• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2022-2023 HPMicro
3  * SPDX-License-Identifier: BSD-3-Clause
4  *
5  */
6 
7 #include "board.h"
8 #include "hpm_uart_drv.h"
9 #include "hpm_gptmr_drv.h"
10 #include "hpm_lcdc_drv.h"
11 #include "hpm_i2c_drv.h"
12 #include "hpm_gpio_drv.h"
13 #include "hpm_femc_drv.h"
14 #include "pinmux.h"
15 #include "hpm_pmp_drv.h"
16 #include "hpm_clock_drv.h"
17 #include "hpm_sysctl_drv.h"
18 #include "hpm_sdxc_drv.h"
19 #include "hpm_pwm_drv.h"
20 #include "hpm_trgm_drv.h"
21 #include "hpm_pllctl_drv.h"
22 #include "hpm_enet_drv.h"
23 #include "hpm_enet_phy_common.h"
24 #include "hpm_pcfg_drv.h"
25 #include "hpm_sdk_version.h"
26 
27 static board_timer_cb timer_cb;
28 
29 /**
30  * @brief FLASH configuration option definitions:
31  * option[0]:
32  *    [31:16] 0xfcf9 - FLASH configuration option tag
33  *    [15:4]  0 - Reserved
34  *    [3:0]   option words (exclude option[0])
35  * option[1]:
36  *    [31:28] Flash probe type
37  *      0 - SFDP SDR / 1 - SFDP DDR
38  *      2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
39  *      4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
40  *      6 - OctaBus DDR (SPI -> OPI DDR)
41  *      8 - Xccela DDR (SPI -> OPI DDR)
42  *      10 - EcoXiP DDR (SPI -> OPI DDR)
43  *    [27:24] Command Pads after Power-on Reset
44  *      0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
45  *    [23:20] Command Pads after Configuring FLASH
46  *      0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
47  *    [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
48  *      0 - Not needed
49  *      1 - QE bit is at bit 6 in Status Register 1
50  *      2 - QE bit is at bit1 in Status Register 2
51  *      3 - QE bit is at bit7 in Status Register 2
52  *      4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
53  *    [15:8] Dummy cycles
54  *      0 - Auto-probed / detected / default value
55  *      Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
56  *    [7:4] Misc.
57  *      0 - Not used
58  *      1 - SPI mode
59  *      2 - Internal loopback
60  *      3 - External DQS
61  *    [3:0] Frequency option
62  *      1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
63  *
64  * option[2] (Effective only if the bit[3:0] in option[0] > 1)
65  *    [31:20]  Reserved
66  *    [19:16] IO voltage
67  *      0 - 3V / 1 - 1.8V
68  *    [15:12] Pin group
69  *      0 - 1st group / 1 - 2nd group
70  *    [11:8] Connection selection
71  *      0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
72  *    [7:0] Drive Strength
73  *      0 - Default value
74  * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
75  *              JESD216)
76  *    [31:16] reserved
77  *    [15:12] Sector Erase Command Option, not required here
78  *    [11:8]  Sector Size Option, not required here
79  *    [7:0] Flash Size Option
80  *      0 - 4MB / 1 - 8MB / 2 - 16MB
81  */
82 #if defined(FLASH_XIP) && FLASH_XIP
83 __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0};
84 #endif
85 
86 #if defined(FLASH_UF2) && FLASH_UF2
87 ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
88 #endif
89 
board_init_console(void)90 void board_init_console(void)
91 {
92 #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
93 #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
94     console_config_t cfg;
95 
96     /* uart needs to configure pin function before enabling clock, otherwise the level change of
97     uart rx pin when configuring pin function will cause a wrong data to be received.
98     And a uart rx dma request will be generated by default uart fifo dma trigger level. */
99     init_uart_pins((UART_Type *) BOARD_CONSOLE_BASE);
100 
101     /* Configure the UART clock to 24MHz */
102     clock_set_source_divider(BOARD_CONSOLE_CLK_NAME, clk_src_osc24m, 1U);
103     clock_add_to_group(BOARD_CONSOLE_CLK_NAME, 0);
104 
105     cfg.type = BOARD_CONSOLE_TYPE;
106     cfg.base = (uint32_t) BOARD_CONSOLE_BASE;
107     cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_CLK_NAME);
108     cfg.baudrate = BOARD_CONSOLE_BAUDRATE;
109 
110     if (status_success != console_init(&cfg)) {
111         /* failed to  initialize debug console */
112         while (1) {
113         }
114     }
115 #else
116     while (1) {
117     }
118 #endif
119 #endif
120 }
121 
board_print_clock_freq(void)122 void board_print_clock_freq(void)
123 {
124     printf("==============================\n");
125     printf(" %s clock summary\n", BOARD_NAME);
126     printf("==============================\n");
127     printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
128     printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
129     printf("axi0:\t\t %luHz\n", clock_get_frequency(clock_axi0));
130     printf("axi1:\t\t %luHz\n", clock_get_frequency(clock_axi1));
131     printf("axi2:\t\t %luHz\n", clock_get_frequency(clock_axi2));
132     printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
133     printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
134     printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
135     printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
136     printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
137     printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
138     printf("display:\t %luHz\n", clock_get_frequency(clock_display));
139     printf("cam0:\t\t %luHz\n", clock_get_frequency(clock_camera0));
140     printf("cam1:\t\t %luHz\n", clock_get_frequency(clock_camera1));
141     printf("jpeg:\t\t %luHz\n", clock_get_frequency(clock_jpeg));
142     printf("pdma:\t\t %luHz\n", clock_get_frequency(clock_pdma));
143     printf("==============================\n");
144 }
145 
board_init_uart(UART_Type * ptr)146 void board_init_uart(UART_Type *ptr)
147 {
148     /* configure uart's pin before opening uart's clock */
149     init_uart_pins(ptr);
150     board_init_uart_clock(ptr);
151 }
152 
board_print_banner(void)153 void board_print_banner(void)
154 {
155     const uint8_t banner[] = {"\n\
156 ----------------------------------------------------------------------\n\
157 $$\\   $$\\ $$$$$$$\\  $$\\      $$\\ $$\\\n\
158 $$ |  $$ |$$  __$$\\ $$$\\    $$$ |\\__|\n\
