1 /*
2 * Copyright (c) 2021-2023 HPMicro
3 * SPDX-License-Identifier: BSD-3-Clause
4 *
5 */
6
7 #include "board.h"
8 #include "hpm_uart_drv.h"
9 #include "hpm_gptmr_drv.h"
10 #include "hpm_lcdc_drv.h"
11 #include "hpm_i2c_drv.h"
12 #include "hpm_gpio_drv.h"
13 #include "hpm_femc_drv.h"
14 #include "pinmux.h"
15 #include "hpm_pmp_drv.h"
16 #include "hpm_clock_drv.h"
17 #include "hpm_sysctl_drv.h"
18 #include "hpm_sdxc_drv.h"
19 #include "hpm_pwm_drv.h"
20 #include "hpm_trgm_drv.h"
21 #include "hpm_pllctl_drv.h"
22 #include "hpm_enet_drv.h"
23 #include "hpm_enet_phy_common.h"
24 #include "hpm_pcfg_drv.h"
25 #include "hpm_sdk_version.h"
26
27 static board_timer_cb timer_cb;
28 static bool invert_led_level;
29
30 /**
31 * @brief FLASH configuration option definitions:
32 * option[0]:
33 * [31:16] 0xfcf9 - FLASH configuration option tag
34 * [15:4] 0 - Reserved
35 * [3:0] option words (exclude option[0])
36 * option[1]:
37 * [31:28] Flash probe type
38 * 0 - SFDP SDR / 1 - SFDP DDR
39 * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
40 * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
41 * 6 - OctaBus DDR (SPI -> OPI DDR)
42 * 8 - Xccela DDR (SPI -> OPI DDR)
43 * 10 - EcoXiP DDR (SPI -> OPI DDR)
44 * [27:24] Command Pads after Power-on Reset
45 * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
46 * [23:20] Command Pads after Configuring FLASH
47 * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
48 * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
49 * 0 - Not needed
50 * 1 - QE bit is at bit 6 in Status Register 1
51 * 2 - QE bit is at bit1 in Status Register 2
52 * 3 - QE bit is at bit7 in Status Register 2
53 * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
54 * [15:8] Dummy cycles
55 * 0 - Auto-probed / detected / default value
56 * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
57 * [7:4] Misc.
58 * 0 - Not used
59 * 1 - SPI mode
60 * 2 - Internal loopback
61 * 3 - External DQS
62 * [3:0] Frequency option
63 * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
64 *
65 * option[2] (Effective only if the bit[3:0] in option[0] > 1)
66 * [31:20] Reserved
67 * [19:16] IO voltage
68 * 0 - 3V / 1 - 1.8V
69 * [15:12] Pin group
70 * 0 - 1st group / 1 - 2nd group
71 * [11:8] Connection selection
72 * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
73 * [7:0] Drive Strength
74 * 0 - Default value
75 * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
76 * JESD216)
77 * [31:16] reserved
78 * [15:12] Sector Erase Command Option, not required here
79 * [11:8] Sector Size Option, not required here
80 * [7:0] Flash Size Option
81 * 0 - 4MB / 1 - 8MB / 2 - 16MB
82 */
83 #if defined(FLASH_XIP) && FLASH_XIP
84 __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x1000, 0x0};
85 #endif
86
87 #if defined(FLASH_UF2) && FLASH_UF2
88 ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
89 #endif
90
board_init_console(void)91 void board_init_console(void)
92 {
93 #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
94 #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
95 console_config_t cfg;
96
97 /* uart needs to configure pin function before enabling clock, otherwise the level change of
98 uart rx pin when configuring pin function will cause a wrong data to be received.
99 And a uart rx dma request will be generated by default uart fifo dma trigger level. */
100 init_uart_pins((UART_Type *) BOARD_CONSOLE_BASE);
101
102 /* Configure the UART clock to 24MHz */
103 clock_set_source_divider(BOARD_CONSOLE_CLK_NAME, clk_src_osc24m, 1U);
104 clock_add_to_group(BOARD_CONSOLE_CLK_NAME, 0);
105
106 cfg.type = BOARD_CONSOLE_TYPE;
107 cfg.base = (uint32_t) BOARD_CONSOLE_BASE;
108 cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_CLK_NAME);
109 cfg.baudrate = BOARD_CONSOLE_BAUDRATE;
110
111 if (status_success != console_init(&cfg)) {
112 /* failed to initialize debug console */
113 while (1) {
114 }
115 }
116 #else
117 while (1) {
118 }
119 #endif
120 #endif
121 }
122
board_print_clock_freq(void)123 void board_print_clock_freq(void)
124 {
125 printf("==============================\n");
126 printf(" %s clock summary\n", BOARD_NAME);
127 printf("==============================\n");
128 printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
129 printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
130 printf("axi0:\t\t %luHz\n", clock_get_frequency(clock_axi0));
131 printf("axi1:\t\t %luHz\n", clock_get_frequency(clock_axi1));
132 printf("axi2:\t\t %luHz\n", clock_get_frequency(clock_axi2));
133 printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
134 printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
135 printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
136 printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
137 printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
138 printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
139 printf("display:\t %luHz\n", clock_get_frequency(clock_display));
140 printf("cam0:\t\t %luHz\n", clock_get_frequency(clock_camera0));
141 printf("cam1:\t\t %luHz\n", clock_get_frequency(clock_camera1));
142 printf("jpeg:\t\t %luHz\n", clock_get_frequency(clock_jpeg));
143 printf("pdma:\t\t %luHz\n", clock_get_frequency(clock_pdma));
144 printf("==============================\n");
145 }
146
board_init_uart(UART_Type * ptr)147 void board_init_uart(UART_Type *ptr)
148 {
149 /* configure uart's pin before opening uart's clock */
150 init_uart_pins(ptr);
151 board_init_uart_clock(ptr);
152 }
153
board_print_banner(void)154 void board_print_banner(void)
155 {
156 const uint8_t banner[] = {"\n\
157 ----------------------------------------------------------------------\n\
158 $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
