pgdat)
5257 {
5258 static int node_order[MAX_NUMNODES];
5259 int node, nr_nodes = 0;
5260 nodemask_t used_mask = NODE_MASK_NONE;
5261 int local_node, prev_node;
5262
5263 /* NUMA-aware ordering of nodes */
5264 local_node = pgdat->node_id;
5265 prev_node = local_node;
5266
5267 memset(node_order, 0, sizeof(node_order));
5268 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5269 /*
5270 * We don't want to pressure a particular node.
5271 * So adding penalty to the first node in same
5272 * distance group to make it round-robin.
5273 */
5274 if (node_distance(local_node, node) !=
5275 node_distance(local_node, prev_node))
5276 node_load[node] += 1;
5277
5278 node_order[nr_nodes++] = node;
5279 prev_node = node;
5280 }
5281
5282 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5283 build_thisnode_zonelists(pgdat);
5284 pr_info("Fallback order for Node %d: ", local_node);
5285 for (node = 0; node < nr_nodes; node++)
5286 pr_cont("%d ", node_order[node]);
5287 pr_cont("\n");
5288 }
5289
5290 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5291 /*
5292 * Return node id of node used for "local" allocations.
5293 * I.e., first node id of first zone in arg node's generic zonelist.
5294 * Used for initializing percpu 'numa_mem', which is used primarily
5295 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5296 */
local_memory_node(int node)5297 int local_memory_node(int node)
5298 {
5299 struct zoneref *z;
5300
5301 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5302 gfp_zone(GFP_KERNEL),
5303 NULL);
5304 return zone_to_nid(z->zone);
5305 }
5306 #endif
5307
5308 static void setup_min_unmapped_ratio(void);
5309 static void setup_min_slab_ratio(void);
5310 #else /* CONFIG_NUMA */
5311
build_zonelists(pg_data_t * pgdat)5312 static void build_zonelists(pg_data_t *pgdat)
5313 {
5314 int node, local_node;
5315 struct zoneref *zonerefs;
5316 int nr_zones;
5317
5318 local_node = pgdat->node_id;
5319
5320 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5321 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5322 zonerefs += nr_zones;
5323
5324 /*
5325 * Now we build the zonelist so that it contains the zones
5326 * of all the other nodes.
5327 * We don't want to pressure a particular node, so when
5328 * building the zones for node N, we make sure that the
5329 * zones coming right after the local ones are those from
5330 * node N+1 (modulo N)
5331 */
5332 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5333 if (!node_online(node))
5334 continue;
5335 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5336 zonerefs += nr_zones;
5337 }
5338 for (node = 0; node < local_node; node++) {
5339 if (!node_online(node))
5340 continue;
5341 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5342 zonerefs += nr_zones;
5343 }
5344
5345 zonerefs->zone = NULL;
5346 zonerefs->zone_idx = 0;
5347 }
5348
5349 #endif /* CONFIG_NUMA */
5350
5351 /*
5352 * Boot pageset table. One per cpu which is going to be used for all
5353 * zones and all nodes. The parameters will be set in such a way
5354 * that an item put on a list will immediately be handed over to
5355 * the buddy list. This is safe since pageset manipulation is done
5356 * with interrupts disabled.
5357 *
5358 * The boot_pagesets must be kept even after bootup is complete for
5359 * unused processors and/or zones. They do play a role for bootstrapping
5360 * hotplugged processors.
5361 *
5362 * zoneinfo_show() and maybe other functions do
5363 * not check if the processor is online before following the pageset pointer.
5364 * Other parts of the kernel may not check if the zone is available.
5365 */
5366 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5367 /* These effectively disable the pcplists in the boot pageset completely */
5368 #define BOOT_PAGESET_HIGH 0
5369 #define BOOT_PAGESET_BATCH 1
5370 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5371 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5372
__build_all_zonelists(void * data)5373 static void __build_all_zonelists(void *data)
5374 {
5375 int nid;
5376 int __maybe_unused cpu;
5377 pg_data_t *self = data;
5378 unsigned long flags;
5379
5380 /*
5381 * The zonelist_update_seq must be acquired with irqsave because the
5382 * reader can be invoked from IRQ with GFP_ATOMIC.
5383 */
5384 write_seqlock_irqsave(&zonelist_update_seq, flags);
5385 /*
5386 * Also disable synchronous printk() to prevent any printk() from
5387 * trying to hold port->lock, for
5388 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5389 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5390 */
5391 printk_deferred_enter();
5392
5393 #ifdef CONFIG_NUMA
5394 memset(node_load, 0, sizeof(node_load));
5395 #endif
5396
5397 /*
5398 * This node is hotadded and no memory is yet present. So just
5399 * building zonelists is fine - no need to touch other nodes.
5400 */
5401 if (self && !node_online(self->node_id)) {
5402 build_zonelists(self);
5403 } else {
5404 /*
5405 * All possible nodes have pgdat preallocated
5406 * in free_area_init
5407 */
5408 for_each_node(nid) {
5409 pg_data_t *pgdat = NODE_DATA(nid);
5410
5411 build_zonelists(pgdat);
5412 }
5413
5414 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5415 /*
5416 * We now know the "local memory node" for each node--
5417 * i.e., the node of the first zone in the generic zonelist.
5418 * Set up numa_mem percpu variable for on-line cpus. During
5419 * boot, only the boot cpu should be on-line; we'll init the
5420 * secondary cpus' numa_mem as they come on-line. During
5421 * node/memory hotplug, we'll fixup all on-line cpus.
5422 */
5423 for_each_online_cpu(cpu)
5424 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5425 #endif
5426 }
5427
5428 printk_deferred_exit();
5429 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5430 }
5431
5432 static noinline void __init
build_all_zonelists_init(void)5433 build_all_zonelists_init(void)
5434 {
5435 int cpu;
5436
5437 __build_all_zonelists(NULL);
5438
5439 /*
5440 * Initialize the boot_pagesets that are going to be used
5441 * for bootstrapping processors. The real pagesets for
5442 * each zone will be allocated later when the per cpu
5443 * allocator is available.
5444 *
5445 * boot_pagesets are used also for bootstrapping offline
5446 * cpus if the system is already booted because the pagesets
5447 * are needed to initialize allocators on a specific cpu too.
5448 * F.e. the percpu allocator needs the page allocator which
5449 * needs the percpu allocator in order to allocate its pagesets
5450 * (a chicken-egg dilemma).
5451 */
5452 for_each_possible_cpu(cpu)
5453 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5454
5455 mminit_verify_zonelist();
5456 cpuset_init_current_mems_allowed();
5457 }
5458
5459 /*
5460 * unless system_state == SYSTEM_BOOTING.
5461 *
5462 * __ref due to call of __init annotated helper build_all_zonelists_init
5463 * [protected by SYSTEM_BOOTING].
