1 // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <stdlib.h>
16 #include <assert.h>
17 #include <string.h>
18 #include <stdio.h>
19
20 #include <esp_osal/esp_osal.h>
21 #include <esp_osal/task.h>
22 #include <esp_osal/semphr.h>
23 #include "soc/soc.h"
24 #include "soc/soc_memory_layout.h"
25 #include "soc/dport_access.h"
26 #include "sdkconfig.h"
27 #include "esp_attr.h"
28 #include "esp_spi_flash.h"
29 #include "esp_flash_encrypt.h"
30 #include "esp_log.h"
31 #include "cache_utils.h"
32
33 #if CONFIG_IDF_TARGET_ESP32
34 #include "soc/dport_reg.h"
35 #include "esp32/rom/cache.h"
36 #include "esp32/rom/spi_flash.h"
37 #include "esp32/spiram.h"
38 #include "soc/mmu.h"
39 #elif CONFIG_IDF_TARGET_ESP32S2
40 #include "esp32s2/rom/cache.h"
41 #include "esp32s2/rom/spi_flash.h"
42 #include "esp32s2/spiram.h"
43 #include "soc/extmem_reg.h"
44 #include "soc/cache_memory.h"
45 #include "soc/mmu.h"
46 #elif CONFIG_IDF_TARGET_ESP32S3
47 #include "esp32s3/rom/spi_flash.h"
48 #include "esp32s3/rom/cache.h"
49 #include "esp32s3/spiram.h"
50 #include "soc/extmem_reg.h"
51 #include "soc/cache_memory.h"
52 #include "soc/mmu.h"
53 #elif CONFIG_IDF_TARGET_ESP32C3
54 #include "esp32c3/rom/cache.h"
55 #include "esp32c3/rom/spi_flash.h"
56 #include "soc/cache_memory.h"
57 #include "soc/mmu.h"
58 #endif
59
60 #ifndef NDEBUG
61 // Enable built-in checks in queue.h in debug builds
62 #define INVARIANTS
63 #endif
64 #include "sys/queue.h"
65
66 #define IROM0_PAGES_NUM (SOC_MMU_IROM0_PAGES_END - SOC_MMU_IROM0_PAGES_START)
67 #define DROM0_PAGES_NUM (SOC_MMU_DROM0_PAGES_END - SOC_MMU_DROM0_PAGES_START)
68 #define PAGES_LIMIT ((SOC_MMU_IROM0_PAGES_END > SOC_MMU_DROM0_PAGES_END) ? SOC_MMU_IROM0_PAGES_END:SOC_MMU_DROM0_PAGES_END)
69
70 #if !CONFIG_SPI_FLASH_ROM_IMPL
71
72 typedef struct mmap_entry_{
73 uint32_t handle;
74 int page;
75 int count;
76 LIST_ENTRY(mmap_entry_) entries;
77 } mmap_entry_t;
78
79
80 static LIST_HEAD(mmap_entries_head, mmap_entry_) s_mmap_entries_head =
81 LIST_HEAD_INITIALIZER(s_mmap_entries_head);
82 static uint8_t s_mmap_page_refcnt[SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION] = {0};
83 static uint32_t s_mmap_last_handle = 0;
84
85
spi_flash_mmap_init(void)86 static void IRAM_ATTR spi_flash_mmap_init(void)
87 {
88 if (s_mmap_page_refcnt[SOC_MMU_DROM0_PAGES_START] != 0) {
89 return; /* mmap data already initialised */
90 }
91 DPORT_INTERRUPT_DISABLE();
92 for (int i = 0; i < SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION; ++i) {
93 uint32_t entry_pro = DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]);
94 #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
95 uint32_t entry_app = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[i]);
96
97 if (entry_pro != entry_app) {
98 // clean up entries used by boot loader
99 entry_pro = SOC_MMU_INVALID_ENTRY_VAL;
100 SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
101 }
102 #endif
103 if ((entry_pro & SOC_MMU_INVALID_ENTRY_VAL) == 0 && (i == SOC_MMU_DROM0_PAGES_START || i == SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE || entry_pro != 0)) {
104 s_mmap_page_refcnt[i] = 1;
105 } else {
106 SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
107 #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
108 DPORT_APP_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
109 #endif
