1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2019 Facebook */
4
5 #include <assert.h>
6 #include <limits.h>
7 #include <unistd.h>
8 #include <sys/file.h>
9 #include <sys/time.h>
10 #include <linux/err.h>
11 #include <linux/zalloc.h>
12 #include <api/fs/fs.h>
13 #include <perf/bpf_perf.h>
14
15 #include "bpf_counter.h"
16 #include "bpf-utils.h"
17 #include "counts.h"
18 #include "debug.h"
19 #include "evsel.h"
20 #include "evlist.h"
21 #include "target.h"
22 #include "cgroup.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25
26 #include "bpf_skel/bpf_prog_profiler.skel.h"
27 #include "bpf_skel/bperf_u.h"
28 #include "bpf_skel/bperf_leader.skel.h"
29 #include "bpf_skel/bperf_follower.skel.h"
30
31 #define ATTR_MAP_SIZE 16
32
u64_to_ptr(__u64 ptr)33 static inline void *u64_to_ptr(__u64 ptr)
34 {
35 return (void *)(unsigned long)ptr;
36 }
37
bpf_counter_alloc(void)38 static struct bpf_counter *bpf_counter_alloc(void)
39 {
40 struct bpf_counter *counter;
41
42 counter = zalloc(sizeof(*counter));
43 if (counter)
44 INIT_LIST_HEAD(&counter->list);
45 return counter;
46 }
47
bpf_program_profiler__destroy(struct evsel * evsel)48 static int bpf_program_profiler__destroy(struct evsel *evsel)
49 {
50 struct bpf_counter *counter, *tmp;
51
52 list_for_each_entry_safe(counter, tmp,
53 &evsel->bpf_counter_list, list) {
54 list_del_init(&counter->list);
55 bpf_prog_profiler_bpf__destroy(counter->skel);
56 free(counter);
57 }
58 assert(list_empty(&evsel->bpf_counter_list));
59
60 return 0;
61 }
62
bpf_target_prog_name(int tgt_fd)63 static char *bpf_target_prog_name(int tgt_fd)
64 {
65 struct bpf_func_info *func_info;
66 struct perf_bpil *info_linear;
67 const struct btf_type *t;
68 struct btf *btf = NULL;
69 char *name = NULL;
70
71 info_linear = get_bpf_prog_info_linear(tgt_fd, 1UL << PERF_BPIL_FUNC_INFO);
72 if (IS_ERR_OR_NULL(info_linear)) {
73 pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd);
74 return NULL;
75 }
76
77 if (info_linear->info.btf_id == 0) {
78 pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd);
79 goto out;
80 }
81
82 btf = btf__load_from_kernel_by_id(info_linear->info.btf_id);
83 if (libbpf_get_error(btf)) {
84 pr_debug("failed to load btf for prog FD %d\n", tgt_fd);
85 goto out;
86 }
87
88 func_info = u64_to_ptr(info_linear->info.func_info);
89 t = btf__type_by_id(btf, func_info[0].type_id);
90 if (!t) {
91 pr_debug("btf %d doesn't have type %d\n",
92 info_linear->info.btf_id, func_info[0].type_id);
93 goto out;
94 }
95 name = strdup(btf__name_by_offset(btf, t->name_off));
96 out:
97 btf__free(btf);
98 free(info_linear);
99 return name;
100 }
101
bpf_program_profiler_load_one(struct evsel * evsel,u32 prog_id)102 static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id)
103 {
104 struct bpf_prog_profiler_bpf *skel;
105 struct bpf_counter *counter;
106 struct bpf_program *prog;
107 char *prog_name;
108 int prog_fd;
109 int err;
110
111 prog_fd = bpf_prog_get_fd_by_id(prog_id);
112 if (prog_fd < 0) {
113 pr_err("Failed to open fd for bpf prog %u\n", prog_id);
114 return -1;
115 }
116 counter = bpf_counter_alloc();
117 if (!counter) {
118 close(prog_fd);
119 return -1;
120 }
121
122 skel = bpf_prog_profiler_bpf__open();
123 if (!skel) {
124 pr_err("Failed to open bpf skeleton\n");
125 goto err_out;
126 }
127
128 skel->rodata->num_cpu = evsel__nr_cpus(evsel);
129
130 bpf_map__set_max_entries(skel->maps.events, evsel__nr_cpus(evsel));
131 bpf_map__set_max_entries(skel->maps.fentry_readings, 1);
132 bpf_map__set_max_entries(skel->maps.accum_readings, 1);
