• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2021-2023 HPMicro
3  * SPDX-License-Identifier: BSD-3-Clause
4  *
5  */
6 
7 #include "board.h"
8 #include "hpm_uart_drv.h"
9 #include "hpm_gptmr_drv.h"
10 #include "hpm_lcdc_drv.h"
11 #include "hpm_i2c_drv.h"
12 #include "hpm_gpio_drv.h"
13 #include "hpm_femc_drv.h"
14 #include "pinmux.h"
15 #include "hpm_pmp_drv.h"
16 #include "hpm_clock_drv.h"
17 #include "hpm_sysctl_drv.h"
18 #include "hpm_sdxc_drv.h"
19 #include "hpm_pwm_drv.h"
20 #include "hpm_trgm_drv.h"
21 #include "hpm_pllctl_drv.h"
22 #include "hpm_enet_drv.h"
23 #include "hpm_enet_phy_common.h"
24 #include "hpm_pcfg_drv.h"
25 #include "hpm_sdk_version.h"
26 
27 static board_timer_cb timer_cb;
28 static bool invert_led_level;
29 
30 /**
31  * @brief FLASH configuration option definitions:
32  * option[0]:
33  *    [31:16] 0xfcf9 - FLASH configuration option tag
34  *    [15:4]  0 - Reserved
35  *    [3:0]   option words (exclude option[0])
36  * option[1]:
37  *    [31:28] Flash probe type
38  *      0 - SFDP SDR / 1 - SFDP DDR
39  *      2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
40  *      4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
41  *      6 - OctaBus DDR (SPI -> OPI DDR)
42  *      8 - Xccela DDR (SPI -> OPI DDR)
43  *      10 - EcoXiP DDR (SPI -> OPI DDR)
44  *    [27:24] Command Pads after Power-on Reset
45  *      0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
46  *    [23:20] Command Pads after Configuring FLASH
47  *      0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
48  *    [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
49  *      0 - Not needed
50  *      1 - QE bit is at bit 6 in Status Register 1
51  *      2 - QE bit is at bit1 in Status Register 2
52  *      3 - QE bit is at bit7 in Status Register 2
53  *      4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
54  *    [15:8] Dummy cycles
55  *      0 - Auto-probed / detected / default value
56  *      Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
57  *    [7:4] Misc.
58  *      0 - Not used
59  *      1 - SPI mode
60  *      2 - Internal loopback
61  *      3 - External DQS
62  *    [3:0] Frequency option
63  *      1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
64  *
65  * option[2] (Effective only if the bit[3:0] in option[0] > 1)
66  *    [31:20]  Reserved
67  *    [19:16] IO voltage
68  *      0 - 3V / 1 - 1.8V
69  *    [15:12] Pin group
70  *      0 - 1st group / 1 - 2nd group
71  *    [11:8] Connection selection
72  *      0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
73  *    [7:0] Drive Strength
74  *      0 - Default value
75  * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
76  *              JESD216)
77  *    [31:16] reserved
78  *    [15:12] Sector Erase Command Option, not required here
79  *    [11:8]  Sector Size Option, not required here
80  *    [7:0] Flash Size Option
81  *      0 - 4MB / 1 - 8MB / 2 - 16MB
82  */
83 #if defined(FLASH_XIP) && FLASH_XIP
84 __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x1000, 0x0};
85 #endif
86 
87 #if defined(FLASH_UF2) && FLASH_UF2
88 ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
89 #endif
90 
board_init_console(void)91 void board_init_console(void)
92 {
93 #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
94 #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
95     console_config_t cfg;
96 
97     /* uart needs to configure pin function before enabling clock, otherwise the level change of
98     uart rx pin when configuring pin function will cause a wrong data to be received.
99     And a uart rx dma request will be generated by default uart fifo dma trigger level. */
100     init_uart_pins((UART_Type *) BOARD_CONSOLE_BASE);
101 
102     /* Configure the UART clock to 24MHz */
103     clock_set_source_divider(BOARD_CONSOLE_CLK_NAME, clk_src_osc24m, 1U);
104     clock_add_to_group(BOARD_CONSOLE_CLK_NAME, 0);
105 
106     cfg.type = BOARD_CONSOLE_TYPE;
107     cfg.base = (uint32_t) BOARD_CONSOLE_BASE;
108     cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_CLK_NAME);
109     cfg.baudrate = BOARD_CONSOLE_BAUDRATE;
110 
111     if (status_success != console_init(&cfg)) {
112         /* failed to  initialize debug console */
113         while (1) {
114         }
115     }
116 #else
117     while (1) {
118     }
119 #endif
120 #endif
121 }
122 
board_print_clock_freq(void)123 void board_print_clock_freq(void)
124 {
125     printf("==============================\n");
126     printf(" %s clock summary\n", BOARD_NAME);
127     printf("==============================\n");
128     printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
129     printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
130     printf("axi0:\t\t %luHz\n", clock_get_frequency(clock_axi0));
131     printf("axi1:\t\t %luHz\n", clock_get_frequency(clock_axi1));
132     printf("axi2:\t\t %luHz\n", clock_get_frequency(clock_axi2));
133     printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
134     printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
135     printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
136     printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
137     printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
138     printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
139     printf("display:\t %luHz\n", clock_get_frequency(clock_display));
140     printf("cam0:\t\t %luHz\n", clock_get_frequency(clock_camera0));
141     printf("cam1:\t\t %luHz\n", clock_get_frequency(clock_camera1));
142     printf("jpeg:\t\t %luHz\n", clock_get_frequency(clock_jpeg));
143     printf("pdma:\t\t %luHz\n", clock_get_frequency(clock_pdma));
144     printf("==============================\n");
145 }
146 
board_init_uart(UART_Type * ptr)147 void board_init_uart(UART_Type *ptr)
148 {
149     /* configure uart's pin before opening uart's clock */
150     init_uart_pins(ptr);
151     board_init_uart_clock(ptr);
152 }
153 
board_print_banner(void)154 void board_print_banner(void)
155 {
156     const uint8_t banner[] = {"\n\
157 ----------------------------------------------------------------------\n\
158 $$\\   $$\\ $$$$$$$\\  $$\\      $$\\ $$\\\n\
159 $$ |  $$ |$$  __$$\\ $$$\\    $$$ |\\__|\n\
160 $$ |  $$ |$$ |  $$ |$$$$\\  $$$$ |$$\\  $$$$$$$\\  $$$$$$\\   $$$$$$\\\n\