5464 */
build_all_zonelists(pg_data_t * pgdat)5465 void __ref build_all_zonelists(pg_data_t *pgdat)
5466 {
5467 unsigned long vm_total_pages;
5468
5469 if (system_state == SYSTEM_BOOTING) {
5470 build_all_zonelists_init();
5471 } else {
5472 __build_all_zonelists(pgdat);
5473 /* cpuset refresh routine should be here */
5474 }
5475 /* Get the number of free pages beyond high watermark in all zones. */
5476 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5477 /*
5478 * Disable grouping by mobility if the number of pages in the
5479 * system is too low to allow the mechanism to work. It would be
5480 * more accurate, but expensive to check per-zone. This check is
5481 * made on memory-hotadd so a system can start with mobility
5482 * disabled and enable it later
5483 */
5484 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5485 page_group_by_mobility_disabled = 1;
5486 else
5487 page_group_by_mobility_disabled = 0;
5488
5489 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5490 nr_online_nodes,
5491 page_group_by_mobility_disabled ? "off" : "on",
5492 vm_total_pages);
5493 #ifdef CONFIG_NUMA
5494 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5495 #endif
5496 }
5497
zone_batchsize(struct zone * zone)5498 static int zone_batchsize(struct zone *zone)
5499 {
5500 #ifdef CONFIG_MMU
5501 int batch;
5502
5503 /*
5504 * The number of pages to batch allocate is either ~0.1%
5505 * of the zone or 1MB, whichever is smaller. The batch
5506 * size is striking a balance between allocation latency
5507 * and zone lock contention.
5508 */
5509 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5510 batch /= 4; /* We effectively *= 4 below */
5511 if (batch < 1)
5512 batch = 1;
5513
5514 /*
5515 * Clamp the batch to a 2^n - 1 value. Having a power
5516 * of 2 value was found to be more likely to have
5517 * suboptimal cache aliasing properties in some cases.
5518 *
5519 * For example if 2 tasks are alternately allocating
5520 * batches of pages, one task can end up with a lot
5521 * of pages of one half of the possible page colors
5522 * and the other with pages of the other colors.
5523 */
5524 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5525
5526 return batch;
5527
5528 #else
5529 /* The deferral and batching of frees should be suppressed under NOMMU
5530 * conditions.
5531 *
5532 * The problem is that NOMMU needs to be able to allocate large chunks
5533 * of contiguous memory as there's no hardware page translation to
5534 * assemble apparent contiguous memory from discontiguous pages.
5535 *
5536 * Queueing large contiguous runs of pages for batching, however,
5537 * causes the pages to actually be freed in smaller chunks. As there
5538 * can be a significant delay between the individual batches being
5539 * recycled, this leads to the once large chunks of space being
5540 * fragmented and becoming unavailable for high-order allocations.
5541 */
5542 return 0;
5543 #endif
5544 }
5545
5546 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online)5547 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5548 {
5549 #ifdef CONFIG_MMU
5550 int high;
5551 int nr_split_cpus;
5552 unsigned long total_pages;
5553
5554 if (!percpu_pagelist_high_fraction) {
5555 /*
5556 * By default, the high value of the pcp is based on the zone
5557 * low watermark so that if they are full then background
5558 * reclaim will not be started prematurely.
5559 */
5560 total_pages = low_wmark_pages(zone);
5561 } else {
5562 /*
5563 * If percpu_pagelist_high_fraction is configured, the high
5564 * value is based on a fraction of the managed pages in the
5565 * zone.
5566 */
5567 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5568 }
5569
5570 /*
5571 * Split the high value across all online CPUs local to the zone. Note
5572 * that early in boot that CPUs may not be online yet and that during
5573 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5574 * onlined. For memory nodes that have no CPUs, split pcp->high across
5575 * all online CPUs to mitigate the risk that reclaim is triggered
5576 * prematurely due to pages stored on pcp lists.
5577 */
5578 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5579 if (!nr_split_cpus)
5580 nr_split_cpus = num_online_cpus();
5581 high = total_pages / nr_split_cpus;
5582
5583 /*
5584 * Ensure high is at least batch*4. The multiple is based on the
5585 * historical relationship between high and batch.
5586 */
5587 high = max(high, batch << 2);
5588
5589 return high;
5590 #else
5591 return 0;
5592 #endif
5593 }
5594
5595 /*
5596 * pcp->high and pcp->batch values are related and generally batch is lower
5597 * than high. They are also related to pcp->count such that count is lower
5598 * than high, and as soon as it reaches high, the pcplist is flushed.
5599 *
5600 * However, guaranteeing these relations at all times would require e.g. write
5601 * barriers here but also careful usage of read barriers at the read side, and
5602 * thus be prone to error and bad for performance. Thus the update only prevents
5603 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5604 * can cope with those fields changing asynchronously, and fully trust only the
5605 * pcp->count field on the local CPU with interrupts disabled.
5606 *
5607 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5608 * outside of boot time (or some other assurance that no concurrent updaters
5609 * exist).
5610 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)5611 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5612 unsigned long batch)
5613 {
5614 WRITE_ONCE(pcp->batch, batch);
5615 WRITE_ONCE(pcp->high, high);
5616 }
5617
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5618 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5619 {
5620 int pindex;
5621
5622 memset(pcp, 0, sizeof(*pcp));
5623 memset(pzstats, 0, sizeof(*pzstats));
5624
5625 spin_lock_init(&pcp->lock);
5626 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5627 INIT_LIST_HEAD(&pcp->lists[pindex]);
5628
5629 /*
5630 * Set batch and high values safe for a boot pageset. A true percpu
5631 * pageset's initialization will update them subsequently. Here we don't
5632 * need to be as careful as pageset_update() as nobody can access the
5633 * pageset yet.
5634 */
5635 pcp->high = BOOT_PAGESET_HIGH;
5636 pcp->batch = BOOT_PAGESET_BATCH;
5637 pcp->free_factor = 0;
5638 }
5639
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)5640 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5641 unsigned long batch)
5642 {
5643 struct per_cpu_pages *pcp;
5644 int cpu;
5645
5646 for_each_possible_cpu(cpu) {
5647 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5648 pageset_update(pcp, high, batch);
5649 }
5650 }
5651
5652 /*
5653 * Calculate and set new high and batch values for all per-cpu pagesets of a
5654 * zone based on the zone's size.
5655 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5656 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5657 {
5658 int new_high, new_batch;
5659
5660 new_batch = max(1, zone_batchsize(zone));
5661 new_high = zone_highsize(zone, new_batch, cpu_online);
5662
5663 if (zone->pageset_high == new_high &&
5664 zone->pageset_batch == new_batch)
5665 return;
5666
5667 zone->pageset_high = new_high;
5668 zone->pageset_batch = new_batch;
5669
5670 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5671 }
5672
setup_zone_pageset(struct zone * zone)5673 void __meminit setup_zone_pageset(struct zone *zone)
5674 {
5675 int cpu;
5676
5677 /* Size may be 0 on !SMP && !NUMA */
5678 if (sizeof(struct per_cpu_zonestat) > 0)
5679 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5680
5681 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5682 for_each_possible_cpu(cpu) {
5683 struct per_cpu_pages *pcp;
5684 struct per_cpu_zonestat *pzstats;
5685
5686 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5687 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5688 per_cpu_pages_init(pcp, pzstats);
5689 }
5690
5691 zone_set_pageset_high_and_batch(zone, 0);
5692 }
5693
5694 /*
5695 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5696 * page high values need to be recalculated.
