1 /* 2 * Broadcom Dongle Host Driver (DHD), RTT 3 * 4 * Copyright (C) 1999-2019, Broadcom. 5 * 6 * Unless you and Broadcom execute a separate written software license 7 * agreement governing use of this software, this software is licensed to you 8 * under the terms of the GNU General Public License version 2 (the "GPL"), 9 * available at http://www.broadcom.com/licenses/GPLv2.php, with the 10 * following added to such license: 11 * 12 * As a special exception, the copyright holders of this software give you 13 * permission to link this software with independent modules, and to copy and 14 * distribute the resulting executable under terms of your choice, provided that 15 * you also meet, for each linked independent module, the terms and conditions 16 * of the license of that module. An independent module is a module which is 17 * not derived from this software. The special exception does not apply to any 18 * modifications of the software. 19 * 20 * Notwithstanding the above, under no circumstances may you combine this 21 * software in any way with any other Broadcom software provided under a license 22 * other than the GPL, without Broadcom's express prior written consent. 23 * 24 * 25 * <<Broadcom-WL-IPTag/Open:>> 26 * 27 * $Id$ 28 */ 29 #ifndef __DHD_RTT_H__ 30 #define __DHD_RTT_H__ 31 32 #include "dngl_stats.h" 33 34 #define RTT_MAX_TARGET_CNT 50 35 #define RTT_MAX_FRAME_CNT 25 36 #define RTT_MAX_RETRY_CNT 10 37 #define DEFAULT_FTM_CNT 6 38 #define DEFAULT_RETRY_CNT 6 39 #define DEFAULT_FTM_FREQ 5180 40 #define DEFAULT_FTM_CNTR_FREQ0 5210 41 #define RTT_MAX_GEOFENCE_TARGET_CNT 8 42 43 #define TARGET_INFO_SIZE(count) (sizeof(rtt_target_info_t) * count) 44 45 #define TARGET_TYPE(target) (target->type) 46 47 #define RTT_IS_ENABLED(rtt_status) (rtt_status->status == RTT_ENABLED) 48 #define RTT_IS_STOPPED(rtt_status) (rtt_status->status == RTT_STOPPED) 49 50 #define GEOFENCE_RTT_LOCK(rtt_status) mutex_lock(&(rtt_status)->geofence_mutex) 51 #define GEOFENCE_RTT_UNLOCK(rtt_status) \ 52 mutex_unlock(&(rtt_status)->geofence_mutex) 53 54 #ifndef BIT 55 #define BIT(x) (1 << (x)) 56 #endif // endif 57 58 /* DSSS, CCK and 802.11n rates in [500kbps] units */ 59 #define WL_MAXRATE 108 /* in 500kbps units */ 60 #define WL_RATE_1M 2 /* in 500kbps units */ 61 #define WL_RATE_2M 4 /* in 500kbps units */ 62 #define WL_RATE_5M5 11 /* in 500kbps units */ 63 #define WL_RATE_11M 22 /* in 500kbps units */ 64 #define WL_RATE_6M 12 /* in 500kbps units */ 65 #define WL_RATE_9M 18 /* in 500kbps units */ 66 #define WL_RATE_12M 24 /* in 500kbps units */ 67 #define WL_RATE_18M 36 /* in 500kbps units */ 68 #define WL_RATE_24M 48 /* in 500kbps units */ 69 #define WL_RATE_36M 72 /* in 500kbps units */ 70 #define WL_RATE_48M 96 /* in 500kbps units */ 71 #define WL_RATE_54M 108 /* in 500kbps units */ 72 #define GET_RTTSTATE(dhd) ((rtt_status_info_t *)dhd->rtt_state) 73 74 #ifdef WL_NAN 75 /* RTT Retry Timer Interval */ 76 #define DHD_RTT_RETRY_TIMER_INTERVAL_MS 3000u 77 #endif /* WL_NAN */ 78 79 #define DHD_RTT_INVALID_TARGET_INDEX -1 80 81 enum rtt_role { RTT_INITIATOR = 0, RTT_TARGET = 1 }; 82 enum rtt_status { RTT_STOPPED = 0, RTT_STARTED = 1, RTT_ENABLED = 2 }; 83 typedef int64_t