161 $$$$$$$$ |$$$$$$$  |$$\\$$\\$$ $$ |$$ |$$  _____|$$  __$$\\ $$  __$$\\\n\
162 $$  __$$ |$$  ____/ $$ \\$$$  $$ |$$ |$$ /      $$ |  \\__|$$ /  $$ |\n\
163 $$ |  $$ |$$ |      $$ |\\$  /$$ |$$ |$$ |      $$ |      $$ |  $$ |\n\
164 $$ |  $$ |$$ |      $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ |      \\$$$$$$  |\n\
165 \\__|  \\__|\\__|      \\__|     \\__|\\__| \\_______|\\__|       \\______/\n\
166 ----------------------------------------------------------------------\n"};
167 #ifdef SDK_VERSION_STRING
168     printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
169 #endif
170     printf("%s", banner);
171 }
172 
board_turnoff_rgb_led(void)173 static void board_turnoff_rgb_led(void)
174 {
175     uint8_t p11_stat;
176     uint8_t p12_stat;
177     uint8_t p13_stat;
178     uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
179     HPM_IOC->PAD[IOC_PAD_PB11].FUNC_CTL = IOC_PB11_FUNC_CTL_GPIO_B_11;
180     HPM_IOC->PAD[IOC_PAD_PB12].FUNC_CTL = IOC_PB12_FUNC_CTL_GPIO_B_12;
181     HPM_IOC->PAD[IOC_PAD_PB13].FUNC_CTL = IOC_PB13_FUNC_CTL_GPIO_B_13;
182 
183     HPM_IOC->PAD[IOC_PAD_PB11].PAD_CTL = pad_ctl;
184     HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = pad_ctl;
185     HPM_IOC->PAD[IOC_PAD_PB13].PAD_CTL = pad_ctl;
186 
187     p11_stat = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 11);
188     p12_stat = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 12);
189     p13_stat = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 13);
190 
191     invert_led_level = false;
192     /*
193      * check led gpio level
194      */
195     if ((p11_stat & p12_stat & p13_stat) == 0) {
196         /* Rev B */
197         invert_led_level = true;
198         pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(0);
199         HPM_IOC->PAD[IOC_PAD_PB11].PAD_CTL = pad_ctl;
200         HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = pad_ctl;
201         HPM_IOC->PAD[IOC_PAD_PB13].PAD_CTL = pad_ctl;
202     }
203 }
204 
board_ungate_mchtmr_at_lp_mode(void)205 void board_ungate_mchtmr_at_lp_mode(void)
206 {
207     /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
208     sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
209 }
210 
board_init(void)211 void board_init(void)
212 {
213     board_turnoff_rgb_led();
214     board_init_clock();
215     board_init_console();
216     board_init_pmp();
217 #if BOARD_SHOW_CLOCK
218     board_print_clock_freq();
219 #endif
220 #if BOARD_SHOW_BANNER
221     board_print_banner();
222 #endif
223 }
224 
board_init_sdram_pins(void)225 void board_init_sdram_pins(void)
226 {
227     init_sdram_pins();
228 }
229 
board_init_femc_clock(void)230 uint32_t board_init_femc_clock(void)
231 {
232     clock_set_source_divider(clock_femc, clk_src_pll2_clk0, 2U); /* 166Mhz */
233     /* clock_set_source_divider(clock_femc, clk_src_pll1_clk1, 2U); [> 200Mhz <] */
234 
235     return clock_get_frequency(clock_femc);
236 }
237 
238 uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz);
239 
240 #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
241 
set_reset_pin_level_tm070rdh13(uint8_t level)242 static void set_reset_pin_level_tm070rdh13(uint8_t level)
243 {
244     gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, level);
245 }
246 
set_backlight_tm070rdh13(uint16_t percent)247 static void set_backlight_tm070rdh13(uint16_t percent)
248 {
249     gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, percent > 0 ? 1 : 0);
250 }
251 
board_init_lcd_rgb_tm070rdh13(void)252 void board_init_lcd_rgb_tm070rdh13(void)
253 {
254     init_lcd_pins(BOARD_LCD_BASE);
255 
256     gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
257     gpio_set_pin_output(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN);
258 
259     hpm_panel_hw_interface_t hw_if = {0};
260     hpm_panel_t *panel = hpm_panel_find_device_default();
261     const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
262     uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_display, timing->pixel_clock_khz);
263     hw_if.set_reset_pin_level = set_reset_pin_level_tm070rdh13;
264     hw_if.set_backlight = set_backlight_tm070rdh13;
265     hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
266     hpm_panel_register_interface(panel, &hw_if);
267 
268     printf("name: %s, lcdc_clk: %ukhz\n",
269                         hpm_panel_get_name(panel),
270                         lcdc_pixel_clk_khz);
271 
272     hpm_panel_reset(panel);
273     hpm_panel_init(panel);
274     hpm_panel_power_on(panel);
275 }
276 
277 #endif
278 
279 #ifdef CONFIG_HPM_PANEL
280 
board_lcdc_clock_init(clock_name_t clock_name,uint32_t pixel_clk_khz)281 uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz)
282 {
283     clock_add_to_group(clock_name, 0);
284 
285     uint32_t freq_khz = clock_get_frequency(clk_pll4clk0) / 1000;
286     uint32_t div = (freq_khz + pixel_clk_khz / 2) / pixel_clk_khz;
287     clock_set_source_divider(clock_name, clk_src_pll4_clk0, div);
288     return clock_get_frequency(clock_name) / 1000;
289 }
290 
board_lcd_backlight(bool is_on)291 void board_lcd_backlight(bool is_on)
292 {
293     hpm_panel_t *panel = hpm_panel_find_device_default();
294     hpm_panel_set_backlight(panel, is_on == true ? 100 : 0);
295 }
296 
board_init_lcd(void)297 void board_init_lcd(void)
298 {
299 #ifdef CONFIG_PANEL_RGB_TM070RDH13
300     board_init_lcd_rgb_tm070rdh13();
301 #endif
302 }
303 
board_panel_para_to_lcdc(lcdc_config_t * config)304 void board_panel_para_to_lcdc(lcdc_config_t *config)
305 {
306     const hpm_panel_timing_t *timing;
307     hpm_panel_t *panel = hpm_panel_find_device_default();
308 
309     timing = hpm_panel_get_timing(panel);
310     config->resolution_x = timing->hactive;
311     config->resolution_y = timing->vactive;
312 
313     config->hsync.pulse_width = timing->hsync_len;
314     config->hsync.back_porch_pulse = timing->hback_porch;
315     config->hsync.front_porch_pulse = timing->hfront_porch;
316 
317     config->vsync.pulse_width = timing->vsync_len;
318     config->vsync.back_porch_pulse = timing->vback_porch;
319     config->vsync.front_porch_pulse = timing->vfront_porch;
320 
321     config->control.invert_hsync = timing->hsync_pol;
322     config->control.invert_vsync = timing->vsync_pol;
323     config->control.invert_href = timing->de_pol;
324     config->control.invert_pixel_data = timing->pixel_data_pol;