133
134 prog_name = bpf_target_prog_name(prog_fd);
135 if (!prog_name) {
136 pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id);
137 goto err_out;
138 }
139
140 bpf_object__for_each_program(prog, skel->obj) {
141 err = bpf_program__set_attach_target(prog, prog_fd, prog_name);
142 if (err) {
143 pr_err("bpf_program__set_attach_target failed.\n"
144 "Does bpf prog %u have BTF?\n", prog_id);
145 goto err_out;
146 }
147 }
148 set_max_rlimit();
149 err = bpf_prog_profiler_bpf__load(skel);
150 if (err) {
151 pr_err("bpf_prog_profiler_bpf__load failed\n");
152 goto err_out;
153 }
154
155 assert(skel != NULL);
156 counter->skel = skel;
157 list_add(&counter->list, &evsel->bpf_counter_list);
158 close(prog_fd);
159 return 0;
160 err_out:
161 bpf_prog_profiler_bpf__destroy(skel);
162 free(counter);
163 close(prog_fd);
164 return -1;
165 }
166
bpf_program_profiler__load(struct evsel * evsel,struct target * target)167 static int bpf_program_profiler__load(struct evsel *evsel, struct target *target)
168 {
169 char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p;
170 u32 prog_id;
171 int ret;
172
173 bpf_str_ = bpf_str = strdup(target->bpf_str);
174 if (!bpf_str)
175 return -1;
176
177 while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) {
178 prog_id = strtoul(tok, &p, 10);
179 if (prog_id == 0 || prog_id == UINT_MAX ||
180 (*p != '\0' && *p != ',')) {
181 pr_err("Failed to parse bpf prog ids %s\n",
182 target->bpf_str);
183 return -1;
184 }
185
186 ret = bpf_program_profiler_load_one(evsel, prog_id);
187 if (ret) {
188 bpf_program_profiler__destroy(evsel);
189 free(bpf_str_);
190 return -1;
191 }
192 bpf_str = NULL;
193 }
194 free(bpf_str_);
195 return 0;
196 }
197
bpf_program_profiler__enable(struct evsel * evsel)198 static int bpf_program_profiler__enable(struct evsel *evsel)
199 {
200 struct bpf_counter *counter;
201 int ret;
202
203 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
204 assert(counter->skel != NULL);
205 ret = bpf_prog_profiler_bpf__attach(counter->skel);
206 if (ret) {
207 bpf_program_profiler__destroy(evsel);
208 return ret;
209 }
210 }
211 return 0;
212 }
213
bpf_program_profiler__disable(struct evsel * evsel)214 static int bpf_program_profiler__disable(struct evsel *evsel)
215 {
216 struct bpf_counter *counter;
217
218 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
219 assert(counter->skel != NULL);
220 bpf_prog_profiler_bpf__detach(counter->skel);
221 }
222 return 0;
223 }
224
bpf_program_profiler__read(struct evsel * evsel)225 static int bpf_program_profiler__read(struct evsel *evsel)
226 {
227 // BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible
228 // Sometimes possible > online, like on a Ryzen 3900X that has 24
229 // threads but its possible showed 0-31 -acme
230 int num_cpu_bpf = libbpf_num_possible_cpus();
231 struct bpf_perf_event_value values[num_cpu_bpf];
232 struct bpf_counter *counter;
233 struct perf_counts_values *counts;
234 int reading_map_fd;
235 __u32 key = 0;
236 int err, idx, bpf_cpu;
237
238 if (list_empty(&evsel->bpf_counter_list))
239 return -EAGAIN;
240
241 perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
242 counts = perf_counts(evsel->counts, idx, 0);
243 counts->val = 0;
244 counts->ena = 0;
245 counts->run = 0;
246 }
247 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
248 struct bpf_prog_profiler_bpf *skel = counter->skel;
249
250 assert(skel != NULL);
251 reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
252
253 err = bpf_map_lookup_elem(reading_map_fd, &key, values);
254 if (err) {