wifi_timestamp; /* In microseconds (us) */ 84 typedef int64_t wifi_timespan; 85 typedef int32 wifi_rssi_rtt; 86 87 typedef enum { RTT_INVALID, RTT_ONE_WAY, RTT_TWO_WAY, RTT_AUTO } rtt_type_t; 88 89 /* RTT peer type */ 90 typedef enum { 91 RTT_PEER_AP = 0x1, 92 RTT_PEER_STA = 0x2, 93 RTT_PEER_P2P_GO = 0x3, 94 RTT_PEER_P2P_CLIENT = 0x4, 95 RTT_PEER_NAN = 0x5, 96 RTT_PEER_INVALID = 0x6 97 } rtt_peer_type_t; 98 99 /* Ranging status */ 100 typedef enum rtt_reason { 101 RTT_STATUS_SUCCESS = 0, 102 RTT_STATUS_FAILURE = 1, // general failure status 103 RTT_STATUS_FAIL_NO_RSP = 2, // target STA does not respond to request 104 RTT_STATUS_FAIL_REJECTED = 105 3, // request rejected. Applies to 2-sided RTT only 106 RTT_STATUS_FAIL_NOT_SCHEDULED_YET = 4, 107 RTT_STATUS_FAIL_TM_TIMEOUT = 5, // timing measurement times out 108 RTT_STATUS_FAIL_AP_ON_DIFF_CHANNEL = 109 6, // Target on different channel, cannot range 110 RTT_STATUS_FAIL_NO_CAPABILITY = 7, // ranging not supported 111 RTT_STATUS_ABORTED = 8, // request aborted for unknown reason 112 RTT_STATUS_FAIL_INVALID_TS = 9, // Invalid T1-T4 timestamp 113 RTT_STATUS_FAIL_PROTOCOL = 10, // 11mc protocol failed 114 RTT_STATUS_FAIL_SCHEDULE = 11, // request could not be scheduled 115 RTT_STATUS_FAIL_BUSY_TRY_LATER = 116 12, // responder cannot collaborate at time of request 117 RTT_STATUS_INVALID_REQ = 13, // bad request args 118 RTT_STATUS_NO_WIFI = 14, // WiFi not enabled Responder overrides param info 119 // cannot range with new params 120 RTT_STATUS_FAIL_FTM_PARAM_OVERRIDE = 15 121 } rtt_reason_t; 122 123 enum { 124 RTT_CAP_ONE_WAY = BIT(0), 125 /* IEEE802.11mc */ 126 RTT_CAP_FTM_WAY = BIT(1) 127 }; 128 129 enum { 130 RTT_FEATURE_LCI = BIT(0), 131 RTT_FEATURE_LCR = BIT(1), 132 RTT_FEATURE_PREAMBLE = BIT(2), 133 RTT_FEATURE_BW = BIT(3) 134 }; 135 136 enum { 137 RTT_PREAMBLE_LEGACY = BIT(0), 138 RTT_PREAMBLE_HT = BIT(1), 139 RTT_PREAMBLE_VHT = BIT(2) 140 }; 141 142 enum { 143 RTT_BW_5 = BIT(0), 144 RTT_BW_10 = BIT(1), 145 RTT_BW_20 = BIT(2), 146 RTT_BW_40 = BIT(3), 147 RTT_BW_80 = BIT(4), 148 RTT_BW_160 = BIT(5) 149 }; 150 151 enum rtt_rate_bw { RTT_RATE_20M, RTT_RATE_40M, RTT_RATE_80M, RTT_RATE_160M }; 152 153 typedef enum ranging_type { 154 RTT_TYPE_INVALID = 0, 155 RTT_TYPE_LEGACY = 1, 156 RTT_TYPE_NAN_DIRECTED = 2, 157 RTT_TYPE_NAN_GEOFENCE = 3 158 } ranging_type_t; 159 160 #define FTM_MAX_NUM_BURST_EXP 14 161 #define HAS_11MC_CAP(cap) (cap & RTT_CAP_FTM_WAY) 162 #define HAS_ONEWAY_CAP(cap) (cap & RTT_CAP_ONE_WAY) 163 #define HAS_RTT_CAP(cap) (HAS_ONEWAY_CAP(cap) || HAS_11MC_CAP(cap)) 164 165 typedef struct wifi_channel_info { 166 wifi_channel_width_t width; 167 wifi_channel center_freq; /* primary 20 MHz channel */ 168 wifi_channel center_freq0; /* center freq (MHz) first segment */ 169 wifi_channel 170 center_freq1; /* center freq (MHz) second segment valid for 80 + 80 */ 171 } wifi_channel_info_t; 172 173 typedef struct wifi_rate { 174 uint32 preamble : 3; /* 0: OFDM, 1: CCK, 2 : HT, 3: VHT, 4..7 reserved */ 175 uint32 nss : 2; /* 1 : 1x1, 2: 2x2, 3: 3x3, 4: 4x4 */ 176 uint32 bw : 3; /* 0: 20Mhz, 1: 40Mhz, 2: 80Mhz, 3: 160Mhz */ 177 /* OFDM/CCK rate code would be as per IEEE std in the unit of 0.5 mb 178 * HT/VHT it would be mcs