325     config->control.invert_pixel_clock = timing->pixel_clk_pol;
326 }
327 #endif
328 
board_delay_ms(uint32_t ms)329 void board_delay_ms(uint32_t ms)
330 {
331     clock_cpu_delay_ms(ms);
332 }
333 
board_delay_us(uint32_t us)334 void board_delay_us(uint32_t us)
335 {
336     clock_cpu_delay_us(us);
337 }
338 
board_timer_isr(void)339 void board_timer_isr(void)
340 {
341     if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
342         gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
343         timer_cb();
344     }
345 }
346 SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
347 
board_timer_create(uint32_t ms,board_timer_cb cb)348 void board_timer_create(uint32_t ms, board_timer_cb cb)
349 {
350     uint32_t gptmr_freq;
351     gptmr_channel_config_t config;
352 
353     timer_cb = cb;
354     gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
355 
356     clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
357     gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
358 
359     config.reload = gptmr_freq / 1000 * ms;
360     gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
361     gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
362     intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
363 
364     gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
365 }
366 
board_i2c_bus_clear(I2C_Type * ptr)367 void board_i2c_bus_clear(I2C_Type *ptr)
368 {
369     init_i2c_pins_as_gpio(ptr);
370     if (ptr == BOARD_CAP_I2C_BASE) {
371         gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
372         gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
373         if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
374             printf("CLK is low, please power cycle the board\n");
375             while (1) {
376             }
377         }
378         if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
379             printf("SDA is low, try to issue I2C bus clear\n");
380         } else {
381             printf("I2C bus is ready\n");
382             return;
383         }
384 
385         gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
386         while (1) {
387             for (uint32_t i = 0; i < 9; i++) {
388                 gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
389                 board_delay_ms(10);
390                 gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
391                 board_delay_ms(10);
392             }
393             board_delay_ms(100);
394         }
395         printf("I2C bus is cleared\n");
396     }
397 }
398 
board_init_i2c(I2C_Type * ptr)399 void board_init_i2c(I2C_Type *ptr)
400 {
401     hpm_stat_t stat;
402     uint32_t freq;
403     i2c_config_t config;
404 
405     board_i2c_bus_clear(ptr);
406 
407     init_i2c_pins(ptr);
408     clock_add_to_group(clock_i2c0, 0);
409     clock_add_to_group(clock_i2c1, 0);
410     clock_add_to_group(clock_i2c2, 0);
411     clock_add_to_group(clock_i2c3, 0);
412     /* Configure the I2C clock to 24MHz */
413     clock_set_source_divider(BOARD_CAP_I2C_CLK_NAME, clk_src_osc24m, 1U);
414 
415     config.i2c_mode = i2c_mode_normal;
416     config.is_10bit_addressing = false;
417     freq = clock_get_frequency(BOARD_CAP_I2C_CLK_NAME);
418     stat = i2c_init_master(BOARD_CAP_I2C_BASE, freq, &config);
419     if (stat != status_success) {
420         printf("failed to initialize i2c 0x%lx\n", (uint32_t)BOARD_CAP_I2C_BASE);
421         while (1) {
422         }
423     }
424 }
425 
board_init_uart_clock(UART_Type * ptr)426 uint32_t board_init_uart_clock(UART_Type *ptr)
427 {
428     uint32_t freq = 0U;
429     if (ptr == HPM_UART0) {
430         clock_set_source_divider(clock_uart0, clk_src_osc24m, 1);
431         clock_add_to_group(clock_uart0, 0);
432         freq = clock_get_frequency(clock_uart0);
433     } else if (ptr == HPM_UART6) {
434         clock_set_source_divider(clock_uart6, clk_src_osc24m, 1);
435         clock_add_to_group(clock_uart6, 0);
436         freq = clock_get_frequency(clock_uart6);
437     } else if (ptr == HPM_UART13) {
438         clock_set_source_divider(clock_uart13, clk_src_osc24m, 1);
439         clock_add_to_group(clock_uart13, 0);
440         freq = clock_get_frequency(clock_uart13);
441     } else if (ptr == HPM_UART14) {
442         clock_set_source_divider(clock_uart14, clk_src_osc24m, 1);
443         clock_add_to_group(clock_uart14, 0);
444         freq = clock_get_frequency(clock_uart14);
445     } else {
446         /* Not supported */
447     }
448     return freq;
449 }
450 
board_init_spi_clock(SPI_Type * ptr)451 uint32_t board_init_spi_clock(SPI_Type *ptr)
452 {
453     if (ptr == HPM_SPI2) {
454         /* SPI2 clock configure */
455         clock_add_to_group(clock_spi2, 0);
456         clock_set_source_divider(clock_spi2, clk_src_pll1_clk1, 5U); /* 80MHz */
457 
458         return clock_get_frequency(clock_spi2);
459     }
460     return 0;
461 }
462 
board_init_cap_touch(void)463 void board_init_cap_touch(void)
464 {
465     init_cap_pins();
466     gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
467     gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
468 
469     board_delay_ms(1);
470     gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 1);
471     board_delay_ms(10);
472     gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
473 
474     gpio_set_pin_input(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN);
475     board_init_i2c(BOARD_CAP_I2C_BASE);
476 }
477 
board_init_gpio_pins(void)478 void board_init_gpio_pins(void)
479 {
480     uint8_t led_pin_pull_selsect;
481     HPM_IOC->PAD[IOC_PAD_PB12].FUNC_CTL = IOC_PB12_FUNC_CTL_GPIO_B_12;
482     HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
483 
484     led_pin_pull_selsect = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 12);
485     init_gpio_pins(led_pin_pull_selsect);
486 }
487 
board_init_spi_pins(SPI_Type * ptr)488 void board_init_spi_pins(SPI_Type *ptr)
489 {
490     init_spi_pins(ptr);
491 }
492 
board_init_spi_pins_with_gpio_as_cs(SPI_Type * ptr)493 void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
494 {
495     init_spi_pins_with_gpio_as_cs(ptr);
496     gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
497                                     GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
498 }
499 