110 }
111 }
112 DPORT_INTERRUPT_RESTORE();
113 }
114
get_mmu_region(spi_flash_mmap_memory_t memory,int * out_begin,int * out_size,uint32_t * region_addr)115 static void IRAM_ATTR get_mmu_region(spi_flash_mmap_memory_t memory, int* out_begin, int* out_size,uint32_t* region_addr)
116 {
117 if (memory == SPI_FLASH_MMAP_DATA) {
118 // Vaddr0
119 *out_begin = SOC_MMU_DROM0_PAGES_START;
120 *out_size = DROM0_PAGES_NUM;
121 *region_addr = SOC_MMU_VADDR0_START_ADDR;
122 } else {
123 // only part of VAddr1 is usable, so adjust for that
124 *out_begin = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
125 *out_size = SOC_MMU_IROM0_PAGES_END - *out_begin;
126 *region_addr = SOC_MMU_VADDR1_FIRST_USABLE_ADDR;
127 }
128 }
129
spi_flash_mmap(size_t src_addr,size_t size,spi_flash_mmap_memory_t memory,const void ** out_ptr,spi_flash_mmap_handle_t * out_handle)130 esp_err_t IRAM_ATTR spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
131 const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
132 {
133 esp_err_t ret;
134 if (src_addr & 0xffff) {
135 return ESP_ERR_INVALID_ARG;
136 }
137 if (src_addr + size > g_rom_flashchip.chip_size) {
138 return ESP_ERR_INVALID_ARG;
139 }
140 // region which should be mapped
141 int phys_page = src_addr / SPI_FLASH_MMU_PAGE_SIZE;
142 int page_count = (size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE;
143 // prepare a linear pages array to feed into spi_flash_mmap_pages
144 int *pages = heap_caps_malloc(sizeof(int)*page_count, MALLOC_CAP_INTERNAL);
145 if (pages == NULL) {
146 return ESP_ERR_NO_MEM;
147 }
148 for (int i = 0; i < page_count; i++) {
149 pages[i] = (phys_page+i);
150 }
151 ret = spi_flash_mmap_pages(pages, page_count, memory, out_ptr, out_handle);
152 free(pages);
153 return ret;
154 }
155
spi_flash_mmap_pages(const int * pages,size_t page_count,spi_flash_mmap_memory_t memory,const void ** out_ptr,spi_flash_mmap_handle_t * out_handle)156 esp_err_t IRAM_ATTR spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
157 const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
158 {
159 esp_err_t ret;
160 const void* temp_ptr = *out_ptr = NULL;
161 spi_flash_mmap_handle_t temp_handle = *out_handle = (spi_flash_mmap_handle_t)NULL;
162 bool need_flush = false;
163 if (!page_count) {
164 return ESP_ERR_INVALID_ARG;
165 }
166 if (!esp_ptr_internal(pages)) {
167 return ESP_ERR_INVALID_ARG;
168 }
169 for (int i = 0; i < page_count; i++) {
170 if (pages[i] < 0 || pages[i]*SPI_FLASH_MMU_PAGE_SIZE >= g_rom_flashchip.chip_size) {
171 return ESP_ERR_INVALID_ARG;
172 }
173 }
174 mmap_entry_t* new_entry = (mmap_entry_t*) heap_caps_malloc(sizeof(mmap_entry_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
175 if (new_entry == 0) {
176 return ESP_ERR_NO_MEM;
177 }
178
179 spi_flash_disable_interrupts_caches_and_other_cpu();
180
181 spi_flash_mmap_init();
182 // figure out the memory region where we should look for pages
183 int region_begin; // first page to check
184 int region_size; // number of pages to check
185 uint32_t region_addr; // base address of memory region
186 get_mmu_region(memory,®ion_begin,®ion_size,®ion_addr);
187 if (region_size < page_count) {
188 spi_flash_enable_interrupts_caches_and_other_cpu();
189 return ESP_ERR_NO_MEM;
190 }
191 // The following part searches for a range of MMU entries which can be used.
