1 /* chunkcopy.h -- fast chunk copy and set operations
2 * Copyright (C) 2017 ARM, Inc.
3 * Copyright 2017 The Chromium Authors. All rights reserved.
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the Chromium source repository LICENSE file.
6 */
7
8 #ifndef CHUNKCOPY_H
9 #define CHUNKCOPY_H
10
11 #include <stdint.h>
12 #include "zutil.h"
13
14 #define Z_STATIC_ASSERT(name, assert) typedef char name[(assert) ? 1 : -1]
15
16 #if __STDC_VERSION__ >= 199901L
17 #define Z_RESTRICT restrict
18 #else
19 #define Z_RESTRICT
20 #endif
21
22 #if defined(__clang__) || defined(__GNUC__) || defined(__llvm__)
23 #define Z_BUILTIN_MEMCPY __builtin_memcpy
24 #else
25 #define Z_BUILTIN_MEMCPY zmemcpy
26 #endif
27
28 #if defined(INFLATE_CHUNK_SIMD_NEON)
29 #include <arm_neon.h>
30 typedef uint8x16_t z_vec128i_t;
31 #elif defined(INFLATE_CHUNK_SIMD_SSE2)
32 #pragma GCC target ("sse2")
33 #include <emmintrin.h>
34 typedef __m128i z_vec128i_t;
35 #else
36 #error chunkcopy.h inflate chunk SIMD is not defined for your build target
37 #endif
38
39 /*
40 * chunk copy type: the z_vec128i_t type size should be exactly 128-bits
41 * and equal to CHUNKCOPY_CHUNK_SIZE.
42 */
43 #define CHUNKCOPY_CHUNK_SIZE sizeof(z_vec128i_t)
44
45 Z_STATIC_ASSERT(vector_128_bits_wide,
46 CHUNKCOPY_CHUNK_SIZE == sizeof(int8_t) * 16);
47
48 /*
49 * Ask the compiler to perform a wide, unaligned load with a machine
50 * instruction appropriate for the z_vec128i_t type.
51 */
loadchunk(const unsigned char FAR * s)52 static inline z_vec128i_t loadchunk(
53 const unsigned char FAR* s) {
54 z_vec128i_t v;
55 Z_BUILTIN_MEMCPY(&v, s, sizeof(v));
56 return v;
57 }
58
59 /*
60 * Ask the compiler to perform a wide, unaligned store with a machine
61 * instruction appropriate for the z_vec128i_t type.
62 */
storechunk(unsigned char FAR * d,const z_vec128i_t v)63 static inline void storechunk(
64 unsigned char FAR* d,
65 const z_vec128i_t v) {
66 Z_BUILTIN_MEMCPY(d, &v, sizeof(v));
67 }
68
69 /*
70 * Perform a memcpy-like operation, assuming that length is non-zero and that
71 * it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if
72 * the length is shorter than this.
73 *
74 * It also guarantees that it will properly unroll the data if the distance
75 * between `out` and `from` is at least CHUNKCOPY_CHUNK_SIZE, which we rely on
76 * in chunkcopy_relaxed().
77 *
78 * Aside from better memory bus utilisation, this means that short copies
79 * (CHUNKCOPY_CHUNK_SIZE bytes or fewer) will fall straight through the loop
80 * without iteration, which will hopefully make the branch prediction more
81 * reliable.
82 */
chunkcopy_core(unsigned char FAR * out,const unsigned char FAR * from,unsigned len)83 static inline unsigned char FAR* chunkcopy_core(
84 unsigned char FAR* out,
85 const unsigned char FAR* from,
86 unsigned len) {
87 const int bump = (--len % CHUNKCOPY_CHUNK_SIZE) + 1;
88 storechunk(out, loadchunk(from));
89 out += bump;
90 from += bump;
91 len /= CHUNKCOPY_CHUNK_SIZE;
92 while (len-- > 0) {
93 storechunk(out, loadchunk(from));
94 out += CHUNKCOPY_CHUNK_SIZE;
95 from += CHUNKCOPY_CHUNK_SIZE;
96 }
97 return out;
98 }
99
100 /*
101 * Like chunkcopy_core(), but avoid writing beyond of legal output.
102 *
103 * Accepts an additional pointer to the end of safe output. A generic safe
104 * copy would use (out + len), but it's normally the case that the end of the
105 * output buffer is beyond the end of the current copy, and this can still be
106 * exploited.
