1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67
68 #include "internal.h"
69 #include "swap.h"
70
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73
74 #undef CREATE_TRACE_POINTS
75 #include <trace/hooks/vmscan.h>
76 #include <trace/hooks/mm.h>
77
78 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_direct_reclaim_begin);
79 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_direct_reclaim_end);
80 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_kswapd_wake);
81
82 struct scan_control {
83 /* How many pages shrink_list() should reclaim */
84 unsigned long nr_to_reclaim;
85
86 /*
87 * Nodemask of nodes allowed by the caller. If NULL, all nodes
88 * are scanned.
89 */
90 nodemask_t *nodemask;
91
92 /*
93 * The memory cgroup that hit its limit and as a result is the
94 * primary target of this reclaim invocation.
95 */
96 struct mem_cgroup *target_mem_cgroup;
97
98 /*
99 * Scan pressure balancing between anon and file LRUs
100 */
101 unsigned long anon_cost;
102 unsigned long file_cost;
103
104 /* Can active folios be deactivated as part of reclaim? */
105 #define DEACTIVATE_ANON 1
106 #define DEACTIVATE_FILE 2
107 unsigned int may_deactivate:2;
108 unsigned int force_deactivate:1;
109 unsigned int skipped_deactivate:1;
110
111 /* Writepage batching in laptop mode; RECLAIM_WRITE */
112 unsigned int may_writepage:1;
113
114 /* Can mapped folios be reclaimed? */
115 unsigned int may_unmap:1;
116
117 /* Can folios be swapped as part of reclaim? */
118 unsigned int may_swap:1;
119
120 /* Proactive reclaim invoked by userspace through memory.reclaim */
121 unsigned int proactive:1;
122
123 /*
124 * Cgroup memory below memory.low is protected as long as we
125 * don't threaten to OOM. If any cgroup is reclaimed at
126 * reduced force or passed over entirely due to its memory.low
127 * setting (memcg_low_skipped), and nothing is reclaimed as a
128 * result, then go back for one more cycle that reclaims the protected
129 * memory (memcg_low_reclaim) to avert OOM.
130 */
131 unsigned int memcg_low_reclaim:1;
132 unsigned int memcg_low_skipped:1;
133
134 unsigned int hibernation_mode:1;
135
136 /* One of the zones is ready for compaction */
137 unsigned int compaction_ready:1;
138
139 /* There is easily reclaimable cold cache in the current node */
140 unsigned int cache_trim_mode:1;
141
142 /* The file folios on the current node are dangerously low */
143 unsigned int file_is_tiny:1;
144
145 /* Always discard instead of demoting to lower tier memory */
146 unsigned int no_demotion:1;
147
148 /* Allocation order */
149 s8 order;
150
151 /* Scan (total_size >> priority) pages at once */
152 s8 priority;
153
154 /* The highest zone to isolate folios for reclaim from */
155 s8 reclaim_idx;
156
157 /* This context's GFP mask */
158 gfp_t gfp_mask;
159
160 /* Incremented by the number of inactive pages that were scanned */
161 unsigned long nr_scanned;
162
163 /* Number of pages freed so far during a call to shrink_zones() */
164 unsigned long nr_reclaimed;
165
166 struct {
167 unsigned int dirty;
168 unsigned int unqueued_dirty;
169 unsigned int congested;
170 unsigned int writeback;
171 unsigned int immediate;
172 unsigned int file_taken;
173 unsigned int taken;
174 } nr;
175
176 /* for recording the reclaimed slab by now */
177 struct reclaim_state reclaim_state;
178 ANDROID_VENDOR_DATA(1);
179 };
180
181 #ifdef ARCH_HAS_PREFETCHW
182 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
183 do { \
184 if ((_folio)->lru.prev != _base) { \
185 struct folio *prev; \
186 \
187 prev = lru_to_folio(&(_folio->lru)); \
188 prefetchw(&prev->_field); \
189 } \
190 } while (0)
191 #else
192 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
193 #endif
194
195 /*
196 * From 0 .. 200. Higher means more swappy.
197 */
198 int vm_swappiness = 60;
199
200 LIST_HEAD(shrinker_list);
201 DECLARE_RWSEM(shrinker_rwsem);
202
203 #ifdef CONFIG_MEMCG
204 static int shrinker_nr_max;
205
206 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
shrinker_map_size(int nr_items)207 static inline int shrinker_map_size(int nr_items)
208 {
209 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
210 }
211
shrinker_defer_size(int nr_items)212 static inline int shrinker_defer_size(int nr_items)
213 {
214 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
215 }
216
shrinker_info_protected(struct mem_cgroup * memcg,int nid)217 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
218 int nid)
219 {
220 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
221 lockdep_is_held(&shrinker_rwsem));
222 }
223
expand_one_shrinker_info(struct mem_cgroup * memcg,int map_size,int defer_size,int old_map_size,int old_defer_size,int new_nr_max)224 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
225 int map_size, int defer_size,
226 int old_map_size, int old_defer_size,
227 int new_nr_max)
228 {
229 struct shrinker_info *new, *old;
230 struct mem_cgroup_per_node *pn;
231 int nid;
232 int size = map_size + defer_size;
233
234 for_each_node(nid) {
235 pn = memcg->nodeinfo[nid];
236 old = shrinker_info_protected(memcg, nid);
237 /* Not yet online memcg */
238 if (!old)
239 return 0;
240
241 /* Already expanded this shrinker_info */
242 if (new_nr_max <= old->map_nr_max)
243 continue;
244
245 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
246 if (!new)
247 return -ENOMEM;
248
249 new->nr_deferred = (atomic_long_t *)(new + 1);
250 new->map = (void *)new->nr_deferred + defer_size;
251 new->map_nr_max = new_nr_max;
252
253 /* map: set all old bits, clear all new bits */
254 memset(new->map, (int)0xff, old_map_size);
255 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
256 /* nr_deferred: copy old values, clear all new values */
257 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
258 memset((void *)new->nr_deferred + old_defer_size, 0,
259 defer_size - old_defer_size);
260
261 rcu_assign_pointer(pn->shrinker_info, new);
262 kvfree_rcu(old, rcu);
263 }
264
265 return 0;
266 }
267
free_shrinker_info(struct mem_cgroup * memcg)268 void free_shrinker_info(struct mem_cgroup *memcg)
269 {
270 struct mem_cgroup_per_node *pn;
271 struct shrinker_info *info;
272 int nid;
273
274 for_each_node(nid) {
275 pn = memcg->nodeinfo[nid];
276 info = rcu_dereference_protected(pn->shrinker_info, true);
277 kvfree(info);
278 rcu_assign_pointer(pn->shrinker_info, NULL);
279 }
280 }
281
alloc_shrinker_info(struct mem_cgroup * memcg)282 int alloc_shrinker_info(struct mem_cgroup *memcg)
283 {
284 struct shrinker_info *info;
285 int nid, size, ret = 0;
286 int map_size, defer_size = 0;
287
288 down_write(&shrinker_rwsem);
289 map_size = shrinker_map_size(shrinker_nr_max);
290 defer_size = shrinker_defer_size(shrinker_nr_max);
291 size = map_size + defer_size;
292 for_each_node(nid) {
293 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
294 if (!info) {
295 free_shrinker_info(memcg);
296 ret = -ENOMEM;
297 break;
298 }
299 info->nr_deferred = (atomic_long_t *)(info + 1);
300 info->map = (void *)info->nr_deferred + defer_size;
301 info->map_nr_max = shrinker_nr_max;
302 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
303 }
304 up_write(&shrinker_rwsem);
305
306 return ret;
307 }
308
expand_shrinker_info(int new_id)309 static int expand_shrinker_info(int new_id)
310 {
311 int ret = 0;
312 int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
313 int map_size, defer_size = 0;
314 int old_map_size, old_defer_size = 0;
315 struct mem_cgroup *memcg;
316
317 if (!root_mem_cgroup)
318 goto out;
319
320 lockdep_assert_held(&shrinker_rwsem);
321
322 map_size = shrinker_map_size(new_nr_max);
323 defer_size = shrinker_defer_size(new_nr_max);
324 old_map_size = shrinker_map_size(shrinker_nr_max);
325 old_defer_size = shrinker_defer_size(shrinker_nr_max);
326
327 memcg = mem_cgroup_iter(NULL, NULL, NULL);
328 do {
329 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
330 old_map_size, old_defer_size,
331 new_nr_max);
332 if (ret) {
333 mem_cgroup_iter_break(NULL, memcg);
334 goto out;
335 }
336 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
337 out:
338 if (!ret)
339 shrinker_nr_max = new_nr_max;
340
341 return ret;
342 }
343
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)344 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
345 {
346 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
347 struct shrinker_info *info;
348
349 rcu_read_lock();
350 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
351 if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
352 /* Pairs with smp mb in shrink_slab() */
353 smp_mb__before_atomic();
354 set_bit(shrinker_id, info->map);
355 }
356 rcu_read_unlock();
357 }
358 }
359
360 static DEFINE_IDR(shrinker_idr);
361
prealloc_memcg_shrinker(struct shrinker * shrinker)362 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
363 {
364 int id, ret = -ENOMEM;
365
366 if (mem_cgroup_disabled())
367 return -ENOSYS;
368
369 down_write(&shrinker_rwsem);
370 /* This may call shrinker, so it must use down_read_trylock() */
371 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
372 if (id < 0)
373 goto unlock;
374
375 if (id >= shrinker_nr_max) {
376 if (expand_shrinker_info(id)) {
377 idr_remove(&shrinker_idr, id);
378 goto unlock;
379 }
380 }
381 shrinker->id = id;
382 ret = 0;
383 unlock:
384 up_write(&shrinker_rwsem);
385 return ret;
386 }
387
unregister_memcg_shrinker(struct shrinker * shrinker)388 static void unregister_memcg_shrinker(struct shrinker *shrinker)
389 {
390 int id = shrinker->id;
391
392 BUG_ON(id < 0);
393
394 lockdep_assert_held(&shrinker_rwsem);
395
396 idr_remove(&shrinker_idr, id);
397 }
398
xchg_nr_deferred_memcg(int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)399 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
400 struct mem_cgroup *memcg)
401 {
402 struct shrinker_info *info;
403
404 info = shrinker_info_protected(memcg, nid);
405 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
406 }
407
add_nr_deferred_memcg(long nr,int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)408 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
409 struct mem_cgroup *memcg)
410 {
411 struct shrinker_info *info;
412
413 info = shrinker_info_protected(memcg, nid);
414 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
415 }
416
reparent_shrinker_deferred(struct mem_cgroup * memcg)417 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
418 {
419 int i, nid;
420 long nr;
421 struct mem_cgroup *parent;
422 struct shrinker_info *child_info, *parent_info;
423
424 parent = parent_mem_cgroup(memcg);
425 if (!parent)
426 parent = root_mem_cgroup;
427
428 /* Prevent from concurrent shrinker_info expand */
429 down_read(&shrinker_rwsem);
430 for_each_node(nid) {
431 child_info = shrinker_info_protected(memcg, nid);
432 parent_info = shrinker_info_protected(parent, nid);
433 for (i = 0; i < child_info->map_nr_max; i++) {
434 nr = atomic_long_read(&child_info->nr_deferred[i]);
435 atomic_long_add(nr, &parent_info->nr_deferred[i]);
436 }
437 }
438 up_read(&shrinker_rwsem);
439 }
440
441 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)442 static bool cgroup_reclaim(struct scan_control *sc)
443 {
444 return sc->target_mem_cgroup;
445 }
446
447 /*
448 * Returns true for reclaim on the root cgroup. This is true for direct
449 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
450 */
root_reclaim(struct scan_control * sc)451 static bool root_reclaim(struct scan_control *sc)
452 {
453 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
454 }
455
456 /**
457 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
458 * @sc: scan_control in question
459 *
460 * The normal page dirty throttling mechanism in balance_dirty_pages() is
461 * completely broken with the legacy memcg and direct stalling in
462 * shrink_folio_list() is used for throttling instead, which lacks all the
463 * niceties such as fairness, adaptive pausing, bandwidth proportional
464 * allocation and configurability.
465 *
466 * This function tests whether the vmscan currently in progress can assume
467 * that the normal dirty throttling mechanism is operational.
468 */
writeback_throttling_sane(struct scan_control * sc)469 static bool writeback_throttling_sane(struct scan_control *sc)
470 {
471 if (!cgroup_reclaim(sc))
472 return true;
473 #ifdef CONFIG_CGROUP_WRITEBACK
474 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
475 return true;
476 #endif
477 return false;
478 }
479 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)480 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
481 {
482 return -ENOSYS;
483 }
484
unregister_memcg_shrinker(struct shrinker * shrinker)485 static void unregister_memcg_shrinker(struct shrinker *shrinker)
486 {
487 }
488
xchg_nr_deferred_memcg(int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)489 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
490 struct mem_cgroup *memcg)
491 {
492 return 0;
493 }
494
add_nr_deferred_memcg(long nr,int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)495 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
496 struct mem_cgroup *memcg)
497 {
498 return 0;
499 }
500
cgroup_reclaim(struct scan_control * sc)501 static bool cgroup_reclaim(struct scan_control *sc)
502 {
503 return false;
504 }
505
root_reclaim(struct scan_control * sc)506 static bool root_reclaim(struct scan_control *sc)
507 {
508 return true;
509 }
510
writeback_throttling_sane(struct scan_control * sc)511 static bool writeback_throttling_sane(struct scan_control *sc)
512 {
513 return true;
514 }
515 #endif
516
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)517 static void set_task_reclaim_state(struct task_struct *task,
518 struct reclaim_state *rs)
519 {
520 /* Check for an overwrite */
521 WARN_ON_ONCE(rs && task->reclaim_state);
522
523 /* Check for the nulling of an already-nulled member */
524 WARN_ON_ONCE(!rs && !task->reclaim_state);
525
526 task->reclaim_state = rs;
527 }
528
529 /*
530 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
531 * scan_control->nr_reclaimed.
532 */
flush_reclaim_state(struct scan_control * sc)533 static void flush_reclaim_state(struct scan_control *sc)
534 {
535 /*
536 * Currently, reclaim_state->reclaimed includes three types of pages
537 * freed outside of vmscan:
538 * (1) Slab pages.
539 * (2) Clean file pages from pruned inodes (on highmem systems).
540 * (3) XFS freed buffer pages.
541 *
542 * For all of these cases, we cannot universally link the pages to a
543 * single memcg. For example, a memcg-aware shrinker can free one object
544 * charged to the target memcg, causing an entire page to be freed.
545 * If we count the entire page as reclaimed from the memcg, we end up
546 * overestimating the reclaimed amount (potentially under-reclaiming).
547 *
548 * Only count such pages for global reclaim to prevent under-reclaiming
549 * from the target memcg; preventing unnecessary retries during memcg
550 * charging and false positives from proactive reclaim.
551 *
552 * For uncommon cases where the freed pages were actually mostly
553 * charged to the target memcg, we end up underestimating the reclaimed
554 * amount. This should be fine. The freed pages will be uncharged
555 * anyway, even if they are not counted here properly, and we will be
556 * able to make forward progress in charging (which is usually in a
557 * retry loop).
558 *
559 * We can go one step further, and report the uncharged objcg pages in
560 * memcg reclaim, to make reporting more accurate and reduce
561 * underestimation, but it's probably not worth the complexity for now.
562 */
563 if (current->reclaim_state && root_reclaim(sc)) {
564 sc->nr_reclaimed += current->reclaim_state->reclaimed;
565 current->reclaim_state->reclaimed = 0;
566 }
567 }
568
xchg_nr_deferred(struct shrinker * shrinker,struct shrink_control * sc)569 static long xchg_nr_deferred(struct shrinker *shrinker,
570 struct shrink_control *sc)
571 {
572 int nid = sc->nid;
573
574 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
575 nid = 0;
576
577 if (sc->memcg &&
578 (shrinker->flags & SHRINKER_MEMCG_AWARE))
579 return xchg_nr_deferred_memcg(nid, shrinker,
580 sc->memcg);
581
582 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
583 }
584
585
add_nr_deferred(long nr,struct shrinker * shrinker,struct shrink_control * sc)586 static long add_nr_deferred(long nr, struct shrinker *shrinker,
587 struct shrink_control *sc)
588 {
589 int nid = sc->nid;
590
591 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
592 nid = 0;
593
594 if (sc->memcg &&
595 (shrinker->flags & SHRINKER_MEMCG_AWARE))
596 return add_nr_deferred_memcg(nr, nid, shrinker,
597 sc->memcg);
598
599 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
600 }
601
can_demote(int nid,struct scan_control * sc)602 static bool can_demote(int nid, struct scan_control *sc)
603 {
604 if (!numa_demotion_enabled)
605 return false;
606 if (sc && sc->no_demotion)
607 return false;
608 if (next_demotion_node(nid) == NUMA_NO_NODE)
609 return false;
610
611 return true;
612 }
613
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)614 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
615 int nid,
616 struct scan_control *sc)
617 {
618 if (memcg == NULL) {
619 /*
620 * For non-memcg reclaim, is there
621 * space in any swap device?
622 */
623 if (get_nr_swap_pages() > 0)
624 return true;
625 } else {
626 /* Is the memcg below its swap limit? */
627 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
628 return true;
629 }
630
631 /*
632 * The page can not be swapped.
633 *
634 * Can it be reclaimed from this node via demotion?
635 */
636 return can_demote(nid, sc);
637 }
638
639 /*
640 * This misses isolated folios which are not accounted for to save counters.
641 * As the data only determines if reclaim or compaction continues, it is
642 * not expected that isolated folios will be a dominating factor.
643 */
zone_reclaimable_pages(struct zone * zone)644 unsigned long zone_reclaimable_pages(struct zone *zone)
645 {
646 unsigned long nr;
647
648 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
649 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
650 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
651 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
652 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
653
654 return nr;
655 }
656
657 /**
658 * lruvec_lru_size - Returns the number of pages on the given LRU list.
659 * @lruvec: lru vector
660 * @lru: lru to use
661 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
662 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)663 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
664 int zone_idx)
665 {
666 unsigned long size = 0;
667 int zid;
668
669 for (zid = 0; zid <= zone_idx; zid++) {
670 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
671
672 if (!managed_zone(zone))
673 continue;
674
675 if (!mem_cgroup_disabled())
676 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
677 else
678 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
679 }
680 return size;
681 }
682
683 /*
684 * Add a shrinker callback to be called from the vm.
685 */
__prealloc_shrinker(struct shrinker * shrinker)686 static int __prealloc_shrinker(struct shrinker *shrinker)
687 {
688 unsigned int size;
689 int err;
690
691 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
692 err = prealloc_memcg_shrinker(shrinker);
693 if (err != -ENOSYS)
694 return err;
695
696 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
697 }
698
699 size = sizeof(*shrinker->nr_deferred);
700 if (shrinker->flags & SHRINKER_NUMA_AWARE)
701 size *= nr_node_ids;
702
703 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
704 if (!shrinker->nr_deferred)
705 return -ENOMEM;
706
707 return 0;
708 }
709
710 #ifdef CONFIG_SHRINKER_DEBUG
prealloc_shrinker(struct shrinker * shrinker,const char * fmt,...)711 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
712 {
713 va_list ap;
714 int err;
715
716 va_start(ap, fmt);
717 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
718 va_end(ap);
719 if (!shrinker->name)
720 return -ENOMEM;
721
722 err = __prealloc_shrinker(shrinker);
723 if (err) {
724 kfree_const(shrinker->name);
725 shrinker->name = NULL;
726 }
727
728 return err;
729 }
730 #else
prealloc_shrinker(struct shrinker * shrinker,const char * fmt,...)731 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
732 {
733 return __prealloc_shrinker(shrinker);
734 }
735 #endif
736
free_prealloced_shrinker(struct shrinker * shrinker)737 void free_prealloced_shrinker(struct shrinker *shrinker)
738 {
739 #ifdef CONFIG_SHRINKER_DEBUG
740 kfree_const(shrinker->name);
741 shrinker->name = NULL;
742 #endif
743 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
744 down_write(&shrinker_rwsem);
745 unregister_memcg_shrinker(shrinker);
746 up_write(&shrinker_rwsem);
747 return;
748 }
749
750 kfree(shrinker->nr_deferred);
751 shrinker->nr_deferred = NULL;
752 }
753
register_shrinker_prepared(struct shrinker * shrinker)754 void register_shrinker_prepared(struct shrinker *shrinker)
755 {
756 down_write(&shrinker_rwsem);
757 list_add_tail(&shrinker->list, &shrinker_list);
758 shrinker->flags |= SHRINKER_REGISTERED;
759 shrinker_debugfs_add(shrinker);
760 up_write(&shrinker_rwsem);
761 }
762
__register_shrinker(struct shrinker * shrinker)763 static int __register_shrinker(struct shrinker *shrinker)
764 {
765 int err = __prealloc_shrinker(shrinker);
766
767 if (err)
768 return err;
769 register_shrinker_prepared(shrinker);
770 return 0;
771 }
772
773 #ifdef CONFIG_SHRINKER_DEBUG
register_shrinker(struct shrinker * shrinker,const char * fmt,...)774 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
775 {
776 va_list ap;
777 int err;
778
779 va_start(ap, fmt);
780 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
781 va_end(ap);
782 if (!shrinker->name)
783 return -ENOMEM;
784
785 err = __register_shrinker(shrinker);
786 if (err) {
787 kfree_const(shrinker->name);
788 shrinker->name = NULL;
789 }
790 return err;
791 }
792 #else
register_shrinker(struct shrinker * shrinker,const char * fmt,...)793 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
794 {
795 return __register_shrinker(shrinker);
796 }
797 #endif
798 EXPORT_SYMBOL(register_shrinker);
799
800 /*
801 * Remove one
802 */
unregister_shrinker(struct shrinker * shrinker)803 void unregister_shrinker(struct shrinker *shrinker)
804 {
805 struct dentry *debugfs_entry;
806 int debugfs_id;
807
808 if (!(shrinker->flags & SHRINKER_REGISTERED))
809 return;
810
811 down_write(&shrinker_rwsem);
812 list_del(&shrinker->list);
813 shrinker->flags &= ~SHRINKER_REGISTERED;
814 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
815 unregister_memcg_shrinker(shrinker);
816 debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id);
817 up_write(&shrinker_rwsem);
818
819 shrinker_debugfs_remove(debugfs_entry, debugfs_id);
820
821 kfree(shrinker->nr_deferred);
822 shrinker->nr_deferred = NULL;
823 }
824 EXPORT_SYMBOL(unregister_shrinker);
825
826 /**
827 * synchronize_shrinkers - Wait for all running shrinkers to complete.
828 *
829 * This is equivalent to calling unregister_shrink() and register_shrinker(),
830 * but atomically and with less overhead. This is useful to guarantee that all
831 * shrinker invocations have seen an update, before freeing memory, similar to
832 * rcu.
833 */
synchronize_shrinkers(void)834 void synchronize_shrinkers(void)
835 {
836 down_write(&shrinker_rwsem);
837 up_write(&shrinker_rwsem);
838 }
839 EXPORT_SYMBOL(synchronize_shrinkers);
840
841 #define SHRINK_BATCH 128
842
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)843 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
844 struct shrinker *shrinker, int priority)
845 {
846 unsigned long freed = 0;
847 unsigned long long delta;
848 long total_scan;
849 long freeable;
850 long nr;
851 long new_nr;
852 long batch_size = shrinker->batch ? shrinker->batch
853 : SHRINK_BATCH;
854 long scanned = 0, next_deferred;
855
856 freeable = shrinker->count_objects(shrinker, shrinkctl);
857 trace_android_vh_do_shrink_slab(shrinker, &freeable);
858 if (freeable == 0 || freeable == SHRINK_EMPTY)
859 return freeable;
860
861 /*
862 * copy the current shrinker scan count into a local variable
863 * and zero it so that other concurrent shrinker invocations
864 * don't also do this scanning work.
865 */
866 nr = xchg_nr_deferred(shrinker, shrinkctl);
867
868 if (shrinker->seeks) {
869 delta = freeable >> priority;
870 delta *= 4;
871 do_div(delta, shrinker->seeks);
872 } else {
873 /*
874 * These objects don't require any IO to create. Trim
875 * them aggressively under memory pressure to keep
876 * them from causing refetches in the IO caches.
877 */
878 delta = freeable / 2;
879 }
880
881 total_scan = nr >> priority;
882 total_scan += delta;
883 total_scan = min(total_scan, (2 * freeable));
884
885 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
886 freeable, delta, total_scan, priority);
887
888 /*
889 * Normally, we should not scan less than batch_size objects in one
890 * pass to avoid too frequent shrinker calls, but if the slab has less
891 * than batch_size objects in total and we are really tight on memory,
892 * we will try to reclaim all available objects, otherwise we can end
893 * up failing allocations although there are plenty of reclaimable
894 * objects spread over several slabs with usage less than the
895 * batch_size.
896 *
897 * We detect the "tight on memory" situations by looking at the total
898 * number of objects we want to scan (total_scan). If it is greater
899 * than the total number of objects on slab (freeable), we must be
900 * scanning at high prio and therefore should try to reclaim as much as
901 * possible.
902 */
903 while (total_scan >= batch_size ||
904 total_scan >= freeable) {
905 unsigned long ret;
906 unsigned long nr_to_scan = min(batch_size, total_scan);
907
908 shrinkctl->nr_to_scan = nr_to_scan;
909 shrinkctl->nr_scanned = nr_to_scan;
910 ret = shrinker->scan_objects(shrinker, shrinkctl);
911 if (ret == SHRINK_STOP)
912 break;
913 freed += ret;
914
915 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
916 total_scan -= shrinkctl->nr_scanned;
917 scanned += shrinkctl->nr_scanned;
918
919 cond_resched();
920 }
921
922 /*
923 * The deferred work is increased by any new work (delta) that wasn't
924 * done, decreased by old deferred work that was done now.
925 *
926 * And it is capped to two times of the freeable items.
927 */
928 next_deferred = max_t(long, (nr + delta - scanned), 0);
929 next_deferred = min(next_deferred, (2 * freeable));
930
931 /*
932 * move the unused scan count back into the shrinker in a
933 * manner that handles concurrent updates.
934 */
935 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
936
937 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
938 return freed;
939 }
940
941 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)942 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
943 struct mem_cgroup *memcg, int priority)
944 {
945 struct shrinker_info *info;
946 unsigned long ret, freed = 0;
947 int i;
948
949 if (!mem_cgroup_online(memcg))
950 return 0;
951
952 if (!down_read_trylock(&shrinker_rwsem))
953 return 0;
954
955 info = shrinker_info_protected(memcg, nid);
956 if (unlikely(!info))
957 goto unlock;
958
959 for_each_set_bit(i, info->map, info->map_nr_max) {
960 struct shrink_control sc = {
961 .gfp_mask = gfp_mask,
962 .nid = nid,
963 .memcg = memcg,
964 };
965 struct shrinker *shrinker;
966
967 shrinker = idr_find(&shrinker_idr, i);
968 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
969 if (!shrinker)
970 clear_bit(i, info->map);
971 continue;
972 }
973
974 /* Call non-slab shrinkers even though kmem is disabled */
975 if (!memcg_kmem_online() &&
976 !(shrinker->flags & SHRINKER_NONSLAB))
977 continue;
978
979 ret = do_shrink_slab(&sc, shrinker, priority);
980 if (ret == SHRINK_EMPTY) {
981 clear_bit(i, info->map);
982 /*
983 * After the shrinker reported that it had no objects to
984 * free, but before we cleared the corresponding bit in
985 * the memcg shrinker map, a new object might have been
986 * added. To make sure, we have the bit set in this
987 * case, we invoke the shrinker one more time and reset
988 * the bit if it reports that it is not empty anymore.
989 * The memory barrier here pairs with the barrier in
990 * set_shrinker_bit():
991 *
992 * list_lru_add() shrink_slab_memcg()
993 * list_add_tail() clear_bit()
994 * <MB> <MB>
995 * set_bit() do_shrink_slab()
996 */
997 smp_mb__after_atomic();
998 ret = do_shrink_slab(&sc, shrinker, priority);
999 if (ret == SHRINK_EMPTY)
1000 ret = 0;
1001 else
1002 set_shrinker_bit(memcg, nid, i);
1003 }
1004 freed += ret;
1005
1006 if (rwsem_is_contended(&shrinker_rwsem)) {
1007 freed = freed ? : 1;
1008 break;
1009 }
1010 }
1011 unlock:
1012 up_read(&shrinker_rwsem);
1013 return freed;
1014 }
1015 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)1016 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
1017 struct mem_cgroup *memcg, int priority)
1018 {
1019 return 0;
1020 }
1021 #endif /* CONFIG_MEMCG */
1022
1023 /**
1024 * shrink_slab - shrink slab caches
1025 * @gfp_mask: allocation context
1026 * @nid: node whose slab caches to target
1027 * @memcg: memory cgroup whose slab caches to target
1028 * @priority: the reclaim priority
1029 *
1030 * Call the shrink functions to age shrinkable caches.
1031 *
1032 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
1033 * unaware shrinkers will receive a node id of 0 instead.
1034 *
1035 * @memcg specifies the memory cgroup to target. Unaware shrinkers
1036 * are called only if it is the root cgroup.
1037 *
1038 * @priority is sc->priority, we take the number of objects and >> by priority
1039 * in order to get the scan target.
1040 *
1041 * Returns the number of reclaimed slab objects.
1042 */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)1043 unsigned long shrink_slab(gfp_t gfp_mask, int nid,
1044 struct mem_cgroup *memcg,
1045 int priority)
1046 {
1047 unsigned long ret, freed = 0;
1048 struct shrinker *shrinker;
1049 bool bypass = false;
1050
1051 trace_android_vh_shrink_slab_bypass(gfp_mask, nid, memcg, priority, &bypass);
1052 if (bypass)
1053 return 0;
1054
1055 /*
1056 * The root memcg might be allocated even though memcg is disabled
1057 * via "cgroup_disable=memory" boot parameter. This could make
1058 * mem_cgroup_is_root() return false, then just run memcg slab
1059 * shrink, but skip global shrink. This may result in premature
1060 * oom.
1061 */
1062 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1063 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1064
1065 if (!down_read_trylock(&shrinker_rwsem))
1066 goto out;
1067
1068 list_for_each_entry(shrinker, &shrinker_list, list) {
1069 struct shrink_control sc = {
1070 .gfp_mask = gfp_mask,
1071 .nid = nid,
1072 .memcg = memcg,
1073 };
1074
1075 ret = do_shrink_slab(&sc, shrinker, priority);
1076 if (ret == SHRINK_EMPTY)
1077 ret = 0;
1078 freed += ret;
1079 /*
1080 * Bail out if someone want to register a new shrinker to
1081 * prevent the registration from being stalled for long periods
1082 * by parallel ongoing shrinking.
