• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 #include <trace/hooks/net.h>
84 
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86 
87 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
88 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
89 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
90 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
91 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
92 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
93 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
94 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
97 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
103 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
104 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
105 
106 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
109 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
110 
111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
113 
114 #define REXMIT_NONE	0 /* no loss recovery to do */
115 #define REXMIT_LOST	1 /* retransmit packets marked lost */
116 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
117 
118 #if IS_ENABLED(CONFIG_TLS_DEVICE)
119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
120 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))121 void clean_acked_data_enable(struct inet_connection_sock *icsk,
122 			     void (*cad)(struct sock *sk, u32 ack_seq))
123 {
124 	icsk->icsk_clean_acked = cad;
125 	static_branch_deferred_inc(&clean_acked_data_enabled);
126 }
127 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
128 
clean_acked_data_disable(struct inet_connection_sock * icsk)129 void clean_acked_data_disable(struct inet_connection_sock *icsk)
130 {
131 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
132 	icsk->icsk_clean_acked = NULL;
133 }
134 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
135 
clean_acked_data_flush(void)136 void clean_acked_data_flush(void)
137 {
138 	static_key_deferred_flush(&clean_acked_data_enabled);
139 }
140 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
141 #endif
142 
143 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)144 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
145 {
146 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
147 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
149 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
150 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
151 	struct bpf_sock_ops_kern sock_ops;
152 
153 	if (likely(!unknown_opt && !parse_all_opt))
154 		return;
155 
156 	/* The skb will be handled in the
157 	 * bpf_skops_established() or
158 	 * bpf_skops_write_hdr_opt().
159 	 */
160 	switch (sk->sk_state) {
161 	case TCP_SYN_RECV:
162 	case TCP_SYN_SENT:
163 	case TCP_LISTEN:
164 		return;
165 	}
166 
167 	sock_owned_by_me(sk);
168 
169 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
170 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
171 	sock_ops.is_fullsock = 1;
172 	sock_ops.sk = sk;
173 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
174 
175 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
176 }
177 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)178 static void bpf_skops_established(struct sock *sk, int bpf_op,
179 				  struct sk_buff *skb)
180 {
181 	struct bpf_sock_ops_kern sock_ops;
182 
183 	sock_owned_by_me(sk);
184 
185 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
186 	sock_ops.op = bpf_op;
187 	sock_ops.is_fullsock = 1;
188 	sock_ops.sk = sk;
189 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
190 	if (skb)
191 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
192 
193 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
194 }
195 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)196 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
197 {
198 }
199 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)200 static void bpf_skops_established(struct sock *sk, int bpf_op,
201 				  struct sk_buff *skb)
202 {
203 }
204 #endif
205 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)206 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
207 			     unsigned int len)
208 {
209 	static bool __once __read_mostly;
210 
211 	if (!__once) {
212 		struct net_device *dev;
213 
214 		__once = true;
215 
216 		rcu_read_lock();
217 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
218 		if (!dev || len >= dev->mtu)
219 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
220 				dev ? dev->name : "Unknown driver");
221 		rcu_read_unlock();
222 	}
223 }
224 
225 /* Adapt the MSS value used to make delayed ack decision to the
226  * real world.
227  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)228 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
229 {
230 	struct inet_connection_sock *icsk = inet_csk(sk);
231 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
232 	unsigned int len;
233 
234 	icsk->icsk_ack.last_seg_size = 0;
235 
236 	/* skb->len may jitter because of SACKs, even if peer
237 	 * sends good full-sized frames.
238 	 */
239 	len = skb_shinfo(skb)->gso_size ? : skb->len;
240 	if (len >= icsk->icsk_ack.rcv_mss) {
241 		/* Note: divides are still a bit expensive.
242 		 * For the moment, only adjust scaling_ratio
243 		 * when we update icsk_ack.rcv_mss.
244 		 */
245 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
246 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
247 			u8 old_ratio = tcp_sk(sk)->scaling_ratio;
248 
249 			do_div(val, skb->truesize);
250 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
251 
252 			if (old_ratio != tcp_sk(sk)->scaling_ratio)
253 				WRITE_ONCE(tcp_sk(sk)->window_clamp,
254 					   tcp_win_from_space(sk, sk->sk_rcvbuf));
255 		}
256 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
257 					       tcp_sk(sk)->advmss);
258 		/* Account for possibly-removed options */
259 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
260 				   MAX_TCP_OPTION_SPACE))
261 			tcp_gro_dev_warn(sk, skb, len);
262 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
263 		 * set then it is likely the end of an application write. So
264 		 * more data may not be arriving soon, and yet the data sender
265 		 * may be waiting for an ACK if cwnd-bound or using TX zero
266 		 * copy. So we set ICSK_ACK_PUSHED here so that
267 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
268 		 * reads all of the data and is not ping-pong. If len > MSS
269 		 * then this logic does not matter (and does not hurt) because
270 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
271 		 * reads data and there is more than an MSS of unACKed data.
272 		 */
273 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
274 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 	} else {
276 		/* Otherwise, we make more careful check taking into account,
277 		 * that SACKs block is variable.
278 		 *
279 		 * "len" is invariant segment length, including TCP header.
280 		 */
281 		len += skb->data - skb_transport_header(skb);
282 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
283 		    /* If PSH is not set, packet should be
284 		     * full sized, provided peer TCP is not badly broken.
285 		     * This observation (if it is correct 8)) allows
286 		     * to handle super-low mtu links fairly.
287 		     */
288 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
289 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
290 			/* Subtract also invariant (if peer is RFC compliant),
291 			 * tcp header plus fixed timestamp option length.
292 			 * Resulting "len" is MSS free of SACK jitter.
293 			 */
294 			len -= tcp_sk(sk)->tcp_header_len;
295 			icsk->icsk_ack.last_seg_size = len;
296 			if (len == lss) {
297 				icsk->icsk_ack.rcv_mss = len;
298 				return;
299 			}
300 		}
301 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
302 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
303 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
304 	}
305 }
306 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)307 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
308 {
309 	struct inet_connection_sock *icsk = inet_csk(sk);
310 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
311 
312 	if (quickacks == 0)
313 		quickacks = 2;
314 	quickacks = min(quickacks, max_quickacks);
315 	if (quickacks > icsk->icsk_ack.quick)
316 		icsk->icsk_ack.quick = quickacks;
317 }
318 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)319 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
320 {
321 	struct inet_connection_sock *icsk = inet_csk(sk);
322 
323 	tcp_incr_quickack(sk, max_quickacks);
324 	inet_csk_exit_pingpong_mode(sk);
325 	icsk->icsk_ack.ato = TCP_ATO_MIN;
326 }
327 
328 /* Send ACKs quickly, if "quick" count is not exhausted
329  * and the session is not interactive.
330  */
331 
tcp_in_quickack_mode(struct sock * sk)332 static bool tcp_in_quickack_mode(struct sock *sk)
333 {
334 	const struct inet_connection_sock *icsk = inet_csk(sk);
335 	const struct dst_entry *dst = __sk_dst_get(sk);
336 
337 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
338 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
339 }
340 
tcp_ecn_queue_cwr(struct tcp_sock * tp)341 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
342 {
343 	if (tp->ecn_flags & TCP_ECN_OK)
344 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
345 }
346 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)347 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
348 {
349 	if (tcp_hdr(skb)->cwr) {
350 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
351 
352 		/* If the sender is telling us it has entered CWR, then its
353 		 * cwnd may be very low (even just 1 packet), so we should ACK
354 		 * immediately.
355 		 */
356 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
357 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
358 	}
359 }
360 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)361 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
362 {
363 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
364 }
365 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)366 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
367 {
368 	struct tcp_sock *tp = tcp_sk(sk);
369 
370 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
371 	case INET_ECN_NOT_ECT:
372 		/* Funny extension: if ECT is not set on a segment,
373 		 * and we already seen ECT on a previous segment,
374 		 * it is probably a retransmit.
375 		 */
376 		if (tp->ecn_flags & TCP_ECN_SEEN)
377 			tcp_enter_quickack_mode(sk, 2);
378 		break;
379 	case INET_ECN_CE:
380 		if (tcp_ca_needs_ecn(sk))
381 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
382 
383 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
384 			/* Better not delay acks, sender can have a very low cwnd */
385 			tcp_enter_quickack_mode(sk, 2);
386 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
387 		}
388 		tp->ecn_flags |= TCP_ECN_SEEN;
389 		break;
390 	default:
391 		if (tcp_ca_needs_ecn(sk))
392 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
393 		tp->ecn_flags |= TCP_ECN_SEEN;
394 		break;
395 	}
396 }
397 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)398 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
399 {
400 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
401 		__tcp_ecn_check_ce(sk, skb);
402 }
403 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)404 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
405 {
406 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
407 		tp->ecn_flags &= ~TCP_ECN_OK;
408 }
409 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)410 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
411 {
412 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
413 		tp->ecn_flags &= ~TCP_ECN_OK;
414 }
415 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)416 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
417 {
418 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
419 		return true;
420 	return false;
421 }
422 
423 /* Buffer size and advertised window tuning.
424  *
425  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
426  */
427 
tcp_sndbuf_expand(struct sock * sk)428 static void tcp_sndbuf_expand(struct sock *sk)
429 {
430 	const struct tcp_sock *tp = tcp_sk(sk);
431 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
432 	int sndmem, per_mss;
433 	u32 nr_segs;
434 
435 	/* Worst case is non GSO/TSO : each frame consumes one skb
436 	 * and skb->head is kmalloced using power of two area of memory
437 	 */
438 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
439 		  MAX_TCP_HEADER +
440 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
441 
442 	per_mss = roundup_pow_of_two(per_mss) +
443 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
444 
445 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
446 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
447 
448 	/* Fast Recovery (RFC 5681 3.2) :
449 	 * Cubic needs 1.7 factor, rounded to 2 to include
450 	 * extra cushion (application might react slowly to EPOLLOUT)
451 	 */
452 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
453 	sndmem *= nr_segs * per_mss;
454 
455 	if (sk->sk_sndbuf < sndmem)
456 		WRITE_ONCE(sk->sk_sndbuf,
457 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
458 }
459 
460 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
461  *
462  * All tcp_full_space() is split to two parts: "network" buffer, allocated
463  * forward and advertised in receiver window (tp->rcv_wnd) and
464  * "application buffer", required to isolate scheduling/application
465  * latencies from network.
466  * window_clamp is maximal advertised window. It can be less than
467  * tcp_full_space(), in this case tcp_full_space() - window_clamp
468  * is reserved for "application" buffer. The less window_clamp is
469  * the smoother our behaviour from viewpoint of network, but the lower
470  * throughput and the higher sensitivity of the connection to losses. 8)
471  *
472  * rcv_ssthresh is more strict window_clamp used at "slow start"
473  * phase to predict further behaviour of this connection.
474  * It is used for two goals:
475  * - to enforce header prediction at sender, even when application
476  *   requires some significant "application buffer". It is check #1.
477  * - to prevent pruning of receive queue because of misprediction
478  *   of receiver window. Check #2.
479  *
480  * The scheme does not work when sender sends good segments opening
481  * window and then starts to feed us spaghetti. But it should work
482  * in common situations. Otherwise, we have to rely on queue collapsing.
483  */
484 
485 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)486 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
487 			     unsigned int skbtruesize)
488 {
489 	const struct tcp_sock *tp = tcp_sk(sk);
490 	/* Optimize this! */
491 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
492 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
493 
494 	while (tp->rcv_ssthresh <= window) {
495 		if (truesize <= skb->len)
496 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
497 
498 		truesize >>= 1;
499 		window >>= 1;
500 	}
501 	return 0;
502 }
503 
504 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
505  * can play nice with us, as sk_buff and skb->head might be either
506  * freed or shared with up to MAX_SKB_FRAGS segments.
507  * Only give a boost to drivers using page frag(s) to hold the frame(s),
508  * and if no payload was pulled in skb->head before reaching us.
509  */
truesize_adjust(bool adjust,const struct sk_buff * skb)510 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
511 {
512 	u32 truesize = skb->truesize;
513 
514 	if (adjust && !skb_headlen(skb)) {
515 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
516 		/* paranoid check, some drivers might be buggy */
517 		if (unlikely((int)truesize < (int)skb->len))
518 			truesize = skb->truesize;
519 	}
520 	return truesize;
521 }
522 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)523 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
524 			    bool adjust)
525 {
526 	struct tcp_sock *tp = tcp_sk(sk);
527 	int room;
528 
529 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
530 
531 	if (room <= 0)
532 		return;
533 
534 	/* Check #1 */
535 	if (!tcp_under_memory_pressure(sk)) {
536 		unsigned int truesize = truesize_adjust(adjust, skb);
537 		int incr;
538 
539 		/* Check #2. Increase window, if skb with such overhead
540 		 * will fit to rcvbuf in future.
541 		 */
542 		if (tcp_win_from_space(sk, truesize) <= skb->len)
543 			incr = 2 * tp->advmss;
544 		else
545 			incr = __tcp_grow_window(sk, skb, truesize);
546 
547 		if (incr) {
548 			incr = max_t(int, incr, 2 * skb->len);
549 			tp->rcv_ssthresh += min(room, incr);
550 			inet_csk(sk)->icsk_ack.quick |= 1;
551 		}
552 	} else {
553 		/* Under pressure:
554 		 * Adjust rcv_ssthresh according to reserved mem
555 		 */
556 		tcp_adjust_rcv_ssthresh(sk);
557 	}
558 }
559 
560 /* 3. Try to fixup all. It is made immediately after connection enters
561  *    established state.
562  */
tcp_init_buffer_space(struct sock * sk)563 static void tcp_init_buffer_space(struct sock *sk)
564 {
565 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
566 	struct tcp_sock *tp = tcp_sk(sk);
567 	int maxwin;
568 
569 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
570 		tcp_sndbuf_expand(sk);
571 
572 	tcp_mstamp_refresh(tp);
573 	tp->rcvq_space.time = tp->tcp_mstamp;
574 	tp->rcvq_space.seq = tp->copied_seq;
575 
576 	maxwin = tcp_full_space(sk);
577 
578 	if (tp->window_clamp >= maxwin) {
579 		WRITE_ONCE(tp->window_clamp, maxwin);
580 
581 		if (tcp_app_win && maxwin > 4 * tp->advmss)
582 			WRITE_ONCE(tp->window_clamp,
583 				   max(maxwin - (maxwin >> tcp_app_win),
584 				       4 * tp->advmss));
585 	}
586 
587 	/* Force reservation of one segment. */
588 	if (tcp_app_win &&
589 	    tp->window_clamp > 2 * tp->advmss &&
590 	    tp->window_clamp + tp->advmss > maxwin)
591 		WRITE_ONCE(tp->window_clamp,
592 			   max(2 * tp->advmss, maxwin - tp->advmss));
593 
594 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
595 	tp->snd_cwnd_stamp = tcp_jiffies32;
596 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
597 				    (u32)TCP_INIT_CWND * tp->advmss);
598 }
599 
600 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)601 static void tcp_clamp_window(struct sock *sk)
602 {
603 	struct tcp_sock *tp = tcp_sk(sk);
604 	struct inet_connection_sock *icsk = inet_csk(sk);
605 	struct net *net = sock_net(sk);
606 	int rmem2;
607 
608 	icsk->icsk_ack.quick = 0;
609 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
610 
611 	if (sk->sk_rcvbuf < rmem2 &&
612 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
613 	    !tcp_under_memory_pressure(sk) &&
614 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
615 		WRITE_ONCE(sk->sk_rcvbuf,
616 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
617 	}
618 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
619 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
620 }
621 
622 /* Initialize RCV_MSS value.
623  * RCV_MSS is an our guess about MSS used by the peer.
624  * We haven't any direct information about the MSS.
625  * It's better to underestimate the RCV_MSS rather than overestimate.
626  * Overestimations make us ACKing less frequently than needed.
627  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
628  */
tcp_initialize_rcv_mss(struct sock * sk)629 void tcp_initialize_rcv_mss(struct sock *sk)
630 {
631 	const struct tcp_sock *tp = tcp_sk(sk);
632 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
633 
634 	hint = min(hint, tp->rcv_wnd / 2);
635 	hint = min(hint, TCP_MSS_DEFAULT);
636 	hint = max(hint, TCP_MIN_MSS);
637 
638 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
639 }
640 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
641 
642 /* Receiver "autotuning" code.
643  *
644  * The algorithm for RTT estimation w/o timestamps is based on
645  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
646  * <https://public.lanl.gov/radiant/pubs.html#DRS>
647  *
648  * More detail on this code can be found at
649  * <http://staff.psc.edu/jheffner/>,
650  * though this reference is out of date.  A new paper
651  * is pending.
652  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)653 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
654 {
655 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
656 	long m = sample;
657 
658 	if (new_sample != 0) {
659 		/* If we sample in larger samples in the non-timestamp
660 		 * case, we could grossly overestimate the RTT especially
661 		 * with chatty applications or bulk transfer apps which
662 		 * are stalled on filesystem I/O.
663 		 *
664 		 * Also, since we are only going for a minimum in the
665 		 * non-timestamp case, we do not smooth things out
666 		 * else with timestamps disabled convergence takes too
667 		 * long.
668 		 */
669 		if (!win_dep) {
670 			m -= (new_sample >> 3);
671 			new_sample += m;
672 		} else {
673 			m <<= 3;
674 			if (m < new_sample)
675 				new_sample = m;
676 		}
677 	} else {
678 		/* No previous measure. */
679 		new_sample = m << 3;
680 	}
681 
682 	tp->rcv_rtt_est.rtt_us = new_sample;
683 }
684 
tcp_rcv_rtt_measure(struct tcp_sock * tp)685 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
686 {
687 	u32 delta_us;
688 
689 	if (tp->rcv_rtt_est.time == 0)
690 		goto new_measure;
691 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
692 		return;
693 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
694 	if (!delta_us)
695 		delta_us = 1;
696 	tcp_rcv_rtt_update(tp, delta_us, 1);
697 
698 new_measure:
699 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
700 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
701 }
702 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)703 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
704 					  const struct sk_buff *skb)
705 {
706 	struct tcp_sock *tp = tcp_sk(sk);
707 
708 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
709 		return;
710 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
711 
712 	if (TCP_SKB_CB(skb)->end_seq -
713 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
714 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
715 		u32 delta_us;
716 
717 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
718 			if (!delta)
719 				delta = 1;
720 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
721 			tcp_rcv_rtt_update(tp, delta_us, 0);
722 		}
723 	}
724 }
725 
726 /*
727  * This function should be called every time data is copied to user space.
728  * It calculates the appropriate TCP receive buffer space.
729  */
tcp_rcv_space_adjust(struct sock * sk)730 void tcp_rcv_space_adjust(struct sock *sk)
731 {
732 	struct tcp_sock *tp = tcp_sk(sk);
733 	u32 copied;
734 	int time;
735 
736 	trace_tcp_rcv_space_adjust(sk);
737 
738 	tcp_mstamp_refresh(tp);
739 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
740 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
741 		return;
742 
743 	/* Number of bytes copied to user in last RTT */
744 	copied = tp->copied_seq - tp->rcvq_space.seq;
745 	if (copied <= tp->rcvq_space.space)
746 		goto new_measure;
747 
748 	/* A bit of theory :
749 	 * copied = bytes received in previous RTT, our base window
750 	 * To cope with packet losses, we need a 2x factor
751 	 * To cope with slow start, and sender growing its cwin by 100 %
752 	 * every RTT, we need a 4x factor, because the ACK we are sending
753 	 * now is for the next RTT, not the current one :
754 	 * <prev RTT . ><current RTT .. ><next RTT .... >
755 	 */
756 
757 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
758 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
759 		u64 rcvwin, grow;
760 		int rcvbuf;
761 
762 		/* minimal window to cope with packet losses, assuming
763 		 * steady state. Add some cushion because of small variations.
764 		 */
765 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
766 
767 		/* Accommodate for sender rate increase (eg. slow start) */
768 		grow = rcvwin * (copied - tp->rcvq_space.space);
769 		do_div(grow, tp->rcvq_space.space);
770 		rcvwin += (grow << 1);
771 
772 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
773 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
774 		if (rcvbuf > sk->sk_rcvbuf) {
775 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
776 
777 			/* Make the window clamp follow along.  */
778 			WRITE_ONCE(tp->window_clamp,
779 				   tcp_win_from_space(sk, rcvbuf));
780 		}
781 	}
782 	tp->rcvq_space.space = copied;
783 
784 new_measure:
785 	tp->rcvq_space.seq = tp->copied_seq;
786 	tp->rcvq_space.time = tp->tcp_mstamp;
787 }
788 
789 /* There is something which you must keep in mind when you analyze the
790  * behavior of the tp->ato delayed ack timeout interval.  When a
791  * connection starts up, we want to ack as quickly as possible.  The
792  * problem is that "good" TCP's do slow start at the beginning of data
793  * transmission.  The means that until we send the first few ACK's the
794  * sender will sit on his end and only queue most of his data, because
795  * he can only send snd_cwnd unacked packets at any given time.  For
796  * each ACK we send, he increments snd_cwnd and transmits more of his
797  * queue.  -DaveM
798  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)799 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
800 {
801 	struct tcp_sock *tp = tcp_sk(sk);
802 	struct inet_connection_sock *icsk = inet_csk(sk);
803 	u32 now;
804 
805 	inet_csk_schedule_ack(sk);
806 
807 	tcp_measure_rcv_mss(sk, skb);
808 
809 	tcp_rcv_rtt_measure(tp);
810 
811 	now = tcp_jiffies32;
812 
813 	if (!icsk->icsk_ack.ato) {
814 		/* The _first_ data packet received, initialize
815 		 * delayed ACK engine.
816 		 */
817 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
818 		icsk->icsk_ack.ato = TCP_ATO_MIN;
819 	} else {
820 		int m = now - icsk->icsk_ack.lrcvtime;
821 
822 		if (m <= TCP_ATO_MIN / 2) {
823 			/* The fastest case is the first. */
824 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
825 		} else if (m < icsk->icsk_ack.ato) {
826 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
827 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
828 				icsk->icsk_ack.ato = icsk->icsk_rto;
829 		} else if (m > icsk->icsk_rto) {
830 			/* Too long gap. Apparently sender failed to
831 			 * restart window, so that we send ACKs quickly.
832 			 */
833 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
834 		}
835 	}
836 	icsk->icsk_ack.lrcvtime = now;
837 
838 	tcp_ecn_check_ce(sk, skb);
839 
840 	if (skb->len >= 128)
841 		tcp_grow_window(sk, skb, true);
842 }
843 
844 /* Called to compute a smoothed rtt estimate. The data fed to this
845  * routine either comes from timestamps, or from segments that were
846  * known _not_ to have been retransmitted [see Karn/Partridge
847  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
848  * piece by Van Jacobson.
849  * NOTE: the next three routines used to be one big routine.
850  * To save cycles in the RFC 1323 implementation it was better to break
851  * it up into three procedures. -- erics
852  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)853 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
854 {
855 	struct tcp_sock *tp = tcp_sk(sk);
856 	long m = mrtt_us; /* RTT */
857 	u32 srtt = tp->srtt_us;
858 
859 	trace_android_vh_tcp_rtt_estimator(sk, mrtt_us);
860 
861 	/*	The following amusing code comes from Jacobson's
862 	 *	article in SIGCOMM '88.  Note that rtt and mdev
863 	 *	are scaled versions of rtt and mean deviation.
864 	 *	This is designed to be as fast as possible
865 	 *	m stands for "measurement".
866 	 *
867 	 *	On a 1990 paper the rto value is changed to:
868 	 *	RTO = rtt + 4 * mdev
869 	 *
870 	 * Funny. This algorithm seems to be very broken.
871 	 * These formulae increase RTO, when it should be decreased, increase
872 	 * too slowly, when it should be increased quickly, decrease too quickly
873 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
874 	 * does not matter how to _calculate_ it. Seems, it was trap
875 	 * that VJ failed to avoid. 8)
876 	 */
877 	if (srtt != 0) {
878 		m -= (srtt >> 3);	/* m is now error in rtt est */
879 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
880 		if (m < 0) {
881 			m = -m;		/* m is now abs(error) */
882 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
883 			/* This is similar to one of Eifel findings.
884 			 * Eifel blocks mdev updates when rtt decreases.
885 			 * This solution is a bit different: we use finer gain
886 			 * for mdev in this case (alpha*beta).
887 			 * Like Eifel it also prevents growth of rto,
888 			 * but also it limits too fast rto decreases,
889 			 * happening in pure Eifel.
890 			 */
891 			if (m > 0)
892 				m >>= 3;
893 		} else {
894 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
895 		}
896 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
897 		if (tp->mdev_us > tp->mdev_max_us) {
898 			tp->mdev_max_us = tp->mdev_us;
899 			if (tp->mdev_max_us > tp->rttvar_us)
900 				tp->rttvar_us = tp->mdev_max_us;
901 		}
902 		if (after(tp->snd_una, tp->rtt_seq)) {
903 			if (tp->mdev_max_us < tp->rttvar_us)
904 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
905 			tp->rtt_seq = tp->snd_nxt;
906 			tp->mdev_max_us = tcp_rto_min_us(sk);
907 
908 			tcp_bpf_rtt(sk);
909 		}
910 	} else {
911 		/* no previous measure. */
912 		srtt = m << 3;		/* take the measured time to be rtt */
913 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
914 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
915 		tp->mdev_max_us = tp->rttvar_us;
916 		tp->rtt_seq = tp->snd_nxt;
917 
918 		tcp_bpf_rtt(sk);
919 	}
920 	tp->srtt_us = max(1U, srtt);
921 }
922 
tcp_update_pacing_rate(struct sock * sk)923 static void tcp_update_pacing_rate(struct sock *sk)
924 {
925 	const struct tcp_sock *tp = tcp_sk(sk);
926 	u64 rate;
927 
928 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
929 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
930 
931 	/* current rate is (cwnd * mss) / srtt
932 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
933 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
934 	 *
935 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
936 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
937 	 *	 end of slow start and should slow down.
938 	 */
939 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
940 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
941 	else
942 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
943 
944 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
945 
946 	if (likely(tp->srtt_us))
947 		do_div(rate, tp->srtt_us);
948 
949 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
950 	 * without any lock. We want to make sure compiler wont store
951 	 * intermediate values in this location.
952 	 */
953 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
954 					     sk->sk_max_pacing_rate));
955 }
956 
957 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
958  * routine referred to above.
959  */
tcp_set_rto(struct sock * sk)960 static void tcp_set_rto(struct sock *sk)
961 {
962 	const struct tcp_sock *tp = tcp_sk(sk);
963 	/* Old crap is replaced with new one. 8)
964 	 *
965 	 * More seriously:
966 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
967 	 *    It cannot be less due to utterly erratic ACK generation made
968 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
969 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
970 	 *    is invisible. Actually, Linux-2.4 also generates erratic
971 	 *    ACKs in some circumstances.
972 	 */
973 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
974 
975 	/* 2. Fixups made earlier cannot be right.
976 	 *    If we do not estimate RTO correctly without them,
977 	 *    all the algo is pure shit and should be replaced
978 	 *    with correct one. It is exactly, which we pretend to do.
979 	 */
980 
981 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
982 	 * guarantees that rto is higher.
983 	 */
984 	tcp_bound_rto(sk);
985 }
986 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)987 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
988 {
989 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
990 
991 	if (!cwnd)
992 		cwnd = TCP_INIT_CWND;
993 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
994 }
995 
996 struct tcp_sacktag_state {
997 	/* Timestamps for earliest and latest never-retransmitted segment
998 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
999 	 * but congestion control should still get an accurate delay signal.
