• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/memblock.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_pinner.h>
11 #include <linux/page_idle.h>
12 #include <linux/page_table_check.h>
13 #include <linux/rcupdate.h>
14 
15 /*
16  * struct page extension
17  *
18  * This is the feature to manage memory for extended data per page.
19  *
20  * Until now, we must modify struct page itself to store extra data per page.
21  * This requires rebuilding the kernel and it is really time consuming process.
22  * And, sometimes, rebuild is impossible due to third party module dependency.
23  * At last, enlarging struct page could cause un-wanted system behaviour change.
24  *
25  * This feature is intended to overcome above mentioned problems. This feature
26  * allocates memory for extended data per page in certain place rather than
27  * the struct page itself. This memory can be accessed by the accessor
28  * functions provided by this code. During the boot process, it checks whether
29  * allocation of huge chunk of memory is needed or not. If not, it avoids
30  * allocating memory at all. With this advantage, we can include this feature
31  * into the kernel in default and can avoid rebuild and solve related problems.
32  *
33  * To help these things to work well, there are two callbacks for clients. One
34  * is the need callback which is mandatory if user wants to avoid useless
35  * memory allocation at boot-time. The other is optional, init callback, which
36  * is used to do proper initialization after memory is allocated.
37  *
38  * The need callback is used to decide whether extended memory allocation is
39  * needed or not. Sometimes users want to deactivate some features in this
40  * boot and extra memory would be unnecessary. In this case, to avoid
41  * allocating huge chunk of memory, each clients represent their need of
42  * extra memory through the need callback. If one of the need callbacks
43  * returns true, it means that someone needs extra memory so that
44  * page extension core should allocates memory for page extension. If
45  * none of need callbacks return true, memory isn't needed at all in this boot
46  * and page extension core can skip to allocate memory. As result,
47  * none of memory is wasted.
48  *
49  * When need callback returns true, page_ext checks if there is a request for
50  * extra memory through size in struct page_ext_operations. If it is non-zero,
51  * extra space is allocated for each page_ext entry and offset is returned to
52  * user through offset in struct page_ext_operations.
53  *
54  * The init callback is used to do proper initialization after page extension
55  * is completely initialized. In sparse memory system, extra memory is
56  * allocated some time later than memmap is allocated. In other words, lifetime
57  * of memory for page extension isn't same with memmap for struct page.
58  * Therefore, clients can't store extra data until page extension is
59  * initialized, even if pages are allocated and used freely. This could
60  * cause inadequate state of extra data per page, so, to prevent it, client
61  * can utilize this callback to initialize the state of it correctly.
62  */
63 
64 #ifdef CONFIG_SPARSEMEM
65 #define PAGE_EXT_INVALID       (0x1)
66 #endif
67 
68 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
need_page_idle(void)69 static bool need_page_idle(void)
70 {
71 	return true;
72 }
73 static struct page_ext_operations page_idle_ops __initdata = {
74 	.need = need_page_idle,
75 	.need_shared_flags = true,
76 };
77 #endif
78 
79 static struct page_ext_operations *page_ext_ops[] __initdata = {
80 #ifdef CONFIG_PAGE_OWNER
81 	&page_owner_ops,
82 #endif
83 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
84 	&page_idle_ops,
85 #endif
86 #ifdef CONFIG_PAGE_PINNER
87 	&page_pinner_ops,
88 #endif
89 #ifdef CONFIG_PAGE_TABLE_CHECK
90 	&page_table_check_ops,
91 #endif
92 };
93 
94 unsigned long page_ext_size;
95 
96 static unsigned long total_usage;
97 
98 bool early_page_ext __meminitdata;
setup_early_page_ext(char * str)99 static int __init setup_early_page_ext(char *str)
100 {
101 	early_page_ext = true;
102 	return 0;
103 }
104 early_param("early_page_ext", setup_early_page_ext);
105 
invoke_need_callbacks(void)106 static bool __init invoke_need_callbacks(void)