1083 */
1084 if (rwsem_is_contended(&shrinker_rwsem)) {
1085 freed = freed ? : 1;
1086 break;
1087 }
1088 }
1089
1090 up_read(&shrinker_rwsem);
1091 out:
1092 cond_resched();
1093 return freed;
1094 }
1095 EXPORT_SYMBOL_GPL(shrink_slab);
1096
drop_slab_node(int nid)1097 static unsigned long drop_slab_node(int nid)
1098 {
1099 unsigned long freed = 0;
1100 struct mem_cgroup *memcg = NULL;
1101
1102 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1103 do {
1104 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1105 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1106
1107 return freed;
1108 }
1109
drop_slab(void)1110 void drop_slab(void)
1111 {
1112 int nid;
1113 int shift = 0;
1114 unsigned long freed;
1115
1116 do {
1117 freed = 0;
1118 for_each_online_node(nid) {
1119 if (fatal_signal_pending(current))
1120 return;
1121
1122 freed += drop_slab_node(nid);
1123 }
1124 } while ((freed >> shift++) > 1);
1125 }
1126
reclaimer_offset(void)1127 static int reclaimer_offset(void)
1128 {
1129 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1130 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1131 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1132 PGSCAN_DIRECT - PGSCAN_KSWAPD);
1133 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1134 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1135 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1136 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1137
1138 if (current_is_kswapd())
1139 return 0;
1140 if (current_is_khugepaged())
1141 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1142 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1143 }
1144
is_page_cache_freeable(struct folio * folio)1145 static inline int is_page_cache_freeable(struct folio *folio)
1146 {
1147 /*
1148 * A freeable page cache folio is referenced only by the caller
1149 * that isolated the folio, the page cache and optional filesystem
1150 * private data at folio->private.
1151 */
1152 return folio_ref_count(folio) - folio_test_private(folio) ==
1153 1 + folio_nr_pages(folio);
1154 }
1155
1156 /*
1157 * We detected a synchronous write error writing a folio out. Probably
1158 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1159 * fsync(), msync() or close().
1160 *
1161 * The tricky part is that after writepage we cannot touch the mapping: nothing
1162 * prevents it from being freed up. But we have a ref on the folio and once
1163 * that folio is locked, the mapping is pinned.
1164 *
1165 * We're allowed to run sleeping folio_lock() here because we know the caller has
1166 * __GFP_FS.
1167 */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)1168 static void handle_write_error(struct address_space *mapping,
1169 struct folio *folio, int error)
1170 {
1171 folio_lock(folio);
1172 if (folio_mapping(folio) == mapping)
1173 mapping_set_error(mapping, error);
1174 folio_unlock(folio);
1175 }
1176
skip_throttle_noprogress(pg_data_t * pgdat)1177 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1178 {
1179 int reclaimable = 0, write_pending = 0;
1180 int i;
1181
1182 /*
1183 * If kswapd is disabled, reschedule if necessary but do not
1184 * throttle as the system is likely near OOM.
1185 */
1186 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1187 return true;
1188
1189 /*
1190 * If there are a lot of dirty/writeback folios then do not
1191 * throttle as throttling will occur when the folios cycle
1192 * towards the end of the LRU if still under writeback.
1193 */
1194 for (i = 0; i < MAX_NR_ZONES; i++) {
1195 struct zone *zone = pgdat->node_zones + i;
1196
1197 if (!managed_zone(zone))
1198 continue;
1199
1200 reclaimable += zone_reclaimable_pages(zone);
1201 write_pending += zone_page_state_snapshot(zone,
1202 NR_ZONE_WRITE_PENDING);
1203 }
1204 if (2 * write_pending <= reclaimable)
1205 return true;
1206
1207 return false;
1208 }
1209
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)1210 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1211 {
1212 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1213 long timeout, ret;
1214 DEFINE_WAIT(wait);
1215
1216 /*
1217 * Do not throttle user workers, kthreads other than kswapd or
1218 * workqueues. They may be required for reclaim to make
1219 * forward progress (e.g. journalling workqueues or kthreads).
1220 */
1221 if (!current_is_kswapd() &&
1222 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
1223 cond_resched();
1224 return;
1225 }
1226
1227 /*
1228 * These figures are pulled out of thin air.
1229 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1230 * parallel reclaimers which is a short-lived event so the timeout is
1231 * short. Failing to make progress or waiting on writeback are
1232 * potentially long-lived events so use a longer timeout. This is shaky
1233 * logic as a failure to make progress could be due to anything from
1234 * writeback to a slow device to excessive referenced folios at the tail
1235 * of the inactive LRU.
1236 */
1237 switch(reason) {
1238 case VMSCAN_THROTTLE_WRITEBACK:
1239 timeout = HZ/10;
1240
1241 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1242 WRITE_ONCE(pgdat->nr_reclaim_start,
1243 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1244 }
1245
1246 break;
1247 case VMSCAN_THROTTLE_CONGESTED:
1248 fallthrough;
1249 case VMSCAN_THROTTLE_NOPROGRESS:
1250 if (skip_throttle_noprogress(pgdat)) {
1251 cond_resched();
1252 return;
1253 }
1254
1255 timeout = 1;
1256
1257 break;
1258 case VMSCAN_THROTTLE_ISOLATED:
1259 timeout = HZ/50;
1260 break;
1261 default:
1262 WARN_ON_ONCE(1);
1263 timeout = HZ;
1264 break;
1265 }
1266
1267 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1268 ret = schedule_timeout(timeout);
1269 finish_wait(wqh, &wait);
1270
1271 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1272 atomic_dec(&pgdat->nr_writeback_throttled);
1273
1274 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1275 jiffies_to_usecs(timeout - ret),
1276 reason);
1277 }
1278
1279 /*
1280 * Account for folios written if tasks are throttled waiting on dirty
1281 * folios to clean. If enough folios have been cleaned since throttling
1282 * started then wakeup the throttled tasks.
1283 */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)1284 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1285 int nr_throttled)
1286 {
1287 unsigned long nr_written;
1288
1289 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1290
1291 /*
1292 * This is an inaccurate read as the per-cpu deltas may not
1293 * be synchronised. However, given that the system is
1294 * writeback throttled, it is not worth taking the penalty
1295 * of getting an accurate count. At worst, the throttle
1296 * timeout guarantees forward progress.
1297 */
1298 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1299 READ_ONCE(pgdat->nr_reclaim_start);
1300
1301 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1302 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1303 }
1304
1305 /* possible outcome of pageout() */
1306 typedef enum {
1307 /* failed to write folio out, folio is locked */
1308 PAGE_KEEP,
1309 /* move folio to the active list, folio is locked */
1310 PAGE_ACTIVATE,
1311 /* folio has been sent to the disk successfully, folio is unlocked */
1312 PAGE_SUCCESS,
1313 /* folio is clean and locked */
1314 PAGE_CLEAN,
1315 } pageout_t;
1316
1317 /*
1318 * pageout is called by shrink_folio_list() for each dirty folio.
1319 * Calls ->writepage().
1320 */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug)1321 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1322 struct swap_iocb **plug)
1323 {
1324 /*
1325 * If the folio is dirty, only perform writeback if that write
1326 * will be non-blocking. To prevent this allocation from being
1327 * stalled by pagecache activity. But note that there may be
1328 * stalls if we need to run get_block(). We could test
1329 * PagePrivate for that.
1330 *
1331 * If this process is currently in __generic_file_write_iter() against
1332 * this folio's queue, we can perform writeback even if that
1333 * will block.
1334 *
1335 * If the folio is swapcache, write it back even if that would
1336 * block, for some throttling. This happens by accident, because
1337 * swap_backing_dev_info is bust: it doesn't reflect the
1338 * congestion state of the swapdevs. Easy to fix, if needed.
1339 */
1340 if (!is_page_cache_freeable(folio))
1341 return PAGE_KEEP;
1342 if (!mapping) {
1343 /*
1344 * Some data journaling orphaned folios can have
1345 * folio->mapping == NULL while being dirty with clean buffers.
1346 */
1347 if (folio_test_private(folio)) {
1348 if (try_to_free_buffers(folio)) {
1349 folio_clear_dirty(folio);
1350 pr_info("%s: orphaned folio\n", __func__);
1351 return PAGE_CLEAN;
1352 }
1353 }
1354 return PAGE_KEEP;
1355 }
1356 if (mapping->a_ops->writepage == NULL)
1357 return PAGE_ACTIVATE;
1358
1359 if (folio_clear_dirty_for_io(folio)) {
1360 int res;
1361 struct writeback_control wbc = {
1362 .sync_mode = WB_SYNC_NONE,
1363 .nr_to_write = SWAP_CLUSTER_MAX,
1364 .range_start = 0,
1365 .range_end = LLONG_MAX,
1366 .for_reclaim = 1,
1367 .swap_plug = plug,
1368 };
1369
1370 folio_set_reclaim(folio);
1371 res = mapping->a_ops->writepage(&folio->page, &wbc);
1372 if (res < 0)
1373 handle_write_error(mapping, folio, res);
1374 if (res == AOP_WRITEPAGE_ACTIVATE) {
1375 folio_clear_reclaim(folio);
1376 return PAGE_ACTIVATE;
1377 }
1378
1379 if (!folio_test_writeback(folio)) {
1380 /* synchronous write or broken a_ops? */
1381 folio_clear_reclaim(folio);
1382 }
1383 trace_mm_vmscan_write_folio(folio);
1384 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1385 return PAGE_SUCCESS;
1386 }
1387
1388 return PAGE_CLEAN;
1389 }
1390
1391 /*
1392 * Same as remove_mapping, but if the folio is removed from the mapping, it
1393 * gets returned with a refcount of 0.
1394 */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)1395 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1396 bool reclaimed, struct mem_cgroup *target_memcg)
1397 {
1398 int refcount;
1399 void *shadow = NULL;
1400
1401 BUG_ON(!folio_test_locked(folio));
1402 BUG_ON(mapping != folio_mapping(folio));
1403
1404 if (!folio_test_swapcache(folio))
1405 spin_lock(&mapping->host->i_lock);
1406 xa_lock_irq(&mapping->i_pages);
1407 /*
1408 * The non racy check for a busy folio.
1409 *
1410 * Must be careful with the order of the tests. When someone has
1411 * a ref to the folio, it may be possible that they dirty it then
1412 * drop the reference. So if the dirty flag is tested before the
1413 * refcount here, then the following race may occur:
1414 *
1415 * get_user_pages(&page);
1416 * [user mapping goes away]
1417 * write_to(page);
1418 * !folio_test_dirty(folio) [good]
1419 * folio_set_dirty(folio);
1420 * folio_put(folio);
1421 * !refcount(folio) [good, discard it]
1422 *
1423 * [oops, our write_to data is lost]
1424 *
1425 * Reversing the order of the tests ensures such a situation cannot
1426 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1427 * load is not satisfied before that of folio->_refcount.
1428 *
1429 * Note that if the dirty flag is always set via folio_mark_dirty,
1430 * and thus under the i_pages lock, then this ordering is not required.
1431 */
1432 refcount = 1 + folio_nr_pages(folio);
1433 if (!folio_ref_freeze(folio, refcount))
1434 goto cannot_free;
1435 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1436 if (unlikely(folio_test_dirty(folio))) {
1437 folio_ref_unfreeze(folio, refcount);
1438 goto cannot_free;
1439 }
1440
1441 if (folio_test_swapcache(folio)) {
1442 swp_entry_t swap = folio->swap;
1443
1444 if (reclaimed && !mapping_exiting(mapping))
1445 shadow = workingset_eviction(folio, target_memcg);
1446 __delete_from_swap_cache(folio, swap, shadow);
1447 mem_cgroup_swapout(folio, swap);
1448 xa_unlock_irq(&mapping->i_pages);
1449 put_swap_folio(folio, swap);
1450 } else {
1451 void (*free_folio)(struct folio *);
1452
1453 free_folio = mapping->a_ops->free_folio;
1454 /*
1455 * Remember a shadow entry for reclaimed file cache in
1456 * order to detect refaults, thus thrashing, later on.
1457 *
1458 * But don't store shadows in an address space that is
1459 * already exiting. This is not just an optimization,
1460 * inode reclaim needs to empty out the radix tree or
1461 * the nodes are lost. Don't plant shadows behind its
1462 * back.
1463 *
1464 * We also don't store shadows for DAX mappings because the
1465 * only page cache folios found in these are zero pages
1466 * covering holes, and because we don't want to mix DAX
1467 * exceptional entries and shadow exceptional entries in the
1468 * same address_space.
1469 */
1470 if (reclaimed && folio_is_file_lru(folio) &&
1471 !mapping_exiting(mapping) && !dax_mapping(mapping))
1472 shadow = workingset_eviction(folio, target_memcg);
1473 __filemap_remove_folio(folio, shadow);
1474 xa_unlock_irq(&mapping->i_pages);
1475 if (mapping_shrinkable(mapping))
1476 inode_add_lru(mapping->host);
1477 spin_unlock(&mapping->host->i_lock);
1478
1479 if (free_folio)
1480 free_folio(folio);
1481 }
1482
1483 return 1;
1484
1485 cannot_free:
1486 xa_unlock_irq(&mapping->i_pages);
1487 if (!folio_test_swapcache(folio))
1488 spin_unlock(&mapping->host->i_lock);
1489 return 0;
1490 }
1491
1492 /**
1493 * remove_mapping() - Attempt to remove a folio from its mapping.
1494 * @mapping: The address space.
1495 * @folio: The folio to remove.
1496 *
1497 * If the folio is dirty, under writeback or if someone else has a ref
1498 * on it, removal will fail.
1499 * Return: The number of pages removed from the mapping. 0 if the folio
1500 * could not be removed.
1501 * Context: The caller should have a single refcount on the folio and
1502 * hold its lock.
1503 */
remove_mapping(struct address_space * mapping,struct folio * folio)1504 long remove_mapping(struct address_space *mapping, struct folio *folio)
1505 {
1506 if (__remove_mapping(mapping, folio, false, NULL)) {
1507 /*
1508 * Unfreezing the refcount with 1 effectively
1509 * drops the pagecache ref for us without requiring another
1510 * atomic operation.
1511 */
1512 folio_ref_unfreeze(folio, 1);
1513 return folio_nr_pages(folio);
1514 }
1515 return 0;
1516 }
1517
1518 /**
1519 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1520 * @folio: Folio to be returned to an LRU list.
1521 *
1522 * Add previously isolated @folio to appropriate LRU list.
1523 * The folio may still be unevictable for other reasons.
1524 *
1525 * Context: lru_lock must not be held, interrupts must be enabled.
1526 */
folio_putback_lru(struct folio * folio)1527 void folio_putback_lru(struct folio *folio)
1528 {
1529 folio_add_lru(folio);
1530 folio_put(folio); /* drop ref from isolate */
1531 }
1532
1533 enum folio_references {
1534 FOLIOREF_RECLAIM,
1535 FOLIOREF_RECLAIM_CLEAN,
1536 FOLIOREF_KEEP,
1537 FOLIOREF_ACTIVATE,
1538 };
1539
folio_check_references(struct folio * folio,struct scan_control * sc)1540 static enum folio_references folio_check_references(struct folio *folio,
1541 struct scan_control *sc)
1542 {
1543 int referenced_ptes, referenced_folio;
1544 unsigned long vm_flags;
1545 int ret = 0;
1546 bool trylock_failed = false;
1547
1548 #ifdef CONFIG_ANDROID_VENDOR_OEM_DATA
1549 trace_android_vh_page_should_be_protected(folio, sc->nr_scanned,
1550 sc->priority, &sc->android_vendor_data1, &ret);
1551 #endif
1552 trace_android_vh_check_folio_look_around_ref(folio, &ret);
1553 if (ret)
1554 return ret;
1555
1556 trace_android_vh_folio_trylock_set(folio);
1557 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1558 &vm_flags);
1559 referenced_folio = folio_test_clear_referenced(folio);
1560 trace_android_vh_get_folio_trylock_result(folio, &trylock_failed);
1561 if (trylock_failed)
1562 return FOLIOREF_KEEP;
1563
1564 /*
1565 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1566 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1567 */
1568 if (vm_flags & VM_LOCKED)
1569 return FOLIOREF_ACTIVATE;
1570
1571 /* rmap lock contention: rotate */
1572 if (referenced_ptes == -1)
1573 return FOLIOREF_KEEP;
1574
1575 if (referenced_ptes) {
1576 /*
1577 * All mapped folios start out with page table
1578 * references from the instantiating fault, so we need
1579 * to look twice if a mapped file/anon folio is used more
1580 * than once.
1581 *
1582 * Mark it and spare it for another trip around the
1583 * inactive list. Another page table reference will
1584 * lead to its activation.
1585 *
1586 * Note: the mark is set for activated folios as well
1587 * so that recently deactivated but used folios are
1588 * quickly recovered.
1589 */
1590 folio_set_referenced(folio);
1591
1592 if (referenced_folio || referenced_ptes > 1)
1593 return FOLIOREF_ACTIVATE;
1594
1595 /*
1596 * Activate file-backed executable folios after first usage.
1597 */
1598 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1599 return FOLIOREF_ACTIVATE;
1600
1601 return FOLIOREF_KEEP;
1602 }
1603
1604 /* Reclaim if clean, defer dirty folios to writeback */
1605 if (referenced_folio && folio_is_file_lru(folio))
1606 return FOLIOREF_RECLAIM_CLEAN;
1607
1608 return FOLIOREF_RECLAIM;
1609 }
1610
1611 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)1612 static void folio_check_dirty_writeback(struct folio *folio,
1613 bool *dirty, bool *writeback)
1614 {
1615 struct address_space *mapping;
1616
1617 /*
1618 * Anonymous folios are not handled by flushers and must be written
1619 * from reclaim context. Do not stall reclaim based on them.
1620 * MADV_FREE anonymous folios are put into inactive file list too.
1621 * They could be mistakenly treated as file lru. So further anon
1622 * test is needed.
1623 */
1624 if (!folio_is_file_lru(folio) ||
1625 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1626 *dirty = false;
1627 *writeback = false;
1628 return;
1629 }
1630
1631 /* By default assume that the folio flags are accurate */
1632 *dirty = folio_test_dirty(folio);
1633 *writeback = folio_test_writeback(folio);
1634
1635 /* Verify dirty/writeback state if the filesystem supports it */
1636 if (!folio_test_private(folio))
1637 return;
1638
1639 mapping = folio_mapping(folio);
1640 if (mapping && mapping->a_ops->is_dirty_writeback)
1641 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1642 }
1643
alloc_demote_folio(struct folio * src,unsigned long private)1644 static struct folio *alloc_demote_folio(struct folio *src,
1645 unsigned long private)
1646 {
1647 struct folio *dst;
1648 nodemask_t *allowed_mask;
1649 struct migration_target_control *mtc;
1650
1651 mtc = (struct migration_target_control *)private;
1652
1653 allowed_mask = mtc->nmask;
1654 /*
1655 * make sure we allocate from the target node first also trying to
1656 * demote or reclaim pages from the target node via kswapd if we are
1657 * low on free memory on target node. If we don't do this and if
1658 * we have free memory on the slower(lower) memtier, we would start
1659 * allocating pages from slower(lower) memory tiers without even forcing
1660 * a demotion of cold pages from the target memtier. This can result
1661 * in the kernel placing hot pages in slower(lower) memory tiers.
1662 */
1663 mtc->nmask = NULL;
1664 mtc->gfp_mask |= __GFP_THISNODE;
1665 dst = alloc_migration_target(src, (unsigned long)mtc);
1666 if (dst)
1667 return dst;
1668
1669 mtc->gfp_mask &= ~__GFP_THISNODE;
1670 mtc->nmask = allowed_mask;
1671
1672 return alloc_migration_target(src, (unsigned long)mtc);
1673 }
1674
1675 /*
1676 * Take folios on @demote_folios and attempt to demote them to another node.
1677 * Folios which are not demoted are left on @demote_folios.
1678 */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)1679 static unsigned int demote_folio_list(struct list_head *demote_folios,
1680 struct pglist_data *pgdat)
1681 {
1682 int target_nid = next_demotion_node(pgdat->node_id);
1683 unsigned int nr_succeeded;
1684 nodemask_t allowed_mask;
1685
1686 struct migration_target_control mtc = {
1687 /*
1688 * Allocate from 'node', or fail quickly and quietly.
1689 * When this happens, 'page' will likely just be discarded
1690 * instead of migrated.
1691 */
1692 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1693 __GFP_NOMEMALLOC | GFP_NOWAIT,
1694 .nid = target_nid,
1695 .nmask = &allowed_mask
1696 };
1697
1698 if (list_empty(demote_folios))
1699 return 0;
1700
1701 if (target_nid == NUMA_NO_NODE)
1702 return 0;
1703
1704 node_get_allowed_targets(pgdat, &allowed_mask);
1705
1706 /* Demotion ignores all cpuset and mempolicy settings */
1707 migrate_pages(demote_folios, alloc_demote_folio, NULL,
1708 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1709 &nr_succeeded);
1710
1711 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1712
1713 return nr_succeeded;
1714 }
1715
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1716 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1717 {
1718 if (gfp_mask & __GFP_FS)
1719 return true;
1720 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1721 return false;
1722 /*
1723 * We can "enter_fs" for swap-cache with only __GFP_IO
1724 * providing this isn't SWP_FS_OPS.
1725 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1726 * but that will never affect SWP_FS_OPS, so the data_race
1727 * is safe.
1728 */
1729 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1730 }
1731
1732 /*
1733 * shrink_folio_list() returns the number of reclaimed pages
1734 */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1735 static unsigned int shrink_folio_list(struct list_head *folio_list,
1736 struct pglist_data *pgdat, struct scan_control *sc,
1737 struct reclaim_stat *stat, bool ignore_references)
1738 {
1739 LIST_HEAD(ret_folios);
1740 LIST_HEAD(free_folios);
1741 LIST_HEAD(demote_folios);
1742 unsigned int nr_reclaimed = 0;
1743 unsigned int pgactivate = 0;
1744 bool do_demote_pass;
1745 struct swap_iocb *plug = NULL;
1746
1747 memset(stat, 0, sizeof(*stat));
1748 cond_resched();
1749 do_demote_pass = can_demote(pgdat->node_id, sc);
1750
1751 retry:
1752 while (!list_empty(folio_list)) {
1753 struct address_space *mapping;
1754 struct folio *folio;
1755 enum folio_references references = FOLIOREF_RECLAIM;
1756 bool dirty, writeback;
1757 unsigned int nr_pages;
1758 bool activate = false;
1759 bool keep = false;
1760
1761 cond_resched();
1762
1763 folio = lru_to_folio(folio_list);
1764 list_del(&folio->lru);
1765
1766 if (!folio_trylock(folio))
1767 goto keep;
1768
1769 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1770
1771 nr_pages = folio_nr_pages(folio);
1772
1773 /* Account the number of base pages */
1774 sc->nr_scanned += nr_pages;
1775
1776 if (unlikely(!folio_evictable(folio)))
1777 goto activate_locked;
1778
1779 if (!sc->may_unmap && folio_mapped(folio))
1780 goto keep_locked;
1781
1782 /* folio_update_gen() tried to promote this page? */
1783 if (lru_gen_enabled() && !ignore_references &&
1784 folio_mapped(folio) && folio_test_referenced(folio))
1785 goto keep_locked;
1786
1787 /*
1788 * The number of dirty pages determines if a node is marked
1789 * reclaim_congested. kswapd will stall and start writing
1790 * folios if the tail of the LRU is all dirty unqueued folios.
1791 */
1792 folio_check_dirty_writeback(folio, &dirty, &writeback);
1793
1794 trace_android_vh_shrink_folio_list(folio, dirty, writeback,
1795 &activate, &keep);
1796 if (activate)
1797 goto activate_locked;
1798
1799 if (keep)
1800 goto keep_locked;
1801
1802 if (dirty || writeback)
1803 stat->nr_dirty += nr_pages;
1804
1805 if (dirty && !writeback)
1806 stat->nr_unqueued_dirty += nr_pages;
1807
1808 /*
1809 * Treat this folio as congested if folios are cycling
1810 * through the LRU so quickly that the folios marked
1811 * for immediate reclaim are making it to the end of
1812 * the LRU a second time.
1813 */
1814 if (writeback && folio_test_reclaim(folio))
1815 stat->nr_congested += nr_pages;
1816
1817 /*
1818 * If a folio at the tail of the LRU is under writeback, there
1819 * are three cases to consider.
1820 *
1821 * 1) If reclaim is encountering an excessive number
1822 * of folios under writeback and this folio has both
1823 * the writeback and reclaim flags set, then it
1824 * indicates that folios are being queued for I/O but
1825 * are being recycled through the LRU before the I/O
1826 * can complete. Waiting on the folio itself risks an
1827 * indefinite stall if it is impossible to writeback
1828 * the folio due to I/O error or disconnected storage
1829 * so instead note that the LRU is being scanned too
1830 * quickly and the caller can stall after the folio
1831 * list has been processed.
1832 *
1833 * 2) Global or new memcg reclaim encounters a folio that is
1834 * not marked for immediate reclaim, or the caller does not
1835 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1836 * not to fs). In this case mark the folio for immediate
1837 * reclaim and continue scanning.
1838 *
1839 * Require may_enter_fs() because we would wait on fs, which
1840 * may not have submitted I/O yet. And the loop driver might
1841 * enter reclaim, and deadlock if it waits on a folio for
1842 * which it is needed to do the write (loop masks off
1843 * __GFP_IO|__GFP_FS for this reason); but more thought
1844 * would probably show more reasons.
1845 *
1846 * 3) Legacy memcg encounters a folio that already has the
1847 * reclaim flag set. memcg does not have any dirty folio
1848 * throttling so we could easily OOM just because too many
1849 * folios are in writeback and there is nothing else to
1850 * reclaim. Wait for the writeback to complete.
1851 *
1852 * In cases 1) and 2) we activate the folios to get them out of
1853 * the way while we continue scanning for clean folios on the
1854 * inactive list and refilling from the active list. The
1855 * observation here is that waiting for disk writes is more
1856 * expensive than potentially causing reloads down the line.
1857 * Since they're marked for immediate reclaim, they won't put
1858 * memory pressure on the cache working set any longer than it
1859 * takes to write them to disk.
1860 */
1861 if (folio_test_writeback(folio)) {
1862 /* Case 1 above */
1863 if (current_is_kswapd() &&
1864 folio_test_reclaim(folio) &&
1865 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1866 stat->nr_immediate += nr_pages;
1867 goto activate_locked;
1868
1869 /* Case 2 above */
1870 } else if (writeback_throttling_sane(sc) ||
1871 !folio_test_reclaim(folio) ||
1872 !may_enter_fs(folio, sc->gfp_mask)) {
1873 /*
1874 * This is slightly racy -
1875 * folio_end_writeback() might have
1876 * just cleared the reclaim flag, then
1877 * setting the reclaim flag here ends up
1878 * interpreted as the readahead flag - but
1879 * that does not matter enough to care.
1880 * What we do want is for this folio to
1881 * have the reclaim flag set next time
1882 * memcg reclaim reaches the tests above,
1883 * so it will then wait for writeback to
1884 * avoid OOM; and it's also appropriate
1885 * in global reclaim.
1886 */
1887 folio_set_reclaim(folio);
1888 stat->nr_writeback += nr_pages;
1889 goto activate_locked;
1890
1891 /* Case 3 above */
1892 } else {
1893 folio_unlock(folio);
1894 folio_wait_writeback(folio);
1895 /* then go back and try same folio again */
1896 list_add_tail(&folio->lru, folio_list);
1897 continue;
1898 }
1899 }
1900
1901 if (!ignore_references)
1902 references = folio_check_references(folio, sc);
1903
1904 switch (references) {
1905 case FOLIOREF_ACTIVATE:
1906 goto activate_locked;
1907 case FOLIOREF_KEEP:
1908 stat->nr_ref_keep += nr_pages;
1909 goto keep_locked;
1910 case FOLIOREF_RECLAIM:
1911 case FOLIOREF_RECLAIM_CLEAN:
1912 ; /* try to reclaim the folio below */
1913 }
1914
1915 /*
1916 * Before reclaiming the folio, try to relocate
1917 * its contents to another node.
1918 */
1919 if (do_demote_pass &&
1920 (thp_migration_supported() || !folio_test_large(folio))) {
1921 list_add(&folio->lru, &demote_folios);
1922 folio_unlock(folio);
1923 continue;
1924 }
1925
1926 /*
1927 * Anonymous process memory has backing store?
1928 * Try to allocate it some swap space here.
1929 * Lazyfree folio could be freed directly
1930 */
1931 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1932 if (!folio_test_swapcache(folio)) {
1933 if (!(sc->gfp_mask & __GFP_IO))
1934 goto keep_locked;
1935 if (folio_maybe_dma_pinned(folio))
1936 goto keep_locked;
1937 /*
1938 * Split partially mapped folios right away.
1939 * We can free the unmapped pages without IO.
1940 */
1941 if (folio_test_large(folio) &&
1942 data_race(!list_empty(&folio->_deferred_list)))
1943 split_folio_to_list(folio, folio_list);
1944 if (!add_to_swap(folio)) {
1945 int __maybe_unused order = folio_order(folio);
1946 bool bypass = false;
1947
1948 if (!folio_test_large(folio))
1949 goto activate_locked_split;
1950 trace_android_vh_split_large_folio_bypass(&bypass);
1951 if (bypass)
1952 goto activate_locked;
1953 /* Fallback to swap normal pages */
1954 if (split_folio_to_list(folio, folio_list))
1955 goto activate_locked;
1956 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1957 if (nr_pages >= HPAGE_PMD_NR) {
1958 count_vm_event(THP_SWPOUT_FALLBACK);
1959 }
1960 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1961 #endif
1962 if (!add_to_swap(folio))
1963 goto activate_locked_split;
1964 }
1965 }
1966 } else if (folio_test_swapbacked(folio) &&
1967 folio_test_large(folio)) {
1968 /* Split shmem folio */
1969 if (split_folio_to_list(folio, folio_list))
1970 goto keep_locked;
1971 }
1972
1973 if (folio_ref_count(folio) == 1) {
1974 folio_unlock(folio);
1975 if (folio_put_testzero(folio))
1976 goto free_it;
1977
1978 nr_reclaimed += nr_pages;
1979 continue;
1980 }
1981
1982 /*
1983 * If the folio was split above, the tail pages will make
1984 * their own pass through this function and be accounted
1985 * then.
1986 */
1987 if ((nr_pages > 1) && !folio_test_large(folio)) {
1988 sc->nr_scanned -= (nr_pages - 1);
1989 nr_pages = 1;
1990 }
1991
1992 /*
1993 * The folio is mapped into the page tables of one or more
1994 * processes. Try to unmap it here.
1995 */
1996 if (folio_mapped(folio)) {
1997 enum ttu_flags flags = TTU_BATCH_FLUSH;
1998 bool was_swapbacked = folio_test_swapbacked(folio);
1999
2000 if (folio_test_pmd_mappable(folio))
2001 flags |= TTU_SPLIT_HUGE_PMD;
2002 /*
2003 * Without TTU_SYNC, try_to_unmap will only begin to
2004 * hold PTL from the first present PTE within a large
2005 * folio. Some initial PTEs might be skipped due to
2006 * races with parallel PTE writes in which PTEs can be
2007 * cleared temporarily before being written new present
2008 * values. This will lead to a large folio is still
2009 * mapped while some subpages have been partially
2010 * unmapped after try_to_unmap; TTU_SYNC helps
2011 * try_to_unmap acquire PTL from the first PTE,
2012 * eliminating the influence of temporary PTE values.
