• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2021-2023 HPMicro
3  * SPDX-License-Identifier: BSD-3-Clause
4  *
5  */
6 
7 #include "board.h"
8 #include "hpm_uart_drv.h"
9 #include "hpm_gptmr_drv.h"
10 #include "hpm_lcdc_drv.h"
11 #include "hpm_i2c_drv.h"
12 #include "hpm_gpio_drv.h"
13 #include "hpm_femc_drv.h"
14 #include "pinmux.h"
15 #include "hpm_pmp_drv.h"
16 #include "hpm_clock_drv.h"
17 #include "hpm_sysctl_drv.h"
18 #include "hpm_sdxc_drv.h"
19 #include "hpm_sdxc_soc_drv.h"
20 #include "hpm_pllctl_drv.h"
21 #include "hpm_pwm_drv.h"
22 #include "hpm_pcfg_drv.h"
23 #include "hpm_enet_drv.h"
24 #include "hpm_sdk_version.h"
25 
26 static board_timer_cb timer_cb;
27 static bool invert_led_level;
28 
29 /**
30  * @brief FLASH configuration option definitions:
31  * option[0]:
32  *    [31:16] 0xfcf9 - FLASH configuration option tag
33  *    [15:4]  0 - Reserved
34  *    [3:0]   option words (exclude option[0])
35  * option[1]:
36  *    [31:28] Flash probe type
37  *      0 - SFDP SDR / 1 - SFDP DDR
38  *      2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
39  *      4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
40  *      6 - OctaBus DDR (SPI -> OPI DDR)
41  *      8 - Xccela DDR (SPI -> OPI DDR)
42  *      10 - EcoXiP DDR (SPI -> OPI DDR)
43  *    [27:24] Command Pads after Power-on Reset
44  *      0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
45  *    [23:20] Command Pads after Configuring FLASH
46  *      0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
47  *    [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
48  *      0 - Not needed
49  *      1 - QE bit is at bit 6 in Status Register 1
50  *      2 - QE bit is at bit1 in Status Register 2
51  *      3 - QE bit is at bit7 in Status Register 2
52  *      4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
53  *    [15:8] Dummy cycles
54  *      0 - Auto-probed / detected / default value
55  *      Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
56  *    [7:4] Misc.
57  *      0 - Not used
58  *      1 - SPI mode
59  *      2 - Internal loopback
60  *      3 - External DQS
61  *    [3:0] Frequency option
62  *      1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
63  *
64  * option[2] (Effective only if the bit[3:0] in option[0] > 1)
65  *    [31:20]  Reserved
66  *    [19:16] IO voltage
67  *      0 - 3V / 1 - 1.8V
68  *    [15:12] Pin group
69  *      0 - 1st group / 1 - 2nd group
70  *    [11:8] Connection selection
71  *      0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
72  *    [7:0] Drive Strength
73  *      0 - Default value
74  * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
75  *              JESD216)
76  *    [31:16] reserved
77  *    [15:12] Sector Erase Command Option, not required here
78  *    [11:8]  Sector Size Option, not required here
79  *    [7:0] Flash Size Option
80  *      0 - 4MB / 1 - 8MB / 2 - 16MB
81  */
82 #if defined(FLASH_XIP) && FLASH_XIP
83 __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0};
84 #endif
85 
86 #if defined(FLASH_UF2) && FLASH_UF2
87 ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
88 #endif
89 
board_init_console(void)90 void board_init_console(void)
91 {
92 #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
93 #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
94     console_config_t cfg;
95 
96     /* uart needs to configure pin function before enabling clock, otherwise the level change of
97     uart rx pin when configuring pin function will cause a wrong data to be received.
