1 /*
2 * By downloading, copying, installing or using the software you agree to this license.
3 * If you do not agree to this license, do not download, install,
4 * copy or use the software.
5 *
6 *
7 * License Agreement
8 * For Open Source Computer Vision Library
9 * (3 - clause BSD License)
10 *
11 * Redistribution and use in source and binary forms, with or without modification,
12 * are permitted provided that the following conditions are met :
13 *
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 *
17 * * Redistributions in binary form must reproduce the above copyright notice,
18 * this list of conditions and the following disclaimer in the documentation
19 * and / or other materials provided with the distribution.
20 *
21 * * Neither the names of the copyright holders nor the names of the contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * This software is provided by the copyright holders and contributors "as is" and
26 * any express or implied warranties, including, but not limited to, the implied
27 * warranties of merchantability and fitness for a particular purpose are disclaimed.
28 * In no event shall copyright holders or contributors be liable for any direct,
29 * indirect, incidental, special, exemplary, or consequential damages
30 * (including, but not limited to, procurement of substitute goods or services;
31 * loss of use, data, or profits; or business interruption) however caused
32 * and on any theory of liability, whether in contract, strict liability,
33 * or tort(including negligence or otherwise) arising in any way out of
34 * the use of this software, even if advised of the possibility of such damage.
35 */
36
37 #include "perf_precomp.hpp"
38
39 namespace opencv_test
40 {
41 using namespace perf;
42 using namespace testing;
43
44 static void MakeArtificialExample(Mat& dst_left_view, Mat& dst_view);
45
46 CV_ENUM(SGBMModes, StereoSGBM::MODE_SGBM, StereoSGBM::MODE_SGBM_3WAY, StereoSGBM::MODE_HH4);
47 typedef tuple<Size, int, SGBMModes> SGBMParams;
48 typedef TestBaseWithParam<SGBMParams> TestStereoCorrespSGBM;
49
50 #ifndef _DEBUG
51 PERF_TEST_P( TestStereoCorrespSGBM, SGBM, Combine(Values(Size(1280,720),Size(640,480)), Values(256,128), SGBMModes::all()) )
52 #else
53 PERF_TEST_P( TestStereoCorrespSGBM, DISABLED_TooLongInDebug_SGBM, Combine(Values(Size(1280,720),Size(640,480)), Values(256,128), SGBMModes::all()) )
54 #endif
55 {
56 SGBMParams params = GetParam();
57
58 Size sz = get<0>(params);
59 int num_disparities = get<1>(params);
60 int mode = get<2>(params);
61
62 Mat src_left(sz, CV_8UC3);
63 Mat src_right(sz, CV_8UC3);
64 Mat dst(sz, CV_16S);
65
66 MakeArtificialExample(src_left,src_right);
67
68 int wsize = 3;
69 int P1 = 8*src_left.channels()*wsize*wsize;
TEST_CYCLE()70 TEST_CYCLE()
71 {
72 Ptr<StereoSGBM> sgbm = StereoSGBM::create(0,num_disparities,wsize,P1,4*P1,1,63,25,0,0,mode);
73 sgbm->compute(src_left,src_right,dst);
74 }
75
76 SANITY_CHECK(dst, .01, ERROR_RELATIVE);
77 }
78
79 typedef tuple<Size, int> BMParams;
80 typedef TestBaseWithParam<BMParams> TestStereoCorrespBM;
81
82 PERF_TEST_P(TestStereoCorrespBM, BM, Combine(Values(Size(1280, 720), Size(640, 480)), Values(256, 128)))
83 {
84 BMParams params = GetParam();
85 Size sz = get<0>(params);
86 int num_disparities = get<1>(params);
87
88 Mat src_left(sz, CV_8UC1);
89 Mat src_right(sz, CV_8UC1);
90 Mat dst(sz, CV_16S);
91
92 MakeArtificialExample(src_left, src_right);
93
94 int wsize = 21;
TEST_CYCLE()95 TEST_CYCLE()
96 {
97 Ptr<StereoBM> bm = StereoBM::create(num_disparities, wsize);
98 bm->compute(src_left, src_right, dst);
99 }
100
101 SANITY_CHECK(dst, .01, ERROR_RELATIVE);
102 }
103
MakeArtificialExample(Mat & dst_left_view,Mat & dst_right_view)104 void MakeArtificialExample(Mat& dst_left_view, Mat& dst_right_view)
105 {
106 RNG rng(0);
107 int w = dst_left_view.cols;
108 int h = dst_left_view.rows;
109
110 //params:
111 unsigned char bg_level = (unsigned char)rng.uniform(0.0,255.0);
112 unsigned char fg_level = (unsigned char)rng.uniform(0.0,255.0);
113 int rect_width = (int)rng.uniform(w/16,w/2);
114 int rect_height = (int)rng.uniform(h/16,h/2);
115 int rect_disparity = (int)(0.15*w);
116 double sigma = 3.0;
117
118 int rect_x_offset = (w-rect_width) /2;
119 int rect_y_offset = (h-rect_height)/2;
120
121 if(dst_left_view.channels()==3)
122 {
123 dst_left_view = Scalar(Vec3b(bg_level,bg_level,bg_level));
124 dst_right_view = Scalar(Vec3b(bg_level,bg_level,bg_level));
125 }
126 else
127 {
128 dst_left_view = Scalar(bg_level);
129 dst_right_view = Scalar(bg_level);
130 }
131
132 Mat dst_left_view_rect = Mat(dst_left_view, Rect(rect_x_offset,rect_y_offset,rect_width,rect_height));
133 if(dst_left_view.channels()==3)
134 dst_left_view_rect = Scalar(Vec3b(fg_level,fg_level,fg_level));
135 else
136 dst_left_view_rect = Scalar(fg_level);
137
138 rect_x_offset-=rect_disparity;
139
140 Mat dst_right_view_rect = Mat(dst_right_view, Rect(rect_x_offset,rect_y_offset,rect_width,rect_height));
141 if(dst_right_view.channels()==3)
142 dst_right_view_rect = Scalar(Vec3b(fg_level,fg_level,fg_level));
143 else
144 dst_right_view_rect = Scalar(fg_level);
145
146 //add some gaussian noise:
147 unsigned char *l, *r;
148 for(int i=0;i<h;i++)
149 {
150 l = dst_left_view.ptr(i);
151 r = dst_right_view.ptr(i);
152
153 if(dst_left_view.channels()==3)
154 {
155 for(int j=0;j<w;j++)
156 {
157 l[0] = saturate_cast<unsigned char>(l[0] + rng.gaussian(sigma));
158 l[1] = saturate_cast<unsigned char>(l[1] + rng.gaussian(sigma));
159 l[2] = saturate_cast<unsigned char>(l[2] + rng.gaussian(sigma));
160 l+=3;
161
162 r[0] = saturate_cast<unsigned char>(r[0] + rng.gaussian(sigma));
163 r[1] = saturate_cast<unsigned char>(r[1] + rng.gaussian(sigma));
164 r[2] = saturate_cast<unsigned char>(r[2] + rng.gaussian(sigma));
165 r+=3;
166 }
167 }
168 else
169 {
170 for(int j=0;j<w;j++)
171 {
172 l[0] = saturate_cast<unsigned char>(l[0] + rng.gaussian(sigma));
173 l++;
174
175 r[0] = saturate_cast<unsigned char>(r[0] + rng.gaussian(sigma));
176 r++;
177 }
178 }
179 }
180 }
181
182 }
183