107 */
chunkcopy_core_safe(unsigned char FAR * out,const unsigned char FAR * from,unsigned len,unsigned char FAR * limit)108 static inline unsigned char FAR* chunkcopy_core_safe(
109 unsigned char FAR* out,
110 const unsigned char FAR* from,
111 unsigned len,
112 unsigned char FAR* limit) {
113 Assert(out + len <= limit, "chunk copy exceeds safety limit");
114 if ((limit - out) < (ptrdiff_t)CHUNKCOPY_CHUNK_SIZE) {
115 const unsigned char FAR* Z_RESTRICT rfrom = from;
116 if (len & 8) {
117 Z_BUILTIN_MEMCPY(out, rfrom, 8);
118 out += 8;
119 rfrom += 8;
120 }
121 if (len & 4) {
122 Z_BUILTIN_MEMCPY(out, rfrom, 4);
123 out += 4;
124 rfrom += 4;
125 }
126 if (len & 2) {
127 Z_BUILTIN_MEMCPY(out, rfrom, 2);
128 out += 2;
129 rfrom += 2;
130 }
131 if (len & 1) {
132 *out++ = *rfrom++;
133 }
134 return out;
135 }
136 return chunkcopy_core(out, from, len);
137 }
138
139 /*
140 * Perform short copies until distance can be rewritten as being at least
141 * CHUNKCOPY_CHUNK_SIZE.
142 *
143 * Assumes it's OK to overwrite at least the first 2*CHUNKCOPY_CHUNK_SIZE
144 * bytes of output even if the copy is shorter than this. This assumption
145 * holds within zlib inflate_fast(), which starts every iteration with at
146 * least 258 bytes of output space available (258 being the maximum length
147 * output from a single token; see inffast.c).
148 */
chunkunroll_relaxed(unsigned char FAR * out,unsigned FAR * dist,unsigned FAR * len)149 static inline unsigned char FAR* chunkunroll_relaxed(
150 unsigned char FAR* out,
151 unsigned FAR* dist,
152 unsigned FAR* len) {
153 const unsigned char FAR* from = out - *dist;
154 while (*dist < *len && *dist < CHUNKCOPY_CHUNK_SIZE) {
155 storechunk(out, loadchunk(from));
156 out += *dist;
157 *len -= *dist;
158 *dist += *dist;
159 }
160 return out;
161 }
162
163 #if defined(INFLATE_CHUNK_SIMD_NEON)
164 /*
165 * v_load64_dup(): load *src as an unaligned 64-bit int and duplicate it in
166 * every 64-bit component of the 128-bit result (64-bit int splat).
167 */
v_load64_dup(const void * src)168 static inline z_vec128i_t v_load64_dup(const void* src) {
169 return vcombine_u8(vld1_u8(src), vld1_u8(src));
170 }
171
172 /*
173 * v_load32_dup(): load *src as an unaligned 32-bit int and duplicate it in
174 * every 32-bit component of the 128-bit result (32-bit int splat).
175 */
v_load32_dup(const void * src)176 static inline z_vec128i_t v_load32_dup(const void* src) {
177 int32_t i32;
178 Z_BUILTIN_MEMCPY(&i32, src, sizeof(i32));
179 return vreinterpretq_u8_s32(vdupq_n_s32(i32));
180 }
181
182 /*
183 * v_load16_dup(): load *src as an unaligned 16-bit int and duplicate it in
184 * every 16-bit component of the 128-bit result (16-bit int splat).
185 */
v_load16_dup(const void * src)186 static inline z_vec128i_t v_load16_dup(const void* src) {
187 int16_t i16;
188 Z_BUILTIN_MEMCPY(&i16, src, sizeof(i16));
189 return vreinterpretq_u8_s16(vdupq_n_s16(i16));
190 }
191
192 /*
193 * v_load8_dup(): load the 8-bit int *src and duplicate it in every 8-bit
194 * component of the 128-bit result (8-bit int splat).
195 */
v_load8_dup(const void * src)196 static inline z_vec128i_t v_load8_dup(const void* src) {
197 return vld1q_dup_u8((const uint8_t*)src);
198 }
199
200 /*
201 * v_store_128(): store the 128-bit vec in a memory destination (that might
202 * not be 16-byte aligned) void* out.
203 */
v_store_128(void * out,const z_vec128i_t vec)204 static inline void v_store_128(void* out, const z_vec128i_t vec) {
205 vst1q_u8(out, vec);
206 }
207
208 #elif defined(INFLATE_CHUNK_SIMD_SSE2)
209 /*
210 * v_load64_dup(): load *src as an unaligned 64-bit int and duplicate it in
211 * every 64-bit component of the 128-bit result (64-bit int splat).
