• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the kernel access vector cache (AVC).
4  *
5  * Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
9  *	Replaced the avc_lock spinlock by RCU.
10  *
11  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12  */
13 #include <linux/types.h>
14 #include <linux/stddef.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/fs.h>
18 #include <linux/dcache.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/percpu.h>
22 #include <linux/list.h>
23 #include <net/sock.h>
24 #include <linux/un.h>
25 #include <net/af_unix.h>
26 #include <linux/ip.h>
27 #include <linux/audit.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include "avc.h"
31 #include "avc_ss.h"
32 #include "classmap.h"
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/avc.h>
36 
37 #define AVC_CACHE_SLOTS			512
38 #define AVC_DEF_CACHE_THRESHOLD		512
39 #define AVC_CACHE_RECLAIM		16
40 
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field)	do {} while (0)
45 #endif
46 
47 #undef CREATE_TRACE_POINTS
48 #include <trace/hooks/avc.h>
49 
50 struct avc_entry {
51 	u32			ssid;
52 	u32			tsid;
53 	u16			tclass;
54 	struct av_decision	avd;
55 	struct avc_xperms_node	*xp_node;
56 };
57 
58 struct avc_node {
59 	struct avc_entry	ae;
60 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
61 	struct rcu_head		rhead;
62 };
63 
64 struct avc_xperms_decision_node {
65 	struct extended_perms_decision xpd;
66 	struct list_head xpd_list; /* list of extended_perms_decision */
67 };
68 
69 struct avc_xperms_node {
70 	struct extended_perms xp;
71 	struct list_head xpd_head; /* list head of extended_perms_decision */
72 };
73 
74 struct avc_cache {
75 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
76 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
77 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
78 	atomic_t		active_nodes;
79 	u32			latest_notif;	/* latest revocation notification */
80 };
81 
82 struct avc_callback_node {
83 	int (*callback) (u32 event);
84 	u32 events;
85 	struct avc_callback_node *next;
86 };
87 
88 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
89 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
90 #endif
91 
92 struct selinux_avc {
93 	unsigned int avc_cache_threshold;
94 	struct avc_cache avc_cache;
95 };
96 
97 static struct selinux_avc selinux_avc;
98 
selinux_avc_init(void)99 void selinux_avc_init(void)
100 {
101 	int i;
102 
103 	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
104 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
105 		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
106 		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
107 	}
108 	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
109 	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
110 }
111 
avc_get_cache_threshold(void)112 unsigned int avc_get_cache_threshold(void)
113 {
114 	return selinux_avc.avc_cache_threshold;
115 }
116 
avc_set_cache_threshold(unsigned int cache_threshold)117 void avc_set_cache_threshold(unsigned int cache_threshold)
118 {
119 	selinux_avc.avc_cache_threshold = cache_threshold;
120 }
121 
122 static struct avc_callback_node *avc_callbacks __ro_after_init;
123 static struct kmem_cache *avc_node_cachep __ro_after_init;
124 static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
125 static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
126 static struct kmem_cache *avc_xperms_cachep __ro_after_init;
127 
avc_hash(u32 ssid,u32 tsid,u16 tclass)128 static inline u32 avc_hash(u32 ssid, u32 tsid, u16 tclass)
129 {
130 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
131 }
132 
133 /**
134  * avc_init - Initialize the AVC.
135  *
136  * Initialize the access vector cache.
137  */
avc_init(void)138 void __init avc_init(void)
139 {
140 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
141 					0, SLAB_PANIC, NULL);
142 	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
143 					sizeof(struct avc_xperms_node),
144 					0, SLAB_PANIC, NULL);
145 	avc_xperms_decision_cachep = kmem_cache_create(
146 					"avc_xperms_decision_node",
147 					sizeof(struct avc_xperms_decision_node),
148 					0, SLAB_PANIC, NULL);
149 	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
150 					sizeof(struct extended_perms_data),
151 					0, SLAB_PANIC, NULL);
152 }
153 
avc_get_hash_stats(char * page)154 int avc_get_hash_stats(char *page)
155 {
156 	int i, chain_len, max_chain_len, slots_used;
157 	struct avc_node *node;
158 	struct hlist_head *head;
159 
160 	rcu_read_lock();
161 
162 	slots_used = 0;
163 	max_chain_len = 0;
164 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
165 		head = &selinux_avc.avc_cache.slots[i];
166 		if (!hlist_empty(head)) {
167 			slots_used++;
168 			chain_len = 0;
169 			hlist_for_each_entry_rcu(node, head, list)