159 $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
160 $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
161 $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
162 $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
163 $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
164 $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
165 \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
166 ----------------------------------------------------------------------\n"};
167 #ifdef SDK_VERSION_STRING
168 printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
169 #endif
170 printf("%s", banner);
171 }
172
board_turnoff_rgb_led(void)173 static void board_turnoff_rgb_led(void)
174 {
175 uint8_t p11_stat;
176 uint8_t p12_stat;
177 uint8_t p13_stat;
178 uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
179 HPM_IOC->PAD[IOC_PAD_PB11].FUNC_CTL = IOC_PB11_FUNC_CTL_GPIO_B_11;
180 HPM_IOC->PAD[IOC_PAD_PB12].FUNC_CTL = IOC_PB12_FUNC_CTL_GPIO_B_12;
181 HPM_IOC->PAD[IOC_PAD_PB13].FUNC_CTL = IOC_PB13_FUNC_CTL_GPIO_B_13;
182
183 HPM_IOC->PAD[IOC_PAD_PB11].PAD_CTL = pad_ctl;
184 HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = pad_ctl;
185 HPM_IOC->PAD[IOC_PAD_PB13].PAD_CTL = pad_ctl;
186
187 p11_stat = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 11);
188 p12_stat = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 12);
189 p13_stat = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 13);
190
191 invert_led_level = false;
192 /*
193 * check led gpio level
194 */
195 if ((p11_stat & p12_stat & p13_stat) == 0) {
196 /* Rev B */
197 invert_led_level = true;
198 pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(0);
199 HPM_IOC->PAD[IOC_PAD_PB11].PAD_CTL = pad_ctl;
200 HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = pad_ctl;
201 HPM_IOC->PAD[IOC_PAD_PB13].PAD_CTL = pad_ctl;
202 }
203 }
204
board_ungate_mchtmr_at_lp_mode(void)205 void board_ungate_mchtmr_at_lp_mode(void)
206 {
207 /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
208 sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
209 }
210
board_init(void)211 void board_init(void)
212 {
213 board_turnoff_rgb_led();
214 board_init_clock();
215 board_init_console();
216 board_init_pmp();
217 #if BOARD_SHOW_CLOCK
218 board_print_clock_freq();
219 #endif
220 #if BOARD_SHOW_BANNER
221 board_print_banner();
222 #endif
223 }
224
board_init_sdram_pins(void)225 void board_init_sdram_pins(void)
226 {
227 init_sdram_pins();
228 }
229
board_init_femc_clock(void)230 uint32_t board_init_femc_clock(void)
231 {
232 clock_set_source_divider(clock_femc, clk_src_pll2_clk0, 2U); /* 166Mhz */
233 /* clock_set_source_divider(clock_femc, clk_src_pll1_clk1, 2U); [> 200Mhz <] */
234
235 return clock_get_frequency(clock_femc);
236 }
237
238 uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz);
239
240 #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
241
set_reset_pin_level_tm070rdh13(uint8_t level)242 static void set_reset_pin_level_tm070rdh13(uint8_t level)
243 {
244 gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, level);
245 }
246
set_backlight_tm070rdh13(uint16_t percent)247 static void set_backlight_tm070rdh13(uint16_t percent)
248 {
249 gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, percent > 0 ? 1 : 0);
250 }
251
board_init_lcd_rgb_tm070rdh13(void)252 void board_init_lcd_rgb_tm070rdh13(void)
253 {
254 init_lcd_pins(BOARD_LCD_BASE);
255
256 gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
257 gpio_set_pin_output(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN);
258
259 hpm_panel_hw_interface_t hw_if = {0};
260 hpm_panel_t *panel = hpm_panel_find_device_default();
261 const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
262 uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_display, timing->pixel_clock_khz);
263 hw_if.set_reset_pin_level = set_reset_pin_level_tm070rdh13;
264 hw_if.set_backlight = set_backlight_tm070rdh13;
265 hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
266 hpm_panel_register_interface(panel, &hw_if);
267
268 printf("name: %s, lcdc_clk: %ukhz\n",
269 hpm_panel_get_name(panel),
270 lcdc_pixel_clk_khz);
271
272 hpm_panel_reset(panel);
273 hpm_panel_init(panel);
274 hpm_panel_power_on(panel);
275 }
276
277 #endif
278
279 #ifdef CONFIG_HPM_PANEL
280
board_lcdc_clock_init(clock_name_t clock_name,uint32_t pixel_clk_khz)281 uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz)
282 {
283 clock_add_to_group(clock_name, 0);
284
285 uint32_t freq_khz = clock_get_frequency(clk_pll4clk0) / 1000;
286 uint32_t div = (freq_khz + pixel_clk_khz / 2) / pixel_clk_khz;
287 clock_set_source_divider(clock_name, clk_src_pll4_clk0, div);
288 return clock_get_frequency(clock_name) / 1000;
289 }
290
board_lcd_backlight(bool is_on)291 void board_lcd_backlight(bool is_on)
292 {
293 hpm_panel_t *panel = hpm_panel_find_device_default();
294 hpm_panel_set_backlight(panel, is_on == true ? 100 : 0);
295 }
296
board_init_lcd(void)297 void board_init_lcd(void)
298 {
299 #ifdef CONFIG_PANEL_RGB_TM070RDH13
300 board_init_lcd_rgb_tm070rdh13();
301 #endif
302 }
303
board_panel_para_to_lcdc(lcdc_config_t * config)304 void board_panel_para_to_lcdc(lcdc_config_t *config)
305 {
306 const hpm_panel_timing_t *timing;
307 hpm_panel_t *panel = hpm_panel_find_device_default();
308
309 timing = hpm_panel_get_timing(panel);
310 config->resolution_x = timing->hactive;
311 config->resolution_y = timing->vactive;
312
313 config->hsync.pulse_width = timing->hsync_len;
314 config->hsync.back_porch_pulse = timing->hback_porch;
315 config->hsync.front_porch_pulse = timing->hfront_porch;
316
317 config->vsync.pulse_width = timing->vsync_len;
318 config->vsync.back_porch_pulse = timing->vback_porch;