192 // Algorithm is essentially naïve strstr algorithm, except that unused MMU
193 // entries are treated as wildcards.
194 int start;
195 // the " + 1" is a fix when loop the MMU table pages, because the last MMU page
196 // is valid as well if it have not been used
197 int end = region_begin + region_size - page_count + 1;
198 for (start = region_begin; start < end; ++start) {
199 int pageno = 0;
200 int pos;
201 DPORT_INTERRUPT_DISABLE();
202 for (pos = start; pos < start + page_count; ++pos, ++pageno) {
203 int table_val = (int) DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[pos]);
204 uint8_t refcnt = s_mmap_page_refcnt[pos];
205 if (refcnt != 0 && table_val != SOC_MMU_PAGE_IN_FLASH(pages[pageno])) {
206 break;
207 }
208 }
209 DPORT_INTERRUPT_RESTORE();
210 // whole mapping range matched, bail out
211 if (pos - start == page_count) {
212 break;
213 }
214 }
215 // checked all the region(s) and haven't found anything?
216 if (start == end) {
217 ret = ESP_ERR_NO_MEM;
218 } else {
219 // set up mapping using pages
220 uint32_t pageno = 0;
221 DPORT_INTERRUPT_DISABLE();
222 for (int i = start; i != start + page_count; ++i, ++pageno) {
223 // sanity check: we won't reconfigure entries with non-zero reference count
224 uint32_t entry_pro = DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]);
225 #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
226 uint32_t entry_app = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[i]);
227 #endif
228 assert(s_mmap_page_refcnt[i] == 0 ||
229 (entry_pro == SOC_MMU_PAGE_IN_FLASH(pages[pageno])
230 #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
231 && entry_app == SOC_MMU_PAGE_IN_FLASH(pages[pageno])
232 #endif
233 ));
234 if (s_mmap_page_refcnt[i] == 0) {
235 if (entry_pro != SOC_MMU_PAGE_IN_FLASH(pages[pageno])
236 #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
237 || entry_app != SOC_MMU_PAGE_IN_FLASH(pages[pageno])
238 #endif
239 ) {
240 SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_PAGE_IN_FLASH(pages[pageno]);
241 #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
242 DPORT_APP_FLASH_MMU_TABLE[i] = pages[pageno];
243 #endif
244
245 #if !CONFIG_IDF_TARGET_ESP32
246 Cache_Invalidate_Addr(region_addr + (i - region_begin) * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMU_PAGE_SIZE);
247 #endif
248 need_flush = true;
249 }
250 }
251 ++s_mmap_page_refcnt[i];
252 }
253 DPORT_INTERRUPT_RESTORE();
254 LIST_INSERT_HEAD(&s_mmap_entries_head, new_entry, entries);
255 new_entry->page = start;
256 new_entry->count = page_count;
257 new_entry->handle = ++s_mmap_last_handle;
258 temp_handle = new_entry->handle;
259 temp_ptr = (void*) (region_addr + (start - region_begin) * SPI_FLASH_MMU_PAGE_SIZE);
260 ret = ESP_OK;
261 }
262
263 /* This is a temporary fix for an issue where some
264 cache reads may see stale data.
265
266 Working on a long term fix that doesn't require invalidating
267 entire cache.