159 $$ |  $$ |$$ |  $$ |$$$$\\  $$$$ |$$\\  $$$$$$$\\  $$$$$$\\   $$$$$$\\\n\
160 $$$$$$$$ |$$$$$$$  |$$\\$$\\$$ $$ |$$ |$$  _____|$$  __$$\\ $$  __$$\\\n\
161 $$  __$$ |$$  ____/ $$ \\$$$  $$ |$$ |$$ /      $$ |  \\__|$$ /  $$ |\n\
162 $$ |  $$ |$$ |      $$ |\\$  /$$ |$$ |$$ |      $$ |      $$ |  $$ |\n\
163 $$ |  $$ |$$ |      $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ |      \\$$$$$$  |\n\
164 \\__|  \\__|\\__|      \\__|     \\__|\\__| \\_______|\\__|       \\______/\n\
165 ----------------------------------------------------------------------\n"};
166 #ifdef SDK_VERSION_STRING
167     printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
168 #endif
169     printf("%s", banner);
170 }
171 
board_turnoff_rgb_led(void)172 static void board_turnoff_rgb_led(void)
173 {
174     uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PE_SET(BOARD_LED_OFF_LEVEL);
175     HPM_IOC->PAD[IOC_PAD_PB11].FUNC_CTL = IOC_PB11_FUNC_CTL_GPIO_B_11;
176     HPM_IOC->PAD[IOC_PAD_PB12].FUNC_CTL = IOC_PB12_FUNC_CTL_GPIO_B_12;
177     HPM_IOC->PAD[IOC_PAD_PB13].FUNC_CTL = IOC_PB13_FUNC_CTL_GPIO_B_13;
178 
179     HPM_IOC->PAD[IOC_PAD_PB11].PAD_CTL = pad_ctl;
180     HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = pad_ctl;
181     HPM_IOC->PAD[IOC_PAD_PB13].PAD_CTL = pad_ctl;
182 }
183 
board_ungate_mchtmr_at_lp_mode(void)184 void board_ungate_mchtmr_at_lp_mode(void)
185 {
186     /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
187     sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
188 }
189 
board_init(void)190 void board_init(void)
191 {
192     board_turnoff_rgb_led();
193     board_init_clock();
194     board_init_console();
195     board_init_pmp();
196 #if BOARD_SHOW_CLOCK
197     board_print_clock_freq();
198 #endif
199 #if BOARD_SHOW_BANNER
200     board_print_banner();
201 #endif
202 }
203 
board_init_sdram_pins(void)204 void board_init_sdram_pins(void)
205 {
206     init_sdram_pins();
207 }
208 
board_init_femc_clock(void)209 uint32_t board_init_femc_clock(void)
210 {
211     clock_set_source_divider(clock_femc, clk_src_pll2_clk0, 2U); /* 166Mhz */
212     /* clock_set_source_divider(clock_femc, clk_src_pll1_clk1, 2U); [> 200Mhz <] */
213 
214     return clock_get_frequency(clock_femc);
215 }
216 
217 uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz);
218 
219 #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
220 
set_reset_pin_level_tm070rdh13(uint8_t level)221 static void set_reset_pin_level_tm070rdh13(uint8_t level)
222 {
223     gpio_write_pin(BOARD_LCD_RESET_GPIO_BASE, BOARD_LCD_RESET_GPIO_INDEX, BOARD_LCD_RESET_GPIO_PIN, level);
224 }
225 
set_backlight_tm070rdh13(uint16_t percent)226 static void set_backlight_tm070rdh13(uint16_t percent)
227 {
228     gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, percent > 0 ? 1 : 0);
229 }
230 
board_init_lcd_rgb_tm070rdh13(void)231 void board_init_lcd_rgb_tm070rdh13(void)
232 {
233     init_lcd_pins(BOARD_LCD_BASE);
234 
235     gpio_set_pin_output(BOARD_LCD_POWER_EN_GPIO_BASE, BOARD_LCD_POWER_EN_GPIO_INDEX, BOARD_LCD_POWER_EN_GPIO_PIN);
236     gpio_write_pin(BOARD_LCD_POWER_EN_GPIO_BASE, BOARD_LCD_POWER_EN_GPIO_INDEX, BOARD_LCD_POWER_EN_GPIO_PIN, 0);
237     gpio_write_pin(BOARD_LCD_POWER_EN_GPIO_BASE, BOARD_LCD_POWER_EN_GPIO_INDEX, BOARD_LCD_POWER_EN_GPIO_PIN, 1);
238 
239     gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
240     gpio_set_pin_output(BOARD_LCD_RESET_GPIO_BASE, BOARD_LCD_RESET_GPIO_INDEX, BOARD_LCD_RESET_GPIO_PIN);
241 
242     hpm_panel_hw_interface_t hw_if = {0};
243     hpm_panel_t *panel = hpm_panel_find_device_default();
244     const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
245     uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_display, timing->pixel_clock_khz);
246     hw_if.set_reset_pin_level = set_reset_pin_level_tm070rdh13;
247     hw_if.set_backlight = set_backlight_tm070rdh13;
248     hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
249     hpm_panel_register_interface(panel, &hw_if);
250 
251     printf("name: %s, lcdc_clk: %ukhz\n",
252                         hpm_panel_get_name(panel),
253                         lcdc_pixel_clk_khz);
254 
255     hpm_panel_reset(panel);
256     hpm_panel_init(panel);
257     hpm_panel_power_on(panel);
258 }
259 
260 #endif
261 
262 #ifdef CONFIG_HPM_PANEL
263 
board_lcdc_clock_init(clock_name_t clock_name,uint32_t pixel_clk_khz)264 uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz)
265 {
266     clock_add_to_group(clock_name, 0);
267 
268     uint32_t freq_khz = clock_get_frequency(clk_pll4clk0) / 1000;
269     uint32_t div = (freq_khz + pixel_clk_khz / 2) / pixel_clk_khz;
270     clock_set_source_divider(clock_name, clk_src_pll4_clk0, div);
271     return clock_get_frequency(clock_name) / 1000;
272 }
273 
board_lcd_backlight(bool is_on)274 void board_lcd_backlight(bool is_on)
275 {
276     hpm_panel_t *panel = hpm_panel_find_device_default();
277     hpm_panel_set_backlight(panel, is_on == true ? 100 : 0);
278 }
279 
board_init_lcd(void)280 void board_init_lcd(void)
281 {
282 #ifdef CONFIG_PANEL_RGB_TM070RDH13
283     board_init_lcd_rgb_tm070rdh13();
284 #endif
285 }
286 
board_panel_para_to_lcdc(lcdc_config_t * config)287 void board_panel_para_to_lcdc(lcdc_config_t *config)
288 {
289     const hpm_panel_timing_t *timing;
290     hpm_panel_t *panel = hpm_panel_find_device_default();
291 
292     timing = hpm_panel_get_timing(panel);
293     config->resolution_x = timing->hactive;
294     config->resolution_y = timing->vactive;
295 
296     config->hsync.pulse_width = timing->hsync_len;
297     config->hsync.back_porch_pulse = timing->hback_porch;
298     config->hsync.front_porch_pulse = timing->hfront_porch;
299 
300     config->vsync.pulse_width = timing->vsync_len;
301     config->vsync.back_porch_pulse = timing->vback_porch;
302     config->vsync.front_porch_pulse = timing->vfront_porch;
303 
304     config->control.invert_hsync = timing->hsync_pol;
305     config->control.invert_vsync = timing->vsync_pol;
306     config->control.invert_href = timing->de_pol;
307     config->control.invert_pixel_data = timing->pixel_data_pol;
308     config->control.invert_pixel_clock = timing->pixel_clk_pol;
309 }
310 #endif
311 