index 179 */ 180 uint32 rateMcsIdx : 8; 181 uint32 reserved : 16; /* reserved */ 182 uint32 bitrate; /* unit of 100 Kbps */ 183 } wifi_rate_t; 184 185 typedef struct rtt_target_info { 186 struct ether_addr addr; 187 struct ether_addr local_addr; 188 rtt_type_t type; /* rtt_type */ 189 rtt_peer_type_t peer; /* peer type */ 190 wifi_channel_info_t channel; /* channel information */ 191 chanspec_t chanspec; /* chanspec for channel */ 192 bool disable; /* disable for RTT measurement */ 193 /* 194 * Time interval between bursts (units: 100 ms). 195 * Applies to 1-sided and 2-sided RTT multi-burst requests. 196 * Range: 0-31, 0: no preference by initiator (2-sided RTT) 197 */ 198 uint32 burst_period; 199 /* 200 * Total number of RTT bursts to be executed. It will be 201 * specified in the same way as the parameter "Number of 202 * Burst Exponent" found in the FTM frame format. It 203 * applies to both: 1-sided RTT and 2-sided RTT. Valid 204 * values are 0 to 15 as defined in 802.11mc std. 205 * 0 means single shot 206 * The implication of this parameter on the maximum 207 * number of RTT results is the following: 208 * for 1-sided RTT: max num of RTT results = 209 * (2^num_burst)*(num_frames_per_burst) for 2-sided RTT: max num of RTT 210 * results = (2^num_burst)*(num_frames_per_burst - 1) 211 */ 212 uint16 num_burst; 213 /* 214 * num of frames per burst. 215 * Minimum value = 1, Maximum value = 31 216 * For 2-sided this equals the number of FTM frames 217 * to be attempted in a single burst. This also 218 * equals the number of FTM frames that the 219 * initiator will request that the responder send 220 * in a single frame 221 */ 222 uint32 num_frames_per_burst; 223 /* 224 * num of frames in each RTT burst 225 * for single side, measurement result num = frame number 226 * for 2 side RTT, measurement result num = frame number - 1 227 */ 228 uint32 num_retries_per_ftm; /* retry time for RTT measurment frame */ 229 /* following fields are only valid for 2 side RTT */ 230 uint32 num_retries_per_ftmr; 231 uint8 LCI_request; 232 uint8 LCR_request; 233 /* 234 * Applies to 1-sided and 2-sided RTT. Valid values will 235 * be 2-11 and 15 as specified by the 802.11mc std for 236 * the FTM parameter burst duration. In a multi-burst 237 * request, if responder overrides with larger value, 238 * the initiator will return failure. In a single-burst 239 * request if responder overrides with larger value, 240 * the initiator will sent TMR_STOP to terminate RTT 241 * at the end of the burst_duration it requested. 242 */ 243 uint32 burst_duration; 244 uint32 burst_timeout; 245 uint8 preamble; /* 1 - Legacy, 2 - HT, 4 - VHT */ 246 uint8 bw; /* 5, 10, 20, 40, 80, 160 */ 247 } rtt_target_info_t; 248 249 typedef struct rtt_goefence_target_info { 250 bool valid; 251 struct ether_addr peer_addr; 252 } rtt_geofence_target_info_t; 253 254 typedef struct rtt_config_params { 255 int8 rtt_target_cnt; 256 rtt_target_info_t *target_info; 257 } rtt_config_params_t; 258 259 typedef struct rtt_geofence_cfg { 260 int8 geofence_target_cnt; 261 bool rtt_in_progress; 262 bool role_concurr_state; 263 int8 cur_target_idx; 264 rtt_geofence_target_info_t 265 geofence_target_info[RTT_MAX_GEOFENCE_TARGET_CNT]; 