2013 */
2014 if (folio_test_large(folio))
2015 flags |= TTU_SYNC;
2016
2017 if (!ignore_references)
2018 trace_android_vh_folio_trylock_set(folio);
2019 try_to_unmap(folio, flags);
2020 if (folio_mapped(folio)) {
2021 stat->nr_unmap_fail += nr_pages;
2022 if (!was_swapbacked &&
2023 folio_test_swapbacked(folio))
2024 stat->nr_lazyfree_fail += nr_pages;
2025 goto activate_locked;
2026 }
2027 }
2028
2029 /*
2030 * Folio is unmapped now so it cannot be newly pinned anymore.
2031 * No point in trying to reclaim folio if it is pinned.
2032 * Furthermore we don't want to reclaim underlying fs metadata
2033 * if the folio is pinned and thus potentially modified by the
2034 * pinning process as that may upset the filesystem.
2035 */
2036 if (folio_maybe_dma_pinned(folio))
2037 goto activate_locked;
2038
2039 mapping = folio_mapping(folio);
2040 if (folio_test_dirty(folio)) {
2041 /*
2042 * Only kswapd can writeback filesystem folios
2043 * to avoid risk of stack overflow. But avoid
2044 * injecting inefficient single-folio I/O into
2045 * flusher writeback as much as possible: only
2046 * write folios when we've encountered many
2047 * dirty folios, and when we've already scanned
2048 * the rest of the LRU for clean folios and see
2049 * the same dirty folios again (with the reclaim
2050 * flag set).
2051 */
2052 if (folio_is_file_lru(folio) &&
2053 (!current_is_kswapd() ||
2054 !folio_test_reclaim(folio) ||
2055 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
2056 /*
2057 * Immediately reclaim when written back.
2058 * Similar in principle to folio_deactivate()
2059 * except we already have the folio isolated
2060 * and know it's dirty
2061 */
2062 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
2063 nr_pages);
2064 folio_set_reclaim(folio);
2065
2066 goto activate_locked;
2067 }
2068
2069 if (references == FOLIOREF_RECLAIM_CLEAN)
2070 goto keep_locked;
2071 if (!may_enter_fs(folio, sc->gfp_mask))
2072 goto keep_locked;
2073 if (!sc->may_writepage)
2074 goto keep_locked;
2075
2076 /*
2077 * Folio is dirty. Flush the TLB if a writable entry
2078 * potentially exists to avoid CPU writes after I/O
2079 * starts and then write it out here.
2080 */
2081 try_to_unmap_flush_dirty();
2082 switch (pageout(folio, mapping, &plug)) {
2083 case PAGE_KEEP:
2084 goto keep_locked;
2085 case PAGE_ACTIVATE:
2086 goto activate_locked;
2087 case PAGE_SUCCESS:
2088 stat->nr_pageout += nr_pages;
2089
2090 if (folio_test_writeback(folio))
2091 goto keep;
2092 if (folio_test_dirty(folio))
2093 goto keep;
2094
2095 /*
2096 * A synchronous write - probably a ramdisk. Go
2097 * ahead and try to reclaim the folio.
2098 */
2099 if (!folio_trylock(folio))
2100 goto keep;
2101 if (folio_test_dirty(folio) ||
2102 folio_test_writeback(folio))
2103 goto keep_locked;
2104 mapping = folio_mapping(folio);
2105 fallthrough;
2106 case PAGE_CLEAN:
2107 ; /* try to free the folio below */
2108 }
2109 }
2110
2111 /*
2112 * If the folio has buffers, try to free the buffer
2113 * mappings associated with this folio. If we succeed
2114 * we try to free the folio as well.
2115 *
2116 * We do this even if the folio is dirty.
2117 * filemap_release_folio() does not perform I/O, but it
2118 * is possible for a folio to have the dirty flag set,
2119 * but it is actually clean (all its buffers are clean).
2120 * This happens if the buffers were written out directly,
2121 * with submit_bh(). ext3 will do this, as well as
2122 * the blockdev mapping. filemap_release_folio() will
2123 * discover that cleanness and will drop the buffers
2124 * and mark the folio clean - it can be freed.
2125 *
2126 * Rarely, folios can have buffers and no ->mapping.
2127 * These are the folios which were not successfully
2128 * invalidated in truncate_cleanup_folio(). We try to
2129 * drop those buffers here and if that worked, and the
2130 * folio is no longer mapped into process address space
2131 * (refcount == 1) it can be freed. Otherwise, leave
2132 * the folio on the LRU so it is swappable.
2133 */
2134 if (folio_needs_release(folio)) {
2135 if (!filemap_release_folio(folio, sc->gfp_mask))
2136 goto activate_locked;
2137 if (!mapping && folio_ref_count(folio) == 1) {
2138 folio_unlock(folio);
2139 if (folio_put_testzero(folio))
2140 goto free_it;
2141 else {
2142 /*
2143 * rare race with speculative reference.
2144 * the speculative reference will free
2145 * this folio shortly, so we may
2146 * increment nr_reclaimed here (and
2147 * leave it off the LRU).
2148 */
2149 trace_android_vh_folio_trylock_clear(folio);
2150 nr_reclaimed += nr_pages;
2151 continue;
2152 }
2153 }
2154 }
2155
2156 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2157 /* follow __remove_mapping for reference */
2158 if (!folio_ref_freeze(folio, 1))
2159 goto keep_locked;
2160 /*
2161 * The folio has only one reference left, which is
2162 * from the isolation. After the caller puts the
2163 * folio back on the lru and drops the reference, the
2164 * folio will be freed anyway. It doesn't matter
2165 * which lru it goes on. So we don't bother checking
2166 * the dirty flag here.
2167 */
2168 count_vm_events(PGLAZYFREED, nr_pages);
2169 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2170 } else if (!mapping || !__remove_mapping(mapping, folio, true,
2171 sc->target_mem_cgroup))
2172 goto keep_locked;
2173
2174 folio_unlock(folio);
2175 free_it:
2176 /*
2177 * Folio may get swapped out as a whole, need to account
2178 * all pages in it.
2179 */
2180 nr_reclaimed += nr_pages;
2181
2182 /*
2183 * Is there need to periodically free_folio_list? It would
2184 * appear not as the counts should be low
2185 */
2186 trace_android_vh_folio_trylock_clear(folio);
2187 if (unlikely(folio_test_large(folio)))
2188 destroy_large_folio(folio);
2189 else
2190 list_add(&folio->lru, &free_folios);
2191 continue;
2192
2193 activate_locked_split:
2194 /*
2195 * The tail pages that are failed to add into swap cache
2196 * reach here. Fixup nr_scanned and nr_pages.
2197 */
2198 if (nr_pages > 1) {
2199 sc->nr_scanned -= (nr_pages - 1);
2200 nr_pages = 1;
2201 }
2202 activate_locked:
2203 /* Not a candidate for swapping, so reclaim swap space. */
2204 if (folio_test_swapcache(folio) &&
2205 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2206 folio_free_swap(folio);
2207 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2208 if (!folio_test_mlocked(folio)) {
2209 int type = folio_is_file_lru(folio);
2210 folio_set_active(folio);
2211 stat->nr_activate[type] += nr_pages;
2212 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2213 }
2214 keep_locked:
2215 folio_unlock(folio);
2216 keep:
2217 list_add(&folio->lru, &ret_folios);
2218 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2219 folio_test_unevictable(folio), folio);
2220 }
2221 /* 'folio_list' is always empty here */
2222
2223 /* Migrate folios selected for demotion */
2224 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2225 /* Folios that could not be demoted are still in @demote_folios */
2226 if (!list_empty(&demote_folios)) {
2227 /* Folios which weren't demoted go back on @folio_list */
2228 list_splice_init(&demote_folios, folio_list);
2229
2230 /*
2231 * goto retry to reclaim the undemoted folios in folio_list if
2232 * desired.
2233 *
2234 * Reclaiming directly from top tier nodes is not often desired
2235 * due to it breaking the LRU ordering: in general memory
2236 * should be reclaimed from lower tier nodes and demoted from
2237 * top tier nodes.
2238 *
2239 * However, disabling reclaim from top tier nodes entirely
2240 * would cause ooms in edge scenarios where lower tier memory
2241 * is unreclaimable for whatever reason, eg memory being
2242 * mlocked or too hot to reclaim. We can disable reclaim
2243 * from top tier nodes in proactive reclaim though as that is
2244 * not real memory pressure.
2245 */
2246 if (!sc->proactive) {
2247 do_demote_pass = false;
2248 goto retry;
2249 }
2250 }
2251
2252 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2253
2254 mem_cgroup_uncharge_list(&free_folios);
2255 try_to_unmap_flush();
2256 free_unref_page_list(&free_folios);
2257
2258 list_splice(&ret_folios, folio_list);
2259 count_vm_events(PGACTIVATE, pgactivate);
2260
2261 if (plug)
2262 swap_write_unplug(plug);
2263 return nr_reclaimed;
2264 }
2265
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)2266 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2267 struct list_head *folio_list)
2268 {
2269 struct scan_control sc = {
2270 .gfp_mask = GFP_KERNEL,
2271 .may_unmap = 1,
2272 };
2273 struct reclaim_stat stat;
2274 unsigned int nr_reclaimed;
2275 struct folio *folio, *next;
2276 LIST_HEAD(clean_folios);
2277 unsigned int noreclaim_flag;
2278
2279 list_for_each_entry_safe(folio, next, folio_list, lru) {
2280 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2281 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2282 !folio_test_unevictable(folio)) {
2283 folio_clear_active(folio);
2284 list_move(&folio->lru, &clean_folios);
2285 }
2286 }
2287
2288 /*
2289 * We should be safe here since we are only dealing with file pages and
2290 * we are not kswapd and therefore cannot write dirty file pages. But
2291 * call memalloc_noreclaim_save() anyway, just in case these conditions
2292 * change in the future.
2293 */
2294 noreclaim_flag = memalloc_noreclaim_save();
2295 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2296 &stat, true);
2297 memalloc_noreclaim_restore(noreclaim_flag);
2298
2299 list_splice(&clean_folios, folio_list);
2300 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2301 -(long)nr_reclaimed);
2302 /*
2303 * Since lazyfree pages are isolated from file LRU from the beginning,
2304 * they will rotate back to anonymous LRU in the end if it failed to
2305 * discard so isolated count will be mismatched.
2306 * Compensate the isolated count for both LRU lists.
2307 */
2308 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2309 stat.nr_lazyfree_fail);
2310 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2311 -(long)stat.nr_lazyfree_fail);
2312 return nr_reclaimed;
2313 }
2314
2315 /*
2316 * Update LRU sizes after isolating pages. The LRU size updates must
2317 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2318 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)2319 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2320 enum lru_list lru, unsigned long *nr_zone_taken)
2321 {
2322 int zid;
2323
2324 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2325 if (!nr_zone_taken[zid])
2326 continue;
2327
2328 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2329 }
2330
2331 }
2332
2333 #ifdef CONFIG_CMA
2334 /*
2335 * It is waste of effort to scan and reclaim CMA pages if it is not available
2336 * for current allocation context. Kswapd can not be enrolled as it can not
2337 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
2338 */
skip_cma(struct folio * folio,struct scan_control * sc)2339 static bool skip_cma(struct folio *folio, struct scan_control *sc)
2340 {
2341 return !current_is_kswapd() &&
2342 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
2343 get_pageblock_migratetype(&folio->page) == MIGRATE_CMA;
2344 }
2345 #else
skip_cma(struct folio * folio,struct scan_control * sc)2346 static bool skip_cma(struct folio *folio, struct scan_control *sc)
2347 {
2348 return false;
2349 }
2350 #endif
2351
2352 /*
2353 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2354 *
2355 * lruvec->lru_lock is heavily contended. Some of the functions that
2356 * shrink the lists perform better by taking out a batch of pages
2357 * and working on them outside the LRU lock.
2358 *
2359 * For pagecache intensive workloads, this function is the hottest
2360 * spot in the kernel (apart from copy_*_user functions).
2361 *
2362 * Lru_lock must be held before calling this function.
2363 *
2364 * @nr_to_scan: The number of eligible pages to look through on the list.
2365 * @lruvec: The LRU vector to pull pages from.
2366 * @dst: The temp list to put pages on to.
2367 * @nr_scanned: The number of pages that were scanned.
2368 * @sc: The scan_control struct for this reclaim session
2369 * @lru: LRU list id for isolating
2370 *
2371 * returns how many pages were moved onto *@dst.
2372 */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)2373 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2374 struct lruvec *lruvec, struct list_head *dst,
2375 unsigned long *nr_scanned, struct scan_control *sc,
2376 enum lru_list lru)
2377 {
2378 struct list_head *src = &lruvec->lists[lru];
2379 unsigned long nr_taken = 0;
2380 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2381 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2382 unsigned long skipped = 0;
2383 unsigned long scan, total_scan, nr_pages;
2384 LIST_HEAD(folios_skipped);
2385
2386 total_scan = 0;
2387 scan = 0;
2388 while (scan < nr_to_scan && !list_empty(src)) {
2389 struct list_head *move_to = src;
2390 struct folio *folio;
2391
2392 folio = lru_to_folio(src);
2393 prefetchw_prev_lru_folio(folio, src, flags);
2394
2395 nr_pages = folio_nr_pages(folio);
2396 total_scan += nr_pages;
2397
2398 if (folio_zonenum(folio) > sc->reclaim_idx ||
2399 skip_cma(folio, sc)) {
2400 nr_skipped[folio_zonenum(folio)] += nr_pages;
2401 move_to = &folios_skipped;
2402 goto move;
2403 }
2404
2405 /*
2406 * Do not count skipped folios because that makes the function
2407 * return with no isolated folios if the LRU mostly contains
2408 * ineligible folios. This causes the VM to not reclaim any
2409 * folios, triggering a premature OOM.
2410 * Account all pages in a folio.
2411 */
2412 scan += nr_pages;
2413
2414 if (!folio_test_lru(folio))
2415 goto move;
2416 if (!sc->may_unmap && folio_mapped(folio))
2417 goto move;
2418
2419 /*
2420 * Be careful not to clear the lru flag until after we're
2421 * sure the folio is not being freed elsewhere -- the
2422 * folio release code relies on it.
2423 */
2424 if (unlikely(!folio_try_get(folio)))
2425 goto move;
2426
2427 if (!folio_test_clear_lru(folio)) {
2428 /* Another thread is already isolating this folio */
2429 folio_put(folio);
2430 goto move;
2431 }
2432
2433 nr_taken += nr_pages;
2434
2435 trace_android_vh_del_page_from_lrulist(folio, false, lru);
2436 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2437 move_to = dst;
2438 move:
2439 list_move(&folio->lru, move_to);
2440 }
2441
2442 /*
2443 * Splice any skipped folios to the start of the LRU list. Note that
2444 * this disrupts the LRU order when reclaiming for lower zones but
2445 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2446 * scanning would soon rescan the same folios to skip and waste lots
2447 * of cpu cycles.
2448 */
2449 if (!list_empty(&folios_skipped)) {
2450 int zid;
2451
2452 list_splice(&folios_skipped, src);
2453 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2454 if (!nr_skipped[zid])
2455 continue;
2456
2457 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2458 skipped += nr_skipped[zid];
2459 }
2460 }
2461 *nr_scanned = total_scan;
2462 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2463 total_scan, skipped, nr_taken,
2464 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2465 update_lru_sizes(lruvec, lru, nr_zone_taken);
2466 return nr_taken;
2467 }
2468
2469 /**
2470 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2471 * @folio: Folio to isolate from its LRU list.
2472 *
2473 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2474 * corresponding to whatever LRU list the folio was on.
2475 *
2476 * The folio will have its LRU flag cleared. If it was found on the
2477 * active list, it will have the Active flag set. If it was found on the
2478 * unevictable list, it will have the Unevictable flag set. These flags
2479 * may need to be cleared by the caller before letting the page go.
2480 *
2481 * Context:
2482 *
2483 * (1) Must be called with an elevated refcount on the folio. This is a
2484 * fundamental difference from isolate_lru_folios() (which is called
2485 * without a stable reference).
2486 * (2) The lru_lock must not be held.
2487 * (3) Interrupts must be enabled.
2488 *
2489 * Return: true if the folio was removed from an LRU list.
2490 * false if the folio was not on an LRU list.
2491 */
folio_isolate_lru(struct folio * folio)2492 bool folio_isolate_lru(struct folio *folio)
2493 {
2494 bool ret = false;
2495
2496 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2497
2498 if (folio_test_clear_lru(folio)) {
2499 struct lruvec *lruvec;
2500
2501 folio_get(folio);
2502 lruvec = folio_lruvec_lock_irq(folio);
2503 lruvec_del_folio(lruvec, folio);
2504 unlock_page_lruvec_irq(lruvec);
2505 ret = true;
2506 }
2507
2508 return ret;
2509 }
2510
2511 /*
2512 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2513 * then get rescheduled. When there are massive number of tasks doing page
2514 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2515 * the LRU list will go small and be scanned faster than necessary, leading to
2516 * unnecessary swapping, thrashing and OOM.
2517 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)2518 static int too_many_isolated(struct pglist_data *pgdat, int file,
2519 struct scan_control *sc)
2520 {
2521 unsigned long inactive, isolated;
2522 bool too_many;
2523
2524 if (current_is_kswapd())
2525 return 0;
2526
2527 if (!writeback_throttling_sane(sc))
2528 return 0;
2529
2530 if (file) {
2531 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2532 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2533 } else {
2534 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2535 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2536 }
2537
2538 /*
2539 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2540 * won't get blocked by normal direct-reclaimers, forming a circular
2541 * deadlock.
2542 */
2543 if (gfp_has_io_fs(sc->gfp_mask))
2544 inactive >>= 3;
2545
2546 too_many = isolated > inactive;
2547
2548 /* Wake up tasks throttled due to too_many_isolated. */
2549 if (!too_many)
2550 wake_throttle_isolated(pgdat);
2551
2552 return too_many;
2553 }
2554
2555 /*
2556 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2557 * On return, @list is reused as a list of folios to be freed by the caller.
2558 *
2559 * Returns the number of pages moved to the given lruvec.
2560 */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)2561 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2562 struct list_head *list)
2563 {
2564 int nr_pages, nr_moved = 0;
2565 LIST_HEAD(folios_to_free);
2566
2567 while (!list_empty(list)) {
2568 struct folio *folio = lru_to_folio(list);
2569
2570 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2571 list_del(&folio->lru);
2572 if (unlikely(!folio_evictable(folio))) {
2573 spin_unlock_irq(&lruvec->lru_lock);
2574 folio_putback_lru(folio);
2575 spin_lock_irq(&lruvec->lru_lock);
2576 continue;
2577 }
2578
2579 /*
2580 * The folio_set_lru needs to be kept here for list integrity.
2581 * Otherwise:
2582 * #0 move_folios_to_lru #1 release_pages
2583 * if (!folio_put_testzero())
2584 * if (folio_put_testzero())
2585 * !lru //skip lru_lock
2586 * folio_set_lru()
2587 * list_add(&folio->lru,)
2588 * list_add(&folio->lru,)
2589 */
2590 folio_set_lru(folio);
2591
2592 if (unlikely(folio_put_testzero(folio))) {
2593 __folio_clear_lru_flags(folio);
2594
2595 if (unlikely(folio_test_large(folio))) {
2596 spin_unlock_irq(&lruvec->lru_lock);
2597 destroy_large_folio(folio);
2598 spin_lock_irq(&lruvec->lru_lock);
2599 } else
2600 list_add(&folio->lru, &folios_to_free);
2601
2602 continue;
2603 }
2604
2605 /*
2606 * All pages were isolated from the same lruvec (and isolation
2607 * inhibits memcg migration).
2608 */
2609 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2610 lruvec_add_folio(lruvec, folio);
2611 nr_pages = folio_nr_pages(folio);
2612 nr_moved += nr_pages;
2613 if (folio_test_active(folio))
2614 workingset_age_nonresident(lruvec, nr_pages);
2615 }
2616
2617 /*
2618 * To save our caller's stack, now use input list for pages to free.
2619 */
2620 list_splice(&folios_to_free, list);
2621
2622 return nr_moved;
2623 }
2624
2625 /*
2626 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2627 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2628 * we should not throttle. Otherwise it is safe to do so.
2629 */
current_may_throttle(void)2630 static int current_may_throttle(void)
2631 {
2632 return !(current->flags & PF_LOCAL_THROTTLE);
2633 }
2634
2635 /*
2636 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2637 * of reclaimed pages
2638 */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2639 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2640 struct lruvec *lruvec, struct scan_control *sc,
2641 enum lru_list lru)
2642 {
2643 LIST_HEAD(folio_list);
2644 unsigned long nr_scanned;
2645 unsigned int nr_reclaimed = 0;
2646 unsigned long nr_taken;
2647 struct reclaim_stat stat;
2648 bool file = is_file_lru(lru);
2649 enum vm_event_item item;
2650 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2651 bool stalled = false;
2652
2653 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2654 if (stalled)
2655 return 0;
2656
2657 /* wait a bit for the reclaimer. */
2658 stalled = true;
2659 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2660
2661 /* We are about to die and free our memory. Return now. */
2662 if (fatal_signal_pending(current))
2663 return SWAP_CLUSTER_MAX;
2664 }
2665
2666 lru_add_drain();
2667
2668 spin_lock_irq(&lruvec->lru_lock);
2669
2670 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2671 &nr_scanned, sc, lru);
2672
2673 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2674 item = PGSCAN_KSWAPD + reclaimer_offset();
2675 if (!cgroup_reclaim(sc))
2676 __count_vm_events(item, nr_scanned);
2677 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2678 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2679
2680 spin_unlock_irq(&lruvec->lru_lock);
2681
2682 if (nr_taken == 0)
2683 return 0;
2684
2685 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2686 trace_android_vh_handle_trylock_failed_folio(&folio_list);
2687
2688 spin_lock_irq(&lruvec->lru_lock);
2689 move_folios_to_lru(lruvec, &folio_list);
2690
2691 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2692 item = PGSTEAL_KSWAPD + reclaimer_offset();
2693 if (!cgroup_reclaim(sc))
2694 __count_vm_events(item, nr_reclaimed);
2695 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2696 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2697 spin_unlock_irq(&lruvec->lru_lock);
2698
2699 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2700 mem_cgroup_uncharge_list(&folio_list);
2701 free_unref_page_list(&folio_list);
2702
2703 /*
2704 * If dirty folios are scanned that are not queued for IO, it
2705 * implies that flushers are not doing their job. This can
2706 * happen when memory pressure pushes dirty folios to the end of
2707 * the LRU before the dirty limits are breached and the dirty
2708 * data has expired. It can also happen when the proportion of
2709 * dirty folios grows not through writes but through memory
2710 * pressure reclaiming all the clean cache. And in some cases,
2711 * the flushers simply cannot keep up with the allocation
2712 * rate. Nudge the flusher threads in case they are asleep.
2713 */
2714 if (stat.nr_unqueued_dirty == nr_taken) {
2715 wakeup_flusher_threads(WB_REASON_VMSCAN);
2716 /*
2717 * For cgroupv1 dirty throttling is achieved by waking up
2718 * the kernel flusher here and later waiting on folios
2719 * which are in writeback to finish (see shrink_folio_list()).
2720 *
2721 * Flusher may not be able to issue writeback quickly
2722 * enough for cgroupv1 writeback throttling to work
2723 * on a large system.
2724 */
2725 if (!writeback_throttling_sane(sc))
2726 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2727 }
2728
2729 sc->nr.dirty += stat.nr_dirty;
2730 sc->nr.congested += stat.nr_congested;
2731 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2732 sc->nr.writeback += stat.nr_writeback;
2733 sc->nr.immediate += stat.nr_immediate;
2734 sc->nr.taken += nr_taken;
2735 if (file)
2736 sc->nr.file_taken += nr_taken;
2737
2738 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2739 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2740 return nr_reclaimed;
2741 }
2742
2743 /*
2744 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2745 *
2746 * We move them the other way if the folio is referenced by one or more
2747 * processes.
2748 *
2749 * If the folios are mostly unmapped, the processing is fast and it is
2750 * appropriate to hold lru_lock across the whole operation. But if
2751 * the folios are mapped, the processing is slow (folio_referenced()), so
2752 * we should drop lru_lock around each folio. It's impossible to balance
2753 * this, so instead we remove the folios from the LRU while processing them.
2754 * It is safe to rely on the active flag against the non-LRU folios in here
2755 * because nobody will play with that bit on a non-LRU folio.
2756 *
2757 * The downside is that we have to touch folio->_refcount against each folio.
2758 * But we had to alter folio->flags anyway.
2759 */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2760 static void shrink_active_list(unsigned long nr_to_scan,
2761 struct lruvec *lruvec,
2762 struct scan_control *sc,
2763 enum lru_list lru)
2764 {
2765 unsigned long nr_taken;
2766 unsigned long nr_scanned;
2767 unsigned long vm_flags;
2768 LIST_HEAD(l_hold); /* The folios which were snipped off */
2769 LIST_HEAD(l_active);
2770 LIST_HEAD(l_inactive);
2771 unsigned nr_deactivate, nr_activate;
2772 unsigned nr_rotated = 0;
2773 int file = is_file_lru(lru);
2774 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2775 int should_protect = 0;
2776 bool bypass = false;
2777 lru_add_drain();
2778
2779 spin_lock_irq(&lruvec->lru_lock);
2780
2781 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2782 &nr_scanned, sc, lru);
2783
2784 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2785
2786 if (!cgroup_reclaim(sc))
2787 __count_vm_events(PGREFILL, nr_scanned);
2788 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2789
2790 spin_unlock_irq(&lruvec->lru_lock);
2791
2792 while (!list_empty(&l_hold)) {
2793 struct folio *folio;
2794
2795 cond_resched();
2796 folio = lru_to_folio(&l_hold);
2797 list_del(&folio->lru);
2798
2799 if (unlikely(!folio_evictable(folio))) {
2800 folio_putback_lru(folio);
2801 continue;
2802 }
2803
2804 if (unlikely(buffer_heads_over_limit)) {
2805 if (folio_needs_release(folio) &&
2806 folio_trylock(folio)) {
2807 filemap_release_folio(folio, 0);
2808 folio_unlock(folio);
2809 }
2810 }
2811
2812 #ifdef CONFIG_ANDROID_VENDOR_OEM_DATA
2813 trace_android_vh_page_should_be_protected(folio, sc->nr_scanned,
2814 sc->priority, &sc->android_vendor_data1, &should_protect);
2815 #endif
2816 if (unlikely(should_protect)) {
2817 nr_rotated += folio_nr_pages(folio);
2818 list_add(&folio->lru, &l_active);
2819 continue;
2820 }
2821
2822 trace_android_vh_page_referenced_check_bypass(folio, nr_to_scan, lru, &bypass);
2823 if (bypass)
2824 goto skip_folio_referenced;
2825
2826 trace_android_vh_folio_trylock_set(folio);
2827 /* Referenced or rmap lock contention: rotate */
2828 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2829 &vm_flags) != 0) {
2830 /*
2831 * Identify referenced, file-backed active folios and
2832 * give them one more trip around the active list. So
2833 * that executable code get better chances to stay in
2834 * memory under moderate memory pressure. Anon folios
2835 * are not likely to be evicted by use-once streaming
2836 * IO, plus JVM can create lots of anon VM_EXEC folios,
2837 * so we ignore them here.
2838 */
2839 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2840 trace_android_vh_folio_trylock_clear(folio);
2841 nr_rotated += folio_nr_pages(folio);
2842 list_add(&folio->lru, &l_active);
2843 continue;
2844 }
2845 }
2846 trace_android_vh_folio_trylock_clear(folio);
2847 skip_folio_referenced:
2848 folio_clear_active(folio); /* we are de-activating */
2849 folio_set_workingset(folio);
2850 list_add(&folio->lru, &l_inactive);
2851 }
2852
2853 /*
2854 * Move folios back to the lru list.
2855 */
2856 spin_lock_irq(&lruvec->lru_lock);
2857
2858 nr_activate = move_folios_to_lru(lruvec, &l_active);
2859 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2860 /* Keep all free folios in l_active list */
2861 list_splice(&l_inactive, &l_active);
2862
2863 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2864 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2865
2866 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2867 spin_unlock_irq(&lruvec->lru_lock);
2868
2869 if (nr_rotated)
2870 lru_note_cost(lruvec, file, 0, nr_rotated);
2871 mem_cgroup_uncharge_list(&l_active);
2872 free_unref_page_list(&l_active);
2873 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2874 nr_deactivate, nr_rotated, sc->priority, file);
2875 }
2876
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,bool ignore_references)2877 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2878 struct pglist_data *pgdat,
2879 bool ignore_references)
2880 {
2881 struct reclaim_stat dummy_stat;
2882 unsigned int nr_reclaimed;
2883 struct folio *folio;
2884 struct scan_control sc = {
2885 .gfp_mask = GFP_KERNEL,
2886 .may_writepage = 1,
2887 .may_unmap = 1,
2888 .may_swap = 1,
2889 .no_demotion = 1,
2890 };
2891
2892 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, ignore_references);
2893 while (!list_empty(folio_list)) {
2894 folio = lru_to_folio(folio_list);
2895 list_del(&folio->lru);
2896 folio_putback_lru(folio);
2897 }
2898
2899 return nr_reclaimed;
2900 }
2901
reclaim_pages(struct list_head * folio_list,bool ignore_references)2902 unsigned long reclaim_pages(struct list_head *folio_list, bool ignore_references)
2903 {
2904 int nid;
2905 unsigned int nr_reclaimed = 0;
2906 LIST_HEAD(node_folio_list);
2907 unsigned int noreclaim_flag;
2908
2909 if (list_empty(folio_list))
2910 return nr_reclaimed;
2911
2912 noreclaim_flag = memalloc_noreclaim_save();
2913
2914 nid = folio_nid(lru_to_folio(folio_list));
2915 do {
2916 struct folio *folio = lru_to_folio(folio_list);
2917
2918 if (nid == folio_nid(folio)) {
2919 folio_clear_active(folio);
2920 list_move(&folio->lru, &node_folio_list);
2921 continue;
2922 }
2923
2924 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid),
2925 ignore_references);
2926 nid = folio_nid(lru_to_folio(folio_list));
2927 } while (!list_empty(folio_list));
2928
2929 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid), ignore_references);
2930
2931 memalloc_noreclaim_restore(noreclaim_flag);
2932
2933 return nr_reclaimed;
2934 }
2935 EXPORT_SYMBOL_GPL(reclaim_pages);
2936
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2937 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2938 struct lruvec *lruvec, struct scan_control *sc)
2939 {
2940 if (is_active_lru(lru)) {
2941 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2942 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2943 else
2944 sc->skipped_deactivate = 1;
2945 return 0;
2946 }
2947
2948 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2949 }
2950
2951 /*
2952 * The inactive anon list should be small enough that the VM never has
2953 * to do too much work.