170 				chain_len++;
171 			if (chain_len > max_chain_len)
172 				max_chain_len = chain_len;
173 		}
174 	}
175 
176 	rcu_read_unlock();
177 
178 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
179 			 "longest chain: %d\n",
180 			 atomic_read(&selinux_avc.avc_cache.active_nodes),
181 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
182 }
183 
184 /*
185  * using a linked list for extended_perms_decision lookup because the list is
186  * always small. i.e. less than 5, typically 1
187  */
avc_xperms_decision_lookup(u8 driver,struct avc_xperms_node * xp_node)188 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
189 					struct avc_xperms_node *xp_node)
190 {
191 	struct avc_xperms_decision_node *xpd_node;
192 
193 	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
194 		if (xpd_node->xpd.driver == driver)
195 			return &xpd_node->xpd;
196 	}
197 	return NULL;
198 }
199 
200 static inline unsigned int
avc_xperms_has_perm(struct extended_perms_decision * xpd,u8 perm,u8 which)201 avc_xperms_has_perm(struct extended_perms_decision *xpd,
202 					u8 perm, u8 which)
203 {
204 	unsigned int rc = 0;
205 
206 	if ((which == XPERMS_ALLOWED) &&
207 			(xpd->used & XPERMS_ALLOWED))
208 		rc = security_xperm_test(xpd->allowed->p, perm);
209 	else if ((which == XPERMS_AUDITALLOW) &&
210 			(xpd->used & XPERMS_AUDITALLOW))
211 		rc = security_xperm_test(xpd->auditallow->p, perm);
212 	else if ((which == XPERMS_DONTAUDIT) &&
213 			(xpd->used & XPERMS_DONTAUDIT))
214 		rc = security_xperm_test(xpd->dontaudit->p, perm);
215 	return rc;
216 }
217 
avc_xperms_allow_perm(struct avc_xperms_node * xp_node,u8 driver,u8 perm)218 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
219 				u8 driver, u8 perm)
220 {
221 	struct extended_perms_decision *xpd;
222 	security_xperm_set(xp_node->xp.drivers.p, driver);
223 	xpd = avc_xperms_decision_lookup(driver, xp_node);
224 	if (xpd && xpd->allowed)
225 		security_xperm_set(xpd->allowed->p, perm);
226 }
227 
avc_xperms_decision_free(struct avc_xperms_decision_node * xpd_node)228 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
229 {
230 	struct extended_perms_decision *xpd;
231 
232 	xpd = &xpd_node->xpd;
233 	if (xpd->allowed)
234 		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
235 	if (xpd->auditallow)
236 		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
237 	if (xpd->dontaudit)
238 		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
239 	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
240 }
241 
avc_xperms_free(struct avc_xperms_node * xp_node)242 static void avc_xperms_free(struct avc_xperms_node *xp_node)
243 {
244 	struct avc_xperms_decision_node *xpd_node, *tmp;
245 
246 	if (!xp_node)
247 		return;
248 
249 	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
250 		list_del(&xpd_node->xpd_list);
251 		avc_xperms_decision_free(xpd_node);
252 	}
253 	kmem_cache_free(avc_xperms_cachep, xp_node);
254 }
255 
avc_copy_xperms_decision(struct extended_perms_decision * dest,struct extended_perms_decision * src)256 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
257 					struct extended_perms_decision *src)
258 {
259 	dest->driver = src->driver;
260 	dest->used = src->used;
261 	if (dest->used & XPERMS_ALLOWED)
262 		memcpy(dest->allowed->p, src->allowed->p,
263 				sizeof(src->allowed->p));
264 	if (dest->used & XPERMS_AUDITALLOW)
265 		memcpy(dest->auditallow->p, src->auditallow->p,
266 				sizeof(src->auditallow->p));
267 	if (dest->used & XPERMS_DONTAUDIT)
268 		memcpy(dest->dontaudit->p, src->dontaudit->p,
269 				sizeof(src->dontaudit->p));
270 }
271 
272 /*
273  * similar to avc_copy_xperms_decision, but only copy decision
274  * information relevant to this perm
275  */
avc_quick_copy_xperms_decision(u8 perm,struct extended_perms_decision * dest,struct extended_perms_decision * src)276 static inline void avc_quick_copy_xperms_decision(u8 perm,
277 			struct extended_perms_decision *dest,
278 			struct extended_perms_decision *src)
279 {
280 	/*
281 	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
282 	 * command permission
283 	 */
284 	u8 i = perm >> 5;
285 
286 	dest->used = src->used;
287 	if (dest->used & XPERMS_ALLOWED)
288 		dest->allowed->p[i] = src->allowed->p[i];
289 	if (dest->used & XPERMS_AUDITALLOW)
290 		dest->auditallow->p[i] = src->auditallow->p[i];
291 	if (dest->used & XPERMS_DONTAUDIT)
292 		dest->dontaudit->p[i] = src->dontaudit->p[i];
293 }
294 
295 static struct avc_xperms_decision_node
avc_xperms_decision_alloc(u8 which)296 		*avc_xperms_decision_alloc(u8 which)
297 {
298 	struct avc_xperms_decision_node *xpd_node;
299 	struct extended_perms_decision *xpd;
300 
301 	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
302 				     GFP_NOWAIT | __GFP_NOWARN);
303 	if (!xpd_node)
304 		return NULL;
305 
306 	xpd = &xpd_node->xpd;