board_delay_ms(uint32_t ms)312 void board_delay_ms(uint32_t ms)
313 {
314     clock_cpu_delay_ms(ms);
315 }
316 
board_delay_us(uint32_t us)317 void board_delay_us(uint32_t us)
318 {
319     clock_cpu_delay_us(us);
320 }
321 
board_timer_isr(void)322 void board_timer_isr(void)
323 {
324     if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
325         gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
326         timer_cb();
327     }
328 }
329 SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
330 
board_timer_create(uint32_t ms,board_timer_cb cb)331 void board_timer_create(uint32_t ms, board_timer_cb cb)
332 {
333     uint32_t gptmr_freq;
334     gptmr_channel_config_t config;
335 
336     timer_cb = cb;
337     gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
338 
339     clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
340     gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
341 
342     config.reload = gptmr_freq / 1000 * ms;
343     gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
344     gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
345     intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
346 
347     gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
348 }
349 
board_i2c_bus_clear(I2C_Type * ptr)350 void board_i2c_bus_clear(I2C_Type *ptr)
351 {
352     init_i2c_pins_as_gpio(ptr);
353     if (ptr == BOARD_CAP_I2C_BASE) {
354         gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
355         gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
356         if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
357             printf("CLK is low, please power cycle the board\n");
358             while (1) {
359             }
360         }
361         if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
362             printf("SDA is low, try to issue I2C bus clear\n");
363         } else {
364             printf("I2C bus is ready\n");
365             return;
366         }
367 
368         gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
369         while (1) {
370             for (uint32_t i = 0; i < 9; i++) {
371                 gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
372                 board_delay_ms(10);
373                 gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
374                 board_delay_ms(10);
375             }
376             board_delay_ms(100);
377         }
378         printf("I2C bus is cleared\n");
379     }
380 }
381 
board_init_i2c(I2C_Type * ptr)382 void board_init_i2c(I2C_Type *ptr)
383 {
384     hpm_stat_t stat;
385     uint32_t freq;
386     i2c_config_t config;
387 
388     board_i2c_bus_clear(ptr);
389 
390     init_i2c_pins(ptr);
391     clock_add_to_group(clock_i2c0, 0);
392     clock_add_to_group(clock_i2c1, 0);
393     clock_add_to_group(clock_i2c2, 0);
394     clock_add_to_group(clock_i2c3, 0);
395     /* Configure the I2C clock to 24MHz */
396     clock_set_source_divider(BOARD_CAP_I2C_CLK_NAME, clk_src_osc24m, 1U);
397 
398     config.i2c_mode = i2c_mode_normal;
399     config.is_10bit_addressing = false;
400     freq = clock_get_frequency(BOARD_CAP_I2C_CLK_NAME);
401     stat = i2c_init_master(BOARD_CAP_I2C_BASE, freq, &config);
402     if (stat != status_success) {
403         printf("failed to initialize i2c 0x%lx\n", (uint32_t)BOARD_CAP_I2C_BASE);
404         while (1) {
405         }
406     }
407 }
408 
board_init_uart_clock(UART_Type * ptr)409 uint32_t board_init_uart_clock(UART_Type *ptr)
410 {
411     uint32_t freq = 0U;
412     if (ptr == HPM_UART0) {
413         clock_set_source_divider(clock_uart0, clk_src_osc24m, 1);
414         clock_add_to_group(clock_uart0, 0);
415         freq = clock_get_frequency(clock_uart0);
416     } else if (ptr == HPM_UART6) {
417         clock_set_source_divider(clock_uart6, clk_src_osc24m, 1);
418         clock_add_to_group(clock_uart6, 0);
419         freq = clock_get_frequency(clock_uart6);
420     } else if (ptr == HPM_UART13) {
421         clock_set_source_divider(clock_uart13, clk_src_osc24m, 1);
422         clock_add_to_group(clock_uart13, 0);
423         freq = clock_get_frequency(clock_uart13);
424     } else if (ptr == HPM_UART14) {
425         clock_set_source_divider(clock_uart14, clk_src_osc24m, 1);
426         clock_add_to_group(clock_uart14, 0);
427         freq = clock_get_frequency(clock_uart14);
428     } else {
429         /* Not supported */
430     }
431     return freq;
432 }
433 
board_init_spi_clock(SPI_Type * ptr)434 uint32_t board_init_spi_clock(SPI_Type *ptr)
435 {
436     if (ptr == HPM_SPI2) {
437         /* SPI2 clock configure */
438         clock_add_to_group(clock_spi2, 0);
439         clock_set_source_divider(clock_spi2, clk_src_pll1_clk1, 5U); /* 80MHz */
440 
441         return clock_get_frequency(clock_spi2);
442     }
443     return 0;
444 }
445 
board_init_cap_touch(void)446 void board_init_cap_touch(void)
447 {
448     init_cap_pins();
449     gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
450     gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
451 
452     board_delay_ms(1);
453     gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
454     board_delay_ms(1);
455     gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
456     board_delay_ms(6);
457     gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
458 
459     board_init_i2c(BOARD_CAP_I2C_BASE);
460 }
461 
board_init_gpio_pins(void)462 void board_init_gpio_pins(void)
463 {
464     init_gpio_pins();
465 }
466 
board_init_spi_pins(SPI_Type * ptr)467 void board_init_spi_pins(SPI_Type *ptr)
468 {
469     init_spi_pins(ptr);
470 }
471 
board_init_spi_pins_with_gpio_as_cs(SPI_Type * ptr)472 void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
473 {
474     init_spi_pins_with_gpio_as_cs(ptr);
475     gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
476                                     GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
477 }
478 
board_write_spi_cs(uint32_t pin,uint8_t state)479 void board_write_spi_cs(uint32_t pin, uint8_t state)
480 {
481     gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
482 }
483 
board_get_led_pwm_off_level(void)484 uint8_t board_get_led_pwm_off_level(void)
485 {