2954 *
2955 * The inactive file list should be small enough to leave most memory
2956 * to the established workingset on the scan-resistant active list,
2957 * but large enough to avoid thrashing the aggregate readahead window.
2958 *
2959 * Both inactive lists should also be large enough that each inactive
2960 * folio has a chance to be referenced again before it is reclaimed.
2961 *
2962 * If that fails and refaulting is observed, the inactive list grows.
2963 *
2964 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2965 * on this LRU, maintained by the pageout code. An inactive_ratio
2966 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2967 *
2968 * total target max
2969 * memory ratio inactive
2970 * -------------------------------------
2971 * 10MB 1 5MB
2972 * 100MB 1 50MB
2973 * 1GB 3 250MB
2974 * 10GB 10 0.9GB
2975 * 100GB 31 3GB
2976 * 1TB 101 10GB
2977 * 10TB 320 32GB
2978 */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2979 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2980 {
2981 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2982 unsigned long inactive, active;
2983 unsigned long inactive_ratio;
2984 unsigned long gb;
2985
2986 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2987 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2988
2989 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2990 if (gb)
2991 inactive_ratio = int_sqrt(10 * gb);
2992 else
2993 inactive_ratio = 1;
2994
2995 return inactive * inactive_ratio < active;
2996 }
2997
2998 enum scan_balance {
2999 SCAN_EQUAL,
3000 SCAN_FRACT,
3001 SCAN_ANON,
3002 SCAN_FILE,
3003 };
3004
prepare_scan_count(pg_data_t * pgdat,struct scan_control * sc)3005 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
3006 {
3007 unsigned long file;
3008 struct lruvec *target_lruvec;
3009 bool bypass = false;
3010
3011 if (lru_gen_enabled())
3012 return;
3013
3014 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3015
3016 /*
3017 * Flush the memory cgroup stats, so that we read accurate per-memcg
3018 * lruvec stats for heuristics.
3019 */
3020 mem_cgroup_flush_stats(sc->target_mem_cgroup);
3021
3022 /*
3023 * Determine the scan balance between anon and file LRUs.
3024 */
3025 spin_lock_irq(&target_lruvec->lru_lock);
3026 sc->anon_cost = target_lruvec->anon_cost;
3027 sc->file_cost = target_lruvec->file_cost;
3028 spin_unlock_irq(&target_lruvec->lru_lock);
3029
3030 /*
3031 * Target desirable inactive:active list ratios for the anon
3032 * and file LRU lists.
3033 */
3034 if (!sc->force_deactivate) {
3035 unsigned long refaults;
3036
3037 /*
3038 * When refaults are being observed, it means a new
3039 * workingset is being established. Deactivate to get
3040 * rid of any stale active pages quickly.
3041 */
3042 refaults = lruvec_page_state(target_lruvec,
3043 WORKINGSET_ACTIVATE_ANON);
3044 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
3045 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3046 sc->may_deactivate |= DEACTIVATE_ANON;
3047 else
3048 sc->may_deactivate &= ~DEACTIVATE_ANON;
3049
3050 refaults = lruvec_page_state(target_lruvec,
3051 WORKINGSET_ACTIVATE_FILE);
3052 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
3053 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3054 sc->may_deactivate |= DEACTIVATE_FILE;
3055 else
3056 sc->may_deactivate &= ~DEACTIVATE_FILE;
3057 } else
3058 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3059
3060 /*
3061 * If we have plenty of inactive file pages that aren't
3062 * thrashing, try to reclaim those first before touching
3063 * anonymous pages.
3064 */
3065 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3066 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3067 sc->cache_trim_mode = 1;
3068 else
3069 sc->cache_trim_mode = 0;
3070
3071
3072 trace_android_vh_file_is_tiny_bypass(sc->file_is_tiny, &bypass);
3073 if (bypass)
3074 return;
3075
3076 /*
3077 * Prevent the reclaimer from falling into the cache trap: as
3078 * cache pages start out inactive, every cache fault will tip
3079 * the scan balance towards the file LRU. And as the file LRU
3080 * shrinks, so does the window for rotation from references.
3081 * This means we have a runaway feedback loop where a tiny
3082 * thrashing file LRU becomes infinitely more attractive than
3083 * anon pages. Try to detect this based on file LRU size.
3084 */
3085 if (!cgroup_reclaim(sc)) {
3086 unsigned long total_high_wmark = 0;
3087 unsigned long free, anon;
3088 int z;
3089
3090 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3091 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3092 node_page_state(pgdat, NR_INACTIVE_FILE);
3093
3094 for (z = 0; z < MAX_NR_ZONES; z++) {
3095 struct zone *zone = &pgdat->node_zones[z];
3096
3097 if (!managed_zone(zone))
3098 continue;
3099
3100 total_high_wmark += high_wmark_pages(zone);
3101 }
3102
3103 /*
3104 * Consider anon: if that's low too, this isn't a
3105 * runaway file reclaim problem, but rather just
3106 * extreme pressure. Reclaim as per usual then.
3107 */
3108 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3109
3110 sc->file_is_tiny =
3111 file + free <= total_high_wmark &&
3112 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3113 anon >> sc->priority;
3114 }
3115 }
3116
3117 /*
3118 * Determine how aggressively the anon and file LRU lists should be
3119 * scanned.
3120 *
3121 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
3122 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
3123 */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)3124 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
3125 unsigned long *nr)
3126 {
3127 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3128 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3129 unsigned long anon_cost, file_cost, total_cost;
3130 int swappiness = mem_cgroup_swappiness(memcg);
3131 u64 fraction[ANON_AND_FILE];
3132 u64 denominator = 0; /* gcc */
3133 enum scan_balance scan_balance;
3134 unsigned long ap, fp;
3135 enum lru_list lru;
3136 bool balance_anon_file_reclaim = false;
3137
3138 /* If we have no swap space, do not bother scanning anon folios. */
3139 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
3140 scan_balance = SCAN_FILE;
3141 goto out;
3142 }
3143
3144
3145 trace_android_vh_tune_swappiness(&swappiness);
3146 /*
3147 * Global reclaim will swap to prevent OOM even with no
3148 * swappiness, but memcg users want to use this knob to
3149 * disable swapping for individual groups completely when
3150 * using the memory controller's swap limit feature would be
3151 * too expensive.
3152 */
3153 if (cgroup_reclaim(sc) && !swappiness) {
3154 scan_balance = SCAN_FILE;
3155 goto out;
3156 }
3157
3158 /*
3159 * Do not apply any pressure balancing cleverness when the
3160 * system is close to OOM, scan both anon and file equally
3161 * (unless the swappiness setting disagrees with swapping).
3162 */
3163 if (!sc->priority && swappiness) {
3164 scan_balance = SCAN_EQUAL;
3165 goto out;
3166 }
3167
3168 /*
3169 * If the system is almost out of file pages, force-scan anon.
3170 */
3171 if (sc->file_is_tiny) {
3172 scan_balance = SCAN_ANON;
3173 goto out;
3174 }
3175
3176 trace_android_rvh_set_balance_anon_file_reclaim(&balance_anon_file_reclaim);
3177
3178 /*
3179 * If there is enough inactive page cache, we do not reclaim
3180 * anything from the anonymous working right now. But when balancing
3181 * anon and page cache files for reclaim, allow swapping of anon pages
3182 * even if there are a number of inactive file cache pages.
3183 */
3184 if (!balance_anon_file_reclaim && sc->cache_trim_mode) {
3185 scan_balance = SCAN_FILE;
3186 goto out;
3187 }
3188
3189 scan_balance = SCAN_FRACT;
3190 /*
3191 * Calculate the pressure balance between anon and file pages.
3192 *
3193 * The amount of pressure we put on each LRU is inversely
3194 * proportional to the cost of reclaiming each list, as
3195 * determined by the share of pages that are refaulting, times
3196 * the relative IO cost of bringing back a swapped out
3197 * anonymous page vs reloading a filesystem page (swappiness).
3198 *
3199 * Although we limit that influence to ensure no list gets
3200 * left behind completely: at least a third of the pressure is
3201 * applied, before swappiness.
3202 *
3203 * With swappiness at 100, anon and file have equal IO cost.
3204 */
3205 total_cost = sc->anon_cost + sc->file_cost;
3206 anon_cost = total_cost + sc->anon_cost;
3207 file_cost = total_cost + sc->file_cost;
3208 total_cost = anon_cost + file_cost;
3209
3210 ap = swappiness * (total_cost + 1);
3211 ap /= anon_cost + 1;
3212
3213 fp = (200 - swappiness) * (total_cost + 1);
3214 fp /= file_cost + 1;
3215
3216 fraction[0] = ap;
3217 fraction[1] = fp;
3218 denominator = ap + fp;
3219 out:
3220 trace_android_vh_tune_scan_type(&scan_balance);
3221 for_each_evictable_lru(lru) {
3222 int file = is_file_lru(lru);
3223 unsigned long lruvec_size;
3224 unsigned long low, min;
3225 unsigned long scan;
3226
3227 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3228 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3229 &min, &low);
3230
3231 if (min || low) {
3232 /*
3233 * Scale a cgroup's reclaim pressure by proportioning
3234 * its current usage to its memory.low or memory.min
3235 * setting.
3236 *
3237 * This is important, as otherwise scanning aggression
3238 * becomes extremely binary -- from nothing as we
3239 * approach the memory protection threshold, to totally
3240 * nominal as we exceed it. This results in requiring
3241 * setting extremely liberal protection thresholds. It
3242 * also means we simply get no protection at all if we
3243 * set it too low, which is not ideal.
3244 *
3245 * If there is any protection in place, we reduce scan
3246 * pressure by how much of the total memory used is
3247 * within protection thresholds.
3248 *
3249 * There is one special case: in the first reclaim pass,
3250 * we skip over all groups that are within their low
3251 * protection. If that fails to reclaim enough pages to
3252 * satisfy the reclaim goal, we come back and override
3253 * the best-effort low protection. However, we still
3254 * ideally want to honor how well-behaved groups are in
3255 * that case instead of simply punishing them all
3256 * equally. As such, we reclaim them based on how much
3257 * memory they are using, reducing the scan pressure
3258 * again by how much of the total memory used is under
3259 * hard protection.
3260 */
3261 unsigned long cgroup_size = mem_cgroup_size(memcg);
3262 unsigned long protection;
3263
3264 /* memory.low scaling, make sure we retry before OOM */
3265 if (!sc->memcg_low_reclaim && low > min) {
3266 protection = low;
3267 sc->memcg_low_skipped = 1;
3268 } else {
3269 protection = min;
3270 }
3271
3272 /* Avoid TOCTOU with earlier protection check */
3273 cgroup_size = max(cgroup_size, protection);
3274
3275 scan = lruvec_size - lruvec_size * protection /
3276 (cgroup_size + 1);
3277
3278 /*
3279 * Minimally target SWAP_CLUSTER_MAX pages to keep
3280 * reclaim moving forwards, avoiding decrementing
3281 * sc->priority further than desirable.
3282 */
3283 scan = max(scan, SWAP_CLUSTER_MAX);
3284 } else {
3285 scan = lruvec_size;
3286 }
3287
3288 scan >>= sc->priority;
3289
3290 /*
3291 * If the cgroup's already been deleted, make sure to
3292 * scrape out the remaining cache.
3293 */
3294 if (!scan && !mem_cgroup_online(memcg))
3295 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3296
3297 switch (scan_balance) {
3298 case SCAN_EQUAL:
3299 /* Scan lists relative to size */
3300 break;
3301 case SCAN_FRACT:
3302 /*
3303 * Scan types proportional to swappiness and
3304 * their relative recent reclaim efficiency.
3305 * Make sure we don't miss the last page on
3306 * the offlined memory cgroups because of a
3307 * round-off error.
3308 */
3309 scan = mem_cgroup_online(memcg) ?
3310 div64_u64(scan * fraction[file], denominator) :
3311 DIV64_U64_ROUND_UP(scan * fraction[file],
3312 denominator);
3313 break;
3314 case SCAN_FILE:
3315 case SCAN_ANON:
3316 /* Scan one type exclusively */
3317 if ((scan_balance == SCAN_FILE) != file)
3318 scan = 0;
3319 break;
3320 default:
3321 /* Look ma, no brain */
3322 BUG();
3323 }
3324
3325 nr[lru] = scan;
3326 }
3327 }
3328
3329 /*
3330 * Anonymous LRU management is a waste if there is
3331 * ultimately no way to reclaim the memory.
3332 */
can_age_anon_pages(struct pglist_data * pgdat,struct scan_control * sc)3333 static bool can_age_anon_pages(struct pglist_data *pgdat,
3334 struct scan_control *sc)
3335 {
3336 /* Aging the anon LRU is valuable if swap is present: */
3337 if (total_swap_pages > 0)
3338 return true;
3339
3340 /* Also valuable if anon pages can be demoted: */
3341 return can_demote(pgdat->node_id, sc);
3342 }
3343
3344 #ifdef CONFIG_LRU_GEN
3345
3346 #ifdef CONFIG_LRU_GEN_ENABLED
3347 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3348 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3349 #else
3350 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3351 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3352 #endif
3353
should_walk_mmu(void)3354 static bool should_walk_mmu(void)
3355 {
3356 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
3357 }
3358
should_clear_pmd_young(void)3359 static bool should_clear_pmd_young(void)
3360 {
3361 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
3362 }
3363
3364 /******************************************************************************
3365 * shorthand helpers
3366 ******************************************************************************/
3367
3368 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3369
3370 #define DEFINE_MAX_SEQ(lruvec) \
3371 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3372
3373 #define DEFINE_MIN_SEQ(lruvec) \
3374 unsigned long min_seq[ANON_AND_FILE] = { \
3375 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3376 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3377 }
3378
3379 #define for_each_gen_type_zone(gen, type, zone) \
3380 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3381 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3382 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3383
3384 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
3385 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
3386
get_lruvec(struct mem_cgroup * memcg,int nid)3387 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3388 {
3389 struct pglist_data *pgdat = NODE_DATA(nid);
3390
3391 #ifdef CONFIG_MEMCG
3392 if (memcg) {
3393 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3394
3395 /* see the comment in mem_cgroup_lruvec() */
3396 if (!lruvec->pgdat)
3397 lruvec->pgdat = pgdat;
3398
3399 return lruvec;
3400 }
3401 #endif
3402 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3403
3404 return &pgdat->__lruvec;
3405 }
3406
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)3407 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3408 {
3409 int swappiness;
3410 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3411 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3412
3413 if (!sc->may_swap)
3414 return 0;
3415
3416 if (!can_demote(pgdat->node_id, sc) &&
3417 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3418 return 0;
3419
3420 swappiness = mem_cgroup_swappiness(memcg);
3421 trace_android_vh_tune_swappiness(&swappiness);
3422
3423 return swappiness;
3424 }
3425
get_nr_gens(struct lruvec * lruvec,int type)3426 static int get_nr_gens(struct lruvec *lruvec, int type)
3427 {
3428 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3429 }
3430
seq_is_valid(struct lruvec * lruvec)3431 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3432 {
3433 /* see the comment on lru_gen_folio */
3434 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3435 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3436 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3437 }
3438
3439 /******************************************************************************
3440 * Bloom filters
3441 ******************************************************************************/
3442
3443 /*
3444 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3445 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3446 * bits in a bitmap, k is the number of hash functions and n is the number of
3447 * inserted items.
3448 *
3449 * Page table walkers use one of the two filters to reduce their search space.
3450 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3451 * aging uses the double-buffering technique to flip to the other filter each
3452 * time it produces a new generation. For non-leaf entries that have enough
3453 * leaf entries, the aging carries them over to the next generation in
3454 * walk_pmd_range(); the eviction also report them when walking the rmap
3455 * in lru_gen_look_around().
3456 *
3457 * For future optimizations:
3458 * 1. It's not necessary to keep both filters all the time. The spare one can be
3459 * freed after the RCU grace period and reallocated if needed again.
3460 * 2. And when reallocating, it's worth scaling its size according to the number
3461 * of inserted entries in the other filter, to reduce the memory overhead on
3462 * small systems and false positives on large systems.
3463 * 3. Jenkins' hash function is an alternative to Knuth's.
3464 */
3465 #define BLOOM_FILTER_SHIFT 15
3466
filter_gen_from_seq(unsigned long seq)3467 static inline int filter_gen_from_seq(unsigned long seq)
3468 {
3469 return seq % NR_BLOOM_FILTERS;
3470 }
3471
get_item_key(void * item,int * key)3472 static void get_item_key(void *item, int *key)
3473 {
3474 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3475
3476 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3477
3478 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3479 key[1] = hash >> BLOOM_FILTER_SHIFT;
3480 }
3481
test_bloom_filter(struct lruvec * lruvec,unsigned long seq,void * item)3482 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3483 {
3484 int key[2];
3485 unsigned long *filter;
3486 int gen = filter_gen_from_seq(seq);
3487
3488 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3489 if (!filter)
3490 return true;
3491
3492 get_item_key(item, key);
3493
3494 return test_bit(key[0], filter) && test_bit(key[1], filter);
3495 }
3496
update_bloom_filter(struct lruvec * lruvec,unsigned long seq,void * item)3497 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3498 {
3499 int key[2];
3500 unsigned long *filter;
3501 int gen = filter_gen_from_seq(seq);
3502
3503 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3504 if (!filter)
3505 return;
3506
3507 get_item_key(item, key);
3508
3509 if (!test_bit(key[0], filter))
3510 set_bit(key[0], filter);
3511 if (!test_bit(key[1], filter))
3512 set_bit(key[1], filter);
3513 }
3514
reset_bloom_filter(struct lruvec * lruvec,unsigned long seq)3515 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3516 {
3517 unsigned long *filter;
3518 int gen = filter_gen_from_seq(seq);
3519
3520 filter = lruvec->mm_state.filters[gen];
3521 if (filter) {
3522 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3523 return;
3524 }
3525
3526 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3527 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3528 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3529 }
3530
3531 /******************************************************************************
3532 * mm_struct list
3533 ******************************************************************************/
3534
get_mm_list(struct mem_cgroup * memcg)3535 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3536 {
3537 static struct lru_gen_mm_list mm_list = {
3538 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3539 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3540 };
3541
3542 #ifdef CONFIG_MEMCG
3543 if (memcg)
3544 return &memcg->mm_list;
3545 #endif
3546 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3547
3548 return &mm_list;
3549 }
3550
lru_gen_add_mm(struct mm_struct * mm)3551 void lru_gen_add_mm(struct mm_struct *mm)
3552 {
3553 int nid;
3554 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3555 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3556
3557 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3558 #ifdef CONFIG_MEMCG
3559 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3560 mm->lru_gen.memcg = memcg;
3561 #endif
3562 spin_lock(&mm_list->lock);
3563
3564 for_each_node_state(nid, N_MEMORY) {
3565 struct lruvec *lruvec = get_lruvec(memcg, nid);
3566
3567 /* the first addition since the last iteration */
3568 if (lruvec->mm_state.tail == &mm_list->fifo)
3569 lruvec->mm_state.tail = &mm->lru_gen.list;
3570 }
3571
3572 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3573
3574 spin_unlock(&mm_list->lock);
3575 }
3576
lru_gen_del_mm(struct mm_struct * mm)3577 void lru_gen_del_mm(struct mm_struct *mm)
3578 {
3579 int nid;
3580 struct lru_gen_mm_list *mm_list;
3581 struct mem_cgroup *memcg = NULL;
3582
3583 if (list_empty(&mm->lru_gen.list))
3584 return;
3585
3586 #ifdef CONFIG_MEMCG
3587 memcg = mm->lru_gen.memcg;
3588 #endif
3589 mm_list = get_mm_list(memcg);
3590
3591 spin_lock(&mm_list->lock);
3592
3593 for_each_node(nid) {
3594 struct lruvec *lruvec = get_lruvec(memcg, nid);
3595
3596 /* where the current iteration continues after */
3597 if (lruvec->mm_state.head == &mm->lru_gen.list)
3598 lruvec->mm_state.head = lruvec->mm_state.head->prev;
3599
3600 /* where the last iteration ended before */
3601 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3602 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3603 }
3604
3605 list_del_init(&mm->lru_gen.list);
3606
3607 spin_unlock(&mm_list->lock);
3608
3609 #ifdef CONFIG_MEMCG
3610 mem_cgroup_put(mm->lru_gen.memcg);
3611 mm->lru_gen.memcg = NULL;
3612 #endif
3613 }
3614
3615 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)3616 void lru_gen_migrate_mm(struct mm_struct *mm)
3617 {
3618 struct mem_cgroup *memcg;
3619 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3620
3621 VM_WARN_ON_ONCE(task->mm != mm);
3622 lockdep_assert_held(&task->alloc_lock);
3623
3624 /* for mm_update_next_owner() */
3625 if (mem_cgroup_disabled())
3626 return;
3627
3628 /* migration can happen before addition */
3629 if (!mm->lru_gen.memcg)
3630 return;
3631
3632 rcu_read_lock();
3633 memcg = mem_cgroup_from_task(task);
3634 rcu_read_unlock();
3635 if (memcg == mm->lru_gen.memcg)
3636 return;
3637
3638 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3639
3640 lru_gen_del_mm(mm);
3641 lru_gen_add_mm(mm);
3642 }
3643 #endif
3644
reset_mm_stats(struct lruvec * lruvec,struct lru_gen_mm_walk * walk,bool last)3645 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3646 {
3647 int i;
3648 int hist;
3649
3650 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3651
3652 if (walk) {
3653 hist = lru_hist_from_seq(walk->max_seq);
3654
3655 for (i = 0; i < NR_MM_STATS; i++) {
3656 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3657 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3658 walk->mm_stats[i] = 0;
3659 }
3660 }
3661
3662 if (NR_HIST_GENS > 1 && last) {
3663 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3664
3665 for (i = 0; i < NR_MM_STATS; i++)
3666 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3667 }
3668 }
3669
should_skip_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3670 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3671 {
3672 int type;
3673 unsigned long size = 0;
3674 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3675 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3676
3677 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3678 return true;
3679
3680 clear_bit(key, &mm->lru_gen.bitmap);
3681
3682 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3683 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3684 get_mm_counter(mm, MM_ANONPAGES) +
3685 get_mm_counter(mm, MM_SHMEMPAGES);
3686 }
3687
3688 if (size < MIN_LRU_BATCH)
3689 return true;
3690
3691 return !mmget_not_zero(mm);
3692 }
3693
iterate_mm_list(struct lruvec * lruvec,struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3694 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3695 struct mm_struct **iter)
3696 {
3697 bool first = false;
3698 bool last = false;
3699 struct mm_struct *mm = NULL;
3700 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3701 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3702 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3703
3704 /*
3705 * mm_state->seq is incremented after each iteration of mm_list. There
3706 * are three interesting cases for this page table walker:
3707 * 1. It tries to start a new iteration with a stale max_seq: there is
3708 * nothing left to do.
3709 * 2. It started the next iteration: it needs to reset the Bloom filter
3710 * so that a fresh set of PTE tables can be recorded.
3711 * 3. It ended the current iteration: it needs to reset the mm stats
3712 * counters and tell its caller to increment max_seq.
3713 */
3714 spin_lock(&mm_list->lock);
3715
3716 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3717
3718 if (walk->max_seq <= mm_state->seq)
3719 goto done;
3720
3721 if (!mm_state->head)
3722 mm_state->head = &mm_list->fifo;
3723
3724 if (mm_state->head == &mm_list->fifo)
3725 first = true;
3726
3727 do {
3728 mm_state->head = mm_state->head->next;
3729 if (mm_state->head == &mm_list->fifo) {
3730 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3731 last = true;
3732 break;
3733 }
3734
3735 /* force scan for those added after the last iteration */
3736 if (!mm_state->tail || mm_state->tail == mm_state->head) {
3737 mm_state->tail = mm_state->head->next;
3738 walk->force_scan = true;
3739 }
3740
3741 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3742 if (should_skip_mm(mm, walk))
3743 mm = NULL;
3744 } while (!mm);
3745 done:
3746 if (*iter || last)
3747 reset_mm_stats(lruvec, walk, last);
3748
3749 spin_unlock(&mm_list->lock);
3750
3751 if (mm && first)
3752 reset_bloom_filter(lruvec, walk->max_seq + 1);
3753
3754 if (*iter)
3755 mmput_async(*iter);
3756
3757 *iter = mm;
3758
3759 return last;
3760 }
3761
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long max_seq)3762 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3763 {
3764 bool success = false;
3765 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3766 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3767 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3768
3769 spin_lock(&mm_list->lock);
3770
3771 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3772
3773 if (max_seq > mm_state->seq) {
3774 mm_state->head = NULL;
3775 mm_state->tail = NULL;
3776 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3777 reset_mm_stats(lruvec, NULL, true);
3778 success = true;
3779 }
3780
3781 spin_unlock(&mm_list->lock);
3782
3783 return success;
3784 }
3785
3786 /******************************************************************************
3787 * PID controller
3788 ******************************************************************************/
3789
3790 /*
3791 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3792 *
3793 * The P term is refaulted/(evicted+protected) from a tier in the generation
3794 * currently being evicted; the I term is the exponential moving average of the
3795 * P term over the generations previously evicted, using the smoothing factor
3796 * 1/2; the D term isn't supported.
3797 *
3798 * The setpoint (SP) is always the first tier of one type; the process variable
3799 * (PV) is either any tier of the other type or any other tier of the same
3800 * type.
3801 *
3802 * The error is the difference between the SP and the PV; the correction is to
3803 * turn off protection when SP>PV or turn on protection when SP<PV.
3804 *
3805 * For future optimizations:
3806 * 1. The D term may discount the other two terms over time so that long-lived
3807 * generations can resist stale information.
3808 */
3809 struct ctrl_pos {
3810 unsigned long refaulted;
3811 unsigned long total;
3812 int gain;
3813 };
3814
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3815 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3816 struct ctrl_pos *pos)
3817 {
3818 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3819 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3820
3821 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3822 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3823 pos->total = lrugen->avg_total[type][tier] +
3824 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3825 if (tier)
3826 pos->total += lrugen->protected[hist][type][tier - 1];
3827 pos->gain = gain;
3828 }
3829
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3830 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3831 {
3832 int hist, tier;
3833 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3834 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3835 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3836
3837 lockdep_assert_held(&lruvec->lru_lock);
3838
3839 if (!carryover && !clear)
3840 return;
3841
3842 hist = lru_hist_from_seq(seq);
3843
3844 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3845 if (carryover) {
3846 unsigned long sum;
3847
3848 sum = lrugen->avg_refaulted[type][tier] +
3849 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3850 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3851
3852 sum = lrugen->avg_total[type][tier] +
3853 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3854 if (tier)
3855 sum += lrugen->protected[hist][type][tier - 1];
3856 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3857 }
3858
3859 if (clear) {
3860 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3861 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3862 if (tier)
3863 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3864 }
3865 }
3866 }
3867
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3868 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3869 {
3870 /*
3871 * Return true if the PV has a limited number of refaults or a lower
3872 * refaulted/total than the SP.
3873 */
3874 return pv->refaulted < MIN_LRU_BATCH ||
3875 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3876 (sp->refaulted + 1) * pv->total * pv->gain;
3877 }
3878
3879 /******************************************************************************
3880 * the aging
3881 ******************************************************************************/
3882
3883 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3884 static int folio_update_gen(struct folio *folio, int gen)
3885 {
3886 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3887
3888 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3889 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3890
3891 do {
3892 /* lru_gen_del_folio() has isolated this page? */
3893 if (!(old_flags & LRU_GEN_MASK)) {
3894 /* for shrink_folio_list() */
3895 new_flags = old_flags | BIT(PG_referenced);
3896 continue;
3897 }
3898
3899 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3900 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3901 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3902
3903 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3904 }
3905
3906 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3907 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3908 {
3909 int type = folio_is_file_lru(folio);
3910 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3911 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3912 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3913
3914 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3915
3916 do {
3917 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3918 /* folio_update_gen() has promoted this page? */
3919 if (new_gen >= 0 && new_gen != old_gen)
3920 return new_gen;
3921
3922 new_gen = (old_gen + 1) % MAX_NR_GENS;
3923
3924 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3925 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3926 /* for folio_end_writeback() */
3927 if (reclaiming)
3928 new_flags |= BIT(PG_reclaim);
3929 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3930
3931 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3932
3933 return new_gen;
3934 }
3935
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3936 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3937 int old_gen, int new_gen)
3938 {
3939 int type = folio_is_file_lru(folio);
3940 int zone = folio_zonenum(folio);
3941 int delta = folio_nr_pages(folio);
3942
3943 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3944 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3945
3946 walk->batched++;
3947
3948 walk->nr_pages[old_gen][type][zone] -= delta;
3949 walk->nr_pages[new_gen][type][zone] += delta;
3950 }
3951
reset_batch_size(struct lruvec * lruvec,struct lru_gen_mm_walk * walk)3952 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3953 {
3954 int gen, type, zone;
3955 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3956
3957 walk->batched = 0;
3958
3959 for_each_gen_type_zone(gen, type, zone) {
3960 enum lru_list lru = type * LRU_INACTIVE_FILE;
3961 int delta = walk->nr_pages[gen][type][zone];
3962
3963 if (!delta)
3964 continue;
3965
3966 walk->nr_pages[gen][type][zone] = 0;
3967 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3968 lrugen->nr_pages[gen][type][zone] + delta);
3969
3970 if (lru_gen_is_active(lruvec, gen))
3971 lru += LRU_ACTIVE;
3972 __update_lru_size(lruvec, lru, zone, delta);
3973 }
3974 }
3975
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3976 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3977 {
3978 struct address_space *mapping;
3979 struct vm_area_struct *vma = args->vma;
3980 struct lru_gen_mm_walk *walk = args->private;
3981
3982 if (!vma_is_accessible(vma))
3983 return true;
3984
3985 if (is_vm_hugetlb_page(vma))
3986 return true;
3987
3988 if (!vma_has_recency(vma))
3989 return true;
3990
3991 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3992 return true;
3993
3994 if (vma == get_gate_vma(vma->vm_mm))
3995 return true;
3996
3997 if (vma_is_anonymous(vma))
3998 return !walk->can_swap;
3999
4000 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
4001 return true;
4002
4003 mapping = vma->vm_file->f_mapping;
4004 if (mapping_unevictable(mapping))
4005 return true;
4006
4007 if (shmem_mapping(mapping))
4008 return !walk->can_swap;
4009
4010 /* to exclude special mappings like dax, etc. */
4011 return !mapping->a_ops->read_folio;
4012 }
4013
4014 /*
4015 * Some userspace memory allocators map many single-page VMAs. Instead of
4016 * returning back to the PGD table for each of such VMAs, finish an entire PMD
4017 * table to reduce zigzags and improve cache performance.