98     And a uart rx dma request will be generated by default uart fifo dma trigger level. */
99     init_uart_pins((UART_Type *) BOARD_CONSOLE_BASE);
100 
101     /* Configure the UART clock to 24MHz */
102     clock_set_source_divider(BOARD_CONSOLE_CLK_NAME, clk_src_osc24m, 1U);
103     clock_add_to_group(BOARD_CONSOLE_CLK_NAME, 0);
104 
105     cfg.type = BOARD_CONSOLE_TYPE;
106     cfg.base = (uint32_t) BOARD_CONSOLE_BASE;
107     cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_CLK_NAME);
108     cfg.baudrate = BOARD_CONSOLE_BAUDRATE;
109 
110     if (status_success != console_init(&cfg)) {
111         /* failed to  initialize debug console */
112         while (1) {
113         }
114     }
115 #else
116     while (1) {
117     }
118 #endif
119 #endif
120 }
121 
board_print_clock_freq(void)122 void board_print_clock_freq(void)
123 {
124     printf("==============================\n");
125     printf(" %s clock summary\n", BOARD_NAME);
126     printf("==============================\n");
127     printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
128     printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
129     printf("axi0:\t\t %luHz\n", clock_get_frequency(clock_axi0));
130     printf("axi1:\t\t %luHz\n", clock_get_frequency(clock_axi1));
131     printf("axi2:\t\t %luHz\n", clock_get_frequency(clock_axi2));
132     printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
133     printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
134     printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
135     printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
136     printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
137     printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
138     printf("display:\t %luHz\n", clock_get_frequency(clock_display));
139     printf("cam0:\t\t %luHz\n", clock_get_frequency(clock_camera0));
140     printf("cam1:\t\t %luHz\n", clock_get_frequency(clock_camera1));
141     printf("jpeg:\t\t %luHz\n", clock_get_frequency(clock_jpeg));
142     printf("pdma:\t\t %luHz\n", clock_get_frequency(clock_pdma));
143     printf("==============================\n");
144 }
145 
board_init_uart(UART_Type * ptr)146 void board_init_uart(UART_Type *ptr)
147 {
148     /* configure uart's pin before opening uart's clock */
149     init_uart_pins(ptr);
150     board_init_uart_clock(ptr);
151 }
152 
board_print_banner(void)153 void board_print_banner(void)
154 {
155     const uint8_t banner[] = {"\n\
156 ----------------------------------------------------------------------\n\
157 $$\\   $$\\ $$$$$$$\\  $$\\      $$\\ $$\\\n\
158 $$ |  $$ |$$  __$$\\ $$$\\    $$$ |\\__|\n\
159 $$ |  $$ |$$ |  $$ |$$$$\\  $$$$ |$$\\  $$$$$$$\\  $$$$$$\\   $$$$$$\\\n\
160 $$$$$$$$ |$$$$$$$  |$$\\$$\\$$ $$ |$$ |$$  _____|$$  __$$\\ $$  __$$\\\n\
161 $$  __$$ |$$  ____/ $$ \\$$$  $$ |$$ |$$ /      $$ |  \\__|$$ /  $$ |\n\
162 $$ |  $$ |$$ |      $$ |\\$  /$$ |$$ |$$ |      $$ |      $$ |  $$ |\n\
163 $$ |  $$ |$$ |      $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ |      \\$$$$$$  |\n\
164 \\__|  \\__|\\__|      \\__|     \\__|\\__| \\_______|\\__|       \\______/\n\
165 ----------------------------------------------------------------------\n"};
166 #ifdef SDK_VERSION_STRING
167     printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
168 #endif
169     printf("%s", banner);
170 }
171 
board_turnoff_rgb_led(void)172 static void board_turnoff_rgb_led(void)
173 {
174     uint8_t port_pin18_status;
175     uint8_t port_pin19_status;
176     uint8_t port_pin20_status;
177     uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
178     HPM_IOC->PAD[IOC_PAD_PB18].FUNC_CTL = IOC_PB18_FUNC_CTL_GPIO_B_18;
179     HPM_IOC->PAD[IOC_PAD_PB19].FUNC_CTL = IOC_PB19_FUNC_CTL_GPIO_B_19;
180     HPM_IOC->PAD[IOC_PAD_PB20].FUNC_CTL = IOC_PB20_FUNC_CTL_GPIO_B_20;
181 
182     HPM_IOC->PAD[IOC_PAD_PB18].PAD_CTL = pad_ctl;
183     HPM_IOC->PAD[IOC_PAD_PB19].PAD_CTL = pad_ctl;
184     HPM_IOC->PAD[IOC_PAD_PB20].PAD_CTL = pad_ctl;
185 