board_write_spi_cs(uint32_t pin,uint8_t state)500 void board_write_spi_cs(uint32_t pin, uint8_t state)
501 {
502     gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
503 }
504 
board_get_led_pwm_off_level(void)505 uint8_t board_get_led_pwm_off_level(void)
506 {
507     if (invert_led_level) {
508         return BOARD_LED_ON_LEVEL;
509     } else {
510         return BOARD_LED_OFF_LEVEL;
511     }
512 }
513 
board_get_led_gpio_off_level(void)514 uint8_t board_get_led_gpio_off_level(void)
515 {
516     if (invert_led_level) {
517         return BOARD_LED_ON_LEVEL;
518     } else {
519         return BOARD_LED_OFF_LEVEL;
520     }
521 }
522 
board_init_led_pins(void)523 void board_init_led_pins(void)
524 {
525     board_turnoff_rgb_led();
526     init_led_pins_as_gpio();
527     gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
528     gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
529     gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
530 }
531 
board_led_toggle(void)532 void board_led_toggle(void)
533 {
534 #ifdef BOARD_LED_TOGGLE_RGB
535     static uint8_t i;
536     gpio_write_port(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, invert_led_level ? ((1 << i) << BOARD_R_GPIO_PIN) : ((7 & ~(1 << i)) << BOARD_R_GPIO_PIN));
537     i++;
538     i = i % 3;
539 #else
540     gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
541 #endif
542 }
543 
board_led_write(uint8_t state)544 void board_led_write(uint8_t state)
545 {
546     gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
547 }
548 
board_init_cam_pins(void)549 void board_init_cam_pins(void)
550 {
551     init_cam_pins();
552     /* enable cam RST pin out with high level */
553     gpio_set_pin_output_with_initial(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, 1);
554 }
555 
board_write_cam_rst(uint8_t state)556 void board_write_cam_rst(uint8_t state)
557 {
558     gpio_write_pin(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, state);
559 
560 }
561 
board_init_usb_pins(void)562 void board_init_usb_pins(void)
563 {
564     /* set pull-up for USBx OC pins and ID pins */
565     init_usb_pins();
566 
567     /* configure USBx ID pins as input function */
568     gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
569     gpio_set_pin_input(BOARD_USB1_ID_PORT, BOARD_USB1_ID_GPIO_INDEX, BOARD_USB1_ID_GPIO_PIN);
570 
571     /* configure USBx OC Flag pins as input function */
572     gpio_set_pin_input(BOARD_USB0_OC_PORT, BOARD_USB0_OC_GPIO_INDEX, BOARD_USB0_OC_GPIO_PIN);
573     gpio_set_pin_input(BOARD_USB1_OC_PORT, BOARD_USB1_OC_GPIO_INDEX, BOARD_USB1_OC_GPIO_PIN);
574 }
575 
board_usb_vbus_ctrl(uint8_t usb_index,uint8_t level)576 void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
577 {
578     (void) usb_index;
579     (void) level;
580 }
581 
board_init_pmp(void)582 void board_init_pmp(void)
583 {
584     uint32_t start_addr;
585     uint32_t end_addr;
586     uint32_t length;
587     pmp_entry_t pmp_entry[16];
588     uint8_t index = 0;
589 
590     /* Init noncachable memory */
591     extern uint32_t __noncacheable_start__[];
592     extern uint32_t __noncacheable_end__[];
593     start_addr = (uint32_t) __noncacheable_start__;
594     end_addr = (uint32_t) __noncacheable_end__;
595     length = end_addr - start_addr;
596     if (length > 0) {
597         /* Ensure the address and the length are power of 2 aligned */
598         assert((length & (length - 1U)) == 0U);
599         assert((start_addr & (length - 1U)) == 0U);
600         pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
601         pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
602         pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
603         pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
604         index++;
605     }
606 
607     /* Init share memory */
608     extern uint32_t __share_mem_start__[];
609     extern uint32_t __share_mem_end__[];
610     start_addr = (uint32_t)__share_mem_start__;
611     end_addr = (uint32_t)__share_mem_end__;
612     length = end_addr - start_addr;
613     if (length > 0) {
614         /* Ensure the address and the length are power of 2 aligned */
615         assert((length & (length - 1U)) == 0U);
616         assert((start_addr & (length - 1U)) == 0U);
617         pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
618         pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
619         pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
620         pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
621         index++;
622     }
623 
624     pmp_config(&pmp_entry[0], index);
625 }
626 
board_init_clock(void)627 void board_init_clock(void)
628 {
629     uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
630     if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
631         /* Configure the External OSC ramp-up time: ~9ms */
632         pllctl_xtal_set_rampup_time(HPM_PLLCTL, 32UL * 1000UL * 9U);
633 
634         /* Select clock setting preset1 */
635         sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
636     }
637 
638     /* Add most Clocks to group 0 */
639     /* not open uart clock in this API, uart should configure pin function before opening clock */
640     clock_add_to_group(clock_cpu0, 0);
641     clock_add_to_group(clock_mchtmr0, 0);
642     clock_add_to_group(clock_axi0, 0);
643     clock_add_to_group(clock_axi1, 0);
644     clock_add_to_group(clock_axi2, 0);
645     clock_add_to_group(clock_ahb, 0);
646     clock_add_to_group(clock_femc, 0);
647     clock_add_to_group(clock_xpi0, 0);
648     clock_add_to_group(clock_xpi1, 0);
649     clock_add_to_group(clock_gptmr0, 0);
650     clock_add_to_group(clock_gptmr1, 0);
651     clock_add_to_group(clock_gptmr2, 0);
652     clock_add_to_group(clock_gptmr3, 0);
653     clock_add_to_group(clock_gptmr4, 0);
654     clock_add_to_group(clock_gptmr5, 0);
655     clock_add_to_group(clock_gptmr6, 0);
656     clock_add_to_group(clock_gptmr7, 0);
657     clock_add_to_group(clock_i2c0, 0);
658     clock_add_to_group(clock_i2c1, 0);
659     clock_add_to_group(clock_i2c2, 0);
660     clock_add_to_group(clock_i2c3, 0);
661     clock_add_to_group(clock_spi0, 0);
662     clock_add_to_group(clock_spi1, 0);
663     clock_add_to_group(clock_spi2, 0);
664     clock_add_to_group(clock_spi3, 0);
665     clock_add_to_group(clock_can0, 0);