5697 */
zone_pcp_update(struct zone * zone,int cpu_online)5698 static void zone_pcp_update(struct zone *zone, int cpu_online)
5699 {
5700 mutex_lock(&pcp_batch_high_lock);
5701 zone_set_pageset_high_and_batch(zone, cpu_online);
5702 mutex_unlock(&pcp_batch_high_lock);
5703 }
5704
5705 /*
5706 * Allocate per cpu pagesets and initialize them.
5707 * Before this call only boot pagesets were available.
5708 */
setup_per_cpu_pageset(void)5709 void __init setup_per_cpu_pageset(void)
5710 {
5711 struct pglist_data *pgdat;
5712 struct zone *zone;
5713 int __maybe_unused cpu;
5714
5715 for_each_populated_zone(zone)
5716 setup_zone_pageset(zone);
5717
5718 #ifdef CONFIG_NUMA
5719 /*
5720 * Unpopulated zones continue using the boot pagesets.
5721 * The numa stats for these pagesets need to be reset.
5722 * Otherwise, they will end up skewing the stats of
5723 * the nodes these zones are associated with.
5724 */
5725 for_each_possible_cpu(cpu) {
5726 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5727 memset(pzstats->vm_numa_event, 0,
5728 sizeof(pzstats->vm_numa_event));
5729 }
5730 #endif
5731
5732 for_each_online_pgdat(pgdat)
5733 pgdat->per_cpu_nodestats =
5734 alloc_percpu(struct per_cpu_nodestat);
5735 }
5736
zone_pcp_init(struct zone * zone)5737 __meminit void zone_pcp_init(struct zone *zone)
5738 {
5739 /*
5740 * per cpu subsystem is not up at this point. The following code
5741 * relies on the ability of the linker to provide the
5742 * offset of a (static) per cpu variable into the per cpu area.
5743 */
5744 zone->per_cpu_pageset = &boot_pageset;
5745 zone->per_cpu_zonestats = &boot_zonestats;
5746 zone->pageset_high = BOOT_PAGESET_HIGH;
5747 zone->pageset_batch = BOOT_PAGESET_BATCH;
5748
5749 if (populated_zone(zone))
5750 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5751 zone->present_pages, zone_batchsize(zone));
5752 }
5753
adjust_managed_page_count(struct page * page,long count)5754 void adjust_managed_page_count(struct page *page, long count)
5755 {
5756 atomic_long_add(count, &page_zone(page)->managed_pages);
5757 totalram_pages_add(count);
5758 #ifdef CONFIG_HIGHMEM
5759 if (PageHighMem(page))
5760 totalhigh_pages_add(count);
5761 #endif
5762 }
5763 EXPORT_SYMBOL(adjust_managed_page_count);
5764
free_reserved_area(void * start,void * end,int poison,const char * s)5765 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5766 {
5767 void *pos;
5768 unsigned long pages = 0;
5769
5770 start = (void *)PAGE_ALIGN((unsigned long)start);
5771 end = (void *)((unsigned long)end & PAGE_MASK);
5772 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5773 struct page *page = virt_to_page(pos);
5774 void *direct_map_addr;
5775
5776 /*
5777 * 'direct_map_addr' might be different from 'pos'
5778 * because some architectures' virt_to_page()
5779 * work with aliases. Getting the direct map
5780 * address ensures that we get a _writeable_
5781 * alias for the memset().
5782 */
5783 direct_map_addr = page_address(page);
5784 /*
5785 * Perform a kasan-unchecked memset() since this memory
5786 * has not been initialized.
5787 */
5788 direct_map_addr = kasan_reset_tag(direct_map_addr);
5789 if ((unsigned int)poison <= 0xFF)
5790 memset(direct_map_addr, poison, PAGE_SIZE);
5791
5792 free_reserved_page(page);
5793 }
5794
5795 if (pages && s) {
5796 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5797 if (!strcmp(s, "initrd") || !strcmp(s, "unused kernel")) {
5798 long size;
5799
5800 size = -1 * (long)(pages << PAGE_SHIFT);
5801 memblock_memsize_mod_kernel_size(size);
5802 }
5803 }
5804
5805 return pages;
5806 }
5807
page_alloc_cpu_dead(unsigned int cpu)5808 static int page_alloc_cpu_dead(unsigned int cpu)
5809 {
5810 struct zone *zone;
5811
5812 lru_add_drain_cpu(cpu);
5813 mlock_drain_remote(cpu);
5814 drain_pages(cpu);
5815
5816 /*
5817 * Spill the event counters of the dead processor
5818 * into the current processors event counters.
5819 * This artificially elevates the count of the current
5820 * processor.
5821 */
5822 vm_events_fold_cpu(cpu);
5823
5824 /*
5825 * Zero the differential counters of the dead processor
5826 * so that the vm statistics are consistent.
5827 *
5828 * This is only okay since the processor is dead and cannot
5829 * race with what we are doing.
5830 */
5831 cpu_vm_stats_fold(cpu);
5832
5833 for_each_populated_zone(zone)
5834 zone_pcp_update(zone, 0);
5835
5836 return 0;
5837 }
5838
page_alloc_cpu_online(unsigned int cpu)5839 static int page_alloc_cpu_online(unsigned int cpu)
5840 {
5841 struct zone *zone;
5842
5843 for_each_populated_zone(zone)
5844 zone_pcp_update(zone, 1);
5845 return 0;
5846 }
5847
page_alloc_init_cpuhp(void)5848 void __init page_alloc_init_cpuhp(void)
5849 {
5850 int ret;
5851
5852 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5853 "mm/page_alloc:pcp",
5854 page_alloc_cpu_online,
5855 page_alloc_cpu_dead);
5856 WARN_ON(ret < 0);
5857 }
5858
5859 /*
5860 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5861 * or min_free_kbytes changes.
5862 */
calculate_totalreserve_pages(void)5863 static void calculate_totalreserve_pages(void)
5864 {
5865 struct pglist_data *pgdat;
5866 unsigned long reserve_pages = 0;
5867 enum zone_type i, j;
5868
5869 for_each_online_pgdat(pgdat) {
5870
5871 pgdat->totalreserve_pages = 0;
5872
5873 for (i = 0; i < MAX_NR_ZONES; i++) {
5874 struct zone *zone = pgdat->node_zones + i;
5875 long max = 0;
5876 unsigned long managed_pages = zone_managed_pages(zone);
5877
5878 /* Find valid and maximum lowmem_reserve in the zone */
5879 for (j = i; j < MAX_NR_ZONES; j++) {
5880 if (zone->lowmem_reserve[j] > max)
5881 max = zone->lowmem_reserve[j];
5882 }
5883
5884 /* we treat the high watermark as reserved pages. */
5885 max += high_wmark_pages(zone);
5886
5887 if (max > managed_pages)
5888 max = managed_pages;
5889
5890 pgdat->totalreserve_pages += max;
5891
5892 reserve_pages += max;
5893 }
5894 }
5895 totalreserve_pages = reserve_pages;
5896 }
5897
5898 /*
5899 * setup_per_zone_lowmem_reserve - called whenever
5900 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5901 * has a correct pages reserved value, so an adequate number of
5902 * pages are left in the zone after a successful __alloc_pages().