1000 	 */
1001 	u64	first_sackt;
1002 	u64	last_sackt;
1003 	u32	reord;
1004 	u32	sack_delivered;
1005 	int	flag;
1006 	unsigned int mss_now;
1007 	struct rate_sample *rate;
1008 };
1009 
1010 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1011  * and spurious retransmission information if this DSACK is unlikely caused by
1012  * sender's action:
1013  * - DSACKed sequence range is larger than maximum receiver's window.
1014  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1015  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1016 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1017 			  u32 end_seq, struct tcp_sacktag_state *state)
1018 {
1019 	u32 seq_len, dup_segs = 1;
1020 
1021 	if (!before(start_seq, end_seq))
1022 		return 0;
1023 
1024 	seq_len = end_seq - start_seq;
1025 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1026 	if (seq_len > tp->max_window)
1027 		return 0;
1028 	if (seq_len > tp->mss_cache)
1029 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1030 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1031 		state->flag |= FLAG_DSACK_TLP;
1032 
1033 	tp->dsack_dups += dup_segs;
1034 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1035 	if (tp->dsack_dups > tp->total_retrans)
1036 		return 0;
1037 
1038 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1039 	/* We increase the RACK ordering window in rounds where we receive
1040 	 * DSACKs that may have been due to reordering causing RACK to trigger
1041 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1042 	 * without having seen reordering, or that match TLP probes (TLP
1043 	 * is timer-driven, not triggered by RACK).
1044 	 */
1045 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1046 		tp->rack.dsack_seen = 1;
1047 
1048 	state->flag |= FLAG_DSACKING_ACK;
1049 	/* A spurious retransmission is delivered */
1050 	state->sack_delivered += dup_segs;
1051 
1052 	return dup_segs;
1053 }
1054 
1055 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1056  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1057  * distance is approximated in full-mss packet distance ("reordering").
1058  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1059 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1060 				      const int ts)
1061 {
1062 	struct tcp_sock *tp = tcp_sk(sk);
1063 	const u32 mss = tp->mss_cache;
1064 	u32 fack, metric;
1065 
1066 	fack = tcp_highest_sack_seq(tp);
1067 	if (!before(low_seq, fack))
1068 		return;
1069 
1070 	metric = fack - low_seq;
1071 	if ((metric > tp->reordering * mss) && mss) {
1072 #if FASTRETRANS_DEBUG > 1
1073 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1074 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1075 			 tp->reordering,
1076 			 0,
1077 			 tp->sacked_out,
1078 			 tp->undo_marker ? tp->undo_retrans : 0);
1079 #endif
1080 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1081 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1082 	}
1083 
1084 	/* This exciting event is worth to be remembered. 8) */
1085 	tp->reord_seen++;
1086 	NET_INC_STATS(sock_net(sk),
1087 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1088 }
1089 
1090  /* This must be called before lost_out or retrans_out are updated
1091   * on a new loss, because we want to know if all skbs previously
1092   * known to be lost have already been retransmitted, indicating
1093   * that this newly lost skb is our next skb to retransmit.
1094   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1095 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1096 {
1097 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1098 	    (tp->retransmit_skb_hint &&
1099 	     before(TCP_SKB_CB(skb)->seq,
1100 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1101 		tp->retransmit_skb_hint = skb;
1102 }
1103 
1104 /* Sum the number of packets on the wire we have marked as lost, and
1105  * notify the congestion control module that the given skb was marked lost.
1106  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1107 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1108 {
1109 	tp->lost += tcp_skb_pcount(skb);
1110 }
1111 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1112 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1113 {
1114 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1115 	struct tcp_sock *tp = tcp_sk(sk);
1116 
1117 	if (sacked & TCPCB_SACKED_ACKED)
1118 		return;
1119 
1120 	tcp_verify_retransmit_hint(tp, skb);
1121 	if (sacked & TCPCB_LOST) {
1122 		if (sacked & TCPCB_SACKED_RETRANS) {
1123 			/* Account for retransmits that are lost again */
1124 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1125 			tp->retrans_out -= tcp_skb_pcount(skb);
1126 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1127 				      tcp_skb_pcount(skb));
1128 			tcp_notify_skb_loss_event(tp, skb);
1129 		}
1130 	} else {
1131 		tp->lost_out += tcp_skb_pcount(skb);
1132 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1133 		tcp_notify_skb_loss_event(tp, skb);
1134 	}
1135 }
1136 
1137 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1138 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1139 				bool ece_ack)
1140 {
1141 	tp->delivered += delivered;
1142 	if (ece_ack)
1143 		tp->delivered_ce += delivered;
1144 }
1145 
1146 /* This procedure tags the retransmission queue when SACKs arrive.
1147  *
1148  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1149  * Packets in queue with these bits set are counted in variables
1150  * sacked_out, retrans_out and lost_out, correspondingly.
1151  *
1152  * Valid combinations are:
1153  * Tag  InFlight	Description
1154  * 0	1		- orig segment is in flight.
1155  * S	0		- nothing flies, orig reached receiver.
1156  * L	0		- nothing flies, orig lost by net.
1157  * R	2		- both orig and retransmit are in flight.
1158  * L|R	1		- orig is lost, retransmit is in flight.
1159  * S|R  1		- orig reached receiver, retrans is still in flight.
1160  * (L|S|R is logically valid, it could occur when L|R is sacked,
1161  *  but it is equivalent to plain S and code short-curcuits it to S.
1162  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1163  *
1164  * These 6 states form finite state machine, controlled by the following events:
1165  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1166  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1167  * 3. Loss detection event of two flavors:
1168  *	A. Scoreboard estimator decided the packet is lost.
1169  *	   A'. Reno "three dupacks" marks head of queue lost.
1170  *	B. SACK arrives sacking SND.NXT at the moment, when the
1171  *	   segment was retransmitted.
1172  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1173  *
1174  * It is pleasant to note, that state diagram turns out to be commutative,
1175  * so that we are allowed not to be bothered by order of our actions,
1176  * when multiple events arrive simultaneously. (see the function below).
1177  *
1178  * Reordering detection.
1179  * --------------------
1180  * Reordering metric is maximal distance, which a packet can be displaced
1181  * in packet stream. With SACKs we can estimate it:
1182  *
1183  * 1. SACK fills old hole and the corresponding segment was not
1184  *    ever retransmitted -> reordering. Alas, we cannot use it
1185  *    when segment was retransmitted.
1186  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1187  *    for retransmitted and already SACKed segment -> reordering..
1188  * Both of these heuristics are not used in Loss state, when we cannot
1189  * account for retransmits accurately.
1190  *
1191  * SACK block validation.
1192  * ----------------------
1193  *
1194  * SACK block range validation checks that the received SACK block fits to
1195  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1196  * Note that SND.UNA is not included to the range though being valid because
1197  * it means that the receiver is rather inconsistent with itself reporting
1198  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1199  * perfectly valid, however, in light of RFC2018 which explicitly states
1200  * that "SACK block MUST reflect the newest segment.  Even if the newest
1201  * segment is going to be discarded ...", not that it looks very clever
1202  * in case of head skb. Due to potentional receiver driven attacks, we
1203  * choose to avoid immediate execution of a walk in write queue due to
1204  * reneging and defer head skb's loss recovery to standard loss recovery
1205  * procedure that will eventually trigger (nothing forbids us doing this).
1206  *
1207  * Implements also blockage to start_seq wrap-around. Problem lies in the
1208  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1209  * there's no guarantee that it will be before snd_nxt (n). The problem
1210  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1211  * wrap (s_w):
1212  *
1213  *         <- outs wnd ->                          <- wrapzone ->
1214  *         u     e      n                         u_w   e_w  s n_w
1215  *         |     |      |                          |     |   |  |
1216  * |<------------+------+----- TCP seqno space --------------+---------->|
1217  * ...-- <2^31 ->|                                           |<--------...
1218  * ...---- >2^31 ------>|                                    |<--------...
1219  *
1220  * Current code wouldn't be vulnerable but it's better still to discard such
1221  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1222  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1223  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1224  * equal to the ideal case (infinite seqno space without wrap caused issues).
1225  *
1226  * With D-SACK the lower bound is extended to cover sequence space below
1227  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1228  * again, D-SACK block must not to go across snd_una (for the same reason as
1229  * for the normal SACK blocks, explained above). But there all simplicity
1230  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1231  * fully below undo_marker they do not affect behavior in anyway and can
1232  * therefore be safely ignored. In rare cases (which are more or less
1233  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1234  * fragmentation and packet reordering past skb's retransmission. To consider
1235  * them correctly, the acceptable range must be extended even more though
1236  * the exact amount is rather hard to quantify. However, tp->max_window can
1237  * be used as an exaggerated estimate.
1238  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1239 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1240 				   u32 start_seq, u32 end_seq)
1241 {
1242 	/* Too far in future, or reversed (interpretation is ambiguous) */
1243 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1244 		return false;
1245 
1246 	/* Nasty start_seq wrap-around check (see comments above) */
1247 	if (!before(start_seq, tp->snd_nxt))
1248 		return false;
1249 
1250 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1251 	 * start_seq == snd_una is non-sensical (see comments above)
1252 	 */
1253 	if (after(start_seq, tp->snd_una))
1254 		return true;
1255 
1256 	if (!is_dsack || !tp->undo_marker)
1257 		return false;
1258 
1259 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1260 	if (after(end_seq, tp->snd_una))
1261 		return false;
1262 
1263 	if (!before(start_seq, tp->undo_marker))
1264 		return true;
1265 
1266 	/* Too old */
1267 	if (!after(end_seq, tp->undo_marker))
1268 		return false;
1269 
1270 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1271 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1272 	 */
1273 	return !before(start_seq, end_seq - tp->max_window);
1274 }
1275 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1276 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1277 			    struct tcp_sack_block_wire *sp, int num_sacks,
1278 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1279 {
1280 	struct tcp_sock *tp = tcp_sk(sk);
1281 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1282 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1283 	u32 dup_segs;
1284 
1285 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1286 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1287 	} else if (num_sacks > 1) {
1288 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1289 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1290 
1291 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1292 			return false;
1293 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1294 	} else {
1295 		return false;
1296 	}
1297 
1298 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1299 	if (!dup_segs) {	/* Skip dubious DSACK */
1300 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1301 		return false;
1302 	}
1303 
1304 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1305 
1306 	/* D-SACK for already forgotten data... Do dumb counting. */
1307 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1308 	    !after(end_seq_0, prior_snd_una) &&
1309 	    after(end_seq_0, tp->undo_marker))
1310 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1311 
1312 	return true;
1313 }
1314 
1315 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1316  * the incoming SACK may not exactly match but we can find smaller MSS
1317  * aligned portion of it that matches. Therefore we might need to fragment
1318  * which may fail and creates some hassle (caller must handle error case
1319  * returns).
1320  *
1321  * FIXME: this could be merged to shift decision code
1322  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1323 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1324 				  u32 start_seq, u32 end_seq)
1325 {
1326 	int err;
1327 	bool in_sack;
1328 	unsigned int pkt_len;
1329 	unsigned int mss;
1330 
1331 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1332 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1333 
1334 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1335 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1336 		mss = tcp_skb_mss(skb);
1337 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1338 
1339 		if (!in_sack) {
1340 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1341 			if (pkt_len < mss)
1342 				pkt_len = mss;
1343 		} else {
1344 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1345 			if (pkt_len < mss)
1346 				return -EINVAL;
1347 		}
1348 
1349 		/* Round if necessary so that SACKs cover only full MSSes
1350 		 * and/or the remaining small portion (if present)
1351 		 */
1352 		if (pkt_len > mss) {
1353 			unsigned int new_len = (pkt_len / mss) * mss;
1354 			if (!in_sack && new_len < pkt_len)
1355 				new_len += mss;
1356 			pkt_len = new_len;
1357 		}
1358 
1359 		if (pkt_len >= skb->len && !in_sack)
1360 			return 0;
1361 
1362 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1363 				   pkt_len, mss, GFP_ATOMIC);
1364 		if (err < 0)
1365 			return err;
1366 	}
1367 
1368 	return in_sack;
1369 }
1370 
1371 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1372 static u8 tcp_sacktag_one(struct sock *sk,
1373 			  struct tcp_sacktag_state *state, u8 sacked,
1374 			  u32 start_seq, u32 end_seq,
1375 			  int dup_sack, int pcount,
1376 			  u64 xmit_time)
1377 {
1378 	struct tcp_sock *tp = tcp_sk(sk);
1379 
1380 	/* Account D-SACK for retransmitted packet. */
1381 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1382 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1383 		    after(end_seq, tp->undo_marker))
1384 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1385 		if ((sacked & TCPCB_SACKED_ACKED) &&
1386 		    before(start_seq, state->reord))
1387 				state->reord = start_seq;
1388 	}
1389 
1390 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1391 	if (!after(end_seq, tp->snd_una))
1392 		return sacked;
1393 
1394 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1395 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1396 
1397 		if (sacked & TCPCB_SACKED_RETRANS) {
1398 			/* If the segment is not tagged as lost,
1399 			 * we do not clear RETRANS, believing
1400 			 * that retransmission is still in flight.
1401 			 */
1402 			if (sacked & TCPCB_LOST) {
1403 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1404 				tp->lost_out -= pcount;
1405 				tp->retrans_out -= pcount;
1406 			}
1407 		} else {
1408 			if (!(sacked & TCPCB_RETRANS)) {
1409 				/* New sack for not retransmitted frame,
1410 				 * which was in hole. It is reordering.
1411 				 */
1412 				if (before(start_seq,
1413 					   tcp_highest_sack_seq(tp)) &&
1414 				    before(start_seq, state->reord))
1415 					state->reord = start_seq;
1416 
1417 				if (!after(end_seq, tp->high_seq))
1418 					state->flag |= FLAG_ORIG_SACK_ACKED;
1419 				if (state->first_sackt == 0)
1420 					state->first_sackt = xmit_time;
1421 				state->last_sackt = xmit_time;
1422 			}
1423 
1424 			if (sacked & TCPCB_LOST) {
1425 				sacked &= ~TCPCB_LOST;
1426 				tp->lost_out -= pcount;
1427 			}
1428 		}
1429 
1430 		sacked |= TCPCB_SACKED_ACKED;
1431 		state->flag |= FLAG_DATA_SACKED;
1432 		tp->sacked_out += pcount;
1433 		/* Out-of-order packets delivered */
1434 		state->sack_delivered += pcount;
1435 
1436 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1437 		if (tp->lost_skb_hint &&
1438 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1439 			tp->lost_cnt_hint += pcount;
1440 	}
1441 
1442 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1443 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1444 	 * are accounted above as well.
1445 	 */
1446 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1447 		sacked &= ~TCPCB_SACKED_RETRANS;
1448 		tp->retrans_out -= pcount;
1449 	}
1450 
1451 	return sacked;
1452 }
1453 
1454 /* Shift newly-SACKed bytes from this skb to the immediately previous
1455  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1456  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1457 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1458 			    struct sk_buff *skb,
1459 			    struct tcp_sacktag_state *state,
1460 			    unsigned int pcount, int shifted, int mss,
1461 			    bool dup_sack)
1462 {
1463 	struct tcp_sock *tp = tcp_sk(sk);
1464 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1465 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1466 
1467 	BUG_ON(!pcount);
1468 
1469 	/* Adjust counters and hints for the newly sacked sequence
1470 	 * range but discard the return value since prev is already
1471 	 * marked. We must tag the range first because the seq
1472 	 * advancement below implicitly advances
1473 	 * tcp_highest_sack_seq() when skb is highest_sack.
1474 	 */
1475 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1476 			start_seq, end_seq, dup_sack, pcount,
1477 			tcp_skb_timestamp_us(skb));
1478 	tcp_rate_skb_delivered(sk, skb, state->rate);
1479 
1480 	if (skb == tp->lost_skb_hint)
1481 		tp->lost_cnt_hint += pcount;
1482 
1483 	TCP_SKB_CB(prev)->end_seq += shifted;
1484 	TCP_SKB_CB(skb)->seq += shifted;
1485 
1486 	tcp_skb_pcount_add(prev, pcount);
1487 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1488 	tcp_skb_pcount_add(skb, -pcount);
1489 
1490 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1491 	 * in theory this shouldn't be necessary but as long as DSACK
1492 	 * code can come after this skb later on it's better to keep
1493 	 * setting gso_size to something.
1494 	 */
1495 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1496 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1497 
1498 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1499 	if (tcp_skb_pcount(skb) <= 1)
1500 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1501 
1502 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1503 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1504 
1505 	if (skb->len > 0) {
1506 		BUG_ON(!tcp_skb_pcount(skb));
1507 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1508 		return false;
1509 	}
1510 
1511 	/* Whole SKB was eaten :-) */
1512 
1513 	if (skb == tp->retransmit_skb_hint)
1514 		tp->retransmit_skb_hint = prev;
1515 	if (skb == tp->lost_skb_hint) {
1516 		tp->lost_skb_hint = prev;
1517 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1518 	}
1519 
1520 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1521 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1522 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1523 		TCP_SKB_CB(prev)->end_seq++;
1524 
1525 	if (skb == tcp_highest_sack(sk))
1526 		tcp_advance_highest_sack(sk, skb);
1527 
1528 	tcp_skb_collapse_tstamp(prev, skb);
1529 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1530 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1531 
1532 	tcp_rtx_queue_unlink_and_free(skb, sk);
1533 
1534 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1535 
1536 	return true;
1537 }
1538 
1539 /* I wish gso_size would have a bit more sane initialization than
1540  * something-or-zero which complicates things
1541  */
tcp_skb_seglen(const struct sk_buff * skb)1542 static int tcp_skb_seglen(const struct sk_buff *skb)
1543 {
1544 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1545 }
1546 
1547 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1548 static int skb_can_shift(const struct sk_buff *skb)
1549 {
1550 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1551 }
1552 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1553 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1554 		  int pcount, int shiftlen)
1555 {
1556 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1557 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1558 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1559 	 * even if current MSS is bigger.
1560 	 */
1561 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1562 		return 0;
1563 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1564 		return 0;
1565 	return skb_shift(to, from, shiftlen);
1566 }
1567 
1568 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1569  * skb.
1570  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1571 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1572 					  struct tcp_sacktag_state *state,
1573 					  u32 start_seq, u32 end_seq,
1574 					  bool dup_sack)
1575 {
1576 	struct tcp_sock *tp = tcp_sk(sk);
1577 	struct sk_buff *prev;
1578 	int mss;
1579 	int pcount = 0;
1580 	int len;
1581 	int in_sack;
1582 
1583 	/* Normally R but no L won't result in plain S */
1584 	if (!dup_sack &&
1585 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1586 		goto fallback;
1587 	if (!skb_can_shift(skb))
1588 		goto fallback;
1589 	/* This frame is about to be dropped (was ACKed). */
1590 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1591 		goto fallback;
1592 
1593 	/* Can only happen with delayed DSACK + discard craziness */
1594 	prev = skb_rb_prev(skb);
1595 	if (!prev)
1596 		goto fallback;
1597 
1598 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1599 		goto fallback;
1600 
1601 	if (!tcp_skb_can_collapse(prev, skb))
1602 		goto fallback;
1603 
1604 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1605 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1606 
1607 	if (in_sack) {
1608 		len = skb->len;
1609 		pcount = tcp_skb_pcount(skb);
1610 		mss = tcp_skb_seglen(skb);
1611 
1612 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1613 		 * drop this restriction as unnecessary
1614 		 */
1615 		if (mss != tcp_skb_seglen(prev))
1616 			goto fallback;
1617 	} else {
1618 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1619 			goto noop;
1620 		/* CHECKME: This is non-MSS split case only?, this will
1621 		 * cause skipped skbs due to advancing loop btw, original
1622 		 * has that feature too
1623 		 */
1624 		if (tcp_skb_pcount(skb) <= 1)
1625 			goto noop;
1626 
1627 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1628 		if (!in_sack) {
1629 			/* TODO: head merge to next could be attempted here
1630 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1631 			 * though it might not be worth of the additional hassle
1632 			 *
1633 			 * ...we can probably just fallback to what was done
1634 			 * previously. We could try merging non-SACKed ones
1635 			 * as well but it probably isn't going to buy off
1636 			 * because later SACKs might again split them, and
1637 			 * it would make skb timestamp tracking considerably
1638 			 * harder problem.
1639 			 */
1640 			goto fallback;
1641 		}
1642 
1643 		len = end_seq - TCP_SKB_CB(skb)->seq;
1644 		BUG_ON(len < 0);
1645 		BUG_ON(len > skb->len);
1646 
1647 		/* MSS boundaries should be honoured or else pcount will
1648 		 * severely break even though it makes things bit trickier.
1649 		 * Optimize common case to avoid most of the divides
1650 		 */
1651 		mss = tcp_skb_mss(skb);
1652 
1653 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1654 		 * drop this restriction as unnecessary
1655 		 */
1656 		if (mss != tcp_skb_seglen(prev))
1657 			goto fallback;
1658 
1659 		if (len == mss) {
1660 			pcount = 1;
1661 		} else if (len < mss) {
1662 			goto noop;
1663 		} else {
1664 			pcount = len / mss;
1665 			len = pcount * mss;
1666 		}
1667 	}
1668 
1669 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1670 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1671 		goto fallback;
1672 
1673 	if (!tcp_skb_shift(prev, skb, pcount, len))
1674 		goto fallback;
1675 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1676 		goto out;
1677 
1678 	/* Hole filled allows collapsing with the next as well, this is very
1679 	 * useful when hole on every nth skb pattern happens
1680 	 */
1681 	skb = skb_rb_next(prev);
1682 	if (!skb)
1683 		goto out;
1684 
1685 	if (!skb_can_shift(skb) ||
1686 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1687 	    (mss != tcp_skb_seglen(skb)))
1688 		goto out;
1689 
1690 	if (!tcp_skb_can_collapse(prev, skb))
1691 		goto out;
1692 	len = skb->len;
1693 	pcount = tcp_skb_pcount(skb);
1694 	if (tcp_skb_shift(prev, skb, pcount, len))
1695 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1696 				len, mss, 0);
1697 
1698 out:
1699 	return prev;
1700 
1701 noop:
1702 	return skb;
1703 
1704 fallback:
1705 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1706 	return NULL;
1707 }
1708 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1709 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1710 					struct tcp_sack_block *next_dup,
1711 					struct tcp_sacktag_state *state,
1712 					u32 start_seq, u32 end_seq,
1713 					bool dup_sack_in)
1714 {
1715 	struct tcp_sock *tp = tcp_sk(sk);
1716 	struct sk_buff *tmp;
1717 
1718 	skb_rbtree_walk_from(skb) {
1719 		int in_sack = 0;
1720 		bool dup_sack = dup_sack_in;
1721 
1722 		/* queue is in-order => we can short-circuit the walk early */
1723 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1724 			break;
1725 
1726 		if (next_dup  &&
1727 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1728 			in_sack = tcp_match_skb_to_sack(sk, skb,
1729 							next_dup->start_seq,
1730 							next_dup->end_seq);
1731 			if (in_sack > 0)
1732 				dup_sack = true;
1733 		}
1734 
1735 		/* skb reference here is a bit tricky to get right, since
1736 		 * shifting can eat and free both this skb and the next,
1737 		 * so not even _safe variant of the loop is enough.
1738 		 */
1739 		if (in_sack <= 0) {
1740 			tmp = tcp_shift_skb_data(sk, skb, state,
1741 						 start_seq, end_seq, dup_sack);
1742 			if (tmp) {
1743 				if (tmp != skb) {
1744 					skb = tmp;
1745 					continue;
1746 				}
1747 
1748 				in_sack = 0;
1749 			} else {
1750 				in_sack = tcp_match_skb_to_sack(sk, skb,
1751 								start_seq,
1752 								end_seq);
1753 			}
1754 		}
1755 
1756 		if (unlikely(in_sack < 0))
1757 			break;
1758 
1759 		if (in_sack) {
1760 			TCP_SKB_CB(skb)->sacked =
1761 				tcp_sacktag_one(sk,
1762 						state,
1763 						TCP_SKB_CB(skb)->sacked,
1764 						TCP_SKB_CB(skb)->seq,
1765 						TCP_SKB_CB(skb)->end_seq,
1766 						dup_sack,
1767 						tcp_skb_pcount(skb),
1768 						tcp_skb_timestamp_us(skb));
1769 			tcp_rate_skb_delivered(sk, skb, state->rate);
1770 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1771 				list_del_init(&skb->tcp_tsorted_anchor);
1772 
1773 			if (!before(TCP_SKB_CB(skb)->seq,
1774 				    tcp_highest_sack_seq(tp)))
1775 				tcp_advance_highest_sack(sk, skb);
1776 		}
1777 	}
1778 	return skb;
1779 }
1780 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1781 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1782 {
1783 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1784 	struct sk_buff *skb;
1785 
1786 	while (*p) {
1787 		parent = *p;
1788 		skb = rb_to_skb(parent);
1789 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1790 			p = &parent->rb_left;
1791 			continue;
1792 		}
1793 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1794 			p = &parent->rb_right;
1795 			continue;
1796 		}
1797 		return skb;
1798 	}
1799 	return NULL;
1800 }
1801 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1802 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1803 					u32 skip_to_seq)
1804 {
1805 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1806 		return skb;
1807 
1808 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1809 }
1810 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1811 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1812 						struct sock *sk,
1813 						struct tcp_sack_block *next_dup,
1814 						struct tcp_sacktag_state *state,
1815 						u32 skip_to_seq)
1816 {
1817 	if (!next_dup)
1818 		return skb;
1819 
1820 	if (before(next_dup->start_seq, skip_to_seq)) {
1821 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1822 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1823 				       next_dup->start_seq, next_dup->end_seq,
1824 				       1);
1825 	}
1826 
1827 	return skb;
1828 }
1829 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1830 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1831 {
1832 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1833 }
1834 
1835 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1836 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1837 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1838 {
1839 	struct tcp_sock *tp = tcp_sk(sk);
1840 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1841 				    TCP_SKB_CB(ack_skb)->sacked);
1842 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1843 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1844 	struct tcp_sack_block *cache;
1845 	struct sk_buff *skb;
1846 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1847 	int used_sacks;
1848 	bool found_dup_sack = false;
1849 	int i, j;
1850 	int first_sack_index;
1851 
1852 	state->flag = 0;
1853 	state->reord = tp->snd_nxt;
1854 
1855 	if (!tp->sacked_out)
1856 		tcp_highest_sack_reset(sk);
1857 
1858 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1859 					 num_sacks, prior_snd_una, state);
1860 
1861 	/* Eliminate too old ACKs, but take into
1862 	 * account more or less fresh ones, they can
1863 	 * contain valid SACK info.