319 config->vsync.front_porch_pulse = timing->vfront_porch;
320
321 config->control.invert_hsync = timing->hsync_pol;
322 config->control.invert_vsync = timing->vsync_pol;
323 config->control.invert_href = timing->de_pol;
324 config->control.invert_pixel_data = timing->pixel_data_pol;
325 config->control.invert_pixel_clock = timing->pixel_clk_pol;
326 }
327 #endif
328
board_delay_ms(uint32_t ms)329 void board_delay_ms(uint32_t ms)
330 {
331 clock_cpu_delay_ms(ms);
332 }
333
board_delay_us(uint32_t us)334 void board_delay_us(uint32_t us)
335 {
336 clock_cpu_delay_us(us);
337 }
338
board_timer_isr(void)339 void board_timer_isr(void)
340 {
341 if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
342 gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
343 timer_cb();
344 }
345 }
346 SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
347
board_timer_create(uint32_t ms,board_timer_cb cb)348 void board_timer_create(uint32_t ms, board_timer_cb cb)
349 {
350 uint32_t gptmr_freq;
351 gptmr_channel_config_t config;
352
353 timer_cb = cb;
354 gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
355
356 clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
357 gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
358
359 config.reload = gptmr_freq / 1000 * ms;
360 gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
361 gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
362 intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
363
364 gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
365 }
366
board_i2c_bus_clear(I2C_Type * ptr)367 void board_i2c_bus_clear(I2C_Type *ptr)
368 {
369 init_i2c_pins_as_gpio(ptr);
370 if (ptr == BOARD_CAP_I2C_BASE) {
371 gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
372 gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
373 if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
374 printf("CLK is low, please power cycle the board\n");
375 while (1) {
376 }
377 }
378 if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
379 printf("SDA is low, try to issue I2C bus clear\n");
380 } else {
381 printf("I2C bus is ready\n");
382 return;
383 }
384
385 gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
386 while (1) {
387 for (uint32_t i = 0; i < 9; i++) {
388 gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
389 board_delay_ms(10);
390 gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
391 board_delay_ms(10);
392 }
393 board_delay_ms(100);
394 }
395 printf("I2C bus is cleared\n");
396 }
397 }
398
board_init_i2c(I2C_Type * ptr)399 void board_init_i2c(I2C_Type *ptr)
400 {
401 hpm_stat_t stat;
402 uint32_t freq;
403 i2c_config_t config;
404
405 board_i2c_bus_clear(ptr);
406
407 init_i2c_pins(ptr);
408 clock_add_to_group(clock_i2c0, 0);
409 clock_add_to_group(clock_i2c1, 0);
410 clock_add_to_group(clock_i2c2, 0);
411 clock_add_to_group(clock_i2c3, 0);
412 /* Configure the I2C clock to 24MHz */
413 clock_set_source_divider(BOARD_CAP_I2C_CLK_NAME, clk_src_osc24m, 1U);
414
415 config.i2c_mode = i2c_mode_normal;
416 config.is_10bit_addressing = false;
417 freq = clock_get_frequency(BOARD_CAP_I2C_CLK_NAME);
418 stat = i2c_init_master(BOARD_CAP_I2C_BASE, freq, &config);
419 if (stat != status_success) {
420 printf("failed to initialize i2c 0x%lx\n", (uint32_t)BOARD_CAP_I2C_BASE);
421 while (1) {
422 }
423 }
424 }
425
board_init_uart_clock(UART_Type * ptr)426 uint32_t board_init_uart_clock(UART_Type *ptr)
427 {
428 uint32_t freq = 0U;
429 if (ptr == HPM_UART0) {
430 clock_set_source_divider(clock_uart0, clk_src_osc24m, 1);
431 clock_add_to_group(clock_uart0, 0);
432 freq = clock_get_frequency(clock_uart0);
433 } else if (ptr == HPM_UART6) {
434 clock_set_source_divider(clock_uart6, clk_src_osc24m, 1);
435 clock_add_to_group(clock_uart6, 0);
436 freq = clock_get_frequency(clock_uart6);
437 } else if (ptr == HPM_UART13) {
438 clock_set_source_divider(clock_uart13, clk_src_osc24m, 1);
439 clock_add_to_group(clock_uart13, 0);
440 freq = clock_get_frequency(clock_uart13);
441 } else if (ptr == HPM_UART14) {
442 clock_set_source_divider(clock_uart14, clk_src_osc24m, 1);
443 clock_add_to_group(clock_uart14, 0);
444 freq = clock_get_frequency(clock_uart14);
445 } else {
446 /* Not supported */
447 }
448 return freq;
449 }
450
board_init_spi_clock(SPI_Type * ptr)451 uint32_t board_init_spi_clock(SPI_Type *ptr)
452 {
453 if (ptr == HPM_SPI2) {
454 /* SPI2 clock configure */
455 clock_add_to_group(clock_spi2, 0);
456 clock_set_source_divider(clock_spi2, clk_src_pll1_clk1, 5U); /* 80MHz */
457
458 return clock_get_frequency(clock_spi2);
459 }
460 return 0;
461 }
462
board_init_cap_touch(void)463 void board_init_cap_touch(void)
464 {
465 init_cap_pins();
466 gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
467 gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
468
469 board_delay_ms(1);
470 gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 1);
471 board_delay_ms(10);
472 gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
473
474 gpio_set_pin_input(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN);
475 board_init_i2c(BOARD_CAP_I2C_BASE);
476 }
477
board_init_gpio_pins(void)478 void board_init_gpio_pins(void)
479 {
480 uint8_t led_pin_pull_selsect;
481 HPM_IOC->PAD[IOC_PAD_PB12].FUNC_CTL = IOC_PB12_FUNC_CTL_GPIO_B_12;
482 HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
483
484 led_pin_pull_selsect = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 12);
485 init_gpio_pins(led_pin_pull_selsect);
486 }
487
board_init_spi_pins(SPI_Type * ptr)488 void board_init_spi_pins(SPI_Type *ptr)
489 {
490 init_spi_pins(ptr);
491 }
492
board_init_spi_pins_with_gpio_as_cs(SPI_Type * ptr)493 void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