307 	if (which & XPERMS_ALLOWED) {
308 		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
309 						GFP_NOWAIT | __GFP_NOWARN);
310 		if (!xpd->allowed)
311 			goto error;
312 	}
313 	if (which & XPERMS_AUDITALLOW) {
314 		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
315 						GFP_NOWAIT | __GFP_NOWARN);
316 		if (!xpd->auditallow)
317 			goto error;
318 	}
319 	if (which & XPERMS_DONTAUDIT) {
320 		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
321 						GFP_NOWAIT | __GFP_NOWARN);
322 		if (!xpd->dontaudit)
323 			goto error;
324 	}
325 	return xpd_node;
326 error:
327 	avc_xperms_decision_free(xpd_node);
328 	return NULL;
329 }
330 
avc_add_xperms_decision(struct avc_node * node,struct extended_perms_decision * src)331 static int avc_add_xperms_decision(struct avc_node *node,
332 			struct extended_perms_decision *src)
333 {
334 	struct avc_xperms_decision_node *dest_xpd;
335 
336 	dest_xpd = avc_xperms_decision_alloc(src->used);
337 	if (!dest_xpd)
338 		return -ENOMEM;
339 	avc_copy_xperms_decision(&dest_xpd->xpd, src);
340 	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
341 	node->ae.xp_node->xp.len++;
342 	return 0;
343 }
344 
avc_xperms_alloc(void)345 static struct avc_xperms_node *avc_xperms_alloc(void)
346 {
347 	struct avc_xperms_node *xp_node;
348 
349 	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
350 	if (!xp_node)
351 		return xp_node;
352 	INIT_LIST_HEAD(&xp_node->xpd_head);
353 	return xp_node;
354 }
355 
avc_xperms_populate(struct avc_node * node,struct avc_xperms_node * src)356 static int avc_xperms_populate(struct avc_node *node,
357 				struct avc_xperms_node *src)
358 {
359 	struct avc_xperms_node *dest;
360 	struct avc_xperms_decision_node *dest_xpd;
361 	struct avc_xperms_decision_node *src_xpd;
362 
363 	if (src->xp.len == 0)
364 		return 0;
365 	dest = avc_xperms_alloc();
366 	if (!dest)
367 		return -ENOMEM;
368 
369 	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
370 	dest->xp.len = src->xp.len;
371 
372 	/* for each source xpd allocate a destination xpd and copy */
373 	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
374 		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
375 		if (!dest_xpd)
376 			goto error;
377 		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
378 		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
379 	}
380 	node->ae.xp_node = dest;
381 	return 0;
382 error:
383 	avc_xperms_free(dest);
384 	return -ENOMEM;
385 
386 }
387 
avc_xperms_audit_required(u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,u32 * deniedp)388 static inline u32 avc_xperms_audit_required(u32 requested,
389 					struct av_decision *avd,
390 					struct extended_perms_decision *xpd,
391 					u8 perm,
392 					int result,
393 					u32 *deniedp)
394 {
395 	u32 denied, audited;
396 
397 	denied = requested & ~avd->allowed;
398 	if (unlikely(denied)) {
399 		audited = denied & avd->auditdeny;
400 		if (audited && xpd) {
401 			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
402 				audited &= ~requested;
403 		}
404 	} else if (result) {
405 		audited = denied = requested;
406 	} else {
407 		audited = requested & avd->auditallow;
408 		if (audited && xpd) {
409 			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
410 				audited &= ~requested;
411 		}
412 	}
413 
414 	*deniedp = denied;
415 	return audited;
416 }
417 
avc_xperms_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,struct common_audit_data * ad)418 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
419 				   u32 requested, struct av_decision *avd,
420 				   struct extended_perms_decision *xpd,
421 				   u8 perm, int result,
422 				   struct common_audit_data *ad)
423 {
424 	u32 audited, denied;
425 
426 	audited = avc_xperms_audit_required(
427 			requested, avd, xpd, perm, result, &denied);
428 	if (likely(!audited))
429 		return 0;
430 	return slow_avc_audit(ssid, tsid, tclass, requested,
431 			audited, denied, result, ad);
432 }
433 
avc_node_free(struct rcu_head * rhead)434 static void avc_node_free(struct rcu_head *rhead)
435 {
436 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
437 	avc_xperms_free(node->ae.xp_node);
438 	kmem_cache_free(avc_node_cachep, node);
439 	avc_cache_stats_incr(frees);
440 }
441 
avc_node_delete(struct avc_node * node)442 static void avc_node_delete(struct avc_node *node)
443 {
444 	trace_android_rvh_selinux_avc_node_delete(node);
445 	hlist_del_rcu(&node->list);
446 	call_rcu(&node->rhead, avc_node_free);
447 	atomic_dec(&selinux_avc.avc_cache.active_nodes);
448 }
449 
avc_node_kill(struct avc_node * node)450 static void avc_node_kill(struct avc_node *node)
451 {
452 	avc_xperms_free(node->ae.xp_node);
453 	kmem_cache_free(avc_node_cachep, node);
454 	avc_cache_stats_incr(frees);
455 	atomic_dec(&selinux_avc.avc_cache.active_nodes);