486     return BOARD_LED_OFF_LEVEL;
487 }
488 
board_get_led_gpio_off_level(void)489 uint8_t board_get_led_gpio_off_level(void)
490 {
491     return BOARD_LED_OFF_LEVEL;
492 }
493 
board_init_led_pins(void)494 void board_init_led_pins(void)
495 {
496     board_turnoff_rgb_led();
497     init_led_pins_as_gpio();
498     gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
499     gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
500     gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
501 }
502 
board_led_toggle(void)503 void board_led_toggle(void)
504 {
505 #ifdef BOARD_LED_TOGGLE_RGB
506     static uint8_t i;
507     gpio_write_port(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, (7 & (1 << i)) << BOARD_R_GPIO_PIN);
508     i++;
509     i = i % 3;
510 #else
511     gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
512 #endif
513 }
514 
board_led_write(uint8_t state)515 void board_led_write(uint8_t state)
516 {
517     gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
518 }
519 
board_init_cam_pins(void)520 void board_init_cam_pins(void)
521 {
522     init_cam_pins();
523     /* enable cam RST pin out with high level */
524     gpio_set_pin_output_with_initial(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, 1);
525 }
526 
board_write_cam_rst(uint8_t state)527 void board_write_cam_rst(uint8_t state)
528 {
529     gpio_write_pin(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, state);
530 
531 }
532 
board_init_usb_pins(void)533 void board_init_usb_pins(void)
534 {
535     /* set pull-up for USBx OC pins and ID pins */
536     init_usb_pins();
537 
538     /* configure USBx ID pins as input function */
539     gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
540     gpio_set_pin_input(BOARD_USB1_ID_PORT, BOARD_USB1_ID_GPIO_INDEX, BOARD_USB1_ID_GPIO_PIN);
541 
542     /* configure USBx OC Flag pins as input function */
543     gpio_set_pin_input(BOARD_USB0_OC_PORT, BOARD_USB0_OC_GPIO_INDEX, BOARD_USB0_OC_GPIO_PIN);
544     gpio_set_pin_input(BOARD_USB1_OC_PORT, BOARD_USB1_OC_GPIO_INDEX, BOARD_USB1_OC_GPIO_PIN);
545 }
546 
board_usb_vbus_ctrl(uint8_t usb_index,uint8_t level)547 void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
548 {
549     (void) usb_index;
550     (void) level;
551 }
552 
board_init_pmp(void)553 void board_init_pmp(void)
554 {
555     uint32_t start_addr;
556     uint32_t end_addr;
557     uint32_t length;
558     pmp_entry_t pmp_entry[16];
559     uint8_t index = 0;
560 
561     /* Init noncachable memory */
562     extern uint32_t __noncacheable_start__[];
563     extern uint32_t __noncacheable_end__[];
564     start_addr = (uint32_t) __noncacheable_start__;
565     end_addr = (uint32_t) __noncacheable_end__;
566     length = end_addr - start_addr;
567     if (length > 0) {
568         /* Ensure the address and the length are power of 2 aligned */
569         assert((length & (length - 1U)) == 0U);
570         assert((start_addr & (length - 1U)) == 0U);
571         pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
572         pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
573         pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
574         pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
575         index++;
576     }
577 
578     /* Init share memory */
579     extern uint32_t __share_mem_start__[];
580     extern uint32_t __share_mem_end__[];
581     start_addr = (uint32_t)__share_mem_start__;
582     end_addr = (uint32_t)__share_mem_end__;
583     length = end_addr - start_addr;
584     if (length > 0) {
585         /* Ensure the address and the length are power of 2 aligned */
586         assert((length & (length - 1U)) == 0U);
587         assert((start_addr & (length - 1U)) == 0U);
588         pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
589         pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
590         pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
591         pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
592         index++;
593     }
594 
595     pmp_config(&pmp_entry[0], index);
596 }
597 
board_init_clock(void)598 void board_init_clock(void)
599 {
600     uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
601     if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
602         /* Configure the External OSC ramp-up time: ~9ms */
603         pllctl_xtal_set_rampup_time(HPM_PLLCTL, 32UL * 1000UL * 9U);
604 
605         /* Select clock setting preset1 */
606         sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
607     }
608 
609     /* Add most Clocks to group 0 */
610     /* not open uart clock in this API, uart should configure pin function before opening clock */
611     clock_add_to_group(clock_cpu0, 0);
612     clock_add_to_group(clock_mchtmr0, 0);
613     clock_add_to_group(clock_axi0, 0);
614     clock_add_to_group(clock_axi1, 0);
615     clock_add_to_group(clock_axi2, 0);
616     clock_add_to_group(clock_ahb, 0);
617     clock_add_to_group(clock_femc, 0);
618     clock_add_to_group(clock_xpi0, 0);
619     clock_add_to_group(clock_xpi1, 0);
620     clock_add_to_group(clock_gptmr0, 0);
621     clock_add_to_group(clock_gptmr1, 0);
622     clock_add_to_group(clock_gptmr2, 0);
623     clock_add_to_group(clock_gptmr3, 0);
624     clock_add_to_group(clock_gptmr4, 0);
625     clock_add_to_group(clock_gptmr5, 0);
626     clock_add_to_group(clock_gptmr6, 0);
627     clock_add_to_group(clock_gptmr7, 0);
628     clock_add_to_group(clock_i2c0, 0);
629     clock_add_to_group(clock_i2c1, 0);
630     clock_add_to_group(clock_i2c2, 0);
631     clock_add_to_group(clock_i2c3, 0);
632     clock_add_to_group(clock_spi0, 0);
633     clock_add_to_group(clock_spi1, 0);
634     clock_add_to_group(clock_spi2, 0);
635     clock_add_to_group(clock_spi3, 0);
636     clock_add_to_group(clock_can0, 0);
637     clock_add_to_group(clock_can1, 0);
638     clock_add_to_group(clock_can2, 0);
639     clock_add_to_group(clock_can3, 0);
640     clock_add_to_group(clock_display, 0);
641     clock_add_to_group(clock_sdxc0, 0);
642     clock_add_to_group(clock_sdxc1, 0);
643     clock_add_to_group(clock_camera0, 0);
644     clock_add_to_group(clock_camera1, 0);
645     clock_add_to_group(clock_ptpc, 0);