212 */
v_load64_dup(const void * src)213 static inline z_vec128i_t v_load64_dup(const void* src) {
214 int64_t i64;
215 Z_BUILTIN_MEMCPY(&i64, src, sizeof(i64));
216 return _mm_set1_epi64x(i64);
217 }
218
219 /*
220 * v_load32_dup(): load *src as an unaligned 32-bit int and duplicate it in
221 * every 32-bit component of the 128-bit result (32-bit int splat).
222 */
v_load32_dup(const void * src)223 static inline z_vec128i_t v_load32_dup(const void* src) {
224 int32_t i32;
225 Z_BUILTIN_MEMCPY(&i32, src, sizeof(i32));
226 return _mm_set1_epi32(i32);
227 }
228
229 /*
230 * v_load16_dup(): load *src as an unaligned 16-bit int and duplicate it in
231 * every 16-bit component of the 128-bit result (16-bit int splat).
232 */
v_load16_dup(const void * src)233 static inline z_vec128i_t v_load16_dup(const void* src) {
234 int16_t i16;
235 Z_BUILTIN_MEMCPY(&i16, src, sizeof(i16));
236 return _mm_set1_epi16(i16);
237 }
238
239 /*
240 * v_load8_dup(): load the 8-bit int *src and duplicate it in every 8-bit
241 * component of the 128-bit result (8-bit int splat).
242 */
v_load8_dup(const void * src)243 static inline z_vec128i_t v_load8_dup(const void* src) {
244 return _mm_set1_epi8(*(const char*)src);
245 }
246
247 /*
248 * v_store_128(): store the 128-bit vec in a memory destination (that might
249 * not be 16-byte aligned) void* out.
250 */
v_store_128(void * out,const z_vec128i_t vec)251 static inline void v_store_128(void* out, const z_vec128i_t vec) {
252 _mm_storeu_si128((__m128i*)out, vec);
253 }
254 #endif
255
256 /*
257 * Perform an overlapping copy which behaves as a memset() operation, but
258 * supporting periods other than one, and assume that length is non-zero and
259 * that it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE*3 bytes of output
260 * even if the length is shorter than this.
261 */
chunkset_core(unsigned char FAR * out,unsigned period,unsigned len)262 static inline unsigned char FAR* chunkset_core(
263 unsigned char FAR* out,
264 unsigned period,
265 unsigned len) {
266 z_vec128i_t v;
267 const int bump = ((len - 1) % sizeof(v)) + 1;
268
269 switch (period) {
270 case 1:
271 v = v_load8_dup(out - 1);
272 v_store_128(out, v);
273 out += bump;
274 len -= bump;
275 while (len > 0) {
276 v_store_128(out, v);
277 out += sizeof(v);
278 len -= sizeof(v);
279 }
280 return out;
281 case 2:
282 v = v_load16_dup(out - 2);
283 v_store_128(out, v);
284 out += bump;
285 len -= bump;
286 if (len > 0) {
287 v = v_load16_dup(out - 2);
288 do {
289 v_store_128(out, v);
290 out += sizeof(v);
291 len -= sizeof(v);
292 } while (len > 0);
293 }
294 return out;
295 case 4:
296 v = v_load32_dup(out - 4);
297 v_store_128(out, v);
298 out += bump;
299 len -= bump;
300 if (len > 0) {
301 v = v_load32_dup(out - 4);
302 do {
303 v_store_128(out, v);
304 out += sizeof(v);
305 len -= sizeof(v);
306 } while (len > 0);
307 }
308 return out;
309 case 8:
310 v = v_load64_dup(out - 8);
311 v_store_128(out, v);
312 out += bump;
313 len -= bump;
314 if (len > 0) {
315 v = v_load64_dup(out - 8);
316 do {
317 v_store_128(out, v);
318 out += sizeof(v);
319 len -= sizeof(v);
320 } while (len > 0);
321 }
322 return out;
323 }
324 out = chunkunroll_relaxed(out, &period, &len);
325 return chunkcopy_core(out, out - period, len);
326 }
327
328 /*
329 * Perform a memcpy-like operation, but assume that length is non-zero and that
330 * it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if
331 * the length is shorter than this.
332 *
333 * Unlike chunkcopy_core() above, no guarantee is made regarding the behaviour
334 * of overlapping buffers, regardless of the distance between the pointers.
335 * This is reflected in the `restrict`-qualified pointers, allowing the
336 * compiler to re-order loads and stores.
337 */
chunkcopy_relaxed(unsigned char FAR * Z_RESTRICT out,const unsigned char FAR * Z_RESTRICT from,unsigned len)338 static inline unsigned char FAR* chunkcopy_relaxed(
339 unsigned char FAR* Z_RESTRICT out,
340 const unsigned char FAR* Z_RESTRICT from,
341 unsigned len) {
342 return chunkcopy_core(out, from, len);
343 }
344
345 /*
346 * Like chunkcopy_relaxed(), but avoid writing beyond of legal output.