186     port_pin18_status = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 18);
187     port_pin19_status = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 19);
188     port_pin20_status = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 20);
189     invert_led_level = false;
190 /**
191  * hpm board evkmini Rev. B led light modification, resulting in two versions of rgb led processing different
192  *
193  */
194     if ((port_pin18_status & port_pin19_status & port_pin20_status) == 0) {
195         /* Mini Rev B */
196         invert_led_level = true;
197         pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(0);
198         HPM_IOC->PAD[IOC_PAD_PB18].PAD_CTL = pad_ctl;
199         HPM_IOC->PAD[IOC_PAD_PB19].PAD_CTL = pad_ctl;
200         HPM_IOC->PAD[IOC_PAD_PB20].PAD_CTL = pad_ctl;
201     }
202 }
203 
board_get_led_pwm_off_level(void)204 uint8_t board_get_led_pwm_off_level(void)
205 {
206     if (invert_led_level) {
207         return BOARD_LED_ON_LEVEL;
208     } else {
209         return BOARD_LED_OFF_LEVEL;
210     }
211 }
212 
board_get_led_gpio_off_level(void)213 uint8_t board_get_led_gpio_off_level(void)
214 {
215     if (invert_led_level) {
216         return BOARD_LED_ON_LEVEL;
217     } else {
218         return BOARD_LED_OFF_LEVEL;
219     }
220 }
221 
board_ungate_mchtmr_at_lp_mode(void)222 void board_ungate_mchtmr_at_lp_mode(void)
223 {
224     /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
225     sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
226 }
227 
board_init(void)228 void board_init(void)
229 {
230     board_turnoff_rgb_led();
231     board_init_clock();
232     board_init_console();
233     board_init_pmp();
234 #if BOARD_SHOW_CLOCK
235     board_print_clock_freq();
236 #endif
237 #if BOARD_SHOW_BANNER
238     board_print_banner();
239 #endif
240 }
241 
board_init_sdram_pins(void)242 void board_init_sdram_pins(void)
243 {
244     init_sdram_pins();
245 }
246 
board_init_femc_clock(void)247 uint32_t board_init_femc_clock(void)
248 {
249     clock_set_source_divider(clock_femc, clk_src_pll2_clk0, 2U); /* 166Mhz */
250     return clock_get_frequency(clock_femc);
251 }
252 
253 uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz);
254 
255 #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
256 
set_reset_pin_level_tm070rdh13(uint8_t level)257 static void set_reset_pin_level_tm070rdh13(uint8_t level)
258 {
259     gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, level);
260 }
261 
set_backlight_tm070rdh13(uint16_t percent)262 static void set_backlight_tm070rdh13(uint16_t percent)
263 {
264     gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, percent > 0 ? 1 : 0);
265 }
266 
board_init_lcd_rgb_tm070rdh13(void)267 void board_init_lcd_rgb_tm070rdh13(void)
268 {
269     init_lcd_pins(BOARD_LCD_BASE);
270 
271     gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
272     gpio_set_pin_output(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN);
273 
274     hpm_panel_hw_interface_t hw_if = {0};
275     hpm_panel_t *panel = hpm_panel_find_device_default();
276     const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
277     uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_display, timing->pixel_clock_khz);
278     hw_if.set_reset_pin_level = set_reset_pin_level_tm070rdh13;
279     hw_if.set_backlight = set_backlight_tm070rdh13;
280     hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
281     hpm_panel_register_interface(panel, &hw_if);
282 
283     printf("name: %s, lcdc_clk: %ukhz\n",
284                         hpm_panel_get_name(panel),
285                         lcdc_pixel_clk_khz);
286 
287     hpm_panel_reset(panel);
288     hpm_panel_init(panel);
289     hpm_panel_power_on(panel);
290 }
291 
292 #endif
293 
294 #ifdef CONFIG_HPM_PANEL
295 
board_lcdc_clock_init(clock_name_t clock_name,uint32_t pixel_clk_khz)296 uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz)
297 {
298     clock_add_to_group(clock_name, 0);
299 
300     uint32_t freq_khz = clock_get_frequency(clk_pll4clk0) / 1000;