1864 	 */
1865 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1866 		return 0;
1867 
1868 	if (!tp->packets_out)
1869 		goto out;
1870 
1871 	used_sacks = 0;
1872 	first_sack_index = 0;
1873 	for (i = 0; i < num_sacks; i++) {
1874 		bool dup_sack = !i && found_dup_sack;
1875 
1876 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1877 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1878 
1879 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1880 					    sp[used_sacks].start_seq,
1881 					    sp[used_sacks].end_seq)) {
1882 			int mib_idx;
1883 
1884 			if (dup_sack) {
1885 				if (!tp->undo_marker)
1886 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1887 				else
1888 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1889 			} else {
1890 				/* Don't count olds caused by ACK reordering */
1891 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1892 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1893 					continue;
1894 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1895 			}
1896 
1897 			NET_INC_STATS(sock_net(sk), mib_idx);
1898 			if (i == 0)
1899 				first_sack_index = -1;
1900 			continue;
1901 		}
1902 
1903 		/* Ignore very old stuff early */
1904 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1905 			if (i == 0)
1906 				first_sack_index = -1;
1907 			continue;
1908 		}
1909 
1910 		used_sacks++;
1911 	}
1912 
1913 	/* order SACK blocks to allow in order walk of the retrans queue */
1914 	for (i = used_sacks - 1; i > 0; i--) {
1915 		for (j = 0; j < i; j++) {
1916 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1917 				swap(sp[j], sp[j + 1]);
1918 
1919 				/* Track where the first SACK block goes to */
1920 				if (j == first_sack_index)
1921 					first_sack_index = j + 1;
1922 			}
1923 		}
1924 	}
1925 
1926 	state->mss_now = tcp_current_mss(sk);
1927 	skb = NULL;
1928 	i = 0;
1929 
1930 	if (!tp->sacked_out) {
1931 		/* It's already past, so skip checking against it */
1932 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1933 	} else {
1934 		cache = tp->recv_sack_cache;
1935 		/* Skip empty blocks in at head of the cache */
1936 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1937 		       !cache->end_seq)
1938 			cache++;
1939 	}
1940 
1941 	while (i < used_sacks) {
1942 		u32 start_seq = sp[i].start_seq;
1943 		u32 end_seq = sp[i].end_seq;
1944 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1945 		struct tcp_sack_block *next_dup = NULL;
1946 
1947 		if (found_dup_sack && ((i + 1) == first_sack_index))
1948 			next_dup = &sp[i + 1];
1949 
1950 		/* Skip too early cached blocks */
1951 		while (tcp_sack_cache_ok(tp, cache) &&
1952 		       !before(start_seq, cache->end_seq))
1953 			cache++;
1954 
1955 		/* Can skip some work by looking recv_sack_cache? */
1956 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1957 		    after(end_seq, cache->start_seq)) {
1958 
1959 			/* Head todo? */
1960 			if (before(start_seq, cache->start_seq)) {
1961 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1962 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1963 						       state,
1964 						       start_seq,
1965 						       cache->start_seq,
1966 						       dup_sack);
1967 			}
1968 
1969 			/* Rest of the block already fully processed? */
1970 			if (!after(end_seq, cache->end_seq))
1971 				goto advance_sp;
1972 
1973 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1974 						       state,
1975 						       cache->end_seq);
1976 
1977 			/* ...tail remains todo... */
1978 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1979 				/* ...but better entrypoint exists! */
1980 				skb = tcp_highest_sack(sk);
1981 				if (!skb)
1982 					break;
1983 				cache++;
1984 				goto walk;
1985 			}
1986 
1987 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1988 			/* Check overlap against next cached too (past this one already) */
1989 			cache++;
1990 			continue;
1991 		}
1992 
1993 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1994 			skb = tcp_highest_sack(sk);
1995 			if (!skb)
1996 				break;
1997 		}
1998 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1999 
2000 walk:
2001 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2002 				       start_seq, end_seq, dup_sack);
2003 
2004 advance_sp:
2005 		i++;
2006 	}
2007 
2008 	/* Clear the head of the cache sack blocks so we can skip it next time */
2009 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2010 		tp->recv_sack_cache[i].start_seq = 0;
2011 		tp->recv_sack_cache[i].end_seq = 0;
2012 	}
2013 	for (j = 0; j < used_sacks; j++)
2014 		tp->recv_sack_cache[i++] = sp[j];
2015 
2016 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2017 		tcp_check_sack_reordering(sk, state->reord, 0);
2018 
2019 	tcp_verify_left_out(tp);
2020 out:
2021 
2022 #if FASTRETRANS_DEBUG > 0
2023 	WARN_ON((int)tp->sacked_out < 0);
2024 	WARN_ON((int)tp->lost_out < 0);
2025 	WARN_ON((int)tp->retrans_out < 0);
2026 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2027 #endif
2028 	return state->flag;
2029 }
2030 
2031 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2032  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2033  */
tcp_limit_reno_sacked(struct tcp_sock * tp)2034 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2035 {
2036 	u32 holes;
2037 
2038 	holes = max(tp->lost_out, 1U);
2039 	holes = min(holes, tp->packets_out);
2040 
2041 	if ((tp->sacked_out + holes) > tp->packets_out) {
2042 		tp->sacked_out = tp->packets_out - holes;
2043 		return true;
2044 	}
2045 	return false;
2046 }
2047 
2048 /* If we receive more dupacks than we expected counting segments
2049  * in assumption of absent reordering, interpret this as reordering.
2050  * The only another reason could be bug in receiver TCP.
2051  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2052 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2053 {
2054 	struct tcp_sock *tp = tcp_sk(sk);
2055 
2056 	if (!tcp_limit_reno_sacked(tp))
2057 		return;
2058 
2059 	tp->reordering = min_t(u32, tp->packets_out + addend,
2060 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2061 	tp->reord_seen++;
2062 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2063 }
2064 
2065 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2066 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2067 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2068 {
2069 	if (num_dupack) {
2070 		struct tcp_sock *tp = tcp_sk(sk);
2071 		u32 prior_sacked = tp->sacked_out;
2072 		s32 delivered;
2073 
2074 		tp->sacked_out += num_dupack;
2075 		tcp_check_reno_reordering(sk, 0);
2076 		delivered = tp->sacked_out - prior_sacked;
2077 		if (delivered > 0)
2078 			tcp_count_delivered(tp, delivered, ece_ack);
2079 		tcp_verify_left_out(tp);
2080 	}
2081 }
2082 
2083 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2084 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2085 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2086 {
2087 	struct tcp_sock *tp = tcp_sk(sk);
2088 
2089 	if (acked > 0) {
2090 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2091 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2092 				    ece_ack);
2093 		if (acked - 1 >= tp->sacked_out)
2094 			tp->sacked_out = 0;
2095 		else
2096 			tp->sacked_out -= acked - 1;
2097 	}
2098 	tcp_check_reno_reordering(sk, acked);
2099 	tcp_verify_left_out(tp);
2100 }
2101 
tcp_reset_reno_sack(struct tcp_sock * tp)2102 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2103 {
2104 	tp->sacked_out = 0;
2105 }
2106 
tcp_clear_retrans(struct tcp_sock * tp)2107 void tcp_clear_retrans(struct tcp_sock *tp)
2108 {
2109 	tp->retrans_out = 0;
2110 	tp->lost_out = 0;
2111 	tp->undo_marker = 0;
2112 	tp->undo_retrans = -1;
2113 	tp->sacked_out = 0;
2114 }
2115 
tcp_init_undo(struct tcp_sock * tp)2116 static inline void tcp_init_undo(struct tcp_sock *tp)
2117 {
2118 	tp->undo_marker = tp->snd_una;
2119 
2120 	/* Retransmission still in flight may cause DSACKs later. */
2121 	/* First, account for regular retransmits in flight: */
2122 	tp->undo_retrans = tp->retrans_out;
2123 	/* Next, account for TLP retransmits in flight: */
2124 	if (tp->tlp_high_seq && tp->tlp_retrans)
2125 		tp->undo_retrans++;
2126 	/* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2127 	if (!tp->undo_retrans)
2128 		tp->undo_retrans = -1;
2129 }
2130 
tcp_is_rack(const struct sock * sk)2131 static bool tcp_is_rack(const struct sock *sk)
2132 {
2133 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2134 		TCP_RACK_LOSS_DETECTION;
2135 }
2136 
2137 /* If we detect SACK reneging, forget all SACK information
2138  * and reset tags completely, otherwise preserve SACKs. If receiver
2139  * dropped its ofo queue, we will know this due to reneging detection.
2140  */
tcp_timeout_mark_lost(struct sock * sk)2141 static void tcp_timeout_mark_lost(struct sock *sk)
2142 {
2143 	struct tcp_sock *tp = tcp_sk(sk);
2144 	struct sk_buff *skb, *head;
2145 	bool is_reneg;			/* is receiver reneging on SACKs? */
2146 
2147 	head = tcp_rtx_queue_head(sk);
2148 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2149 	if (is_reneg) {
2150 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2151 		tp->sacked_out = 0;
2152 		/* Mark SACK reneging until we recover from this loss event. */
2153 		tp->is_sack_reneg = 1;
2154 	} else if (tcp_is_reno(tp)) {
2155 		tcp_reset_reno_sack(tp);
2156 	}
2157 
2158 	skb = head;
2159 	skb_rbtree_walk_from(skb) {
2160 		if (is_reneg)
2161 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2162 		else if (tcp_is_rack(sk) && skb != head &&
2163 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2164 			continue; /* Don't mark recently sent ones lost yet */
2165 		tcp_mark_skb_lost(sk, skb);
2166 	}
2167 	tcp_verify_left_out(tp);
2168 	tcp_clear_all_retrans_hints(tp);
2169 }
2170 
2171 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2172 void tcp_enter_loss(struct sock *sk)
2173 {
2174 	const struct inet_connection_sock *icsk = inet_csk(sk);
2175 	struct tcp_sock *tp = tcp_sk(sk);
2176 	struct net *net = sock_net(sk);
2177 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2178 	u8 reordering;
2179 
2180 	tcp_timeout_mark_lost(sk);
2181 
2182 	/* Reduce ssthresh if it has not yet been made inside this window. */
2183 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2184 	    !after(tp->high_seq, tp->snd_una) ||
2185 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2186 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2187 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2188 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2189 		tcp_ca_event(sk, CA_EVENT_LOSS);
2190 		tcp_init_undo(tp);
2191 	}
2192 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2193 	tp->snd_cwnd_cnt   = 0;
2194 	tp->snd_cwnd_stamp = tcp_jiffies32;
2195 
2196 	/* Timeout in disordered state after receiving substantial DUPACKs
2197 	 * suggests that the degree of reordering is over-estimated.
2198 	 */
2199 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2200 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2201 	    tp->sacked_out >= reordering)
2202 		tp->reordering = min_t(unsigned int, tp->reordering,
2203 				       reordering);
2204 
2205 	tcp_set_ca_state(sk, TCP_CA_Loss);
2206 	tp->high_seq = tp->snd_nxt;
2207 	tp->tlp_high_seq = 0;
2208 	tcp_ecn_queue_cwr(tp);
2209 
2210 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2211 	 * loss recovery is underway except recurring timeout(s) on
2212 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2213 	 */
2214 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2215 		   (new_recovery || icsk->icsk_retransmits) &&
2216 		   !inet_csk(sk)->icsk_mtup.probe_size;
2217 }
2218 
2219 /* If ACK arrived pointing to a remembered SACK, it means that our
2220  * remembered SACKs do not reflect real state of receiver i.e.
2221  * receiver _host_ is heavily congested (or buggy).
2222  *
2223  * To avoid big spurious retransmission bursts due to transient SACK
2224  * scoreboard oddities that look like reneging, we give the receiver a
2225  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2226  * restore sanity to the SACK scoreboard. If the apparent reneging
2227  * persists until this RTO then we'll clear the SACK scoreboard.
2228  */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2229 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2230 {
2231 	if (*ack_flag & FLAG_SACK_RENEGING &&
2232 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2233 		struct tcp_sock *tp = tcp_sk(sk);
2234 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2235 					  msecs_to_jiffies(10));
2236 
2237 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2238 					  delay, TCP_RTO_MAX);
2239 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2240 		return true;
2241 	}
2242 	return false;
2243 }
2244 
2245 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2246  * counter when SACK is enabled (without SACK, sacked_out is used for
2247  * that purpose).
2248  *
2249  * With reordering, holes may still be in flight, so RFC3517 recovery
2250  * uses pure sacked_out (total number of SACKed segments) even though
2251  * it violates the RFC that uses duplicate ACKs, often these are equal
2252  * but when e.g. out-of-window ACKs or packet duplication occurs,
2253  * they differ. Since neither occurs due to loss, TCP should really
2254  * ignore them.
2255  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2256 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2257 {
2258 	return tp->sacked_out + 1;
2259 }
2260 
2261 /* Linux NewReno/SACK/ECN state machine.
2262  * --------------------------------------
2263  *
2264  * "Open"	Normal state, no dubious events, fast path.
2265  * "Disorder"   In all the respects it is "Open",
2266  *		but requires a bit more attention. It is entered when
2267  *		we see some SACKs or dupacks. It is split of "Open"
2268  *		mainly to move some processing from fast path to slow one.
2269  * "CWR"	CWND was reduced due to some Congestion Notification event.
2270  *		It can be ECN, ICMP source quench, local device congestion.
2271  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2272  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2273  *
2274  * tcp_fastretrans_alert() is entered:
2275  * - each incoming ACK, if state is not "Open"
2276  * - when arrived ACK is unusual, namely:
2277  *	* SACK
2278  *	* Duplicate ACK.
2279  *	* ECN ECE.
2280  *
2281  * Counting packets in flight is pretty simple.
2282  *
2283  *	in_flight = packets_out - left_out + retrans_out
2284  *
2285  *	packets_out is SND.NXT-SND.UNA counted in packets.
2286  *
2287  *	retrans_out is number of retransmitted segments.
2288  *
2289  *	left_out is number of segments left network, but not ACKed yet.
2290  *
2291  *		left_out = sacked_out + lost_out
2292  *
2293  *     sacked_out: Packets, which arrived to receiver out of order
2294  *		   and hence not ACKed. With SACKs this number is simply
2295  *		   amount of SACKed data. Even without SACKs
2296  *		   it is easy to give pretty reliable estimate of this number,
2297  *		   counting duplicate ACKs.
2298  *
2299  *       lost_out: Packets lost by network. TCP has no explicit
2300  *		   "loss notification" feedback from network (for now).
2301  *		   It means that this number can be only _guessed_.
2302  *		   Actually, it is the heuristics to predict lossage that
2303  *		   distinguishes different algorithms.
2304  *
2305  *	F.e. after RTO, when all the queue is considered as lost,
2306  *	lost_out = packets_out and in_flight = retrans_out.
2307  *
2308  *		Essentially, we have now a few algorithms detecting
2309  *		lost packets.
2310  *
2311  *		If the receiver supports SACK:
2312  *
2313  *		RFC6675/3517: It is the conventional algorithm. A packet is
2314  *		considered lost if the number of higher sequence packets
2315  *		SACKed is greater than or equal the DUPACK thoreshold
2316  *		(reordering). This is implemented in tcp_mark_head_lost and
2317  *		tcp_update_scoreboard.
2318  *
2319  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2320  *		(2017-) that checks timing instead of counting DUPACKs.
2321  *		Essentially a packet is considered lost if it's not S/ACKed
2322  *		after RTT + reordering_window, where both metrics are
2323  *		dynamically measured and adjusted. This is implemented in
2324  *		tcp_rack_mark_lost.
2325  *
2326  *		If the receiver does not support SACK:
2327  *
2328  *		NewReno (RFC6582): in Recovery we assume that one segment
2329  *		is lost (classic Reno). While we are in Recovery and
2330  *		a partial ACK arrives, we assume that one more packet
2331  *		is lost (NewReno). This heuristics are the same in NewReno
2332  *		and SACK.
2333  *
2334  * Really tricky (and requiring careful tuning) part of algorithm
2335  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2336  * The first determines the moment _when_ we should reduce CWND and,
2337  * hence, slow down forward transmission. In fact, it determines the moment
2338  * when we decide that hole is caused by loss, rather than by a reorder.
2339  *
2340  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2341  * holes, caused by lost packets.
2342  *
2343  * And the most logically complicated part of algorithm is undo
2344  * heuristics. We detect false retransmits due to both too early
2345  * fast retransmit (reordering) and underestimated RTO, analyzing
2346  * timestamps and D-SACKs. When we detect that some segments were
2347  * retransmitted by mistake and CWND reduction was wrong, we undo
2348  * window reduction and abort recovery phase. This logic is hidden
2349  * inside several functions named tcp_try_undo_<something>.
2350  */
2351 
2352 /* This function decides, when we should leave Disordered state
2353  * and enter Recovery phase, reducing congestion window.
2354  *
2355  * Main question: may we further continue forward transmission
2356  * with the same cwnd?
2357  */
tcp_time_to_recover(struct sock * sk,int flag)2358 static bool tcp_time_to_recover(struct sock *sk, int flag)
2359 {
2360 	struct tcp_sock *tp = tcp_sk(sk);
2361 
2362 	/* Trick#1: The loss is proven. */
2363 	if (tp->lost_out)
2364 		return true;
2365 
2366 	/* Not-A-Trick#2 : Classic rule... */
2367 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2368 		return true;
2369 
2370 	return false;
2371 }
2372 
2373 /* Detect loss in event "A" above by marking head of queue up as lost.
2374  * For RFC3517 SACK, a segment is considered lost if it
2375  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2376  * the maximum SACKed segments to pass before reaching this limit.
2377  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2378 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2379 {
2380 	struct tcp_sock *tp = tcp_sk(sk);
2381 	struct sk_buff *skb;
2382 	int cnt;
2383 	/* Use SACK to deduce losses of new sequences sent during recovery */
2384 	const u32 loss_high = tp->snd_nxt;
2385 
2386 	WARN_ON(packets > tp->packets_out);
2387 	skb = tp->lost_skb_hint;
2388 	if (skb) {
2389 		/* Head already handled? */
2390 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2391 			return;
2392 		cnt = tp->lost_cnt_hint;
2393 	} else {
2394 		skb = tcp_rtx_queue_head(sk);
2395 		cnt = 0;
2396 	}
2397 
2398 	skb_rbtree_walk_from(skb) {
2399 		/* TODO: do this better */
2400 		/* this is not the most efficient way to do this... */
2401 		tp->lost_skb_hint = skb;
2402 		tp->lost_cnt_hint = cnt;
2403 
2404 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2405 			break;
2406 
2407 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2408 			cnt += tcp_skb_pcount(skb);
2409 
2410 		if (cnt > packets)
2411 			break;
2412 
2413 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2414 			tcp_mark_skb_lost(sk, skb);
2415 
2416 		if (mark_head)
2417 			break;
2418 	}
2419 	tcp_verify_left_out(tp);
2420 }
2421 
2422 /* Account newly detected lost packet(s) */
2423 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2424 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2425 {
2426 	struct tcp_sock *tp = tcp_sk(sk);
2427 
2428 	if (tcp_is_sack(tp)) {
2429 		int sacked_upto = tp->sacked_out - tp->reordering;
2430 		if (sacked_upto >= 0)
2431 			tcp_mark_head_lost(sk, sacked_upto, 0);
2432 		else if (fast_rexmit)
2433 			tcp_mark_head_lost(sk, 1, 1);
2434 	}
2435 }
2436 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2437 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2438 {
2439 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2440 	       before(tp->rx_opt.rcv_tsecr, when);
2441 }
2442 
2443 /* skb is spurious retransmitted if the returned timestamp echo
2444  * reply is prior to the skb transmission time
2445  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2446 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2447 				     const struct sk_buff *skb)
2448 {
2449 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2450 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2451 }
2452 
2453 /* Nothing was retransmitted or returned timestamp is less
2454  * than timestamp of the first retransmission.
2455  */
tcp_packet_delayed(const struct tcp_sock * tp)2456 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2457 {
2458 	return tp->retrans_stamp &&
2459 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2460 }
2461 
2462 /* Undo procedures. */
2463 
2464 /* We can clear retrans_stamp when there are no retransmissions in the
2465  * window. It would seem that it is trivially available for us in
2466  * tp->retrans_out, however, that kind of assumptions doesn't consider
2467  * what will happen if errors occur when sending retransmission for the
2468  * second time. ...It could the that such segment has only
2469  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2470  * the head skb is enough except for some reneging corner cases that
2471  * are not worth the effort.
2472  *
2473  * Main reason for all this complexity is the fact that connection dying
2474  * time now depends on the validity of the retrans_stamp, in particular,
2475  * that successive retransmissions of a segment must not advance
2476  * retrans_stamp under any conditions.
2477  */
tcp_any_retrans_done(const struct sock * sk)2478 static bool tcp_any_retrans_done(const struct sock *sk)
2479 {
2480 	const struct tcp_sock *tp = tcp_sk(sk);
2481 	struct sk_buff *skb;
2482 
2483 	if (tp->retrans_out)
2484 		return true;
2485 
2486 	skb = tcp_rtx_queue_head(sk);
2487 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2488 		return true;
2489 
2490 	return false;
2491 }
2492 
DBGUNDO(struct sock * sk,const char * msg)2493 static void DBGUNDO(struct sock *sk, const char *msg)
2494 {
2495 #if FASTRETRANS_DEBUG > 1
2496 	struct tcp_sock *tp = tcp_sk(sk);
2497 	struct inet_sock *inet = inet_sk(sk);
2498 
2499 	if (sk->sk_family == AF_INET) {
2500 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2501 			 msg,
2502 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2503 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2504 			 tp->snd_ssthresh, tp->prior_ssthresh,
2505 			 tp->packets_out);
2506 	}
2507 #if IS_ENABLED(CONFIG_IPV6)
2508 	else if (sk->sk_family == AF_INET6) {
2509 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2510 			 msg,
2511 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2512 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2513 			 tp->snd_ssthresh, tp->prior_ssthresh,
2514 			 tp->packets_out);
2515 	}
2516 #endif
2517 #endif
2518 }
2519 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2520 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2521 {
2522 	struct tcp_sock *tp = tcp_sk(sk);
2523 
2524 	if (unmark_loss) {
2525 		struct sk_buff *skb;
2526 
2527 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2528 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2529 		}
2530 		tp->lost_out = 0;
2531 		tcp_clear_all_retrans_hints(tp);
2532 	}
2533 
2534 	if (tp->prior_ssthresh) {
2535 		const struct inet_connection_sock *icsk = inet_csk(sk);
2536 
2537 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2538 
2539 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2540 			tp->snd_ssthresh = tp->prior_ssthresh;
2541 			tcp_ecn_withdraw_cwr(tp);
2542 		}
2543 	}
2544 	tp->snd_cwnd_stamp = tcp_jiffies32;
2545 	tp->undo_marker = 0;
2546 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2547 }
2548 
tcp_may_undo(const struct tcp_sock * tp)2549 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2550 {
2551 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2552 }
2553 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2554 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2555 {
2556 	struct tcp_sock *tp = tcp_sk(sk);
2557 
2558 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2559 		/* Hold old state until something *above* high_seq
2560 		 * is ACKed. For Reno it is MUST to prevent false
2561 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2562 		if (!tcp_any_retrans_done(sk))
2563 			tp->retrans_stamp = 0;
2564 		return true;
2565 	}
2566 	return false;
2567 }
2568 
2569 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2570 static bool tcp_try_undo_recovery(struct sock *sk)
2571 {
2572 	struct tcp_sock *tp = tcp_sk(sk);
2573 
2574 	if (tcp_may_undo(tp)) {
2575 		int mib_idx;
2576 
2577 		/* Happy end! We did not retransmit anything
2578 		 * or our original transmission succeeded.
2579 		 */
2580 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2581 		tcp_undo_cwnd_reduction(sk, false);
2582 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2583 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2584 		else
2585 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2586 
2587 		NET_INC_STATS(sock_net(sk), mib_idx);
2588 	} else if (tp->rack.reo_wnd_persist) {
2589 		tp->rack.reo_wnd_persist--;
2590 	}
2591 	if (tcp_is_non_sack_preventing_reopen(sk))
2592 		return true;
2593 	tcp_set_ca_state(sk, TCP_CA_Open);
2594 	tp->is_sack_reneg = 0;
2595 	return false;
2596 }
2597 
2598 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2599 static bool tcp_try_undo_dsack(struct sock *sk)
2600 {
2601 	struct tcp_sock *tp = tcp_sk(sk);
2602 
2603 	if (tp->undo_marker && !tp->undo_retrans) {
2604 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2605 					       tp->rack.reo_wnd_persist + 1);
2606 		DBGUNDO(sk, "D-SACK");
2607 		tcp_undo_cwnd_reduction(sk, false);
2608 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2609 		return true;
2610 	}
2611 	return false;
2612 }
2613 
2614 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2615 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2616 {
2617 	struct tcp_sock *tp = tcp_sk(sk);
2618 
2619 	if (frto_undo || tcp_may_undo(tp)) {
2620 		tcp_undo_cwnd_reduction(sk, true);
2621 
2622 		DBGUNDO(sk, "partial loss");
2623 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2624 		if (frto_undo)
2625 			NET_INC_STATS(sock_net(sk),
2626 					LINUX_MIB_TCPSPURIOUSRTOS);
2627 		inet_csk(sk)->icsk_retransmits = 0;
2628 		if (tcp_is_non_sack_preventing_reopen(sk))
2629 			return true;
2630 		if (frto_undo || tcp_is_sack(tp)) {
2631 			tcp_set_ca_state(sk, TCP_CA_Open);
2632 			tp->is_sack_reneg = 0;
2633 		}
2634 		return true;
2635 	}
2636 	return false;
2637 }
2638 
2639 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2640  * It computes the number of packets to send (sndcnt) based on packets newly
2641  * delivered:
2642  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2643  *	cwnd reductions across a full RTT.
2644  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2645  *      But when SND_UNA is acked without further losses,
2646  *      slow starts cwnd up to ssthresh to speed up the recovery.
2647  */
tcp_init_cwnd_reduction(struct sock * sk)2648 static void tcp_init_cwnd_reduction(struct sock *sk)
2649 {
2650 	struct tcp_sock *tp = tcp_sk(sk);
2651 
2652 	tp->high_seq = tp->snd_nxt;
2653 	tp->tlp_high_seq = 0;
2654 	tp->snd_cwnd_cnt = 0;
2655 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2656 	tp->prr_delivered = 0;
2657 	tp->prr_out = 0;
2658 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2659 	tcp_ecn_queue_cwr(tp);
2660 }
2661 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2662 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2663 {
2664 	struct tcp_sock *tp = tcp_sk(sk);
2665 	int sndcnt = 0;
2666 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2667 
2668 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2669 		return;
2670 
2671 	tp->prr_delivered += newly_acked_sacked;
2672 	if (delta < 0) {
2673 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2674 			       tp->prior_cwnd - 1;
2675 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2676 	} else {
2677 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2678 			       newly_acked_sacked);
2679 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2680 			sndcnt++;
2681 		sndcnt = min(delta, sndcnt);
2682 	}
2683 	/* Force a fast retransmit upon entering fast recovery */
2684 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2685 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2686 }
2687 
tcp_end_cwnd_reduction(struct sock * sk)2688 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2689 {
2690 	struct tcp_sock *tp = tcp_sk(sk);
2691 
2692 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2693 		return;
2694 
2695 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2696 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2697 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2698 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2699 		tp->snd_cwnd_stamp = tcp_jiffies32;
2700 	}
2701 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2702 }
2703 
2704 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2705 void tcp_enter_cwr(struct sock *sk)
2706 {
2707 	struct tcp_sock *tp = tcp_sk(sk);
2708 
2709 	tp->prior_ssthresh = 0;
2710 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2711 		tp->undo_marker = 0;
2712 		tcp_init_cwnd_reduction(sk);
2713 		tcp_set_ca_state(sk, TCP_CA_CWR);
2714 	}
2715 }
2716 EXPORT_SYMBOL(tcp_enter_cwr);
2717 
tcp_try_keep_open(struct sock * sk)2718 static void tcp_try_keep_open(struct sock *sk)
2719 {
2720 	struct tcp_sock *tp = tcp_sk(sk);
2721 	int state = TCP_CA_Open;
2722 
2723 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2724 		state = TCP_CA_Disorder;
2725 
2726 	if (inet_csk(sk)->icsk_ca_state != state) {
2727 		tcp_set_ca_state(sk, state);
2728 		tp->high_seq = tp->snd_nxt;
2729 	}
2730 }
2731 
tcp_try_to_open(struct sock * sk,int flag)2732 static void tcp_try_to_open(struct sock *sk, int flag)
2733 {
2734 	struct tcp_sock *tp = tcp_sk(sk);
2735 
2736 	tcp_verify_left_out(tp);
2737 
2738 	if (!tcp_any_retrans_done(sk))
2739 		tp->retrans_stamp = 0;
2740 
2741 	if (flag & FLAG_ECE)
2742 		tcp_enter_cwr(sk);
2743 
2744 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2745 		tcp_try_keep_open(sk);
2746 	}
2747 }
2748 
tcp_mtup_probe_failed(struct sock * sk)2749 static void tcp_mtup_probe_failed(struct sock *sk)
2750 {
2751 	struct inet_connection_sock *icsk = inet_csk(sk);
2752 
2753 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2754 	icsk->icsk_mtup.probe_size = 0;
2755 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2756 }
2757 
tcp_mtup_probe_success(struct sock * sk)2758 static void tcp_mtup_probe_success(struct sock *sk)
2759 {
2760 	struct tcp_sock *tp = tcp_sk(sk);
2761 	struct inet_connection_sock *icsk = inet_csk(sk);
2762 	u64 val;
2763 
2764 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2765 
2766 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2767 	do_div(val, icsk->icsk_mtup.probe_size);
2768 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2769 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2770 
2771 	tp->snd_cwnd_cnt = 0;
2772 	tp->snd_cwnd_stamp = tcp_jiffies32;
2773 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2774 
2775 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2776 	icsk->icsk_mtup.probe_size = 0;
2777 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2778 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2779 }
2780 
2781 /* Sometimes we deduce that packets have been dropped due to reasons other than
2782  * congestion, like path MTU reductions or failed client TFO attempts. In these
2783  * cases we call this function to retransmit as many packets as cwnd allows,
2784  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2785  * non-zero value (and may do so in a later calling context due to TSQ), we
2786  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2787  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2788  * are using the correct retrans_stamp and don't declare ETIMEDOUT
2789  * prematurely).