107 {
108 	int i;
109 	int entries = ARRAY_SIZE(page_ext_ops);
110 	bool need = false;
111 
112 	for (i = 0; i < entries; i++) {
113 		if (page_ext_ops[i]->need()) {
114 			if (page_ext_ops[i]->need_shared_flags) {
115 				page_ext_size = sizeof(struct page_ext);
116 				break;
117 			}
118 		}
119 	}
120 
121 	for (i = 0; i < entries; i++) {
122 		if (page_ext_ops[i]->need()) {
123 			page_ext_ops[i]->offset = page_ext_size;
124 			page_ext_size += page_ext_ops[i]->size;
125 			need = true;
126 		}
127 	}
128 
129 	return need;
130 }
131 
invoke_init_callbacks(void)132 static void __init invoke_init_callbacks(void)
133 {
134 	int i;
135 	int entries = ARRAY_SIZE(page_ext_ops);
136 
137 	for (i = 0; i < entries; i++) {
138 		if (page_ext_ops[i]->init)
139 			page_ext_ops[i]->init();
140 	}
141 }
142 
get_entry(void * base,unsigned long index)143 static inline struct page_ext *get_entry(void *base, unsigned long index)
144 {
145 	return base + page_ext_size * index;
146 }
147 
148 #ifndef CONFIG_SPARSEMEM
page_ext_init_flatmem_late(void)149 void __init page_ext_init_flatmem_late(void)
150 {
151 	invoke_init_callbacks();
152 }
153 
pgdat_page_ext_init(struct pglist_data * pgdat)154 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
155 {
156 	pgdat->node_page_ext = NULL;
157 }
158 
lookup_page_ext(const struct page * page)159 static struct page_ext *lookup_page_ext(const struct page *page)
160 {
161 	unsigned long pfn = page_to_pfn(page);
162 	unsigned long index;
163 	struct page_ext *base;
164 
165 	WARN_ON_ONCE(!rcu_read_lock_held());
166 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
167 	/*
168 	 * The sanity checks the page allocator does upon freeing a
169 	 * page can reach here before the page_ext arrays are
170 	 * allocated when feeding a range of pages to the allocator
171 	 * for the first time during bootup or memory hotplug.
172 	 */
173 	if (unlikely(!base))
174 		return NULL;
175 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
176 					MAX_ORDER_NR_PAGES);
177 	return get_entry(base, index);
178 }
179 
alloc_node_page_ext(int nid)180 static int __init alloc_node_page_ext(int nid)
181 {
182 	struct page_ext *base;
183 	unsigned long table_size;
184 	unsigned long nr_pages;
185 
186 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
187 	if (!nr_pages)
188 		return 0;
189 
190 	/*
191 	 * Need extra space if node range is not aligned with
192 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
193 	 * checks buddy's status, range could be out of exact node range.
194 	 */
195 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
196 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
197 		nr_pages += MAX_ORDER_NR_PAGES;
198 
199 	table_size = page_ext_size * nr_pages;
200 
201 	base = memblock_alloc_try_nid(
202 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
203 			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
204 	if (!base)
205 		return -ENOMEM;
206 	NODE_DATA(nid)->node_page_ext = base;
207 	total_usage += table_size;
208 	return 0;
209 }
210 
page_ext_init_flatmem(void)211 void __init page_ext_init_flatmem(void)
212 {
213 
214 	int nid, fail;
215 
216 	if (!invoke_need_callbacks())
217 		return;
218 
219 	for_each_online_node(nid)  {
220 		fail = alloc_node_page_ext(nid);
221 		if (fail)
222 			goto fail;
223 	}
224 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
225 	return;
226 
227 fail:
228 	pr_crit("allocation of page_ext failed.\n");
229 	panic("Out of memory");
230 }
231 
232 #else /* CONFIG_SPARSEMEM */
page_ext_invalid(struct page_ext * page_ext)233 static bool page_ext_invalid(struct page_ext *page_ext)
234 {
235 	return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID);
236 }
237 
lookup_page_ext(const struct page * page)238 static struct page_ext *lookup_page_ext(const struct page *page)
239 {
240 	unsigned long pfn = page_to_pfn(page);
241 	struct mem_section *section = __pfn_to_section(pfn);
242 	struct page_ext *page_ext = READ_ONCE(section->page_ext);
243 
244 	WARN_ON_ONCE(!rcu_read_lock_held());
245 	/*
246 	 * The sanity checks the page allocator does upon freeing a
247 	 * page can reach here before the page_ext arrays are
248 	 * allocated when feeding a range of pages to the allocator
249 	 * for the first time during bootup or memory hotplug.
