• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include <stdlib.h>
16 #include <assert.h>
17 #include <string.h>
18 #include <stdio.h>
19 
20 #include <esp_osal/esp_osal.h>
21 #include <esp_osal/task.h>
22 #include <esp_osal/semphr.h>
23 #include "soc/soc.h"
24 #include "soc/soc_memory_layout.h"
25 #include "soc/dport_access.h"
26 #include "sdkconfig.h"
27 #include "esp_attr.h"
28 #include "esp_spi_flash.h"
29 #include "esp_flash_encrypt.h"
30 #include "esp_log.h"
31 #include "cache_utils.h"
32 
33 #if CONFIG_IDF_TARGET_ESP32
34 #include "soc/dport_reg.h"
35 #include "esp32/rom/cache.h"
36 #include "esp32/rom/spi_flash.h"
37 #include "esp32/spiram.h"
38 #include "soc/mmu.h"
39 #elif CONFIG_IDF_TARGET_ESP32S2
40 #include "esp32s2/rom/cache.h"
41 #include "esp32s2/rom/spi_flash.h"
42 #include "esp32s2/spiram.h"
43 #include "soc/extmem_reg.h"
44 #include "soc/cache_memory.h"
45 #include "soc/mmu.h"
46 #elif CONFIG_IDF_TARGET_ESP32S3
47 #include "esp32s3/rom/spi_flash.h"
48 #include "esp32s3/rom/cache.h"
49 #include "esp32s3/spiram.h"
50 #include "soc/extmem_reg.h"
51 #include "soc/cache_memory.h"
52 #include "soc/mmu.h"
53 #elif CONFIG_IDF_TARGET_ESP32C3
54 #include "esp32c3/rom/cache.h"
55 #include "esp32c3/rom/spi_flash.h"
56 #include "soc/cache_memory.h"
57 #include "soc/mmu.h"
58 #endif
59 
60 #ifndef NDEBUG
61 // Enable built-in checks in queue.h in debug builds
62 #define INVARIANTS
63 #endif
64 #include "sys/queue.h"
65 
66 #define IROM0_PAGES_NUM (SOC_MMU_IROM0_PAGES_END - SOC_MMU_IROM0_PAGES_START)
67 #define DROM0_PAGES_NUM (SOC_MMU_DROM0_PAGES_END - SOC_MMU_DROM0_PAGES_START)
68 #define PAGES_LIMIT ((SOC_MMU_IROM0_PAGES_END > SOC_MMU_DROM0_PAGES_END) ? SOC_MMU_IROM0_PAGES_END:SOC_MMU_DROM0_PAGES_END)
69 
70 #if !CONFIG_SPI_FLASH_ROM_IMPL
71 
72 typedef struct mmap_entry_{
73     uint32_t handle;
74     int page;
75     int count;
76     LIST_ENTRY(mmap_entry_) entries;
77 } mmap_entry_t;
78 
79 
80 static LIST_HEAD(mmap_entries_head, mmap_entry_) s_mmap_entries_head =
81         LIST_HEAD_INITIALIZER(s_mmap_entries_head);
82 static uint8_t s_mmap_page_refcnt[SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION] = {0};
83 static uint32_t s_mmap_last_handle = 0;
84 
85 
spi_flash_mmap_init(void)86 static void IRAM_ATTR spi_flash_mmap_init(void)
87 {
88     if (s_mmap_page_refcnt[SOC_MMU_DROM0_PAGES_START] != 0) {
89         return; /* mmap data already initialised */
90     }
91     DPORT_INTERRUPT_DISABLE();
92     for (int i = 0; i < SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION; ++i) {
93         uint32_t entry_pro = DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]);
94 #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
95         uint32_t entry_app = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[i]);
96 
97         if (entry_pro != entry_app) {
98             // clean up entries used by boot loader
99             entry_pro = SOC_MMU_INVALID_ENTRY_VAL;
100             SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
101         }
102 #endif
103         if ((entry_pro & SOC_MMU_INVALID_ENTRY_VAL) == 0 && (i == SOC_MMU_DROM0_PAGES_START || i == SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE || entry_pro != 0)) {
104             s_mmap_page_refcnt[i] = 1;
105         } else {
106             SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
107 #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
108             DPORT_APP_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
109 #endif
110         }
111     }
112     DPORT_INTERRUPT_RESTORE();
113 }
114 