456 }
457 
avc_node_replace(struct avc_node * new,struct avc_node * old)458 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
459 {
460 	trace_android_rvh_selinux_avc_node_replace(old, new);
461 	hlist_replace_rcu(&old->list, &new->list);
462 	call_rcu(&old->rhead, avc_node_free);
463 	atomic_dec(&selinux_avc.avc_cache.active_nodes);
464 }
465 
avc_reclaim_node(void)466 static inline int avc_reclaim_node(void)
467 {
468 	struct avc_node *node;
469 	int hvalue, try, ecx;
470 	unsigned long flags;
471 	struct hlist_head *head;
472 	spinlock_t *lock;
473 
474 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
475 		hvalue = atomic_inc_return(&selinux_avc.avc_cache.lru_hint) &
476 			(AVC_CACHE_SLOTS - 1);
477 		head = &selinux_avc.avc_cache.slots[hvalue];
478 		lock = &selinux_avc.avc_cache.slots_lock[hvalue];
479 
480 		if (!spin_trylock_irqsave(lock, flags))
481 			continue;
482 
483 		rcu_read_lock();
484 		hlist_for_each_entry(node, head, list) {
485 			avc_node_delete(node);
486 			avc_cache_stats_incr(reclaims);
487 			ecx++;
488 			if (ecx >= AVC_CACHE_RECLAIM) {
489 				rcu_read_unlock();
490 				spin_unlock_irqrestore(lock, flags);
491 				goto out;
492 			}
493 		}
494 		rcu_read_unlock();
495 		spin_unlock_irqrestore(lock, flags);
496 	}
497 out:
498 	return ecx;
499 }
500 
avc_alloc_node(void)501 static struct avc_node *avc_alloc_node(void)
502 {
503 	struct avc_node *node;
504 
505 	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
506 	if (!node)
507 		goto out;
508 
509 	INIT_HLIST_NODE(&node->list);
510 	avc_cache_stats_incr(allocations);
511 
512 	if (atomic_inc_return(&selinux_avc.avc_cache.active_nodes) >
513 	    selinux_avc.avc_cache_threshold)
514 		avc_reclaim_node();
515 
516 out:
517 	return node;
518 }
519 
avc_node_populate(struct avc_node * node,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)520 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
521 {
522 	node->ae.ssid = ssid;
523 	node->ae.tsid = tsid;
524 	node->ae.tclass = tclass;
525 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
526 }
527 
avc_search_node(u32 ssid,u32 tsid,u16 tclass)528 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
529 {
530 	struct avc_node *node, *ret = NULL;
531 	u32 hvalue;
532 	struct hlist_head *head;
533 
534 	hvalue = avc_hash(ssid, tsid, tclass);
535 	head = &selinux_avc.avc_cache.slots[hvalue];
536 	hlist_for_each_entry_rcu(node, head, list) {
537 		if (ssid == node->ae.ssid &&
538 		    tclass == node->ae.tclass &&
539 		    tsid == node->ae.tsid) {
540 			ret = node;
541 			break;
542 		}
543 	}
544 
545 	return ret;
546 }
547 
548 /**
549  * avc_lookup - Look up an AVC entry.
550  * @ssid: source security identifier
551  * @tsid: target security identifier
552  * @tclass: target security class
553  *
554  * Look up an AVC entry that is valid for the
555  * (@ssid, @tsid), interpreting the permissions
556  * based on @tclass.  If a valid AVC entry exists,
557  * then this function returns the avc_node.
558  * Otherwise, this function returns NULL.
559  */
avc_lookup(u32 ssid,u32 tsid,u16 tclass)560 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
561 {
562 	struct avc_node *node;
563 
564 	avc_cache_stats_incr(lookups);
565 	node = avc_search_node(ssid, tsid, tclass);
566 
567 	if (node) {
568 		trace_android_rvh_selinux_avc_lookup(node, ssid, tsid, tclass);
569 		return node;
570 	}
571 
572 	avc_cache_stats_incr(misses);
573 	return NULL;
574 }
575 
avc_latest_notif_update(u32 seqno,int is_insert)576 static int avc_latest_notif_update(u32 seqno, int is_insert)
577 {
578 	int ret = 0;
579 	static DEFINE_SPINLOCK(notif_lock);
580 	unsigned long flag;
581 
582 	spin_lock_irqsave(&notif_lock, flag);
583 	if (is_insert) {
584 		if (seqno < selinux_avc.avc_cache.latest_notif) {
585 			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
586 			       seqno, selinux_avc.avc_cache.latest_notif);
587 			ret = -EAGAIN;
588 		}
589 	} else {
590 		if (seqno > selinux_avc.avc_cache.latest_notif)
591 			selinux_avc.avc_cache.latest_notif = seqno;
592 	}
593 	spin_unlock_irqrestore(&notif_lock, flag);
594 
595 	return ret;
596 }
597 
598 /**
599  * avc_insert - Insert an AVC entry.
600  * @ssid: source security identifier
601  * @tsid: target security identifier
602  * @tclass: target security class
603  * @avd: resulting av decision
604  * @xp_node: resulting extended permissions
605  *
606  * Insert an AVC entry for the SID pair
607  * (@ssid, @tsid) and class @tclass.
608  * The access vectors and the sequence number are
609  * normally provided by the security server in
610  * response to a security_compute_av() call.  If the
611  * sequence number @avd->seqno is not less than the latest
612  * revocation notification, then the function copies
613  * the access vectors into a cache entry.