666     clock_add_to_group(clock_can1, 0);
667     clock_add_to_group(clock_can2, 0);
668     clock_add_to_group(clock_can3, 0);
669     clock_add_to_group(clock_display, 0);
670     clock_add_to_group(clock_sdxc0, 0);
671     clock_add_to_group(clock_sdxc1, 0);
672     clock_add_to_group(clock_camera0, 0);
673     clock_add_to_group(clock_camera1, 0);
674     clock_add_to_group(clock_ptpc, 0);
675     clock_add_to_group(clock_ref0, 0);
676     clock_add_to_group(clock_ref1, 0);
677     clock_add_to_group(clock_watchdog0, 0);
678     clock_add_to_group(clock_eth0, 0);
679     clock_add_to_group(clock_eth1, 0);
680     clock_add_to_group(clock_sdp, 0);
681     clock_add_to_group(clock_xdma, 0);
682     clock_add_to_group(clock_ram0, 0);
683     clock_add_to_group(clock_ram1, 0);
684     clock_add_to_group(clock_usb0, 0);
685     clock_add_to_group(clock_usb1, 0);
686     clock_add_to_group(clock_jpeg, 0);
687     clock_add_to_group(clock_pdma, 0);
688     clock_add_to_group(clock_kman, 0);
689     clock_add_to_group(clock_gpio, 0);
690     clock_add_to_group(clock_mbx0, 0);
691     clock_add_to_group(clock_hdma, 0);
692     clock_add_to_group(clock_rng, 0);
693     clock_add_to_group(clock_mot0, 0);
694     clock_add_to_group(clock_mot1, 0);
695     clock_add_to_group(clock_mot2, 0);
696     clock_add_to_group(clock_mot3, 0);
697     clock_add_to_group(clock_acmp, 0);
698     clock_add_to_group(clock_dao, 0);
699     clock_add_to_group(clock_msyn, 0);
700     clock_add_to_group(clock_lmm0, 0);
701     clock_add_to_group(clock_lmm1, 0);
702     clock_add_to_group(clock_pdm, 0);
703 
704     clock_add_to_group(clock_adc0, 0);
705     clock_add_to_group(clock_adc1, 0);
706     clock_add_to_group(clock_adc2, 0);
707     clock_add_to_group(clock_adc3, 0);
708 
709     clock_add_to_group(clock_i2s0, 0);
710     clock_add_to_group(clock_i2s1, 0);
711     clock_add_to_group(clock_i2s2, 0);
712     clock_add_to_group(clock_i2s3, 0);
713     /* Connect Group0 to CPU0 */
714     clock_connect_group_to_cpu(0, 0);
715 
716     /* Add the CPU1 clock to Group1 */
717     clock_add_to_group(clock_mchtmr1, 1);
718     clock_add_to_group(clock_mbx1, 1);
719     /* Connect Group1 to CPU1 */
720     clock_connect_group_to_cpu(1, 1);
721 
722     /* Bump up DCDC voltage to 1200mv */
723     pcfg_dcdc_set_voltage(HPM_PCFG, 1200);
724     pcfg_dcdc_switch_to_dcm_mode(HPM_PCFG);
725 
726     if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
727         printf("Failed to set pll0_clk0 to %ldHz\n", BOARD_CPU_FREQ);
728         while (1) {
729         }
730     }
731 
732     clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
733     clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
734     clock_update_core_clock();
735 
736     clock_set_source_divider(clock_ahb, clk_src_pll1_clk1, 2); /*200m hz*/
737     clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
738     clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
739 }
740 
board_init_cam_clock(CAM_Type * ptr)741 uint32_t board_init_cam_clock(CAM_Type *ptr)
742 {
743     uint32_t freq = 0;
744     if (ptr == HPM_CAM0) {
745         /* Configure camera clock to 24MHz */
746         clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
747         freq = clock_get_frequency(clock_camera0);
748     } else if (ptr == HPM_CAM1) {
749         /* Configure camera clock to 24MHz */
750         clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
751         freq = clock_get_frequency(clock_camera1);
752     } else {
753         /* Invalid camera instance */
754     }
755     return freq;
756 }
757 
board_init_lcd_clock(void)758 uint32_t board_init_lcd_clock(void)
759 {
760     uint32_t freq;
761     clock_add_to_group(clock_display, 0);
762     /* Configure LCDC clock to 59.4MHz */
763     clock_set_source_divider(clock_display, (clk_src_t) clock_source_pll4_clk0, 10U);
764     freq = clock_get_frequency(clock_display);
765     return freq;
766 }
767 
board_init_dao_clock(void)768 uint32_t board_init_dao_clock(void)
769 {
770     clock_add_to_group(clock_dao, 0);
771 
772     sysctl_config_clock(HPM_SYSCTL, clock_node_aud1, clock_source_pll3_clk0, 25);
773     sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud1_clk);
774 
775     return clock_get_frequency(clock_dao);
776 }
777 
board_init_pdm_clock(void)778 uint32_t board_init_pdm_clock(void)
779 {
780     clock_add_to_group(clock_pdm, 0);
781 
782     sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
783     sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
784 
785     return clock_get_frequency(clock_pdm);
786 }
787 
board_set_audio_pll_clock(uint32_t freq)788 hpm_stat_t board_set_audio_pll_clock(uint32_t freq)
789 {
790     return pllctl_init_frac_pll_with_freq(HPM_PLLCTL, 3, freq);    /* pll3clk */
791 }
792 
board_init_i2s_pins(I2S_Type * ptr)793 void board_init_i2s_pins(I2S_Type *ptr)
794 {
795     init_i2s_pins(ptr);
796 }
797 
board_init_i2s_clock(I2S_Type * ptr)798 uint32_t board_init_i2s_clock(I2S_Type *ptr)
799 {
800     uint32_t freq = 0;
801 
802     if (ptr == HPM_I2S0) {
803         clock_add_to_group(clock_i2s0, 0);
804 
805         sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
806         sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
807 
808         freq = clock_get_frequency(clock_i2s0);
809     } else if (ptr == HPM_I2S1) {
810         clock_add_to_group(clock_i2s1, 0);
811 
812         sysctl_config_clock(HPM_SYSCTL, clock_node_aud1, clock_source_pll3_clk0, 25);
813         sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud1_clk);
814 
815         freq = clock_get_frequency(clock_i2s1);
816     } else {
817         ;
818     }
819 
820     return freq;
821 }
822 
823 /* adjust I2S source clock base on sample rate */
board_config_i2s_clock(I2S_Type * ptr,uint32_t sample_rate)824 uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
825 {
826     uint32_t freq = 0;
827 
828     if (ptr == HPM_I2S0) {
829         clock_add_to_group(clock_i2s0, 0);
830         if ((sample_rate % 22050) == 0) {
831             clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
832         } else {
833             clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
834         }
835         clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
836         freq = clock_get_frequency(clock_i2s0);
837     } else if (ptr == HPM_I2S1) {