646     clock_add_to_group(clock_ref0, 0);
647     clock_add_to_group(clock_ref1, 0);
648     clock_add_to_group(clock_watchdog0, 0);
649     clock_add_to_group(clock_eth0, 0);
650     clock_add_to_group(clock_eth1, 0);
651     clock_add_to_group(clock_sdp, 0);
652     clock_add_to_group(clock_xdma, 0);
653     clock_add_to_group(clock_ram0, 0);
654     clock_add_to_group(clock_ram1, 0);
655     clock_add_to_group(clock_usb0, 0);
656     clock_add_to_group(clock_usb1, 0);
657     clock_add_to_group(clock_jpeg, 0);
658     clock_add_to_group(clock_pdma, 0);
659     clock_add_to_group(clock_kman, 0);
660     clock_add_to_group(clock_gpio, 0);
661     clock_add_to_group(clock_mbx0, 0);
662     clock_add_to_group(clock_hdma, 0);
663     clock_add_to_group(clock_rng, 0);
664     clock_add_to_group(clock_mot0, 0);
665     clock_add_to_group(clock_mot1, 0);
666     clock_add_to_group(clock_mot2, 0);
667     clock_add_to_group(clock_mot3, 0);
668     clock_add_to_group(clock_acmp, 0);
669     clock_add_to_group(clock_dao, 0);
670     clock_add_to_group(clock_msyn, 0);
671     clock_add_to_group(clock_lmm0, 0);
672     clock_add_to_group(clock_lmm1, 0);
673     clock_add_to_group(clock_pdm, 0);
674 
675     clock_add_to_group(clock_adc0, 0);
676     clock_add_to_group(clock_adc1, 0);
677     clock_add_to_group(clock_adc2, 0);
678     clock_add_to_group(clock_adc3, 0);
679 
680     clock_add_to_group(clock_i2s0, 0);
681     clock_add_to_group(clock_i2s1, 0);
682     clock_add_to_group(clock_i2s2, 0);
683     clock_add_to_group(clock_i2s3, 0);
684     /* Connect Group0 to CPU0 */
685     clock_connect_group_to_cpu(0, 0);
686 
687     /* Add the CPU1 clock to Group1 */
688     clock_add_to_group(clock_mchtmr1, 1);
689     clock_add_to_group(clock_mbx1, 1);
690     /* Connect Group1 to CPU1 */
691     clock_connect_group_to_cpu(1, 1);
692 
693     /* Bump up DCDC voltage to 1200mv */
694     pcfg_dcdc_set_voltage(HPM_PCFG, 1200);
695     pcfg_dcdc_switch_to_dcm_mode(HPM_PCFG);
696 
697     if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
698         printf("Failed to set pll0_clk0 to %ldHz\n", BOARD_CPU_FREQ);
699         while (1) {
700         }
701     }
702 
703     clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
704     clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
705     clock_update_core_clock();
706 
707     clock_set_source_divider(clock_ahb, clk_src_pll1_clk1, 2); /*200m hz*/
708     clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
709     clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
710 }
711 
board_init_cam_clock(CAM_Type * ptr)712 uint32_t board_init_cam_clock(CAM_Type *ptr)
713 {
714     uint32_t freq = 0;
715     if (ptr == HPM_CAM0) {
716         /* Configure camera clock to 24MHz */
717         clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
718         freq = clock_get_frequency(clock_camera0);
719     } else if (ptr == HPM_CAM1) {
720         /* Configure camera clock to 24MHz */
721         clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
722         freq = clock_get_frequency(clock_camera1);
723     } else {
724         /* Invalid camera instance */
725     }
726     return freq;
727 }
728 
board_init_lcd_clock(void)729 uint32_t board_init_lcd_clock(void)
730 {
731     uint32_t freq;
732     clock_add_to_group(clock_display, 0);
733     /* Configure LCDC clock to 59.4MHz */
734     clock_set_source_divider(clock_display, clk_src_pll4_clk0, 10U);
735     freq = clock_get_frequency(clock_display);
736     return freq;
737 }
738 
board_init_dao_clock(void)739 uint32_t board_init_dao_clock(void)
740 {
741     clock_add_to_group(clock_dao, 0);
742 
743     sysctl_config_clock(HPM_SYSCTL, clock_node_aud1, clock_source_pll3_clk0, 25);
744     sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud1_clk);
745 
746     return clock_get_frequency(clock_dao);
747 }
748 
board_init_pdm_clock(void)749 uint32_t board_init_pdm_clock(void)
750 {
751     clock_add_to_group(clock_pdm, 0);
752 
753     sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
754     sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
755 
756     return clock_get_frequency(clock_pdm);
757 }
758 
board_set_audio_pll_clock(uint32_t freq)759 hpm_stat_t board_set_audio_pll_clock(uint32_t freq)
760 {
761     return pllctl_init_frac_pll_with_freq(HPM_PLLCTL, 3, freq);    /* pll3clk */
762 }
763 
board_init_i2s_pins(I2S_Type * ptr)764 void board_init_i2s_pins(I2S_Type *ptr)
765 {
766     init_i2s_pins(ptr);
767 }
768 
board_init_i2s_clock(I2S_Type * ptr)769 uint32_t board_init_i2s_clock(I2S_Type *ptr)
770 {
771     uint32_t freq = 0;
772 
773     if (ptr == HPM_I2S0) {
774         clock_add_to_group(clock_i2s0, 0);
775 
776         sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
777         sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
778 
779         freq = clock_get_frequency(clock_i2s0);
780     } else if (ptr == HPM_I2S1) {
781         clock_add_to_group(clock_i2s1, 0);
782 
783         sysctl_config_clock(HPM_SYSCTL, clock_node_aud1, clock_source_pll3_clk0, 25);
784         sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud1_clk);
785 
786         freq = clock_get_frequency(clock_i2s1);
787     } else {
788         ;
789     }
790 
791     return freq;
792 }
793 
794 /* adjust I2S source clock base on sample rate */
board_config_i2s_clock(I2S_Type * ptr,uint32_t sample_rate)795 uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
796 {
797     uint32_t freq = 0;
798 
799     if (ptr == HPM_I2S0) {
800         clock_add_to_group(clock_i2s0, 0);
801         if ((sample_rate % 22050) == 0) {
802             clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
803         } else {
804             clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
805         }
806         clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
807         freq = clock_get_frequency(clock_i2s0);
808     } else if (ptr == HPM_I2S1) {
809         clock_add_to_group(clock_i2s1, 0);
810         if ((sample_rate % 22050) == 0) {
811             clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
812         } else {
813             clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