614  */
avc_insert(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)615 static void avc_insert(u32 ssid, u32 tsid, u16 tclass,
616 		       struct av_decision *avd, struct avc_xperms_node *xp_node)
617 {
618 	struct avc_node *pos, *node = NULL;
619 	u32 hvalue;
620 	unsigned long flag;
621 	spinlock_t *lock;
622 	struct hlist_head *head;
623 
624 	if (avc_latest_notif_update(avd->seqno, 1))
625 		return;
626 
627 	node = avc_alloc_node();
628 	if (!node)
629 		return;
630 
631 	avc_node_populate(node, ssid, tsid, tclass, avd);
632 	if (avc_xperms_populate(node, xp_node)) {
633 		avc_node_kill(node);
634 		return;
635 	}
636 
637 	hvalue = avc_hash(ssid, tsid, tclass);
638 	head = &selinux_avc.avc_cache.slots[hvalue];
639 	lock = &selinux_avc.avc_cache.slots_lock[hvalue];
640 	spin_lock_irqsave(lock, flag);
641 	hlist_for_each_entry(pos, head, list) {
642 		if (pos->ae.ssid == ssid &&
643 			pos->ae.tsid == tsid &&
644 			pos->ae.tclass == tclass) {
645 			avc_node_replace(node, pos);
646 			goto found;
647 		}
648 	}
649 	hlist_add_head_rcu(&node->list, head);
650 	trace_android_rvh_selinux_avc_insert(node);
651 found:
652 	spin_unlock_irqrestore(lock, flag);
653 }
654 
655 /**
656  * avc_audit_pre_callback - SELinux specific information
657  * will be called by generic audit code
658  * @ab: the audit buffer
659  * @a: audit_data
660  */
avc_audit_pre_callback(struct audit_buffer * ab,void * a)661 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
662 {
663 	struct common_audit_data *ad = a;
664 	struct selinux_audit_data *sad = ad->selinux_audit_data;
665 	u32 av = sad->audited, perm;
666 	const char *const *perms;
667 	u32 i;
668 
669 	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
670 
671 	if (av == 0) {
672 		audit_log_format(ab, " null");
673 		return;
674 	}
675 
676 	perms = secclass_map[sad->tclass-1].perms;
677 
678 	audit_log_format(ab, " {");
679 	i = 0;
680 	perm = 1;
681 	while (i < (sizeof(av) * 8)) {
682 		if ((perm & av) && perms[i]) {
683 			audit_log_format(ab, " %s", perms[i]);
684 			av &= ~perm;
685 		}
686 		i++;
687 		perm <<= 1;
688 	}
689 
690 	if (av)
691 		audit_log_format(ab, " 0x%x", av);
692 
693 	audit_log_format(ab, " } for ");
694 }
695 
696 /**
697  * avc_audit_post_callback - SELinux specific information
698  * will be called by generic audit code
699  * @ab: the audit buffer
700  * @a: audit_data
701  */
avc_audit_post_callback(struct audit_buffer * ab,void * a)702 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
703 {
704 	struct common_audit_data *ad = a;
705 	struct selinux_audit_data *sad = ad->selinux_audit_data;
706 	char *scontext = NULL;
707 	char *tcontext = NULL;
708 	const char *tclass = NULL;
709 	u32 scontext_len;
710 	u32 tcontext_len;
711 	int rc;
712 
713 	rc = security_sid_to_context(sad->ssid, &scontext,
714 				     &scontext_len);
715 	if (rc)
716 		audit_log_format(ab, " ssid=%d", sad->ssid);
717 	else
718 		audit_log_format(ab, " scontext=%s", scontext);
719 
720 	rc = security_sid_to_context(sad->tsid, &tcontext,
721 				     &tcontext_len);
722 	if (rc)
723 		audit_log_format(ab, " tsid=%d", sad->tsid);
724 	else
725 		audit_log_format(ab, " tcontext=%s", tcontext);
726 
727 	tclass = secclass_map[sad->tclass-1].name;
728 	audit_log_format(ab, " tclass=%s", tclass);
729 
730 	if (sad->denied)
731 		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
732 
733 	trace_selinux_audited(sad, scontext, tcontext, tclass);
734 	kfree(tcontext);
735 	kfree(scontext);
736 
737 	/* in case of invalid context report also the actual context string */
738 	rc = security_sid_to_context_inval(sad->ssid, &scontext,
739 					   &scontext_len);
740 	if (!rc && scontext) {
741 		if (scontext_len && scontext[scontext_len - 1] == '\0')
742 			scontext_len--;
743 		audit_log_format(ab, " srawcon=");
744 		audit_log_n_untrustedstring(ab, scontext, scontext_len);
745 		kfree(scontext);
746 	}
747 
748 	rc = security_sid_to_context_inval(sad->tsid, &scontext,
749 					   &scontext_len);
750 	if (!rc && scontext) {
751 		if (scontext_len && scontext[scontext_len - 1] == '\0')
752 			scontext_len--;
753 		audit_log_format(ab, " trawcon=");
754 		audit_log_n_untrustedstring(ab, scontext, scontext_len);
755 		kfree(scontext);
756 	}
757 }
758 
759 /*
760  * This is the slow part of avc audit with big stack footprint.
761  * Note that it is non-blocking and can be called from under
762  * rcu_read_lock().