494 {
495 init_spi_pins_with_gpio_as_cs(ptr);
496 gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
497 GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
498 }
499
board_write_spi_cs(uint32_t pin,uint8_t state)500 void board_write_spi_cs(uint32_t pin, uint8_t state)
501 {
502 gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
503 }
504
board_get_led_pwm_off_level(void)505 uint8_t board_get_led_pwm_off_level(void)
506 {
507 if (invert_led_level) {
508 return BOARD_LED_ON_LEVEL;
509 } else {
510 return BOARD_LED_OFF_LEVEL;
511 }
512 }
513
board_get_led_gpio_off_level(void)514 uint8_t board_get_led_gpio_off_level(void)
515 {
516 if (invert_led_level) {
517 return BOARD_LED_ON_LEVEL;
518 } else {
519 return BOARD_LED_OFF_LEVEL;
520 }
521 }
522
board_init_led_pins(void)523 void board_init_led_pins(void)
524 {
525 board_turnoff_rgb_led();
526 init_led_pins_as_gpio();
527 gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
528 gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
529 gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
530 }
531
board_led_toggle(void)532 void board_led_toggle(void)
533 {
534 #ifdef BOARD_LED_TOGGLE_RGB
535 static uint8_t i;
536 gpio_write_port(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, invert_led_level ? ((1 << i) << BOARD_R_GPIO_PIN) : ((7 & ~(1 << i)) << BOARD_R_GPIO_PIN));
537 i++;
538 i = i % 3;
539 #else
540 gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
541 #endif
542 }
543
board_led_write(uint8_t state)544 void board_led_write(uint8_t state)
545 {
546 gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
547 }
548
board_init_cam_pins(void)549 void board_init_cam_pins(void)
550 {
551 init_cam_pins();
552 /* enable cam RST pin out with high level */
553 gpio_set_pin_output_with_initial(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, 1);
554 }
555
board_write_cam_rst(uint8_t state)556 void board_write_cam_rst(uint8_t state)
557 {
558 gpio_write_pin(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, state);
559
560 }
561
board_init_usb_pins(void)562 void board_init_usb_pins(void)
563 {
564 /* set pull-up for USBx OC pins and ID pins */
565 init_usb_pins();
566
567 /* configure USBx ID pins as input function */
568 gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
569 gpio_set_pin_input(BOARD_USB1_ID_PORT, BOARD_USB1_ID_GPIO_INDEX, BOARD_USB1_ID_GPIO_PIN);
570
571 /* configure USBx OC Flag pins as input function */
572 gpio_set_pin_input(BOARD_USB0_OC_PORT, BOARD_USB0_OC_GPIO_INDEX, BOARD_USB0_OC_GPIO_PIN);
573 gpio_set_pin_input(BOARD_USB1_OC_PORT, BOARD_USB1_OC_GPIO_INDEX, BOARD_USB1_OC_GPIO_PIN);
574 }
575
board_usb_vbus_ctrl(uint8_t usb_index,uint8_t level)576 void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
577 {
578 (void) usb_index;
579 (void) level;
580 }
581
board_init_pmp(void)582 void board_init_pmp(void)
583 {
584 uint32_t start_addr;
585 uint32_t end_addr;
586 uint32_t length;
587 pmp_entry_t pmp_entry[16];
588 uint8_t index = 0;
589
590 /* Init noncachable memory */
591 extern uint32_t __noncacheable_start__[];
592 extern uint32_t __noncacheable_end__[];
593 start_addr = (uint32_t) __noncacheable_start__;
594 end_addr = (uint32_t) __noncacheable_end__;
595 length = end_addr - start_addr;
596 if (length > 0) {
597 /* Ensure the address and the length are power of 2 aligned */
598 assert((length & (length - 1U)) == 0U);
599 assert((start_addr & (length - 1U)) == 0U);
600 pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
601 pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
602 pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
603 pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
604 index++;
605 }
606
607 /* Init share memory */
608 extern uint32_t __share_mem_start__[];
609 extern uint32_t __share_mem_end__[];
610 start_addr = (uint32_t)__share_mem_start__;
611 end_addr = (uint32_t)__share_mem_end__;
612 length = end_addr - start_addr;
613 if (length > 0) {
614 /* Ensure the address and the length are power of 2 aligned */
615 assert((length & (length - 1U)) == 0U);
616 assert((start_addr & (length - 1U)) == 0U);
617 pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
618 pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
619 pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
620 pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
621 index++;
622 }
623
624 pmp_config(&pmp_entry[0], index);
625 }
626
board_init_clock(void)627 void board_init_clock(void)
628 {
629 uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
630 if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
631 /* Configure the External OSC ramp-up time: ~9ms */
632 pllctl_xtal_set_rampup_time(HPM_PLLCTL, 32UL * 1000UL * 9U);
633
634 /* Select clock setting preset1 */
635 sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
636 }
637
638 /* Add most Clocks to group 0 */
639 /* not open uart clock in this API, uart should configure pin function before opening clock */
640 clock_add_to_group(clock_cpu0, 0);
641 clock_add_to_group(clock_mchtmr0, 0);
642 clock_add_to_group(clock_axi0, 0);
643 clock_add_to_group(clock_axi1, 0);
644 clock_add_to_group(clock_axi2, 0);
645 clock_add_to_group(clock_ahb, 0);
646 clock_add_to_group(clock_femc, 0);
647 clock_add_to_group(clock_xpi0, 0);
648 clock_add_to_group(clock_xpi1, 0);
649 clock_add_to_group(clock_gptmr0, 0);
650 clock_add_to_group(clock_gptmr1, 0);
651 clock_add_to_group(clock_gptmr2, 0);
652 clock_add_to_group(clock_gptmr3, 0);
653 clock_add_to_group(clock_gptmr4, 0);
654 clock_add_to_group(clock_gptmr5, 0);
655 clock_add_to_group(clock_gptmr6, 0);
656 clock_add_to_group(clock_gptmr7, 0);