5903 */
setup_per_zone_lowmem_reserve(void)5904 static void setup_per_zone_lowmem_reserve(void)
5905 {
5906 struct pglist_data *pgdat;
5907 enum zone_type i, j;
5908
5909 for_each_online_pgdat(pgdat) {
5910 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5911 struct zone *zone = &pgdat->node_zones[i];
5912 int ratio = sysctl_lowmem_reserve_ratio[i];
5913 bool clear = !ratio || !zone_managed_pages(zone);
5914 unsigned long managed_pages = 0;
5915
5916 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5917 struct zone *upper_zone = &pgdat->node_zones[j];
5918
5919 managed_pages += zone_managed_pages(upper_zone);
5920
5921 if (clear)
5922 zone->lowmem_reserve[j] = 0;
5923 else
5924 zone->lowmem_reserve[j] = managed_pages / ratio;
5925 }
5926 }
5927 }
5928
5929 /* update totalreserve_pages */
5930 calculate_totalreserve_pages();
5931 }
5932
__setup_per_zone_wmarks(void)5933 static void __setup_per_zone_wmarks(void)
5934 {
5935 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5936 unsigned long lowmem_pages = 0;
5937 struct zone *zone;
5938 unsigned long flags;
5939
5940 /* Calculate total number of pages below ZONE_HIGHMEM */
5941 for_each_zone(zone) {
5942 if (zone_idx(zone) <= ZONE_NORMAL)
5943 lowmem_pages += zone_managed_pages(zone);
5944 }
5945
5946 for_each_zone(zone) {
5947 u64 tmp;
5948
5949 spin_lock_irqsave(&zone->lock, flags);
5950 tmp = (u64)pages_min * zone_managed_pages(zone);
5951 do_div(tmp, lowmem_pages);
5952 if (zone_idx(zone) > ZONE_NORMAL) {
5953 /*
5954 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5955 * need pages from zones above ZONE_NORMAL, so cap
5956 * pages_min to a small value here.
5957 *
5958 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5959 * deltas control async page reclaim, and so should
5960 * not be capped for highmem and movable zones.
5961 */
5962 unsigned long min_pages;
5963
5964 min_pages = zone_managed_pages(zone) / 1024;
5965 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5966 zone->_watermark[WMARK_MIN] = min_pages;
5967 } else {
5968 /*
5969 * If it's a lowmem zone, reserve a number of pages
5970 * proportionate to the zone's size.
5971 */
5972 zone->_watermark[WMARK_MIN] = tmp;
5973 }
5974
5975 /*
5976 * Set the kswapd watermarks distance according to the
5977 * scale factor in proportion to available memory, but
5978 * ensure a minimum size on small systems.
5979 */
5980 tmp = max_t(u64, tmp >> 2,
5981 mult_frac(zone_managed_pages(zone),
5982 watermark_scale_factor, 10000));
5983
5984 zone->watermark_boost = 0;
5985 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
5986 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5987 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5988
5989 spin_unlock_irqrestore(&zone->lock, flags);
5990 }
5991
5992 /* update totalreserve_pages */
5993 calculate_totalreserve_pages();
5994 }
5995
5996 /**
5997 * setup_per_zone_wmarks - called when min_free_kbytes changes
5998 * or when memory is hot-{added|removed}
5999 *
6000 * Ensures that the watermark[min,low,high] values for each zone are set
6001 * correctly with respect to min_free_kbytes.
6002 */
setup_per_zone_wmarks(void)6003 void setup_per_zone_wmarks(void)
6004 {
6005 struct zone *zone;
6006 static DEFINE_SPINLOCK(lock);
6007
6008 spin_lock(&lock);
6009 __setup_per_zone_wmarks();
6010 spin_unlock(&lock);
6011
6012 /*
6013 * The watermark size have changed so update the pcpu batch
6014 * and high limits or the limits may be inappropriate.
6015 */
6016 for_each_zone(zone)
6017 zone_pcp_update(zone, 0);
6018 }
6019
6020 /*
6021 * Initialise min_free_kbytes.
6022 *
6023 * For small machines we want it small (128k min). For large machines
6024 * we want it large (256MB max). But it is not linear, because network
6025 * bandwidth does not increase linearly with machine size. We use
6026 *
6027 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6028 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6029 *
6030 * which yields
6031 *
6032 * 16MB: 512k
6033 * 32MB: 724k
6034 * 64MB: 1024k
6035 * 128MB: 1448k
6036 * 256MB: 2048k
6037 * 512MB: 2896k
6038 * 1024MB: 4096k
6039 * 2048MB: 5792k
6040 * 4096MB: 8192k
6041 * 8192MB: 11584k
6042 * 16384MB: 16384k
6043 */
calculate_min_free_kbytes(void)6044 void calculate_min_free_kbytes(void)
6045 {
6046 unsigned long lowmem_kbytes;
6047 int new_min_free_kbytes;
6048
6049 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6050 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6051
6052 if (new_min_free_kbytes > user_min_free_kbytes)
6053 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6054 else
6055 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6056 new_min_free_kbytes, user_min_free_kbytes);
6057
6058 }
6059
init_per_zone_wmark_min(void)6060 int __meminit init_per_zone_wmark_min(void)
6061 {
6062 calculate_min_free_kbytes();
6063 setup_per_zone_wmarks();
6064 refresh_zone_stat_thresholds();
6065 setup_per_zone_lowmem_reserve();
6066
6067 #ifdef CONFIG_NUMA
6068 setup_min_unmapped_ratio();
6069 setup_min_slab_ratio();
6070 #endif
6071
6072 khugepaged_min_free_kbytes_update();
6073
6074 return 0;
6075 }
postcore_initcall(init_per_zone_wmark_min)6076 postcore_initcall(init_per_zone_wmark_min)
6077
6078 /*
6079 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6080 * that we can call two helper functions whenever min_free_kbytes
6081 * changes.
6082 */
6083 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6084 void *buffer, size_t *length, loff_t *ppos)
6085 {
6086 int rc;
6087
6088 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6089 if (rc)
6090 return rc;
6091
6092 if (write) {
6093 user_min_free_kbytes = min_free_kbytes;
6094 setup_per_zone_wmarks();
6095 }
6096 return 0;
6097 }
6098
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6099 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6100 void *buffer, size_t *length, loff_t *ppos)
6101 {
6102 int rc;
6103
6104 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6105 if (rc)
6106 return rc;
6107
6108 if (write)
6109 setup_per_zone_wmarks();
6110
6111 return 0;
6112 }
6113
6114 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)6115 static void setup_min_unmapped_ratio(void)
6116 {
6117 pg_data_t *pgdat;
6118 struct zone *zone;
6119
6120 for_each_online_pgdat(pgdat)
6121 pgdat->min_unmapped_pages = 0;
6122
6123 for_each_zone(zone)
6124 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6125 sysctl_min_unmapped_ratio) / 100;
6126 }
6127
6128
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6129 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6130 void *buffer, size_t *length, loff_t *ppos)
6131 {
6132 int rc;
6133
6134 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6135 if (rc)
6136 return rc;
6137
6138 setup_min_unmapped_ratio();
6139
6140 return 0;
6141 }
6142
setup_min_slab_ratio(void)6143 static void setup_min_slab_ratio(void)
6144 {
6145 pg_data_t *pgdat;
6146 struct zone *zone;
6147
6148 for_each_online_pgdat(pgdat)
6149 pgdat->min_slab_pages = 0;
6150
6151 for_each_zone(zone)
6152 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6153 sysctl_min_slab_ratio) / 100;
6154 }
6155
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6156 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6157 void *buffer, size_t *length, loff_t *ppos)
6158 {
6159 int rc;
6160
6161 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6162 if (rc)
6163 return rc;
6164
6165 setup_min_slab_ratio();
6166
6167 return 0;
6168 }
6169 #endif
6170
6171 /*
6172 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6173 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6174 * whenever sysctl_lowmem_reserve_ratio changes.