255 pr_err("failed to read value\n");
256 return err;
257 }
258
259 for (bpf_cpu = 0; bpf_cpu < num_cpu_bpf; bpf_cpu++) {
260 idx = perf_cpu_map__idx(evsel__cpus(evsel),
261 (struct perf_cpu){.cpu = bpf_cpu});
262 if (idx == -1)
263 continue;
264 counts = perf_counts(evsel->counts, idx, 0);
265 counts->val += values[bpf_cpu].counter;
266 counts->ena += values[bpf_cpu].enabled;
267 counts->run += values[bpf_cpu].running;
268 }
269 }
270 return 0;
271 }
272
bpf_program_profiler__install_pe(struct evsel * evsel,int cpu_map_idx,int fd)273 static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu_map_idx,
274 int fd)
275 {
276 struct bpf_prog_profiler_bpf *skel;
277 struct bpf_counter *counter;
278 int ret;
279
280 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
281 skel = counter->skel;
282 assert(skel != NULL);
283
284 ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events),
285 &cpu_map_idx, &fd, BPF_ANY);
286 if (ret)
287 return ret;
288 }
289 return 0;
290 }
291
292 struct bpf_counter_ops bpf_program_profiler_ops = {
293 .load = bpf_program_profiler__load,
294 .enable = bpf_program_profiler__enable,
295 .disable = bpf_program_profiler__disable,
296 .read = bpf_program_profiler__read,
297 .destroy = bpf_program_profiler__destroy,
298 .install_pe = bpf_program_profiler__install_pe,
299 };
300
bperf_attr_map_compatible(int attr_map_fd)301 static bool bperf_attr_map_compatible(int attr_map_fd)
302 {
303 struct bpf_map_info map_info = {0};
304 __u32 map_info_len = sizeof(map_info);
305 int err;
306
307 err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len);
308
309 if (err)
310 return false;
311 return (map_info.key_size == sizeof(struct perf_event_attr)) &&
312 (map_info.value_size == sizeof(struct perf_event_attr_map_entry));
313 }
314
bperf_lock_attr_map(struct target * target)315 static int bperf_lock_attr_map(struct target *target)
316 {
317 char path[PATH_MAX];
318 int map_fd, err;
319
320 if (target->attr_map) {
321 scnprintf(path, PATH_MAX, "%s", target->attr_map);
322 } else {
323 scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(),
324 BPF_PERF_DEFAULT_ATTR_MAP_PATH);
325 }
326
327 if (access(path, F_OK)) {
328 map_fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL,
329 sizeof(struct perf_event_attr),
330 sizeof(struct perf_event_attr_map_entry),
331 ATTR_MAP_SIZE, NULL);
332 if (map_fd < 0)
333 return -1;
334
335 err = bpf_obj_pin(map_fd, path);
336 if (err) {
337 /* someone pinned the map in parallel? */
338 close(map_fd);
339 map_fd = bpf_obj_get(path);
340 if (map_fd < 0)
341 return -1;
342 }
343 } else {
344 map_fd = bpf_obj_get(path);
345 if (map_fd < 0)
346 return -1;
347 }
348
349 if (!bperf_attr_map_compatible(map_fd)) {
350 close(map_fd);
351 return -1;
352
353 }
354 err = flock(map_fd, LOCK_EX);
355 if (err) {
356 close(map_fd);
357 return -1;
358 }
359 return map_fd;
360 }
361
bperf_check_target(struct evsel * evsel,struct target * target,enum bperf_filter_type * filter_type,__u32 * filter_entry_cnt)362 static int bperf_check_target(struct evsel *evsel,
363 struct target *target,
364 enum bperf_filter_type *filter_type,
365 __u32 *filter_entry_cnt)
366 {
367 if (evsel->core.leader->nr_members > 1) {
368 pr_err("bpf managed perf events do not yet support groups.\n");
369 return -1;
370 }
371
372 /* determine filter type based on target */
373 if (target->system_wide) {
374 *filter_type = BPERF_FILTER_GLOBAL;
375 *filter_entry_cnt = 1;
376 } else if (target->cpu_list) {
377 *filter_type = BPERF_FILTER_CPU;