2790  */
tcp_non_congestion_loss_retransmit(struct sock * sk)2791 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2792 {
2793 	const struct inet_connection_sock *icsk = inet_csk(sk);
2794 	struct tcp_sock *tp = tcp_sk(sk);
2795 
2796 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2797 		tp->high_seq = tp->snd_nxt;
2798 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2799 		tp->prior_ssthresh = 0;
2800 		tp->undo_marker = 0;
2801 		tcp_set_ca_state(sk, TCP_CA_Loss);
2802 	}
2803 	tcp_xmit_retransmit_queue(sk);
2804 }
2805 
2806 /* Do a simple retransmit without using the backoff mechanisms in
2807  * tcp_timer. This is used for path mtu discovery.
2808  * The socket is already locked here.
2809  */
tcp_simple_retransmit(struct sock * sk)2810 void tcp_simple_retransmit(struct sock *sk)
2811 {
2812 	struct tcp_sock *tp = tcp_sk(sk);
2813 	struct sk_buff *skb;
2814 	int mss;
2815 
2816 	/* A fastopen SYN request is stored as two separate packets within
2817 	 * the retransmit queue, this is done by tcp_send_syn_data().
2818 	 * As a result simply checking the MSS of the frames in the queue
2819 	 * will not work for the SYN packet.
2820 	 *
2821 	 * Us being here is an indication of a path MTU issue so we can
2822 	 * assume that the fastopen SYN was lost and just mark all the
2823 	 * frames in the retransmit queue as lost. We will use an MSS of
2824 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2825 	 */
2826 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2827 		mss = -1;
2828 	else
2829 		mss = tcp_current_mss(sk);
2830 
2831 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2832 		if (tcp_skb_seglen(skb) > mss)
2833 			tcp_mark_skb_lost(sk, skb);
2834 	}
2835 
2836 	tcp_clear_retrans_hints_partial(tp);
2837 
2838 	if (!tp->lost_out)
2839 		return;
2840 
2841 	if (tcp_is_reno(tp))
2842 		tcp_limit_reno_sacked(tp);
2843 
2844 	tcp_verify_left_out(tp);
2845 
2846 	/* Don't muck with the congestion window here.
2847 	 * Reason is that we do not increase amount of _data_
2848 	 * in network, but units changed and effective
2849 	 * cwnd/ssthresh really reduced now.
2850 	 */
2851 	tcp_non_congestion_loss_retransmit(sk);
2852 }
2853 EXPORT_SYMBOL(tcp_simple_retransmit);
2854 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2855 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2856 {
2857 	struct tcp_sock *tp = tcp_sk(sk);
2858 	int mib_idx;
2859 
2860 	if (tcp_is_reno(tp))
2861 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2862 	else
2863 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2864 
2865 	NET_INC_STATS(sock_net(sk), mib_idx);
2866 
2867 	tp->prior_ssthresh = 0;
2868 	tcp_init_undo(tp);
2869 
2870 	if (!tcp_in_cwnd_reduction(sk)) {
2871 		if (!ece_ack)
2872 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2873 		tcp_init_cwnd_reduction(sk);
2874 	}
2875 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2876 }
2877 
2878 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2879  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2880  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2881 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2882 			     int *rexmit)
2883 {
2884 	struct tcp_sock *tp = tcp_sk(sk);
2885 	bool recovered = !before(tp->snd_una, tp->high_seq);
2886 
2887 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2888 	    tcp_try_undo_loss(sk, false))
2889 		return;
2890 
2891 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2892 		/* Step 3.b. A timeout is spurious if not all data are
2893 		 * lost, i.e., never-retransmitted data are (s)acked.
2894 		 */
2895 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2896 		    tcp_try_undo_loss(sk, true))
2897 			return;
2898 
2899 		if (after(tp->snd_nxt, tp->high_seq)) {
2900 			if (flag & FLAG_DATA_SACKED || num_dupack)
2901 				tp->frto = 0; /* Step 3.a. loss was real */
2902 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2903 			tp->high_seq = tp->snd_nxt;
2904 			/* Step 2.b. Try send new data (but deferred until cwnd
2905 			 * is updated in tcp_ack()). Otherwise fall back to
2906 			 * the conventional recovery.
2907 			 */
2908 			if (!tcp_write_queue_empty(sk) &&
2909 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2910 				*rexmit = REXMIT_NEW;
2911 				return;
2912 			}
2913 			tp->frto = 0;
2914 		}
2915 	}
2916 
2917 	if (recovered) {
2918 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2919 		tcp_try_undo_recovery(sk);
2920 		return;
2921 	}
2922 	if (tcp_is_reno(tp)) {
2923 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2924 		 * delivered. Lower inflight to clock out (re)transmissions.
2925 		 */
2926 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2927 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2928 		else if (flag & FLAG_SND_UNA_ADVANCED)
2929 			tcp_reset_reno_sack(tp);
2930 	}
2931 	*rexmit = REXMIT_LOST;
2932 }
2933 
tcp_force_fast_retransmit(struct sock * sk)2934 static bool tcp_force_fast_retransmit(struct sock *sk)
2935 {
2936 	struct tcp_sock *tp = tcp_sk(sk);
2937 
2938 	return after(tcp_highest_sack_seq(tp),
2939 		     tp->snd_una + tp->reordering * tp->mss_cache);
2940 }
2941 
2942 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2943 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2944 				 bool *do_lost)
2945 {
2946 	struct tcp_sock *tp = tcp_sk(sk);
2947 
2948 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2949 		/* Plain luck! Hole if filled with delayed
2950 		 * packet, rather than with a retransmit. Check reordering.
2951 		 */
2952 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2953 
2954 		/* We are getting evidence that the reordering degree is higher
2955 		 * than we realized. If there are no retransmits out then we
2956 		 * can undo. Otherwise we clock out new packets but do not
2957 		 * mark more packets lost or retransmit more.
2958 		 */
2959 		if (tp->retrans_out)
2960 			return true;
2961 
2962 		if (!tcp_any_retrans_done(sk))
2963 			tp->retrans_stamp = 0;
2964 
2965 		DBGUNDO(sk, "partial recovery");
2966 		tcp_undo_cwnd_reduction(sk, true);
2967 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2968 		tcp_try_keep_open(sk);
2969 	} else {
2970 		/* Partial ACK arrived. Force fast retransmit. */
2971 		*do_lost = tcp_force_fast_retransmit(sk);
2972 	}
2973 	return false;
2974 }
2975 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2976 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2977 {
2978 	struct tcp_sock *tp = tcp_sk(sk);
2979 
2980 	if (tcp_rtx_queue_empty(sk))
2981 		return;
2982 
2983 	if (unlikely(tcp_is_reno(tp))) {
2984 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2985 	} else if (tcp_is_rack(sk)) {
2986 		u32 prior_retrans = tp->retrans_out;
2987 
2988 		if (tcp_rack_mark_lost(sk))
2989 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2990 		if (prior_retrans > tp->retrans_out)
2991 			*ack_flag |= FLAG_LOST_RETRANS;
2992 	}
2993 }
2994 
2995 /* Process an event, which can update packets-in-flight not trivially.
2996  * Main goal of this function is to calculate new estimate for left_out,
2997  * taking into account both packets sitting in receiver's buffer and
2998  * packets lost by network.
2999  *
3000  * Besides that it updates the congestion state when packet loss or ECN
3001  * is detected. But it does not reduce the cwnd, it is done by the
3002  * congestion control later.
3003  *
3004  * It does _not_ decide what to send, it is made in function
3005  * tcp_xmit_retransmit_queue().
3006  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3007 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3008 				  int num_dupack, int *ack_flag, int *rexmit)
3009 {
3010 	struct inet_connection_sock *icsk = inet_csk(sk);
3011 	struct tcp_sock *tp = tcp_sk(sk);
3012 	int fast_rexmit = 0, flag = *ack_flag;
3013 	bool ece_ack = flag & FLAG_ECE;
3014 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3015 				      tcp_force_fast_retransmit(sk));
3016 
3017 	if (!tp->packets_out && tp->sacked_out)
3018 		tp->sacked_out = 0;
3019 
3020 	/* Now state machine starts.
3021 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3022 	if (ece_ack)
3023 		tp->prior_ssthresh = 0;
3024 
3025 	/* B. In all the states check for reneging SACKs. */
3026 	if (tcp_check_sack_reneging(sk, ack_flag))
3027 		return;
3028 
3029 	/* C. Check consistency of the current state. */
3030 	tcp_verify_left_out(tp);
3031 
3032 	/* D. Check state exit conditions. State can be terminated
3033 	 *    when high_seq is ACKed. */
3034 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3035 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3036 		tp->retrans_stamp = 0;
3037 	} else if (!before(tp->snd_una, tp->high_seq)) {
3038 		switch (icsk->icsk_ca_state) {
3039 		case TCP_CA_CWR:
3040 			/* CWR is to be held something *above* high_seq
3041 			 * is ACKed for CWR bit to reach receiver. */
3042 			if (tp->snd_una != tp->high_seq) {
3043 				tcp_end_cwnd_reduction(sk);
3044 				tcp_set_ca_state(sk, TCP_CA_Open);
3045 			}
3046 			break;
3047 
3048 		case TCP_CA_Recovery:
3049 			if (tcp_is_reno(tp))
3050 				tcp_reset_reno_sack(tp);
3051 			if (tcp_try_undo_recovery(sk))
3052 				return;
3053 			tcp_end_cwnd_reduction(sk);
3054 			break;
3055 		}
3056 	}
3057 
3058 	/* E. Process state. */
3059 	switch (icsk->icsk_ca_state) {
3060 	case TCP_CA_Recovery:
3061 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3062 			if (tcp_is_reno(tp))
3063 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3064 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3065 			return;
3066 
3067 		if (tcp_try_undo_dsack(sk))
3068 			tcp_try_to_open(sk, flag);
3069 
3070 		tcp_identify_packet_loss(sk, ack_flag);
3071 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3072 			if (!tcp_time_to_recover(sk, flag))
3073 				return;
3074 			/* Undo reverts the recovery state. If loss is evident,
3075 			 * starts a new recovery (e.g. reordering then loss);
3076 			 */
3077 			tcp_enter_recovery(sk, ece_ack);
3078 		}
3079 		break;
3080 	case TCP_CA_Loss:
3081 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3082 		tcp_identify_packet_loss(sk, ack_flag);
3083 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3084 		      (*ack_flag & FLAG_LOST_RETRANS)))
3085 			return;
3086 		/* Change state if cwnd is undone or retransmits are lost */
3087 		fallthrough;
3088 	default:
3089 		if (tcp_is_reno(tp)) {
3090 			if (flag & FLAG_SND_UNA_ADVANCED)
3091 				tcp_reset_reno_sack(tp);
3092 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3093 		}
3094 
3095 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3096 			tcp_try_undo_dsack(sk);
3097 
3098 		tcp_identify_packet_loss(sk, ack_flag);
3099 		if (!tcp_time_to_recover(sk, flag)) {
3100 			tcp_try_to_open(sk, flag);
3101 			return;
3102 		}
3103 
3104 		/* MTU probe failure: don't reduce cwnd */
3105 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3106 		    icsk->icsk_mtup.probe_size &&
3107 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3108 			tcp_mtup_probe_failed(sk);
3109 			/* Restores the reduction we did in tcp_mtup_probe() */
3110 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3111 			tcp_simple_retransmit(sk);
3112 			return;
3113 		}
3114 
3115 		/* Otherwise enter Recovery state */
3116 		tcp_enter_recovery(sk, ece_ack);
3117 		fast_rexmit = 1;
3118 	}
3119 
3120 	if (!tcp_is_rack(sk) && do_lost)
3121 		tcp_update_scoreboard(sk, fast_rexmit);
3122 	*rexmit = REXMIT_LOST;
3123 }
3124 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3125 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3126 {
3127 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3128 	struct tcp_sock *tp = tcp_sk(sk);
3129 
3130 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3131 		/* If the remote keeps returning delayed ACKs, eventually
3132 		 * the min filter would pick it up and overestimate the
3133 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3134 		 */
3135 		return;
3136 	}
3137 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3138 			   rtt_us ? : jiffies_to_usecs(1));
3139 }
3140 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3141 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3142 			       long seq_rtt_us, long sack_rtt_us,
3143 			       long ca_rtt_us, struct rate_sample *rs)
3144 {
3145 	const struct tcp_sock *tp = tcp_sk(sk);
3146 
3147 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3148 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3149 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3150 	 * is acked (RFC6298).
3151 	 */
3152 	if (seq_rtt_us < 0)
3153 		seq_rtt_us = sack_rtt_us;
3154 
3155 	/* RTTM Rule: A TSecr value received in a segment is used to
3156 	 * update the averaged RTT measurement only if the segment
3157 	 * acknowledges some new data, i.e., only if it advances the
3158 	 * left edge of the send window.
3159 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3160 	 */
3161 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3162 	    flag & FLAG_ACKED) {
3163 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3164 
3165 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3166 			if (!delta)
3167 				delta = 1;
3168 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3169 			ca_rtt_us = seq_rtt_us;
3170 		}
3171 	}
3172 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3173 	if (seq_rtt_us < 0)
3174 		return false;
3175 
3176 	trace_android_vh_tcp_update_rtt(sk, seq_rtt_us);
3177 
3178 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3179 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3180 	 * values will be skipped with the seq_rtt_us < 0 check above.
3181 	 */
3182 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3183 	tcp_rtt_estimator(sk, seq_rtt_us);
3184 	tcp_set_rto(sk);
3185 
3186 	/* RFC6298: only reset backoff on valid RTT measurement. */
3187 	inet_csk(sk)->icsk_backoff = 0;
3188 	return true;
3189 }
3190 
3191 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3192 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3193 {
3194 	struct rate_sample rs;
3195 	long rtt_us = -1L;
3196 
3197 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3198 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3199 
3200 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3201 }
3202 
3203 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3204 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3205 {
3206 	const struct inet_connection_sock *icsk = inet_csk(sk);
3207 
3208 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3209 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3210 }
3211 
3212 /* Restart timer after forward progress on connection.
3213  * RFC2988 recommends to restart timer to now+rto.
3214  */
tcp_rearm_rto(struct sock * sk)3215 void tcp_rearm_rto(struct sock *sk)
3216 {
3217 	const struct inet_connection_sock *icsk = inet_csk(sk);
3218 	struct tcp_sock *tp = tcp_sk(sk);
3219 
3220 	/* If the retrans timer is currently being used by Fast Open
3221 	 * for SYN-ACK retrans purpose, stay put.
3222 	 */
3223 	if (rcu_access_pointer(tp->fastopen_rsk))
3224 		return;
3225 
3226 	if (!tp->packets_out) {
3227 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3228 	} else {
3229 		u32 rto = inet_csk(sk)->icsk_rto;
3230 		/* Offset the time elapsed after installing regular RTO */
3231 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3232 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3233 			s64 delta_us = tcp_rto_delta_us(sk);
3234 			/* delta_us may not be positive if the socket is locked
3235 			 * when the retrans timer fires and is rescheduled.
3236 			 */
3237 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3238 		}
3239 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3240 				     TCP_RTO_MAX);
3241 	}
3242 }
3243 
3244 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3245 static void tcp_set_xmit_timer(struct sock *sk)
3246 {
3247 	if (!tcp_schedule_loss_probe(sk, true))
3248 		tcp_rearm_rto(sk);
3249 }
3250 
3251 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3252 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3253 {
3254 	struct tcp_sock *tp = tcp_sk(sk);
3255 	u32 packets_acked;
3256 
3257 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3258 
3259 	packets_acked = tcp_skb_pcount(skb);
3260 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3261 		return 0;
3262 	packets_acked -= tcp_skb_pcount(skb);
3263 
3264 	if (packets_acked) {
3265 		BUG_ON(tcp_skb_pcount(skb) == 0);
3266 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3267 	}
3268 
3269 	return packets_acked;
3270 }
3271 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3272 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3273 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3274 {
3275 	const struct skb_shared_info *shinfo;
3276 
3277 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3278 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3279 		return;
3280 
3281 	shinfo = skb_shinfo(skb);
3282 	if (!before(shinfo->tskey, prior_snd_una) &&
3283 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3284 		tcp_skb_tsorted_save(skb) {
3285 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3286 		} tcp_skb_tsorted_restore(skb);
3287 	}
3288 }
3289 
3290 /* Remove acknowledged frames from the retransmission queue. If our packet
3291  * is before the ack sequence we can discard it as it's confirmed to have
3292  * arrived at the other end.
3293  */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3294 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3295 			       u32 prior_fack, u32 prior_snd_una,
3296 			       struct tcp_sacktag_state *sack, bool ece_ack)
3297 {
3298 	const struct inet_connection_sock *icsk = inet_csk(sk);
3299 	u64 first_ackt, last_ackt;
3300 	struct tcp_sock *tp = tcp_sk(sk);
3301 	u32 prior_sacked = tp->sacked_out;
3302 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3303 	struct sk_buff *skb, *next;
3304 	bool fully_acked = true;
3305 	long sack_rtt_us = -1L;
3306 	long seq_rtt_us = -1L;
3307 	long ca_rtt_us = -1L;
3308 	u32 pkts_acked = 0;
3309 	bool rtt_update;
3310 	int flag = 0;
3311 
3312 	first_ackt = 0;
3313 
3314 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3315 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3316 		const u32 start_seq = scb->seq;
3317 		u8 sacked = scb->sacked;
3318 		u32 acked_pcount;
3319 
3320 		/* Determine how many packets and what bytes were acked, tso and else */
3321 		if (after(scb->end_seq, tp->snd_una)) {
3322 			if (tcp_skb_pcount(skb) == 1 ||
3323 			    !after(tp->snd_una, scb->seq))
3324 				break;
3325 
3326 			acked_pcount = tcp_tso_acked(sk, skb);
3327 			if (!acked_pcount)
3328 				break;
3329 			fully_acked = false;
3330 		} else {
3331 			acked_pcount = tcp_skb_pcount(skb);
3332 		}
3333 
3334 		if (unlikely(sacked & TCPCB_RETRANS)) {
3335 			if (sacked & TCPCB_SACKED_RETRANS)
3336 				tp->retrans_out -= acked_pcount;
3337 			flag |= FLAG_RETRANS_DATA_ACKED;
3338 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3339 			last_ackt = tcp_skb_timestamp_us(skb);
3340 			WARN_ON_ONCE(last_ackt == 0);
3341 			if (!first_ackt)
3342 				first_ackt = last_ackt;
3343 
3344 			if (before(start_seq, reord))
3345 				reord = start_seq;
3346 			if (!after(scb->end_seq, tp->high_seq))
3347 				flag |= FLAG_ORIG_SACK_ACKED;
3348 		}
3349 
3350 		if (sacked & TCPCB_SACKED_ACKED) {
3351 			tp->sacked_out -= acked_pcount;
3352 		} else if (tcp_is_sack(tp)) {
3353 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3354 			if (!tcp_skb_spurious_retrans(tp, skb))
3355 				tcp_rack_advance(tp, sacked, scb->end_seq,
3356 						 tcp_skb_timestamp_us(skb));
3357 		}
3358 		if (sacked & TCPCB_LOST)
3359 			tp->lost_out -= acked_pcount;
3360 
3361 		tp->packets_out -= acked_pcount;
3362 		pkts_acked += acked_pcount;
3363 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3364 
3365 		/* Initial outgoing SYN's get put onto the write_queue
3366 		 * just like anything else we transmit.  It is not
3367 		 * true data, and if we misinform our callers that
3368 		 * this ACK acks real data, we will erroneously exit
3369 		 * connection startup slow start one packet too
3370 		 * quickly.  This is severely frowned upon behavior.
3371 		 */
3372 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3373 			flag |= FLAG_DATA_ACKED;
3374 		} else {
3375 			flag |= FLAG_SYN_ACKED;
3376 			tp->retrans_stamp = 0;
3377 		}
3378 
3379 		if (!fully_acked)
3380 			break;
3381 
3382 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3383 
3384 		next = skb_rb_next(skb);
3385 		if (unlikely(skb == tp->retransmit_skb_hint))
3386 			tp->retransmit_skb_hint = NULL;
3387 		if (unlikely(skb == tp->lost_skb_hint))
3388 			tp->lost_skb_hint = NULL;
3389 		tcp_highest_sack_replace(sk, skb, next);
3390 		tcp_rtx_queue_unlink_and_free(skb, sk);
3391 	}
3392 
3393 	if (!skb)
3394 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3395 
3396 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3397 		tp->snd_up = tp->snd_una;
3398 
3399 	if (skb) {
3400 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3401 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3402 			flag |= FLAG_SACK_RENEGING;
3403 	}
3404 
3405 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3406 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3407 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3408 
3409 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3410 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3411 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3412 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3413 			/* Conservatively mark a delayed ACK. It's typically
3414 			 * from a lone runt packet over the round trip to
3415 			 * a receiver w/o out-of-order or CE events.
3416 			 */
3417 			flag |= FLAG_ACK_MAYBE_DELAYED;
3418 		}
3419 	}
3420 	if (sack->first_sackt) {
3421 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3422 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3423 	}
3424 	trace_android_vh_tcp_clean_rtx_queue(sk, flag, seq_rtt_us);
3425 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3426 					ca_rtt_us, sack->rate);
3427 
3428 	if (flag & FLAG_ACKED) {
3429 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3430 		if (unlikely(icsk->icsk_mtup.probe_size &&
3431 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3432 			tcp_mtup_probe_success(sk);
3433 		}
3434 
3435 		if (tcp_is_reno(tp)) {
3436 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3437 
3438 			/* If any of the cumulatively ACKed segments was
3439 			 * retransmitted, non-SACK case cannot confirm that
3440 			 * progress was due to original transmission due to
3441 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3442 			 * the packets may have been never retransmitted.
3443 			 */
3444 			if (flag & FLAG_RETRANS_DATA_ACKED)
3445 				flag &= ~FLAG_ORIG_SACK_ACKED;
3446 		} else {
3447 			int delta;
3448 
3449 			/* Non-retransmitted hole got filled? That's reordering */
3450 			if (before(reord, prior_fack))
3451 				tcp_check_sack_reordering(sk, reord, 0);
3452 
3453 			delta = prior_sacked - tp->sacked_out;
3454 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3455 		}
3456 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3457 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3458 						    tcp_skb_timestamp_us(skb))) {
3459 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3460 		 * after when the head was last (re)transmitted. Otherwise the
3461 		 * timeout may continue to extend in loss recovery.
3462 		 */
3463 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3464 	}
3465 
3466 	if (icsk->icsk_ca_ops->pkts_acked) {
3467 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3468 					     .rtt_us = sack->rate->rtt_us };
3469 
3470 		sample.in_flight = tp->mss_cache *
3471 			(tp->delivered - sack->rate->prior_delivered);
3472 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3473 	}
3474 
3475 #if FASTRETRANS_DEBUG > 0
3476 	WARN_ON((int)tp->sacked_out < 0);
3477 	WARN_ON((int)tp->lost_out < 0);
3478 	WARN_ON((int)tp->retrans_out < 0);
3479 	if (!tp->packets_out && tcp_is_sack(tp)) {
3480 		icsk = inet_csk(sk);
3481 		if (tp->lost_out) {
3482 			pr_debug("Leak l=%u %d\n",
3483 				 tp->lost_out, icsk->icsk_ca_state);
3484 			tp->lost_out = 0;
3485 		}
3486 		if (tp->sacked_out) {
3487 			pr_debug("Leak s=%u %d\n",
3488 				 tp->sacked_out, icsk->icsk_ca_state);
3489 			tp->sacked_out = 0;
3490 		}
3491 		if (tp->retrans_out) {
3492 			pr_debug("Leak r=%u %d\n",
3493 				 tp->retrans_out, icsk->icsk_ca_state);
3494 			tp->retrans_out = 0;
3495 		}
3496 	}
3497 #endif
3498 	return flag;
3499 }
3500 
tcp_ack_probe(struct sock * sk)3501 static void tcp_ack_probe(struct sock *sk)
3502 {
3503 	struct inet_connection_sock *icsk = inet_csk(sk);
3504 	struct sk_buff *head = tcp_send_head(sk);
3505 	const struct tcp_sock *tp = tcp_sk(sk);
3506 
3507 	/* Was it a usable window open? */
3508 	if (!head)
3509 		return;
3510 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3511 		icsk->icsk_backoff = 0;
3512 		icsk->icsk_probes_tstamp = 0;
3513 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3514 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3515 		 * This function is not for random using!
3516 		 */
3517 	} else {
3518 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3519 
3520 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3521 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3522 	}
3523 }
3524 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3525 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3526 {
3527 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3528 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3529 }
3530 
3531 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3532 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3533 {
3534 	/* If reordering is high then always grow cwnd whenever data is
3535 	 * delivered regardless of its ordering. Otherwise stay conservative
3536 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3537 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3538 	 * cwnd in tcp_fastretrans_alert() based on more states.
3539 	 */
3540 	if (tcp_sk(sk)->reordering >
3541 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3542 		return flag & FLAG_FORWARD_PROGRESS;
3543 
3544 	return flag & FLAG_DATA_ACKED;
3545 }
3546 
3547 /* The "ultimate" congestion control function that aims to replace the rigid
3548  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3549  * It's called toward the end of processing an ACK with precise rate
3550  * information. All transmission or retransmission are delayed afterwards.
3551  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3552 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3553 			     int flag, const struct rate_sample *rs)
3554 {
3555 	const struct inet_connection_sock *icsk = inet_csk(sk);
3556 
3557 	if (icsk->icsk_ca_ops->cong_control) {
3558 		icsk->icsk_ca_ops->cong_control(sk, rs);
3559 		return;
3560 	}
3561 
3562 	if (tcp_in_cwnd_reduction(sk)) {
3563 		/* Reduce cwnd if state mandates */
3564 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3565 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3566 		/* Advance cwnd if state allows */
3567 		tcp_cong_avoid(sk, ack, acked_sacked);
3568 	}
3569 	tcp_update_pacing_rate(sk);
3570 }
3571 
3572 /* Check that window update is acceptable.
3573  * The function assumes that snd_una<=ack<=snd_next.