838         clock_add_to_group(clock_i2s1, 0);
839         if ((sample_rate % 22050) == 0) {
840             clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
841         } else {
842             clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
843         }
844         clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
845         freq = clock_get_frequency(clock_i2s1);
846     } else {
847         ;
848     }
849 
850     return freq;
851 }
852 
board_init_adc12_clock(ADC12_Type * ptr,bool clk_src_ahb)853 uint32_t board_init_adc12_clock(ADC12_Type *ptr, bool clk_src_ahb)
854 {
855     uint32_t freq = 0;
856 
857     if (ptr == HPM_ADC0) {
858         if (clk_src_ahb) {
859             /* Configure the ADC clock from AHB (@200MHz by default)*/
860             clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
861         } else {
862             /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
863             clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
864             clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
865         }
866         freq = clock_get_frequency(clock_adc0);
867     } else if (ptr == HPM_ADC1) {
868         if (clk_src_ahb) {
869             /* Configure the ADC clock from AHB (@200MHz by default)*/
870             clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
871         } else {
872             /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
873             clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
874             clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
875         }
876         freq = clock_get_frequency(clock_adc1);
877     } else if (ptr == HPM_ADC2) {
878         if (clk_src_ahb) {
879             /* Configure the ADC clock from AHB (@200MHz by default)*/
880             clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
881         } else {
882             /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
883             clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
884             clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
885         }
886         freq = clock_get_frequency(clock_adc2);
887     }
888 
889     return freq;
890 }
891 
board_init_adc16_clock(ADC16_Type * ptr,bool clk_src_ahb)892 uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb)
893 {
894     uint32_t freq = 0;
895 
896     if (ptr == HPM_ADC3) {
897         if (clk_src_ahb) {
898             /* Configure the ADC clock from AHB (@200MHz by default)*/
899             clock_set_adc_source(clock_adc3, clk_adc_src_ahb0);
900         } else {
901             /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
902             clock_set_adc_source(clock_adc3, clk_adc_src_ana2);
903             clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
904         }
905 
906         freq = clock_get_frequency(clock_adc3);
907     }
908 
909     return freq;
910 }
911 
board_init_can(CAN_Type * ptr)912 void board_init_can(CAN_Type *ptr)
913 {
914     init_can_pins(ptr);
915 }
916 
board_init_can_clock(CAN_Type * ptr)917 uint32_t board_init_can_clock(CAN_Type *ptr)
918 {
919     uint32_t freq = 0;
920     if (ptr == HPM_CAN0) {
921         /* Set the CAN0 peripheral clock to 80MHz */
922         clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
923         freq = clock_get_frequency(clock_can0);
924     } else if (ptr == HPM_CAN1) {
925         /* Set the CAN1 peripheral clock to 80MHz */
926         clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
927         freq = clock_get_frequency(clock_can1);
928     } else if (ptr == HPM_CAN2) {
929         /* Set the CAN2 peripheral clock to 80MHz */
930         clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
931         freq = clock_get_frequency(clock_can2);
932     } else if (ptr == HPM_CAN3) {
933         /* Set the CAN3 peripheral clock to 80MHz */
934         clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
935         freq = clock_get_frequency(clock_can3);
936     } else {
937         /* Invalid CAN instance */
938     }
939     return freq;
940 }
941 
942 #ifdef INIT_EXT_RAM_FOR_DATA
943 /*
944  * this function will be called during startup to initialize external memory for data use
945  */
_init_ext_ram(void)946 void _init_ext_ram(void)
947 {
948     uint32_t femc_clk_in_hz;
949     clock_add_to_group(clock_femc, 0);
950     board_init_sdram_pins();
951     femc_clk_in_hz = board_init_femc_clock();
952 
953     femc_config_t config = {0};
954     femc_sdram_config_t sdram_config = {0};
955 
956     femc_default_config(HPM_FEMC, &config);
957     config.dqs = FEMC_DQS_INTERNAL;
958     femc_init(HPM_FEMC, &config);
959 
960     sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
961     sdram_config.prescaler = 0x3;
962     sdram_config.burst_len_in_byte = 8;
963     sdram_config.auto_refresh_count_in_one_burst = 1;
964     sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
965     sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
966 
967     sdram_config.precharge_to_act_in_ns = 18;   /* Trp */
968     sdram_config.act_to_rw_in_ns = 18;          /* Trcd */
969     sdram_config.refresh_recover_in_ns = 70;     /* Trfc/Trc */
970     sdram_config.write_recover_in_ns = 12;      /* Twr/Tdpl */
971     sdram_config.cke_off_in_ns = 42;             /* Trcd */
972     sdram_config.act_to_precharge_in_ns = 42;   /* Tras */
973 
974     sdram_config.self_refresh_recover_in_ns = 66;   /* Txsr */
975     sdram_config.refresh_to_refresh_in_ns = 66;     /* Trfc/Trc */
976     sdram_config.act_to_act_in_ns = 12;             /* Trrd */
977     sdram_config.idle_timeout_in_ns = 6;
978     sdram_config.cs_mux_pin = FEMC_IO_MUX_NOT_USED;
979 
980     sdram_config.cs = BOARD_SDRAM_CS;
981     sdram_config.base_address = BOARD_SDRAM_ADDRESS;
982     sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
983     sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
984     sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
985     sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
986     sdram_config.data_width_in_byte = BOARD_SDRAM_DATA_WIDTH_IN_BYTE;
987     sdram_config.delay_cell_value = 29;
988 
989     femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
990 }
991 #endif
992 