get_mmu_region(spi_flash_mmap_memory_t memory,int * out_begin,int * out_size,uint32_t * region_addr)115 static void IRAM_ATTR get_mmu_region(spi_flash_mmap_memory_t memory, int* out_begin, int* out_size,uint32_t* region_addr)
116 {
117     if (memory == SPI_FLASH_MMAP_DATA) {
118         // Vaddr0
119         *out_begin = SOC_MMU_DROM0_PAGES_START;
120         *out_size = DROM0_PAGES_NUM;
121         *region_addr = SOC_MMU_VADDR0_START_ADDR;
122     } else {
123         // only part of VAddr1 is usable, so adjust for that
124         *out_begin = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
125         *out_size = SOC_MMU_IROM0_PAGES_END - *out_begin;
126         *region_addr = SOC_MMU_VADDR1_FIRST_USABLE_ADDR;
127     }
128 }
129 
spi_flash_mmap(size_t src_addr,size_t size,spi_flash_mmap_memory_t memory,const void ** out_ptr,spi_flash_mmap_handle_t * out_handle)130 esp_err_t IRAM_ATTR spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
131                          const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
132 {
133     esp_err_t ret;
134     if (src_addr & 0xffff) {
135         return ESP_ERR_INVALID_ARG;
136     }
137     if (src_addr + size > g_rom_flashchip.chip_size) {
138         return ESP_ERR_INVALID_ARG;
139     }
140     // region which should be mapped
141     int phys_page = src_addr / SPI_FLASH_MMU_PAGE_SIZE;
142     int page_count = (size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE;
143     // prepare a linear pages array to feed into spi_flash_mmap_pages
144     int *pages = heap_caps_malloc(sizeof(int)*page_count, MALLOC_CAP_INTERNAL);
145     if (pages == NULL) {
146         return ESP_ERR_NO_MEM;
147     }
148     for (int i = 0; i < page_count; i++) {
149         pages[i] = (phys_page+i);
150     }
151     ret = spi_flash_mmap_pages(pages, page_count, memory, out_ptr, out_handle);
152     free(pages);
153     return ret;
154 }
155 
spi_flash_mmap_pages(const int * pages,size_t page_count,spi_flash_mmap_memory_t memory,const void ** out_ptr,spi_flash_mmap_handle_t * out_handle)156 esp_err_t IRAM_ATTR spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
157                          const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
158 {
159     esp_err_t ret;
160     const void* temp_ptr = *out_ptr = NULL;
161     spi_flash_mmap_handle_t temp_handle = *out_handle = (spi_flash_mmap_handle_t)NULL;
162     bool need_flush = false;
163     if (!page_count) {
164         return ESP_ERR_INVALID_ARG;
165     }
166     if (!esp_ptr_internal(pages)) {
167         return ESP_ERR_INVALID_ARG;
168     }
169     for (int i = 0; i < page_count; i++) {
170         if (pages[i] < 0 || pages[i]*SPI_FLASH_MMU_PAGE_SIZE >= g_rom_flashchip.chip_size) {
171             return ESP_ERR_INVALID_ARG;
172         }
173     }
174     mmap_entry_t* new_entry = (mmap_entry_t*) heap_caps_malloc(sizeof(mmap_entry_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
175     if (new_entry == 0) {
176         return ESP_ERR_NO_MEM;
177     }
178 
179     spi_flash_disable_interrupts_caches_and_other_cpu();
180 
181     spi_flash_mmap_init();
182     // figure out the memory region where we should look for pages
183     int region_begin;   // first page to check
184     int region_size;    // number of pages to check
185     uint32_t region_addr;  // base address of memory region
186     get_mmu_region(memory,&region_begin,&region_size,&region_addr);
187     if (region_size < page_count) {
188         spi_flash_enable_interrupts_caches_and_other_cpu();
189         return ESP_ERR_NO_MEM;
190     }
191     // The following part searches for a range of MMU entries which can be used.