301     uint32_t div = (freq_khz + pixel_clk_khz / 2) / pixel_clk_khz;
302     clock_set_source_divider(clock_name, clk_src_pll4_clk0, div);
303     return clock_get_frequency(clock_name) / 1000;
304 }
305 
board_lcd_backlight(bool is_on)306 void board_lcd_backlight(bool is_on)
307 {
308     hpm_panel_t *panel = hpm_panel_find_device_default();
309     hpm_panel_set_backlight(panel, is_on == true ? 100 : 0);
310 }
311 
board_init_lcd(void)312 void board_init_lcd(void)
313 {
314 #ifdef CONFIG_PANEL_RGB_TM070RDH13
315     board_init_lcd_rgb_tm070rdh13();
316 #endif
317 }
318 
board_panel_para_to_lcdc(lcdc_config_t * config)319 void board_panel_para_to_lcdc(lcdc_config_t *config)
320 {
321     const hpm_panel_timing_t *timing;
322     hpm_panel_t *panel = hpm_panel_find_device_default();
323 
324     timing = hpm_panel_get_timing(panel);
325     config->resolution_x = timing->hactive;
326     config->resolution_y = timing->vactive;
327 
328     config->hsync.pulse_width = timing->hsync_len;
329     config->hsync.back_porch_pulse = timing->hback_porch;
330     config->hsync.front_porch_pulse = timing->hfront_porch;
331 
332     config->vsync.pulse_width = timing->vsync_len;
333     config->vsync.back_porch_pulse = timing->vback_porch;
334     config->vsync.front_porch_pulse = timing->vfront_porch;
335 
336     config->control.invert_hsync = timing->hsync_pol;
337     config->control.invert_vsync = timing->vsync_pol;
338     config->control.invert_href = timing->de_pol;
339     config->control.invert_pixel_data = timing->pixel_data_pol;
340     config->control.invert_pixel_clock = timing->pixel_clk_pol;
341 }
342 #endif
343 
board_delay_ms(uint32_t ms)344 void board_delay_ms(uint32_t ms)
345 {
346     clock_cpu_delay_ms(ms);
347 }
348 
board_delay_us(uint32_t us)349 void board_delay_us(uint32_t us)
350 {
351     clock_cpu_delay_us(us);
352 }
353 
board_timer_isr(void)354 void board_timer_isr(void)
355 {
356     if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
357         gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
358         timer_cb();
359     }
360 }
361 SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
362 
board_timer_create(uint32_t ms,board_timer_cb cb)363 void board_timer_create(uint32_t ms, board_timer_cb cb)
364 {
365     uint32_t gptmr_freq;
366     gptmr_channel_config_t config;
367 
368     timer_cb = cb;
369     gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
370 
371     clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
372     gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
373 
374     config.reload = gptmr_freq / 1000 * ms;
375     gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
376     gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
377     intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
378 
379     gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
380 }
381 
board_i2c_bus_clear(I2C_Type * ptr)382 void board_i2c_bus_clear(I2C_Type *ptr)
383 {
384     init_i2c_pins_as_gpio(ptr);
385     if (ptr == BOARD_CAP_I2C_BASE) {
386         gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
387         gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
388         if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
389             printf("CLK is low, please power cycle the board\n");
390             while (1) {
391             }
392         }
393         if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
394             printf("SDA is low, try to issue I2C bus clear\n");
395         } else {
396             printf("I2C bus is ready\n");
397             return;
398         }
399 
400         gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
401         for (uint8_t i = 0; i < 3; i++) {
402             for (uint32_t j = 0; j < 9; j++) {
403                 gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
404                 board_delay_ms(10);
405                 gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
406                 board_delay_ms(10);