6175 *
6176 * The reserve ratio obviously has absolutely no relation with the
6177 * minimum watermarks. The lowmem reserve ratio can only make sense
6178 * if in function of the boot time zone sizes.
6179 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6180 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6181 int write, void *buffer, size_t *length, loff_t *ppos)
6182 {
6183 int i;
6184
6185 proc_dointvec_minmax(table, write, buffer, length, ppos);
6186
6187 for (i = 0; i < MAX_NR_ZONES; i++) {
6188 if (sysctl_lowmem_reserve_ratio[i] < 1)
6189 sysctl_lowmem_reserve_ratio[i] = 0;
6190 }
6191
6192 setup_per_zone_lowmem_reserve();
6193 return 0;
6194 }
6195
6196 /*
6197 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6198 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6199 * pagelist can have before it gets flushed back to buddy allocator.
6200 */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6201 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6202 int write, void *buffer, size_t *length, loff_t *ppos)
6203 {
6204 struct zone *zone;
6205 int old_percpu_pagelist_high_fraction;
6206 int ret;
6207
6208 mutex_lock(&pcp_batch_high_lock);
6209 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6210
6211 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6212 if (!write || ret < 0)
6213 goto out;
6214
6215 /* Sanity checking to avoid pcp imbalance */
6216 if (percpu_pagelist_high_fraction &&
6217 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6218 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6219 ret = -EINVAL;
6220 goto out;
6221 }
6222
6223 /* No change? */
6224 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6225 goto out;
6226
6227 for_each_populated_zone(zone)
6228 zone_set_pageset_high_and_batch(zone, 0);
6229 out:
6230 mutex_unlock(&pcp_batch_high_lock);
6231 return ret;
6232 }
6233
6234 static struct ctl_table page_alloc_sysctl_table[] = {
6235 {
6236 .procname = "min_free_kbytes",
6237 .data = &min_free_kbytes,
6238 .maxlen = sizeof(min_free_kbytes),
6239 .mode = 0644,
6240 .proc_handler = min_free_kbytes_sysctl_handler,
6241 .extra1 = SYSCTL_ZERO,
6242 },
6243 {
6244 .procname = "watermark_boost_factor",
6245 .data = &watermark_boost_factor,
6246 .maxlen = sizeof(watermark_boost_factor),
6247 .mode = 0644,
6248 .proc_handler = proc_dointvec_minmax,
6249 .extra1 = SYSCTL_ZERO,
6250 },
6251 {
6252 .procname = "watermark_scale_factor",
6253 .data = &watermark_scale_factor,
6254 .maxlen = sizeof(watermark_scale_factor),
6255 .mode = 0644,
6256 .proc_handler = watermark_scale_factor_sysctl_handler,
6257 .extra1 = SYSCTL_ONE,
6258 .extra2 = SYSCTL_THREE_THOUSAND,
6259 },
6260 {
6261 .procname = "percpu_pagelist_high_fraction",
6262 .data = &percpu_pagelist_high_fraction,
6263 .maxlen = sizeof(percpu_pagelist_high_fraction),
6264 .mode = 0644,
6265 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6266 .extra1 = SYSCTL_ZERO,
6267 },
6268 {
6269 .procname = "lowmem_reserve_ratio",
6270 .data = &sysctl_lowmem_reserve_ratio,
6271 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6272 .mode = 0644,
6273 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6274 },
6275 #ifdef CONFIG_NUMA
6276 {
6277 .procname = "numa_zonelist_order",
6278 .data = &numa_zonelist_order,
6279 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6280 .mode = 0644,
6281 .proc_handler = numa_zonelist_order_handler,
6282 },
6283 {
6284 .procname = "min_unmapped_ratio",
6285 .data = &sysctl_min_unmapped_ratio,
6286 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6287 .mode = 0644,
6288 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6289 .extra1 = SYSCTL_ZERO,
6290 .extra2 = SYSCTL_ONE_HUNDRED,
6291 },
6292 {
6293 .procname = "min_slab_ratio",
6294 .data = &sysctl_min_slab_ratio,
6295 .maxlen = sizeof(sysctl_min_slab_ratio),
6296 .mode = 0644,
6297 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6298 .extra1 = SYSCTL_ZERO,
6299 .extra2 = SYSCTL_ONE_HUNDRED,
6300 },
6301 #endif
6302 {}
6303 };
6304
page_alloc_sysctl_init(void)6305 void __init page_alloc_sysctl_init(void)
6306 {
6307 register_sysctl_init("vm", page_alloc_sysctl_table);
6308 }
6309
6310 #ifdef CONFIG_CONTIG_ALLOC
6311 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6312 static void alloc_contig_dump_pages(struct list_head *page_list)
6313 {
6314 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6315
6316 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6317 struct page *page;
6318
6319 dump_stack();
6320 list_for_each_entry(page, page_list, lru)
6321 dump_page(page, "migration failure");
6322 }
6323 }
6324
6325 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6326 int __alloc_contig_migrate_range(struct compact_control *cc,
6327 unsigned long start, unsigned long end)
6328 {
6329 /* This function is based on compact_zone() from compaction.c. */
6330 unsigned int nr_reclaimed;
6331 unsigned long pfn = start;
6332 unsigned int tries = 0;
6333 unsigned int max_tries = 5;
6334 int ret = 0;
6335 struct migration_target_control mtc = {
6336 .nid = zone_to_nid(cc->zone),
6337 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6338 };
6339
6340 if (cc->gfp_mask & __GFP_NORETRY)
6341 max_tries = 1;
6342
6343 lru_cache_disable();
6344
6345 while (pfn < end || !list_empty(&cc->migratepages)) {
6346 if (fatal_signal_pending(current)) {
6347 ret = -EINTR;
6348 break;
6349 }
6350
6351 if (list_empty(&cc->migratepages)) {
6352 cc->nr_migratepages = 0;
6353 ret = isolate_migratepages_range(cc, pfn, end);
6354 if (ret && ret != -EAGAIN)
6355 break;
6356 pfn = cc->migrate_pfn;
6357 tries = 0;
6358 } else if (++tries == max_tries) {
6359 ret = -EBUSY;
6360 break;
6361 }
6362
6363 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6364 &cc->migratepages);
6365 cc->nr_migratepages -= nr_reclaimed;
6366
6367 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6368 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6369
6370 /*
6371 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6372 * to retry again over this error, so do the same here.