3574  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3575 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3576 					const u32 ack, const u32 ack_seq,
3577 					const u32 nwin)
3578 {
3579 	return	after(ack, tp->snd_una) ||
3580 		after(ack_seq, tp->snd_wl1) ||
3581 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3582 }
3583 
3584 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3585 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3586 {
3587 	u32 delta = ack - tp->snd_una;
3588 
3589 	sock_owned_by_me((struct sock *)tp);
3590 	tp->bytes_acked += delta;
3591 	tp->snd_una = ack;
3592 }
3593 
3594 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3595 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3596 {
3597 	u32 delta = seq - tp->rcv_nxt;
3598 
3599 	sock_owned_by_me((struct sock *)tp);
3600 	tp->bytes_received += delta;
3601 	WRITE_ONCE(tp->rcv_nxt, seq);
3602 }
3603 
3604 /* Update our send window.
3605  *
3606  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3607  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3608  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3609 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3610 				 u32 ack_seq)
3611 {
3612 	struct tcp_sock *tp = tcp_sk(sk);
3613 	int flag = 0;
3614 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3615 
3616 	if (likely(!tcp_hdr(skb)->syn))
3617 		nwin <<= tp->rx_opt.snd_wscale;
3618 
3619 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3620 		flag |= FLAG_WIN_UPDATE;
3621 		tcp_update_wl(tp, ack_seq);
3622 
3623 		if (tp->snd_wnd != nwin) {
3624 			tp->snd_wnd = nwin;
3625 
3626 			/* Note, it is the only place, where
3627 			 * fast path is recovered for sending TCP.
3628 			 */
3629 			tp->pred_flags = 0;
3630 			tcp_fast_path_check(sk);
3631 
3632 			if (!tcp_write_queue_empty(sk))
3633 				tcp_slow_start_after_idle_check(sk);
3634 
3635 			if (nwin > tp->max_window) {
3636 				tp->max_window = nwin;
3637 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3638 			}
3639 		}
3640 	}
3641 
3642 	tcp_snd_una_update(tp, ack);
3643 
3644 	return flag;
3645 }
3646 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3647 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3648 				   u32 *last_oow_ack_time)
3649 {
3650 	/* Paired with the WRITE_ONCE() in this function. */
3651 	u32 val = READ_ONCE(*last_oow_ack_time);
3652 
3653 	if (val) {
3654 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3655 
3656 		if (0 <= elapsed &&
3657 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3658 			NET_INC_STATS(net, mib_idx);
3659 			return true;	/* rate-limited: don't send yet! */
3660 		}
3661 	}
3662 
3663 	/* Paired with the prior READ_ONCE() and with itself,
3664 	 * as we might be lockless.
3665 	 */
3666 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3667 
3668 	return false;	/* not rate-limited: go ahead, send dupack now! */
3669 }
3670 
3671 /* Return true if we're currently rate-limiting out-of-window ACKs and
3672  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3673  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3674  * attacks that send repeated SYNs or ACKs for the same connection. To
3675  * do this, we do not send a duplicate SYNACK or ACK if the remote
3676  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3677  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3678 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3679 			  int mib_idx, u32 *last_oow_ack_time)
3680 {
3681 	/* Data packets without SYNs are not likely part of an ACK loop. */
3682 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3683 	    !tcp_hdr(skb)->syn)
3684 		return false;
3685 
3686 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3687 }
3688 
3689 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3690 static void tcp_send_challenge_ack(struct sock *sk)
3691 {
3692 	struct tcp_sock *tp = tcp_sk(sk);
3693 	struct net *net = sock_net(sk);
3694 	u32 count, now, ack_limit;
3695 
3696 	/* First check our per-socket dupack rate limit. */
3697 	if (__tcp_oow_rate_limited(net,
3698 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3699 				   &tp->last_oow_ack_time))
3700 		return;
3701 
3702 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3703 	if (ack_limit == INT_MAX)
3704 		goto send_ack;
3705 
3706 	/* Then check host-wide RFC 5961 rate limit. */
3707 	now = jiffies / HZ;
3708 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3709 		u32 half = (ack_limit + 1) >> 1;
3710 
3711 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3712 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3713 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3714 	}
3715 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3716 	if (count > 0) {
3717 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3718 send_ack:
3719 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3720 		tcp_send_ack(sk);
3721 	}
3722 }
3723 
tcp_store_ts_recent(struct tcp_sock * tp)3724 static void tcp_store_ts_recent(struct tcp_sock *tp)
3725 {
3726 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3727 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3728 }
3729 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3730 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3731 {
3732 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3733 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3734 		 * extra check below makes sure this can only happen
3735 		 * for pure ACK frames.  -DaveM
3736 		 *
3737 		 * Not only, also it occurs for expired timestamps.
3738 		 */
3739 
3740 		if (tcp_paws_check(&tp->rx_opt, 0))
3741 			tcp_store_ts_recent(tp);
3742 	}
3743 }
3744 
3745 /* This routine deals with acks during a TLP episode and ends an episode by
3746  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3747  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3748 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3749 {
3750 	struct tcp_sock *tp = tcp_sk(sk);
3751 
3752 	if (before(ack, tp->tlp_high_seq))
3753 		return;
3754 
3755 	if (!tp->tlp_retrans) {
3756 		/* TLP of new data has been acknowledged */
3757 		tp->tlp_high_seq = 0;
3758 	} else if (flag & FLAG_DSACK_TLP) {
3759 		/* This DSACK means original and TLP probe arrived; no loss */
3760 		tp->tlp_high_seq = 0;
3761 	} else if (after(ack, tp->tlp_high_seq)) {
3762 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3763 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3764 		 */
3765 		tcp_init_cwnd_reduction(sk);
3766 		tcp_set_ca_state(sk, TCP_CA_CWR);
3767 		tcp_end_cwnd_reduction(sk);
3768 		tcp_try_keep_open(sk);
3769 		NET_INC_STATS(sock_net(sk),
3770 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3771 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3772 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3773 		/* Pure dupack: original and TLP probe arrived; no loss */
3774 		tp->tlp_high_seq = 0;
3775 	}
3776 }
3777 
tcp_in_ack_event(struct sock * sk,u32 flags)3778 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3779 {
3780 	const struct inet_connection_sock *icsk = inet_csk(sk);
3781 
3782 	if (icsk->icsk_ca_ops->in_ack_event)
3783 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3784 }
3785 
3786 /* Congestion control has updated the cwnd already. So if we're in
3787  * loss recovery then now we do any new sends (for FRTO) or
3788  * retransmits (for CA_Loss or CA_recovery) that make sense.
3789  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3790 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3791 {
3792 	struct tcp_sock *tp = tcp_sk(sk);
3793 
3794 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3795 		return;
3796 
3797 	if (unlikely(rexmit == REXMIT_NEW)) {
3798 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3799 					  TCP_NAGLE_OFF);
3800 		if (after(tp->snd_nxt, tp->high_seq))
3801 			return;
3802 		tp->frto = 0;
3803 	}
3804 	tcp_xmit_retransmit_queue(sk);
3805 }
3806 
3807 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3808 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3809 {
3810 	const struct net *net = sock_net(sk);
3811 	struct tcp_sock *tp = tcp_sk(sk);
3812 	u32 delivered;
3813 
3814 	delivered = tp->delivered - prior_delivered;
3815 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3816 	if (flag & FLAG_ECE)
3817 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3818 
3819 	return delivered;
3820 }
3821 
3822 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3823 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3824 {
3825 	struct inet_connection_sock *icsk = inet_csk(sk);
3826 	struct tcp_sock *tp = tcp_sk(sk);
3827 	struct tcp_sacktag_state sack_state;
3828 	struct rate_sample rs = { .prior_delivered = 0 };
3829 	u32 prior_snd_una = tp->snd_una;
3830 	bool is_sack_reneg = tp->is_sack_reneg;
3831 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3832 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3833 	int num_dupack = 0;
3834 	int prior_packets = tp->packets_out;
3835 	u32 delivered = tp->delivered;
3836 	u32 lost = tp->lost;
3837 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3838 	u32 prior_fack;
3839 
3840 	sack_state.first_sackt = 0;
3841 	sack_state.rate = &rs;
3842 	sack_state.sack_delivered = 0;
3843 
3844 	/* We very likely will need to access rtx queue. */
3845 	prefetch(sk->tcp_rtx_queue.rb_node);
3846 
3847 	/* If the ack is older than previous acks
3848 	 * then we can probably ignore it.
3849 	 */
3850 	if (before(ack, prior_snd_una)) {
3851 		u32 max_window;
3852 
3853 		/* do not accept ACK for bytes we never sent. */
3854 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3855 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3856 		if (before(ack, prior_snd_una - max_window)) {
3857 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3858 				tcp_send_challenge_ack(sk);
3859 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3860 		}
3861 		goto old_ack;
3862 	}
3863 
3864 	/* If the ack includes data we haven't sent yet, discard
3865 	 * this segment (RFC793 Section 3.9).
3866 	 */
3867 	if (after(ack, tp->snd_nxt))
3868 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3869 
3870 	if (after(ack, prior_snd_una)) {
3871 		flag |= FLAG_SND_UNA_ADVANCED;
3872 		icsk->icsk_retransmits = 0;
3873 
3874 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3875 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3876 			if (icsk->icsk_clean_acked)
3877 				icsk->icsk_clean_acked(sk, ack);
3878 #endif
3879 	}
3880 
3881 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3882 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3883 
3884 	/* ts_recent update must be made after we are sure that the packet
3885 	 * is in window.
3886 	 */
3887 	if (flag & FLAG_UPDATE_TS_RECENT)
3888 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3889 
3890 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3891 	    FLAG_SND_UNA_ADVANCED) {
3892 		/* Window is constant, pure forward advance.
3893 		 * No more checks are required.
3894 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3895 		 */
3896 		tcp_update_wl(tp, ack_seq);
3897 		tcp_snd_una_update(tp, ack);
3898 		flag |= FLAG_WIN_UPDATE;
3899 
3900 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3901 
3902 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3903 	} else {
3904 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3905 
3906 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3907 			flag |= FLAG_DATA;
3908 		else
3909 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3910 
3911 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3912 
3913 		if (TCP_SKB_CB(skb)->sacked)
3914 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3915 							&sack_state);
3916 
3917 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3918 			flag |= FLAG_ECE;
3919 			ack_ev_flags |= CA_ACK_ECE;
3920 		}
3921 
3922 		if (sack_state.sack_delivered)
3923 			tcp_count_delivered(tp, sack_state.sack_delivered,
3924 					    flag & FLAG_ECE);
3925 
3926 		if (flag & FLAG_WIN_UPDATE)
3927 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3928 
3929 		tcp_in_ack_event(sk, ack_ev_flags);
3930 	}
3931 
3932 	/* This is a deviation from RFC3168 since it states that:
3933 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3934 	 * the congestion window, it SHOULD set the CWR bit only on the first
3935 	 * new data packet that it transmits."
3936 	 * We accept CWR on pure ACKs to be more robust
3937 	 * with widely-deployed TCP implementations that do this.
3938 	 */
3939 	tcp_ecn_accept_cwr(sk, skb);
3940 
3941 	/* We passed data and got it acked, remove any soft error
3942 	 * log. Something worked...
3943 	 */
3944 	WRITE_ONCE(sk->sk_err_soft, 0);
3945 	icsk->icsk_probes_out = 0;
3946 	tp->rcv_tstamp = tcp_jiffies32;
3947 	if (!prior_packets)
3948 		goto no_queue;
3949 
3950 	/* See if we can take anything off of the retransmit queue. */
3951 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3952 				    &sack_state, flag & FLAG_ECE);
3953 
3954 	tcp_rack_update_reo_wnd(sk, &rs);
3955 
3956 	if (tp->tlp_high_seq)
3957 		tcp_process_tlp_ack(sk, ack, flag);
3958 
3959 	if (tcp_ack_is_dubious(sk, flag)) {
3960 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3961 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3962 			num_dupack = 1;
3963 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3964 			if (!(flag & FLAG_DATA))
3965 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3966 		}
3967 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3968 				      &rexmit);
3969 	}
3970 
3971 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3972 	if (flag & FLAG_SET_XMIT_TIMER)
3973 		tcp_set_xmit_timer(sk);
3974 
3975 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3976 		sk_dst_confirm(sk);
3977 
3978 	delivered = tcp_newly_delivered(sk, delivered, flag);
3979 	lost = tp->lost - lost;			/* freshly marked lost */
3980 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3981 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3982 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3983 	tcp_xmit_recovery(sk, rexmit);
3984 	return 1;
3985 
3986 no_queue:
3987 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3988 	if (flag & FLAG_DSACKING_ACK) {
3989 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3990 				      &rexmit);
3991 		tcp_newly_delivered(sk, delivered, flag);
3992 	}
3993 	/* If this ack opens up a zero window, clear backoff.  It was
3994 	 * being used to time the probes, and is probably far higher than
3995 	 * it needs to be for normal retransmission.
3996 	 */
3997 	tcp_ack_probe(sk);
3998 
3999 	if (tp->tlp_high_seq)
4000 		tcp_process_tlp_ack(sk, ack, flag);
4001 	return 1;
4002 
4003 old_ack:
4004 	/* If data was SACKed, tag it and see if we should send more data.
4005 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4006 	 */
4007 	if (TCP_SKB_CB(skb)->sacked) {
4008 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4009 						&sack_state);
4010 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4011 				      &rexmit);
4012 		tcp_newly_delivered(sk, delivered, flag);
4013 		tcp_xmit_recovery(sk, rexmit);
4014 	}
4015 
4016 	return 0;
4017 }
4018 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4019 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4020 				      bool syn, struct tcp_fastopen_cookie *foc,
4021 				      bool exp_opt)
4022 {
4023 	/* Valid only in SYN or SYN-ACK with an even length.  */
4024 	if (!foc || !syn || len < 0 || (len & 1))
4025 		return;
4026 
4027 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4028 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4029 		memcpy(foc->val, cookie, len);
4030 	else if (len != 0)
4031 		len = -1;
4032 	foc->len = len;
4033 	foc->exp = exp_opt;
4034 }
4035 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4036 static bool smc_parse_options(const struct tcphdr *th,
4037 			      struct tcp_options_received *opt_rx,
4038 			      const unsigned char *ptr,
4039 			      int opsize)
4040 {
4041 #if IS_ENABLED(CONFIG_SMC)
4042 	if (static_branch_unlikely(&tcp_have_smc)) {
4043 		if (th->syn && !(opsize & 1) &&
4044 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4045 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4046 			opt_rx->smc_ok = 1;
4047 			return true;
4048 		}
4049 	}
4050 #endif
4051 	return false;
4052 }
4053 
4054 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4055  * value on success.
4056  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4057 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4058 {
4059 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4060 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4061 	u16 mss = 0;
4062 
4063 	while (length > 0) {
4064 		int opcode = *ptr++;
4065 		int opsize;
4066 
4067 		switch (opcode) {
4068 		case TCPOPT_EOL:
4069 			return mss;
4070 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4071 			length--;
4072 			continue;
4073 		default:
4074 			if (length < 2)
4075 				return mss;
4076 			opsize = *ptr++;
4077 			if (opsize < 2) /* "silly options" */
4078 				return mss;
4079 			if (opsize > length)
4080 				return mss;	/* fail on partial options */
4081 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4082 				u16 in_mss = get_unaligned_be16(ptr);
4083 
4084 				if (in_mss) {
4085 					if (user_mss && user_mss < in_mss)
4086 						in_mss = user_mss;
4087 					mss = in_mss;
4088 				}
4089 			}
4090 			ptr += opsize - 2;
4091 			length -= opsize;
4092 		}
4093 	}
4094 	return mss;
4095 }
4096 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4097 
4098 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4099  * But, this can also be called on packets in the established flow when
4100  * the fast version below fails.
4101  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4102 void tcp_parse_options(const struct net *net,
4103 		       const struct sk_buff *skb,
4104 		       struct tcp_options_received *opt_rx, int estab,
4105 		       struct tcp_fastopen_cookie *foc)
4106 {
4107 	const unsigned char *ptr;
4108 	const struct tcphdr *th = tcp_hdr(skb);
4109 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4110 
4111 	ptr = (const unsigned char *)(th + 1);
4112 	opt_rx->saw_tstamp = 0;
4113 	opt_rx->saw_unknown = 0;
4114 
4115 	while (length > 0) {
4116 		int opcode = *ptr++;
4117 		int opsize;
4118 
4119 		switch (opcode) {
4120 		case TCPOPT_EOL:
4121 			return;
4122 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4123 			length--;
4124 			continue;
4125 		default:
4126 			if (length < 2)
4127 				return;
4128 			opsize = *ptr++;
4129 			if (opsize < 2) /* "silly options" */
4130 				return;
4131 			if (opsize > length)
4132 				return;	/* don't parse partial options */
4133 			switch (opcode) {
4134 			case TCPOPT_MSS:
4135 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4136 					u16 in_mss = get_unaligned_be16(ptr);
4137 					if (in_mss) {
4138 						if (opt_rx->user_mss &&
4139 						    opt_rx->user_mss < in_mss)
4140 							in_mss = opt_rx->user_mss;
4141 						opt_rx->mss_clamp = in_mss;
4142 					}
4143 				}
4144 				break;
4145 			case TCPOPT_WINDOW:
4146 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4147 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4148 					__u8 snd_wscale = *(__u8 *)ptr;
4149 					opt_rx->wscale_ok = 1;
4150 					if (snd_wscale > TCP_MAX_WSCALE) {
4151 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4152 								     __func__,
4153 								     snd_wscale,
4154 								     TCP_MAX_WSCALE);
4155 						snd_wscale = TCP_MAX_WSCALE;
4156 					}
4157 					opt_rx->snd_wscale = snd_wscale;
4158 				}
4159 				break;
4160 			case TCPOPT_TIMESTAMP:
4161 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4162 				    ((estab && opt_rx->tstamp_ok) ||
4163 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4164 					opt_rx->saw_tstamp = 1;
4165 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4166 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4167 				}
4168 				break;
4169 			case TCPOPT_SACK_PERM:
4170 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4171 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4172 					opt_rx->sack_ok = TCP_SACK_SEEN;
4173 					tcp_sack_reset(opt_rx);
4174 				}
4175 				break;
4176 
4177 			case TCPOPT_SACK:
4178 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4179 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4180 				   opt_rx->sack_ok) {
4181 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4182 				}
4183 				break;
4184 #ifdef CONFIG_TCP_MD5SIG
4185 			case TCPOPT_MD5SIG:
4186 				/* The MD5 Hash has already been
4187 				 * checked (see tcp_v{4,6}_rcv()).
4188 				 */
4189 				break;
4190 #endif
4191 			case TCPOPT_FASTOPEN:
4192 				tcp_parse_fastopen_option(
4193 					opsize - TCPOLEN_FASTOPEN_BASE,
4194 					ptr, th->syn, foc, false);
4195 				break;
4196 
4197 			case TCPOPT_EXP:
4198 				/* Fast Open option shares code 254 using a
4199 				 * 16 bits magic number.
4200 				 */
4201 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4202 				    get_unaligned_be16(ptr) ==
4203 				    TCPOPT_FASTOPEN_MAGIC) {
4204 					tcp_parse_fastopen_option(opsize -
4205 						TCPOLEN_EXP_FASTOPEN_BASE,
4206 						ptr + 2, th->syn, foc, true);
4207 					break;
4208 				}
4209 
4210 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4211 					break;
4212 
4213 				opt_rx->saw_unknown = 1;
4214 				break;
4215 
4216 			default:
4217 				opt_rx->saw_unknown = 1;
4218 			}
4219 			ptr += opsize-2;
4220 			length -= opsize;
4221 		}
4222 	}
4223 }
4224 EXPORT_SYMBOL(tcp_parse_options);
4225 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4226 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4227 {
4228 	const __be32 *ptr = (const __be32 *)(th + 1);
4229 
4230 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4231 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4232 		tp->rx_opt.saw_tstamp = 1;
4233 		++ptr;
4234 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4235 		++ptr;
4236 		if (*ptr)
4237 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4238 		else
4239 			tp->rx_opt.rcv_tsecr = 0;
4240 		return true;
4241 	}
4242 	return false;
4243 }
4244 
4245 /* Fast parse options. This hopes to only see timestamps.
4246  * If it is wrong it falls back on tcp_parse_options().
4247  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4248 static bool tcp_fast_parse_options(const struct net *net,
4249 				   const struct sk_buff *skb,
4250 				   const struct tcphdr *th, struct tcp_sock *tp)
4251 {
4252 	/* In the spirit of fast parsing, compare doff directly to constant
4253 	 * values.  Because equality is used, short doff can be ignored here.
4254 	 */
4255 	if (th->doff == (sizeof(*th) / 4)) {
4256 		tp->rx_opt.saw_tstamp = 0;
4257 		return false;
4258 	} else if (tp->rx_opt.tstamp_ok &&
4259 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4260 		if (tcp_parse_aligned_timestamp(tp, th))
4261 			return true;
4262 	}
4263 
4264 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4265 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4266 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4267 
4268 	return true;
4269 }
4270 
4271 #ifdef CONFIG_TCP_MD5SIG
4272 /*
4273  * Parse MD5 Signature option
4274  */
tcp_parse_md5sig_option(const struct tcphdr * th)4275 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4276 {
4277 	int length = (th->doff << 2) - sizeof(*th);
4278 	const u8 *ptr = (const u8 *)(th + 1);
4279 
4280 	/* If not enough data remaining, we can short cut */
4281 	while (length >= TCPOLEN_MD5SIG) {
4282 		int opcode = *ptr++;
4283 		int opsize;
4284 
4285 		switch (opcode) {
4286 		case TCPOPT_EOL:
4287 			return NULL;
4288 		case TCPOPT_NOP:
4289 			length--;
4290 			continue;
4291 		default:
4292 			opsize = *ptr++;
4293 			if (opsize < 2 || opsize > length)
4294 				return NULL;
4295 			if (opcode == TCPOPT_MD5SIG)
4296 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4297 		}
4298 		ptr += opsize - 2;
4299 		length -= opsize;
4300 	}
4301 	return NULL;
4302 }
4303 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4304 #endif
4305 
4306 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4307  *
4308  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4309  * it can pass through stack. So, the following predicate verifies that
4310  * this segment is not used for anything but congestion avoidance or
4311  * fast retransmit. Moreover, we even are able to eliminate most of such
4312  * second order effects, if we apply some small "replay" window (~RTO)
4313  * to timestamp space.
4314  *
4315  * All these measures still do not guarantee that we reject wrapped ACKs
4316  * on networks with high bandwidth, when sequence space is recycled fastly,
4317  * but it guarantees that such events will be very rare and do not affect
4318  * connection seriously. This doesn't look nice, but alas, PAWS is really
4319  * buggy extension.
4320  *
4321  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4322  * states that events when retransmit arrives after original data are rare.
4323  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4324  * the biggest problem on large power networks even with minor reordering.
4325  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4326  * up to bandwidth of 18Gigabit/sec. 8) ]
4327  */
4328 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4329 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4330 {
4331 	const struct tcp_sock *tp = tcp_sk(sk);
4332 	const struct tcphdr *th = tcp_hdr(skb);
4333 	u32 seq = TCP_SKB_CB(skb)->seq;
4334 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4335 
4336 	return (/* 1. Pure ACK with correct sequence number. */
4337 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4338 
4339 		/* 2. ... and duplicate ACK. */
4340 		ack == tp->snd_una &&
4341 
4342 		/* 3. ... and does not update window. */
4343 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4344 
4345 		/* 4. ... and sits in replay window. */
4346 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4347 }
4348 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4349 static inline bool tcp_paws_discard(const struct sock *sk,
4350 				   const struct sk_buff *skb)
4351 {
4352 	const struct tcp_sock *tp = tcp_sk(sk);
4353 
4354 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4355 	       !tcp_disordered_ack(sk, skb);
4356 }
4357 
4358 /* Check segment sequence number for validity.
4359  *
4360  * Segment controls are considered valid, if the segment
4361  * fits to the window after truncation to the window. Acceptability
4362  * of data (and SYN, FIN, of course) is checked separately.
4363  * See tcp_data_queue(), for example.
4364  *
4365  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4366  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4367  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4368  * (borrowed from freebsd)
4369  */
4370 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4371 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4372 					 u32 seq, u32 end_seq)
4373 {
4374 	if (before(end_seq, tp->rcv_wup))
4375 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4376 
4377 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4378 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4379 
4380 	return SKB_NOT_DROPPED_YET;
4381 }
4382 
4383 
tcp_done_with_error(struct sock * sk,int err)4384 void tcp_done_with_error(struct sock *sk, int err)
4385 {
4386 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4387 	WRITE_ONCE(sk->sk_err, err);
4388 	smp_wmb();
4389 
4390 	tcp_write_queue_purge(sk);
4391 	tcp_done(sk);
4392 
4393 	if (!sock_flag(sk, SOCK_DEAD))
4394 		sk_error_report(sk);
4395 }
4396 EXPORT_SYMBOL(tcp_done_with_error);
4397 
4398 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4399 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4400 {
4401 	int err;
4402 
4403 	trace_tcp_receive_reset(sk);
4404 
4405 	/* mptcp can't tell us to ignore reset pkts,
4406 	 * so just ignore the return value of mptcp_incoming_options().
4407 	 */
4408 	if (sk_is_mptcp(sk))
4409 		mptcp_incoming_options(sk, skb);
4410 
4411 	/* We want the right error as BSD sees it (and indeed as we do). */
4412 	switch (sk->sk_state) {
4413 	case TCP_SYN_SENT:
4414 		err = ECONNREFUSED;
4415 		break;
4416 	case TCP_CLOSE_WAIT:
4417 		err = EPIPE;
4418 		break;
4419 	case TCP_CLOSE:
4420 		return;
4421 	default:
4422 		err = ECONNRESET;
4423 	}
4424 	tcp_done_with_error(sk, err);
4425 }
4426 
4427 /*
4428  * 	Process the FIN bit. This now behaves as it is supposed to work
4429  *	and the FIN takes effect when it is validly part of sequence
4430  *	space. Not before when we get holes.
4431  *
4432  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4433  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4434  *	TIME-WAIT)
4435  *
4436  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4437  *	close and we go into CLOSING (and later onto TIME-WAIT)
4438  *
4439  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4440  */
tcp_fin(struct sock * sk)4441 void tcp_fin(struct sock *sk)
4442 {
4443 	struct tcp_sock *tp = tcp_sk(sk);
4444 
4445 	inet_csk_schedule_ack(sk);
4446 
4447 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4448 	sock_set_flag(sk, SOCK_DONE);
4449 
4450 	switch (sk->sk_state) {
4451 	case TCP_SYN_RECV:
4452 	case TCP_ESTABLISHED:
4453 		/* Move to CLOSE_WAIT */
4454 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4455 		inet_csk_enter_pingpong_mode(sk);
4456 		break;
4457 
4458 	case TCP_CLOSE_WAIT:
4459 	case TCP_CLOSING:
4460 		/* Received a retransmission of the FIN, do
4461 		 * nothing.
4462 		 */
4463 		break;
4464 	case TCP_LAST_ACK:
4465 		/* RFC793: Remain in the LAST-ACK state. */
4466 		break;
4467 
4468 	case TCP_FIN_WAIT1:
4469 		/* This case occurs when a simultaneous close
4470 		 * happens, we must ack the received FIN and
4471 		 * enter the CLOSING state.
4472 		 */
4473 		tcp_send_ack(sk);
4474 		tcp_set_state(sk, TCP_CLOSING);
4475 		break;
4476 	case TCP_FIN_WAIT2:
4477 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4478 		tcp_send_ack(sk);
4479 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4480 		break;
4481 	default:
4482 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4483 		 * cases we should never reach this piece of code.