814         }
815         clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
816         freq = clock_get_frequency(clock_i2s1);
817     } else {
818         ;
819     }
820 
821     return freq;
822 }
823 
board_init_adc12_clock(ADC12_Type * ptr,bool clk_src_ahb)824 uint32_t board_init_adc12_clock(ADC12_Type *ptr, bool clk_src_ahb)
825 {
826     uint32_t freq = 0;
827 
828     if (ptr == HPM_ADC0) {
829         if (clk_src_ahb) {
830             /* Configure the ADC clock from AHB (@200MHz by default)*/
831             clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
832         } else {
833             /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
834             clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
835             clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
836         }
837         freq = clock_get_frequency(clock_adc0);
838     } else if (ptr == HPM_ADC1) {
839         if (clk_src_ahb) {
840             /* Configure the ADC clock from AHB (@200MHz by default)*/
841             clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
842         } else {
843             /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
844             clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
845             clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
846         }
847         freq = clock_get_frequency(clock_adc1);
848     } else if (ptr == HPM_ADC2) {
849         if (clk_src_ahb) {
850             /* Configure the ADC clock from AHB (@200MHz by default)*/
851             clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
852         } else {
853             /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
854             clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
855             clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
856         }
857         freq = clock_get_frequency(clock_adc2);
858     }
859 
860     return freq;
861 }
862 
board_init_adc16_clock(ADC16_Type * ptr,bool clk_src_ahb)863 uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb)
864 {
865     uint32_t freq = 0;
866 
867     if (ptr == HPM_ADC3) {
868         if (clk_src_ahb) {
869             /* Configure the ADC clock from AHB (@200MHz by default)*/
870             clock_set_adc_source(clock_adc3, clk_adc_src_ahb0);
871         } else {
872             /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
873             clock_set_adc_source(clock_adc3, clk_adc_src_ana2);
874             clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
875         }
876 
877         freq = clock_get_frequency(clock_adc3);
878     }
879 
880     return freq;
881 }
882 
board_init_can(CAN_Type * ptr)883 void board_init_can(CAN_Type *ptr)
884 {
885     init_can_pins(ptr);
886 }
887 
board_init_can_clock(CAN_Type * ptr)888 uint32_t board_init_can_clock(CAN_Type *ptr)
889 {
890     uint32_t freq = 0;
891     if (ptr == HPM_CAN0) {
892         /* Set the CAN0 peripheral clock to 80MHz */
893         clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
894         freq = clock_get_frequency(clock_can0);
895     } else if (ptr == HPM_CAN1) {
896         /* Set the CAN1 peripheral clock to 80MHz */
897         clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
898         freq = clock_get_frequency(clock_can1);
899     } else if (ptr == HPM_CAN2) {
900         /* Set the CAN2 peripheral clock to 80MHz */
901         clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
902         freq = clock_get_frequency(clock_can2);
903     } else if (ptr == HPM_CAN3) {
904         /* Set the CAN3 peripheral clock to 80MHz */
905         clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
906         freq = clock_get_frequency(clock_can3);
907     } else {
908         /* Invalid CAN instance */
909     }
910     return freq;
911 }
912 
913 #ifdef INIT_EXT_RAM_FOR_DATA
914 /*
915  * this function will be called during startup to initialize external memory for data use
916  */
_init_ext_ram(void)917 void _init_ext_ram(void)
918 {
919     uint32_t femc_clk_in_hz;
920     clock_add_to_group(clock_femc, 0);
921     board_init_sdram_pins();
922     femc_clk_in_hz = board_init_femc_clock();
923 
924     femc_config_t config = {0};
925     femc_sdram_config_t sdram_config = {0};
926 
927     femc_default_config(HPM_FEMC, &config);
928     config.dqs = FEMC_DQS_INTERNAL;
929     femc_init(HPM_FEMC, &config);
930 
931     sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
932     sdram_config.prescaler = 0x3;
933     sdram_config.burst_len_in_byte = 8;
934     sdram_config.auto_refresh_count_in_one_burst = 1;
935     sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
936     sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
937 
938     sdram_config.precharge_to_act_in_ns = 18;   /* Trp */
939     sdram_config.act_to_rw_in_ns = 18;          /* Trcd */
940     sdram_config.refresh_recover_in_ns = 70;     /* Trfc/Trc */
941     sdram_config.write_recover_in_ns = 12;      /* Twr/Tdpl */
942     sdram_config.cke_off_in_ns = 42;             /* Trcd */
943     sdram_config.act_to_precharge_in_ns = 42;   /* Tras */
944 
945     sdram_config.self_refresh_recover_in_ns = 66;   /* Txsr */
946     sdram_config.refresh_to_refresh_in_ns = 66;     /* Trfc/Trc */
947     sdram_config.act_to_act_in_ns = 12;             /* Trrd */
948     sdram_config.idle_timeout_in_ns = 6;
949     sdram_config.cs_mux_pin = FEMC_IO_MUX_NOT_USED;
950 
951     sdram_config.cs = BOARD_SDRAM_CS;
952     sdram_config.base_address = BOARD_SDRAM_ADDRESS;
953     sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
954     sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
955     sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
956     sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
957     sdram_config.data_width_in_byte = BOARD_SDRAM_DATA_WIDTH_IN_BYTE;
958     sdram_config.delay_cell_value = 29;
959 
960     femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
961 }
962 #endif
963 
board_sd_configure_clock(SDXC_Type * ptr,uint32_t freq,bool need_inverse)964 uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse)
965 {
966     uint32_t actual_freq = 0;