378 *filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel));
379 } else if (target->tid) {
380 *filter_type = BPERF_FILTER_PID;
381 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
382 } else if (target->pid || evsel->evlist->workload.pid != -1) {
383 *filter_type = BPERF_FILTER_TGID;
384 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
385 } else {
386 pr_err("bpf managed perf events do not yet support these targets.\n");
387 return -1;
388 }
389
390 return 0;
391 }
392
393 static struct perf_cpu_map *all_cpu_map;
394
bperf_reload_leader_program(struct evsel * evsel,int attr_map_fd,struct perf_event_attr_map_entry * entry)395 static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
396 struct perf_event_attr_map_entry *entry)
397 {
398 struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
399 int link_fd, diff_map_fd, err;
400 struct bpf_link *link = NULL;
401
402 if (!skel) {
403 pr_err("Failed to open leader skeleton\n");
404 return -1;
405 }
406
407 bpf_map__set_max_entries(skel->maps.events, libbpf_num_possible_cpus());
408 err = bperf_leader_bpf__load(skel);
409 if (err) {
410 pr_err("Failed to load leader skeleton\n");
411 goto out;
412 }
413
414 link = bpf_program__attach(skel->progs.on_switch);
415 if (IS_ERR(link)) {
416 pr_err("Failed to attach leader program\n");
417 err = PTR_ERR(link);
418 goto out;
419 }
420
421 link_fd = bpf_link__fd(link);
422 diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
423 entry->link_id = bpf_link_get_id(link_fd);
424 entry->diff_map_id = bpf_map_get_id(diff_map_fd);
425 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
426 assert(err == 0);
427
428 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
429 assert(evsel->bperf_leader_link_fd >= 0);
430
431 /*
432 * save leader_skel for install_pe, which is called within
433 * following evsel__open_per_cpu call
434 */
435 evsel->leader_skel = skel;
436 evsel__open_per_cpu(evsel, all_cpu_map, -1);
437
438 out:
439 bperf_leader_bpf__destroy(skel);
440 bpf_link__destroy(link);
441 return err;
442 }
443
bperf__load(struct evsel * evsel,struct target * target)444 static int bperf__load(struct evsel *evsel, struct target *target)
445 {
446 struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
447 int attr_map_fd, diff_map_fd = -1, err;
448 enum bperf_filter_type filter_type;
449 __u32 filter_entry_cnt, i;
450
451 if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
452 return -1;
453
454 if (!all_cpu_map) {
455 all_cpu_map = perf_cpu_map__new(NULL);
456 if (!all_cpu_map)
457 return -1;
458 }
459
460 evsel->bperf_leader_prog_fd = -1;
461 evsel->bperf_leader_link_fd = -1;
462
463 /*
464 * Step 1: hold a fd on the leader program and the bpf_link, if
465 * the program is not already gone, reload the program.
466 * Use flock() to ensure exclusive access to the perf_event_attr
467 * map.
468 */
469 attr_map_fd = bperf_lock_attr_map(target);
470 if (attr_map_fd < 0) {
471 pr_err("Failed to lock perf_event_attr map\n");
472 return -1;
473 }
474
475 err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
476 if (err) {
477 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
478 if (err)
479 goto out;
480 }
481
482 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
483 if (evsel->bperf_leader_link_fd < 0 &&
484 bperf_reload_leader_program(evsel, attr_map_fd, &entry)) {
485 err = -1;
486 goto out;
487 }
488 /*
489 * The bpf_link holds reference to the leader program, and the
490 * leader program holds reference to the maps. Therefore, if
491 * link_id is valid, diff_map_id should also be valid.