250 	 */
251 	if (page_ext_invalid(page_ext))
252 		return NULL;
253 	return get_entry(page_ext, pfn);
254 }
255 
alloc_page_ext(size_t size,int nid)256 static void *__meminit alloc_page_ext(size_t size, int nid)
257 {
258 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
259 	void *addr = NULL;
260 
261 	addr = alloc_pages_exact_nid(nid, size, flags);
262 	if (addr) {
263 		kmemleak_alloc(addr, size, 1, flags);
264 		return addr;
265 	}
266 
267 	addr = vzalloc_node(size, nid);
268 
269 	return addr;
270 }
271 
init_section_page_ext(unsigned long pfn,int nid)272 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
273 {
274 	struct mem_section *section;
275 	struct page_ext *base;
276 	unsigned long table_size;
277 
278 	section = __pfn_to_section(pfn);
279 
280 	if (section->page_ext)
281 		return 0;
282 
283 	table_size = page_ext_size * PAGES_PER_SECTION;
284 	base = alloc_page_ext(table_size, nid);
285 
286 	/*
287 	 * The value stored in section->page_ext is (base - pfn)
288 	 * and it does not point to the memory block allocated above,
289 	 * causing kmemleak false positives.
290 	 */
291 	kmemleak_not_leak(base);
292 
293 	if (!base) {
294 		pr_err("page ext allocation failure\n");
295 		return -ENOMEM;
296 	}
297 
298 	/*
299 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
300 	 * we need to apply a mask.
301 	 */
302 	pfn &= PAGE_SECTION_MASK;
303 	section->page_ext = (void *)base - page_ext_size * pfn;
304 	total_usage += table_size;
305 	return 0;
306 }
307 
free_page_ext(void * addr)308 static void free_page_ext(void *addr)
309 {
310 	if (is_vmalloc_addr(addr)) {
311 		vfree(addr);
312 	} else {
313 		struct page *page = virt_to_page(addr);
314 		size_t table_size;
315 
316 		table_size = page_ext_size * PAGES_PER_SECTION;
317 
318 		BUG_ON(PageReserved(page));
319 		kmemleak_free(addr);
320 		free_pages_exact(addr, table_size);
321 	}
322 }
323 
__free_page_ext(unsigned long pfn)324 static void __free_page_ext(unsigned long pfn)
325 {
326 	struct mem_section *ms;
327 	struct page_ext *base;
328 
329 	ms = __pfn_to_section(pfn);
330 	if (!ms || !ms->page_ext)
331 		return;
332 
333 	base = READ_ONCE(ms->page_ext);
334 	/*
335 	 * page_ext here can be valid while doing the roll back
336 	 * operation in online_page_ext().
337 	 */
338 	if (page_ext_invalid(base))
339 		base = (void *)base - PAGE_EXT_INVALID;
340 	WRITE_ONCE(ms->page_ext, NULL);
341 
342 	base = get_entry(base, pfn);
343 	free_page_ext(base);
344 }
345 
__invalidate_page_ext(unsigned long pfn)346 static void __invalidate_page_ext(unsigned long pfn)
347 {
348 	struct mem_section *ms;
349 	void *val;
350 
351 	ms = __pfn_to_section(pfn);
352 	if (!ms || !ms->page_ext)
353 		return;
354 	val = (void *)ms->page_ext + PAGE_EXT_INVALID;
355 	WRITE_ONCE(ms->page_ext, val);
356 }
357 
online_page_ext(unsigned long start_pfn,unsigned long nr_pages,int nid)358 static int __meminit online_page_ext(unsigned long start_pfn,
359 				unsigned long nr_pages,
360 				int nid)
361 {
362 	unsigned long start, end, pfn;
363 	int fail = 0;
364 
365 	start = SECTION_ALIGN_DOWN(start_pfn);
366 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
367 
368 	if (nid == NUMA_NO_NODE) {
369 		/*
370 		 * In this case, "nid" already exists and contains valid memory.
371 		 * "start_pfn" passed to us is a pfn which is an arg for
372 		 * online__pages(), and start_pfn should exist.
373 		 */
374 		nid = pfn_to_nid(start_pfn);
375 		VM_BUG_ON(!node_online(nid));
376 	}
377 
378 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
379 		fail = init_section_page_ext(pfn, nid);
380 	if (!fail)
381 		return 0;
382 
383 	/* rollback */
384 	end = pfn - PAGES_PER_SECTION;
385 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
386 		__free_page_ext(pfn);
387 
388 	return -ENOMEM;
389 }
390 
offline_page_ext(unsigned long start_pfn,unsigned long nr_pages)391 static void __meminit offline_page_ext(unsigned long start_pfn,
392 				unsigned long nr_pages)
393 {
394 	unsigned long start, end, pfn;
395 
396 	start = SECTION_ALIGN_DOWN(start_pfn);
397 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
398 
399 	/*
400 	 * Freeing of page_ext is done in 3 steps to avoid
401 	 * use-after-free of it:
402 	 * 1) Traverse all the sections and mark their page_ext
403 	 *    as invalid.