192     // Algorithm is essentially naïve strstr algorithm, except that unused MMU
193     // entries are treated as wildcards.
194     int start;
195     // the " + 1" is a fix when loop the MMU table pages, because the last MMU page
196     // is valid as well if it have not been used
197     int end = region_begin + region_size - page_count + 1;
198     for (start = region_begin; start < end; ++start) {
199         int pageno = 0;
200         int pos;
201         DPORT_INTERRUPT_DISABLE();
202         for (pos = start; pos < start + page_count; ++pos, ++pageno) {
203             int table_val = (int) DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[pos]);
204             uint8_t refcnt = s_mmap_page_refcnt[pos];
205             if (refcnt != 0 && table_val != SOC_MMU_PAGE_IN_FLASH(pages[pageno])) {
206                 break;
207             }
208         }
209         DPORT_INTERRUPT_RESTORE();
210         // whole mapping range matched, bail out
211         if (pos - start == page_count) {
212             break;
213         }
214     }
215     // checked all the region(s) and haven't found anything?
216     if (start == end) {
217         ret = ESP_ERR_NO_MEM;
218     } else {
219         // set up mapping using pages
220         uint32_t pageno = 0;
221         DPORT_INTERRUPT_DISABLE();
222         for (int i = start; i != start + page_count; ++i, ++pageno) {
223             // sanity check: we won't reconfigure entries with non-zero reference count
224             uint32_t entry_pro = DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]);
225 #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
226             uint32_t entry_app = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[i]);
227 #endif
228             assert(s_mmap_page_refcnt[i] == 0 ||
229                     (entry_pro == SOC_MMU_PAGE_IN_FLASH(pages[pageno])
230 #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
231                      && entry_app == SOC_MMU_PAGE_IN_FLASH(pages[pageno])
232 #endif
233                     ));
234             if (s_mmap_page_refcnt[i] == 0) {
235                 if (entry_pro != SOC_MMU_PAGE_IN_FLASH(pages[pageno])
236 #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
237                 || entry_app != SOC_MMU_PAGE_IN_FLASH(pages[pageno])
238 #endif
239                 ) {
240                     SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_PAGE_IN_FLASH(pages[pageno]);
241 #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
242                     DPORT_APP_FLASH_MMU_TABLE[i] = pages[pageno];
243 #endif
244 
245 #if !CONFIG_IDF_TARGET_ESP32
246                     Cache_Invalidate_Addr(region_addr + (i - region_begin) * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMU_PAGE_SIZE);
247 #endif
248                     need_flush = true;
249                 }
250             }
251             ++s_mmap_page_refcnt[i];
252         }
253         DPORT_INTERRUPT_RESTORE();
254         LIST_INSERT_HEAD(&s_mmap_entries_head, new_entry, entries);
255         new_entry->page = start;
256         new_entry->count = page_count;
257         new_entry->handle = ++s_mmap_last_handle;
258         temp_handle = new_entry->handle;
259         temp_ptr = (void*) (region_addr + (start - region_begin) * SPI_FLASH_MMU_PAGE_SIZE);
260         ret = ESP_OK;
261     }
262 
263     /* This is a temporary fix for an issue where some
264        cache reads may see stale data.
265 
266        Working on a long term fix that doesn't require invalidating
267        entire cache.