6373 */
6374 if (ret == -ENOMEM)
6375 break;
6376 }
6377
6378 lru_cache_enable();
6379 if (ret < 0) {
6380 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) {
6381 struct page *page;
6382
6383 alloc_contig_dump_pages(&cc->migratepages);
6384 list_for_each_entry(page, &cc->migratepages, lru) {
6385 /* The page will be freed by putback_movable_pages soon */
6386 if (page_count(page) == 1)
6387 continue;
6388 page_pinner_failure_detect(page);
6389 }
6390 }
6391 putback_movable_pages(&cc->migratepages);
6392 return ret;
6393 }
6394 return 0;
6395 }
6396
6397 /**
6398 * alloc_contig_range() -- tries to allocate given range of pages
6399 * @start: start PFN to allocate
6400 * @end: one-past-the-last PFN to allocate
6401 * @migratetype: migratetype of the underlying pageblocks (either
6402 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6403 * in range must have the same migratetype and it must
6404 * be either of the two.
6405 * @gfp_mask: GFP mask to use during compaction
6406 *
6407 * The PFN range does not have to be pageblock aligned. The PFN range must
6408 * belong to a single zone.
6409 *
6410 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6411 * pageblocks in the range. Once isolated, the pageblocks should not
6412 * be modified by others.
6413 *
6414 * Return: zero on success or negative error code. On success all
6415 * pages which PFN is in [start, end) are allocated for the caller and
6416 * need to be freed with free_contig_range().
6417 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6418 int alloc_contig_range(unsigned long start, unsigned long end,
6419 unsigned migratetype, gfp_t gfp_mask)
6420 {
6421 unsigned long outer_start, outer_end;
6422 int order;
6423 int ret = 0;
6424
6425 struct compact_control cc = {
6426 .nr_migratepages = 0,
6427 .order = -1,
6428 .zone = page_zone(pfn_to_page(start)),
6429 /*
6430 * Use MIGRATE_ASYNC for __GFP_NORETRY requests as it never
6431 * blocks.
6432 */
6433 .mode = gfp_mask & __GFP_NORETRY ? MIGRATE_ASYNC : MIGRATE_SYNC,
6434 .ignore_skip_hint = true,
6435 .no_set_skip_hint = true,
6436 .gfp_mask = current_gfp_context(gfp_mask),
6437 .alloc_contig = true,
6438 };
6439 INIT_LIST_HEAD(&cc.migratepages);
6440
6441 /*
6442 * What we do here is we mark all pageblocks in range as
6443 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6444 * have different sizes, and due to the way page allocator
6445 * work, start_isolate_page_range() has special handlings for this.
6446 *
6447 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6448 * migrate the pages from an unaligned range (ie. pages that
6449 * we are interested in). This will put all the pages in
6450 * range back to page allocator as MIGRATE_ISOLATE.
6451 *
6452 * When this is done, we take the pages in range from page
6453 * allocator removing them from the buddy system. This way
6454 * page allocator will never consider using them.
6455 *
6456 * This lets us mark the pageblocks back as
6457 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6458 * aligned range but not in the unaligned, original range are
6459 * put back to page allocator so that buddy can use them.
6460 */
6461
6462 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6463 if (ret)
6464 goto done;
6465
6466 drain_all_pages(cc.zone);
6467
6468 /*
6469 * In case of -EBUSY, we'd like to know which page causes problem.
6470 * So, just fall through. test_pages_isolated() has a tracepoint
6471 * which will report the busy page.
6472 *
6473 * It is possible that busy pages could become available before
6474 * the call to test_pages_isolated, and the range will actually be
6475 * allocated. So, if we fall through be sure to clear ret so that
6476 * -EBUSY is not accidentally used or returned to caller.
6477 */
6478 ret = __alloc_contig_migrate_range(&cc, start, end);
6479 if (ret && (ret != -EBUSY || (gfp_mask & __GFP_NORETRY)))
6480 goto done;
6481 ret = 0;
6482
6483 /*
6484 * Pages from [start, end) are within a pageblock_nr_pages
6485 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6486 * more, all pages in [start, end) are free in page allocator.
6487 * What we are going to do is to allocate all pages from
6488 * [start, end) (that is remove them from page allocator).
6489 *
6490 * The only problem is that pages at the beginning and at the
6491 * end of interesting range may be not aligned with pages that
6492 * page allocator holds, ie. they can be part of higher order
6493 * pages. Because of this, we reserve the bigger range and
6494 * once this is done free the pages we are not interested in.
6495 *
6496 * We don't have to hold zone->lock here because the pages are
6497 * isolated thus they won't get removed from buddy.
6498 */
6499
6500 order = 0;
6501 outer_start = start;
6502 while (!PageBuddy(pfn_to_page(outer_start))) {
6503 if (++order > MAX_ORDER) {
6504 outer_start = start;
6505 break;
6506 }
6507 outer_start &= ~0UL << order;
6508 }
6509
6510 if (outer_start != start) {
6511 order = buddy_order(pfn_to_page(outer_start));
6512
6513 /*
6514 * outer_start page could be small order buddy page and
6515 * it doesn't include start page. Adjust outer_start
6516 * in this case to report failed page properly
6517 * on tracepoint in test_pages_isolated()
6518 */
6519 if (outer_start + (1UL << order) <= start)
6520 outer_start = start;
6521 }
6522
6523 /* Make sure the range is really isolated. */
6524 if (test_pages_isolated(outer_start, end, 0)) {
6525 trace_android_vh_alloc_contig_range_not_isolated(outer_start,
6526 end);
6527 ret = -EBUSY;
6528 goto done;
6529 }
6530
6531 /* Grab isolated pages from freelists. */
6532 outer_end = isolate_freepages_range(&cc, outer_start, end);
6533 if (!outer_end) {
6534 ret = -EBUSY;
6535 goto done;
6536 }
6537
6538 /* Free head and tail (if any) */
6539 if (start != outer_start)
6540 free_contig_range(outer_start, start - outer_start);
6541 if (end != outer_end)
6542 free_contig_range(end, outer_end - end);
6543
6544 done:
6545 undo_isolate_page_range(start, end, migratetype);
6546 return ret;
6547 }
6548 EXPORT_SYMBOL(alloc_contig_range);
6549
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6550 static int __alloc_contig_pages(unsigned long start_pfn,
6551 unsigned long nr_pages, gfp_t gfp_mask)
6552 {
6553 unsigned long end_pfn = start_pfn + nr_pages;
6554
6555 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6556 gfp_mask);
6557 }
6558
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6559 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6560 unsigned long nr_pages)
6561 {
6562 unsigned long i, end_pfn = start_pfn + nr_pages;
6563 struct page *page;
6564
6565 for (i = start_pfn; i < end_pfn; i++) {
6566 page = pfn_to_online_page(i);
6567 if (!page)
6568 return false;
6569
6570 if (page_zone(page) != z)
6571 return false;
6572
6573 if (PageReserved(page))
6574 return false;
6575
6576 if (PageHuge(page))
6577 return false;
6578 }
6579 return true;
6580 }
6581
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6582 static bool zone_spans_last_pfn(const struct zone *zone,
6583 unsigned long start_pfn, unsigned long nr_pages)
6584 {
6585 unsigned long last_pfn = start_pfn + nr_pages - 1;
6586
6587 return zone_spans_pfn(zone, last_pfn);
6588 }
6589
6590 /**
6591 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6592 * @nr_pages: Number of contiguous pages to allocate
6593 * @gfp_mask: GFP mask to limit search and used during compaction
6594 * @nid: Target node
6595 * @nodemask: Mask for other possible nodes
6596 *
6597 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6598 * on an applicable zonelist to find a contiguous pfn range which can then be
6599 * tried for allocation with alloc_contig_range(). This routine is intended
6600 * for allocation requests which can not be fulfilled with the buddy allocator.