4018 */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)4019 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
4020 unsigned long *vm_start, unsigned long *vm_end)
4021 {
4022 unsigned long start = round_up(*vm_end, size);
4023 unsigned long end = (start | ~mask) + 1;
4024 VMA_ITERATOR(vmi, args->mm, start);
4025
4026 VM_WARN_ON_ONCE(mask & size);
4027 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
4028
4029 for_each_vma(vmi, args->vma) {
4030 if (end && end <= args->vma->vm_start)
4031 return false;
4032
4033 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
4034 continue;
4035
4036 *vm_start = max(start, args->vma->vm_start);
4037 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
4038
4039 return true;
4040 }
4041
4042 return false;
4043 }
4044
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr)4045 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
4046 {
4047 unsigned long pfn = pte_pfn(pte);
4048
4049 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
4050
4051 if (!pte_present(pte) || is_zero_pfn(pfn))
4052 return -1;
4053
4054 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
4055 return -1;
4056
4057 if (WARN_ON_ONCE(!pfn_valid(pfn)))
4058 return -1;
4059
4060 return pfn;
4061 }
4062
4063 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)4064 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
4065 {
4066 unsigned long pfn = pmd_pfn(pmd);
4067
4068 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
4069
4070 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
4071 return -1;
4072
4073 if (WARN_ON_ONCE(pmd_devmap(pmd)))
4074 return -1;
4075
4076 if (WARN_ON_ONCE(!pfn_valid(pfn)))
4077 return -1;
4078
4079 return pfn;
4080 }
4081 #endif
4082
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat,bool can_swap)4083 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
4084 struct pglist_data *pgdat, bool can_swap)
4085 {
4086 struct folio *folio;
4087
4088 /* try to avoid unnecessary memory loads */
4089 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4090 return NULL;
4091
4092 folio = pfn_folio(pfn);
4093 if (folio_nid(folio) != pgdat->node_id)
4094 return NULL;
4095
4096 if (folio_memcg_rcu(folio) != memcg)
4097 return NULL;
4098
4099 /* file VMAs can contain anon pages from COW */
4100 if (!folio_is_file_lru(folio) && !can_swap)
4101 return NULL;
4102
4103 return folio;
4104 }
4105
suitable_to_scan(int total,int young)4106 static bool suitable_to_scan(int total, int young)
4107 {
4108 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
4109
4110 /* suitable if the average number of young PTEs per cacheline is >=1 */
4111 return young * n >= total;
4112 }
4113
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)4114 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
4115 struct mm_walk *args)
4116 {
4117 int i;
4118 pte_t *pte;
4119 spinlock_t *ptl;
4120 unsigned long addr;
4121 int total = 0;
4122 int young = 0;
4123 struct lru_gen_mm_walk *walk = args->private;
4124 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4125 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4126 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4127
4128 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
4129 if (!pte)
4130 return false;
4131 if (!spin_trylock(ptl)) {
4132 pte_unmap(pte);
4133 return false;
4134 }
4135
4136 arch_enter_lazy_mmu_mode();
4137 restart:
4138 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
4139 unsigned long pfn;
4140 struct folio *folio;
4141 pte_t ptent = ptep_get(pte + i);
4142
4143 total++;
4144 walk->mm_stats[MM_LEAF_TOTAL]++;
4145
4146 pfn = get_pte_pfn(ptent, args->vma, addr);
4147 if (pfn == -1)
4148 continue;
4149
4150 if (!pte_young(ptent)) {
4151 walk->mm_stats[MM_LEAF_OLD]++;
4152 continue;
4153 }
4154
4155 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4156 if (!folio)
4157 continue;
4158
4159 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
4160 VM_WARN_ON_ONCE(true);
4161
4162 young++;
4163 walk->mm_stats[MM_LEAF_YOUNG]++;
4164
4165 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4166 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4167 !folio_test_swapcache(folio)))
4168 folio_mark_dirty(folio);
4169
4170 old_gen = folio_update_gen(folio, new_gen);
4171 if (old_gen >= 0 && old_gen != new_gen)
4172 update_batch_size(walk, folio, old_gen, new_gen);
4173 }
4174
4175 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4176 goto restart;
4177
4178 arch_leave_lazy_mmu_mode();
4179 pte_unmap_unlock(pte, ptl);
4180
4181 return suitable_to_scan(total, young);
4182 }
4183
4184 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)4185 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4186 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4187 {
4188 int i;
4189 pmd_t *pmd;
4190 spinlock_t *ptl;
4191 struct lru_gen_mm_walk *walk = args->private;
4192 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4193 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4194 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4195
4196 VM_WARN_ON_ONCE(pud_leaf(*pud));
4197
4198 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4199 if (*first == -1) {
4200 *first = addr;
4201 bitmap_zero(bitmap, MIN_LRU_BATCH);
4202 return;
4203 }
4204
4205 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4206 if (i && i <= MIN_LRU_BATCH) {
4207 __set_bit(i - 1, bitmap);
4208 return;
4209 }
4210
4211 pmd = pmd_offset(pud, *first);
4212
4213 ptl = pmd_lockptr(args->mm, pmd);
4214 if (!spin_trylock(ptl))
4215 goto done;
4216
4217 arch_enter_lazy_mmu_mode();
4218
4219 do {
4220 unsigned long pfn;
4221 struct folio *folio;
4222
4223 /* don't round down the first address */
4224 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4225
4226 pfn = get_pmd_pfn(pmd[i], vma, addr);
4227 if (pfn == -1)
4228 goto next;
4229
4230 if (!pmd_trans_huge(pmd[i])) {
4231 if (should_clear_pmd_young())
4232 pmdp_test_and_clear_young(vma, addr, pmd + i);
4233 goto next;
4234 }
4235
4236 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4237 if (!folio)
4238 goto next;
4239
4240 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4241 goto next;
4242
4243 walk->mm_stats[MM_LEAF_YOUNG]++;
4244
4245 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4246 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4247 !folio_test_swapcache(folio)))
4248 folio_mark_dirty(folio);
4249
4250 old_gen = folio_update_gen(folio, new_gen);
4251 if (old_gen >= 0 && old_gen != new_gen)
4252 update_batch_size(walk, folio, old_gen, new_gen);
4253 next:
4254 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4255 } while (i <= MIN_LRU_BATCH);
4256
4257 arch_leave_lazy_mmu_mode();
4258 spin_unlock(ptl);
4259 done:
4260 *first = -1;
4261 }
4262 #else
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)4263 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4264 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4265 {
4266 }
4267 #endif
4268
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)4269 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4270 struct mm_walk *args)
4271 {
4272 int i;
4273 pmd_t *pmd;
4274 unsigned long next;
4275 unsigned long addr;
4276 struct vm_area_struct *vma;
4277 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
4278 unsigned long first = -1;
4279 struct lru_gen_mm_walk *walk = args->private;
4280
4281 VM_WARN_ON_ONCE(pud_leaf(*pud));
4282
4283 /*
4284 * Finish an entire PMD in two passes: the first only reaches to PTE
4285 * tables to avoid taking the PMD lock; the second, if necessary, takes
4286 * the PMD lock to clear the accessed bit in PMD entries.
4287 */
4288 pmd = pmd_offset(pud, start & PUD_MASK);
4289 restart:
4290 /* walk_pte_range() may call get_next_vma() */
4291 vma = args->vma;
4292 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4293 pmd_t val = pmdp_get_lockless(pmd + i);
4294
4295 next = pmd_addr_end(addr, end);
4296
4297 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4298 walk->mm_stats[MM_LEAF_TOTAL]++;
4299 continue;
4300 }
4301
4302 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4303 if (pmd_trans_huge(val)) {
4304 unsigned long pfn = pmd_pfn(val);
4305 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4306
4307 walk->mm_stats[MM_LEAF_TOTAL]++;
4308
4309 if (!pmd_young(val)) {
4310 walk->mm_stats[MM_LEAF_OLD]++;
4311 continue;
4312 }
4313
4314 /* try to avoid unnecessary memory loads */
4315 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4316 continue;
4317
4318 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4319 continue;
4320 }
4321 #endif
4322 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4323
4324 if (should_clear_pmd_young()) {
4325 if (!pmd_young(val))
4326 continue;
4327
4328 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4329 }
4330
4331 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4332 continue;
4333
4334 walk->mm_stats[MM_NONLEAF_FOUND]++;
4335
4336 if (!walk_pte_range(&val, addr, next, args))
4337 continue;
4338
4339 walk->mm_stats[MM_NONLEAF_ADDED]++;
4340
4341 /* carry over to the next generation */
4342 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4343 }
4344
4345 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4346
4347 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4348 goto restart;
4349 }
4350
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)4351 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4352 struct mm_walk *args)
4353 {
4354 int i;
4355 pud_t *pud;
4356 unsigned long addr;
4357 unsigned long next;
4358 struct lru_gen_mm_walk *walk = args->private;
4359
4360 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4361
4362 pud = pud_offset(p4d, start & P4D_MASK);
4363 restart:
4364 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4365 pud_t val = READ_ONCE(pud[i]);
4366
4367 next = pud_addr_end(addr, end);
4368
4369 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4370 continue;
4371
4372 walk_pmd_range(&val, addr, next, args);
4373
4374 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4375 end = (addr | ~PUD_MASK) + 1;
4376 goto done;
4377 }
4378 }
4379
4380 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4381 goto restart;
4382
4383 end = round_up(end, P4D_SIZE);
4384 done:
4385 if (!end || !args->vma)
4386 return 1;
4387
4388 walk->next_addr = max(end, args->vma->vm_start);
4389
4390 return -EAGAIN;
4391 }
4392
walk_mm(struct lruvec * lruvec,struct mm_struct * mm,struct lru_gen_mm_walk * walk)4393 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4394 {
4395 static const struct mm_walk_ops mm_walk_ops = {
4396 .test_walk = should_skip_vma,
4397 .p4d_entry = walk_pud_range,
4398 .walk_lock = PGWALK_RDLOCK,
4399 };
4400
4401 int err;
4402 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4403
4404 walk->next_addr = FIRST_USER_ADDRESS;
4405
4406 do {
4407 DEFINE_MAX_SEQ(lruvec);
4408
4409 err = -EBUSY;
4410
4411 /* another thread might have called inc_max_seq() */
4412 if (walk->max_seq != max_seq)
4413 break;
4414
4415 /* folio_update_gen() requires stable folio_memcg() */
4416 if (!mem_cgroup_trylock_pages(memcg))
4417 break;
4418
4419 /* the caller might be holding the lock for write */
4420 if (mmap_read_trylock(mm)) {
4421 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4422
4423 mmap_read_unlock(mm);
4424 }
4425
4426 mem_cgroup_unlock_pages();
4427
4428 if (walk->batched) {
4429 spin_lock_irq(&lruvec->lru_lock);
4430 reset_batch_size(lruvec, walk);
4431 spin_unlock_irq(&lruvec->lru_lock);
4432 }
4433
4434 cond_resched();
4435 } while (err == -EAGAIN);
4436 }
4437
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)4438 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4439 {
4440 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4441
4442 if (pgdat && current_is_kswapd()) {
4443 VM_WARN_ON_ONCE(walk);
4444
4445 walk = &pgdat->mm_walk;
4446 } else if (!walk && force_alloc) {
4447 VM_WARN_ON_ONCE(current_is_kswapd());
4448
4449 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4450 }
4451
4452 current->reclaim_state->mm_walk = walk;
4453
4454 return walk;
4455 }
4456
clear_mm_walk(void)4457 static void clear_mm_walk(void)
4458 {
4459 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4460
4461 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4462 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4463
4464 current->reclaim_state->mm_walk = NULL;
4465
4466 if (!current_is_kswapd())
4467 kfree(walk);
4468 }
4469
inc_min_seq(struct lruvec * lruvec,int type,bool can_swap)4470 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4471 {
4472 int zone;
4473 int remaining = MAX_LRU_BATCH;
4474 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4475 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4476
4477 if (type == LRU_GEN_ANON && !can_swap)
4478 goto done;
4479
4480 /* prevent cold/hot inversion if force_scan is true */
4481 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4482 struct list_head *head = &lrugen->folios[old_gen][type][zone];
4483
4484 while (!list_empty(head)) {
4485 struct folio *folio = lru_to_folio(head);
4486
4487 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4488 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4489 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4490 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4491
4492 new_gen = folio_inc_gen(lruvec, folio, false);
4493 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4494
4495 if (!--remaining)
4496 return false;
4497 }
4498 }
4499 done:
4500 reset_ctrl_pos(lruvec, type, true);
4501 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4502
4503 return true;
4504 }
4505
try_to_inc_min_seq(struct lruvec * lruvec,bool can_swap)4506 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4507 {
4508 int gen, type, zone;
4509 bool success = false;
4510 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4511 DEFINE_MIN_SEQ(lruvec);
4512
4513 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4514
4515 /* find the oldest populated generation */
4516 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4517 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4518 gen = lru_gen_from_seq(min_seq[type]);
4519
4520 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4521 if (!list_empty(&lrugen->folios[gen][type][zone]))
4522 goto next;
4523 }
4524
4525 min_seq[type]++;
4526 }
4527 next:
4528 ;
4529 }
4530
4531 /* see the comment on lru_gen_folio */
4532 if (can_swap) {
4533 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4534 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4535 }
4536
4537 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4538 if (min_seq[type] == lrugen->min_seq[type])
4539 continue;
4540
4541 reset_ctrl_pos(lruvec, type, true);
4542 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4543 success = true;
4544 }
4545
4546 return success;
4547 }
4548
inc_max_seq(struct lruvec * lruvec,bool can_swap,bool force_scan)4549 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4550 {
4551 int prev, next;
4552 int type, zone;
4553 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4554 restart:
4555 spin_lock_irq(&lruvec->lru_lock);
4556
4557 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4558
4559 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4560 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4561 continue;
4562
4563 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4564
4565 if (inc_min_seq(lruvec, type, can_swap))
4566 continue;
4567
4568 spin_unlock_irq(&lruvec->lru_lock);
4569 cond_resched();
4570 goto restart;
4571 }
4572
4573 /*
4574 * Update the active/inactive LRU sizes for compatibility. Both sides of
4575 * the current max_seq need to be covered, since max_seq+1 can overlap
4576 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4577 * overlap, cold/hot inversion happens.
4578 */
4579 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4580 next = lru_gen_from_seq(lrugen->max_seq + 1);
4581
4582 for (type = 0; type < ANON_AND_FILE; type++) {
4583 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4584 enum lru_list lru = type * LRU_INACTIVE_FILE;
4585 long delta = lrugen->nr_pages[prev][type][zone] -
4586 lrugen->nr_pages[next][type][zone];
4587
4588 if (!delta)
4589 continue;
4590
4591 __update_lru_size(lruvec, lru, zone, delta);
4592 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4593 }
4594 }
4595
4596 for (type = 0; type < ANON_AND_FILE; type++)
4597 reset_ctrl_pos(lruvec, type, false);
4598
4599 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4600 /* make sure preceding modifications appear */
4601 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4602
4603 spin_unlock_irq(&lruvec->lru_lock);
4604 }
4605
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long max_seq,struct scan_control * sc,bool can_swap,bool force_scan)4606 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4607 struct scan_control *sc, bool can_swap, bool force_scan)
4608 {
4609 bool success;
4610 struct lru_gen_mm_walk *walk;
4611 struct mm_struct *mm = NULL;
4612 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4613
4614 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4615
4616 /* see the comment in iterate_mm_list() */
4617 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4618 success = false;
4619 goto done;
4620 }
4621
4622 /*
4623 * If the hardware doesn't automatically set the accessed bit, fallback
4624 * to lru_gen_look_around(), which only clears the accessed bit in a
4625 * handful of PTEs. Spreading the work out over a period of time usually
4626 * is less efficient, but it avoids bursty page faults.
4627 */
4628 if (!should_walk_mmu()) {
4629 success = iterate_mm_list_nowalk(lruvec, max_seq);
4630 goto done;
4631 }
4632
4633 walk = set_mm_walk(NULL, true);
4634 if (!walk) {
4635 success = iterate_mm_list_nowalk(lruvec, max_seq);
4636 goto done;
4637 }
4638
4639 walk->lruvec = lruvec;
4640 walk->max_seq = max_seq;
4641 walk->can_swap = can_swap;
4642 walk->force_scan = force_scan;
4643
4644 do {
4645 success = iterate_mm_list(lruvec, walk, &mm);
4646 if (mm)
4647 walk_mm(lruvec, mm, walk);
4648 } while (mm);
4649 done:
4650 if (success)
4651 inc_max_seq(lruvec, can_swap, force_scan);
4652
4653 return success;
4654 }
4655
4656 /******************************************************************************
4657 * working set protection
4658 ******************************************************************************/
4659
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4660 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4661 {
4662 int priority;
4663 unsigned long reclaimable;
4664
4665 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4666 return;
4667 /*
4668 * Determine the initial priority based on
4669 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4670 * where reclaimed_to_scanned_ratio = inactive / total.
4671 */
4672 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4673 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4674 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4675
4676 /* round down reclaimable and round up sc->nr_to_reclaim */
4677 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4678
4679 /*
4680 * The estimation is based on LRU pages only, so cap it to prevent
4681 * overshoots of shrinker objects by large margins.
4682 */
4683 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4684 }
4685
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4686 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4687 {
4688 int gen, type, zone;
4689 unsigned long total = 0;
4690 bool can_swap = get_swappiness(lruvec, sc);
4691 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4692 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4693 DEFINE_MAX_SEQ(lruvec);
4694 DEFINE_MIN_SEQ(lruvec);
4695
4696 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4697 unsigned long seq;
4698
4699 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4700 gen = lru_gen_from_seq(seq);
4701
4702 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4703 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4704 }
4705 }
4706
4707 /* whether the size is big enough to be helpful */
4708 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4709 }
4710
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4711 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4712 unsigned long min_ttl)
4713 {
4714 int gen;
4715 unsigned long birth;
4716 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4717 DEFINE_MIN_SEQ(lruvec);
4718
4719 if (mem_cgroup_below_min(NULL, memcg))
4720 return false;
4721
4722 if (!lruvec_is_sizable(lruvec, sc))
4723 return false;
4724
4725 /* see the comment on lru_gen_folio */
4726 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4727 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4728
4729 return time_is_before_jiffies(birth + min_ttl);
4730 }
4731
4732 /* to protect the working set of the last N jiffies */
4733 static unsigned long lru_gen_min_ttl __read_mostly;
4734
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4735 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4736 {
4737 struct mem_cgroup *memcg;
4738 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4739 bool reclaimable = !min_ttl;
4740
4741 VM_WARN_ON_ONCE(!current_is_kswapd());
4742
4743 set_initial_priority(pgdat, sc);
4744
4745 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4746 do {
4747 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4748
4749 mem_cgroup_calculate_protection(NULL, memcg);
4750
4751 if (!reclaimable)
4752 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4753 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4754
4755 /*
4756 * The main goal is to OOM kill if every generation from all memcgs is
4757 * younger than min_ttl. However, another possibility is all memcgs are
4758 * either too small or below min.
4759 */
4760 if (!reclaimable && mutex_trylock(&oom_lock)) {
4761 struct oom_control oc = {
4762 .gfp_mask = sc->gfp_mask,
4763 };
4764
4765 out_of_memory(&oc);
4766
4767 mutex_unlock(&oom_lock);
4768 }
4769 }
4770
4771 /******************************************************************************
4772 * rmap/PT walk feedback
4773 ******************************************************************************/
4774
4775 /*
4776 * This function exploits spatial locality when shrink_folio_list() walks the
4777 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4778 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4779 * the PTE table to the Bloom filter. This forms a feedback loop between the
4780 * eviction and the aging.
4781 */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4782 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4783 {
4784 int i;
4785 unsigned long start;
4786 unsigned long end;
4787 struct lru_gen_mm_walk *walk;
4788 int young = 0;
4789 pte_t *pte = pvmw->pte;
4790 unsigned long addr = pvmw->address;
4791 struct vm_area_struct *vma = pvmw->vma;
4792 struct folio *folio = pfn_folio(pvmw->pfn);
4793 bool can_swap = !folio_is_file_lru(folio);
4794 struct mem_cgroup *memcg = folio_memcg(folio);
4795 struct pglist_data *pgdat = folio_pgdat(folio);
4796 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4797 DEFINE_MAX_SEQ(lruvec);
4798 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4799
4800 lockdep_assert_held(pvmw->ptl);
4801 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4802
4803 if (spin_is_contended(pvmw->ptl))
4804 return;
4805
4806 /* exclude special VMAs containing anon pages from COW */
4807 if (vma->vm_flags & VM_SPECIAL)
4808 return;
4809
4810 /* avoid taking the LRU lock under the PTL when possible */
4811 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4812
4813 start = max(addr & PMD_MASK, vma->vm_start);
4814 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4815
4816 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4817 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4818 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4819 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4820 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4821 else {
4822 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4823 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4824 }
4825 }
4826
4827 /* folio_update_gen() requires stable folio_memcg() */
4828 if (!mem_cgroup_trylock_pages(memcg))
4829 return;
4830
4831 arch_enter_lazy_mmu_mode();
4832
4833 pte -= (addr - start) / PAGE_SIZE;
4834
4835 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4836 unsigned long pfn;
4837 pte_t ptent = ptep_get(pte + i);
4838
4839 pfn = get_pte_pfn(ptent, vma, addr);
4840 if (pfn == -1)
4841 continue;
4842
4843 if (!pte_young(ptent))
4844 continue;
4845
4846 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4847 if (!folio)
4848 continue;
4849
4850 if (!ptep_test_and_clear_young(vma, addr, pte + i))
4851 VM_WARN_ON_ONCE(true);
4852
4853 young++;
4854
4855 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4856 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4857 !folio_test_swapcache(folio)))
4858 folio_mark_dirty(folio);
4859
4860 if (walk) {
4861 old_gen = folio_update_gen(folio, new_gen);
4862 if (old_gen >= 0 && old_gen != new_gen)
4863 update_batch_size(walk, folio, old_gen, new_gen);
4864
4865 continue;
4866 }
4867
4868 old_gen = folio_lru_gen(folio);
4869 if (old_gen < 0)
4870 folio_set_referenced(folio);
4871 else if (old_gen != new_gen)
4872 folio_activate(folio);
4873 }
4874
4875 arch_leave_lazy_mmu_mode();
4876 mem_cgroup_unlock_pages();
4877
4878 /* feedback from rmap walkers to page table walkers */
4879 if (suitable_to_scan(i, young))
4880 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4881 }
4882
4883 /******************************************************************************
4884 * memcg LRU
4885 ******************************************************************************/
4886
4887 /* see the comment on MEMCG_NR_GENS */
4888 enum {
4889 MEMCG_LRU_NOP,
4890 MEMCG_LRU_HEAD,
4891 MEMCG_LRU_TAIL,
4892 MEMCG_LRU_OLD,
4893 MEMCG_LRU_YOUNG,
4894 };
4895
4896 #ifdef CONFIG_MEMCG
4897
lru_gen_memcg_seg(struct lruvec * lruvec)4898 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4899 {
4900 return READ_ONCE(lruvec->lrugen.seg);
4901 }
4902
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4903 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4904 {
4905 int seg;
4906 int old, new;
4907 unsigned long flags;
4908 int bin = get_random_u32_below(MEMCG_NR_BINS);
4909 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4910
4911 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4912
4913 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4914
4915 seg = 0;
4916 new = old = lruvec->lrugen.gen;
4917
4918 /* see the comment on MEMCG_NR_GENS */
4919 if (op == MEMCG_LRU_HEAD)
4920 seg = MEMCG_LRU_HEAD;
4921 else if (op == MEMCG_LRU_TAIL)
4922 seg = MEMCG_LRU_TAIL;
4923 else if (op == MEMCG_LRU_OLD)
4924 new = get_memcg_gen(pgdat->memcg_lru.seq);
4925 else if (op == MEMCG_LRU_YOUNG)
4926 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4927 else
4928 VM_WARN_ON_ONCE(true);
4929
4930 WRITE_ONCE(lruvec->lrugen.seg, seg);
4931 WRITE_ONCE(lruvec->lrugen.gen, new);
4932
4933 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4934
4935 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4936 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4937 else
4938 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4939
4940 pgdat->memcg_lru.nr_memcgs[old]--;
4941 pgdat->memcg_lru.nr_memcgs[new]++;
4942
4943 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4944 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4945
4946 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4947 }
4948
lru_gen_online_memcg(struct mem_cgroup * memcg)4949 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4950 {
4951 int gen;
4952 int nid;
4953 int bin = get_random_u32_below(MEMCG_NR_BINS);
4954
4955 for_each_node(nid) {
4956 struct pglist_data *pgdat = NODE_DATA(nid);
4957 struct lruvec *lruvec = get_lruvec(memcg, nid);
4958
4959 spin_lock_irq(&pgdat->memcg_lru.lock);
4960
4961 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4962
4963 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4964
4965 lruvec->lrugen.gen = gen;
4966
4967 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4968 pgdat->memcg_lru.nr_memcgs[gen]++;
4969
4970 spin_unlock_irq(&pgdat->memcg_lru.lock);
4971 }
4972 }
4973
lru_gen_offline_memcg(struct mem_cgroup * memcg)4974 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4975 {
4976 int nid;
4977
4978 for_each_node(nid) {
4979 struct lruvec *lruvec = get_lruvec(memcg, nid);
4980
4981 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4982 }
4983 }
4984
lru_gen_release_memcg(struct mem_cgroup * memcg)4985 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4986 {
4987 int gen;
4988 int nid;
4989
4990 for_each_node(nid) {
4991 struct pglist_data *pgdat = NODE_DATA(nid);
4992 struct lruvec *lruvec = get_lruvec(memcg, nid);
4993
4994 spin_lock_irq(&pgdat->memcg_lru.lock);
4995
4996 if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4997 goto unlock;
4998
4999 gen = lruvec->lrugen.gen;
5000
5001 hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
5002 pgdat->memcg_lru.nr_memcgs[gen]--;
5003
5004 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
5005 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
5006 unlock:
5007 spin_unlock_irq(&pgdat->memcg_lru.lock);
5008 }
5009 }
5010
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)5011 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
5012 {
5013 struct lruvec *lruvec = get_lruvec(memcg, nid);
5014
5015 /* see the comment on MEMCG_NR_GENS */
5016 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
5017 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
5018 }
5019
5020 #else /* !CONFIG_MEMCG */
5021
lru_gen_memcg_seg(struct lruvec * lruvec)5022 static int lru_gen_memcg_seg(struct lruvec *lruvec)
5023 {
5024 return 0;
5025 }
5026
5027 #endif
5028
5029 /******************************************************************************
5030 * the eviction
5031 ******************************************************************************/
5032
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)5033 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
5034 int tier_idx)
5035 {
5036 bool success;
5037 int gen = folio_lru_gen(folio);
5038 int type = folio_is_file_lru(folio);
5039 int zone = folio_zonenum(folio);
5040 int delta = folio_nr_pages(folio);
5041 int refs = folio_lru_refs(folio);
5042 int tier = lru_tier_from_refs(refs);
5043 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5044
5045 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
5046
5047 /* unevictable */
5048 if (!folio_evictable(folio)) {
5049 success = lru_gen_del_folio(lruvec, folio, true);
5050 VM_WARN_ON_ONCE_FOLIO(!success, folio);
5051 folio_set_unevictable(folio);
5052 lruvec_add_folio(lruvec, folio);
5053 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
5054 return true;
5055 }
5056
5057 /* dirty lazyfree */
5058 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
5059 success = lru_gen_del_folio(lruvec, folio, true);
5060 VM_WARN_ON_ONCE_FOLIO(!success, folio);
5061 folio_set_swapbacked(folio);
5062 lruvec_add_folio_tail(lruvec, folio);
5063 return true;
5064 }
5065
5066 /* promoted */
5067 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
5068 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
5069 return true;
5070 }
5071
5072 /* protected */
5073 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
5074 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
5075
5076 gen = folio_inc_gen(lruvec, folio, false);
5077 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
5078
5079 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
5080 lrugen->protected[hist][type][tier - 1] + delta);
5081 return true;
5082 }
5083
5084 /* ineligible */
5085 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) {
5086 gen = folio_inc_gen(lruvec, folio, false);
5087 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
5088 return true;
5089 }
5090
5091 /* waiting for writeback */
5092 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
5093 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
5094 gen = folio_inc_gen(lruvec, folio, true);
5095 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
5096 return true;
5097 }
5098
5099 return false;
5100 }
5101
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)5102 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
5103 {
5104 bool success;
5105
5106 /* swapping inhibited */
5107 if (!(sc->gfp_mask & __GFP_IO) &&
5108 (folio_test_dirty(folio) ||
5109 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
5110 return false;
5111
5112 /* raced with release_pages() */
5113 if (!folio_try_get(folio))
5114 return false;
5115
5116 /* raced with another isolation */
5117 if (!folio_test_clear_lru(folio)) {
5118 folio_put(folio);
5119 return false;
5120 }
5121
5122 /* see the comment on MAX_NR_TIERS */
5123 if (!folio_test_referenced(folio))
5124 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
5125
5126 /* for shrink_folio_list() */
5127 folio_clear_reclaim(folio);
5128 folio_clear_referenced(folio);
5129
5130 success = lru_gen_del_folio(lruvec, folio, true);
5131 VM_WARN_ON_ONCE_FOLIO(!success, folio);
5132
5133 return true;
5134 }
5135
scan_folios(struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)5136 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
5137 int type, int tier, struct list_head *list)
5138 {
5139 int i;
5140 int gen;
5141 enum vm_event_item item;
5142 int sorted = 0;
5143 int scanned = 0;
5144 int isolated = 0;
5145 int remaining = MAX_LRU_BATCH;
5146 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5147 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5148
5149 VM_WARN_ON_ONCE(!list_empty(list));
5150
5151 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
5152 return 0;
5153
5154 gen = lru_gen_from_seq(lrugen->min_seq[type]);
5155
5156 for (i = MAX_NR_ZONES; i > 0; i--) {
5157 LIST_HEAD(moved);
5158 int skipped = 0;
5159 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
5160 struct list_head *head = &lrugen->folios[gen][type][zone];
5161
5162 while (!list_empty(head)) {
5163 struct folio *folio = lru_to_folio(head);
5164 int delta = folio_nr_pages(folio);
5165
5166 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5167 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5168 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5169 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5170
5171 scanned += delta;
5172
5173 if (sort_folio(lruvec, folio, sc, tier))
5174 sorted += delta;
5175 else if (isolate_folio(lruvec, folio, sc)) {
5176 list_add(&folio->lru, list);
5177 isolated += delta;
5178 } else {
5179 list_move(&folio->lru, &moved);
5180 skipped += delta;
5181 }
5182
5183 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
5184 break;
5185 }
5186
5187 if (skipped) {
5188 list_splice(&moved, head);
5189 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5190 }
5191
5192 if (!remaining || isolated >= MIN_LRU_BATCH)
5193 break;
5194 }
5195
5196 item = PGSCAN_KSWAPD + reclaimer_offset();
5197 if (!cgroup_reclaim(sc)) {
5198 __count_vm_events(item, isolated);
5199 __count_vm_events(PGREFILL, sorted);
5200 }
5201 __count_memcg_events(memcg, item, isolated);
5202 __count_memcg_events(memcg, PGREFILL, sorted);
5203 __count_vm_events(PGSCAN_ANON + type, isolated);
5204
5205 /*
5206 * There might not be eligible folios due to reclaim_idx. Check the
5207 * remaining to prevent livelock if it's not making progress.