266 int geofence_rtt_interval; 267 #ifdef RTT_GEOFENCE_CONT 268 bool geofence_cont; 269 #endif /* RTT_GEOFENCE_CONT */ 270 } rtt_geofence_cfg_t; 271 272 /* 273 * Keep Adding more reasons 274 * going forward if needed 275 */ 276 enum rtt_schedule_reason { 277 RTT_SCHED_HOST_TRIGGER = 1, /* On host command for directed RTT */ 278 RTT_SCHED_SUB_MATCH = 2, /* on Sub Match for svc with range req */ 279 RTT_SCHED_DIR_TRIGGER_FAIL = 3, /* On failure of Directed RTT Trigger */ 280 RTT_SCHED_DP_END = 4, /* ON NDP End event from fw */ 281 RTT_SCHED_DP_REJECTED = 5, /* On receving reject dp event from fw */ 282 RTT_SCHED_RNG_RPT_DIRECTED = 6, /* On Ranging report for directed RTT */ 283 RTT_SCHED_RNG_TERM = 7, /* On Range Term Indicator */ 284 RTT_SHCED_HOST_DIRECTED_TERM = 285 8, /* On host terminating directed RTT sessions */ 286 RTT_SCHED_RNG_RPT_GEOFENCE = 9, /* On Ranging report for geofence RTT */ 287 RTT_SCHED_RTT_RETRY_GEOFENCE = 10, /* On Geofence Retry */ 288 RTT_SCHED_RNG_TERM_PEND_ROLE_CHANGE = 289 11 /* On Rng Term, while pending role change */ 290 }; 291 292 /* 293 * Keep Adding more invalid RTT states 294 * going forward if needed 295 */ 296 enum rtt_invalid_state { 297 RTT_STATE_VALID = 0, /* RTT state is valid */ 298 RTT_STATE_INV_REASON_NDP_EXIST = 1 /* RTT state invalid as ndp exists */ 299 }; 300 301 typedef struct rtt_status_info { 302 dhd_pub_t *dhd; 303 int8 status; /* current status for the current entry */ 304 int8 txchain; /* current device tx chain */ 305 int pm; /* to save current value of pm */ 306 int8 pm_restore; /* flag to reset the old value of pm */ 307 int8 cur_idx; /* current entry to do RTT */ 308 bool all_cancel; /* cancel all request once we got the cancel requet */ 309 uint32 flags; /* indicate whether device is configured as initiator or 310 target */ 311 struct capability { 312 int32 proto : 8; 313 int32 feature : 8; 314 int32 preamble : 8; 315 int32 bw : 8; 316 } rtt_capa; /* rtt capability */ 317 struct mutex rtt_mutex; 318 struct mutex rtt_work_mutex; 319 struct mutex geofence_mutex; 320 rtt_config_params_t rtt_config; 321 rtt_geofence_cfg_t geofence_cfg; 322 struct work_struct work; 323 struct list_head noti_fn_list; 324 struct list_head rtt_results_cache; /* store results for RTT */ 325 int rtt_sched_reason; /* rtt_schedule_reason: what scheduled RTT */ 326 struct delayed_work proxd_timeout; /* Proxd Timeout work */ 327 struct delayed_work 328 rtt_retry_timer; /* Timer for retry RTT after all targets done */ 329 } rtt_status_info_t; 330 331 typedef struct rtt_report { 332 struct ether_addr addr; 333 unsigned int burst_num; /* # of burst inside a multi-burst request */ 334 unsigned int ftm_num; /* total RTT measurement frames attempted */ 335 unsigned int success_num; /* total successful RTT measurement frames */ 336 uint8 num_per_burst_peer; /* max number of FTM number per burst the peer 337 support */ 338 rtt_reason_t status; /* raging status */ 339 /* in s, 11mc only, only for RTT_REASON_FAIL_BUSY_TRY_LATER, 1- 31s */ 340 uint8 retry_after_duration; 341 rtt_type_t type; /* rtt type */ 342 wifi_rssi_rtt 343 rssi; /* average rssi in 0.5 dB steps e.g. 143 implies -71.5 dB */ 344 wifi_rssi_rtt 345 rssi_spread; /* rssi spread in 0.5 db steps e.g. 5 implies 2.5 spread */ 346 /* 347 * 1-sided RTT: TX rate of RTT frame. 