492 */
493 evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
494 bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
495 assert(evsel->bperf_leader_prog_fd >= 0);
496
497 diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
498 assert(diff_map_fd >= 0);
499
500 /*
501 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check
502 * whether the kernel support it
503 */
504 err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0);
505 if (err) {
506 pr_err("The kernel does not support test_run for raw_tp BPF programs.\n"
507 "Therefore, --use-bpf might show inaccurate readings\n");
508 goto out;
509 }
510
511 /* Step 2: load the follower skeleton */
512 evsel->follower_skel = bperf_follower_bpf__open();
513 if (!evsel->follower_skel) {
514 err = -1;
515 pr_err("Failed to open follower skeleton\n");
516 goto out;
517 }
518
519 /* attach fexit program to the leader program */
520 bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX,
521 evsel->bperf_leader_prog_fd, "on_switch");
522
523 /* connect to leader diff_reading map */
524 bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd);
525
526 /* set up reading map */
527 bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings,
528 filter_entry_cnt);
529 /* set up follower filter based on target */
530 bpf_map__set_max_entries(evsel->follower_skel->maps.filter,
531 filter_entry_cnt);
532 err = bperf_follower_bpf__load(evsel->follower_skel);
533 if (err) {
534 pr_err("Failed to load follower skeleton\n");
535 bperf_follower_bpf__destroy(evsel->follower_skel);
536 evsel->follower_skel = NULL;
537 goto out;
538 }
539
540 for (i = 0; i < filter_entry_cnt; i++) {
541 int filter_map_fd;
542 __u32 key;
543
544 if (filter_type == BPERF_FILTER_PID ||
545 filter_type == BPERF_FILTER_TGID)
546 key = perf_thread_map__pid(evsel->core.threads, i);
547 else if (filter_type == BPERF_FILTER_CPU)
548 key = perf_cpu_map__cpu(evsel->core.cpus, i).cpu;
549 else
550 break;
551
552 filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter);
553 bpf_map_update_elem(filter_map_fd, &key, &i, BPF_ANY);
554 }
555
556 evsel->follower_skel->bss->type = filter_type;
557
558 err = bperf_follower_bpf__attach(evsel->follower_skel);
559
560 out:
561 if (err && evsel->bperf_leader_link_fd >= 0)
562 close(evsel->bperf_leader_link_fd);
563 if (err && evsel->bperf_leader_prog_fd >= 0)
564 close(evsel->bperf_leader_prog_fd);
565 if (diff_map_fd >= 0)
566 close(diff_map_fd);
567
568 flock(attr_map_fd, LOCK_UN);
569 close(attr_map_fd);
570
571 return err;
572 }
573
bperf__install_pe(struct evsel * evsel,int cpu_map_idx,int fd)574 static int bperf__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
575 {
576 struct bperf_leader_bpf *skel = evsel->leader_skel;
577
578 return bpf_map_update_elem(bpf_map__fd(skel->maps.events),
579 &cpu_map_idx, &fd, BPF_ANY);
580 }
581
582 /*
583 * trigger the leader prog on each cpu, so the accum_reading map could get
584 * the latest readings.