347 *
348 * Unlike chunkcopy_core_safe() above, no guarantee is made regarding the
349 * behaviour of overlapping buffers, regardless of the distance between the
350 * pointers. This is reflected in the `restrict`-qualified pointers, allowing
351 * the compiler to re-order loads and stores.
352 *
353 * Accepts an additional pointer to the end of safe output. A generic safe
354 * copy would use (out + len), but it's normally the case that the end of the
355 * output buffer is beyond the end of the current copy, and this can still be
356 * exploited.
357 */
chunkcopy_safe(unsigned char FAR * out,const unsigned char FAR * Z_RESTRICT from,unsigned len,unsigned char FAR * limit)358 static inline unsigned char FAR* chunkcopy_safe(
359 unsigned char FAR* out,
360 const unsigned char FAR* Z_RESTRICT from,
361 unsigned len,
362 unsigned char FAR* limit) {
363 Assert(out + len <= limit, "chunk copy exceeds safety limit");
364 return chunkcopy_core_safe(out, from, len, limit);
365 }
366
367 /*
368 * Perform chunky copy within the same buffer, where the source and destination
369 * may potentially overlap.
370 *
371 * Assumes that len > 0 on entry, and that it's safe to write at least
372 * CHUNKCOPY_CHUNK_SIZE*3 bytes to the output.
373 */
chunkcopy_lapped_relaxed(unsigned char FAR * out,unsigned dist,unsigned len)374 static inline unsigned char FAR* chunkcopy_lapped_relaxed(
375 unsigned char FAR* out,
376 unsigned dist,
377 unsigned len) {
378 if (dist < len && dist < CHUNKCOPY_CHUNK_SIZE) {
379 return chunkset_core(out, dist, len);
380 }
381 return chunkcopy_core(out, out - dist, len);
382 }
383
384 /*
385 * Behave like chunkcopy_lapped_relaxed(), but avoid writing beyond of legal
386 * output.
387 *
388 * Accepts an additional pointer to the end of safe output. A generic safe
389 * copy would use (out + len), but it's normally the case that the end of the
390 * output buffer is beyond the end of the current copy, and this can still be
391 * exploited.
392 */
chunkcopy_lapped_safe(unsigned char FAR * out,unsigned dist,unsigned len,unsigned char FAR * limit)393 static inline unsigned char FAR* chunkcopy_lapped_safe(
394 unsigned char FAR* out,
395 unsigned dist,
396 unsigned len,
397 unsigned char FAR* limit) {
398 Assert(out + len <= limit, "chunk copy exceeds safety limit");
399 if ((limit - out) < (ptrdiff_t)(3 * CHUNKCOPY_CHUNK_SIZE)) {
400 /* TODO(cavalcantii): try harder to optimise this */
401 while (len-- > 0) {
402 *out = *(out - dist);
403 out++;
404 }
405 return out;
406 }
407 return chunkcopy_lapped_relaxed(out, dist, len);
408 }
409
410 /*
411 * The chunk-copy code above deals with writing the decoded DEFLATE data to
412 * the output with SIMD methods to increase decode speed. Reading the input
413 * to the DEFLATE decoder with a wide, SIMD method can also increase decode
414 * speed. This option is supported on little endian machines, and reads the
415 * input data in 64-bit (8 byte) chunks.
416 */
417
418 #ifdef INFLATE_CHUNK_READ_64LE
419 /*
420 * Buffer the input in a uint64_t (8 bytes) in the wide input reading case.
421 */
422 typedef uint64_t inflate_holder_t;
423
424 /*
425 * Ask the compiler to perform a wide, unaligned load of a uint64_t using a
426 * machine instruction appropriate for the uint64_t type.
427 */
read64le(const unsigned char FAR * in)428 static inline inflate_holder_t read64le(const unsigned char FAR *in) {
429 inflate_holder_t input;
430 Z_BUILTIN_MEMCPY(&input, in, sizeof(input));
431 return input;
432 }
433 #else
434 /*
435 * Otherwise, buffer the input bits using zlib's default input buffer type.
436 */
437 typedef unsigned long inflate_holder_t;
438
439 #endif /* INFLATE_CHUNK_READ_64LE */
440
441 #undef Z_STATIC_ASSERT
442 #undef Z_RESTRICT
443 #undef Z_BUILTIN_MEMCPY
444
445 #endif /* CHUNKCOPY_H */
446