348 * 2-sided RTT: TX rate of initiator's Ack in response to FTM frame. 349 */ 350 wifi_rate_t tx_rate; 351 /* 352 * 1-sided RTT: TX rate of Ack from other side. 353 * 2-sided RTT: TX rate of FTM frame coming from responder. 354 */ 355 wifi_rate_t rx_rate; 356 wifi_timespan rtt; /* round trip time in 0.1 nanoseconds */ 357 wifi_timespan rtt_sd; /* rtt standard deviation in 0.1 nanoseconds */ 358 wifi_timespan 359 rtt_spread; /* difference between max and min rtt times recorded */ 360 int distance; /* distance in cm (optional) */ 361 int distance_sd; /* standard deviation in cm (optional) */ 362 int distance_spread; /* difference between max and min distance recorded 363 (optional) */ 364 wifi_timestamp 365 ts; /* time of the measurement (in microseconds since boot) */ 366 int burst_duration; /* in ms, how long the FW time is to fininish one burst 367 measurement */ 368 int negotiated_burst_num; /* Number of bursts allowed by the responder */ 369 bcm_tlv_t *LCI; /* LCI Report */ 370 bcm_tlv_t *LCR; /* Location Civic Report */ 371 } rtt_report_t; 372 #define RTT_REPORT_SIZE (sizeof(rtt_report_t)) 373 374 /* rtt_results_header to maintain rtt result list per mac address */ 375 typedef struct rtt_results_header { 376 struct ether_addr peer_mac; 377 uint32 result_cnt; 378 uint32 result_tot_len; /* sum of report_len of rtt_result */ 379 struct list_head list; 380 struct list_head result_list; 381 } rtt_results_header_t; 382 struct rtt_result_detail { 383 uint8 num_ota_meas; 384 uint32 result_flags; 385 }; 386 /* rtt_result to link all of rtt_report */ 387 typedef struct rtt_result { 388 struct list_head list; 389 struct rtt_report report; 390 int32 report_len; /* total length of rtt_report */ 391 struct rtt_result_detail rtt_detail; 392 int32 detail_len; 393 } rtt_result_t; 394 395 /* RTT Capabilities */ 396 typedef struct rtt_capabilities { 397 uint8 rtt_one_sided_supported; /* if 1-sided rtt data collection is 398 supported */ 399 uint8 rtt_ftm_supported; /* if ftm rtt data collection is supported */ 400 uint8 lci_support; /* location configuration information */ 401 uint8 lcr_support; /* Civic Location */ 402 uint8 preamble_support; /* bit mask indicate what preamble is supported */ 403 uint8 bw_support; /* bit mask indicate what BW is supported */ 404 } rtt_capabilities_t; 405 406 /* RTT responder information */ 407 typedef struct wifi_rtt_responder { 408 wifi_channel_info channel; /* channel of responder */ 409 uint8 preamble; /* preamble supported by responder */ 410 } wifi_rtt_responder_t; 411 412 typedef void (*dhd_rtt_compl_noti_fn)(void *ctx, void *rtt_data); 413 /* Linux wrapper to call common dhd_rtt_set_cfg */ 414 int dhd_dev_rtt_set_cfg(struct net_device *dev, void *buf); 415 416 int dhd_dev_rtt_cancel_cfg(struct net_device *dev, struct ether_addr *mac_list, 417 int mac_cnt); 418 419 int dhd_dev_rtt_register_noti_callback(struct net_device *dev, void *ctx, 420 dhd_rtt_compl_noti_fn noti_fn); 421 422 int dhd_dev_rtt_unregister_noti_callback(struct net_device *dev, 423 dhd_rtt_compl_noti_fn noti_fn); 424 425 int dhd_dev_rtt_capability(struct net_device *dev, rtt_capabilities_t *capa); 426 427 int dhd_dev_rtt_avail_channel(struct net_device *dev, 428 wifi_channel_info *channel_info); 429 430 int dhd_dev_rtt_enable_responder(struct net_device *dev, 431 wifi_channel_info *channel_info); 432 433 int dhd_dev_rtt_cancel_responder(struct net_device *dev); 434 /* export to upper layer */ 435 chanspec_t dhd_rtt_convert_to_chspec(wifi_channel_info_t channel); 436 437 int dhd_rtt_idx_to_burst_duration(uint idx); 438 439 int dhd_rtt_set_cfg(dhd_pub_t *dhd, rtt_config_params_t *params); 440 441 #ifdef WL_NAN 442 void dhd_rtt_initialize_geofence_cfg(dhd_pub_t *dhd); 443 #ifdef RTT_GEOFENCE_CONT 444 void dhd_rtt_set_geofence_cont_ind(dhd_pub_t *dhd, bool geofence_cont); 445 446 void dhd_rtt_get_geofence_cont_ind(dhd_pub_t *dhd, bool *geofence_cont); 447 #endif /* RTT_GEOFENCE_CONT */ 448 449 #ifdef RTT_GEOFENCE_INTERVAL 450 void dhd_rtt_set_geofence_rtt_interval(dhd_pub_t *dhd, int interval); 451 #endif /* RTT_GEOFENCE_INTERVAL */ 452 453 void dhd_rtt_set_role_concurrency_state(dhd_pub_t *dhd, bool state); 454 455 bool dhd_rtt_get_role_concurrency_state(dhd_pub_t *dhd); 456 457 int8 dhd_rtt_get_geofence_target_cnt(dhd_pub_t *dhd); 458 459 void dhd_rtt_set_geofence_rtt_state(dhd_pub_t *dhd, bool state); 460 461 bool dhd_rtt_get_geofence_rtt_state(dhd_pub_t *dhd); 462 463 rtt_geofence_target_info_t *dhd_rtt_get_geofence_target_head(dhd_pub_t *dhd); 464 465 rtt_geofence_target_info_t *dhd_rtt_get_geofence_current_target(dhd_pub_t *dhd); 466 467 rtt_geofence_target_info_t * 468 dhd_rtt_get_geofence_target(dhd_pub_t *dhd, struct ether_addr *peer_addr, 469 int8 *index); 470 471 int dhd_rtt_add_geofence_target(dhd_pub_t *dhd, 472 rtt_geofence_target_info_t *target); 473 474 int dhd_rtt_remove_geofence_target(dhd_pub_t *dhd, 475 struct ether_addr *peer_addr); 476 477 int dhd_rtt_delete_geofence_target_list(dhd_pub_t *dhd); 478 479 int dhd_rtt_delete_nan_session(dhd_pub_t *dhd); 480 #endif /* WL_NAN */ 481 482 uint8 dhd_rtt_invalid_states(struct net_device *ndev, 483 struct ether_addr *peer_addr); 484 485 void dhd_rtt_schedule_rtt_work_thread(dhd_pub_t *dhd, int sched_reason); 486 487 int dhd_rtt_stop(dhd_pub_t *dhd, struct ether_addr *mac_list, int mac_cnt); 488 489 int dhd_rtt_register_noti_callback(dhd_pub_t *dhd, void *ctx, 490 dhd_rtt_compl_noti_fn noti_fn); 491 492 int dhd_rtt_unregister_noti_callback(dhd_pub_t *dhd, 493 dhd_rtt_compl_noti_fn noti_fn); 494 495 int dhd_rtt_event_handler(dhd_pub_t *dhd, wl_event_msg_t *event, 496 void *event_data); 497 498 int dhd_rtt_capability(dhd_pub_t *dhd, rtt_capabilities_t *capa); 499 500 int dhd_rtt_avail_channel(dhd_pub_t *dhd, wifi_channel_info *channel_info); 501 502 int dhd_rtt_enable_responder(dhd_pub_t *dhd, wifi_channel_info *channel_info); 503 504 int dhd_rtt_cancel_responder(dhd_pub_t *dhd); 505 506 int dhd_rtt_init(dhd_pub_t *dhd); 507 508 int dhd_rtt_deinit(dhd_pub_t *dhd); 509 510 #ifdef WL_CFG80211 511 int dhd_rtt_handle_nan_rtt_session_end(dhd_pub_t *dhd, struct ether_addr *peer); 512 513 void dhd_rtt_move_geofence_cur_target_idx_to_next(dhd_pub_t *dhd); 514 515 int8 dhd_rtt_get_geofence_cur_target_idx(dhd_pub_t *dhd); 516 #endif /* WL_CFG80211 */ 517 518 #endif /* __DHD_RTT_H__ */ 519