268 */
269 if (need_flush) {
270 #if CONFIG_IDF_TARGET_ESP32
271 #if CONFIG_SPIRAM
272 esp_spiram_writeback_cache();
273 #endif // CONFIG_SPIRAM
274 Cache_Flush(0);
275 #if !CONFIG_FREERTOS_UNICORE
276 Cache_Flush(1);
277 #endif // !CONFIG_FREERTOS_UNICORE
278 #endif // CONFIG_IDF_TARGET_ESP32
279 }
280
281 spi_flash_enable_interrupts_caches_and_other_cpu();
282 if (temp_ptr == NULL) {
283 free(new_entry);
284 }
285 *out_ptr = temp_ptr;
286 *out_handle = temp_handle;
287 return ret;
288 }
289
spi_flash_munmap(spi_flash_mmap_handle_t handle)290 void IRAM_ATTR spi_flash_munmap(spi_flash_mmap_handle_t handle)
291 {
292 spi_flash_disable_interrupts_caches_and_other_cpu();
293 mmap_entry_t* it;
294 // look for handle in linked list
295 for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
296 if (it->handle == handle) {
297 // for each page, decrement reference counter
298 // if reference count is zero, disable MMU table entry to
299 // facilitate debugging of use-after-free conditions
300 for (int i = it->page; i < it->page + it->count; ++i) {
301 assert(s_mmap_page_refcnt[i] > 0);
302 if (--s_mmap_page_refcnt[i] == 0) {
303 SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
304 #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
305 DPORT_APP_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
306 #endif
307 }
308 }
309 LIST_REMOVE(it, entries);
310 break;
311 }
312 }
313 spi_flash_enable_interrupts_caches_and_other_cpu();
314 if (it == NULL) {
315 assert(0 && "invalid handle, or handle already unmapped");
316 }
317 free(it);
318 }
319
spi_flash_protected_mmap_init(void)320 static void IRAM_ATTR NOINLINE_ATTR spi_flash_protected_mmap_init(void)
321 {
322 spi_flash_disable_interrupts_caches_and_other_cpu();
323 spi_flash_mmap_init();
324 spi_flash_enable_interrupts_caches_and_other_cpu();
325 }
326
spi_flash_protected_read_mmu_entry(int index)327 static uint32_t IRAM_ATTR NOINLINE_ATTR spi_flash_protected_read_mmu_entry(int index)
328 {
329 uint32_t value;
330 spi_flash_disable_interrupts_caches_and_other_cpu();
331 value = DPORT_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[index]);
332 spi_flash_enable_interrupts_caches_and_other_cpu();
333 return value;
334 }
335
spi_flash_mmap_dump(void)336 void spi_flash_mmap_dump(void)
337 {
338 spi_flash_protected_mmap_init();
339
340 mmap_entry_t* it;
341 for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
342 printf("handle=%d page=%d count=%d\n", it->handle, it->page, it->count);
343 }
344 for (int i = 0; i < SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION; ++i) {
345 if (s_mmap_page_refcnt[i] != 0) {
346 uint32_t paddr = spi_flash_protected_read_mmu_entry(i);
347 printf("page %d: refcnt=%d paddr=%d\n", i, (int) s_mmap_page_refcnt[i], paddr);
348 }
349 }
350 }
351
spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)352 uint32_t IRAM_ATTR spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)
353 {
354 spi_flash_disable_interrupts_caches_and_other_cpu();
355 spi_flash_mmap_init();
356 int count = 0;
357 int region_begin; // first page to check
358 int region_size; // number of pages to check
359 uint32_t region_addr; // base address of memory region
360 get_mmu_region(memory,®ion_begin,®ion_size,®ion_addr);