board_sd_configure_clock(SDXC_Type * ptr,uint32_t freq,bool need_inverse)993 uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse)
994 {
995     uint32_t actual_freq = 0;
996     do {
997         if (ptr != HPM_SDXC1) {
998             break;
999         }
1000         clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
1001         sdxc_enable_inverse_clock(ptr, false);
1002         sdxc_enable_sd_clock(ptr, false);
1003         /* Configure the clock below 400KHz for the identification state */
1004         if (freq <= 400000UL) {
1005             clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
1006         }
1007             /* configure the clock to 24MHz for the SDR12/Default speed */
1008         else if (freq <= 26000000UL) {
1009             clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
1010         }
1011             /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
1012         else if (freq <= 52000000UL) {
1013             clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
1014         }
1015             /* Configure the clock to 100MHz for the SDR50 */
1016         else if (freq <= 100000000UL) {
1017             clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
1018         }
1019             /* Configure the clock to 166MHz for SDR104/HS200/HS400  */
1020         else if (freq <= 208000000UL) {
1021             clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
1022         }
1023             /* For other unsupported clock ranges, configure the clock to 24MHz */
1024         else {
1025             clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
1026         }
1027         if (need_inverse) {
1028             sdxc_enable_inverse_clock(ptr, true);
1029         }
1030         sdxc_enable_sd_clock(ptr, true);
1031         actual_freq = clock_get_frequency(sdxc_clk);
1032     } while (false);
1033 
1034     return actual_freq;
1035 }
1036 
1037 
set_rgb_output_off(PWM_Type * ptr,uint8_t pin,uint8_t cmp_index)1038 static void set_rgb_output_off(PWM_Type *ptr, uint8_t pin, uint8_t cmp_index)
1039 {
1040     pwm_cmp_config_t cmp_config = {0};
1041     pwm_output_channel_t ch_config = {0};
1042 
1043     pwm_stop_counter(ptr);
1044     pwm_get_default_cmp_config(ptr, &cmp_config);
1045     pwm_get_default_output_channel_config(ptr, &ch_config);
1046 
1047     pwm_set_reload(ptr, 0, 0xF);
1048     pwm_set_start_count(ptr, 0, 0);
1049 
1050     cmp_config.mode = pwm_cmp_mode_output_compare;
1051     cmp_config.cmp = 0x10;
1052     cmp_config.update_trigger = pwm_shadow_register_update_on_modify;
1053     pwm_config_cmp(ptr, cmp_index, &cmp_config);
1054 
1055     ch_config.cmp_start_index = cmp_index;
1056     ch_config.cmp_end_index = cmp_index;
1057     ch_config.invert_output = false;
1058 
1059     pwm_config_output_channel(ptr, pin, &ch_config);
1060 }
1061 
board_init_rgb_pwm_pins(void)1062 void board_init_rgb_pwm_pins(void)
1063 {
1064     trgm_output_t config = {0};
1065     board_turnoff_rgb_led();
1066 
1067     set_rgb_output_off(BOARD_RED_PWM, BOARD_RED_PWM_OUT, BOARD_RED_PWM_CMP);
1068     set_rgb_output_off(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT, BOARD_GREEN_PWM_CMP);
1069     set_rgb_output_off(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT, BOARD_BLUE_PWM_CMP);
1070 
1071     init_rgb_pwm_pins();
1072 
1073     config.type = 0;
1074     config.invert = false;
1075 
1076     /* Red: TRGM1 P1 */
1077     config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH8REF;
1078     trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT1, &config);
1079 
1080     /* Green: TRGM0 P6 */
1081     config.input = HPM_TRGM0_INPUT_SRC_PWM0_CH8REF;
1082     trgm_output_config(HPM_TRGM0, TRGM_TRGOCFG_TRGM_OUT6, &config);
1083 
1084     /* Blue: TRGM1 P3 */
1085     config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH9REF;
1086     trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT3, &config);
1087 }
1088 
board_disable_output_rgb_led(uint8_t color)1089 void board_disable_output_rgb_led(uint8_t color)
1090 {
1091     switch (color) {
1092     case BOARD_RGB_RED:
1093         trgm_disable_io_output(HPM_TRGM1, 1 << 1);
1094         break;
1095     case BOARD_RGB_GREEN:
1096         trgm_disable_io_output(HPM_TRGM0, 1 << 6);
1097         break;
1098     case BOARD_RGB_BLUE:
1099         trgm_disable_io_output(HPM_TRGM1, 1 << 3);
1100         break;
1101     default:
1102         while (1) {
1103             ;
1104         }
1105     }
1106 }
1107 
board_enable_output_rgb_led(uint8_t color)1108 void board_enable_output_rgb_led(uint8_t color)
1109 {
1110     switch (color) {
1111     case BOARD_RGB_RED:
1112         trgm_enable_io_output(HPM_TRGM1, 1 << 1);
1113         break;
1114     case BOARD_RGB_GREEN:
1115         trgm_enable_io_output(HPM_TRGM0, 1 << 6);
1116         break;
1117     case BOARD_RGB_BLUE:
1118         trgm_enable_io_output(HPM_TRGM1, 1 << 3);
1119         break;
1120     default:
1121         while (1) {
1122             ;
1123         }
1124     }
1125 }
1126 
board_init_enet_ptp_clock(ENET_Type * ptr)1127 hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
1128 {
1129     /* set clock source */
1130     if (ptr == HPM_ENET0) {
1131         /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet0 ptp function */
1132         clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); /* 100MHz */
1133     } else if (ptr == HPM_ENET1) {
1134         /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet1 ptp function */
1135         clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); /* 100MHz */
1136     } else {
1137         return status_invalid_argument;
1138     }
1139 
1140     return status_success;
1141 }
1142 
board_init_enet_rmii_reference_clock(ENET_Type * ptr,bool internal)1143 hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
1144 {
1145     /* Configure Enet clock to output reference clock */
1146     if (ptr == HPM_ENET1) {
1147         if (internal) {
1148             /* set pll output frequency at 1GHz */
1149             if (pllctl_init_int_pll_with_freq(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1000000000UL) == status_success) {
1150                 /* set pll2_clk1 output frequence at 250MHz from PLL2 divided by 4 */
1151                 pllctl_set_div(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1, 4);
1152                 /* set eth clock frequency at 50MHz for enet0 */