585 */
bperf_sync_counters(struct evsel * evsel)586 static int bperf_sync_counters(struct evsel *evsel)
587 {
588 int num_cpu, i, cpu;
589
590 num_cpu = perf_cpu_map__nr(all_cpu_map);
591 for (i = 0; i < num_cpu; i++) {
592 cpu = perf_cpu_map__cpu(all_cpu_map, i).cpu;
593 bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu);
594 }
595 return 0;
596 }
597
bperf__enable(struct evsel * evsel)598 static int bperf__enable(struct evsel *evsel)
599 {
600 evsel->follower_skel->bss->enabled = 1;
601 return 0;
602 }
603
bperf__disable(struct evsel * evsel)604 static int bperf__disable(struct evsel *evsel)
605 {
606 evsel->follower_skel->bss->enabled = 0;
607 return 0;
608 }
609
bperf__read(struct evsel * evsel)610 static int bperf__read(struct evsel *evsel)
611 {
612 struct bperf_follower_bpf *skel = evsel->follower_skel;
613 __u32 num_cpu_bpf = cpu__max_cpu().cpu;
614 struct bpf_perf_event_value values[num_cpu_bpf];
615 struct perf_counts_values *counts;
616 int reading_map_fd, err = 0;
617 __u32 i;
618 int j;
619
620 bperf_sync_counters(evsel);
621 reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
622
623 for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) {
624 struct perf_cpu entry;
625 __u32 cpu;
626
627 err = bpf_map_lookup_elem(reading_map_fd, &i, values);
628 if (err)
629 goto out;
630 switch (evsel->follower_skel->bss->type) {
631 case BPERF_FILTER_GLOBAL:
632 assert(i == 0);
633
634 perf_cpu_map__for_each_cpu(entry, j, evsel__cpus(evsel)) {
635 counts = perf_counts(evsel->counts, j, 0);
636 counts->val = values[entry.cpu].counter;
637 counts->ena = values[entry.cpu].enabled;
638 counts->run = values[entry.cpu].running;
639 }
640 break;
641 case BPERF_FILTER_CPU:
642 cpu = perf_cpu_map__cpu(evsel__cpus(evsel), i).cpu;
643 assert(cpu >= 0);
644 counts = perf_counts(evsel->counts, i, 0);
645 counts->val = values[cpu].counter;
646 counts->ena = values[cpu].enabled;
647 counts->run = values[cpu].running;
648 break;
649 case BPERF_FILTER_PID:
650 case BPERF_FILTER_TGID:
651 counts = perf_counts(evsel->counts, 0, i);
652 counts->val = 0;
653 counts->ena = 0;
654 counts->run = 0;
655
656 for (cpu = 0; cpu < num_cpu_bpf; cpu++) {
657 counts->val += values[cpu].counter;
658 counts->ena += values[cpu].enabled;
659 counts->run += values[cpu].running;
660 }
661 break;
662 default:
663 break;
664 }
665 }
666 out:
667 return err;
668 }
669
bperf__destroy(struct evsel * evsel)670 static int bperf__destroy(struct evsel *evsel)
671 {
672 bperf_follower_bpf__destroy(evsel->follower_skel);
673 close(evsel->bperf_leader_prog_fd);
674 close(evsel->bperf_leader_link_fd);
675 return 0;
676 }
677
678 /*
679 * bperf: share hardware PMCs with BPF
680 *
681 * perf uses performance monitoring counters (PMC) to monitor system
682 * performance. The PMCs are limited hardware resources. For example,
683 * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
684 *
685 * Modern data center systems use these PMCs in many different ways:
686 * system level monitoring, (maybe nested) container level monitoring, per
687 * process monitoring, profiling (in sample mode), etc. In some cases,
688 * there are more active perf_events than available hardware PMCs. To allow
689 * all perf_events to have a chance to run, it is necessary to do expensive
690 * time multiplexing of events.
691 *
692 * On the other hand, many monitoring tools count the common metrics
693 * (cycles, instructions). It is a waste to have multiple tools create
694 * multiple perf_events of "cycles" and occupy multiple PMCs.
695 *
696 * bperf tries to reduce such wastes by allowing multiple perf_events of
697 * "cycles" or "instructions" (at different scopes) to share PMUs. Instead
698 * of having each perf-stat session to read its own perf_events, bperf uses
699 * BPF programs to read the perf_events and aggregate readings to BPF maps.
700 * Then, the perf-stat session(s) reads the values from these BPF maps.
701 *
702 * ||
703 * shared progs and maps <- || -> per session progs and maps
704 * ||
705 * --------------- ||
706 * | perf_events | ||
707 * --------------- fexit || -----------------
708 * | --------||----> | follower prog |
709 * --------------- / || --- -----------------
710 * cs -> | leader prog |/ ||/ | |
711 * --> --------------- /|| -------------- ------------------
712 * / | | / || | filter map | | accum_readings |
713 * / ------------ ------------ || -------------- ------------------
714 * | | prev map | | diff map | || |
715 * | ------------ ------------ || |
716 * \ || |
717 * = \ ==================================================== | ============
718 * \ / user space
719 * \ /
720 * \ /
721 * BPF_PROG_TEST_RUN BPF_MAP_LOOKUP_ELEM
722 * \ /
723 * \ /
724 * \------ perf-stat ----------------------/
725 *
726 * The figure above shows the architecture of bperf. Note that the figure
727 * is divided into 3 regions: shared progs and maps (top left), per session
728 * progs and maps (top right), and user space (bottom).