657 clock_add_to_group(clock_i2c0, 0);
658 clock_add_to_group(clock_i2c1, 0);
659 clock_add_to_group(clock_i2c2, 0);
660 clock_add_to_group(clock_i2c3, 0);
661 clock_add_to_group(clock_spi0, 0);
662 clock_add_to_group(clock_spi1, 0);
663 clock_add_to_group(clock_spi2, 0);
664 clock_add_to_group(clock_spi3, 0);
665 clock_add_to_group(clock_can0, 0);
666 clock_add_to_group(clock_can1, 0);
667 clock_add_to_group(clock_can2, 0);
668 clock_add_to_group(clock_can3, 0);
669 clock_add_to_group(clock_display, 0);
670 clock_add_to_group(clock_sdxc0, 0);
671 clock_add_to_group(clock_sdxc1, 0);
672 clock_add_to_group(clock_camera0, 0);
673 clock_add_to_group(clock_camera1, 0);
674 clock_add_to_group(clock_ptpc, 0);
675 clock_add_to_group(clock_ref0, 0);
676 clock_add_to_group(clock_ref1, 0);
677 clock_add_to_group(clock_watchdog0, 0);
678 clock_add_to_group(clock_eth0, 0);
679 clock_add_to_group(clock_eth1, 0);
680 clock_add_to_group(clock_sdp, 0);
681 clock_add_to_group(clock_xdma, 0);
682 clock_add_to_group(clock_ram0, 0);
683 clock_add_to_group(clock_ram1, 0);
684 clock_add_to_group(clock_usb0, 0);
685 clock_add_to_group(clock_usb1, 0);
686 clock_add_to_group(clock_jpeg, 0);
687 clock_add_to_group(clock_pdma, 0);
688 clock_add_to_group(clock_kman, 0);
689 clock_add_to_group(clock_gpio, 0);
690 clock_add_to_group(clock_mbx0, 0);
691 clock_add_to_group(clock_hdma, 0);
692 clock_add_to_group(clock_rng, 0);
693 clock_add_to_group(clock_mot0, 0);
694 clock_add_to_group(clock_mot1, 0);
695 clock_add_to_group(clock_mot2, 0);
696 clock_add_to_group(clock_mot3, 0);
697 clock_add_to_group(clock_acmp, 0);
698 clock_add_to_group(clock_dao, 0);
699 clock_add_to_group(clock_msyn, 0);
700 clock_add_to_group(clock_lmm0, 0);
701 clock_add_to_group(clock_lmm1, 0);
702 clock_add_to_group(clock_pdm, 0);
703
704 clock_add_to_group(clock_adc0, 0);
705 clock_add_to_group(clock_adc1, 0);
706 clock_add_to_group(clock_adc2, 0);
707 clock_add_to_group(clock_adc3, 0);
708
709 clock_add_to_group(clock_i2s0, 0);
710 clock_add_to_group(clock_i2s1, 0);
711 clock_add_to_group(clock_i2s2, 0);
712 clock_add_to_group(clock_i2s3, 0);
713 /* Connect Group0 to CPU0 */
714 clock_connect_group_to_cpu(0, 0);
715
716 /* Add the CPU1 clock to Group1 */
717 clock_add_to_group(clock_mchtmr1, 1);
718 clock_add_to_group(clock_mbx1, 1);
719 /* Connect Group1 to CPU1 */
720 clock_connect_group_to_cpu(1, 1);
721
722 /* Bump up DCDC voltage to 1200mv */
723 pcfg_dcdc_set_voltage(HPM_PCFG, 1200);
724 pcfg_dcdc_switch_to_dcm_mode(HPM_PCFG);
725
726 if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
727 printf("Failed to set pll0_clk0 to %ldHz\n", BOARD_CPU_FREQ);
728 while (1) {
729 }
730 }
731
732 clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
733 clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
734 clock_update_core_clock();
735
736 clock_set_source_divider(clock_ahb, clk_src_pll1_clk1, 2); /*200m hz*/
737 clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
738 clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
739 }
740
board_init_cam_clock(CAM_Type * ptr)741 uint32_t board_init_cam_clock(CAM_Type *ptr)
742 {
743 uint32_t freq = 0;
744 if (ptr == HPM_CAM0) {
745 /* Configure camera clock to 24MHz */
746 clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
747 freq = clock_get_frequency(clock_camera0);
748 } else if (ptr == HPM_CAM1) {
749 /* Configure camera clock to 24MHz */
750 clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
751 freq = clock_get_frequency(clock_camera1);
752 } else {
753 /* Invalid camera instance */
754 }
755 return freq;
756 }
757
board_init_lcd_clock(void)758 uint32_t board_init_lcd_clock(void)
759 {
760 uint32_t freq;
761 clock_add_to_group(clock_display, 0);
762 /* Configure LCDC clock to 59.4MHz */
763 clock_set_source_divider(clock_display, (clk_src_t) clock_source_pll4_clk0, 10U);
764 freq = clock_get_frequency(clock_display);
765 return freq;
766 }
767
board_init_dao_clock(void)768 uint32_t board_init_dao_clock(void)
769 {
770 clock_add_to_group(clock_dao, 0);
771
772 sysctl_config_clock(HPM_SYSCTL, clock_node_aud1, clock_source_pll3_clk0, 25);
773 sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud1_clk);
774
775 return clock_get_frequency(clock_dao);
776 }
777
board_init_pdm_clock(void)778 uint32_t board_init_pdm_clock(void)
779 {
780 clock_add_to_group(clock_pdm, 0);
781
782 sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
783 sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
784
785 return clock_get_frequency(clock_pdm);
786 }
787
board_set_audio_pll_clock(uint32_t freq)788 hpm_stat_t board_set_audio_pll_clock(uint32_t freq)
789 {
790 return pllctl_init_frac_pll_with_freq(HPM_PLLCTL, 3, freq); /* pll3clk */
791 }
792
board_init_i2s_pins(I2S_Type * ptr)793 void board_init_i2s_pins(I2S_Type *ptr)
794 {
795 init_i2s_pins(ptr);
796 }
797
board_init_i2s_clock(I2S_Type * ptr)798 uint32_t board_init_i2s_clock(I2S_Type *ptr)
799 {
800 uint32_t freq = 0;
801
802 if (ptr == HPM_I2S0) {
803 clock_add_to_group(clock_i2s0, 0);
804
805 sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
806 sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
807
808 freq = clock_get_frequency(clock_i2s0);
809 } else if (ptr == HPM_I2S1) {
810 clock_add_to_group(clock_i2s1, 0);
811
812 sysctl_config_clock(HPM_SYSCTL, clock_node_aud1, clock_source_pll3_clk0, 25);
813 sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud1_clk);
814
815 freq = clock_get_frequency(clock_i2s1);
816 } else {
817 ;
818 }
819
820 return freq;
821 }
822
823 /* adjust I2S source clock base on sample rate */
board_config_i2s_clock(I2S_Type * ptr,uint32_t sample_rate)824 uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