1153                 clock_set_source_divider(ptr == HPM_ENET0 ? clock_eth0 : clock_eth1, clk_src_pll2_clk1, 5);
1154             } else {
1155                 return status_fail;
1156             }
1157         }
1158     } else {
1159         return status_invalid_argument;
1160     }
1161 
1162     enet_rmii_enable_clock(ptr, internal);
1163 
1164     return status_success;
1165 }
1166 
board_init_enet_rgmii_clock_delay(ENET_Type * ptr)1167 hpm_stat_t board_init_enet_rgmii_clock_delay(ENET_Type *ptr)
1168 {
1169     if (ptr == HPM_ENET0) {
1170         return enet_rgmii_set_clock_delay(ptr, BOARD_ENET_RGMII_TX_DLY, BOARD_ENET_RGMII_RX_DLY);
1171     }
1172 
1173     return status_invalid_argument;
1174 }
1175 
board_init_adc12_pins(void)1176 void board_init_adc12_pins(void)
1177 {
1178     init_adc12_pins();
1179 }
1180 
board_init_adc16_pins(void)1181 void board_init_adc16_pins(void)
1182 {
1183     init_adc16_pins();
1184 }
1185 
board_init_enet_pins(ENET_Type * ptr)1186 hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
1187 {
1188     init_enet_pins(ptr);
1189 
1190     if (ptr == HPM_ENET0) {
1191         gpio_set_pin_output_with_initial(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
1192     } else if (ptr == HPM_ENET1) {
1193         gpio_set_pin_output_with_initial(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
1194     } else {
1195         return status_invalid_argument;
1196     }
1197 
1198     return status_success;
1199 }
1200 
board_reset_enet_phy(ENET_Type * ptr)1201 hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
1202 {
1203     if (ptr == HPM_ENET0) {
1204         gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
1205         board_delay_ms(1);
1206         gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 1);
1207     } else if (ptr == HPM_ENET1) {
1208         gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
1209         board_delay_ms(1);
1210         gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 1);
1211     } else {
1212         return status_invalid_argument;
1213     }
1214 
1215     return status_success;
1216 }
1217 
board_get_enet_dma_pbl(ENET_Type * ptr)1218 uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
1219 {
1220     (void) ptr;
1221     return enet_pbl_32;
1222 }
1223 
board_enable_enet_irq(ENET_Type * ptr)1224 hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
1225 {
1226     if (ptr == HPM_ENET0) {
1227         intc_m_enable_irq(IRQn_ENET0);
1228     } else if (ptr == HPM_ENET1) {
1229         intc_m_enable_irq(IRQn_ENET1);
1230     } else {
1231         return status_invalid_argument;
1232     }
1233 
1234     return status_success;
1235 }
1236 
board_disable_enet_irq(ENET_Type * ptr)1237 hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
1238 {
1239     if (ptr == HPM_ENET0) {
1240         intc_m_disable_irq(IRQn_ENET0);
1241     } else if (ptr == HPM_ENET1) {
1242         intc_m_disable_irq(IRQn_ENET1);
1243     } else {
1244         return status_invalid_argument;
1245     }
1246 
1247     return status_success;
1248 }
1249 
board_init_enet_pps_pins(ENET_Type * ptr)1250 void board_init_enet_pps_pins(ENET_Type *ptr)
1251 {
1252     (void) ptr;
1253     init_enet_pps_pins();
1254 }
1255 
1256 #if defined(ENET_MULTIPLE_PORT) && ENET_MULTIPLE_PORT
1257 
board_init_multiple_enet_pins(void)1258 hpm_stat_t board_init_multiple_enet_pins(void)
1259 {
1260     board_init_enet_pins(HPM_ENET0);
1261     board_init_enet_pins(HPM_ENET1);
1262 
1263     return status_success;
1264 }
1265 
board_init_multiple_enet_clock(void)1266 hpm_stat_t board_init_multiple_enet_clock(void)
1267 {
1268     /* Set RGMII clock delay */
1269     board_init_enet_rgmii_clock_delay(HPM_ENET0);
1270 
1271     /* Set RMII reference clock */
1272     board_init_enet_rmii_reference_clock(HPM_ENET1, BOARD_ENET_RMII_INT_REF_CLK);
1273     printf("Enet1 Reference Clock: %s\n", BOARD_ENET_RMII_INT_REF_CLK ? "Internal Clock" : "External Clock");
1274 
1275     return status_success;
1276 }
1277 
board_reset_multiple_enet_phy(void)1278 hpm_stat_t board_reset_multiple_enet_phy(void)
1279 {
1280     board_reset_enet_phy(HPM_ENET0);
1281     board_reset_enet_phy(HPM_ENET1);
1282 
1283     return status_success;
1284 }
1285 
board_init_enet_phy(ENET_Type * ptr)1286 hpm_stat_t board_init_enet_phy(ENET_Type *ptr)
1287 {
1288     dp83867_config_t phy_config0;
1289     dp83848_config_t phy_config1;
1290 
1291     if (ptr == HPM_ENET0) {
1292         dp83867_reset(HPM_ENET0);
1293         #if __DISABLE_AUTO_NEGO
1294         dp83867_set_mdi_crossover_mode(HPM_ENET0, enet_phy_mdi_crossover_manual_mdix);
1295         #endif
1296         dp83867_basic_mode_default_config(HPM_ENET0, &phy_config0);
1297         if (dp83867_basic_mode_init(HPM_ENET0, &phy_config0) == true) {
1298             return status_success;
1299         } else {
1300             printf("Enet0 phy init failed!\n");
1301             return status_fail;
1302         }
1303     } else if (ptr == HPM_ENET1) {
1304         dp83848_reset(HPM_ENET1);
1305         dp83848_basic_mode_default_config(HPM_ENET1, &phy_config1);
1306         if (dp83848_basic_mode_init(HPM_ENET1, &phy_config1) == true) {
1307             return status_success;
1308         } else {
1309             printf("Enet1 phy init failed!\n");
1310             return status_fail;
1311         }
1312     } else {
1313          return status_invalid_argument;
1314     }
1315 }
1316 
board_get_enet_base(uint8_t idx)1317 ENET_Type *board_get_enet_base(uint8_t idx)
1318 {
1319     if (idx == 0) {
1320         return HPM_ENET0;
1321     } else {
1322         return HPM_ENET1;
1323     }
1324 }
1325 
board_get_enet_phy_itf(uint8_t idx)1326 uint8_t board_get_enet_phy_itf(uint8_t idx)
1327 {
1328     if (idx == 0) {
1329         return BOARD_ENET_RGMII_PHY_ITF;
1330     } else {
1331         return BOARD_ENET_RMII_PHY_ITF;
1332     }
1333 }
1334 
board_get_enet_phy_status(uint8_t idx,void * status)1335 void board_get_enet_phy_status(uint8_t idx, void *status)
1336 {
1337     if (idx == 0) {
1338         dp83867_get_phy_status(HPM_ENET0, status);
1339     } else {
1340         dp83848_get_phy_status(HPM_ENET1, status);
1341     }
1342 }
1343 #endif
1344 
board_init_dao_pins(void)1345 void board_init_dao_pins(void)
1346 {
1347     init_dao_pins();
1348 }
1349