5208 */
5209 return isolated || !remaining ? scanned : 0;
5210 }
5211
get_tier_idx(struct lruvec * lruvec,int type)5212 static int get_tier_idx(struct lruvec *lruvec, int type)
5213 {
5214 int tier;
5215 struct ctrl_pos sp, pv;
5216
5217 /*
5218 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5219 * This value is chosen because any other tier would have at least twice
5220 * as many refaults as the first tier.
5221 */
5222 read_ctrl_pos(lruvec, type, 0, 1, &sp);
5223 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5224 read_ctrl_pos(lruvec, type, tier, 2, &pv);
5225 if (!positive_ctrl_err(&sp, &pv))
5226 break;
5227 }
5228
5229 return tier - 1;
5230 }
5231
get_type_to_scan(struct lruvec * lruvec,int swappiness,int * tier_idx)5232 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5233 {
5234 int type, tier;
5235 struct ctrl_pos sp, pv;
5236 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5237
5238 /*
5239 * Compare the first tier of anon with that of file to determine which
5240 * type to scan. Also need to compare other tiers of the selected type
5241 * with the first tier of the other type to determine the last tier (of
5242 * the selected type) to evict.
5243 */
5244 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5245 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5246 type = positive_ctrl_err(&sp, &pv);
5247
5248 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5249 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5250 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5251 if (!positive_ctrl_err(&sp, &pv))
5252 break;
5253 }
5254
5255 *tier_idx = tier - 1;
5256
5257 return type;
5258 }
5259
isolate_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)5260 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5261 int *type_scanned, struct list_head *list)
5262 {
5263 int i;
5264 int type;
5265 int scanned;
5266 int tier = -1;
5267 DEFINE_MIN_SEQ(lruvec);
5268
5269 /*
5270 * Try to make the obvious choice first. When anon and file are both
5271 * available from the same generation, interpret swappiness 1 as file
5272 * first and 200 as anon first.
5273 */
5274 if (!swappiness)
5275 type = LRU_GEN_FILE;
5276 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5277 type = LRU_GEN_ANON;
5278 else if (swappiness == 1)
5279 type = LRU_GEN_FILE;
5280 else if (swappiness == 200)
5281 type = LRU_GEN_ANON;
5282 else
5283 type = get_type_to_scan(lruvec, swappiness, &tier);
5284
5285 for (i = !swappiness; i < ANON_AND_FILE; i++) {
5286 if (tier < 0)
5287 tier = get_tier_idx(lruvec, type);
5288
5289 scanned = scan_folios(lruvec, sc, type, tier, list);
5290 if (scanned)
5291 break;
5292
5293 type = !type;
5294 tier = -1;
5295 }
5296
5297 *type_scanned = type;
5298
5299 return scanned;
5300 }
5301
evict_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness)5302 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5303 {
5304 int type;
5305 int scanned;
5306 int reclaimed;
5307 LIST_HEAD(list);
5308 LIST_HEAD(clean);
5309 struct folio *folio;
5310 struct folio *next;
5311 enum vm_event_item item;
5312 struct reclaim_stat stat;
5313 struct lru_gen_mm_walk *walk;
5314 bool skip_retry = false;
5315 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5316 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5317
5318 spin_lock_irq(&lruvec->lru_lock);
5319
5320 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5321
5322 scanned += try_to_inc_min_seq(lruvec, swappiness);
5323
5324 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5325 scanned = 0;
5326
5327 spin_unlock_irq(&lruvec->lru_lock);
5328
5329 if (list_empty(&list))
5330 return scanned;
5331 retry:
5332 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5333 sc->nr_reclaimed += reclaimed;
5334
5335 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5336 if (!folio_evictable(folio)) {
5337 list_del(&folio->lru);
5338 folio_putback_lru(folio);
5339 continue;
5340 }
5341
5342 if (folio_test_reclaim(folio) &&
5343 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5344 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5345 if (folio_test_workingset(folio))
5346 folio_set_referenced(folio);
5347 continue;
5348 }
5349
5350 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5351 folio_mapped(folio) || folio_test_locked(folio) ||
5352 folio_test_dirty(folio) || folio_test_writeback(folio)) {
5353 /* don't add rejected folios to the oldest generation */
5354 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5355 BIT(PG_active));
5356 continue;
5357 }
5358
5359 /* retry folios that may have missed folio_rotate_reclaimable() */
5360 list_move(&folio->lru, &clean);
5361 }
5362
5363 spin_lock_irq(&lruvec->lru_lock);
5364
5365 move_folios_to_lru(lruvec, &list);
5366
5367 walk = current->reclaim_state->mm_walk;
5368 if (walk && walk->batched)
5369 reset_batch_size(lruvec, walk);
5370
5371 item = PGSTEAL_KSWAPD + reclaimer_offset();
5372 if (!cgroup_reclaim(sc))
5373 __count_vm_events(item, reclaimed);
5374 __count_memcg_events(memcg, item, reclaimed);
5375 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5376
5377 spin_unlock_irq(&lruvec->lru_lock);
5378
5379 mem_cgroup_uncharge_list(&list);
5380 free_unref_page_list(&list);
5381
5382 INIT_LIST_HEAD(&list);
5383 list_splice_init(&clean, &list);
5384
5385 if (!list_empty(&list)) {
5386 skip_retry = true;
5387 goto retry;
5388 }
5389
5390 return scanned;
5391 }
5392
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,struct scan_control * sc,bool can_swap,unsigned long * nr_to_scan)5393 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5394 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5395 {
5396 int gen, type, zone;
5397 unsigned long old = 0;
5398 unsigned long young = 0;
5399 unsigned long total = 0;
5400 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5401 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5402 DEFINE_MIN_SEQ(lruvec);
5403
5404 /* whether this lruvec is completely out of cold folios */
5405 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5406 *nr_to_scan = 0;
5407 return true;
5408 }
5409
5410 for (type = !can_swap; type < ANON_AND_FILE; type++) {
5411 unsigned long seq;
5412
5413 for (seq = min_seq[type]; seq <= max_seq; seq++) {
5414 unsigned long size = 0;
5415
5416 gen = lru_gen_from_seq(seq);
5417
5418 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5419 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5420
5421 total += size;
5422 if (seq == max_seq)
5423 young += size;
5424 else if (seq + MIN_NR_GENS == max_seq)
5425 old += size;
5426 }
5427 }
5428
5429 /* try to scrape all its memory if this memcg was deleted */
5430 if (!mem_cgroup_online(memcg)) {
5431 *nr_to_scan = total;
5432 return false;
5433 }
5434
5435 *nr_to_scan = total >> sc->priority;
5436
5437 /*
5438 * The aging tries to be lazy to reduce the overhead, while the eviction
5439 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5440 * ideal number of generations is MIN_NR_GENS+1.
5441 */
5442 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5443 return false;
5444
5445 /*
5446 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5447 * of the total number of pages for each generation. A reasonable range
5448 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5449 * aging cares about the upper bound of hot pages, while the eviction
5450 * cares about the lower bound of cold pages.
5451 */
5452 if (young * MIN_NR_GENS > total)
5453 return true;
5454 if (old * (MIN_NR_GENS + 2) < total)
5455 return true;
5456
5457 return false;
5458 }
5459
5460 /*
5461 * For future optimizations:
5462 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5463 * reclaim.
5464 */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,bool can_swap)5465 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5466 {
5467 unsigned long nr_to_scan;
5468 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5469 DEFINE_MAX_SEQ(lruvec);
5470
5471 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5472 return -1;
5473
5474 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5475 return nr_to_scan;
5476
5477 /* skip the aging path at the default priority */
5478 if (sc->priority == DEF_PRIORITY)
5479 return nr_to_scan;
5480
5481 /* skip this lruvec as it's low on cold folios */
5482 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5483 }
5484
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)5485 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
5486 {
5487 int i;
5488 enum zone_watermarks mark;
5489
5490 /* don't abort memcg reclaim to ensure fairness */
5491 if (!root_reclaim(sc))
5492 return false;
5493
5494 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
5495 return true;
5496
5497 /* check the order to exclude compaction-induced reclaim */
5498 if (!current_is_kswapd() || sc->order)
5499 return false;
5500
5501 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
5502 WMARK_PROMO : WMARK_HIGH;
5503
5504 for (i = 0; i <= sc->reclaim_idx; i++) {
5505 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5506 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
5507
5508 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
5509 return false;
5510 }
5511
5512 /* kswapd should abort if all eligible zones are safe */
5513 return true;
5514 }
5515
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5516 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5517 {
5518 long nr_to_scan;
5519 unsigned long scanned = 0;
5520 int swappiness = get_swappiness(lruvec, sc);
5521
5522 /* clean file folios are more likely to exist */
5523 if (swappiness && !(sc->gfp_mask & __GFP_IO))
5524 swappiness = 1;
5525
5526 while (true) {
5527 int delta;
5528
5529 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5530 if (nr_to_scan <= 0)
5531 break;
5532
5533 delta = evict_folios(lruvec, sc, swappiness);
5534 if (!delta)
5535 break;
5536
5537 scanned += delta;
5538 if (scanned >= nr_to_scan)
5539 break;
5540
5541 if (should_abort_scan(lruvec, sc))
5542 break;
5543
5544 cond_resched();
5545 }
5546
5547 /* whether this lruvec should be rotated */
5548 return nr_to_scan < 0;
5549 }
5550
shrink_one(struct lruvec * lruvec,struct scan_control * sc)5551 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5552 {
5553 bool success;
5554 unsigned long scanned = sc->nr_scanned;
5555 unsigned long reclaimed = sc->nr_reclaimed;
5556 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5557 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5558
5559 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */
5560 if (mem_cgroup_below_min(NULL, memcg))
5561 return MEMCG_LRU_YOUNG;
5562
5563 if (mem_cgroup_below_low(NULL, memcg)) {
5564 /* see the comment on MEMCG_NR_GENS */
5565 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL)
5566 return MEMCG_LRU_TAIL;
5567
5568 memcg_memory_event(memcg, MEMCG_LOW);
5569 }
5570
5571 success = try_to_shrink_lruvec(lruvec, sc);
5572
5573 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5574
5575 if (!sc->proactive)
5576 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5577 sc->nr_reclaimed - reclaimed);
5578
5579 flush_reclaim_state(sc);
5580
5581 if (success && mem_cgroup_online(memcg))
5582 return MEMCG_LRU_YOUNG;
5583
5584 if (!success && lruvec_is_sizable(lruvec, sc))
5585 return 0;
5586
5587 /* one retry if offlined or too small */
5588 return lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL ?
5589 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5590 }
5591
5592 #ifdef CONFIG_MEMCG
5593
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)5594 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5595 {
5596 int op;
5597 int gen;
5598 int bin;
5599 int first_bin;
5600 struct lruvec *lruvec;
5601 struct lru_gen_folio *lrugen;
5602 struct mem_cgroup *memcg;
5603 struct hlist_nulls_node *pos;
5604
5605 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5606 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5607 restart:
5608 op = 0;
5609 memcg = NULL;
5610
5611 rcu_read_lock();
5612
5613 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5614 if (op) {
5615 lru_gen_rotate_memcg(lruvec, op);
5616 op = 0;
5617 }
5618
5619 mem_cgroup_put(memcg);
5620 memcg = NULL;
5621
5622 if (gen != READ_ONCE(lrugen->gen))
5623 continue;
5624
5625 lruvec = container_of(lrugen, struct lruvec, lrugen);
5626 memcg = lruvec_memcg(lruvec);
5627
5628 if (!mem_cgroup_tryget(memcg)) {
5629 lru_gen_release_memcg(memcg);
5630 memcg = NULL;
5631 continue;
5632 }
5633
5634 rcu_read_unlock();
5635
5636 op = shrink_one(lruvec, sc);
5637
5638 rcu_read_lock();
5639
5640 if (should_abort_scan(lruvec, sc))
5641 break;
5642 }
5643
5644 rcu_read_unlock();
5645
5646 if (op)
5647 lru_gen_rotate_memcg(lruvec, op);
5648
5649 mem_cgroup_put(memcg);
5650
5651 if (!is_a_nulls(pos))
5652 return;
5653
5654 /* restart if raced with lru_gen_rotate_memcg() */
5655 if (gen != get_nulls_value(pos))
5656 goto restart;
5657
5658 /* try the rest of the bins of the current generation */
5659 bin = get_memcg_bin(bin + 1);
5660 if (bin != first_bin)
5661 goto restart;
5662 }
5663
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5664 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5665 {
5666 struct blk_plug plug;
5667
5668 VM_WARN_ON_ONCE(root_reclaim(sc));
5669 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5670
5671 lru_add_drain();
5672
5673 blk_start_plug(&plug);
5674
5675 set_mm_walk(NULL, sc->proactive);
5676
5677 if (try_to_shrink_lruvec(lruvec, sc))
5678 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5679
5680 clear_mm_walk();
5681
5682 blk_finish_plug(&plug);
5683 }
5684
5685 #else /* !CONFIG_MEMCG */
5686
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)5687 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5688 {
5689 BUILD_BUG();
5690 }
5691
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5692 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5693 {
5694 BUILD_BUG();
5695 }
5696
5697 #endif
5698
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5699 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5700 {
5701 struct blk_plug plug;
5702 unsigned long reclaimed = sc->nr_reclaimed;
5703
5704 VM_WARN_ON_ONCE(!root_reclaim(sc));
5705
5706 /*
5707 * Unmapped clean folios are already prioritized. Scanning for more of
5708 * them is likely futile and can cause high reclaim latency when there
5709 * is a large number of memcgs.
5710 */
5711 if (!sc->may_writepage || !sc->may_unmap)
5712 goto done;
5713
5714 lru_add_drain();
5715
5716 blk_start_plug(&plug);
5717
5718 set_mm_walk(pgdat, sc->proactive);
5719
5720 set_initial_priority(pgdat, sc);
5721
5722 if (current_is_kswapd())
5723 sc->nr_reclaimed = 0;
5724
5725 if (mem_cgroup_disabled())
5726 shrink_one(&pgdat->__lruvec, sc);
5727 else
5728 shrink_many(pgdat, sc);
5729
5730 if (current_is_kswapd())
5731 sc->nr_reclaimed += reclaimed;
5732
5733 clear_mm_walk();
5734
5735 blk_finish_plug(&plug);
5736 done:
5737 /* kswapd should never fail */
5738 pgdat->kswapd_failures = 0;
5739 }
5740
5741 /******************************************************************************
5742 * state change
5743 ******************************************************************************/
5744
state_is_valid(struct lruvec * lruvec)5745 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5746 {
5747 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5748
5749 if (lrugen->enabled) {
5750 enum lru_list lru;
5751
5752 for_each_evictable_lru(lru) {
5753 if (!list_empty(&lruvec->lists[lru]))
5754 return false;
5755 }
5756 } else {
5757 int gen, type, zone;
5758
5759 for_each_gen_type_zone(gen, type, zone) {
5760 if (!list_empty(&lrugen->folios[gen][type][zone]))
5761 return false;
5762 }
5763 }
5764
5765 return true;
5766 }
5767
fill_evictable(struct lruvec * lruvec)5768 static bool fill_evictable(struct lruvec *lruvec)
5769 {
5770 enum lru_list lru;
5771 int remaining = MAX_LRU_BATCH;
5772
5773 for_each_evictable_lru(lru) {
5774 int type = is_file_lru(lru);
5775 bool active = is_active_lru(lru);
5776 struct list_head *head = &lruvec->lists[lru];
5777
5778 while (!list_empty(head)) {
5779 bool success;
5780 struct folio *folio = lru_to_folio(head);
5781
5782 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5783 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5784 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5785 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5786
5787 lruvec_del_folio(lruvec, folio);
5788 success = lru_gen_add_folio(lruvec, folio, false);
5789 VM_WARN_ON_ONCE(!success);
5790
5791 if (!--remaining)
5792 return false;
5793 }
5794 }
5795
5796 return true;
5797 }
5798
drain_evictable(struct lruvec * lruvec)5799 static bool drain_evictable(struct lruvec *lruvec)
5800 {
5801 int gen, type, zone;
5802 int remaining = MAX_LRU_BATCH;
5803
5804 for_each_gen_type_zone(gen, type, zone) {
5805 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5806
5807 while (!list_empty(head)) {
5808 bool success;
5809 struct folio *folio = lru_to_folio(head);
5810
5811 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5812 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5813 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5814 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5815
5816 success = lru_gen_del_folio(lruvec, folio, false);
5817 VM_WARN_ON_ONCE(!success);
5818 lruvec_add_folio(lruvec, folio);
5819
5820 if (!--remaining)
5821 return false;
5822 }
5823 }
5824
5825 return true;
5826 }
5827
lru_gen_change_state(bool enabled)5828 static void lru_gen_change_state(bool enabled)
5829 {
5830 static DEFINE_MUTEX(state_mutex);
5831
5832 struct mem_cgroup *memcg;
5833
5834 cgroup_lock();
5835 cpus_read_lock();
5836 get_online_mems();
5837 mutex_lock(&state_mutex);
5838
5839 if (enabled == lru_gen_enabled())
5840 goto unlock;
5841
5842 if (enabled)
5843 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5844 else
5845 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5846
5847 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5848 do {
5849 int nid;
5850
5851 for_each_node(nid) {
5852 struct lruvec *lruvec = get_lruvec(memcg, nid);
5853
5854 spin_lock_irq(&lruvec->lru_lock);
5855
5856 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5857 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5858
5859 lruvec->lrugen.enabled = enabled;
5860
5861 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5862 spin_unlock_irq(&lruvec->lru_lock);
5863 cond_resched();
5864 spin_lock_irq(&lruvec->lru_lock);
5865 }
5866
5867 spin_unlock_irq(&lruvec->lru_lock);
5868 }
5869
5870 cond_resched();
5871 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5872 unlock:
5873 mutex_unlock(&state_mutex);
5874 put_online_mems();
5875 cpus_read_unlock();
5876 cgroup_unlock();
5877 }
5878
5879 /******************************************************************************
5880 * sysfs interface
5881 ******************************************************************************/
5882
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5883 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5884 {
5885 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5886 }
5887
5888 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5889 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5890 const char *buf, size_t len)
5891 {
5892 unsigned int msecs;
5893
5894 if (kstrtouint(buf, 0, &msecs))
5895 return -EINVAL;
5896
5897 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5898
5899 return len;
5900 }
5901
5902 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5903
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5904 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5905 {
5906 unsigned int caps = 0;
5907
5908 if (get_cap(LRU_GEN_CORE))
5909 caps |= BIT(LRU_GEN_CORE);
5910
5911 if (should_walk_mmu())
5912 caps |= BIT(LRU_GEN_MM_WALK);
5913
5914 if (should_clear_pmd_young())
5915 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5916
5917 return sysfs_emit(buf, "0x%04x\n", caps);
5918 }
5919
5920 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5921 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5922 const char *buf, size_t len)
5923 {
5924 int i;
5925 unsigned int caps;
5926
5927 if (tolower(*buf) == 'n')
5928 caps = 0;
5929 else if (tolower(*buf) == 'y')
5930 caps = -1;
5931 else if (kstrtouint(buf, 0, &caps))
5932 return -EINVAL;
5933
5934 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5935 bool enabled = caps & BIT(i);
5936
5937 if (i == LRU_GEN_CORE)
5938 lru_gen_change_state(enabled);
5939 else if (enabled)
5940 static_branch_enable(&lru_gen_caps[i]);
5941 else
5942 static_branch_disable(&lru_gen_caps[i]);
5943 }
5944
5945 return len;
5946 }
5947
5948 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5949
5950 static struct attribute *lru_gen_attrs[] = {
5951 &lru_gen_min_ttl_attr.attr,
5952 &lru_gen_enabled_attr.attr,
5953 NULL
5954 };
5955
5956 static const struct attribute_group lru_gen_attr_group = {
5957 .name = "lru_gen",
5958 .attrs = lru_gen_attrs,
5959 };
5960
5961 /******************************************************************************
5962 * debugfs interface
5963 ******************************************************************************/
5964
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5965 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5966 {
5967 struct mem_cgroup *memcg;
5968 loff_t nr_to_skip = *pos;
5969
5970 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5971 if (!m->private)
5972 return ERR_PTR(-ENOMEM);
5973
5974 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5975 do {
5976 int nid;
5977
5978 for_each_node_state(nid, N_MEMORY) {
5979 if (!nr_to_skip--)
5980 return get_lruvec(memcg, nid);
5981 }
5982 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5983
5984 return NULL;
5985 }
5986
lru_gen_seq_stop(struct seq_file * m,void * v)5987 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5988 {
5989 if (!IS_ERR_OR_NULL(v))
5990 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5991
5992 kvfree(m->private);
5993 m->private = NULL;
5994 }
5995
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5996 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5997 {
5998 int nid = lruvec_pgdat(v)->node_id;
5999 struct mem_cgroup *memcg = lruvec_memcg(v);
6000
6001 ++*pos;
6002
6003 nid = next_memory_node(nid);
6004 if (nid == MAX_NUMNODES) {
6005 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6006 if (!memcg)
6007 return NULL;
6008
6009 nid = first_memory_node;
6010 }
6011
6012 return get_lruvec(memcg, nid);
6013 }
6014
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)6015 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
6016 unsigned long max_seq, unsigned long *min_seq,
6017 unsigned long seq)
6018 {
6019 int i;
6020 int type, tier;
6021 int hist = lru_hist_from_seq(seq);
6022 struct lru_gen_folio *lrugen = &lruvec->lrugen;
6023
6024 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
6025 seq_printf(m, " %10d", tier);
6026 for (type = 0; type < ANON_AND_FILE; type++) {
6027 const char *s = " ";
6028 unsigned long n[3] = {};
6029
6030 if (seq == max_seq) {
6031 s = "RT ";
6032 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
6033 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
6034 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
6035 s = "rep";
6036 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
6037 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
6038 if (tier)
6039 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
6040 }
6041
6042 for (i = 0; i < 3; i++)
6043 seq_printf(m, " %10lu%c", n[i], s[i]);
6044 }
6045 seq_putc(m, '\n');
6046 }
6047
6048 seq_puts(m, " ");
6049 for (i = 0; i < NR_MM_STATS; i++) {
6050 const char *s = " ";
6051 unsigned long n = 0;
6052
6053 if (seq == max_seq && NR_HIST_GENS == 1) {
6054 s = "LOYNFA";
6055 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
6056 } else if (seq != max_seq && NR_HIST_GENS > 1) {
6057 s = "loynfa";
6058 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
6059 }
6060
6061 seq_printf(m, " %10lu%c", n, s[i]);
6062 }
6063 seq_putc(m, '\n');
6064 }
6065
6066 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)6067 static int lru_gen_seq_show(struct seq_file *m, void *v)
6068 {
6069 unsigned long seq;
6070 bool full = !debugfs_real_fops(m->file)->write;
6071 struct lruvec *lruvec = v;
6072 struct lru_gen_folio *lrugen = &lruvec->lrugen;
6073 int nid = lruvec_pgdat(lruvec)->node_id;
6074 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
6075 DEFINE_MAX_SEQ(lruvec);
6076 DEFINE_MIN_SEQ(lruvec);
6077
6078 if (nid == first_memory_node) {
6079 const char *path = memcg ? m->private : "";
6080
6081 #ifdef CONFIG_MEMCG
6082 if (memcg)
6083 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
6084 #endif
6085 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
6086 }
6087
6088 seq_printf(m, " node %5d\n", nid);
6089
6090 if (!full)
6091 seq = min_seq[LRU_GEN_ANON];
6092 else if (max_seq >= MAX_NR_GENS)
6093 seq = max_seq - MAX_NR_GENS + 1;
6094 else
6095 seq = 0;
6096
6097 for (; seq <= max_seq; seq++) {
6098 int type, zone;
6099 int gen = lru_gen_from_seq(seq);
6100 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
6101
6102 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
6103
6104 for (type = 0; type < ANON_AND_FILE; type++) {
6105 unsigned long size = 0;
6106 char mark = full && seq < min_seq[type] ? 'x' : ' ';
6107
6108 for (zone = 0; zone < MAX_NR_ZONES; zone++)
6109 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
6110
6111 seq_printf(m, " %10lu%c", size, mark);
6112 }
6113
6114 seq_putc(m, '\n');
6115
6116 if (full)
6117 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
6118 }
6119
6120 return 0;
6121 }
6122
6123 static const struct seq_operations lru_gen_seq_ops = {
6124 .start = lru_gen_seq_start,
6125 .stop = lru_gen_seq_stop,
6126 .next = lru_gen_seq_next,
6127 .show = lru_gen_seq_show,
6128 };
6129
run_aging(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,bool can_swap,bool force_scan)6130 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
6131 bool can_swap, bool force_scan)
6132 {
6133 DEFINE_MAX_SEQ(lruvec);
6134 DEFINE_MIN_SEQ(lruvec);
6135
6136 if (seq < max_seq)
6137 return 0;
6138
6139 if (seq > max_seq)
6140 return -EINVAL;
6141
6142 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
6143 return -ERANGE;
6144
6145 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
6146
6147 return 0;
6148 }
6149
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)6150 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
6151 int swappiness, unsigned long nr_to_reclaim)
6152 {
6153 DEFINE_MAX_SEQ(lruvec);
6154
6155 if (seq + MIN_NR_GENS > max_seq)
6156 return -EINVAL;
6157
6158 sc->nr_reclaimed = 0;
6159
6160 while (!signal_pending(current)) {
6161 DEFINE_MIN_SEQ(lruvec);
6162
6163 if (seq < min_seq[!swappiness])
6164 return 0;
6165
6166 if (sc->nr_reclaimed >= nr_to_reclaim)
6167 return 0;
6168
6169 if (!evict_folios(lruvec, sc, swappiness))
6170 return 0;
6171
6172 cond_resched();
6173 }
6174
6175 return -EINTR;
6176 }
6177
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)6178 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
6179 struct scan_control *sc, int swappiness, unsigned long opt)
6180 {
6181 struct lruvec *lruvec;
6182 int err = -EINVAL;
6183 struct mem_cgroup *memcg = NULL;
6184
6185 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
6186 return -EINVAL;
6187
6188 if (!mem_cgroup_disabled()) {
6189 rcu_read_lock();
6190
6191 memcg = mem_cgroup_from_id(memcg_id);
6192 if (!mem_cgroup_tryget(memcg))
6193 memcg = NULL;
6194
6195 rcu_read_unlock();
6196
6197 if (!memcg)
6198 return -EINVAL;
6199 }
6200
6201 if (memcg_id != mem_cgroup_id(memcg))
6202 goto done;
6203
6204 lruvec = get_lruvec(memcg, nid);
6205
6206 if (swappiness < 0)
6207 swappiness = get_swappiness(lruvec, sc);
6208 else if (swappiness > 200)
6209 goto done;
6210
6211 switch (cmd) {
6212 case '+':
6213 err = run_aging(lruvec, seq, sc, swappiness, opt);
6214 break;
6215 case '-':
6216 err = run_eviction(lruvec, seq, sc, swappiness, opt);
6217 break;
6218 }
6219 done:
6220 mem_cgroup_put(memcg);
6221
6222 return err;
6223 }
6224
6225 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)6226 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6227 size_t len, loff_t *pos)
6228 {
6229 void *buf;
6230 char *cur, *next;
6231 unsigned int flags;
6232 struct blk_plug plug;
6233 int err = -EINVAL;
6234 struct scan_control sc = {
6235 .may_writepage = true,
6236 .may_unmap = true,
6237 .may_swap = true,
6238 .reclaim_idx = MAX_NR_ZONES - 1,
6239 .gfp_mask = GFP_KERNEL,
6240 };
6241
6242 buf = kvmalloc(len + 1, GFP_KERNEL);
6243 if (!buf)
6244 return -ENOMEM;
6245
6246 if (copy_from_user(buf, src, len)) {
6247 kvfree(buf);
6248 return -EFAULT;
6249 }
6250
6251 set_task_reclaim_state(current, &sc.reclaim_state);
6252 flags = memalloc_noreclaim_save();
6253 blk_start_plug(&plug);
6254 if (!set_mm_walk(NULL, true)) {
6255 err = -ENOMEM;
6256 goto done;
6257 }
6258
6259 next = buf;
6260 next[len] = '\0';
6261
6262 while ((cur = strsep(&next, ",;\n"))) {
6263 int n;
6264 int end;
6265 char cmd;
6266 unsigned int memcg_id;
6267 unsigned int nid;
6268 unsigned long seq;
6269 unsigned int swappiness = -1;
6270 unsigned long opt = -1;
6271
6272 cur = skip_spaces(cur);
6273 if (!*cur)
6274 continue;
6275
6276 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6277 &seq, &end, &swappiness, &end, &opt, &end);
6278 if (n < 4 || cur[end]) {
6279 err = -EINVAL;
6280 break;
6281 }
6282
6283 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6284 if (err)
6285 break;
6286 }
6287 done:
6288 clear_mm_walk();
6289 blk_finish_plug(&plug);
6290 memalloc_noreclaim_restore(flags);
6291 set_task_reclaim_state(current, NULL);
6292
6293 kvfree(buf);
6294
6295 return err ? : len;
6296 }
6297
lru_gen_seq_open(struct inode * inode,struct file * file)6298 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6299 {
6300 return seq_open(file, &lru_gen_seq_ops);
6301 }
6302
6303 static const struct file_operations lru_gen_rw_fops = {
6304 .open = lru_gen_seq_open,
6305 .read = seq_read,
6306 .write = lru_gen_seq_write,
6307 .llseek = seq_lseek,
6308 .release = seq_release,
6309 };
6310
6311 static const struct file_operations lru_gen_ro_fops = {
6312 .open = lru_gen_seq_open,
6313 .read = seq_read,
6314 .llseek = seq_lseek,
6315 .release = seq_release,
6316 };
6317
6318 /******************************************************************************
6319 * initialization
6320 ******************************************************************************/
6321
lru_gen_init_lruvec(struct lruvec * lruvec)6322 void lru_gen_init_lruvec(struct lruvec *lruvec)
6323 {
6324 int i;
6325 int gen, type, zone;
6326 struct lru_gen_folio *lrugen = &lruvec->lrugen;
6327
6328 lrugen->max_seq = MIN_NR_GENS + 1;
6329 lrugen->enabled = lru_gen_enabled();
6330
6331 for (i = 0; i <= MIN_NR_GENS + 1; i++)
6332 lrugen->timestamps[i] = jiffies;
6333
6334 for_each_gen_type_zone(gen, type, zone)
6335 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6336
6337 lruvec->mm_state.seq = MIN_NR_GENS;
6338 }
6339
6340 #ifdef CONFIG_MEMCG
6341
lru_gen_init_pgdat(struct pglist_data * pgdat)6342 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6343 {
6344 int i, j;
6345
6346 spin_lock_init(&pgdat->memcg_lru.lock);
6347
6348 for (i = 0; i < MEMCG_NR_GENS; i++) {
6349 for (j = 0; j < MEMCG_NR_BINS; j++)
6350 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6351 }
6352 }
6353
lru_gen_init_memcg(struct mem_cgroup * memcg)6354 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6355 {
6356 INIT_LIST_HEAD(&memcg->mm_list.fifo);
6357 spin_lock_init(&memcg->mm_list.lock);
6358 }
6359
lru_gen_exit_memcg(struct mem_cgroup * memcg)6360 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6361 {
6362 int i;
6363 int nid;
6364
6365 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6366
6367 for_each_node(nid) {
6368 struct lruvec *lruvec = get_lruvec(memcg, nid);
6369
6370 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6371 sizeof(lruvec->lrugen.nr_pages)));
6372
6373 lruvec->lrugen.list.next = LIST_POISON1;
6374
6375 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6376 bitmap_free(lruvec->mm_state.filters[i]);
6377 lruvec->mm_state.filters[i] = NULL;
6378 }
6379 }
6380 }
6381
6382 #endif /* CONFIG_MEMCG */
6383
init_lru_gen(void)6384 static int __init init_lru_gen(void)
6385 {
6386 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6387 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6388
6389 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6390 pr_err("lru_gen: failed to create sysfs group\n");
6391
6392 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6393 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6394
6395 return 0;
6396 };
6397 late_initcall(init_lru_gen);
6398
6399 #else /* !CONFIG_LRU_GEN */
6400
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)6401 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6402 {
6403 }
6404
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)6405 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6406 {
6407 }
6408
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)6409 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6410 {
6411 }
6412
6413 #endif /* CONFIG_LRU_GEN */
6414
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)6415 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6416 {
6417 unsigned long nr[NR_LRU_LISTS];
6418 unsigned long targets[NR_LRU_LISTS];
6419 unsigned long nr_to_scan;
6420 enum lru_list lru;
6421 unsigned long nr_reclaimed = 0;
6422 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6423 bool proportional_reclaim;
6424 struct blk_plug plug;
6425 bool bypass = false;
6426
6427 if (lru_gen_enabled() && !root_reclaim(sc)) {
6428 lru_gen_shrink_lruvec(lruvec, sc);
6429 return;
6430 }
6431
6432 get_scan_count(lruvec, sc, nr);
6433
6434 /* Record the original scan target for proportional adjustments later */
6435 memcpy(targets, nr, sizeof(nr));
6436
6437 /*
6438 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6439 * event that can occur when there is little memory pressure e.g.