268     */
269     if (need_flush) {
270 #if CONFIG_IDF_TARGET_ESP32
271 #if CONFIG_SPIRAM
272         esp_spiram_writeback_cache();
273 #endif // CONFIG_SPIRAM
274         Cache_Flush(0);
275 #if !CONFIG_FREERTOS_UNICORE
276         Cache_Flush(1);
277 #endif // !CONFIG_FREERTOS_UNICORE
278 #endif // CONFIG_IDF_TARGET_ESP32
279     }
280 
281     spi_flash_enable_interrupts_caches_and_other_cpu();
282     if (temp_ptr == NULL) {
283         free(new_entry);
284     }
285     *out_ptr = temp_ptr;
286     *out_handle = temp_handle;
287     return ret;
288 }
289 
spi_flash_munmap(spi_flash_mmap_handle_t handle)290 void IRAM_ATTR spi_flash_munmap(spi_flash_mmap_handle_t handle)
291 {
292     spi_flash_disable_interrupts_caches_and_other_cpu();
293     mmap_entry_t* it;
294     // look for handle in linked list
295     for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
296         if (it->handle == handle) {
297             // for each page, decrement reference counter
298             // if reference count is zero, disable MMU table entry to
299             // facilitate debugging of use-after-free conditions
300             for (int i = it->page; i < it->page + it->count; ++i) {
301                 assert(s_mmap_page_refcnt[i] > 0);
302                 if (--s_mmap_page_refcnt[i] == 0) {
303                     SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
304 #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
305                     DPORT_APP_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
306 #endif
307                 }
308             }
309             LIST_REMOVE(it, entries);
310             break;
311         }
312     }
313     spi_flash_enable_interrupts_caches_and_other_cpu();
314     if (it == NULL) {
315         assert(0 && "invalid handle, or handle already unmapped");
316     }
317     free(it);
318 }
319 
spi_flash_protected_mmap_init(void)320 static void IRAM_ATTR NOINLINE_ATTR spi_flash_protected_mmap_init(void)
321 {
322     spi_flash_disable_interrupts_caches_and_other_cpu();
323     spi_flash_mmap_init();
324     spi_flash_enable_interrupts_caches_and_other_cpu();
325 }
326 
spi_flash_protected_read_mmu_entry(int index)327 static uint32_t IRAM_ATTR NOINLINE_ATTR spi_flash_protected_read_mmu_entry(int index)
328 {
329     uint32_t value;
330     spi_flash_disable_interrupts_caches_and_other_cpu();
331     value = DPORT_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[index]);
332     spi_flash_enable_interrupts_caches_and_other_cpu();
333     return value;
334 }
335 
spi_flash_mmap_dump(void)336 void spi_flash_mmap_dump(void)
337 {
338     spi_flash_protected_mmap_init();
339 
340     mmap_entry_t* it;
341     for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
342         printf("handle=%d page=%d count=%d\n", it->handle, it->page, it->count);
343     }
344     for (int i = 0; i < SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION; ++i) {
345         if (s_mmap_page_refcnt[i] != 0) {
346             uint32_t paddr = spi_flash_protected_read_mmu_entry(i);
347             printf("page %d: refcnt=%d paddr=%d\n", i, (int) s_mmap_page_refcnt[i], paddr);
348         }
349     }
350 }
351 
spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)352 uint32_t IRAM_ATTR spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)
353 {
354     spi_flash_disable_interrupts_caches_and_other_cpu();
355     spi_flash_mmap_init();
356     int count = 0;
357     int region_begin;   // first page to check
358     int region_size;    // number of pages to check
359     uint32_t region_addr;  // base address of memory region
360     get_mmu_region(memory,&region_begin,&region_size,&region_addr);