763  */
slow_avc_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,u32 audited,u32 denied,int result,struct common_audit_data * a)764 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
765 			    u32 requested, u32 audited, u32 denied, int result,
766 			    struct common_audit_data *a)
767 {
768 	struct common_audit_data stack_data;
769 	struct selinux_audit_data sad;
770 
771 	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
772 		return -EINVAL;
773 
774 	if (!a) {
775 		a = &stack_data;
776 		a->type = LSM_AUDIT_DATA_NONE;
777 	}
778 
779 	sad.tclass = tclass;
780 	sad.requested = requested;
781 	sad.ssid = ssid;
782 	sad.tsid = tsid;
783 	sad.audited = audited;
784 	sad.denied = denied;
785 	sad.result = result;
786 
787 	a->selinux_audit_data = &sad;
788 
789 	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
790 	return 0;
791 }
792 
793 /**
794  * avc_add_callback - Register a callback for security events.
795  * @callback: callback function
796  * @events: security events
797  *
798  * Register a callback function for events in the set @events.
799  * Returns %0 on success or -%ENOMEM if insufficient memory
800  * exists to add the callback.
801  */
avc_add_callback(int (* callback)(u32 event),u32 events)802 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
803 {
804 	struct avc_callback_node *c;
805 	int rc = 0;
806 
807 	c = kmalloc(sizeof(*c), GFP_KERNEL);
808 	if (!c) {
809 		rc = -ENOMEM;
810 		goto out;
811 	}
812 
813 	c->callback = callback;
814 	c->events = events;
815 	c->next = avc_callbacks;
816 	avc_callbacks = c;
817 out:
818 	return rc;
819 }
820 
821 /**
822  * avc_update_node - Update an AVC entry
823  * @event : Updating event
824  * @perms : Permission mask bits
825  * @driver: xperm driver information
826  * @xperm: xperm permissions
827  * @ssid: AVC entry source sid
828  * @tsid: AVC entry target sid
829  * @tclass : AVC entry target object class
830  * @seqno : sequence number when decision was made
831  * @xpd: extended_perms_decision to be added to the node
832  * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0.
833  *
834  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
835  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
836  * otherwise, this function updates the AVC entry. The original AVC-entry object
837  * will release later by RCU.
838  */
avc_update_node(u32 event,u32 perms,u8 driver,u8 xperm,u32 ssid,u32 tsid,u16 tclass,u32 seqno,struct extended_perms_decision * xpd,u32 flags)839 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
840 			   u32 tsid, u16 tclass, u32 seqno,
841 			   struct extended_perms_decision *xpd,
842 			   u32 flags)
843 {
844 	u32 hvalue;
845 	int rc = 0;
846 	unsigned long flag;
847 	struct avc_node *pos, *node, *orig = NULL;
848 	struct hlist_head *head;
849 	spinlock_t *lock;
850 
851 	node = avc_alloc_node();
852 	if (!node) {
853 		rc = -ENOMEM;
854 		goto out;
855 	}
856 
857 	/* Lock the target slot */
858 	hvalue = avc_hash(ssid, tsid, tclass);
859 
860 	head = &selinux_avc.avc_cache.slots[hvalue];
861 	lock = &selinux_avc.avc_cache.slots_lock[hvalue];
862 
863 	spin_lock_irqsave(lock, flag);
864 
865 	hlist_for_each_entry(pos, head, list) {
866 		if (ssid == pos->ae.ssid &&
867 		    tsid == pos->ae.tsid &&
868 		    tclass == pos->ae.tclass &&
869 		    seqno == pos->ae.avd.seqno){
870 			orig = pos;
871 			break;
872 		}
873 	}
874 
875 	if (!orig) {
876 		rc = -ENOENT;
877 		avc_node_kill(node);
878 		goto out_unlock;
879 	}
880 
881 	/*
882 	 * Copy and replace original node.
883 	 */
884 
885 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
886 
887 	if (orig->ae.xp_node) {
888 		rc = avc_xperms_populate(node, orig->ae.xp_node);
889 		if (rc) {
890 			avc_node_kill(node);
891 			goto out_unlock;
892 		}
893 	}
894 
895 	switch (event) {
896 	case AVC_CALLBACK_GRANT:
897 		node->ae.avd.allowed |= perms;
898 		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
899 			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
900 		break;
901 	case AVC_CALLBACK_TRY_REVOKE:
902 	case AVC_CALLBACK_REVOKE:
903 		node->ae.avd.allowed &= ~perms;
904 		break;
905 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
906 		node->ae.avd.auditallow |= perms;
907 		break;
908 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
909 		node->ae.avd.auditallow &= ~perms;
910 		break;
911 	case AVC_CALLBACK_AUDITDENY_ENABLE:
912 		node->ae.avd.auditdeny |= perms;
913 		break;
914 	case AVC_CALLBACK_AUDITDENY_DISABLE:
915 		node->ae.avd.auditdeny &= ~perms;
916 		break;
917 	case AVC_CALLBACK_ADD_XPERMS:
918 		rc = avc_add_xperms_decision(node, xpd);
919 		if (rc) {
920 			avc_node_kill(node);
921 			goto out_unlock;
922 		}
923 		break;
924 	}
925 	avc_node_replace(node, orig);
926 out_unlock:
927 	spin_unlock_irqrestore(lock, flag);
928 out:
929 	return rc;
930 }
931 
932 /**
933  * avc_flush - Flush the cache
934  */
avc_flush(void)935 static void avc_flush(void)
936 {
937 	struct hlist_head *head;
938 	struct avc_node *node;
939 	spinlock_t *lock;
940 	unsigned long flag;
941 	int i;
942 
943 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
944 		head = &selinux_avc.avc_cache.slots[i];
945 		lock = &selinux_avc.avc_cache.slots_lock[i];
946 
947 		spin_lock_irqsave(lock, flag);
948 		/*
949 		 * With preemptable RCU, the outer spinlock does not
950 		 * prevent RCU grace periods from ending.