825 {
826 uint32_t freq = 0;
827
828 if (ptr == HPM_I2S0) {
829 clock_add_to_group(clock_i2s0, 0);
830 if ((sample_rate % 22050) == 0) {
831 clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
832 } else {
833 clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
834 }
835 clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
836 freq = clock_get_frequency(clock_i2s0);
837 } else if (ptr == HPM_I2S1) {
838 clock_add_to_group(clock_i2s1, 0);
839 if ((sample_rate % 22050) == 0) {
840 clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
841 } else {
842 clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
843 }
844 clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
845 freq = clock_get_frequency(clock_i2s1);
846 } else {
847 ;
848 }
849
850 return freq;
851 }
852
board_init_adc12_clock(ADC12_Type * ptr,bool clk_src_ahb)853 uint32_t board_init_adc12_clock(ADC12_Type *ptr, bool clk_src_ahb)
854 {
855 uint32_t freq = 0;
856
857 if (ptr == HPM_ADC0) {
858 if (clk_src_ahb) {
859 /* Configure the ADC clock from AHB (@200MHz by default)*/
860 clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
861 } else {
862 /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
863 clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
864 clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
865 }
866 freq = clock_get_frequency(clock_adc0);
867 } else if (ptr == HPM_ADC1) {
868 if (clk_src_ahb) {
869 /* Configure the ADC clock from AHB (@200MHz by default)*/
870 clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
871 } else {
872 /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
873 clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
874 clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
875 }
876 freq = clock_get_frequency(clock_adc1);
877 } else if (ptr == HPM_ADC2) {
878 if (clk_src_ahb) {
879 /* Configure the ADC clock from AHB (@200MHz by default)*/
880 clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
881 } else {
882 /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
883 clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
884 clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
885 }
886 freq = clock_get_frequency(clock_adc2);
887 }
888
889 return freq;
890 }
891
board_init_adc16_clock(ADC16_Type * ptr,bool clk_src_ahb)892 uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb)
893 {
894 uint32_t freq = 0;
895
896 if (ptr == HPM_ADC3) {
897 if (clk_src_ahb) {
898 /* Configure the ADC clock from AHB (@200MHz by default)*/
899 clock_set_adc_source(clock_adc3, clk_adc_src_ahb0);
900 } else {
901 /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
902 clock_set_adc_source(clock_adc3, clk_adc_src_ana2);
903 clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
904 }
905
906 freq = clock_get_frequency(clock_adc3);
907 }
908
909 return freq;
910 }
911
board_init_can(CAN_Type * ptr)912 void board_init_can(CAN_Type *ptr)
913 {
914 init_can_pins(ptr);
915 }
916
board_init_can_clock(CAN_Type * ptr)917 uint32_t board_init_can_clock(CAN_Type *ptr)
918 {
919 uint32_t freq = 0;
920 if (ptr == HPM_CAN0) {
921 /* Set the CAN0 peripheral clock to 80MHz */
922 clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
923 freq = clock_get_frequency(clock_can0);
924 } else if (ptr == HPM_CAN1) {
925 /* Set the CAN1 peripheral clock to 80MHz */
926 clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
927 freq = clock_get_frequency(clock_can1);
928 } else if (ptr == HPM_CAN2) {
929 /* Set the CAN2 peripheral clock to 80MHz */
930 clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
931 freq = clock_get_frequency(clock_can2);
932 } else if (ptr == HPM_CAN3) {
933 /* Set the CAN3 peripheral clock to 80MHz */
934 clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
935 freq = clock_get_frequency(clock_can3);
936 } else {
937 /* Invalid CAN instance */
938 }
939 return freq;
940 }
941
942 #ifdef INIT_EXT_RAM_FOR_DATA
943 /*
944 * this function will be called during startup to initialize external memory for data use
945 */
_init_ext_ram(void)946 void _init_ext_ram(void)
947 {
948 uint32_t femc_clk_in_hz;
949 clock_add_to_group(clock_femc, 0);
950 board_init_sdram_pins();
951 femc_clk_in_hz = board_init_femc_clock();
952
953 femc_config_t config = {0};
954 femc_sdram_config_t sdram_config = {0};
955
956 femc_default_config(HPM_FEMC, &config);
957 config.dqs = FEMC_DQS_INTERNAL;
958 femc_init(HPM_FEMC, &config);
959
960 sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
961 sdram_config.prescaler = 0x3;
962 sdram_config.burst_len_in_byte = 8;
963 sdram_config.auto_refresh_count_in_one_burst = 1;
964 sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
965 sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
966
967 sdram_config.precharge_to_act_in_ns = 18; /* Trp */
968 sdram_config.act_to_rw_in_ns = 18; /* Trcd */
969 sdram_config.refresh_recover_in_ns = 70; /* Trfc/Trc */
970 sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
971 sdram_config.cke_off_in_ns = 42; /* Trcd */
972 sdram_config.act_to_precharge_in_ns = 42; /* Tras */
973
974 sdram_config.self_refresh_recover_in_ns = 66; /* Txsr */
975 sdram_config.refresh_to_refresh_in_ns = 66; /* Trfc/Trc */
976 sdram_config.act_to_act_in_ns = 12; /* Trrd */
977 sdram_config.idle_timeout_in_ns = 6;
978 sdram_config.cs_mux_pin = FEMC_IO_MUX_NOT_USED;
979
980 sdram_config.cs = BOARD_SDRAM_CS;
981 sdram_config.base_address = BOARD_SDRAM_ADDRESS;
982 sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
983 sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
984 sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
985 sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