6601 *
6602 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6603 * power of two, then allocated range is also guaranteed to be aligned to same
6604 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6605 *
6606 * Allocated pages can be freed with free_contig_range() or by manually calling
6607 * __free_page() on each allocated page.
6608 *
6609 * Return: pointer to contiguous pages on success, or NULL if not successful.
6610 */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6611 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6612 int nid, nodemask_t *nodemask)
6613 {
6614 unsigned long ret, pfn, flags;
6615 struct zonelist *zonelist;
6616 struct zone *zone;
6617 struct zoneref *z;
6618
6619 zonelist = node_zonelist(nid, gfp_mask);
6620 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6621 gfp_zone(gfp_mask), nodemask) {
6622 spin_lock_irqsave(&zone->lock, flags);
6623
6624 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6625 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6626 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6627 /*
6628 * We release the zone lock here because
6629 * alloc_contig_range() will also lock the zone
6630 * at some point. If there's an allocation
6631 * spinning on this lock, it may win the race
6632 * and cause alloc_contig_range() to fail...
6633 */
6634 spin_unlock_irqrestore(&zone->lock, flags);
6635 ret = __alloc_contig_pages(pfn, nr_pages,
6636 gfp_mask);
6637 if (!ret)
6638 return pfn_to_page(pfn);
6639 spin_lock_irqsave(&zone->lock, flags);
6640 }
6641 pfn += nr_pages;
6642 }
6643 spin_unlock_irqrestore(&zone->lock, flags);
6644 }
6645 return NULL;
6646 }
6647 #endif /* CONFIG_CONTIG_ALLOC */
6648
free_contig_range(unsigned long pfn,unsigned long nr_pages)6649 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6650 {
6651 unsigned long count = 0;
6652
6653 for (; nr_pages--; pfn++) {
6654 struct page *page = pfn_to_page(pfn);
6655
6656 count += page_count(page) != 1;
6657 __free_page(page);
6658 }
6659 WARN(count != 0, "%lu pages are still in use!\n", count);
6660 }
6661 EXPORT_SYMBOL(free_contig_range);
6662
6663 /*
6664 * Effectively disable pcplists for the zone by setting the high limit to 0
6665 * and draining all cpus. A concurrent page freeing on another CPU that's about
6666 * to put the page on pcplist will either finish before the drain and the page
6667 * will be drained, or observe the new high limit and skip the pcplist.
6668 *
6669 * Must be paired with a call to zone_pcp_enable().
6670 */
zone_pcp_disable(struct zone * zone)6671 void zone_pcp_disable(struct zone *zone)
6672 {
6673 mutex_lock(&pcp_batch_high_lock);
6674 __zone_set_pageset_high_and_batch(zone, 0, 1);
6675 __drain_all_pages(zone, true);
6676 }
6677
zone_pcp_enable(struct zone * zone)6678 void zone_pcp_enable(struct zone *zone)
6679 {
6680 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6681 mutex_unlock(&pcp_batch_high_lock);
6682 }
6683
zone_pcp_reset(struct zone * zone)6684 void zone_pcp_reset(struct zone *zone)
6685 {
6686 int cpu;
6687 struct per_cpu_zonestat *pzstats;
6688
6689 if (zone->per_cpu_pageset != &boot_pageset) {
6690 for_each_online_cpu(cpu) {
6691 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6692 drain_zonestat(zone, pzstats);
6693 }
6694 free_percpu(zone->per_cpu_pageset);
6695 zone->per_cpu_pageset = &boot_pageset;
6696 if (zone->per_cpu_zonestats != &boot_zonestats) {
6697 free_percpu(zone->per_cpu_zonestats);
6698 zone->per_cpu_zonestats = &boot_zonestats;
6699 }
6700 }
6701 }
6702
6703 #ifdef CONFIG_MEMORY_HOTREMOVE
6704 /*
6705 * All pages in the range must be in a single zone, must not contain holes,
6706 * must span full sections, and must be isolated before calling this function.
6707 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6708 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6709 {
6710 unsigned long pfn = start_pfn;
6711 struct page *page;
6712 struct zone *zone;
6713 unsigned int order;
6714 unsigned long flags;
6715
6716 offline_mem_sections(pfn, end_pfn);
6717 zone = page_zone(pfn_to_page(pfn));
6718 spin_lock_irqsave(&zone->lock, flags);
6719 while (pfn < end_pfn) {
6720 page = pfn_to_page(pfn);
6721 /*
6722 * The HWPoisoned page may be not in buddy system, and
6723 * page_count() is not 0.
6724 */
6725 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6726 pfn++;
6727 continue;
6728 }
6729 /*
6730 * At this point all remaining PageOffline() pages have a
6731 * reference count of 0 and can simply be skipped.
6732 */
6733 if (PageOffline(page)) {
6734 BUG_ON(page_count(page));
6735 BUG_ON(PageBuddy(page));
6736 pfn++;
6737 continue;
6738 }
6739
6740 BUG_ON(page_count(page));
6741 BUG_ON(!PageBuddy(page));
6742 order = buddy_order(page);
6743 del_page_from_free_list(page, zone, order);
6744 pfn += (1 << order);
6745 }
6746 spin_unlock_irqrestore(&zone->lock, flags);
6747 }
6748 #endif
6749
6750 /*
6751 * This function returns a stable result only if called under zone lock.
6752 */
is_free_buddy_page(struct page * page)6753 bool is_free_buddy_page(struct page *page)
6754 {
6755 unsigned long pfn = page_to_pfn(page);
6756 unsigned int order;
6757
6758 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6759 struct page *page_head = page - (pfn & ((1 << order) - 1));
6760
6761 if (PageBuddy(page_head) &&
6762 buddy_order_unsafe(page_head) >= order)
6763 break;
6764 }
6765
6766 return order <= MAX_ORDER;
6767 }
6768 EXPORT_SYMBOL(is_free_buddy_page);
6769
6770 #ifdef CONFIG_MEMORY_FAILURE
6771 /*
6772 * Break down a higher-order page in sub-pages, and keep our target out of
6773 * buddy allocator.
6774 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6775 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6776 struct page *target, int low, int high,
6777 int migratetype)
6778 {
6779 unsigned long size = 1 << high;
6780 struct page *current_buddy, *next_page;
6781
6782 while (high > low) {
6783 high--;
6784 size >>= 1;
6785
6786 if (target >= &page[size]) {
6787 next_page = page + size;
6788 current_buddy = page;
6789 } else {
6790 next_page = page;
6791 current_buddy = page + size;
6792 }
6793 page = next_page;
6794
6795 if (set_page_guard(zone, current_buddy, high, migratetype))
6796 continue;
6797
6798 if (current_buddy != target) {
6799 add_to_free_list(current_buddy, zone, high, migratetype);
6800 set_buddy_order(current_buddy, high);
6801 }
6802 }
6803 }
6804
6805 /*
6806 * Take a page that will be marked as poisoned off the buddy allocator.