4484 		 */
4485 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4486 		       __func__, sk->sk_state);
4487 		break;
4488 	}
4489 
4490 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4491 	 * Probably, we should reset in this case. For now drop them.
4492 	 */
4493 	skb_rbtree_purge(&tp->out_of_order_queue);
4494 	if (tcp_is_sack(tp))
4495 		tcp_sack_reset(&tp->rx_opt);
4496 
4497 	if (!sock_flag(sk, SOCK_DEAD)) {
4498 		trace_android_vh_tcp_sock_error(sk);
4499 
4500 		sk->sk_state_change(sk);
4501 
4502 		/* Do not send POLL_HUP for half duplex close. */
4503 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4504 		    sk->sk_state == TCP_CLOSE)
4505 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4506 		else
4507 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4508 	}
4509 }
4510 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4511 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4512 				  u32 end_seq)
4513 {
4514 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4515 		if (before(seq, sp->start_seq))
4516 			sp->start_seq = seq;
4517 		if (after(end_seq, sp->end_seq))
4518 			sp->end_seq = end_seq;
4519 		return true;
4520 	}
4521 	return false;
4522 }
4523 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4524 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4525 {
4526 	struct tcp_sock *tp = tcp_sk(sk);
4527 
4528 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4529 		int mib_idx;
4530 
4531 		if (before(seq, tp->rcv_nxt))
4532 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4533 		else
4534 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4535 
4536 		NET_INC_STATS(sock_net(sk), mib_idx);
4537 
4538 		tp->rx_opt.dsack = 1;
4539 		tp->duplicate_sack[0].start_seq = seq;
4540 		tp->duplicate_sack[0].end_seq = end_seq;
4541 	}
4542 }
4543 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4544 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4545 {
4546 	struct tcp_sock *tp = tcp_sk(sk);
4547 
4548 	if (!tp->rx_opt.dsack)
4549 		tcp_dsack_set(sk, seq, end_seq);
4550 	else
4551 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4552 }
4553 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4554 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4555 {
4556 	/* When the ACK path fails or drops most ACKs, the sender would
4557 	 * timeout and spuriously retransmit the same segment repeatedly.
4558 	 * The receiver remembers and reflects via DSACKs. Leverage the
4559 	 * DSACK state and change the txhash to re-route speculatively.
4560 	 */
4561 	 trace_android_rvh_tcp_rcv_spurious_retrans(sk);
4562 
4563 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4564 	    sk_rethink_txhash(sk))
4565 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4566 }
4567 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4568 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4569 {
4570 	struct tcp_sock *tp = tcp_sk(sk);
4571 
4572 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4573 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4574 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4575 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4576 
4577 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4578 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4579 
4580 			tcp_rcv_spurious_retrans(sk, skb);
4581 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4582 				end_seq = tp->rcv_nxt;
4583 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4584 		}
4585 	}
4586 
4587 	tcp_send_ack(sk);
4588 }
4589 
4590 /* These routines update the SACK block as out-of-order packets arrive or
4591  * in-order packets close up the sequence space.
4592  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4593 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4594 {
4595 	int this_sack;
4596 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4597 	struct tcp_sack_block *swalk = sp + 1;
4598 
4599 	/* See if the recent change to the first SACK eats into
4600 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4601 	 */
4602 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4603 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4604 			int i;
4605 
4606 			/* Zap SWALK, by moving every further SACK up by one slot.
4607 			 * Decrease num_sacks.
4608 			 */
4609 			tp->rx_opt.num_sacks--;
4610 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4611 				sp[i] = sp[i + 1];
4612 			continue;
4613 		}
4614 		this_sack++;
4615 		swalk++;
4616 	}
4617 }
4618 
tcp_sack_compress_send_ack(struct sock * sk)4619 void tcp_sack_compress_send_ack(struct sock *sk)
4620 {
4621 	struct tcp_sock *tp = tcp_sk(sk);
4622 
4623 	if (!tp->compressed_ack)
4624 		return;
4625 
4626 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4627 		__sock_put(sk);
4628 
4629 	/* Since we have to send one ack finally,
4630 	 * substract one from tp->compressed_ack to keep
4631 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4632 	 */
4633 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4634 		      tp->compressed_ack - 1);
4635 
4636 	tp->compressed_ack = 0;
4637 	tcp_send_ack(sk);
4638 }
4639 
4640 /* Reasonable amount of sack blocks included in TCP SACK option
4641  * The max is 4, but this becomes 3 if TCP timestamps are there.
4642  * Given that SACK packets might be lost, be conservative and use 2.
4643  */
4644 #define TCP_SACK_BLOCKS_EXPECTED 2
4645 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4646 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4647 {
4648 	struct tcp_sock *tp = tcp_sk(sk);
4649 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4650 	int cur_sacks = tp->rx_opt.num_sacks;
4651 	int this_sack;
4652 
4653 	if (!cur_sacks)
4654 		goto new_sack;
4655 
4656 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4657 		if (tcp_sack_extend(sp, seq, end_seq)) {
4658 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4659 				tcp_sack_compress_send_ack(sk);
4660 			/* Rotate this_sack to the first one. */
4661 			for (; this_sack > 0; this_sack--, sp--)
4662 				swap(*sp, *(sp - 1));
4663 			if (cur_sacks > 1)
4664 				tcp_sack_maybe_coalesce(tp);
4665 			return;
4666 		}
4667 	}
4668 
4669 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4670 		tcp_sack_compress_send_ack(sk);
4671 
4672 	/* Could not find an adjacent existing SACK, build a new one,
4673 	 * put it at the front, and shift everyone else down.  We
4674 	 * always know there is at least one SACK present already here.
4675 	 *
4676 	 * If the sack array is full, forget about the last one.
4677 	 */
4678 	if (this_sack >= TCP_NUM_SACKS) {
4679 		this_sack--;
4680 		tp->rx_opt.num_sacks--;
4681 		sp--;
4682 	}
4683 	for (; this_sack > 0; this_sack--, sp--)
4684 		*sp = *(sp - 1);
4685 
4686 new_sack:
4687 	/* Build the new head SACK, and we're done. */
4688 	sp->start_seq = seq;
4689 	sp->end_seq = end_seq;
4690 	tp->rx_opt.num_sacks++;
4691 }
4692 
4693 /* RCV.NXT advances, some SACKs should be eaten. */
4694 
tcp_sack_remove(struct tcp_sock * tp)4695 static void tcp_sack_remove(struct tcp_sock *tp)
4696 {
4697 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4698 	int num_sacks = tp->rx_opt.num_sacks;
4699 	int this_sack;
4700 
4701 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4702 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4703 		tp->rx_opt.num_sacks = 0;
4704 		return;
4705 	}
4706 
4707 	for (this_sack = 0; this_sack < num_sacks;) {
4708 		/* Check if the start of the sack is covered by RCV.NXT. */
4709 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4710 			int i;
4711 
4712 			/* RCV.NXT must cover all the block! */
4713 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4714 
4715 			/* Zap this SACK, by moving forward any other SACKS. */
4716 			for (i = this_sack+1; i < num_sacks; i++)
4717 				tp->selective_acks[i-1] = tp->selective_acks[i];
4718 			num_sacks--;
4719 			continue;
4720 		}
4721 		this_sack++;
4722 		sp++;
4723 	}
4724 	tp->rx_opt.num_sacks = num_sacks;
4725 }
4726 
4727 /**
4728  * tcp_try_coalesce - try to merge skb to prior one
4729  * @sk: socket
4730  * @to: prior buffer
4731  * @from: buffer to add in queue
4732  * @fragstolen: pointer to boolean
4733  *
4734  * Before queueing skb @from after @to, try to merge them
4735  * to reduce overall memory use and queue lengths, if cost is small.
4736  * Packets in ofo or receive queues can stay a long time.
4737  * Better try to coalesce them right now to avoid future collapses.
4738  * Returns true if caller should free @from instead of queueing it
4739  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4740 static bool tcp_try_coalesce(struct sock *sk,
4741 			     struct sk_buff *to,
4742 			     struct sk_buff *from,
4743 			     bool *fragstolen)
4744 {
4745 	int delta;
4746 
4747 	*fragstolen = false;
4748 
4749 	/* Its possible this segment overlaps with prior segment in queue */
4750 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4751 		return false;
4752 
4753 	if (!mptcp_skb_can_collapse(to, from))
4754 		return false;
4755 
4756 #ifdef CONFIG_TLS_DEVICE
4757 	if (from->decrypted != to->decrypted)
4758 		return false;
4759 #endif
4760 
4761 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4762 		return false;
4763 
4764 	atomic_add(delta, &sk->sk_rmem_alloc);
4765 	sk_mem_charge(sk, delta);
4766 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4767 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4768 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4769 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4770 
4771 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4772 		TCP_SKB_CB(to)->has_rxtstamp = true;
4773 		to->tstamp = from->tstamp;
4774 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4775 	}
4776 
4777 	return true;
4778 }
4779 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4780 static bool tcp_ooo_try_coalesce(struct sock *sk,
4781 			     struct sk_buff *to,
4782 			     struct sk_buff *from,
4783 			     bool *fragstolen)
4784 {
4785 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4786 
4787 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4788 	if (res) {
4789 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4790 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4791 
4792 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4793 	}
4794 	return res;
4795 }
4796 
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4797 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4798 			    enum skb_drop_reason reason)
4799 {
4800 	sk_drops_add(sk, skb);
4801 	kfree_skb_reason(skb, reason);
4802 }
4803 
4804 /* This one checks to see if we can put data from the
4805  * out_of_order queue into the receive_queue.
4806  */
tcp_ofo_queue(struct sock * sk)4807 static void tcp_ofo_queue(struct sock *sk)
4808 {
4809 	struct tcp_sock *tp = tcp_sk(sk);
4810 	__u32 dsack_high = tp->rcv_nxt;
4811 	bool fin, fragstolen, eaten;
4812 	struct sk_buff *skb, *tail;
4813 	struct rb_node *p;
4814 
4815 	p = rb_first(&tp->out_of_order_queue);
4816 	while (p) {
4817 		skb = rb_to_skb(p);
4818 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4819 			break;
4820 
4821 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4822 			__u32 dsack = dsack_high;
4823 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4824 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4825 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4826 		}
4827 		p = rb_next(p);
4828 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4829 
4830 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4831 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4832 			continue;
4833 		}
4834 
4835 		tail = skb_peek_tail(&sk->sk_receive_queue);
4836 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4837 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4838 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4839 		if (!eaten)
4840 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4841 		else
4842 			kfree_skb_partial(skb, fragstolen);
4843 
4844 		if (unlikely(fin)) {
4845 			tcp_fin(sk);
4846 			/* tcp_fin() purges tp->out_of_order_queue,
4847 			 * so we must end this loop right now.
4848 			 */
4849 			break;
4850 		}
4851 	}
4852 }
4853 
4854 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4855 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4856 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4857 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4858 				 unsigned int size)
4859 {
4860 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4861 	    !sk_rmem_schedule(sk, skb, size)) {
4862 
4863 		if (tcp_prune_queue(sk, skb) < 0)
4864 			return -1;
4865 
4866 		while (!sk_rmem_schedule(sk, skb, size)) {
4867 			if (!tcp_prune_ofo_queue(sk, skb))
4868 				return -1;
4869 		}
4870 	}
4871 	return 0;
4872 }
4873 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4874 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4875 {
4876 	struct tcp_sock *tp = tcp_sk(sk);
4877 	struct rb_node **p, *parent;
4878 	struct sk_buff *skb1;
4879 	u32 seq, end_seq;
4880 	bool fragstolen;
4881 
4882 	tcp_ecn_check_ce(sk, skb);
4883 
4884 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4885 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4886 		sk->sk_data_ready(sk);
4887 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4888 		return;
4889 	}
4890 
4891 	/* Disable header prediction. */
4892 	tp->pred_flags = 0;
4893 	inet_csk_schedule_ack(sk);
4894 
4895 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4896 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4897 	seq = TCP_SKB_CB(skb)->seq;
4898 	end_seq = TCP_SKB_CB(skb)->end_seq;
4899 
4900 	p = &tp->out_of_order_queue.rb_node;
4901 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4902 		/* Initial out of order segment, build 1 SACK. */
4903 		if (tcp_is_sack(tp)) {
4904 			tp->rx_opt.num_sacks = 1;
4905 			tp->selective_acks[0].start_seq = seq;
4906 			tp->selective_acks[0].end_seq = end_seq;
4907 		}
4908 		rb_link_node(&skb->rbnode, NULL, p);
4909 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4910 		tp->ooo_last_skb = skb;
4911 		goto end;
4912 	}
4913 
4914 	/* In the typical case, we are adding an skb to the end of the list.
4915 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4916 	 */
4917 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4918 				 skb, &fragstolen)) {
4919 coalesce_done:
4920 		/* For non sack flows, do not grow window to force DUPACK
4921 		 * and trigger fast retransmit.
4922 		 */
4923 		if (tcp_is_sack(tp))
4924 			tcp_grow_window(sk, skb, true);
4925 		kfree_skb_partial(skb, fragstolen);
4926 		skb = NULL;
4927 		goto add_sack;
4928 	}
4929 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4930 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4931 		parent = &tp->ooo_last_skb->rbnode;
4932 		p = &parent->rb_right;
4933 		goto insert;
4934 	}
4935 
4936 	/* Find place to insert this segment. Handle overlaps on the way. */
4937 	parent = NULL;
4938 	while (*p) {
4939 		parent = *p;
4940 		skb1 = rb_to_skb(parent);
4941 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4942 			p = &parent->rb_left;
4943 			continue;
4944 		}
4945 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4946 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4947 				/* All the bits are present. Drop. */
4948 				NET_INC_STATS(sock_net(sk),
4949 					      LINUX_MIB_TCPOFOMERGE);
4950 				tcp_drop_reason(sk, skb,
4951 						SKB_DROP_REASON_TCP_OFOMERGE);
4952 				skb = NULL;
4953 				tcp_dsack_set(sk, seq, end_seq);
4954 				goto add_sack;
4955 			}
4956 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4957 				/* Partial overlap. */
4958 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4959 			} else {
4960 				/* skb's seq == skb1's seq and skb covers skb1.
4961 				 * Replace skb1 with skb.
4962 				 */
4963 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4964 						&tp->out_of_order_queue);
4965 				tcp_dsack_extend(sk,
4966 						 TCP_SKB_CB(skb1)->seq,
4967 						 TCP_SKB_CB(skb1)->end_seq);
4968 				NET_INC_STATS(sock_net(sk),
4969 					      LINUX_MIB_TCPOFOMERGE);
4970 				tcp_drop_reason(sk, skb1,
4971 						SKB_DROP_REASON_TCP_OFOMERGE);
4972 				goto merge_right;
4973 			}
4974 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4975 						skb, &fragstolen)) {
4976 			goto coalesce_done;
4977 		}
4978 		p = &parent->rb_right;
4979 	}
4980 insert:
4981 	/* Insert segment into RB tree. */
4982 	rb_link_node(&skb->rbnode, parent, p);
4983 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4984 
4985 merge_right:
4986 	/* Remove other segments covered by skb. */
4987 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4988 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4989 			break;
4990 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4991 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4992 					 end_seq);
4993 			break;
4994 		}
4995 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4996 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4997 				 TCP_SKB_CB(skb1)->end_seq);
4998 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4999 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5000 	}
5001 	/* If there is no skb after us, we are the last_skb ! */
5002 	if (!skb1)
5003 		tp->ooo_last_skb = skb;
5004 
5005 add_sack:
5006 	if (tcp_is_sack(tp))
5007 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5008 end:
5009 	if (skb) {
5010 		/* For non sack flows, do not grow window to force DUPACK
5011 		 * and trigger fast retransmit.
5012 		 */
5013 		if (tcp_is_sack(tp))
5014 			tcp_grow_window(sk, skb, false);
5015 		skb_condense(skb);
5016 		skb_set_owner_r(skb, sk);
5017 	}
5018 }
5019 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5020 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5021 				      bool *fragstolen)
5022 {
5023 	int eaten;
5024 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5025 
5026 	eaten = (tail &&
5027 		 tcp_try_coalesce(sk, tail,
5028 				  skb, fragstolen)) ? 1 : 0;
5029 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5030 	if (!eaten) {
5031 		__skb_queue_tail(&sk->sk_receive_queue, skb);
5032 		skb_set_owner_r(skb, sk);
5033 	}
5034 	return eaten;
5035 }
5036 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5037 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5038 {
5039 	struct sk_buff *skb;
5040 	int err = -ENOMEM;
5041 	int data_len = 0;
5042 	bool fragstolen;
5043 
5044 	if (size == 0)
5045 		return 0;
5046 
5047 	if (size > PAGE_SIZE) {
5048 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5049 
5050 		data_len = npages << PAGE_SHIFT;
5051 		size = data_len + (size & ~PAGE_MASK);
5052 	}
5053 	skb = alloc_skb_with_frags(size - data_len, data_len,
5054 				   PAGE_ALLOC_COSTLY_ORDER,
5055 				   &err, sk->sk_allocation);
5056 	if (!skb)
5057 		goto err;
5058 
5059 	skb_put(skb, size - data_len);
5060 	skb->data_len = data_len;
5061 	skb->len = size;
5062 
5063 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5064 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5065 		goto err_free;
5066 	}
5067 
5068 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5069 	if (err)
5070 		goto err_free;
5071 
5072 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5073 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5074 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5075 
5076 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5077 		WARN_ON_ONCE(fragstolen); /* should not happen */
5078 		__kfree_skb(skb);
5079 	}
5080 	return size;
5081 
5082 err_free:
5083 	kfree_skb(skb);
5084 err:
5085 	return err;
5086 
5087 }
5088 
tcp_data_ready(struct sock * sk)5089 void tcp_data_ready(struct sock *sk)
5090 {
5091 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5092 		sk->sk_data_ready(sk);
5093 }
5094 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5095 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5096 {
5097 	struct tcp_sock *tp = tcp_sk(sk);
5098 	enum skb_drop_reason reason;
5099 	bool fragstolen;
5100 	int eaten;
5101 
5102 	/* If a subflow has been reset, the packet should not continue
5103 	 * to be processed, drop the packet.
5104 	 */
5105 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5106 		__kfree_skb(skb);
5107 		return;
5108 	}
5109 
5110 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5111 		__kfree_skb(skb);
5112 		return;
5113 	}
5114 	skb_dst_drop(skb);
5115 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5116 
5117 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5118 	tp->rx_opt.dsack = 0;
5119 
5120 	/*  Queue data for delivery to the user.
5121 	 *  Packets in sequence go to the receive queue.
5122 	 *  Out of sequence packets to the out_of_order_queue.
5123 	 */
5124 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5125 		if (tcp_receive_window(tp) == 0) {
5126 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5127 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5128 			goto out_of_window;
5129 		}
5130 
5131 		/* Ok. In sequence. In window. */
5132 queue_and_out:
5133 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5134 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5135 			inet_csk(sk)->icsk_ack.pending |=
5136 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5137 			inet_csk_schedule_ack(sk);
5138 			sk->sk_data_ready(sk);
5139 
5140 			if (skb_queue_len(&sk->sk_receive_queue)) {
5141 				reason = SKB_DROP_REASON_PROTO_MEM;
5142 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5143 				goto drop;
5144 			}
5145 			sk_forced_mem_schedule(sk, skb->truesize);
5146 		}
5147 
5148 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5149 		if (skb->len)
5150 			tcp_event_data_recv(sk, skb);
5151 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5152 			tcp_fin(sk);
5153 
5154 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5155 			tcp_ofo_queue(sk);
5156 
5157 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5158 			 * gap in queue is filled.
5159 			 */
5160 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5161 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5162 		}
5163 
5164 		if (tp->rx_opt.num_sacks)
5165 			tcp_sack_remove(tp);
5166 
5167 		tcp_fast_path_check(sk);
5168 
5169 		if (eaten > 0)
5170 			kfree_skb_partial(skb, fragstolen);
5171 		if (!sock_flag(sk, SOCK_DEAD))
5172 			tcp_data_ready(sk);
5173 		return;
5174 	}
5175 
5176 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5177 		tcp_rcv_spurious_retrans(sk, skb);
5178 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5179 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5180 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5181 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5182 
5183 out_of_window:
5184 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5185 		inet_csk_schedule_ack(sk);
5186 drop:
5187 		tcp_drop_reason(sk, skb, reason);
5188 		return;
5189 	}
5190 
5191 	/* Out of window. F.e. zero window probe. */
5192 	if (!before(TCP_SKB_CB(skb)->seq,
5193 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5194 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5195 		goto out_of_window;
5196 	}
5197 
5198 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5199 		/* Partial packet, seq < rcv_next < end_seq */
5200 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5201 
5202 		/* If window is closed, drop tail of packet. But after
5203 		 * remembering D-SACK for its head made in previous line.
5204 		 */
5205 		if (!tcp_receive_window(tp)) {
5206 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5207 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5208 			goto out_of_window;
5209 		}
5210 		goto queue_and_out;
5211 	}
5212 
5213 	tcp_data_queue_ofo(sk, skb);
5214 }
5215 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5216 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5217 {
5218 	if (list)
5219 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5220 
5221 	return skb_rb_next(skb);
5222 }
5223 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5224 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5225 					struct sk_buff_head *list,
5226 					struct rb_root *root)
5227 {
5228 	struct sk_buff *next = tcp_skb_next(skb, list);
5229 
5230 	if (list)
5231 		__skb_unlink(skb, list);
5232 	else
5233 		rb_erase(&skb->rbnode, root);
5234 
5235 	__kfree_skb(skb);
5236 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5237 
5238 	return next;
5239 }
5240 
5241 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5242 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5243 {
5244 	struct rb_node **p = &root->rb_node;
5245 	struct rb_node *parent = NULL;
5246 	struct sk_buff *skb1;
5247 
5248 	while (*p) {
5249 		parent = *p;
5250 		skb1 = rb_to_skb(parent);
5251 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5252 			p = &parent->rb_left;
5253 		else
5254 			p = &parent->rb_right;
5255 	}
5256 	rb_link_node(&skb->rbnode, parent, p);
5257 	rb_insert_color(&skb->rbnode, root);
5258 }
5259 
5260 /* Collapse contiguous sequence of skbs head..tail with
5261  * sequence numbers start..end.
5262  *
5263  * If tail is NULL, this means until the end of the queue.
5264  *
5265  * Segments with FIN/SYN are not collapsed (only because this
5266  * simplifies code)
5267  */
5268 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5269 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5270 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5271 {
5272 	struct sk_buff *skb = head, *n;
5273 	struct sk_buff_head tmp;
5274 	bool end_of_skbs;
5275 
5276 	/* First, check that queue is collapsible and find
5277 	 * the point where collapsing can be useful.
5278 	 */
5279 restart:
5280 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5281 		n = tcp_skb_next(skb, list);
5282 
5283 		/* No new bits? It is possible on ofo queue. */
5284 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5285 			skb = tcp_collapse_one(sk, skb, list, root);
5286 			if (!skb)
5287 				break;
5288 			goto restart;
5289 		}
5290 
5291 		/* The first skb to collapse is:
5292 		 * - not SYN/FIN and
5293 		 * - bloated or contains data before "start" or
5294 		 *   overlaps to the next one and mptcp allow collapsing.
5295 		 */
5296 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5297 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5298 		     before(TCP_SKB_CB(skb)->seq, start))) {
5299 			end_of_skbs = false;
5300 			break;
5301 		}
5302 
5303 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5304 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5305 			end_of_skbs = false;
5306 			break;
5307 		}
5308 
5309 		/* Decided to skip this, advance start seq. */
5310 		start = TCP_SKB_CB(skb)->end_seq;
5311 	}
5312 	if (end_of_skbs ||
5313 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5314 		return;
5315 
5316 	__skb_queue_head_init(&tmp);
5317 
5318 	while (before(start, end)) {
5319 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5320 		struct sk_buff *nskb;
5321 
5322 		nskb = alloc_skb(copy, GFP_ATOMIC);
5323 		if (!nskb)
5324 			break;
5325 
5326 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5327 #ifdef CONFIG_TLS_DEVICE
5328 		nskb->decrypted = skb->decrypted;
5329 #endif
5330 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5331 		if (list)
5332 			__skb_queue_before(list, skb, nskb);
5333 		else
5334 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5335 		skb_set_owner_r(nskb, sk);
5336 		mptcp_skb_ext_move(nskb, skb);
5337 
5338 		/* Copy data, releasing collapsed skbs. */
5339 		while (copy > 0) {
5340 			int offset = start - TCP_SKB_CB(skb)->seq;
5341 			int size = TCP_SKB_CB(skb)->end_seq - start;
5342 
5343 			BUG_ON(offset < 0);
5344 			if (size > 0) {
5345 				size = min(copy, size);
5346 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5347 					BUG();
5348 				TCP_SKB_CB(nskb)->end_seq += size;
5349 				copy -= size;
5350 				start += size;
5351 			}
5352 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5353 				skb = tcp_collapse_one(sk, skb, list, root);
5354 				if (!skb ||
5355 				    skb == tail ||
5356 				    !mptcp_skb_can_collapse(nskb, skb) ||
5357 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5358 					goto end;
5359 #ifdef CONFIG_TLS_DEVICE
5360 				if (skb->decrypted != nskb->decrypted)
5361 					goto end;
5362 #endif
5363 			}
5364 		}
5365 	}
5366 end:
5367 	skb_queue_walk_safe(&tmp, skb, n)
5368 		tcp_rbtree_insert(root, skb);
5369 }
5370 
5371 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5372  * and tcp_collapse() them until all the queue is collapsed.
5373  */
tcp_collapse_ofo_queue(struct sock * sk)5374 static void tcp_collapse_ofo_queue(struct sock *sk)
5375 {
5376 	struct tcp_sock *tp = tcp_sk(sk);
5377 	u32 range_truesize, sum_tiny = 0;
5378 	struct sk_buff *skb, *head;
5379 	u32 start, end;
5380 
5381 	skb = skb_rb_first(&tp->out_of_order_queue);
5382 new_range:
5383 	if (!skb) {
5384 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5385 		return;
5386 	}
5387 	start = TCP_SKB_CB(skb)->seq;
5388 	end = TCP_SKB_CB(skb)->end_seq;
5389 	range_truesize = skb->truesize;
5390 
5391 	for (head = skb;;) {
5392 		skb = skb_rb_next(skb);
5393 
5394 		/* Range is terminated when we see a gap or when
5395 		 * we are at the queue end.
5396 		 */
5397 		if (!skb ||
5398 		    after(TCP_SKB_CB(skb)->seq, end) ||
5399 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5400 			/* Do not attempt collapsing tiny skbs */
5401 			if (range_truesize != head->truesize ||
5402 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5403 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5404 					     head, skb, start, end);
5405 			} else {
5406 				sum_tiny += range_truesize;
5407 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5408 					return;
5409 			}
5410 			goto new_range;
5411 		}
5412 
5413 		range_truesize += skb->truesize;
5414 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5415 			start = TCP_SKB_CB(skb)->seq;
5416 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5417 			end = TCP_SKB_CB(skb)->end_seq;
5418 	}
5419 }
5420 
5421 /*
5422  * Clean the out-of-order queue to make room.
5423  * We drop high sequences packets to :
5424  * 1) Let a chance for holes to be filled.
5425  *    This means we do not drop packets from ooo queue if their sequence
5426  *    is before incoming packet sequence.
5427  * 2) not add too big latencies if thousands of packets sit there.
5428  *    (But if application shrinks SO_RCVBUF, we could still end up
5429  *     freeing whole queue here)
5430  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5431  *
5432  * Return true if queue has shrunk.