6440 * multiple streaming readers/writers. Hence, we do not abort scanning
6441 * when the requested number of pages are reclaimed when scanning at
6442 * DEF_PRIORITY on the assumption that the fact we are direct
6443 * reclaiming implies that kswapd is not keeping up and it is best to
6444 * do a batch of work at once. For memcg reclaim one check is made to
6445 * abort proportional reclaim if either the file or anon lru has already
6446 * dropped to zero at the first pass.
6447 */
6448 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6449 sc->priority == DEF_PRIORITY);
6450
6451 blk_start_plug(&plug);
6452 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6453 nr[LRU_INACTIVE_FILE]) {
6454 unsigned long nr_anon, nr_file, percentage;
6455 unsigned long nr_scanned;
6456
6457 for_each_evictable_lru(lru) {
6458 if (nr[lru]) {
6459 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6460 nr[lru] -= nr_to_scan;
6461
6462 nr_reclaimed += shrink_list(lru, nr_to_scan,
6463 lruvec, sc);
6464 }
6465 }
6466
6467 cond_resched();
6468
6469 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6470 continue;
6471
6472 /*
6473 * For kswapd and memcg, reclaim at least the number of pages
6474 * requested. Ensure that the anon and file LRUs are scanned
6475 * proportionally what was requested by get_scan_count(). We
6476 * stop reclaiming one LRU and reduce the amount scanning
6477 * proportional to the original scan target.
6478 */
6479 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6480 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6481
6482 /*
6483 * It's just vindictive to attack the larger once the smaller
6484 * has gone to zero. And given the way we stop scanning the
6485 * smaller below, this makes sure that we only make one nudge
6486 * towards proportionality once we've got nr_to_reclaim.
6487 */
6488 if (!nr_file || !nr_anon)
6489 break;
6490
6491 if (nr_file > nr_anon) {
6492 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6493 targets[LRU_ACTIVE_ANON] + 1;
6494 lru = LRU_BASE;
6495 percentage = nr_anon * 100 / scan_target;
6496 } else {
6497 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6498 targets[LRU_ACTIVE_FILE] + 1;
6499 lru = LRU_FILE;
6500 percentage = nr_file * 100 / scan_target;
6501 }
6502
6503 /* Stop scanning the smaller of the LRU */
6504 nr[lru] = 0;
6505 nr[lru + LRU_ACTIVE] = 0;
6506
6507 /*
6508 * Recalculate the other LRU scan count based on its original
6509 * scan target and the percentage scanning already complete
6510 */
6511 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6512 nr_scanned = targets[lru] - nr[lru];
6513 nr[lru] = targets[lru] * (100 - percentage) / 100;
6514 nr[lru] -= min(nr[lru], nr_scanned);
6515
6516 lru += LRU_ACTIVE;
6517 nr_scanned = targets[lru] - nr[lru];
6518 nr[lru] = targets[lru] * (100 - percentage) / 100;
6519 nr[lru] -= min(nr[lru], nr_scanned);
6520 }
6521 blk_finish_plug(&plug);
6522 sc->nr_reclaimed += nr_reclaimed;
6523 trace_android_vh_rebalance_anon_lru_bypass(&bypass);
6524 if (bypass)
6525 return;
6526
6527 /*
6528 * Even if we did not try to evict anon pages at all, we want to
6529 * rebalance the anon lru active/inactive ratio.
6530 */
6531 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6532 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6533 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6534 sc, LRU_ACTIVE_ANON);
6535 }
6536
6537 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)6538 static bool in_reclaim_compaction(struct scan_control *sc)
6539 {
6540 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
6541 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6542 sc->priority < DEF_PRIORITY - 2))
6543 return true;
6544
6545 return false;
6546 }
6547
6548 /*
6549 * Reclaim/compaction is used for high-order allocation requests. It reclaims
6550 * order-0 pages before compacting the zone. should_continue_reclaim() returns
6551 * true if more pages should be reclaimed such that when the page allocator
6552 * calls try_to_compact_pages() that it will have enough free pages to succeed.
6553 * It will give up earlier than that if there is difficulty reclaiming pages.
6554 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)6555 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6556 unsigned long nr_reclaimed,
6557 struct scan_control *sc)
6558 {
6559 unsigned long pages_for_compaction;
6560 unsigned long inactive_lru_pages;
6561 int z;
6562 bool continue_reclaim = true;
6563
6564 /* If not in reclaim/compaction mode, stop */
6565 if (!in_reclaim_compaction(sc))
6566 return false;
6567
6568 /*
6569 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6570 * number of pages that were scanned. This will return to the caller
6571 * with the risk reclaim/compaction and the resulting allocation attempt
6572 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6573 * allocations through requiring that the full LRU list has been scanned
6574 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6575 * scan, but that approximation was wrong, and there were corner cases
6576 * where always a non-zero amount of pages were scanned.
6577 */
6578 if (!nr_reclaimed)
6579 return false;
6580
6581 /* If compaction would go ahead or the allocation would succeed, stop */
6582 for (z = 0; z <= sc->reclaim_idx; z++) {
6583 struct zone *zone = &pgdat->node_zones[z];
6584 if (!managed_zone(zone))
6585 continue;
6586
6587 /* Allocation can already succeed, nothing to do */
6588 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6589 sc->reclaim_idx, 0))
6590 return false;
6591
6592 if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
6593 return false;
6594 }
6595
6596 /*
6597 * If we have not reclaimed enough pages for compaction and the
6598 * inactive lists are large enough, continue reclaiming
6599 */
6600 pages_for_compaction = compact_gap(sc->order);
6601 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6602 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6603 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6604
6605 #ifdef CONFIG_ANDROID_VENDOR_OEM_DATA
6606 trace_android_vh_should_continue_reclaim(&sc->android_vendor_data1,
6607 &sc->nr_to_reclaim, &sc->nr_reclaimed, &continue_reclaim);
6608 #endif
6609 if (!continue_reclaim)
6610 return false;
6611
6612 return inactive_lru_pages > pages_for_compaction;
6613 }
6614
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)6615 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6616 {
6617 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6618 struct mem_cgroup *memcg;
6619
6620 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6621 do {
6622 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6623 unsigned long reclaimed;
6624 unsigned long scanned;
6625
6626 /*
6627 * This loop can become CPU-bound when target memcgs
6628 * aren't eligible for reclaim - either because they
6629 * don't have any reclaimable pages, or because their
6630 * memory is explicitly protected. Avoid soft lockups.
6631 */
6632 cond_resched();
6633
6634 mem_cgroup_calculate_protection(target_memcg, memcg);
6635
6636 if (mem_cgroup_below_min(target_memcg, memcg)) {
6637 /*
6638 * Hard protection.
6639 * If there is no reclaimable memory, OOM.
6640 */
6641 continue;
6642 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
6643 /*
6644 * Soft protection.
6645 * Respect the protection only as long as
6646 * there is an unprotected supply
6647 * of reclaimable memory from other cgroups.
6648 */
6649 if (!sc->memcg_low_reclaim) {
6650 sc->memcg_low_skipped = 1;
6651 continue;
6652 }
6653 memcg_memory_event(memcg, MEMCG_LOW);
6654 }
6655
6656 reclaimed = sc->nr_reclaimed;
6657 scanned = sc->nr_scanned;
6658
6659 shrink_lruvec(lruvec, sc);
6660
6661 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6662 sc->priority);
6663
6664 /* Record the group's reclaim efficiency */
6665 if (!sc->proactive)
6666 vmpressure(sc->gfp_mask, memcg, false,
6667 sc->nr_scanned - scanned,
6668 sc->nr_reclaimed - reclaimed);
6669
6670 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6671 }
6672
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6673 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6674 {
6675 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6676 struct lruvec *target_lruvec;
6677 bool reclaimable = false;
6678
6679 if (lru_gen_enabled() && root_reclaim(sc)) {
6680 lru_gen_shrink_node(pgdat, sc);
6681 return;
6682 }
6683
6684 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6685
6686 again:
6687 memset(&sc->nr, 0, sizeof(sc->nr));
6688
6689 nr_reclaimed = sc->nr_reclaimed;
6690 nr_scanned = sc->nr_scanned;
6691
6692 prepare_scan_count(pgdat, sc);
6693
6694 shrink_node_memcgs(pgdat, sc);
6695
6696 flush_reclaim_state(sc);
6697
6698 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6699
6700 /* Record the subtree's reclaim efficiency */
6701 if (!sc->proactive)
6702 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6703 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6704
6705 if (nr_node_reclaimed)
6706 reclaimable = true;
6707
6708 if (current_is_kswapd()) {
6709 /*
6710 * If reclaim is isolating dirty pages under writeback,
6711 * it implies that the long-lived page allocation rate
6712 * is exceeding the page laundering rate. Either the
6713 * global limits are not being effective at throttling
6714 * processes due to the page distribution throughout
6715 * zones or there is heavy usage of a slow backing
6716 * device. The only option is to throttle from reclaim
6717 * context which is not ideal as there is no guarantee
6718 * the dirtying process is throttled in the same way
6719 * balance_dirty_pages() manages.
6720 *
6721 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6722 * count the number of pages under pages flagged for
6723 * immediate reclaim and stall if any are encountered
6724 * in the nr_immediate check below.
6725 */
6726 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6727 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6728
6729 /* Allow kswapd to start writing pages during reclaim.*/
6730 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6731 set_bit(PGDAT_DIRTY, &pgdat->flags);
6732
6733 /*
6734 * If kswapd scans pages marked for immediate
6735 * reclaim and under writeback (nr_immediate), it
6736 * implies that pages are cycling through the LRU
6737 * faster than they are written so forcibly stall
6738 * until some pages complete writeback.
6739 */
6740 if (sc->nr.immediate)
6741 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6742 }
6743
6744 /*
6745 * Tag a node/memcg as congested if all the dirty pages were marked
6746 * for writeback and immediate reclaim (counted in nr.congested).
6747 *
6748 * Legacy memcg will stall in page writeback so avoid forcibly
6749 * stalling in reclaim_throttle().
6750 */
6751 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6752 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6753 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6754
6755 if (current_is_kswapd())
6756 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6757 }
6758
6759 /*
6760 * Stall direct reclaim for IO completions if the lruvec is
6761 * node is congested. Allow kswapd to continue until it
6762 * starts encountering unqueued dirty pages or cycling through
6763 * the LRU too quickly.
6764 */
6765 if (!current_is_kswapd() && current_may_throttle() &&
6766 !sc->hibernation_mode &&
6767 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6768 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6769 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6770
6771 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6772 goto again;
6773
6774 /*
6775 * Kswapd gives up on balancing particular nodes after too
6776 * many failures to reclaim anything from them and goes to
6777 * sleep. On reclaim progress, reset the failure counter. A
6778 * successful direct reclaim run will revive a dormant kswapd.
6779 */
6780 if (reclaimable)
6781 pgdat->kswapd_failures = 0;
6782 }
6783
6784 /*
6785 * Returns true if compaction should go ahead for a costly-order request, or
6786 * the allocation would already succeed without compaction. Return false if we
6787 * should reclaim first.
6788 */
compaction_ready(struct zone * zone,struct scan_control * sc)6789 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6790 {
6791 unsigned long watermark;
6792
6793 if (!gfp_compaction_allowed(sc->gfp_mask))
6794 return false;
6795
6796 /* Allocation can already succeed, nothing to do */
6797 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6798 sc->reclaim_idx, 0))
6799 return true;
6800
6801 /* Compaction cannot yet proceed. Do reclaim. */
6802 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6803 return false;
6804
6805 /*
6806 * Compaction is already possible, but it takes time to run and there
6807 * are potentially other callers using the pages just freed. So proceed
6808 * with reclaim to make a buffer of free pages available to give
6809 * compaction a reasonable chance of completing and allocating the page.
6810 * Note that we won't actually reclaim the whole buffer in one attempt
6811 * as the target watermark in should_continue_reclaim() is lower. But if
6812 * we are already above the high+gap watermark, don't reclaim at all.
6813 */
6814 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6815
6816 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6817 }
6818
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6819 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6820 {
6821 /*
6822 * If reclaim is making progress greater than 12% efficiency then
6823 * wake all the NOPROGRESS throttled tasks.
6824 */
6825 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6826 wait_queue_head_t *wqh;
6827
6828 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6829 if (waitqueue_active(wqh))
6830 wake_up(wqh);
6831
6832 return;
6833 }
6834
6835 /*
6836 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6837 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6838 * under writeback and marked for immediate reclaim at the tail of the
6839 * LRU.
6840 */
6841 if (current_is_kswapd() || cgroup_reclaim(sc))
6842 return;
6843
6844 /* Throttle if making no progress at high prioities. */
6845 if (sc->priority == 1 && !sc->nr_reclaimed)
6846 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6847 }
6848
6849 /*
6850 * This is the direct reclaim path, for page-allocating processes. We only
6851 * try to reclaim pages from zones which will satisfy the caller's allocation
6852 * request.
6853 *
6854 * If a zone is deemed to be full of pinned pages then just give it a light
6855 * scan then give up on it.
6856 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6857 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6858 {
6859 struct zoneref *z;
6860 struct zone *zone;
6861 unsigned long nr_soft_reclaimed;
6862 unsigned long nr_soft_scanned;
6863 gfp_t orig_mask;
6864 pg_data_t *last_pgdat = NULL;
6865 pg_data_t *first_pgdat = NULL;
6866
6867 /*
6868 * If the number of buffer_heads in the machine exceeds the maximum
6869 * allowed level, force direct reclaim to scan the highmem zone as
6870 * highmem pages could be pinning lowmem pages storing buffer_heads
6871 */
6872 orig_mask = sc->gfp_mask;
6873 if (buffer_heads_over_limit) {
6874 sc->gfp_mask |= __GFP_HIGHMEM;
6875 sc->reclaim_idx = gfp_order_zone(sc->gfp_mask, sc->order);
6876 }
6877
6878 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6879 sc->reclaim_idx, sc->nodemask) {
6880 /*
6881 * Take care memory controller reclaiming has small influence
6882 * to global LRU.
6883 */
6884 if (!cgroup_reclaim(sc)) {
6885 if (!cpuset_zone_allowed(zone,
6886 GFP_KERNEL | __GFP_HARDWALL))
6887 continue;
6888
6889 /*
6890 * If we already have plenty of memory free for
6891 * compaction in this zone, don't free any more.
6892 * Even though compaction is invoked for any
6893 * non-zero order, only frequent costly order
6894 * reclamation is disruptive enough to become a
6895 * noticeable problem, like transparent huge
6896 * page allocations.
6897 */
6898 if (IS_ENABLED(CONFIG_COMPACTION) &&
6899 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6900 compaction_ready(zone, sc)) {
6901 sc->compaction_ready = true;
6902 continue;
6903 }
6904
6905 /*
6906 * Shrink each node in the zonelist once. If the
6907 * zonelist is ordered by zone (not the default) then a
6908 * node may be shrunk multiple times but in that case
6909 * the user prefers lower zones being preserved.
6910 */
6911 if (zone->zone_pgdat == last_pgdat)
6912 continue;
6913
6914 /*
6915 * This steals pages from memory cgroups over softlimit
6916 * and returns the number of reclaimed pages and
6917 * scanned pages. This works for global memory pressure
6918 * and balancing, not for a memcg's limit.
6919 */
6920 nr_soft_scanned = 0;
6921 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6922 sc->order, sc->gfp_mask,
6923 &nr_soft_scanned);
6924 sc->nr_reclaimed += nr_soft_reclaimed;
6925 sc->nr_scanned += nr_soft_scanned;
6926 /* need some check for avoid more shrink_zone() */
6927 }
6928
6929 if (!first_pgdat)
6930 first_pgdat = zone->zone_pgdat;
6931
6932 /* See comment about same check for global reclaim above */
6933 if (zone->zone_pgdat == last_pgdat)
6934 continue;
6935 last_pgdat = zone->zone_pgdat;
6936 shrink_node(zone->zone_pgdat, sc);
6937 }
6938
6939 if (first_pgdat)
6940 consider_reclaim_throttle(first_pgdat, sc);
6941
6942 /*
6943 * Restore to original mask to avoid the impact on the caller if we
6944 * promoted it to __GFP_HIGHMEM.
6945 */
6946 sc->gfp_mask = orig_mask;
6947 }
6948
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6949 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6950 {
6951 struct lruvec *target_lruvec;
6952 unsigned long refaults;
6953
6954 if (lru_gen_enabled())
6955 return;
6956
6957 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6958 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6959 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6960 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6961 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6962 }
6963
modify_scan_control(struct scan_control * sc)6964 static void modify_scan_control(struct scan_control *sc)
6965 {
6966 bool file_is_tiny = false, may_writepage = true;
6967
6968 #ifdef CONFIG_ANDROID_VENDOR_OEM_DATA
6969 trace_android_vh_modify_scan_control(&sc->android_vendor_data1,
6970 &sc->nr_to_reclaim, sc->target_mem_cgroup, &file_is_tiny,
6971 &may_writepage);
6972 #endif
6973
6974 if (file_is_tiny)
6975 sc->file_is_tiny = true;
6976 if (!may_writepage)
6977 sc->may_writepage = false;
6978 }
6979
6980 /*
6981 * This is the main entry point to direct page reclaim.
6982 *
6983 * If a full scan of the inactive list fails to free enough memory then we
6984 * are "out of memory" and something needs to be killed.
6985 *
6986 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6987 * high - the zone may be full of dirty or under-writeback pages, which this
6988 * caller can't do much about. We kick the writeback threads and take explicit
6989 * naps in the hope that some of these pages can be written. But if the
6990 * allocating task holds filesystem locks which prevent writeout this might not
6991 * work, and the allocation attempt will fail.
6992 *
6993 * returns: 0, if no pages reclaimed
6994 * else, the number of pages reclaimed
6995 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6996 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6997 struct scan_control *sc)
6998 {
6999 int initial_priority = sc->priority;
7000 pg_data_t *last_pgdat;
7001 struct zoneref *z;
7002 struct zone *zone;
7003
7004 modify_scan_control(sc);
7005 retry:
7006 delayacct_freepages_start();
7007
7008 if (!cgroup_reclaim(sc))
7009 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
7010
7011 do {
7012 if (!sc->proactive)
7013 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
7014 sc->priority);
7015 sc->nr_scanned = 0;
7016 shrink_zones(zonelist, sc);
7017
7018 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
7019 break;
7020
7021 if (sc->compaction_ready)
7022 break;
7023
7024 /*
7025 * If we're getting trouble reclaiming, start doing
7026 * writepage even in laptop mode.
7027 */
7028 if (sc->priority < DEF_PRIORITY - 2)
7029 sc->may_writepage = 1;
7030 } while (--sc->priority >= 0);
7031
7032 last_pgdat = NULL;
7033 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
7034 sc->nodemask) {
7035 if (zone->zone_pgdat == last_pgdat)
7036 continue;
7037 last_pgdat = zone->zone_pgdat;
7038
7039 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
7040
7041 if (cgroup_reclaim(sc)) {
7042 struct lruvec *lruvec;
7043
7044 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
7045 zone->zone_pgdat);
7046 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
7047 }
7048 }
7049
7050 delayacct_freepages_end();
7051
7052 if (sc->nr_reclaimed)
7053 return sc->nr_reclaimed;
7054
7055 /* Aborted reclaim to try compaction? don't OOM, then */
7056 if (sc->compaction_ready)
7057 return 1;
7058
7059 /*
7060 * We make inactive:active ratio decisions based on the node's
7061 * composition of memory, but a restrictive reclaim_idx or a
7062 * memory.low cgroup setting can exempt large amounts of
7063 * memory from reclaim. Neither of which are very common, so
7064 * instead of doing costly eligibility calculations of the
7065 * entire cgroup subtree up front, we assume the estimates are
7066 * good, and retry with forcible deactivation if that fails.
7067 */
7068 if (sc->skipped_deactivate) {
7069 sc->priority = initial_priority;
7070 sc->force_deactivate = 1;
7071 sc->skipped_deactivate = 0;
7072 goto retry;
7073 }
7074
7075 /* Untapped cgroup reserves? Don't OOM, retry. */
7076 if (sc->memcg_low_skipped) {
7077 sc->priority = initial_priority;
7078 sc->force_deactivate = 0;
7079 sc->memcg_low_reclaim = 1;
7080 sc->memcg_low_skipped = 0;
7081 goto retry;
7082 }
7083
7084 return 0;
7085 }
7086
allow_direct_reclaim(pg_data_t * pgdat)7087 static bool allow_direct_reclaim(pg_data_t *pgdat)
7088 {
7089 struct zone *zone;
7090 unsigned long pfmemalloc_reserve = 0;
7091 unsigned long free_pages = 0;
7092 int i;
7093 bool wmark_ok;
7094
7095 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7096 return true;
7097
7098 for (i = 0; i <= ZONE_NORMAL; i++) {
7099 zone = &pgdat->node_zones[i];
7100 if (!managed_zone(zone))
7101 continue;
7102
7103 if (!zone_reclaimable_pages(zone))
7104 continue;
7105
7106 pfmemalloc_reserve += min_wmark_pages(zone);
7107 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
7108 }
7109
7110 /* If there are no reserves (unexpected config) then do not throttle */
7111 if (!pfmemalloc_reserve)
7112 return true;
7113
7114 wmark_ok = free_pages > pfmemalloc_reserve / 2;
7115
7116 /* kswapd must be awake if processes are being throttled */
7117 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
7118 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
7119 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
7120
7121 wake_up_interruptible(&pgdat->kswapd_wait);
7122 }
7123
7124 return wmark_ok;
7125 }
7126
7127 /*
7128 * Throttle direct reclaimers if backing storage is backed by the network
7129 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
7130 * depleted. kswapd will continue to make progress and wake the processes
7131 * when the low watermark is reached.
7132 *
7133 * Returns true if a fatal signal was delivered during throttling. If this
7134 * happens, the page allocator should not consider triggering the OOM killer.
7135 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)7136 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
7137 nodemask_t *nodemask)
7138 {
7139 struct zoneref *z;
7140 struct zone *zone;
7141 pg_data_t *pgdat = NULL;
7142
7143 /*
7144 * Kernel threads should not be throttled as they may be indirectly
7145 * responsible for cleaning pages necessary for reclaim to make forward
7146 * progress. kjournald for example may enter direct reclaim while
7147 * committing a transaction where throttling it could forcing other
7148 * processes to block on log_wait_commit().
7149 */
7150 if (current->flags & PF_KTHREAD)
7151 goto out;
7152
7153 /*
7154 * If a fatal signal is pending, this process should not throttle.
7155 * It should return quickly so it can exit and free its memory
7156 */
7157 if (fatal_signal_pending(current))
7158 goto out;
7159
7160 /*
7161 * Check if the pfmemalloc reserves are ok by finding the first node
7162 * with a usable ZONE_NORMAL or lower zone. The expectation is that
7163 * GFP_KERNEL will be required for allocating network buffers when
7164 * swapping over the network so ZONE_HIGHMEM is unusable.
7165 *
7166 * Throttling is based on the first usable node and throttled processes
7167 * wait on a queue until kswapd makes progress and wakes them. There
7168 * is an affinity then between processes waking up and where reclaim
7169 * progress has been made assuming the process wakes on the same node.
7170 * More importantly, processes running on remote nodes will not compete
7171 * for remote pfmemalloc reserves and processes on different nodes
7172 * should make reasonable progress.
7173 */
7174 for_each_zone_zonelist_nodemask(zone, z, zonelist,
7175 gfp_zone(gfp_mask), nodemask) {
7176 if (zone_idx(zone) > ZONE_NORMAL)
7177 continue;
7178
7179 /* Throttle based on the first usable node */
7180 pgdat = zone->zone_pgdat;
7181 if (allow_direct_reclaim(pgdat))
7182 goto out;
7183 break;
7184 }
7185
7186 /* If no zone was usable by the allocation flags then do not throttle */
7187 if (!pgdat)
7188 goto out;
7189
7190 /* Account for the throttling */
7191 count_vm_event(PGSCAN_DIRECT_THROTTLE);
7192
7193 /*
7194 * If the caller cannot enter the filesystem, it's possible that it
7195 * is due to the caller holding an FS lock or performing a journal
7196 * transaction in the case of a filesystem like ext[3|4]. In this case,
7197 * it is not safe to block on pfmemalloc_wait as kswapd could be
7198 * blocked waiting on the same lock. Instead, throttle for up to a
7199 * second before continuing.
7200 */
7201 if (!(gfp_mask & __GFP_FS))
7202 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
7203 allow_direct_reclaim(pgdat), HZ);
7204 else
7205 /* Throttle until kswapd wakes the process */
7206 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
7207 allow_direct_reclaim(pgdat));
7208
7209 if (fatal_signal_pending(current))
7210 return true;
7211
7212 out:
7213 return false;
7214 }
7215
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)7216 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
7217 gfp_t gfp_mask, nodemask_t *nodemask)
7218 {
7219 unsigned long nr_reclaimed;
7220 struct scan_control sc = {
7221 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7222 .gfp_mask = current_gfp_context(gfp_mask),
7223 .reclaim_idx = gfp_order_zone(gfp_mask, order),
7224 .order = order,
7225 .nodemask = nodemask,
7226 .priority = DEF_PRIORITY,
7227 .may_writepage = !laptop_mode,
7228 .may_unmap = 1,
7229 .may_swap = 1,
7230 };
7231 bool skip_swap = false;
7232
7233 /*
7234 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7235 * Confirm they are large enough for max values.
7236 */
7237 BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7238 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7239 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7240
7241 /*
7242 * Do not enter reclaim if fatal signal was delivered while throttled.
7243 * 1 is returned so that the page allocator does not OOM kill at this
7244 * point.
7245 */
7246 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7247 return 1;
7248
7249 trace_android_vh_tune_scan_control(&skip_swap);
7250 if (skip_swap)
7251 sc.may_swap = 0;
7252 set_task_reclaim_state(current, &sc.reclaim_state);
7253 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7254
7255 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7256
7257 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7258 set_task_reclaim_state(current, NULL);
7259
7260 return nr_reclaimed;
7261 }
7262
7263 #ifdef CONFIG_MEMCG
7264
7265 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)7266 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7267 gfp_t gfp_mask, bool noswap,
7268 pg_data_t *pgdat,
7269 unsigned long *nr_scanned)
7270 {
7271 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7272 struct scan_control sc = {
7273 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7274 .target_mem_cgroup = memcg,
7275 .may_writepage = !laptop_mode,
7276 .may_unmap = 1,
7277 .reclaim_idx = MAX_NR_ZONES - 1,
7278 .may_swap = !noswap,
7279 };
7280
7281 WARN_ON_ONCE(!current->reclaim_state);
7282
7283 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7284 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7285
7286 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7287 sc.gfp_mask);
7288
7289 /*
7290 * NOTE: Although we can get the priority field, using it
7291 * here is not a good idea, since it limits the pages we can scan.
7292 * if we don't reclaim here, the shrink_node from balance_pgdat
7293 * will pick up pages from other mem cgroup's as well. We hack
7294 * the priority and make it zero.
7295 */
7296 shrink_lruvec(lruvec, &sc);
7297
7298 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7299
7300 *nr_scanned = sc.nr_scanned;
7301
7302 return sc.nr_reclaimed;
7303 }
7304
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options)7305 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7306 unsigned long nr_pages,
7307 gfp_t gfp_mask,
7308 unsigned int reclaim_options)
7309 {
7310 unsigned long nr_reclaimed;
7311 unsigned int noreclaim_flag;
7312 struct scan_control sc = {
7313 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7314 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7315 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7316 .reclaim_idx = MAX_NR_ZONES - 1,
7317 .target_mem_cgroup = memcg,
7318 .priority = DEF_PRIORITY,
7319 .may_writepage = !laptop_mode,
7320 .may_unmap = 1,
7321 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7322 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7323 };
7324 /*
7325 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7326 * equal pressure on all the nodes. This is based on the assumption that
7327 * the reclaim does not bail out early.