6807 */
take_page_off_buddy(struct page * page)6808 bool take_page_off_buddy(struct page *page)
6809 {
6810 struct zone *zone = page_zone(page);
6811 unsigned long pfn = page_to_pfn(page);
6812 unsigned long flags;
6813 unsigned int order;
6814 bool ret = false;
6815
6816 spin_lock_irqsave(&zone->lock, flags);
6817 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6818 struct page *page_head = page - (pfn & ((1 << order) - 1));
6819 int page_order = buddy_order(page_head);
6820
6821 if (PageBuddy(page_head) && page_order >= order) {
6822 unsigned long pfn_head = page_to_pfn(page_head);
6823 int migratetype = get_pfnblock_migratetype(page_head,
6824 pfn_head);
6825
6826 del_page_from_free_list(page_head, zone, page_order);
6827 break_down_buddy_pages(zone, page_head, page, 0,
6828 page_order, migratetype);
6829 SetPageHWPoisonTakenOff(page);
6830 if (!is_migrate_isolate(migratetype))
6831 __mod_zone_freepage_state(zone, -1, migratetype);
6832 ret = true;
6833 break;
6834 }
6835 if (page_count(page_head) > 0)
6836 break;
6837 }
6838 spin_unlock_irqrestore(&zone->lock, flags);
6839 return ret;
6840 }
6841
6842 /*
6843 * Cancel takeoff done by take_page_off_buddy().
6844 */
put_page_back_buddy(struct page * page)6845 bool put_page_back_buddy(struct page *page)
6846 {
6847 struct zone *zone = page_zone(page);
6848 unsigned long pfn = page_to_pfn(page);
6849 unsigned long flags;
6850 int migratetype = get_pfnblock_migratetype(page, pfn);
6851 bool ret = false;
6852
6853 spin_lock_irqsave(&zone->lock, flags);
6854 if (put_page_testzero(page)) {
6855 ClearPageHWPoisonTakenOff(page);
6856 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6857 if (TestClearPageHWPoison(page)) {
6858 ret = true;
6859 }
6860 }
6861 spin_unlock_irqrestore(&zone->lock, flags);
6862
6863 return ret;
6864 }
6865 #endif
6866
6867 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6868 bool has_managed_dma(void)
6869 {
6870 struct pglist_data *pgdat;
6871
6872 for_each_online_pgdat(pgdat) {
6873 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6874
6875 if (managed_zone(zone))
6876 return true;
6877 }
6878 return false;
6879 }
6880 #endif /* CONFIG_ZONE_DMA */
6881
6882 #ifdef CONFIG_UNACCEPTED_MEMORY
6883
6884 /* Counts number of zones with unaccepted pages. */
6885 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6886
6887 static bool lazy_accept = true;
6888
accept_memory_parse(char * p)6889 static int __init accept_memory_parse(char *p)
6890 {
6891 if (!strcmp(p, "lazy")) {
6892 lazy_accept = true;
6893 return 0;
6894 } else if (!strcmp(p, "eager")) {
6895 lazy_accept = false;
6896 return 0;
6897 } else {
6898 return -EINVAL;
6899 }
6900 }
6901 early_param("accept_memory", accept_memory_parse);
6902
page_contains_unaccepted(struct page * page,unsigned int order)6903 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6904 {
6905 phys_addr_t start = page_to_phys(page);
6906 phys_addr_t end = start + (PAGE_SIZE << order);
6907
6908 return range_contains_unaccepted_memory(start, end);
6909 }
6910
accept_page(struct page * page,unsigned int order)6911 static void accept_page(struct page *page, unsigned int order)
6912 {
6913 phys_addr_t start = page_to_phys(page);
6914
6915 accept_memory(start, start + (PAGE_SIZE << order));
6916 }
6917
try_to_accept_memory_one(struct zone * zone)6918 static bool try_to_accept_memory_one(struct zone *zone)
6919 {
6920 unsigned long flags;
6921 struct page *page;
6922 bool last;
6923
6924 spin_lock_irqsave(&zone->lock, flags);
6925 page = list_first_entry_or_null(&zone->unaccepted_pages,
6926 struct page, lru);
6927 if (!page) {
6928 spin_unlock_irqrestore(&zone->lock, flags);
6929 return false;
6930 }
6931
6932 list_del(&page->lru);
6933 last = list_empty(&zone->unaccepted_pages);
6934
6935 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6936 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6937 spin_unlock_irqrestore(&zone->lock, flags);
6938
6939 accept_page(page, MAX_ORDER);
6940
6941 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6942
6943 if (last)
6944 static_branch_dec(&zones_with_unaccepted_pages);
6945
6946 return true;
6947 }
6948
cond_accept_memory(struct zone * zone,unsigned int order)6949 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6950 {
6951 long to_accept;
6952 bool ret = false;
6953
6954 if (!has_unaccepted_memory())
6955 return false;
6956
6957 if (list_empty(&zone->unaccepted_pages))
6958 return false;
6959
6960 /* How much to accept to get to high watermark? */
6961 to_accept = high_wmark_pages(zone) -
6962 (zone_page_state(zone, NR_FREE_PAGES) -
6963 __zone_watermark_unusable_free(zone, order, 0) -
6964 zone_page_state(zone, NR_UNACCEPTED));
6965
6966 while (to_accept > 0) {
6967 if (!try_to_accept_memory_one(zone))
6968 break;
6969 ret = true;
6970 to_accept -= MAX_ORDER_NR_PAGES;
6971 }
6972
6973 return ret;
6974 }
6975
has_unaccepted_memory(void)6976 static inline bool has_unaccepted_memory(void)
6977 {
6978 return static_branch_unlikely(&zones_with_unaccepted_pages);
6979 }
6980
__free_unaccepted(struct page * page)6981 static bool __free_unaccepted(struct page *page)
6982 {
6983 struct zone *zone = page_zone(page);
6984 unsigned long flags;
6985 bool first = false;
6986
6987 if (!lazy_accept)
6988 return false;
6989
6990 spin_lock_irqsave(&zone->lock, flags);
6991 first = list_empty(&zone->unaccepted_pages);
6992 list_add_tail(&page->lru, &zone->unaccepted_pages);
6993 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6994 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6995 spin_unlock_irqrestore(&zone->lock, flags);
6996
6997 if (first)
6998 static_branch_inc(&zones_with_unaccepted_pages);
6999
7000 return true;
7001 }
7002
7003 #else
7004
page_contains_unaccepted(struct page * page,unsigned int order)7005 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7006 {
7007 return false;
7008 }
7009
accept_page(struct page * page,unsigned int order)7010 static void accept_page(struct page *page, unsigned int order)
7011 {
7012 }
7013
cond_accept_memory(struct zone * zone,unsigned int order)7014 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7015 {
7016 return false;
7017 }
7018
has_unaccepted_memory(void)7019 static inline bool has_unaccepted_memory(void)
7020 {
7021 return false;
7022 }
7023
__free_unaccepted(struct page * page)7024 static bool __free_unaccepted(struct page *page)
7025 {
7026 BUILD_BUG();
7027 return false;
7028 }
7029
7030 #endif /* CONFIG_UNACCEPTED_MEMORY */
7031