729 *
730 * The leader prog is triggered on each context switch (cs). The leader
731 * prog reads perf_events and stores the difference (current_reading -
732 * previous_reading) to the diff map. For the same metric, e.g. "cycles",
733 * multiple perf-stat sessions share the same leader prog.
734 *
735 * Each perf-stat session creates a follower prog as fexit program to the
736 * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38)
737 * follower progs to the same leader prog. The follower prog checks current
738 * task and processor ID to decide whether to add the value from the diff
739 * map to its accumulated reading map (accum_readings).
740 *
741 * Finally, perf-stat user space reads the value from accum_reading map.
742 *
743 * Besides context switch, it is also necessary to trigger the leader prog
744 * before perf-stat reads the value. Otherwise, the accum_reading map may
745 * not have the latest reading from the perf_events. This is achieved by
746 * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU.
747 *
748 * Comment before the definition of struct perf_event_attr_map_entry
749 * describes how different sessions of perf-stat share information about
750 * the leader prog.
751 */
752
753 struct bpf_counter_ops bperf_ops = {
754 .load = bperf__load,
755 .enable = bperf__enable,
756 .disable = bperf__disable,
757 .read = bperf__read,
758 .install_pe = bperf__install_pe,
759 .destroy = bperf__destroy,
760 };
761
762 extern struct bpf_counter_ops bperf_cgrp_ops;
763
bpf_counter_skip(struct evsel * evsel)764 static inline bool bpf_counter_skip(struct evsel *evsel)
765 {
766 return evsel->bpf_counter_ops == NULL;
767 }
768
bpf_counter__install_pe(struct evsel * evsel,int cpu_map_idx,int fd)769 int bpf_counter__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
770 {
771 if (bpf_counter_skip(evsel))
772 return 0;
773 return evsel->bpf_counter_ops->install_pe(evsel, cpu_map_idx, fd);
774 }
775
bpf_counter__load(struct evsel * evsel,struct target * target)776 int bpf_counter__load(struct evsel *evsel, struct target *target)
777 {
778 if (target->bpf_str)
779 evsel->bpf_counter_ops = &bpf_program_profiler_ops;
780 else if (cgrp_event_expanded && target->use_bpf)
781 evsel->bpf_counter_ops = &bperf_cgrp_ops;
782 else if (target->use_bpf || evsel->bpf_counter ||
783 evsel__match_bpf_counter_events(evsel->name))
784 evsel->bpf_counter_ops = &bperf_ops;
785
786 if (evsel->bpf_counter_ops)
787 return evsel->bpf_counter_ops->load(evsel, target);
788 return 0;
789 }
790
bpf_counter__enable(struct evsel * evsel)791 int bpf_counter__enable(struct evsel *evsel)
792 {
793 if (bpf_counter_skip(evsel))
794 return 0;
795 return evsel->bpf_counter_ops->enable(evsel);
796 }
797
bpf_counter__disable(struct evsel * evsel)798 int bpf_counter__disable(struct evsel *evsel)
799 {
800 if (bpf_counter_skip(evsel))
801 return 0;
802 return evsel->bpf_counter_ops->disable(evsel);
803 }
804
bpf_counter__read(struct evsel * evsel)805 int bpf_counter__read(struct evsel *evsel)
806 {
807 if (bpf_counter_skip(evsel))
808 return -EAGAIN;
809 return evsel->bpf_counter_ops->read(evsel);
810 }
811
bpf_counter__destroy(struct evsel * evsel)812 void bpf_counter__destroy(struct evsel *evsel)
813 {
814 if (bpf_counter_skip(evsel))
815 return;
816 evsel->bpf_counter_ops->destroy(evsel);
817 evsel->bpf_counter_ops = NULL;
818 evsel->bpf_skel = NULL;
819 }
820