951 		 */
952 		rcu_read_lock();
953 		hlist_for_each_entry(node, head, list)
954 			avc_node_delete(node);
955 		rcu_read_unlock();
956 		spin_unlock_irqrestore(lock, flag);
957 	}
958 }
959 
960 /**
961  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
962  * @seqno: policy sequence number
963  */
avc_ss_reset(u32 seqno)964 int avc_ss_reset(u32 seqno)
965 {
966 	struct avc_callback_node *c;
967 	int rc = 0, tmprc;
968 
969 	avc_flush();
970 
971 	for (c = avc_callbacks; c; c = c->next) {
972 		if (c->events & AVC_CALLBACK_RESET) {
973 			tmprc = c->callback(AVC_CALLBACK_RESET);
974 			/* save the first error encountered for the return
975 			   value and continue processing the callbacks */
976 			if (!rc)
977 				rc = tmprc;
978 		}
979 	}
980 
981 	avc_latest_notif_update(seqno, 0);
982 	return rc;
983 }
984 
985 /**
986  * avc_compute_av - Add an entry to the AVC based on the security policy
987  * @ssid: subject
988  * @tsid: object/target
989  * @tclass: object class
990  * @avd: access vector decision
991  * @xp_node: AVC extended permissions node
992  *
993  * Slow-path helper function for avc_has_perm_noaudit, when the avc_node lookup
994  * fails.  Don't inline this, since it's the slow-path and just results in a
995  * bigger stack frame.
996  */
avc_compute_av(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)997 static noinline void avc_compute_av(u32 ssid, u32 tsid, u16 tclass,
998 				    struct av_decision *avd,
999 				    struct avc_xperms_node *xp_node)
1000 {
1001 	INIT_LIST_HEAD(&xp_node->xpd_head);
1002 	security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
1003 	avc_insert(ssid, tsid, tclass, avd, xp_node);
1004 }
1005 
avc_denied(u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,unsigned int flags,struct av_decision * avd)1006 static noinline int avc_denied(u32 ssid, u32 tsid,
1007 			       u16 tclass, u32 requested,
1008 			       u8 driver, u8 xperm, unsigned int flags,
1009 			       struct av_decision *avd)
1010 {
1011 	if (flags & AVC_STRICT)
1012 		return -EACCES;
1013 
1014 	if (enforcing_enabled() &&
1015 	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1016 		return -EACCES;
1017 
1018 	avc_update_node(AVC_CALLBACK_GRANT, requested, driver,
1019 			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1020 	return 0;
1021 }
1022 
1023 /*
1024  * The avc extended permissions logic adds an additional 256 bits of
1025  * permissions to an avc node when extended permissions for that node are
1026  * specified in the avtab. If the additional 256 permissions is not adequate,
1027  * as-is the case with ioctls, then multiple may be chained together and the
1028  * driver field is used to specify which set contains the permission.
1029  */
avc_has_extended_perms(u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,struct common_audit_data * ad)1030 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1031 			   u8 driver, u8 xperm, struct common_audit_data *ad)
1032 {
1033 	struct avc_node *node;
1034 	struct av_decision avd;
1035 	u32 denied;
1036 	struct extended_perms_decision local_xpd;
1037 	struct extended_perms_decision *xpd = NULL;
1038 	struct extended_perms_data allowed;
1039 	struct extended_perms_data auditallow;
1040 	struct extended_perms_data dontaudit;
1041 	struct avc_xperms_node local_xp_node;
1042 	struct avc_xperms_node *xp_node;
1043 	int rc = 0, rc2;
1044 
1045 	xp_node = &local_xp_node;
1046 	if (WARN_ON(!requested))
1047 		return -EACCES;
1048 
1049 	rcu_read_lock();
1050 
1051 	node = avc_lookup(ssid, tsid, tclass);
1052 	if (unlikely(!node)) {
1053 		avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1054 	} else {
1055 		memcpy(&avd, &node->ae.avd, sizeof(avd));
1056 		xp_node = node->ae.xp_node;
1057 	}
1058 	/* if extended permissions are not defined, only consider av_decision */
1059 	if (!xp_node || !xp_node->xp.len)
1060 		goto decision;
1061 
1062 	local_xpd.allowed = &allowed;
1063 	local_xpd.auditallow = &auditallow;
1064 	local_xpd.dontaudit = &dontaudit;
1065 
1066 	xpd = avc_xperms_decision_lookup(driver, xp_node);
1067 	if (unlikely(!xpd)) {
1068 		/*
1069 		 * Compute the extended_perms_decision only if the driver
1070 		 * is flagged
1071 		 */
1072 		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1073 			avd.allowed &= ~requested;
1074 			goto decision;
1075 		}
1076 		rcu_read_unlock();
1077 		security_compute_xperms_decision(ssid, tsid, tclass,
1078 						 driver, &local_xpd);
1079 		rcu_read_lock();
1080 		avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested,
1081 				driver, xperm, ssid, tsid, tclass, avd.seqno,
1082 				&local_xpd, 0);
1083 	} else {
1084 		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1085 	}
1086 	xpd = &local_xpd;
1087 
1088 	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1089 		avd.allowed &= ~requested;
1090 
1091 decision:
1092 	denied = requested & ~(avd.allowed);
1093 	if (unlikely(denied))
1094 		rc = avc_denied(ssid, tsid, tclass, requested,
1095 				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1096 
1097 	rcu_read_unlock();
1098 
1099 	rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1100 			&avd, xpd, xperm, rc, ad);
1101 	if (rc2)
1102 		return rc2;
1103 	return rc;
1104 }
1105 
1106 /**
1107  * avc_perm_nonode - Add an entry to the AVC
1108  * @ssid: subject
1109  * @tsid: object/target
1110  * @tclass: object class
1111  * @requested: requested permissions
1112  * @flags: AVC flags
1113  * @avd: access vector decision
1114  *
1115  * This is the "we have no node" part of avc_has_perm_noaudit(), which is
1116  * unlikely and needs extra stack space for the new node that we generate, so
1117  * don't inline it.