361     DPORT_INTERRUPT_DISABLE();
362     for (int i = region_begin; i < region_begin + region_size; ++i) {
363         if (s_mmap_page_refcnt[i] == 0 && DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]) == SOC_MMU_INVALID_ENTRY_VAL) {
364             count++;
365         }
366     }
367     DPORT_INTERRUPT_RESTORE();
368     spi_flash_enable_interrupts_caches_and_other_cpu();
369     return count;
370 }
371 
spi_flash_cache2phys(const void * cached)372 size_t spi_flash_cache2phys(const void *cached)
373 {
374     intptr_t c = (intptr_t)cached;
375     size_t cache_page;
376     int offset = 0;
377     if (c >= SOC_MMU_VADDR1_START_ADDR && c < SOC_MMU_VADDR1_FIRST_USABLE_ADDR) {
378         /* IRAM address, doesn't map to flash */
379         return SPI_FLASH_CACHE2PHYS_FAIL;
380     }
381     if (c < SOC_MMU_VADDR1_FIRST_USABLE_ADDR) {
382         /* expect cache is in DROM */
383         cache_page = (c - SOC_MMU_VADDR0_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + SOC_MMU_DROM0_PAGES_START;
384 #if CONFIG_SPIRAM_RODATA
385         if (c >= (uint32_t)&_rodata_reserved_start && c <= (uint32_t)&_rodata_reserved_end) {
386             offset = rodata_flash2spiram_offset();
387         }
388 #endif
389     } else {
390         /* expect cache is in IROM */
391         cache_page = (c - SOC_MMU_VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + SOC_MMU_IROM0_PAGES_START;
392 #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
393         if (c >= (uint32_t)&_instruction_reserved_start && c <= (uint32_t)&_instruction_reserved_end) {
394             offset = instruction_flash2spiram_offset();
395         }
396 #endif
397     }
398 
399     if (cache_page >= PAGES_LIMIT) {
400         /* cached address was not in IROM or DROM */
401         return SPI_FLASH_CACHE2PHYS_FAIL;
402     }
403     uint32_t phys_page = spi_flash_protected_read_mmu_entry(cache_page);
404     if (phys_page == SOC_MMU_INVALID_ENTRY_VAL) {
405         /* page is not mapped */
406         return SPI_FLASH_CACHE2PHYS_FAIL;
407     }
408     uint32_t phys_offs = ((phys_page & SOC_MMU_ADDR_MASK) + offset) * SPI_FLASH_MMU_PAGE_SIZE;
409     return phys_offs | (c & (SPI_FLASH_MMU_PAGE_SIZE-1));
410 }
411 
spi_flash_phys2cache(size_t phys_offs,spi_flash_mmap_memory_t memory)412 const void *IRAM_ATTR spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory)
413 {
414     uint32_t phys_page = phys_offs / SPI_FLASH_MMU_PAGE_SIZE;
415     int start, end, page_delta;
416     intptr_t base;
417 
418     if (memory == SPI_FLASH_MMAP_DATA) {
419         start = SOC_MMU_DROM0_PAGES_START;
420         end = SOC_MMU_DROM0_PAGES_END;
421         base = SOC_MMU_VADDR0_START_ADDR;
422         page_delta = SOC_MMU_DROM0_PAGES_START;
423     } else {
424         start = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
425         end = SOC_MMU_IROM0_PAGES_END;
426         base = SOC_MMU_VADDR1_START_ADDR;
427         page_delta = SOC_MMU_IROM0_PAGES_START;
428     }
429     spi_flash_disable_interrupts_caches_and_other_cpu();
430     DPORT_INTERRUPT_DISABLE();
431     for (int i = start; i < end; i++) {
432         uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]);
433 #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
434         if (phys_page >= instruction_flash_start_page_get() && phys_page <= instruction_flash_end_page_get()) {
435             if (mmu_value & MMU_ACCESS_SPIRAM) {
436                 mmu_value += instruction_flash2spiram_offset();
437                 mmu_value = (mmu_value & SOC_MMU_ADDR_MASK) | MMU_ACCESS_FLASH;
438             }
439         }
440 #endif
441 #if CONFIG_SPIRAM_RODATA
442         if (phys_page >= rodata_flash_start_page_get() && phys_page <= rodata_flash_start_page_get()) {