7328 */
7329 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7330
7331 set_task_reclaim_state(current, &sc.reclaim_state);
7332 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7333 noreclaim_flag = memalloc_noreclaim_save();
7334
7335 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7336
7337 memalloc_noreclaim_restore(noreclaim_flag);
7338 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7339 set_task_reclaim_state(current, NULL);
7340
7341 return nr_reclaimed;
7342 }
7343 EXPORT_SYMBOL_GPL(try_to_free_mem_cgroup_pages);
7344 #endif
7345
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)7346 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7347 {
7348 struct mem_cgroup *memcg;
7349 struct lruvec *lruvec;
7350
7351 if (lru_gen_enabled()) {
7352 lru_gen_age_node(pgdat, sc);
7353 return;
7354 }
7355
7356 if (!can_age_anon_pages(pgdat, sc))
7357 return;
7358
7359 lruvec = mem_cgroup_lruvec(NULL, pgdat);
7360 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7361 return;
7362
7363 memcg = mem_cgroup_iter(NULL, NULL, NULL);
7364 do {
7365 lruvec = mem_cgroup_lruvec(memcg, pgdat);
7366 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7367 sc, LRU_ACTIVE_ANON);
7368 memcg = mem_cgroup_iter(NULL, memcg, NULL);
7369 } while (memcg);
7370 }
7371
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)7372 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7373 {
7374 int i;
7375 struct zone *zone;
7376
7377 /*
7378 * Check for watermark boosts top-down as the higher zones
7379 * are more likely to be boosted. Both watermarks and boosts
7380 * should not be checked at the same time as reclaim would
7381 * start prematurely when there is no boosting and a lower
7382 * zone is balanced.
7383 */
7384 for (i = highest_zoneidx; i >= 0; i--) {
7385 zone = pgdat->node_zones + i;
7386 if (!managed_zone(zone))
7387 continue;
7388
7389 if (zone->watermark_boost)
7390 return true;
7391 }
7392
7393 return false;
7394 }
7395
7396 /*
7397 * Returns true if there is an eligible zone balanced for the request order
7398 * and highest_zoneidx
7399 */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)7400 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7401 {
7402 int i;
7403 unsigned long mark = -1;
7404 struct zone *zone;
7405
7406 /*
7407 * Check watermarks bottom-up as lower zones are more likely to
7408 * meet watermarks.
7409 */
7410 for (i = 0; i <= highest_zoneidx; i++) {
7411 zone = pgdat->node_zones + i;
7412
7413 if (!managed_zone(zone))
7414 continue;
7415
7416 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7417 mark = wmark_pages(zone, WMARK_PROMO);
7418 else
7419 mark = high_wmark_pages(zone);
7420 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7421 return true;
7422 }
7423
7424 /*
7425 * If a node has no managed zone within highest_zoneidx, it does not
7426 * need balancing by definition. This can happen if a zone-restricted
7427 * allocation tries to wake a remote kswapd.
7428 */
7429 if (mark == -1)
7430 return true;
7431
7432 return false;
7433 }
7434
7435 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)7436 static void clear_pgdat_congested(pg_data_t *pgdat)
7437 {
7438 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7439
7440 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
7441 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
7442 clear_bit(PGDAT_DIRTY, &pgdat->flags);
7443 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7444 }
7445
7446 /*
7447 * Prepare kswapd for sleeping. This verifies that there are no processes
7448 * waiting in throttle_direct_reclaim() and that watermarks have been met.
7449 *
7450 * Returns true if kswapd is ready to sleep
7451 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)7452 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7453 int highest_zoneidx)
7454 {
7455 /*
7456 * The throttled processes are normally woken up in balance_pgdat() as
7457 * soon as allow_direct_reclaim() is true. But there is a potential
7458 * race between when kswapd checks the watermarks and a process gets
7459 * throttled. There is also a potential race if processes get
7460 * throttled, kswapd wakes, a large process exits thereby balancing the
7461 * zones, which causes kswapd to exit balance_pgdat() before reaching
7462 * the wake up checks. If kswapd is going to sleep, no process should
7463 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7464 * the wake up is premature, processes will wake kswapd and get
7465 * throttled again. The difference from wake ups in balance_pgdat() is
7466 * that here we are under prepare_to_wait().
7467 */
7468 if (waitqueue_active(&pgdat->pfmemalloc_wait))
7469 wake_up_all(&pgdat->pfmemalloc_wait);
7470
7471 /* Hopeless node, leave it to direct reclaim */
7472 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7473 return true;
7474
7475 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7476 clear_pgdat_congested(pgdat);
7477 return true;
7478 }
7479
7480 return false;
7481 }
7482
7483 /*
7484 * kswapd shrinks a node of pages that are at or below the highest usable
7485 * zone that is currently unbalanced.
7486 *
7487 * Returns true if kswapd scanned at least the requested number of pages to
7488 * reclaim or if the lack of progress was due to pages under writeback.
7489 * This is used to determine if the scanning priority needs to be raised.
7490 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)7491 static bool kswapd_shrink_node(pg_data_t *pgdat,
7492 struct scan_control *sc)
7493 {
7494 struct zone *zone;
7495 int z;
7496 unsigned long nr_reclaimed = sc->nr_reclaimed;
7497
7498 /* Reclaim a number of pages proportional to the number of zones */
7499 sc->nr_to_reclaim = 0;
7500 for (z = 0; z <= sc->reclaim_idx; z++) {
7501 zone = pgdat->node_zones + z;
7502 if (!managed_zone(zone))
7503 continue;
7504
7505 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7506 }
7507
7508 /*
7509 * Historically care was taken to put equal pressure on all zones but
7510 * now pressure is applied based on node LRU order.
7511 */
7512 shrink_node(pgdat, sc);
7513
7514 /*
7515 * Fragmentation may mean that the system cannot be rebalanced for
7516 * high-order allocations. If twice the allocation size has been
7517 * reclaimed then recheck watermarks only at order-0 to prevent
7518 * excessive reclaim. Assume that a process requested a high-order
7519 * can direct reclaim/compact.
7520 */
7521 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7522 sc->order = 0;
7523
7524 /* account for progress from mm_account_reclaimed_pages() */
7525 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
7526 }
7527
7528 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7529 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)7530 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7531 {
7532 int i;
7533 struct zone *zone;
7534
7535 for (i = 0; i <= highest_zoneidx; i++) {
7536 zone = pgdat->node_zones + i;
7537
7538 if (!managed_zone(zone))
7539 continue;
7540
7541 if (active)
7542 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7543 else
7544 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7545 }
7546 }
7547
7548 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)7549 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7550 {
7551 update_reclaim_active(pgdat, highest_zoneidx, true);
7552 }
7553
7554 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)7555 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7556 {
7557 update_reclaim_active(pgdat, highest_zoneidx, false);
7558 }
7559
7560 /*
7561 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7562 * that are eligible for use by the caller until at least one zone is
7563 * balanced.
7564 *
7565 * Returns the order kswapd finished reclaiming at.
7566 *
7567 * kswapd scans the zones in the highmem->normal->dma direction. It skips
7568 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7569 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7570 * or lower is eligible for reclaim until at least one usable zone is
7571 * balanced.
7572 */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)7573 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7574 {
7575 int i;
7576 unsigned long nr_soft_reclaimed;
7577 unsigned long nr_soft_scanned;
7578 unsigned long pflags;
7579 unsigned long nr_boost_reclaim;
7580 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7581 bool boosted;
7582 struct zone *zone;
7583 struct scan_control sc = {
7584 .gfp_mask = GFP_KERNEL,
7585 .order = order,
7586 .may_unmap = 1,
7587 };
7588
7589 set_task_reclaim_state(current, &sc.reclaim_state);
7590 psi_memstall_enter(&pflags);
7591 __fs_reclaim_acquire(_THIS_IP_);
7592
7593 count_vm_event(PAGEOUTRUN);
7594
7595 /*
7596 * Account for the reclaim boost. Note that the zone boost is left in
7597 * place so that parallel allocations that are near the watermark will
7598 * stall or direct reclaim until kswapd is finished.
7599 */
7600 nr_boost_reclaim = 0;
7601 for (i = 0; i <= highest_zoneidx; i++) {
7602 zone = pgdat->node_zones + i;
7603 if (!managed_zone(zone))
7604 continue;
7605
7606 nr_boost_reclaim += zone->watermark_boost;
7607 zone_boosts[i] = zone->watermark_boost;
7608 }
7609 boosted = nr_boost_reclaim;
7610
7611 restart:
7612 set_reclaim_active(pgdat, highest_zoneidx);
7613 sc.priority = DEF_PRIORITY;
7614 do {
7615 unsigned long nr_reclaimed = sc.nr_reclaimed;
7616 bool raise_priority = true;
7617 bool balanced;
7618 bool ret;
7619
7620 sc.reclaim_idx = highest_zoneidx;
7621
7622 /*
7623 * If the number of buffer_heads exceeds the maximum allowed
7624 * then consider reclaiming from all zones. This has a dual
7625 * purpose -- on 64-bit systems it is expected that
7626 * buffer_heads are stripped during active rotation. On 32-bit
7627 * systems, highmem pages can pin lowmem memory and shrinking
7628 * buffers can relieve lowmem pressure. Reclaim may still not
7629 * go ahead if all eligible zones for the original allocation
7630 * request are balanced to avoid excessive reclaim from kswapd.
7631 */
7632 if (buffer_heads_over_limit) {
7633 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7634 zone = pgdat->node_zones + i;
7635 if (!managed_zone(zone))
7636 continue;
7637
7638 sc.reclaim_idx = i;
7639 break;
7640 }
7641 }
7642
7643 /*
7644 * If the pgdat is imbalanced then ignore boosting and preserve
7645 * the watermarks for a later time and restart. Note that the
7646 * zone watermarks will be still reset at the end of balancing
7647 * on the grounds that the normal reclaim should be enough to
7648 * re-evaluate if boosting is required when kswapd next wakes.
7649 */
7650 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7651 if (!balanced && nr_boost_reclaim) {
7652 nr_boost_reclaim = 0;
7653 goto restart;
7654 }
7655
7656 /*
7657 * If boosting is not active then only reclaim if there are no
7658 * eligible zones. Note that sc.reclaim_idx is not used as
7659 * buffer_heads_over_limit may have adjusted it.
7660 */
7661 if (!nr_boost_reclaim && balanced)
7662 goto out;
7663
7664 /* Limit the priority of boosting to avoid reclaim writeback */
7665 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7666 raise_priority = false;
7667
7668 /*
7669 * Do not writeback or swap pages for boosted reclaim. The
7670 * intent is to relieve pressure not issue sub-optimal IO
7671 * from reclaim context. If no pages are reclaimed, the
7672 * reclaim will be aborted.
7673 */
7674 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7675 sc.may_swap = !nr_boost_reclaim;
7676
7677 /*
7678 * Do some background aging, to give pages a chance to be
7679 * referenced before reclaiming. All pages are rotated
7680 * regardless of classzone as this is about consistent aging.
7681 */
7682 kswapd_age_node(pgdat, &sc);
7683
7684 /*
7685 * If we're getting trouble reclaiming, start doing writepage
7686 * even in laptop mode.
7687 */
7688 if (sc.priority < DEF_PRIORITY - 2)
7689 sc.may_writepage = 1;
7690
7691 /* Call soft limit reclaim before calling shrink_node. */
7692 sc.nr_scanned = 0;
7693 nr_soft_scanned = 0;
7694 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7695 sc.gfp_mask, &nr_soft_scanned);
7696 sc.nr_reclaimed += nr_soft_reclaimed;
7697
7698 /*
7699 * There should be no need to raise the scanning priority if
7700 * enough pages are already being scanned that that high
7701 * watermark would be met at 100% efficiency.
7702 */
7703 if (kswapd_shrink_node(pgdat, &sc))
7704 raise_priority = false;
7705
7706 /*
7707 * If the low watermark is met there is no need for processes
7708 * to be throttled on pfmemalloc_wait as they should not be
7709 * able to safely make forward progress. Wake them
7710 */
7711 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7712 allow_direct_reclaim(pgdat))
7713 wake_up_all(&pgdat->pfmemalloc_wait);
7714
7715 /* Check if kswapd should be suspending */
7716 __fs_reclaim_release(_THIS_IP_);
7717 ret = try_to_freeze();
7718 __fs_reclaim_acquire(_THIS_IP_);
7719 if (ret || kthread_should_stop())
7720 break;
7721
7722 /*
7723 * Raise priority if scanning rate is too low or there was no
7724 * progress in reclaiming pages
7725 */
7726 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7727 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7728
7729 /*
7730 * If reclaim made no progress for a boost, stop reclaim as
7731 * IO cannot be queued and it could be an infinite loop in
7732 * extreme circumstances.
7733 */
7734 if (nr_boost_reclaim && !nr_reclaimed)
7735 break;
7736
7737 if (raise_priority || !nr_reclaimed)
7738 sc.priority--;
7739 } while (sc.priority >= 1);
7740
7741 if (!sc.nr_reclaimed)
7742 pgdat->kswapd_failures++;
7743
7744 out:
7745 clear_reclaim_active(pgdat, highest_zoneidx);
7746
7747 /* If reclaim was boosted, account for the reclaim done in this pass */
7748 if (boosted) {
7749 unsigned long flags;
7750
7751 for (i = 0; i <= highest_zoneidx; i++) {
7752 if (!zone_boosts[i])
7753 continue;
7754
7755 /* Increments are under the zone lock */
7756 zone = pgdat->node_zones + i;
7757 spin_lock_irqsave(&zone->lock, flags);
7758 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7759 spin_unlock_irqrestore(&zone->lock, flags);
7760 }
7761
7762 /*
7763 * As there is now likely space, wakeup kcompact to defragment
7764 * pageblocks.
7765 */
7766 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7767 }
7768
7769 snapshot_refaults(NULL, pgdat);
7770 __fs_reclaim_release(_THIS_IP_);
7771 psi_memstall_leave(&pflags);
7772 set_task_reclaim_state(current, NULL);
7773
7774 /*
7775 * Return the order kswapd stopped reclaiming at as
7776 * prepare_kswapd_sleep() takes it into account. If another caller
7777 * entered the allocator slow path while kswapd was awake, order will
7778 * remain at the higher level.
7779 */
7780 return sc.order;
7781 }
7782
7783 /*
7784 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7785 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7786 * not a valid index then either kswapd runs for first time or kswapd couldn't
7787 * sleep after previous reclaim attempt (node is still unbalanced). In that
7788 * case return the zone index of the previous kswapd reclaim cycle.
7789 */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7790 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7791 enum zone_type prev_highest_zoneidx)
7792 {
7793 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7794
7795 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7796 }
7797
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7798 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7799 unsigned int highest_zoneidx)
7800 {
7801 long remaining = 0;
7802 DEFINE_WAIT(wait);
7803
7804 if (freezing(current) || kthread_should_stop())
7805 return;
7806
7807 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7808
7809 /*
7810 * Try to sleep for a short interval. Note that kcompactd will only be
7811 * woken if it is possible to sleep for a short interval. This is
7812 * deliberate on the assumption that if reclaim cannot keep an
7813 * eligible zone balanced that it's also unlikely that compaction will
7814 * succeed.
7815 */
7816 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7817 /*
7818 * Compaction records what page blocks it recently failed to
7819 * isolate pages from and skips them in the future scanning.
7820 * When kswapd is going to sleep, it is reasonable to assume
7821 * that pages and compaction may succeed so reset the cache.
7822 */
7823 reset_isolation_suitable(pgdat);
7824
7825 /*
7826 * We have freed the memory, now we should compact it to make
7827 * allocation of the requested order possible.
7828 */
7829 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7830
7831 remaining = schedule_timeout(HZ/10);
7832
7833 /*
7834 * If woken prematurely then reset kswapd_highest_zoneidx and
7835 * order. The values will either be from a wakeup request or
7836 * the previous request that slept prematurely.
7837 */
7838 if (remaining) {
7839 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7840 kswapd_highest_zoneidx(pgdat,
7841 highest_zoneidx));
7842
7843 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7844 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7845 }
7846
7847 finish_wait(&pgdat->kswapd_wait, &wait);
7848 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7849 }
7850
7851 /*
7852 * After a short sleep, check if it was a premature sleep. If not, then
7853 * go fully to sleep until explicitly woken up.
7854 */
7855 if (!remaining &&
7856 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7857 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7858
7859 /*
7860 * vmstat counters are not perfectly accurate and the estimated
7861 * value for counters such as NR_FREE_PAGES can deviate from the
7862 * true value by nr_online_cpus * threshold. To avoid the zone
7863 * watermarks being breached while under pressure, we reduce the
7864 * per-cpu vmstat threshold while kswapd is awake and restore
7865 * them before going back to sleep.
7866 */
7867 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7868
7869 if (!kthread_should_stop())
7870 schedule();
7871
7872 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7873 } else {
7874 if (remaining)
7875 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7876 else
7877 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7878 }
7879 finish_wait(&pgdat->kswapd_wait, &wait);
7880 }
7881
7882 /*
7883 * The background pageout daemon, started as a kernel thread
7884 * from the init process.
7885 *
7886 * This basically trickles out pages so that we have _some_
7887 * free memory available even if there is no other activity
7888 * that frees anything up. This is needed for things like routing
7889 * etc, where we otherwise might have all activity going on in
7890 * asynchronous contexts that cannot page things out.
7891 *
7892 * If there are applications that are active memory-allocators
7893 * (most normal use), this basically shouldn't matter.
7894 */
kswapd(void * p)7895 static int kswapd(void *p)
7896 {
7897 unsigned int alloc_order, reclaim_order;
7898 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7899 pg_data_t *pgdat = (pg_data_t *)p;
7900 struct task_struct *tsk = current;
7901 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7902
7903 if (!cpumask_empty(cpumask))
7904 set_cpus_allowed_ptr(tsk, cpumask);
7905
7906 /*
7907 * Tell the memory management that we're a "memory allocator",
7908 * and that if we need more memory we should get access to it
7909 * regardless (see "__alloc_pages()"). "kswapd" should
7910 * never get caught in the normal page freeing logic.
7911 *
7912 * (Kswapd normally doesn't need memory anyway, but sometimes
7913 * you need a small amount of memory in order to be able to
7914 * page out something else, and this flag essentially protects
7915 * us from recursively trying to free more memory as we're
7916 * trying to free the first piece of memory in the first place).
7917 */
7918 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7919 set_freezable();
7920
7921 WRITE_ONCE(pgdat->kswapd_order, 0);
7922 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7923 atomic_set(&pgdat->nr_writeback_throttled, 0);
7924 for ( ; ; ) {
7925 bool ret;
7926
7927 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7928 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7929 highest_zoneidx);
7930
7931 kswapd_try_sleep:
7932 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7933 highest_zoneidx);
7934
7935 /* Read the new order and highest_zoneidx */
7936 alloc_order = READ_ONCE(pgdat->kswapd_order);
7937 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7938 highest_zoneidx);
7939 WRITE_ONCE(pgdat->kswapd_order, 0);
7940 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7941
7942 ret = try_to_freeze();
7943 if (kthread_should_stop())
7944 break;
7945
7946 /*
7947 * We can speed up thawing tasks if we don't call balance_pgdat
7948 * after returning from the refrigerator
7949 */
7950 if (ret)
7951 continue;
7952
7953 /*
7954 * Reclaim begins at the requested order but if a high-order
7955 * reclaim fails then kswapd falls back to reclaiming for
7956 * order-0. If that happens, kswapd will consider sleeping
7957 * for the order it finished reclaiming at (reclaim_order)
7958 * but kcompactd is woken to compact for the original
7959 * request (alloc_order).
7960 */
7961 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7962 alloc_order);
7963 reclaim_order = balance_pgdat(pgdat, alloc_order,
7964 highest_zoneidx);
7965 trace_android_vh_vmscan_kswapd_done(pgdat->node_id, highest_zoneidx,
7966 alloc_order, reclaim_order);
7967 if (reclaim_order < alloc_order)
7968 goto kswapd_try_sleep;
7969 }
7970
7971 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7972
7973 return 0;
7974 }
7975
7976 /*
7977 * A zone is low on free memory or too fragmented for high-order memory. If
7978 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7979 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7980 * has failed or is not needed, still wake up kcompactd if only compaction is
7981 * needed.
7982 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7983 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7984 enum zone_type highest_zoneidx)
7985 {
7986 pg_data_t *pgdat;
7987 enum zone_type curr_idx;
7988
7989 if (!managed_zone(zone))
7990 return;
7991
7992 if (!cpuset_zone_allowed(zone, gfp_flags))
7993 return;
7994
7995 curr_idx = gfp_order_zone(gfp_flags, order);
7996 if (highest_zoneidx > curr_idx)
7997 highest_zoneidx = curr_idx;
7998
7999 pgdat = zone->zone_pgdat;
8000 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
8001
8002 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
8003 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
8004
8005 if (READ_ONCE(pgdat->kswapd_order) < order)
8006 WRITE_ONCE(pgdat->kswapd_order, order);
8007
8008 if (!waitqueue_active(&pgdat->kswapd_wait))
8009 return;
8010
8011 /* Hopeless node, leave it to direct reclaim if possible */
8012 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
8013 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
8014 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
8015 /*
8016 * There may be plenty of free memory available, but it's too
8017 * fragmented for high-order allocations. Wake up kcompactd
8018 * and rely on compaction_suitable() to determine if it's
8019 * needed. If it fails, it will defer subsequent attempts to
8020 * ratelimit its work.
8021 */
8022 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
8023 wakeup_kcompactd(pgdat, order, highest_zoneidx);
8024 return;
8025 }
8026
8027 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
8028 gfp_flags);
8029 wake_up_interruptible(&pgdat->kswapd_wait);
8030 }
8031
8032 #ifdef CONFIG_HIBERNATION
8033 /*
8034 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
8035 * freed pages.
8036 *
8037 * Rather than trying to age LRUs the aim is to preserve the overall
8038 * LRU order by reclaiming preferentially
8039 * inactive > active > active referenced > active mapped
8040 */
shrink_all_memory(unsigned long nr_to_reclaim)8041 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
8042 {
8043 struct scan_control sc = {
8044 .nr_to_reclaim = nr_to_reclaim,
8045 .gfp_mask = GFP_HIGHUSER_MOVABLE,
8046 .reclaim_idx = MAX_NR_ZONES - 1,
8047 .priority = DEF_PRIORITY,
8048 .may_writepage = 1,
8049 .may_unmap = 1,
8050 .may_swap = 1,
8051 .hibernation_mode = 1,
8052 };
8053 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
8054 unsigned long nr_reclaimed;
8055 unsigned int noreclaim_flag;
8056
8057 fs_reclaim_acquire(sc.gfp_mask);
8058 noreclaim_flag = memalloc_noreclaim_save();
8059 set_task_reclaim_state(current, &sc.reclaim_state);
8060
8061 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
8062
8063 set_task_reclaim_state(current, NULL);
8064 memalloc_noreclaim_restore(noreclaim_flag);
8065 fs_reclaim_release(sc.gfp_mask);
8066
8067 return nr_reclaimed;
8068 }
8069 #endif /* CONFIG_HIBERNATION */
8070
8071 /*
8072 * This kswapd start function will be called by init and node-hot-add.
8073 */
kswapd_run(int nid)8074 void __meminit kswapd_run(int nid)
8075 {
8076 pg_data_t *pgdat = NODE_DATA(nid);
8077
8078 pgdat_kswapd_lock(pgdat);
8079 if (!pgdat->kswapd) {
8080 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
8081 if (IS_ERR(pgdat->kswapd)) {
8082 /* failure at boot is fatal */
8083 BUG_ON(system_state < SYSTEM_RUNNING);
8084 pr_err("Failed to start kswapd on node %d\n", nid);
8085 pgdat->kswapd = NULL;
8086 }
8087 }
8088 pgdat_kswapd_unlock(pgdat);
8089 }
8090
8091 /*
8092 * Called by memory hotplug when all memory in a node is offlined. Caller must
8093 * be holding mem_hotplug_begin/done().
8094 */
kswapd_stop(int nid)8095 void __meminit kswapd_stop(int nid)
8096 {
8097 pg_data_t *pgdat = NODE_DATA(nid);
8098 struct task_struct *kswapd;
8099
8100 pgdat_kswapd_lock(pgdat);
8101 kswapd = pgdat->kswapd;
8102 if (kswapd) {
8103 kthread_stop(kswapd);
8104 pgdat->kswapd = NULL;
8105 }
8106 pgdat_kswapd_unlock(pgdat);
8107 }
8108
kswapd_init(void)8109 static int __init kswapd_init(void)
8110 {
8111 int nid;
8112
8113 swap_setup();
8114 for_each_node_state(nid, N_MEMORY)
8115 kswapd_run(nid);
8116 return 0;
8117 }
8118
8119 module_init(kswapd_init)
8120
8121 #ifdef CONFIG_NUMA
8122 /*
8123 * Node reclaim mode
8124 *
8125 * If non-zero call node_reclaim when the number of free pages falls below
8126 * the watermarks.
8127 */
8128 int node_reclaim_mode __read_mostly;
8129
8130 /*
8131 * Priority for NODE_RECLAIM. This determines the fraction of pages
8132 * of a node considered for each zone_reclaim. 4 scans 1/16th of
8133 * a zone.
8134 */
8135 #define NODE_RECLAIM_PRIORITY 4
8136
8137 /*
8138 * Percentage of pages in a zone that must be unmapped for node_reclaim to
8139 * occur.
8140 */
8141 int sysctl_min_unmapped_ratio = 1;
8142
8143 /*
8144 * If the number of slab pages in a zone grows beyond this percentage then
8145 * slab reclaim needs to occur.
8146 */
8147 int sysctl_min_slab_ratio = 5;
8148
node_unmapped_file_pages(struct pglist_data * pgdat)8149 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
8150 {
8151 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
8152 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
8153 node_page_state(pgdat, NR_ACTIVE_FILE);
8154
8155 /*
8156 * It's possible for there to be more file mapped pages than
8157 * accounted for by the pages on the file LRU lists because
8158 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
8159 */
8160 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
8161 }
8162
8163 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)8164 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
8165 {
8166 unsigned long nr_pagecache_reclaimable;
8167 unsigned long delta = 0;
8168
8169 /*
8170 * If RECLAIM_UNMAP is set, then all file pages are considered
8171 * potentially reclaimable. Otherwise, we have to worry about
8172 * pages like swapcache and node_unmapped_file_pages() provides
8173 * a better estimate
8174 */
8175 if (node_reclaim_mode & RECLAIM_UNMAP)
8176 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
8177 else
8178 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
8179
8180 /* If we can't clean pages, remove dirty pages from consideration */
8181 if (!(node_reclaim_mode & RECLAIM_WRITE))
8182 delta += node_page_state(pgdat, NR_FILE_DIRTY);
8183
8184 /* Watch for any possible underflows due to delta */
8185 if (unlikely(delta > nr_pagecache_reclaimable))
8186 delta = nr_pagecache_reclaimable;
8187
8188 return nr_pagecache_reclaimable - delta;
8189 }
8190
8191 /*
8192 * Try to free up some pages from this node through reclaim.
8193 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)8194 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8195 {
8196 /* Minimum pages needed in order to stay on node */
8197 const unsigned long nr_pages = 1 << order;
8198 struct task_struct *p = current;
8199 unsigned int noreclaim_flag;
8200 struct scan_control sc = {
8201 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
8202 .gfp_mask = current_gfp_context(gfp_mask),
8203 .order = order,
8204 .priority = NODE_RECLAIM_PRIORITY,
8205 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
8206 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
8207 .may_swap = 1,
8208 .reclaim_idx = gfp_order_zone(gfp_mask, order),
8209 };
8210 unsigned long pflags;
8211
8212 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
8213 sc.gfp_mask);
8214
8215 cond_resched();
8216 psi_memstall_enter(&pflags);
8217 fs_reclaim_acquire(sc.gfp_mask);
8218 /*
8219 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
8220 */
8221 noreclaim_flag = memalloc_noreclaim_save();
8222 set_task_reclaim_state(p, &sc.reclaim_state);
8223
8224 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
8225 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
8226 /*
8227 * Free memory by calling shrink node with increasing
8228 * priorities until we have enough memory freed.
8229 */
8230 do {
8231 shrink_node(pgdat, &sc);
8232 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
8233 }
8234
8235 set_task_reclaim_state(p, NULL);
8236 memalloc_noreclaim_restore(noreclaim_flag);
8237 fs_reclaim_release(sc.gfp_mask);
8238 psi_memstall_leave(&pflags);
8239
8240 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
8241
8242 return sc.nr_reclaimed >= nr_pages;
8243 }
8244
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)8245 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8246 {
8247 int ret;
8248
8249 /*
8250 * Node reclaim reclaims unmapped file backed pages and
8251 * slab pages if we are over the defined limits.
8252 *
8253 * A small portion of unmapped file backed pages is needed for
8254 * file I/O otherwise pages read by file I/O will be immediately
8255 * thrown out if the node is overallocated. So we do not reclaim
8256 * if less than a specified percentage of the node is used by
8257 * unmapped file backed pages.
8258 */
8259 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8260 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8261 pgdat->min_slab_pages)
8262 return NODE_RECLAIM_FULL;
8263
8264 /*
8265 * Do not scan if the allocation should not be delayed.
8266 */
8267 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8268 return NODE_RECLAIM_NOSCAN;
8269
8270 /*
8271 * Only run node reclaim on the local node or on nodes that do not
8272 * have associated processors. This will favor the local processor
8273 * over remote processors and spread off node memory allocations
8274 * as wide as possible.
8275 */
8276 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8277 return NODE_RECLAIM_NOSCAN;
8278
8279 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8280 return NODE_RECLAIM_NOSCAN;
8281
8282 ret = __node_reclaim(pgdat, gfp_mask, order);
8283 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8284
8285 if (!ret)
8286 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8287
8288 return ret;
8289 }
8290 #endif
8291
8292 /**
8293 * check_move_unevictable_folios - Move evictable folios to appropriate zone
8294 * lru list
8295 * @fbatch: Batch of lru folios to check.
8296 *
8297 * Checks folios for evictability, if an evictable folio is in the unevictable
8298 * lru list, moves it to the appropriate evictable lru list. This function
8299 * should be only used for lru folios.
8300 */
check_move_unevictable_folios(struct folio_batch * fbatch)8301 void check_move_unevictable_folios(struct folio_batch *fbatch)
8302 {
8303 struct lruvec *lruvec = NULL;
8304 int pgscanned = 0;
8305 int pgrescued = 0;
8306 int i;
8307
8308 for (i = 0; i < fbatch->nr; i++) {
8309 struct folio *folio = fbatch->folios[i];
8310 int nr_pages = folio_nr_pages(folio);
8311
8312 pgscanned += nr_pages;
8313
8314 /* block memcg migration while the folio moves between lrus */
8315 if (!folio_test_clear_lru(folio))
8316 continue;
8317
8318 lruvec = folio_lruvec_relock_irq(folio, lruvec);
8319 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8320 lruvec_del_folio(lruvec, folio);
8321 folio_clear_unevictable(folio);
8322 lruvec_add_folio(lruvec, folio);
8323 pgrescued += nr_pages;
8324 }
8325 folio_set_lru(folio);
8326 }
8327
8328 if (lruvec) {
8329 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8330 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8331 unlock_page_lruvec_irq(lruvec);
8332 } else if (pgscanned) {
8333 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8334 }
8335 }
8336 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8337