1118  */
avc_perm_nonode(u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned int flags,struct av_decision * avd)1119 static noinline int avc_perm_nonode(u32 ssid, u32 tsid, u16 tclass,
1120 				    u32 requested, unsigned int flags,
1121 				    struct av_decision *avd)
1122 {
1123 	u32 denied;
1124 	struct avc_xperms_node xp_node;
1125 
1126 	avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1127 	denied = requested & ~(avd->allowed);
1128 	if (unlikely(denied))
1129 		return avc_denied(ssid, tsid, tclass, requested, 0, 0,
1130 				  flags, avd);
1131 	return 0;
1132 }
1133 
1134 /**
1135  * avc_has_perm_noaudit - Check permissions but perform no auditing.
1136  * @ssid: source security identifier
1137  * @tsid: target security identifier
1138  * @tclass: target security class
1139  * @requested: requested permissions, interpreted based on @tclass
1140  * @flags:  AVC_STRICT or 0
1141  * @avd: access vector decisions
1142  *
1143  * Check the AVC to determine whether the @requested permissions are granted
1144  * for the SID pair (@ssid, @tsid), interpreting the permissions
1145  * based on @tclass, and call the security server on a cache miss to obtain
1146  * a new decision and add it to the cache.  Return a copy of the decisions
1147  * in @avd.  Return %0 if all @requested permissions are granted,
1148  * -%EACCES if any permissions are denied, or another -errno upon
1149  * other errors.  This function is typically called by avc_has_perm(),
1150  * but may also be called directly to separate permission checking from
1151  * auditing, e.g. in cases where a lock must be held for the check but
1152  * should be released for the auditing.
1153  */
avc_has_perm_noaudit(u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned int flags,struct av_decision * avd)1154 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1155 				u16 tclass, u32 requested,
1156 				unsigned int flags,
1157 				struct av_decision *avd)
1158 {
1159 	u32 denied;
1160 	struct avc_node *node;
1161 
1162 	if (WARN_ON(!requested))
1163 		return -EACCES;
1164 
1165 	rcu_read_lock();
1166 	node = avc_lookup(ssid, tsid, tclass);
1167 	if (unlikely(!node)) {
1168 		rcu_read_unlock();
1169 		return avc_perm_nonode(ssid, tsid, tclass, requested,
1170 				       flags, avd);
1171 	}
1172 	denied = requested & ~node->ae.avd.allowed;
1173 	memcpy(avd, &node->ae.avd, sizeof(*avd));
1174 	rcu_read_unlock();
1175 
1176 	if (unlikely(denied))
1177 		return avc_denied(ssid, tsid, tclass, requested, 0, 0,
1178 				  flags, avd);
1179 	return 0;
1180 }
1181 
1182 /**
1183  * avc_has_perm - Check permissions and perform any appropriate auditing.
1184  * @ssid: source security identifier
1185  * @tsid: target security identifier
1186  * @tclass: target security class
1187  * @requested: requested permissions, interpreted based on @tclass
1188  * @auditdata: auxiliary audit data
1189  *
1190  * Check the AVC to determine whether the @requested permissions are granted
1191  * for the SID pair (@ssid, @tsid), interpreting the permissions
1192  * based on @tclass, and call the security server on a cache miss to obtain
1193  * a new decision and add it to the cache.  Audit the granting or denial of
1194  * permissions in accordance with the policy.  Return %0 if all @requested
1195  * permissions are granted, -%EACCES if any permissions are denied, or
1196  * another -errno upon other errors.
1197  */
avc_has_perm(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata)1198 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1199 		 u32 requested, struct common_audit_data *auditdata)
1200 {
1201 	struct av_decision avd;
1202 	int rc, rc2;
1203 
1204 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0,
1205 				  &avd);
1206 
1207 	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1208 			auditdata);
1209 	if (rc2)
1210 		return rc2;
1211 	return rc;
1212 }
1213 
avc_policy_seqno(void)1214 u32 avc_policy_seqno(void)
1215 {
1216 	return selinux_avc.avc_cache.latest_notif;
1217 }
1218