443             if (mmu_value & MMU_ACCESS_SPIRAM) {
444                 mmu_value += rodata_flash2spiram_offset();
445                 mmu_value = (mmu_value & SOC_MMU_ADDR_MASK) | MMU_ACCESS_FLASH;
446             }
447         }
448 #endif
449         if (mmu_value == SOC_MMU_PAGE_IN_FLASH(phys_page)) {
450             i -= page_delta;
451             intptr_t cache_page =  base + (SPI_FLASH_MMU_PAGE_SIZE * i);
452             DPORT_INTERRUPT_RESTORE();
453             spi_flash_enable_interrupts_caches_and_other_cpu();
454             return (const void *) (cache_page | (phys_offs & (SPI_FLASH_MMU_PAGE_SIZE-1)));
455         }
456     }
457     DPORT_INTERRUPT_RESTORE();
458     spi_flash_enable_interrupts_caches_and_other_cpu();
459     return NULL;
460 }
461 
is_page_mapped_in_cache(uint32_t phys_page,const void ** out_ptr)462 static bool IRAM_ATTR is_page_mapped_in_cache(uint32_t phys_page, const void **out_ptr)
463 {
464     int start[2], end[2];
465 
466     *out_ptr = NULL;
467 
468     /* SPI_FLASH_MMAP_DATA */
469     start[0] = SOC_MMU_DROM0_PAGES_START;
470     end[0] = SOC_MMU_DROM0_PAGES_END;
471 
472     /* SPI_FLASH_MMAP_INST */
473     start[1] = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
474     end[1] = SOC_MMU_IROM0_PAGES_END;
475 
476     DPORT_INTERRUPT_DISABLE();
477     for (int j = 0; j < 2; j++) {
478         for (int i = start[j]; i < end[j]; i++) {
479             if (DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]) == SOC_MMU_PAGE_IN_FLASH(phys_page)) {
480 #if !CONFIG_IDF_TARGET_ESP32
481                 if (j == 0) { /* SPI_FLASH_MMAP_DATA */
482                     *out_ptr = (const void *)(SOC_MMU_VADDR0_START_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[0]));
483                 } else { /* SPI_FLASH_MMAP_INST */
484                     *out_ptr = (const void *)(SOC_MMU_VADDR1_FIRST_USABLE_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[1]));
485                 }
486 #endif
487                 DPORT_INTERRUPT_RESTORE();
488                 return true;
489             }
490         }
491     }
492     DPORT_INTERRUPT_RESTORE();
493     return false;
494 }
495 
496 /* Validates if given flash address has corresponding cache mapping, if yes, flushes cache memories */
spi_flash_check_and_flush_cache(size_t start_addr,size_t length)497 IRAM_ATTR bool spi_flash_check_and_flush_cache(size_t start_addr, size_t length)
498 {
499     bool ret = false;
500     /* align start_addr & length to full MMU pages */
501     uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
502     length += (start_addr - page_start_addr);
503     length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
504     for (uint32_t addr = page_start_addr; addr < page_start_addr + length; addr += SPI_FLASH_MMU_PAGE_SIZE) {
505         uint32_t page = addr / SPI_FLASH_MMU_PAGE_SIZE;
506         if (page >= 256) {
507             return false; /* invalid address */
508         }
509 
510         const void *vaddr = NULL;
511         if (is_page_mapped_in_cache(page, &vaddr)) {
512 #if CONFIG_IDF_TARGET_ESP32
513 #if CONFIG_SPIRAM
514             esp_spiram_writeback_cache();
515 #endif
516             Cache_Flush(0);
517 #ifndef CONFIG_FREERTOS_UNICORE
518             Cache_Flush(1);
519 #endif
520             return true;
521 #else // CONFIG_IDF_TARGET_ESP32
522             if (vaddr != NULL) {
523                 Cache_Invalidate_Addr((uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE);
524                 ret = true;
525             }
526 #endif // CONFIG_IDF_TARGET_ESP32
527 
528         }
529     }
530     return ret;
531 }
532 #endif //!CONFIG_SPI_FLASH_ROM_IMPL
533