986 sdram_config.data_width_in_byte = BOARD_SDRAM_DATA_WIDTH_IN_BYTE;
987 sdram_config.delay_cell_value = 29;
988
989 femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
990 }
991 #endif
992
board_sd_configure_clock(SDXC_Type * ptr,uint32_t freq,bool need_inverse)993 uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse)
994 {
995 uint32_t actual_freq = 0;
996 do {
997 if (ptr != HPM_SDXC1) {
998 break;
999 }
1000 clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
1001 sdxc_enable_inverse_clock(ptr, false);
1002 sdxc_enable_sd_clock(ptr, false);
1003 /* Configure the clock below 400KHz for the identification state */
1004 if (freq <= 400000UL) {
1005 clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
1006 }
1007 /* configure the clock to 24MHz for the SDR12/Default speed */
1008 else if (freq <= 26000000UL) {
1009 clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
1010 }
1011 /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
1012 else if (freq <= 52000000UL) {
1013 clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
1014 }
1015 /* Configure the clock to 100MHz for the SDR50 */
1016 else if (freq <= 100000000UL) {
1017 clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
1018 }
1019 /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
1020 else if (freq <= 208000000UL) {
1021 clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
1022 }
1023 /* For other unsupported clock ranges, configure the clock to 24MHz */
1024 else {
1025 clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
1026 }
1027 if (need_inverse) {
1028 sdxc_enable_inverse_clock(ptr, true);
1029 }
1030 sdxc_enable_sd_clock(ptr, true);
1031 actual_freq = clock_get_frequency(sdxc_clk);
1032 } while (false);
1033
1034 return actual_freq;
1035 }
1036
1037
set_rgb_output_off(PWM_Type * ptr,uint8_t pin,uint8_t cmp_index)1038 static void set_rgb_output_off(PWM_Type *ptr, uint8_t pin, uint8_t cmp_index)
1039 {
1040 pwm_cmp_config_t cmp_config = {0};
1041 pwm_output_channel_t ch_config = {0};
1042
1043 pwm_stop_counter(ptr);
1044 pwm_get_default_cmp_config(ptr, &cmp_config);
1045 pwm_get_default_output_channel_config(ptr, &ch_config);
1046
1047 pwm_set_reload(ptr, 0, 0xF);
1048 pwm_set_start_count(ptr, 0, 0);
1049
1050 cmp_config.mode = pwm_cmp_mode_output_compare;
1051 cmp_config.cmp = 0x10;
1052 cmp_config.update_trigger = pwm_shadow_register_update_on_modify;
1053 pwm_config_cmp(ptr, cmp_index, &cmp_config);
1054
1055 ch_config.cmp_start_index = cmp_index;
1056 ch_config.cmp_end_index = cmp_index;
1057 ch_config.invert_output = false;
1058
1059 pwm_config_output_channel(ptr, pin, &ch_config);
1060 }
1061
board_init_rgb_pwm_pins(void)1062 void board_init_rgb_pwm_pins(void)
1063 {
1064 trgm_output_t config = {0};
1065 board_turnoff_rgb_led();
1066
1067 set_rgb_output_off(BOARD_RED_PWM, BOARD_RED_PWM_OUT, BOARD_RED_PWM_CMP);
1068 set_rgb_output_off(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT, BOARD_GREEN_PWM_CMP);
1069 set_rgb_output_off(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT, BOARD_BLUE_PWM_CMP);
1070
1071 init_rgb_pwm_pins();
1072
1073 config.type = 0;
1074 config.invert = false;
1075
1076 /* Red: TRGM1 P1 */
1077 config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH8REF;
1078 trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT1, &config);
1079
1080 /* Green: TRGM0 P6 */
1081 config.input = HPM_TRGM0_INPUT_SRC_PWM0_CH8REF;
1082 trgm_output_config(HPM_TRGM0, TRGM_TRGOCFG_TRGM_OUT6, &config);
1083
1084 /* Blue: TRGM1 P3 */
1085 config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH9REF;
1086 trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT3, &config);
1087 }
1088
board_disable_output_rgb_led(uint8_t color)1089 void board_disable_output_rgb_led(uint8_t color)
1090 {
1091 switch (color) {
1092 case BOARD_RGB_RED:
1093 trgm_disable_io_output(HPM_TRGM1, 1 << 1);
1094 break;
1095 case BOARD_RGB_GREEN:
1096 trgm_disable_io_output(HPM_TRGM0, 1 << 6);
1097 break;
1098 case BOARD_RGB_BLUE:
1099 trgm_disable_io_output(HPM_TRGM1, 1 << 3);
1100 break;
1101 default:
1102 while (1) {
1103 ;
1104 }
1105 }
1106 }
1107
board_enable_output_rgb_led(uint8_t color)1108 void board_enable_output_rgb_led(uint8_t color)
1109 {
1110 switch (color) {
1111 case BOARD_RGB_RED:
1112 trgm_enable_io_output(HPM_TRGM1, 1 << 1);
1113 break;
1114 case BOARD_RGB_GREEN:
1115 trgm_enable_io_output(HPM_TRGM0, 1 << 6);
1116 break;
1117 case BOARD_RGB_BLUE:
1118 trgm_enable_io_output(HPM_TRGM1, 1 << 3);
1119 break;
1120 default:
1121 while (1) {
1122 ;
1123 }
1124 }
1125 }
1126
board_init_enet_ptp_clock(ENET_Type * ptr)1127 hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
1128 {
1129 /* set clock source */
1130 if (ptr == HPM_ENET0) {
1131 /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet0 ptp function */
1132 clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); /* 100MHz */
1133 } else if (ptr == HPM_ENET1) {
1134 /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet1 ptp function */
1135 clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); /* 100MHz */
1136 } else {
1137 return status_invalid_argument;
1138 }
1139
1140 return status_success;
1141 }
1142
board_init_enet_rmii_reference_clock(ENET_Type * ptr,bool internal)1143 hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
1144 {
1145 /* Configure Enet clock to output reference clock */
1146 if (ptr == HPM_ENET1) {
1147 if (internal) {
1148 /* set pll output frequency at 1GHz */
1149 if (pllctl_init_int_pll_with_freq(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1000000000UL) == status_success) {
1150 /* set pll2_clk1 output frequence at 250MHz from PLL2 divided by 4 */
1151 pllctl_set_div(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1, 4);