404 	 * 2) Wait for all the existing users of page_ext who
405 	 *    started before invalidation to finish.
406 	 * 3) Free the page_ext.
407 	 */
408 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
409 		__invalidate_page_ext(pfn);
410 
411 	synchronize_rcu();
412 
413 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
414 		__free_page_ext(pfn);
415 }
416 
page_ext_callback(struct notifier_block * self,unsigned long action,void * arg)417 static int __meminit page_ext_callback(struct notifier_block *self,
418 			       unsigned long action, void *arg)
419 {
420 	struct memory_notify *mn = arg;
421 	int ret = 0;
422 
423 	switch (action) {
424 	case MEM_GOING_ONLINE:
425 		ret = online_page_ext(mn->start_pfn,
426 				   mn->nr_pages, mn->status_change_nid);
427 		break;
428 	case MEM_OFFLINE:
429 		offline_page_ext(mn->start_pfn,
430 				mn->nr_pages);
431 		break;
432 	case MEM_CANCEL_ONLINE:
433 		offline_page_ext(mn->start_pfn,
434 				mn->nr_pages);
435 		break;
436 	case MEM_GOING_OFFLINE:
437 		break;
438 	case MEM_ONLINE:
439 	case MEM_CANCEL_OFFLINE:
440 		break;
441 	}
442 
443 	return notifier_from_errno(ret);
444 }
445 
page_ext_init(void)446 void __init page_ext_init(void)
447 {
448 	unsigned long pfn;
449 	int nid;
450 
451 	if (!invoke_need_callbacks())
452 		return;
453 
454 	for_each_node_state(nid, N_MEMORY) {
455 		unsigned long start_pfn, end_pfn;
456 
457 		start_pfn = node_start_pfn(nid);
458 		end_pfn = node_end_pfn(nid);
459 		/*
460 		 * start_pfn and end_pfn may not be aligned to SECTION and the
461 		 * page->flags of out of node pages are not initialized.  So we
462 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
463 		 */
464 		for (pfn = start_pfn; pfn < end_pfn;
465 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
466 
467 			if (!pfn_valid(pfn))
468 				continue;
469 			/*
470 			 * Nodes's pfns can be overlapping.
471 			 * We know some arch can have a nodes layout such as
472 			 * -------------pfn-------------->
473 			 * N0 | N1 | N2 | N0 | N1 | N2|....
474 			 */
475 			if (pfn_to_nid(pfn) != nid)
476 				continue;
477 			if (init_section_page_ext(pfn, nid))
478 				goto oom;
479 			cond_resched();
480 		}
481 	}
482 	hotplug_memory_notifier(page_ext_callback, DEFAULT_CALLBACK_PRI);
483 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
484 	invoke_init_callbacks();
485 	return;
486 
487 oom:
488 	panic("Out of memory");
489 }
490 
pgdat_page_ext_init(struct pglist_data * pgdat)491 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
492 {
493 }
494 
495 #endif
496 
497 /**
498  * page_ext_get() - Get the extended information for a page.
499  * @page: The page we're interested in.
500  *
501  * Ensures that the page_ext will remain valid until page_ext_put()
502  * is called.
503  *
504  * Return: NULL if no page_ext exists for this page.
505  * Context: Any context.  Caller may not sleep until they have called
506  * page_ext_put().
507  */
page_ext_get(struct page * page)508 struct page_ext *page_ext_get(struct page *page)
509 {
510 	struct page_ext *page_ext;
511 
512 	rcu_read_lock();
513 	page_ext = lookup_page_ext(page);
514 	if (!page_ext) {
515 		rcu_read_unlock();
516 		return NULL;
517 	}
518 
519 	return page_ext;
520 }
521 EXPORT_SYMBOL_NS_GPL(page_ext_get, MINIDUMP);
522 
523 /**
524  * page_ext_put() - Working with page extended information is done.
525  * @page_ext: Page extended information received from page_ext_get().
526  *
527  * The page extended information of the page may not be valid after this
528  * function is called.
529  *
530  * Return: None.
531  * Context: Any context with corresponding page_ext_get() is called.
532  */
page_ext_put(struct page_ext * page_ext)533 void page_ext_put(struct page_ext *page_ext)
534 {
535 	if (unlikely(!page_ext))
536 		return;
537 
538 	rcu_read_unlock();
539 }
540 EXPORT_SYMBOL_NS_GPL(page_ext_put, MINIDUMP);
541