967     do {
968         if (ptr != HPM_SDXC1) {
969             break;
970         }
971         clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
972         sdxc_enable_inverse_clock(ptr, false);
973         sdxc_enable_sd_clock(ptr, false);
974         /* Configure the clock below 400KHz for the identification state */
975         if (freq <= 400000UL) {
976             clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
977         }
978             /* configure the clock to 24MHz for the SDR12/Default speed */
979         else if (freq <= 26000000UL) {
980             clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
981         }
982             /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
983         else if (freq <= 52000000UL) {
984             clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
985         }
986             /* Configure the clock to 100MHz for the SDR50 */
987         else if (freq <= 100000000UL) {
988             clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
989         }
990             /* Configure the clock to 166MHz for SDR104/HS200/HS400  */
991         else if (freq <= 208000000UL) {
992             clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
993         }
994             /* For other unsupported clock ranges, configure the clock to 24MHz */
995         else {
996             clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
997         }
998         if (need_inverse) {
999             sdxc_enable_inverse_clock(ptr, true);
1000         }
1001         sdxc_enable_sd_clock(ptr, true);
1002         actual_freq = clock_get_frequency(sdxc_clk);
1003     } while (false);
1004 
1005     return actual_freq;
1006 }
1007 
1008 
1009 
set_rgb_output_off(PWM_Type * ptr,uint8_t pin,uint8_t cmp_index)1010 static void set_rgb_output_off(PWM_Type *ptr, uint8_t pin, uint8_t cmp_index)
1011 {
1012     pwm_cmp_config_t cmp_config = {0};
1013     pwm_output_channel_t ch_config = {0};
1014 
1015     pwm_stop_counter(ptr);
1016     pwm_get_default_cmp_config(ptr, &cmp_config);
1017     pwm_get_default_output_channel_config(ptr, &ch_config);
1018 
1019     pwm_set_reload(ptr, 0, 0xF);
1020     pwm_set_start_count(ptr, 0, 0);
1021 
1022     cmp_config.mode = pwm_cmp_mode_output_compare;
1023     cmp_config.cmp = 0x10;
1024     cmp_config.update_trigger = pwm_shadow_register_update_on_modify;
1025     pwm_config_cmp(ptr, cmp_index, &cmp_config);
1026 
1027     ch_config.cmp_start_index = cmp_index;
1028     ch_config.cmp_end_index = cmp_index;
1029     ch_config.invert_output = false;
1030 
1031     pwm_config_output_channel(ptr, pin, &ch_config);
1032 }
1033 
board_init_rgb_pwm_pins(void)1034 void board_init_rgb_pwm_pins(void)
1035 {
1036     trgm_output_t config = {0};
1037     board_turnoff_rgb_led();
1038 
1039     set_rgb_output_off(BOARD_RED_PWM, BOARD_RED_PWM_OUT, BOARD_RED_PWM_CMP);
1040     set_rgb_output_off(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT, BOARD_GREEN_PWM_CMP);
1041     set_rgb_output_off(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT, BOARD_BLUE_PWM_CMP);
1042 
1043     init_rgb_pwm_pins();
1044 
1045     config.type = 0;
1046     config.invert = false;
1047 
1048     /* Red: TRGM1 P1 */
1049     config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH8REF;
1050     trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT1, &config);
1051 
1052     /* Green: TRGM0 P6 */
1053     config.input = HPM_TRGM0_INPUT_SRC_PWM0_CH8REF;
1054     trgm_output_config(HPM_TRGM0, TRGM_TRGOCFG_TRGM_OUT6, &config);
1055 
1056     /* Blue: TRGM1 P3 */
1057     config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH9REF;
1058     trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT3, &config);
1059 }
1060 
board_disable_output_rgb_led(uint8_t color)1061 void board_disable_output_rgb_led(uint8_t color)
1062 {
1063     switch (color) {
1064     case BOARD_RGB_RED:
1065         trgm_disable_io_output(HPM_TRGM1, 1 << 1);
1066         break;
1067     case BOARD_RGB_GREEN:
1068         trgm_disable_io_output(HPM_TRGM0, 1 << 6);
1069         break;
1070     case BOARD_RGB_BLUE:
1071         trgm_disable_io_output(HPM_TRGM1, 1 << 3);
1072         break;
1073     default:
1074         while (1) {
1075             ;
1076         }
1077     }
1078 }
1079 
board_enable_output_rgb_led(uint8_t color)1080 void board_enable_output_rgb_led(uint8_t color)
1081 {
1082     switch (color) {
1083     case BOARD_RGB_RED:
1084         trgm_enable_io_output(HPM_TRGM1, 1 << 1);
1085         break;
1086     case BOARD_RGB_GREEN:
1087         trgm_enable_io_output(HPM_TRGM0, 1 << 6);
1088         break;
1089     case BOARD_RGB_BLUE:
1090         trgm_enable_io_output(HPM_TRGM1, 1 << 3);
1091         break;
1092     default:
1093         while (1) {
1094             ;
1095         }
1096     }
1097 }
1098 
board_init_enet_ptp_clock(ENET_Type * ptr)1099 hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
1100 {
1101     /* set clock source */
1102     if (ptr == HPM_ENET0) {
1103         /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet0 ptp function */
1104         clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); /* 100MHz */
1105     } else if (ptr == HPM_ENET1) {
1106         /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet1 ptp function */
1107         clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); /* 100MHz */
1108     } else {
1109         return status_invalid_argument;
1110     }
1111 
1112     return status_success;
1113 }
1114 
board_init_enet_rmii_reference_clock(ENET_Type * ptr,bool internal)1115 hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
1116 {
1117     /* Configure Enet clock to output reference clock */
1118     if (ptr == HPM_ENET1) {
1119         if (internal) {
1120             /* set pll output frequency at 1GHz */
1121             if (pllctl_init_int_pll_with_freq(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1000000000UL) == status_success) {
1122                 /* set pll2_clk1 output frequence at 250MHz from PLL2 divided by 4 */
1123                 pllctl_set_div(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1, 4);