1152 /* set eth clock frequency at 50MHz for enet0 */
1153 clock_set_source_divider(ptr == HPM_ENET0 ? clock_eth0 : clock_eth1, clk_src_pll2_clk1, 5);
1154 } else {
1155 return status_fail;
1156 }
1157 }
1158 } else {
1159 return status_invalid_argument;
1160 }
1161
1162 enet_rmii_enable_clock(ptr, internal);
1163
1164 return status_success;
1165 }
1166
board_init_enet_rgmii_clock_delay(ENET_Type * ptr)1167 hpm_stat_t board_init_enet_rgmii_clock_delay(ENET_Type *ptr)
1168 {
1169 if (ptr == HPM_ENET0) {
1170 return enet_rgmii_set_clock_delay(ptr, BOARD_ENET_RGMII_TX_DLY, BOARD_ENET_RGMII_RX_DLY);
1171 }
1172
1173 return status_invalid_argument;
1174 }
1175
board_init_adc12_pins(void)1176 void board_init_adc12_pins(void)
1177 {
1178 init_adc12_pins();
1179 }
1180
board_init_adc16_pins(void)1181 void board_init_adc16_pins(void)
1182 {
1183 init_adc16_pins();
1184 }
1185
board_init_enet_pins(ENET_Type * ptr)1186 hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
1187 {
1188 init_enet_pins(ptr);
1189
1190 if (ptr == HPM_ENET0) {
1191 gpio_set_pin_output_with_initial(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
1192 } else if (ptr == HPM_ENET1) {
1193 gpio_set_pin_output_with_initial(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
1194 } else {
1195 return status_invalid_argument;
1196 }
1197
1198 return status_success;
1199 }
1200
board_reset_enet_phy(ENET_Type * ptr)1201 hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
1202 {
1203 if (ptr == HPM_ENET0) {
1204 gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
1205 board_delay_ms(1);
1206 gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 1);
1207 } else if (ptr == HPM_ENET1) {
1208 gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
1209 board_delay_ms(1);
1210 gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 1);
1211 } else {
1212 return status_invalid_argument;
1213 }
1214
1215 return status_success;
1216 }
1217
board_get_enet_dma_pbl(ENET_Type * ptr)1218 uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
1219 {
1220 (void) ptr;
1221 return enet_pbl_32;
1222 }
1223
board_enable_enet_irq(ENET_Type * ptr)1224 hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
1225 {
1226 if (ptr == HPM_ENET0) {
1227 intc_m_enable_irq(IRQn_ENET0);
1228 } else if (ptr == HPM_ENET1) {
1229 intc_m_enable_irq(IRQn_ENET1);
1230 } else {
1231 return status_invalid_argument;
1232 }
1233
1234 return status_success;
1235 }
1236
board_disable_enet_irq(ENET_Type * ptr)1237 hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
1238 {
1239 if (ptr == HPM_ENET0) {
1240 intc_m_disable_irq(IRQn_ENET0);
1241 } else if (ptr == HPM_ENET1) {
1242 intc_m_disable_irq(IRQn_ENET1);
1243 } else {
1244 return status_invalid_argument;
1245 }
1246
1247 return status_success;
1248 }
1249
board_init_enet_pps_pins(ENET_Type * ptr)1250 void board_init_enet_pps_pins(ENET_Type *ptr)
1251 {
1252 (void) ptr;
1253 init_enet_pps_pins();
1254 }
1255
1256 #if defined(ENET_MULTIPLE_PORT) && ENET_MULTIPLE_PORT
1257
board_init_multiple_enet_pins(void)1258 hpm_stat_t board_init_multiple_enet_pins(void)
1259 {
1260 board_init_enet_pins(HPM_ENET0);
1261 board_init_enet_pins(HPM_ENET1);
1262
1263 return status_success;
1264 }
1265
board_init_multiple_enet_clock(void)1266 hpm_stat_t board_init_multiple_enet_clock(void)
1267 {
1268 /* Set RGMII clock delay */
1269 board_init_enet_rgmii_clock_delay(HPM_ENET0);
1270
1271 /* Set RMII reference clock */
1272 board_init_enet_rmii_reference_clock(HPM_ENET1, BOARD_ENET_RMII_INT_REF_CLK);
1273 printf("Enet1 Reference Clock: %s\n", BOARD_ENET_RMII_INT_REF_CLK ? "Internal Clock" : "External Clock");
1274
1275 return status_success;
1276 }
1277
board_reset_multiple_enet_phy(void)1278 hpm_stat_t board_reset_multiple_enet_phy(void)
1279 {
1280 board_reset_enet_phy(HPM_ENET0);
1281 board_reset_enet_phy(HPM_ENET1);
1282
1283 return status_success;
1284 }
1285
board_init_enet_phy(ENET_Type * ptr)1286 hpm_stat_t board_init_enet_phy(ENET_Type *ptr)
1287 {
1288 dp83867_config_t phy_config0;
1289 dp83848_config_t phy_config1;
1290
1291 if (ptr == HPM_ENET0) {
1292 dp83867_reset(HPM_ENET0);
1293 #if __DISABLE_AUTO_NEGO
1294 dp83867_set_mdi_crossover_mode(HPM_ENET0, enet_phy_mdi_crossover_manual_mdix);
1295 #endif
1296 dp83867_basic_mode_default_config(HPM_ENET0, &phy_config0);
1297 if (dp83867_basic_mode_init(HPM_ENET0, &phy_config0) == true) {
1298 return status_success;
1299 } else {
1300 printf("Enet0 phy init failed!\n");
1301 return status_fail;
1302 }
1303 } else if (ptr == HPM_ENET1) {
1304 dp83848_reset(HPM_ENET1);
1305 dp83848_basic_mode_default_config(HPM_ENET1, &phy_config1);
1306 if (dp83848_basic_mode_init(HPM_ENET1, &phy_config1) == true) {
1307 return status_success;
1308 } else {
1309 printf("Enet1 phy init failed!\n");
1310 return status_fail;
1311 }
1312 } else {
1313 return status_invalid_argument;
1314 }
1315 }
1316
board_get_enet_base(uint8_t idx)1317 ENET_Type *board_get_enet_base(uint8_t idx)
1318 {
1319 if (idx == 0) {
1320 return HPM_ENET0;
1321 } else {
1322 return HPM_ENET1;
1323 }
1324 }
1325
board_get_enet_phy_itf(uint8_t idx)1326 uint8_t board_get_enet_phy_itf(uint8_t idx)
1327 {
1328 if (idx == 0) {
1329 return BOARD_ENET_RGMII_PHY_ITF;
1330 } else {
1331 return BOARD_ENET_RMII_PHY_ITF;
1332 }
1333 }
1334
board_get_enet_phy_status(uint8_t idx,void * status)1335 void board_get_enet_phy_status(uint8_t idx, void *status)
1336 {
1337 if (idx == 0) {
1338 dp83867_get_phy_status(HPM_ENET0, status);
1339 } else {
1340 dp83848_get_phy_status(HPM_ENET1, status);
1341 }
1342 }
1343 #endif
1344
board_init_dao_pins(void)1345 void board_init_dao_pins(void)
1346 {
1347 init_dao_pins();
1348 }
1349