5433  */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5434 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5435 {
5436 	struct tcp_sock *tp = tcp_sk(sk);
5437 	struct rb_node *node, *prev;
5438 	bool pruned = false;
5439 	int goal;
5440 
5441 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5442 		return false;
5443 
5444 	goal = sk->sk_rcvbuf >> 3;
5445 	node = &tp->ooo_last_skb->rbnode;
5446 
5447 	do {
5448 		struct sk_buff *skb = rb_to_skb(node);
5449 
5450 		/* If incoming skb would land last in ofo queue, stop pruning. */
5451 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5452 			break;
5453 		pruned = true;
5454 		prev = rb_prev(node);
5455 		rb_erase(node, &tp->out_of_order_queue);
5456 		goal -= skb->truesize;
5457 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5458 		tp->ooo_last_skb = rb_to_skb(prev);
5459 		if (!prev || goal <= 0) {
5460 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5461 			    !tcp_under_memory_pressure(sk))
5462 				break;
5463 			goal = sk->sk_rcvbuf >> 3;
5464 		}
5465 		node = prev;
5466 	} while (node);
5467 
5468 	if (pruned) {
5469 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5470 		/* Reset SACK state.  A conforming SACK implementation will
5471 		 * do the same at a timeout based retransmit.  When a connection
5472 		 * is in a sad state like this, we care only about integrity
5473 		 * of the connection not performance.
5474 		 */
5475 		if (tp->rx_opt.sack_ok)
5476 			tcp_sack_reset(&tp->rx_opt);
5477 	}
5478 	return pruned;
5479 }
5480 
5481 /* Reduce allocated memory if we can, trying to get
5482  * the socket within its memory limits again.
5483  *
5484  * Return less than zero if we should start dropping frames
5485  * until the socket owning process reads some of the data
5486  * to stabilize the situation.
5487  */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5488 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5489 {
5490 	struct tcp_sock *tp = tcp_sk(sk);
5491 
5492 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5493 
5494 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5495 		tcp_clamp_window(sk);
5496 	else if (tcp_under_memory_pressure(sk))
5497 		tcp_adjust_rcv_ssthresh(sk);
5498 
5499 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5500 		return 0;
5501 
5502 	tcp_collapse_ofo_queue(sk);
5503 	if (!skb_queue_empty(&sk->sk_receive_queue))
5504 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5505 			     skb_peek(&sk->sk_receive_queue),
5506 			     NULL,
5507 			     tp->copied_seq, tp->rcv_nxt);
5508 
5509 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5510 		return 0;
5511 
5512 	/* Collapsing did not help, destructive actions follow.
5513 	 * This must not ever occur. */
5514 
5515 	tcp_prune_ofo_queue(sk, in_skb);
5516 
5517 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5518 		return 0;
5519 
5520 	/* If we are really being abused, tell the caller to silently
5521 	 * drop receive data on the floor.  It will get retransmitted
5522 	 * and hopefully then we'll have sufficient space.
5523 	 */
5524 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5525 
5526 	/* Massive buffer overcommit. */
5527 	tp->pred_flags = 0;
5528 	return -1;
5529 }
5530 
tcp_should_expand_sndbuf(struct sock * sk)5531 static bool tcp_should_expand_sndbuf(struct sock *sk)
5532 {
5533 	const struct tcp_sock *tp = tcp_sk(sk);
5534 
5535 	/* If the user specified a specific send buffer setting, do
5536 	 * not modify it.
5537 	 */
5538 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5539 		return false;
5540 
5541 	/* If we are under global TCP memory pressure, do not expand.  */
5542 	if (tcp_under_memory_pressure(sk)) {
5543 		int unused_mem = sk_unused_reserved_mem(sk);
5544 
5545 		/* Adjust sndbuf according to reserved mem. But make sure
5546 		 * it never goes below SOCK_MIN_SNDBUF.
5547 		 * See sk_stream_moderate_sndbuf() for more details.
5548 		 */
5549 		if (unused_mem > SOCK_MIN_SNDBUF)
5550 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5551 
5552 		return false;
5553 	}
5554 
5555 	/* If we are under soft global TCP memory pressure, do not expand.  */
5556 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5557 		return false;
5558 
5559 	/* If we filled the congestion window, do not expand.  */
5560 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5561 		return false;
5562 
5563 	return true;
5564 }
5565 
tcp_new_space(struct sock * sk)5566 static void tcp_new_space(struct sock *sk)
5567 {
5568 	struct tcp_sock *tp = tcp_sk(sk);
5569 
5570 	if (tcp_should_expand_sndbuf(sk)) {
5571 		tcp_sndbuf_expand(sk);
5572 		tp->snd_cwnd_stamp = tcp_jiffies32;
5573 	}
5574 
5575 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5576 }
5577 
5578 /* Caller made space either from:
5579  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5580  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5581  *
5582  * We might be able to generate EPOLLOUT to the application if:
5583  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5584  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5585  *    small enough that tcp_stream_memory_free() decides it
5586  *    is time to generate EPOLLOUT.
5587  */
tcp_check_space(struct sock * sk)5588 void tcp_check_space(struct sock *sk)
5589 {
5590 	/* pairs with tcp_poll() */
5591 	smp_mb();
5592 	if (sk->sk_socket &&
5593 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5594 		tcp_new_space(sk);
5595 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5596 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5597 	}
5598 }
5599 
tcp_data_snd_check(struct sock * sk)5600 static inline void tcp_data_snd_check(struct sock *sk)
5601 {
5602 	tcp_push_pending_frames(sk);
5603 	tcp_check_space(sk);
5604 }
5605 
5606 /*
5607  * Check if sending an ack is needed.
5608  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5609 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5610 {
5611 	struct tcp_sock *tp = tcp_sk(sk);
5612 	unsigned long rtt, delay;
5613 
5614 	    /* More than one full frame received... */
5615 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5616 	     /* ... and right edge of window advances far enough.
5617 	      * (tcp_recvmsg() will send ACK otherwise).
5618 	      * If application uses SO_RCVLOWAT, we want send ack now if
5619 	      * we have not received enough bytes to satisfy the condition.
5620 	      */
5621 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5622 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5623 	    /* We ACK each frame or... */
5624 	    tcp_in_quickack_mode(sk) ||
5625 	    /* Protocol state mandates a one-time immediate ACK */
5626 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5627 send_now:
5628 		tcp_send_ack(sk);
5629 		return;
5630 	}
5631 
5632 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5633 		tcp_send_delayed_ack(sk);
5634 		return;
5635 	}
5636 
5637 	if (!tcp_is_sack(tp) ||
5638 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5639 		goto send_now;
5640 
5641 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5642 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5643 		tp->dup_ack_counter = 0;
5644 	}
5645 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5646 		tp->dup_ack_counter++;
5647 		goto send_now;
5648 	}
5649 	tp->compressed_ack++;
5650 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5651 		return;
5652 
5653 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5654 
5655 	rtt = tp->rcv_rtt_est.rtt_us;
5656 	if (tp->srtt_us && tp->srtt_us < rtt)
5657 		rtt = tp->srtt_us;
5658 
5659 	delay = min_t(unsigned long,
5660 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5661 		      rtt * (NSEC_PER_USEC >> 3)/20);
5662 	sock_hold(sk);
5663 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5664 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5665 			       HRTIMER_MODE_REL_PINNED_SOFT);
5666 }
5667 
tcp_ack_snd_check(struct sock * sk)5668 static inline void tcp_ack_snd_check(struct sock *sk)
5669 {
5670 	if (!inet_csk_ack_scheduled(sk)) {
5671 		/* We sent a data segment already. */
5672 		return;
5673 	}
5674 	__tcp_ack_snd_check(sk, 1);
5675 }
5676 
5677 /*
5678  *	This routine is only called when we have urgent data
5679  *	signaled. Its the 'slow' part of tcp_urg. It could be
5680  *	moved inline now as tcp_urg is only called from one
5681  *	place. We handle URGent data wrong. We have to - as
5682  *	BSD still doesn't use the correction from RFC961.
5683  *	For 1003.1g we should support a new option TCP_STDURG to permit
5684  *	either form (or just set the sysctl tcp_stdurg).
5685  */
5686 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5687 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5688 {
5689 	struct tcp_sock *tp = tcp_sk(sk);
5690 	u32 ptr = ntohs(th->urg_ptr);
5691 
5692 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5693 		ptr--;
5694 	ptr += ntohl(th->seq);
5695 
5696 	/* Ignore urgent data that we've already seen and read. */
5697 	if (after(tp->copied_seq, ptr))
5698 		return;
5699 
5700 	/* Do not replay urg ptr.
5701 	 *
5702 	 * NOTE: interesting situation not covered by specs.
5703 	 * Misbehaving sender may send urg ptr, pointing to segment,
5704 	 * which we already have in ofo queue. We are not able to fetch
5705 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5706 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5707 	 * situations. But it is worth to think about possibility of some
5708 	 * DoSes using some hypothetical application level deadlock.
5709 	 */
5710 	if (before(ptr, tp->rcv_nxt))
5711 		return;
5712 
5713 	/* Do we already have a newer (or duplicate) urgent pointer? */
5714 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5715 		return;
5716 
5717 	/* Tell the world about our new urgent pointer. */
5718 	sk_send_sigurg(sk);
5719 
5720 	/* We may be adding urgent data when the last byte read was
5721 	 * urgent. To do this requires some care. We cannot just ignore
5722 	 * tp->copied_seq since we would read the last urgent byte again
5723 	 * as data, nor can we alter copied_seq until this data arrives
5724 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5725 	 *
5726 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5727 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5728 	 * and expect that both A and B disappear from stream. This is _wrong_.
5729 	 * Though this happens in BSD with high probability, this is occasional.
5730 	 * Any application relying on this is buggy. Note also, that fix "works"
5731 	 * only in this artificial test. Insert some normal data between A and B and we will
5732 	 * decline of BSD again. Verdict: it is better to remove to trap
5733 	 * buggy users.
5734 	 */
5735 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5736 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5737 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5738 		tp->copied_seq++;
5739 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5740 			__skb_unlink(skb, &sk->sk_receive_queue);
5741 			__kfree_skb(skb);
5742 		}
5743 	}
5744 
5745 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5746 	WRITE_ONCE(tp->urg_seq, ptr);
5747 
5748 	/* Disable header prediction. */
5749 	tp->pred_flags = 0;
5750 }
5751 
5752 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5753 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5754 {
5755 	struct tcp_sock *tp = tcp_sk(sk);
5756 
5757 	/* Check if we get a new urgent pointer - normally not. */
5758 	if (unlikely(th->urg))
5759 		tcp_check_urg(sk, th);
5760 
5761 	/* Do we wait for any urgent data? - normally not... */
5762 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5763 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5764 			  th->syn;
5765 
5766 		/* Is the urgent pointer pointing into this packet? */
5767 		if (ptr < skb->len) {
5768 			u8 tmp;
5769 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5770 				BUG();
5771 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5772 			if (!sock_flag(sk, SOCK_DEAD))
5773 				sk->sk_data_ready(sk);
5774 		}
5775 	}
5776 }
5777 
5778 /* Accept RST for rcv_nxt - 1 after a FIN.
5779  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5780  * FIN is sent followed by a RST packet. The RST is sent with the same
5781  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5782  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5783  * ACKs on the closed socket. In addition middleboxes can drop either the
5784  * challenge ACK or a subsequent RST.
5785  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5786 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5787 {
5788 	const struct tcp_sock *tp = tcp_sk(sk);
5789 
5790 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5791 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5792 					       TCPF_CLOSING));
5793 }
5794 
5795 /* Does PAWS and seqno based validation of an incoming segment, flags will
5796  * play significant role here.
5797  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5798 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5799 				  const struct tcphdr *th, int syn_inerr)
5800 {
5801 	struct tcp_sock *tp = tcp_sk(sk);
5802 	SKB_DR(reason);
5803 
5804 	/* RFC1323: H1. Apply PAWS check first. */
5805 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5806 	    tp->rx_opt.saw_tstamp &&
5807 	    tcp_paws_discard(sk, skb)) {
5808 		if (!th->rst) {
5809 			if (unlikely(th->syn))
5810 				goto syn_challenge;
5811 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5812 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5813 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5814 						  &tp->last_oow_ack_time))
5815 				tcp_send_dupack(sk, skb);
5816 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5817 			goto discard;
5818 		}
5819 		/* Reset is accepted even if it did not pass PAWS. */
5820 	}
5821 
5822 	/* Step 1: check sequence number */
5823 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5824 	if (reason) {
5825 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5826 		 * (RST) segments are validated by checking their SEQ-fields."
5827 		 * And page 69: "If an incoming segment is not acceptable,
5828 		 * an acknowledgment should be sent in reply (unless the RST
5829 		 * bit is set, if so drop the segment and return)".
5830 		 */
5831 		if (!th->rst) {
5832 			if (th->syn)
5833 				goto syn_challenge;
5834 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5835 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5836 						  &tp->last_oow_ack_time))
5837 				tcp_send_dupack(sk, skb);
5838 		} else if (tcp_reset_check(sk, skb)) {
5839 			goto reset;
5840 		}
5841 		goto discard;
5842 	}
5843 
5844 	/* Step 2: check RST bit */
5845 	if (th->rst) {
5846 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5847 		 * FIN and SACK too if available):
5848 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5849 		 * the right-most SACK block,
5850 		 * then
5851 		 *     RESET the connection
5852 		 * else
5853 		 *     Send a challenge ACK
5854 		 */
5855 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5856 		    tcp_reset_check(sk, skb))
5857 			goto reset;
5858 
5859 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5860 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5861 			int max_sack = sp[0].end_seq;
5862 			int this_sack;
5863 
5864 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5865 			     ++this_sack) {
5866 				max_sack = after(sp[this_sack].end_seq,
5867 						 max_sack) ?
5868 					sp[this_sack].end_seq : max_sack;
5869 			}
5870 
5871 			if (TCP_SKB_CB(skb)->seq == max_sack)
5872 				goto reset;
5873 		}
5874 
5875 		/* Disable TFO if RST is out-of-order
5876 		 * and no data has been received
5877 		 * for current active TFO socket
5878 		 */
5879 		if (tp->syn_fastopen && !tp->data_segs_in &&
5880 		    sk->sk_state == TCP_ESTABLISHED)
5881 			tcp_fastopen_active_disable(sk);
5882 		tcp_send_challenge_ack(sk);
5883 		SKB_DR_SET(reason, TCP_RESET);
5884 		goto discard;
5885 	}
5886 
5887 	/* step 3: check security and precedence [ignored] */
5888 
5889 	/* step 4: Check for a SYN
5890 	 * RFC 5961 4.2 : Send a challenge ack
5891 	 */
5892 	if (th->syn) {
5893 syn_challenge:
5894 		if (syn_inerr)
5895 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5896 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5897 		tcp_send_challenge_ack(sk);
5898 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5899 		goto discard;
5900 	}
5901 
5902 	bpf_skops_parse_hdr(sk, skb);
5903 
5904 	return true;
5905 
5906 discard:
5907 	tcp_drop_reason(sk, skb, reason);
5908 	return false;
5909 
5910 reset:
5911 	tcp_reset(sk, skb);
5912 	__kfree_skb(skb);
5913 	return false;
5914 }
5915 
5916 /*
5917  *	TCP receive function for the ESTABLISHED state.
5918  *
5919  *	It is split into a fast path and a slow path. The fast path is
5920  * 	disabled when:
5921  *	- A zero window was announced from us - zero window probing
5922  *        is only handled properly in the slow path.
5923  *	- Out of order segments arrived.
5924  *	- Urgent data is expected.
5925  *	- There is no buffer space left
5926  *	- Unexpected TCP flags/window values/header lengths are received
5927  *	  (detected by checking the TCP header against pred_flags)
5928  *	- Data is sent in both directions. Fast path only supports pure senders
5929  *	  or pure receivers (this means either the sequence number or the ack
5930  *	  value must stay constant)
5931  *	- Unexpected TCP option.
5932  *
5933  *	When these conditions are not satisfied it drops into a standard
5934  *	receive procedure patterned after RFC793 to handle all cases.
5935  *	The first three cases are guaranteed by proper pred_flags setting,
5936  *	the rest is checked inline. Fast processing is turned on in
5937  *	tcp_data_queue when everything is OK.
5938  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5939 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5940 {
5941 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5942 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5943 	struct tcp_sock *tp = tcp_sk(sk);
5944 	unsigned int len = skb->len;
5945 
5946 	/* TCP congestion window tracking */
5947 	trace_tcp_probe(sk, skb);
5948 
5949 	tcp_mstamp_refresh(tp);
5950 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5951 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5952 	/*
5953 	 *	Header prediction.
5954 	 *	The code loosely follows the one in the famous
5955 	 *	"30 instruction TCP receive" Van Jacobson mail.
5956 	 *
5957 	 *	Van's trick is to deposit buffers into socket queue
5958 	 *	on a device interrupt, to call tcp_recv function
5959 	 *	on the receive process context and checksum and copy
5960 	 *	the buffer to user space. smart...
5961 	 *
5962 	 *	Our current scheme is not silly either but we take the
5963 	 *	extra cost of the net_bh soft interrupt processing...
5964 	 *	We do checksum and copy also but from device to kernel.
5965 	 */
5966 
5967 	tp->rx_opt.saw_tstamp = 0;
5968 
5969 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5970 	 *	if header_prediction is to be made
5971 	 *	'S' will always be tp->tcp_header_len >> 2
5972 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5973 	 *  turn it off	(when there are holes in the receive
5974 	 *	 space for instance)
5975 	 *	PSH flag is ignored.
5976 	 */
5977 
5978 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5979 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5980 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5981 		int tcp_header_len = tp->tcp_header_len;
5982 
5983 		/* Timestamp header prediction: tcp_header_len
5984 		 * is automatically equal to th->doff*4 due to pred_flags
5985 		 * match.
5986 		 */
5987 
5988 		/* Check timestamp */
5989 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5990 			/* No? Slow path! */
5991 			if (!tcp_parse_aligned_timestamp(tp, th))
5992 				goto slow_path;
5993 
5994 			/* If PAWS failed, check it more carefully in slow path */
5995 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5996 				goto slow_path;
5997 
5998 			/* DO NOT update ts_recent here, if checksum fails
5999 			 * and timestamp was corrupted part, it will result
6000 			 * in a hung connection since we will drop all
6001 			 * future packets due to the PAWS test.
6002 			 */
6003 		}
6004 
6005 		if (len <= tcp_header_len) {
6006 			/* Bulk data transfer: sender */
6007 			if (len == tcp_header_len) {
6008 				/* Predicted packet is in window by definition.
6009 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6010 				 * Hence, check seq<=rcv_wup reduces to:
6011 				 */
6012 				if (tcp_header_len ==
6013 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6014 				    tp->rcv_nxt == tp->rcv_wup)
6015 					tcp_store_ts_recent(tp);
6016 
6017 				/* We know that such packets are checksummed
6018 				 * on entry.
6019 				 */
6020 				tcp_ack(sk, skb, 0);
6021 				__kfree_skb(skb);
6022 				tcp_data_snd_check(sk);
6023 				/* When receiving pure ack in fast path, update
6024 				 * last ts ecr directly instead of calling
6025 				 * tcp_rcv_rtt_measure_ts()
6026 				 */
6027 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6028 				return;
6029 			} else { /* Header too small */
6030 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6031 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6032 				goto discard;
6033 			}
6034 		} else {
6035 			int eaten = 0;
6036 			bool fragstolen = false;
6037 
6038 			if (tcp_checksum_complete(skb))
6039 				goto csum_error;
6040 
6041 			if ((int)skb->truesize > sk->sk_forward_alloc)
6042 				goto step5;
6043 
6044 			/* Predicted packet is in window by definition.
6045 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6046 			 * Hence, check seq<=rcv_wup reduces to:
6047 			 */
6048 			if (tcp_header_len ==
6049 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6050 			    tp->rcv_nxt == tp->rcv_wup)
6051 				tcp_store_ts_recent(tp);
6052 
6053 			tcp_rcv_rtt_measure_ts(sk, skb);
6054 
6055 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6056 
6057 			/* Bulk data transfer: receiver */
6058 			skb_dst_drop(skb);
6059 			__skb_pull(skb, tcp_header_len);
6060 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6061 
6062 			tcp_event_data_recv(sk, skb);
6063 
6064 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6065 				/* Well, only one small jumplet in fast path... */
6066 				tcp_ack(sk, skb, FLAG_DATA);
6067 				tcp_data_snd_check(sk);
6068 				if (!inet_csk_ack_scheduled(sk))
6069 					goto no_ack;
6070 			} else {
6071 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6072 			}
6073 
6074 			__tcp_ack_snd_check(sk, 0);
6075 no_ack:
6076 			if (eaten)
6077 				kfree_skb_partial(skb, fragstolen);
6078 			tcp_data_ready(sk);
6079 			return;
6080 		}
6081 	}
6082 
6083 slow_path:
6084 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6085 		goto csum_error;
6086 
6087 	if (!th->ack && !th->rst && !th->syn) {
6088 		reason = SKB_DROP_REASON_TCP_FLAGS;
6089 		goto discard;
6090 	}
6091 
6092 	/*
6093 	 *	Standard slow path.
6094 	 */
6095 
6096 	if (!tcp_validate_incoming(sk, skb, th, 1))
6097 		return;
6098 
6099 step5:
6100 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6101 	if ((int)reason < 0) {
6102 		reason = -reason;
6103 		goto discard;
6104 	}
6105 	tcp_rcv_rtt_measure_ts(sk, skb);
6106 
6107 	/* Process urgent data. */
6108 	tcp_urg(sk, skb, th);
6109 
6110 	/* step 7: process the segment text */
6111 	tcp_data_queue(sk, skb);
6112 
6113 	tcp_data_snd_check(sk);
6114 	tcp_ack_snd_check(sk);
6115 	return;
6116 
6117 csum_error:
6118 	reason = SKB_DROP_REASON_TCP_CSUM;
6119 	trace_tcp_bad_csum(skb);
6120 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6121 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6122 
6123 discard:
6124 	tcp_drop_reason(sk, skb, reason);
6125 }
6126 EXPORT_SYMBOL(tcp_rcv_established);
6127 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6128 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6129 {
6130 	struct inet_connection_sock *icsk = inet_csk(sk);
6131 	struct tcp_sock *tp = tcp_sk(sk);
6132 
6133 	tcp_mtup_init(sk);
6134 	icsk->icsk_af_ops->rebuild_header(sk);
6135 	tcp_init_metrics(sk);
6136 
6137 	/* Initialize the congestion window to start the transfer.
6138 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6139 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6140 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6141 	 * retransmission has occurred.
6142 	 */
6143 	if (tp->total_retrans > 1 && tp->undo_marker)
6144 		tcp_snd_cwnd_set(tp, 1);
6145 	else
6146 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6147 	tp->snd_cwnd_stamp = tcp_jiffies32;
6148 
6149 	bpf_skops_established(sk, bpf_op, skb);
6150 	/* Initialize congestion control unless BPF initialized it already: */
6151 	if (!icsk->icsk_ca_initialized)
6152 		tcp_init_congestion_control(sk);
6153 	tcp_init_buffer_space(sk);
6154 }
6155 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6156 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6157 {
6158 	struct tcp_sock *tp = tcp_sk(sk);
6159 	struct inet_connection_sock *icsk = inet_csk(sk);
6160 
6161 	tcp_set_state(sk, TCP_ESTABLISHED);
6162 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6163 
6164 	if (skb) {
6165 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6166 		security_inet_conn_established(sk, skb);
6167 		sk_mark_napi_id(sk, skb);
6168 	}
6169 
6170 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6171 
6172 	/* Prevent spurious tcp_cwnd_restart() on first data
6173 	 * packet.
6174 	 */
6175 	tp->lsndtime = tcp_jiffies32;
6176 
6177 	if (sock_flag(sk, SOCK_KEEPOPEN))
6178 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6179 
6180 	if (!tp->rx_opt.snd_wscale)
6181 		__tcp_fast_path_on(tp, tp->snd_wnd);
6182 	else
6183 		tp->pred_flags = 0;
6184 }
6185 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6186 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6187 				    struct tcp_fastopen_cookie *cookie)
6188 {
6189 	struct tcp_sock *tp = tcp_sk(sk);
6190 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6191 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6192 	bool syn_drop = false;
6193 
6194 	if (mss == tp->rx_opt.user_mss) {
6195 		struct tcp_options_received opt;
6196 
6197 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6198 		tcp_clear_options(&opt);
6199 		opt.user_mss = opt.mss_clamp = 0;
6200 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6201 		mss = opt.mss_clamp;
6202 	}
6203 
6204 	if (!tp->syn_fastopen) {
6205 		/* Ignore an unsolicited cookie */
6206 		cookie->len = -1;
6207 	} else if (tp->total_retrans) {
6208 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6209 		 * acknowledges data. Presumably the remote received only
6210 		 * the retransmitted (regular) SYNs: either the original
6211 		 * SYN-data or the corresponding SYN-ACK was dropped.
6212 		 */
6213 		syn_drop = (cookie->len < 0 && data);
6214 	} else if (cookie->len < 0 && !tp->syn_data) {
6215 		/* We requested a cookie but didn't get it. If we did not use
6216 		 * the (old) exp opt format then try so next time (try_exp=1).
6217 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6218 		 */
6219 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6220 	}
6221 
6222 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6223 
6224 	if (data) { /* Retransmit unacked data in SYN */
6225 		if (tp->total_retrans)
6226 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6227 		else
6228 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6229 		skb_rbtree_walk_from(data)
6230 			 tcp_mark_skb_lost(sk, data);
6231 		tcp_non_congestion_loss_retransmit(sk);
6232 		NET_INC_STATS(sock_net(sk),
6233 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6234 		return true;
6235 	}
6236 	tp->syn_data_acked = tp->syn_data;
6237 	if (tp->syn_data_acked) {
6238 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6239 		/* SYN-data is counted as two separate packets in tcp_ack() */
6240 		if (tp->delivered > 1)
6241 			--tp->delivered;
6242 	}
6243 
6244 	tcp_fastopen_add_skb(sk, synack);
6245 
6246 	return false;
6247 }
6248 
smc_check_reset_syn(struct tcp_sock * tp)6249 static void smc_check_reset_syn(struct tcp_sock *tp)
6250 {
6251 #if IS_ENABLED(CONFIG_SMC)
6252 	if (static_branch_unlikely(&tcp_have_smc)) {
6253 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6254 			tp->syn_smc = 0;
6255 	}
6256 #endif
6257 }
6258 
tcp_try_undo_spurious_syn(struct sock * sk)6259 static void tcp_try_undo_spurious_syn(struct sock *sk)
6260 {
6261 	struct tcp_sock *tp = tcp_sk(sk);
6262 	u32 syn_stamp;
6263 
6264 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6265 	 * spurious if the ACK's timestamp option echo value matches the
6266 	 * original SYN timestamp.
6267 	 */
6268 	syn_stamp = tp->retrans_stamp;
6269 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6270 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6271 		tp->undo_marker = 0;
6272 }
6273 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6274 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6275 					 const struct tcphdr *th)
6276 {
6277 	struct inet_connection_sock *icsk = inet_csk(sk);
6278 	struct tcp_sock *tp = tcp_sk(sk);
6279 	struct tcp_fastopen_cookie foc = { .len = -1 };
6280 	int saved_clamp = tp->rx_opt.mss_clamp;
6281 	bool fastopen_fail;
6282 	SKB_DR(reason);
6283 
6284 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6285 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6286 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6287 
6288 	if (th->ack) {
6289 		/* rfc793:
6290 		 * "If the state is SYN-SENT then
6291 		 *    first check the ACK bit
6292 		 *      If the ACK bit is set
6293 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6294 		 *        a reset (unless the RST bit is set, if so drop
6295 		 *        the segment and return)"
6296 		 */
6297 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6298 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6299 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6300 			if (icsk->icsk_retransmits == 0)
6301 				inet_csk_reset_xmit_timer(sk,
6302 						ICSK_TIME_RETRANS,
6303 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6304 			goto reset_and_undo;
6305 		}
6306 
6307 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6308 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6309 			     tcp_time_stamp(tp))) {
6310 			NET_INC_STATS(sock_net(sk),
6311 					LINUX_MIB_PAWSACTIVEREJECTED);
6312 			goto reset_and_undo;
6313 		}
6314 
6315 		/* Now ACK is acceptable.