361 DPORT_INTERRUPT_DISABLE();
362 for (int i = region_begin; i < region_begin + region_size; ++i) {
363 if (s_mmap_page_refcnt[i] == 0 && DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]) == SOC_MMU_INVALID_ENTRY_VAL) {
364 count++;
365 }
366 }
367 DPORT_INTERRUPT_RESTORE();
368 spi_flash_enable_interrupts_caches_and_other_cpu();
369 return count;
370 }
371
spi_flash_cache2phys(const void * cached)372 size_t spi_flash_cache2phys(const void *cached)
373 {
374 intptr_t c = (intptr_t)cached;
375 size_t cache_page;
376 int offset = 0;
377 if (c >= SOC_MMU_VADDR1_START_ADDR && c < SOC_MMU_VADDR1_FIRST_USABLE_ADDR) {
378 /* IRAM address, doesn't map to flash */
379 return SPI_FLASH_CACHE2PHYS_FAIL;
380 }
381 if (c < SOC_MMU_VADDR1_FIRST_USABLE_ADDR) {
382 /* expect cache is in DROM */
383 cache_page = (c - SOC_MMU_VADDR0_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + SOC_MMU_DROM0_PAGES_START;
384 #if CONFIG_SPIRAM_RODATA
385 if (c >= (uint32_t)&_rodata_reserved_start && c <= (uint32_t)&_rodata_reserved_end) {
386 offset = rodata_flash2spiram_offset();
387 }
388 #endif
389 } else {
390 /* expect cache is in IROM */
391 cache_page = (c - SOC_MMU_VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + SOC_MMU_IROM0_PAGES_START;
392 #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
393 if (c >= (uint32_t)&_instruction_reserved_start && c <= (uint32_t)&_instruction_reserved_end) {
394 offset = instruction_flash2spiram_offset();
395 }
396 #endif
397 }
398
399 if (cache_page >= PAGES_LIMIT) {
400 /* cached address was not in IROM or DROM */
401 return SPI_FLASH_CACHE2PHYS_FAIL;
402 }
403 uint32_t phys_page = spi_flash_protected_read_mmu_entry(cache_page);
404 if (phys_page == SOC_MMU_INVALID_ENTRY_VAL) {
405 /* page is not mapped */
406 return SPI_FLASH_CACHE2PHYS_FAIL;
407 }
408 uint32_t phys_offs = ((phys_page & SOC_MMU_ADDR_MASK) + offset) * SPI_FLASH_MMU_PAGE_SIZE;
409 return phys_offs | (c & (SPI_FLASH_MMU_PAGE_SIZE-1));
410 }
411
spi_flash_phys2cache(size_t phys_offs,spi_flash_mmap_memory_t memory)412 const void *IRAM_ATTR spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory)
413 {
414 uint32_t phys_page = phys_offs / SPI_FLASH_MMU_PAGE_SIZE;
415 int start, end, page_delta;
416 intptr_t base;
417
418 if (memory == SPI_FLASH_MMAP_DATA) {
419 start = SOC_MMU_DROM0_PAGES_START;
420 end = SOC_MMU_DROM0_PAGES_END;
421 base = SOC_MMU_VADDR0_START_ADDR;
422 page_delta = SOC_MMU_DROM0_PAGES_START;
423 } else {
424 start = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
425 end = SOC_MMU_IROM0_PAGES_END;
426 base = SOC_MMU_VADDR1_START_ADDR;
427 page_delta = SOC_MMU_IROM0_PAGES_START;
428 }
429 spi_flash_disable_interrupts_caches_and_other_cpu();
430 DPORT_INTERRUPT_DISABLE();
431 for (int i = start; i < end; i++) {
432 uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]);
433 #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
434 if (phys_page >= instruction_flash_start_page_get() && phys_page <= instruction_flash_end_page_get()) {
435 if (mmu_value & MMU_ACCESS_SPIRAM) {
436 mmu_value += instruction_flash2spiram_offset();
437 mmu_value = (mmu_value & SOC_MMU_ADDR_MASK) | MMU_ACCESS_FLASH;
438 }
439 }
440 #endif