1124                 /* set eth clock frequency at 50MHz for enet0 */
1125                 clock_set_source_divider(ptr == HPM_ENET0 ? clock_eth0 : clock_eth1, clk_src_pll2_clk1, 5);
1126             } else {
1127                 return status_fail;
1128             }
1129         }
1130     } else {
1131         return status_invalid_argument;
1132     }
1133 
1134     enet_rmii_enable_clock(ptr, internal);
1135 
1136     return status_success;
1137 }
1138 
board_init_enet_rgmii_clock_delay(ENET_Type * ptr)1139 hpm_stat_t board_init_enet_rgmii_clock_delay(ENET_Type *ptr)
1140 {
1141     if (ptr == HPM_ENET0) {
1142         return enet_rgmii_set_clock_delay(ptr, BOARD_ENET_RGMII_TX_DLY, BOARD_ENET_RGMII_RX_DLY);
1143     }
1144 
1145     return status_invalid_argument;
1146 }
1147 
board_init_adc12_pins(void)1148 void board_init_adc12_pins(void)
1149 {
1150     init_adc12_pins();
1151 }
1152 
board_init_adc16_pins(void)1153 void board_init_adc16_pins(void)
1154 {
1155     init_adc16_pins();
1156 }
1157 
board_init_enet_pins(ENET_Type * ptr)1158 hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
1159 {
1160     init_enet_pins(ptr);
1161 
1162     if (ptr == HPM_ENET0) {
1163         gpio_set_pin_output_with_initial(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
1164     } else if (ptr == HPM_ENET1) {
1165         gpio_set_pin_output_with_initial(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
1166     } else {
1167         return status_invalid_argument;
1168     }
1169 
1170     return status_success;
1171 }
1172 
board_reset_enet_phy(ENET_Type * ptr)1173 hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
1174 {
1175     if (ptr == HPM_ENET0) {
1176         gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
1177         board_delay_ms(1);
1178         gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 1);
1179     } else if (ptr == HPM_ENET1) {
1180         gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
1181         board_delay_ms(1);
1182         gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 1);
1183     } else {
1184         return status_invalid_argument;
1185     }
1186 
1187     return status_success;
1188 }
1189 
board_get_enet_dma_pbl(ENET_Type * ptr)1190 uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
1191 {
1192     (void) ptr;
1193     return enet_pbl_32;
1194 }
1195 
board_enable_enet_irq(ENET_Type * ptr)1196 hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
1197 {
1198     if (ptr == HPM_ENET0) {
1199         intc_m_enable_irq(IRQn_ENET0);
1200     } else if (ptr == HPM_ENET1) {
1201         intc_m_enable_irq(IRQn_ENET1);
1202     } else {
1203         return status_invalid_argument;
1204     }
1205 
1206     return status_success;
1207 }
1208 
board_disable_enet_irq(ENET_Type * ptr)1209 hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
1210 {
1211     if (ptr == HPM_ENET0) {
1212         intc_m_disable_irq(IRQn_ENET0);
1213     } else if (ptr == HPM_ENET1) {
1214         intc_m_disable_irq(IRQn_ENET1);
1215     } else {
1216         return status_invalid_argument;
1217     }
1218 
1219     return status_success;
1220 }
1221 
board_init_enet_pps_pins(ENET_Type * ptr)1222 void board_init_enet_pps_pins(ENET_Type *ptr)
1223 {
1224     (void) ptr;
1225     init_enet_pps_pins();
1226 }
1227 
1228 #if defined(ENET_MULTIPLE_PORT) && ENET_MULTIPLE_PORT
1229 
board_init_multiple_enet_pins(void)1230 hpm_stat_t board_init_multiple_enet_pins(void)
1231 {
1232     board_init_enet_pins(HPM_ENET0);
1233     board_init_enet_pins(HPM_ENET1);
1234 
1235     return status_success;
1236 }
1237 
board_init_multiple_enet_clock(void)1238 hpm_stat_t board_init_multiple_enet_clock(void)
1239 {
1240     /* Set RGMII clock delay */
1241     board_init_enet_rgmii_clock_delay(HPM_ENET0);
1242 
1243     /* Set RMII reference clock */
1244     board_init_enet_rmii_reference_clock(HPM_ENET1, BOARD_ENET_RMII_INT_REF_CLK);
1245     printf("Enet1 Reference Clock: %s\n", BOARD_ENET_RMII_INT_REF_CLK ? "Internal Clock" : "External Clock");
1246 
1247     return status_success;
1248 }
1249 
board_reset_multiple_enet_phy(void)1250 hpm_stat_t board_reset_multiple_enet_phy(void)
1251 {
1252     board_reset_enet_phy(HPM_ENET0);
1253     board_reset_enet_phy(HPM_ENET1);
1254 
1255     return status_success;
1256 }
1257 
board_init_enet_phy(ENET_Type * ptr)1258 hpm_stat_t board_init_enet_phy(ENET_Type *ptr)
1259 {
1260     rtl8211_config_t phy_config0;
1261     rtl8201_config_t phy_config1;
1262 
1263     if (ptr == HPM_ENET0) {
1264         rtl8211_reset(ptr);
1265         rtl8211_basic_mode_default_config(HPM_ENET0, &phy_config0);
1266         if (rtl8211_basic_mode_init(HPM_ENET0, &phy_config0) == true) {
1267             return status_success;
1268         } else {
1269             printf("Enet0 phy init failed!\n");
1270             return status_fail;
1271         }
1272     } else if (ptr == HPM_ENET1) {
1273         rtl8201_reset(HPM_ENET1);
1274         rtl8201_basic_mode_default_config(HPM_ENET1, &phy_config1);
1275         if (rtl8201_basic_mode_init(HPM_ENET1, &phy_config1) == true) {
1276             return status_success;
1277         } else {
1278             printf("Enet1 phy init failed!\n");
1279             return status_fail;
1280         }
1281     } else {
1282          return status_invalid_argument;
1283     }
1284 }
1285 
board_get_enet_base(uint8_t idx)1286 ENET_Type *board_get_enet_base(uint8_t idx)
1287 {
1288     if (idx == 0) {
1289         return HPM_ENET0;
1290     } else {
1291         return HPM_ENET1;
1292     }
1293 }
1294 
board_get_enet_phy_itf(uint8_t idx)1295 uint8_t board_get_enet_phy_itf(uint8_t idx)
1296 {
1297     if (idx == 0) {
1298         return BOARD_ENET_RGMII_PHY_ITF;
1299     } else {
1300         return BOARD_ENET_RMII_PHY_ITF;
1301     }
1302 }
1303 
board_get_enet_phy_status(uint8_t idx,void * status)1304 void board_get_enet_phy_status(uint8_t idx, void *status)
1305 {
1306     if (idx == 0) {
1307         rtl8211_get_phy_status(HPM_ENET0, status);
1308     } else {
1309         rtl8201_get_phy_status(HPM_ENET1, status);
1310     }
1311 }
1312 #endif
1313 
board_init_dao_pins(void)1314 void board_init_dao_pins(void)
1315 {
1316     init_dao_pins();
1317 }
1318