6316 		 *
6317 		 * "If the RST bit is set
6318 		 *    If the ACK was acceptable then signal the user "error:
6319 		 *    connection reset", drop the segment, enter CLOSED state,
6320 		 *    delete TCB, and return."
6321 		 */
6322 
6323 		if (th->rst) {
6324 			tcp_reset(sk, skb);
6325 
6326 			trace_android_vh_tcp_state_change(sk, TCP_STATE_CHANGE_REASON_SYN_RST, 0);
6327 consume:
6328 			__kfree_skb(skb);
6329 			return 0;
6330 		}
6331 
6332 		/* rfc793:
6333 		 *   "fifth, if neither of the SYN or RST bits is set then
6334 		 *    drop the segment and return."
6335 		 *
6336 		 *    See note below!
6337 		 *                                        --ANK(990513)
6338 		 */
6339 		if (!th->syn) {
6340 			SKB_DR_SET(reason, TCP_FLAGS);
6341 			goto discard_and_undo;
6342 		}
6343 		/* rfc793:
6344 		 *   "If the SYN bit is on ...
6345 		 *    are acceptable then ...
6346 		 *    (our SYN has been ACKed), change the connection
6347 		 *    state to ESTABLISHED..."
6348 		 */
6349 
6350 		tcp_ecn_rcv_synack(tp, th);
6351 
6352 		trace_android_vh_tcp_rcv_synack(icsk);
6353 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6354 		tcp_try_undo_spurious_syn(sk);
6355 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6356 
6357 		/* Ok.. it's good. Set up sequence numbers and
6358 		 * move to established.
6359 		 */
6360 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6361 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6362 
6363 		/* RFC1323: The window in SYN & SYN/ACK segments is
6364 		 * never scaled.
6365 		 */
6366 		tp->snd_wnd = ntohs(th->window);
6367 
6368 		if (!tp->rx_opt.wscale_ok) {
6369 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6370 			WRITE_ONCE(tp->window_clamp,
6371 				   min(tp->window_clamp, 65535U));
6372 		}
6373 
6374 		if (tp->rx_opt.saw_tstamp) {
6375 			tp->rx_opt.tstamp_ok	   = 1;
6376 			tp->tcp_header_len =
6377 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6378 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6379 			tcp_store_ts_recent(tp);
6380 		} else {
6381 			tp->tcp_header_len = sizeof(struct tcphdr);
6382 		}
6383 
6384 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6385 		tcp_initialize_rcv_mss(sk);
6386 
6387 		/* Remember, tcp_poll() does not lock socket!
6388 		 * Change state from SYN-SENT only after copied_seq
6389 		 * is initialized. */
6390 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6391 
6392 		smc_check_reset_syn(tp);
6393 
6394 		smp_mb();
6395 
6396 		tcp_finish_connect(sk, skb);
6397 
6398 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6399 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6400 
6401 		if (!sock_flag(sk, SOCK_DEAD)) {
6402 			sk->sk_state_change(sk);
6403 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6404 		}
6405 		if (fastopen_fail)
6406 			return -1;
6407 		if (sk->sk_write_pending ||
6408 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6409 		    inet_csk_in_pingpong_mode(sk)) {
6410 			/* Save one ACK. Data will be ready after
6411 			 * several ticks, if write_pending is set.
6412 			 *
6413 			 * It may be deleted, but with this feature tcpdumps
6414 			 * look so _wonderfully_ clever, that I was not able
6415 			 * to stand against the temptation 8)     --ANK
6416 			 */
6417 			inet_csk_schedule_ack(sk);
6418 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6419 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6420 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6421 			goto consume;
6422 		}
6423 		tcp_send_ack(sk);
6424 		return -1;
6425 	}
6426 
6427 	/* No ACK in the segment */
6428 
6429 	if (th->rst) {
6430 		/* rfc793:
6431 		 * "If the RST bit is set
6432 		 *
6433 		 *      Otherwise (no ACK) drop the segment and return."
6434 		 */
6435 		SKB_DR_SET(reason, TCP_RESET);
6436 		goto discard_and_undo;
6437 	}
6438 
6439 	/* PAWS check. */
6440 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6441 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6442 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6443 		goto discard_and_undo;
6444 	}
6445 	if (th->syn) {
6446 		/* We see SYN without ACK. It is attempt of
6447 		 * simultaneous connect with crossed SYNs.
6448 		 * Particularly, it can be connect to self.
6449 		 */
6450 		tcp_set_state(sk, TCP_SYN_RECV);
6451 
6452 		if (tp->rx_opt.saw_tstamp) {
6453 			tp->rx_opt.tstamp_ok = 1;
6454 			tcp_store_ts_recent(tp);
6455 			tp->tcp_header_len =
6456 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6457 		} else {
6458 			tp->tcp_header_len = sizeof(struct tcphdr);
6459 		}
6460 
6461 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6462 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6463 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6464 
6465 		/* RFC1323: The window in SYN & SYN/ACK segments is
6466 		 * never scaled.
6467 		 */
6468 		tp->snd_wnd    = ntohs(th->window);
6469 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6470 		tp->max_window = tp->snd_wnd;
6471 
6472 		tcp_ecn_rcv_syn(tp, th);
6473 
6474 		tcp_mtup_init(sk);
6475 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6476 		tcp_initialize_rcv_mss(sk);
6477 
6478 		tcp_send_synack(sk);
6479 #if 0
6480 		/* Note, we could accept data and URG from this segment.
6481 		 * There are no obstacles to make this (except that we must
6482 		 * either change tcp_recvmsg() to prevent it from returning data
6483 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6484 		 *
6485 		 * However, if we ignore data in ACKless segments sometimes,
6486 		 * we have no reasons to accept it sometimes.
6487 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6488 		 * is not flawless. So, discard packet for sanity.
6489 		 * Uncomment this return to process the data.
6490 		 */
6491 		return -1;
6492 #else
6493 		goto consume;
6494 #endif
6495 	}
6496 	/* "fifth, if neither of the SYN or RST bits is set then
6497 	 * drop the segment and return."
6498 	 */
6499 
6500 discard_and_undo:
6501 	tcp_clear_options(&tp->rx_opt);
6502 	tp->rx_opt.mss_clamp = saved_clamp;
6503 	tcp_drop_reason(sk, skb, reason);
6504 	return 0;
6505 
6506 reset_and_undo:
6507 	tcp_clear_options(&tp->rx_opt);
6508 	tp->rx_opt.mss_clamp = saved_clamp;
6509 	return 1;
6510 }
6511 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6512 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6513 {
6514 	struct tcp_sock *tp = tcp_sk(sk);
6515 	struct request_sock *req;
6516 
6517 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6518 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6519 	 */
6520 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6521 		tcp_try_undo_recovery(sk);
6522 
6523 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6524 	tp->retrans_stamp = 0;
6525 	inet_csk(sk)->icsk_retransmits = 0;
6526 
6527 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6528 	 * we no longer need req so release it.
6529 	 */
6530 	req = rcu_dereference_protected(tp->fastopen_rsk,
6531 					lockdep_sock_is_held(sk));
6532 	reqsk_fastopen_remove(sk, req, false);
6533 
6534 	/* Re-arm the timer because data may have been sent out.
6535 	 * This is similar to the regular data transmission case
6536 	 * when new data has just been ack'ed.
6537 	 *
6538 	 * (TFO) - we could try to be more aggressive and
6539 	 * retransmitting any data sooner based on when they
6540 	 * are sent out.
6541 	 */
6542 	tcp_rearm_rto(sk);
6543 }
6544 
6545 /*
6546  *	This function implements the receiving procedure of RFC 793 for
6547  *	all states except ESTABLISHED and TIME_WAIT.
6548  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6549  *	address independent.
6550  */
6551 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6552 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6553 {
6554 	struct tcp_sock *tp = tcp_sk(sk);
6555 	struct inet_connection_sock *icsk = inet_csk(sk);
6556 	const struct tcphdr *th = tcp_hdr(skb);
6557 	struct request_sock *req;
6558 	int queued = 0;
6559 	bool acceptable;
6560 	SKB_DR(reason);
6561 
6562 	switch (sk->sk_state) {
6563 	case TCP_CLOSE:
6564 		SKB_DR_SET(reason, TCP_CLOSE);
6565 		goto discard;
6566 
6567 	case TCP_LISTEN:
6568 		if (th->ack)
6569 			return 1;
6570 
6571 		if (th->rst) {
6572 			SKB_DR_SET(reason, TCP_RESET);
6573 			goto discard;
6574 		}
6575 		if (th->syn) {
6576 			if (th->fin) {
6577 				SKB_DR_SET(reason, TCP_FLAGS);
6578 				goto discard;
6579 			}
6580 			/* It is possible that we process SYN packets from backlog,
6581 			 * so we need to make sure to disable BH and RCU right there.
6582 			 */
6583 			rcu_read_lock();
6584 			local_bh_disable();
6585 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6586 			local_bh_enable();
6587 			rcu_read_unlock();
6588 
6589 			if (!acceptable)
6590 				return 1;
6591 			consume_skb(skb);
6592 			return 0;
6593 		}
6594 		SKB_DR_SET(reason, TCP_FLAGS);
6595 		goto discard;
6596 
6597 	case TCP_SYN_SENT:
6598 		tp->rx_opt.saw_tstamp = 0;
6599 		tcp_mstamp_refresh(tp);
6600 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6601 		if (queued >= 0)
6602 			return queued;
6603 
6604 		/* Do step6 onward by hand. */
6605 		tcp_urg(sk, skb, th);
6606 		__kfree_skb(skb);
6607 		tcp_data_snd_check(sk);
6608 		return 0;
6609 	}
6610 
6611 	tcp_mstamp_refresh(tp);
6612 	tp->rx_opt.saw_tstamp = 0;
6613 	req = rcu_dereference_protected(tp->fastopen_rsk,
6614 					lockdep_sock_is_held(sk));
6615 	if (req) {
6616 		bool req_stolen;
6617 
6618 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6619 		    sk->sk_state != TCP_FIN_WAIT1);
6620 
6621 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6622 			SKB_DR_SET(reason, TCP_FASTOPEN);
6623 			goto discard;
6624 		}
6625 	}
6626 
6627 	if (!th->ack && !th->rst && !th->syn) {
6628 		SKB_DR_SET(reason, TCP_FLAGS);
6629 		goto discard;
6630 	}
6631 	if (!tcp_validate_incoming(sk, skb, th, 0))
6632 		return 0;
6633 
6634 	/* step 5: check the ACK field */
6635 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6636 				      FLAG_UPDATE_TS_RECENT |
6637 				      FLAG_NO_CHALLENGE_ACK) > 0;
6638 
6639 	if (!acceptable) {
6640 		if (sk->sk_state == TCP_SYN_RECV)
6641 			return 1;	/* send one RST */
6642 		tcp_send_challenge_ack(sk);
6643 		SKB_DR_SET(reason, TCP_OLD_ACK);
6644 		goto discard;
6645 	}
6646 	switch (sk->sk_state) {
6647 	case TCP_SYN_RECV:
6648 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6649 		if (!tp->srtt_us)
6650 			tcp_synack_rtt_meas(sk, req);
6651 
6652 		if (req) {
6653 			tcp_rcv_synrecv_state_fastopen(sk);
6654 		} else {
6655 			tcp_try_undo_spurious_syn(sk);
6656 			tp->retrans_stamp = 0;
6657 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6658 					  skb);
6659 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6660 		}
6661 		smp_mb();
6662 		tcp_set_state(sk, TCP_ESTABLISHED);
6663 		sk->sk_state_change(sk);
6664 
6665 		/* Note, that this wakeup is only for marginal crossed SYN case.
6666 		 * Passively open sockets are not waked up, because
6667 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6668 		 */
6669 		if (sk->sk_socket)
6670 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6671 
6672 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6673 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6674 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6675 
6676 		if (tp->rx_opt.tstamp_ok)
6677 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6678 
6679 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6680 			tcp_update_pacing_rate(sk);
6681 
6682 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6683 		tp->lsndtime = tcp_jiffies32;
6684 
6685 		tcp_initialize_rcv_mss(sk);
6686 		tcp_fast_path_on(tp);
6687 		if (sk->sk_shutdown & SEND_SHUTDOWN)
6688 			tcp_shutdown(sk, SEND_SHUTDOWN);
6689 		break;
6690 
6691 	case TCP_FIN_WAIT1: {
6692 		int tmo;
6693 
6694 		if (req)
6695 			tcp_rcv_synrecv_state_fastopen(sk);
6696 
6697 		if (tp->snd_una != tp->write_seq)
6698 			break;
6699 
6700 		tcp_set_state(sk, TCP_FIN_WAIT2);
6701 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6702 
6703 		sk_dst_confirm(sk);
6704 
6705 		if (!sock_flag(sk, SOCK_DEAD)) {
6706 			/* Wake up lingering close() */
6707 			sk->sk_state_change(sk);
6708 			break;
6709 		}
6710 
6711 		if (READ_ONCE(tp->linger2) < 0) {
6712 			tcp_done(sk);
6713 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6714 			return 1;
6715 		}
6716 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6717 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6718 			/* Receive out of order FIN after close() */
6719 			if (tp->syn_fastopen && th->fin)
6720 				tcp_fastopen_active_disable(sk);
6721 			tcp_done(sk);
6722 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6723 			return 1;
6724 		}
6725 
6726 		tmo = tcp_fin_time(sk);
6727 		if (tmo > TCP_TIMEWAIT_LEN) {
6728 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6729 		} else if (th->fin || sock_owned_by_user(sk)) {
6730 			/* Bad case. We could lose such FIN otherwise.
6731 			 * It is not a big problem, but it looks confusing
6732 			 * and not so rare event. We still can lose it now,
6733 			 * if it spins in bh_lock_sock(), but it is really
6734 			 * marginal case.
6735 			 */
6736 			inet_csk_reset_keepalive_timer(sk, tmo);
6737 		} else {
6738 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6739 			goto consume;
6740 		}
6741 		break;
6742 	}
6743 
6744 	case TCP_CLOSING:
6745 		if (tp->snd_una == tp->write_seq) {
6746 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6747 			goto consume;
6748 		}
6749 		break;
6750 
6751 	case TCP_LAST_ACK:
6752 		if (tp->snd_una == tp->write_seq) {
6753 			tcp_update_metrics(sk);
6754 			tcp_done(sk);
6755 			goto consume;
6756 		}
6757 		break;
6758 	}
6759 
6760 	/* step 6: check the URG bit */
6761 	tcp_urg(sk, skb, th);
6762 
6763 	/* step 7: process the segment text */
6764 	switch (sk->sk_state) {
6765 	case TCP_CLOSE_WAIT:
6766 	case TCP_CLOSING:
6767 	case TCP_LAST_ACK:
6768 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6769 			/* If a subflow has been reset, the packet should not
6770 			 * continue to be processed, drop the packet.
6771 			 */
6772 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6773 				goto discard;
6774 			break;
6775 		}
6776 		fallthrough;
6777 	case TCP_FIN_WAIT1:
6778 	case TCP_FIN_WAIT2:
6779 		/* RFC 793 says to queue data in these states,
6780 		 * RFC 1122 says we MUST send a reset.
6781 		 * BSD 4.4 also does reset.
6782 		 */
6783 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6784 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6785 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6786 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6787 				tcp_reset(sk, skb);
6788 				return 1;
6789 			}
6790 		}
6791 		fallthrough;
6792 	case TCP_ESTABLISHED:
6793 		tcp_data_queue(sk, skb);
6794 		queued = 1;
6795 		break;
6796 	}
6797 
6798 	/* tcp_data could move socket to TIME-WAIT */
6799 	if (sk->sk_state != TCP_CLOSE) {
6800 		tcp_data_snd_check(sk);
6801 		tcp_ack_snd_check(sk);
6802 	}
6803 
6804 	if (!queued) {
6805 discard:
6806 		tcp_drop_reason(sk, skb, reason);
6807 	}
6808 	return 0;
6809 
6810 consume:
6811 	__kfree_skb(skb);
6812 	return 0;
6813 }
6814 EXPORT_SYMBOL(tcp_rcv_state_process);
6815 
pr_drop_req(struct request_sock * req,__u16 port,int family)6816 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6817 {
6818 	struct inet_request_sock *ireq = inet_rsk(req);
6819 
6820 	if (family == AF_INET)
6821 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6822 				    &ireq->ir_rmt_addr, port);
6823 #if IS_ENABLED(CONFIG_IPV6)
6824 	else if (family == AF_INET6)
6825 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6826 				    &ireq->ir_v6_rmt_addr, port);
6827 #endif
6828 }
6829 
6830 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6831  *
6832  * If we receive a SYN packet with these bits set, it means a
6833  * network is playing bad games with TOS bits. In order to
6834  * avoid possible false congestion notifications, we disable
6835  * TCP ECN negotiation.
6836  *
6837  * Exception: tcp_ca wants ECN. This is required for DCTCP
6838  * congestion control: Linux DCTCP asserts ECT on all packets,
6839  * including SYN, which is most optimal solution; however,
6840  * others, such as FreeBSD do not.
6841  *
6842  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6843  * set, indicating the use of a future TCP extension (such as AccECN). See
6844  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6845  * extensions.
6846  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6847 static void tcp_ecn_create_request(struct request_sock *req,
6848 				   const struct sk_buff *skb,
6849 				   const struct sock *listen_sk,
6850 				   const struct dst_entry *dst)
6851 {
6852 	const struct tcphdr *th = tcp_hdr(skb);
6853 	const struct net *net = sock_net(listen_sk);
6854 	bool th_ecn = th->ece && th->cwr;
6855 	bool ect, ecn_ok;
6856 	u32 ecn_ok_dst;
6857 
6858 	if (!th_ecn)
6859 		return;
6860 
6861 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6862 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6863 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6864 
6865 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6866 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6867 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6868 		inet_rsk(req)->ecn_ok = 1;
6869 }
6870 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6871 static void tcp_openreq_init(struct request_sock *req,
6872 			     const struct tcp_options_received *rx_opt,
6873 			     struct sk_buff *skb, const struct sock *sk)
6874 {
6875 	struct inet_request_sock *ireq = inet_rsk(req);
6876 
6877 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6878 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6879 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6880 	tcp_rsk(req)->snt_synack = 0;
6881 	tcp_rsk(req)->last_oow_ack_time = 0;
6882 	req->mss = rx_opt->mss_clamp;
6883 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6884 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6885 	ireq->sack_ok = rx_opt->sack_ok;
6886 	ireq->snd_wscale = rx_opt->snd_wscale;
6887 	ireq->wscale_ok = rx_opt->wscale_ok;
6888 	ireq->acked = 0;
6889 	ireq->ecn_ok = 0;
6890 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6891 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6892 	ireq->ir_mark = inet_request_mark(sk, skb);
6893 #if IS_ENABLED(CONFIG_SMC)
6894 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6895 			tcp_sk(sk)->smc_hs_congested(sk));
6896 #endif
6897 }
6898 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6899 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6900 				      struct sock *sk_listener,
6901 				      bool attach_listener)
6902 {
6903 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6904 					       attach_listener);
6905 
6906 	if (req) {
6907 		struct inet_request_sock *ireq = inet_rsk(req);
6908 
6909 		ireq->ireq_opt = NULL;
6910 #if IS_ENABLED(CONFIG_IPV6)
6911 		ireq->pktopts = NULL;
6912 #endif
6913 		atomic64_set(&ireq->ir_cookie, 0);
6914 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6915 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6916 		ireq->ireq_family = sk_listener->sk_family;
6917 		req->timeout = TCP_TIMEOUT_INIT;
6918 	}
6919 
6920 	return req;
6921 }
6922 EXPORT_SYMBOL(inet_reqsk_alloc);
6923 
6924 /*
6925  * Return true if a syncookie should be sent
6926  */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6927 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6928 {
6929 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6930 	const char *msg = "Dropping request";
6931 	struct net *net = sock_net(sk);
6932 	bool want_cookie = false;
6933 	u8 syncookies;
6934 
6935 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6936 
6937 #ifdef CONFIG_SYN_COOKIES
6938 	if (syncookies) {
6939 		msg = "Sending cookies";
6940 		want_cookie = true;
6941 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6942 	} else
6943 #endif
6944 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6945 
6946 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
6947 	    xchg(&queue->synflood_warned, 1) == 0) {
6948 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
6949 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
6950 					proto, inet6_rcv_saddr(sk),
6951 					sk->sk_num, msg);
6952 		} else {
6953 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
6954 					proto, &sk->sk_rcv_saddr,
6955 					sk->sk_num, msg);
6956 		}
6957 	}
6958 
6959 	return want_cookie;
6960 }
6961 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6962 static void tcp_reqsk_record_syn(const struct sock *sk,
6963 				 struct request_sock *req,
6964 				 const struct sk_buff *skb)
6965 {
6966 	if (tcp_sk(sk)->save_syn) {
6967 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6968 		struct saved_syn *saved_syn;
6969 		u32 mac_hdrlen;
6970 		void *base;
6971 
6972 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6973 			base = skb_mac_header(skb);
6974 			mac_hdrlen = skb_mac_header_len(skb);
6975 			len += mac_hdrlen;
6976 		} else {
6977 			base = skb_network_header(skb);
6978 			mac_hdrlen = 0;
6979 		}
6980 
6981 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6982 				    GFP_ATOMIC);
6983 		if (saved_syn) {
6984 			saved_syn->mac_hdrlen = mac_hdrlen;
6985 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6986 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6987 			memcpy(saved_syn->data, base, len);
6988 			req->saved_syn = saved_syn;
6989 		}
6990 	}
6991 }
6992 
6993 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6994  * used for SYN cookie generation.
6995  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6996 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6997 			  const struct tcp_request_sock_ops *af_ops,
6998 			  struct sock *sk, struct tcphdr *th)
6999 {
7000 	struct tcp_sock *tp = tcp_sk(sk);
7001 	u16 mss;
7002 
7003 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7004 	    !inet_csk_reqsk_queue_is_full(sk))
7005 		return 0;
7006 
7007 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7008 		return 0;
7009 
7010 	if (sk_acceptq_is_full(sk)) {
7011 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7012 		return 0;
7013 	}
7014 
7015 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7016 	if (!mss)
7017 		mss = af_ops->mss_clamp;
7018 
7019 	return mss;
7020 }
7021 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7022 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7023 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7024 		     const struct tcp_request_sock_ops *af_ops,
7025 		     struct sock *sk, struct sk_buff *skb)
7026 {
7027 	struct tcp_fastopen_cookie foc = { .len = -1 };
7028 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7029 	struct tcp_options_received tmp_opt;
7030 	struct tcp_sock *tp = tcp_sk(sk);
7031 	struct net *net = sock_net(sk);
7032 	struct sock *fastopen_sk = NULL;
7033 	struct request_sock *req;
7034 	bool want_cookie = false;
7035 	struct dst_entry *dst;
7036 	struct flowi fl;
7037 	u8 syncookies;
7038 
7039 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7040 
7041 	/* TW buckets are converted to open requests without
7042 	 * limitations, they conserve resources and peer is
7043 	 * evidently real one.
7044 	 */
7045 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
7046 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
7047 		if (!want_cookie)
7048 			goto drop;
7049 	}
7050 
7051 	if (sk_acceptq_is_full(sk)) {
7052 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7053 		goto drop;
7054 	}
7055 
7056 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7057 	if (!req)
7058 		goto drop;
7059 
7060 	req->syncookie = want_cookie;
7061 	tcp_rsk(req)->af_specific = af_ops;
7062 	tcp_rsk(req)->ts_off = 0;
7063 #if IS_ENABLED(CONFIG_MPTCP)
7064 	tcp_rsk(req)->is_mptcp = 0;
7065 #endif
7066 
7067 	tcp_clear_options(&tmp_opt);
7068 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7069 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7070 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7071 			  want_cookie ? NULL : &foc);
7072 
7073 	if (want_cookie && !tmp_opt.saw_tstamp)
7074 		tcp_clear_options(&tmp_opt);
7075 
7076 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7077 		tmp_opt.smc_ok = 0;
7078 
7079 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7080 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7081 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7082 
7083 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7084 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7085 
7086 	dst = af_ops->route_req(sk, skb, &fl, req);
7087 	if (!dst)
7088 		goto drop_and_free;
7089 
7090 	if (tmp_opt.tstamp_ok)
7091 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7092 
7093 	if (!want_cookie && !isn) {
7094 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7095 
7096 		/* Kill the following clause, if you dislike this way. */
7097 		if (!syncookies &&
7098 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7099 		     (max_syn_backlog >> 2)) &&
7100 		    !tcp_peer_is_proven(req, dst)) {
7101 			/* Without syncookies last quarter of
7102 			 * backlog is filled with destinations,
7103 			 * proven to be alive.
7104 			 * It means that we continue to communicate
7105 			 * to destinations, already remembered
7106 			 * to the moment of synflood.
7107 			 */
7108 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7109 				    rsk_ops->family);
7110 			goto drop_and_release;
7111 		}
7112 
7113 		isn = af_ops->init_seq(skb);
7114 	}
7115 
7116 	tcp_ecn_create_request(req, skb, sk, dst);
7117 
7118 	if (want_cookie) {
7119 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7120 		if (!tmp_opt.tstamp_ok)
7121 			inet_rsk(req)->ecn_ok = 0;
7122 	}
7123 
7124 	tcp_rsk(req)->snt_isn = isn;
7125 	tcp_rsk(req)->txhash = net_tx_rndhash();
7126 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7127 	tcp_openreq_init_rwin(req, sk, dst);
7128 	sk_rx_queue_set(req_to_sk(req), skb);
7129 	if (!want_cookie) {
7130 		tcp_reqsk_record_syn(sk, req, skb);
7131 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7132 	}
7133 	if (fastopen_sk) {
7134 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7135 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7136 		/* Add the child socket directly into the accept queue */
7137 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7138 			reqsk_fastopen_remove(fastopen_sk, req, false);
7139 			bh_unlock_sock(fastopen_sk);
7140 			sock_put(fastopen_sk);
7141 			goto drop_and_free;
7142 		}
7143 		sk->sk_data_ready(sk);
7144 		bh_unlock_sock(fastopen_sk);
7145 		sock_put(fastopen_sk);
7146 	} else {
7147 		tcp_rsk(req)->tfo_listener = false;
7148 		if (!want_cookie) {
7149 			req->timeout = tcp_timeout_init((struct sock *)req);
7150 			if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7151 								    req->timeout))) {
7152 				reqsk_free(req);
7153 				return 0;
7154 			}
7155 
7156 		}
7157 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7158 				    !want_cookie ? TCP_SYNACK_NORMAL :
7159 						   TCP_SYNACK_COOKIE,
7160 				    skb);
7161 		if (want_cookie) {
7162 			reqsk_free(req);
7163 			return 0;
7164 		}
7165 	}
7166 	reqsk_put(req);
7167 	return 0;
7168 
7169 drop_and_release:
7170 	dst_release(dst);
7171 drop_and_free:
7172 	__reqsk_free(req);
7173 drop:
7174 	tcp_listendrop(sk);
7175 	return 0;
7176 }
7177 EXPORT_SYMBOL(tcp_conn_request);
7178