441 #if CONFIG_SPIRAM_RODATA
442 if (phys_page >= rodata_flash_start_page_get() && phys_page <= rodata_flash_start_page_get()) {
443 if (mmu_value & MMU_ACCESS_SPIRAM) {
444 mmu_value += rodata_flash2spiram_offset();
445 mmu_value = (mmu_value & SOC_MMU_ADDR_MASK) | MMU_ACCESS_FLASH;
446 }
447 }
448 #endif
449 if (mmu_value == SOC_MMU_PAGE_IN_FLASH(phys_page)) {
450 i -= page_delta;
451 intptr_t cache_page = base + (SPI_FLASH_MMU_PAGE_SIZE * i);
452 DPORT_INTERRUPT_RESTORE();
453 spi_flash_enable_interrupts_caches_and_other_cpu();
454 return (const void *) (cache_page | (phys_offs & (SPI_FLASH_MMU_PAGE_SIZE-1)));
455 }
456 }
457 DPORT_INTERRUPT_RESTORE();
458 spi_flash_enable_interrupts_caches_and_other_cpu();
459 return NULL;
460 }
461
is_page_mapped_in_cache(uint32_t phys_page,const void ** out_ptr)462 static bool IRAM_ATTR is_page_mapped_in_cache(uint32_t phys_page, const void **out_ptr)
463 {
464 int start[2], end[2];
465
466 *out_ptr = NULL;
467
468 /* SPI_FLASH_MMAP_DATA */
469 start[0] = SOC_MMU_DROM0_PAGES_START;
470 end[0] = SOC_MMU_DROM0_PAGES_END;
471
472 /* SPI_FLASH_MMAP_INST */
473 start[1] = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
474 end[1] = SOC_MMU_IROM0_PAGES_END;
475
476 DPORT_INTERRUPT_DISABLE();
477 for (int j = 0; j < 2; j++) {
478 for (int i = start[j]; i < end[j]; i++) {
479 if (DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]) == SOC_MMU_PAGE_IN_FLASH(phys_page)) {
480 #if !CONFIG_IDF_TARGET_ESP32
481 if (j == 0) { /* SPI_FLASH_MMAP_DATA */
482 *out_ptr = (const void *)(SOC_MMU_VADDR0_START_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[0]));
483 } else { /* SPI_FLASH_MMAP_INST */
484 *out_ptr = (const void *)(SOC_MMU_VADDR1_FIRST_USABLE_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[1]));
485 }
486 #endif
487 DPORT_INTERRUPT_RESTORE();
488 return true;
489 }
490 }
491 }
492 DPORT_INTERRUPT_RESTORE();
493 return false;
494 }
495
496 /* Validates if given flash address has corresponding cache mapping, if yes, flushes cache memories */
spi_flash_check_and_flush_cache(size_t start_addr,size_t length)497 IRAM_ATTR bool spi_flash_check_and_flush_cache(size_t start_addr, size_t length)
498 {
499 bool ret = false;
500 /* align start_addr & length to full MMU pages */
501 uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
502 length += (start_addr - page_start_addr);
503 length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
504 for (uint32_t addr = page_start_addr; addr < page_start_addr + length; addr += SPI_FLASH_MMU_PAGE_SIZE) {
505 uint32_t page = addr / SPI_FLASH_MMU_PAGE_SIZE;
506 if (page >= 256) {
507 return false; /* invalid address */
508 }
509
510 const void *vaddr = NULL;
511 if (is_page_mapped_in_cache(page, &vaddr)) {
512 #if CONFIG_IDF_TARGET_ESP32
513 #if CONFIG_SPIRAM
514 esp_spiram_writeback_cache();
515 #endif
516 Cache_Flush(0);
517 #ifndef CONFIG_FREERTOS_UNICORE
518 Cache_Flush(1);
519 #endif
520 return true;
521 #else // CONFIG_IDF_TARGET_ESP32
522 if (vaddr != NULL) {
523 Cache_Invalidate_Addr((uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE);
524 ret = true;
525 }
526 #endif // CONFIG_IDF_TARGET_ESP32
527
528 }
529 }
530 return ret;
531 }
532 #endif //!CONFIG_SPI_FLASH_ROM_IMPL
533