407             }
408             board_delay_ms(100);
409         }
410         printf("I2C bus is cleared\n");
411     }
412 }
413 
board_init_i2c(I2C_Type * ptr)414 void board_init_i2c(I2C_Type *ptr)
415 {
416     hpm_stat_t stat;
417     uint32_t freq;
418     i2c_config_t config;
419 
420     board_i2c_bus_clear(ptr);
421 
422     init_i2c_pins(ptr);
423     clock_add_to_group(clock_i2c0, 0);
424     clock_add_to_group(clock_i2c1, 0);
425     clock_add_to_group(clock_i2c2, 0);
426     clock_add_to_group(clock_i2c3, 0);
427     /* Configure the I2C clock to 24MHz */
428     clock_set_source_divider(BOARD_CAP_I2C_CLK_NAME, clk_src_osc24m, 1U);
429 
430     config.i2c_mode = i2c_mode_normal;
431     config.is_10bit_addressing = false;
432     freq = clock_get_frequency(BOARD_CAP_I2C_CLK_NAME);
433     stat = i2c_init_master(BOARD_CAP_I2C_BASE, freq, &config);
434     if (stat != status_success) {
435         printf("failed to initialize i2c 0x%lx\n", (uint32_t) BOARD_CAP_I2C_BASE);
436         while (1) {
437         }
438     }
439 }
440 
board_init_uart_clock(UART_Type * ptr)441 uint32_t board_init_uart_clock(UART_Type *ptr)
442 {
443     uint32_t freq = 0U;
444     if (ptr == HPM_UART0) {
445         clock_set_source_divider(clock_uart0, clk_src_osc24m, 1);
446         clock_add_to_group(clock_uart0, 0);
447         freq = clock_get_frequency(clock_uart0);
448     } else if (ptr == HPM_UART6) {
449         clock_set_source_divider(clock_uart6, clk_src_osc24m, 1);
450         clock_add_to_group(clock_uart6, 0);
451         freq = clock_get_frequency(clock_uart6);
452     } else if (ptr == HPM_UART7) {
453         clock_set_source_divider(clock_uart7, clk_src_osc24m, 1);
454         clock_add_to_group(clock_uart7, 0);
455         freq = clock_get_frequency(clock_uart7);
456     } else if (ptr == HPM_UART13) {
457         clock_set_source_divider(clock_uart13, clk_src_osc24m, 1);
458         clock_add_to_group(clock_uart13, 0);
459         freq = clock_get_frequency(clock_uart13);
460     } else if (ptr == HPM_UART14) {
461         clock_set_source_divider(clock_uart14, clk_src_osc24m, 1);
462         clock_add_to_group(clock_uart14, 0);
463         freq = clock_get_frequency(clock_uart14);
464     } else {
465         /* Not supported */
466     }
467     return freq;
468 }
469 
board_init_spi_clock(SPI_Type * ptr)470 uint32_t board_init_spi_clock(SPI_Type *ptr)
471 {
472     if (ptr == HPM_SPI2) {
473         /* SPI2 clock configure */
474         clock_add_to_group(clock_spi2, 0);
475         clock_set_source_divider(clock_spi2, clk_src_pll1_clk1, 5U); /* 80MHz */
476 
477         return clock_get_frequency(clock_spi2);
478     } else {
479         return 0;
480     }
481 }
482 
board_init_cap_touch(void)483 void board_init_cap_touch(void)
484 {
485     init_cap_pins();
486     gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
487     gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
488 
489     board_delay_ms(1);
490     gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 1);
491     board_delay_ms(10);
492     gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
493 
494     gpio_set_pin_input(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN);
495     board_init_i2c(BOARD_CAP_I2C_BASE);
496 }
497 
498 
board_init_gpio_pins(void)499 void board_init_gpio_pins(void)
500 {
501     init_gpio_pins();
502 }
503 
board_init_spi_pins(SPI_Type * ptr)504 void board_init_spi_pins(SPI_Type *ptr)
505 {
506     init_spi_pins(ptr);
507 }
508 
board_init_spi_pins_with_gpio_as_cs(SPI_Type * ptr)509 void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
510 {
511     init_spi_pins_with_gpio_as_cs(ptr);
512     gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
513                                     GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
514 }
515 
board_write_spi_cs(uint32_t pin,uint8_t state)516 void board_write_spi_cs(uint32_t pin, uint8_t state)
517 {
518     gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
519 }
520 
board_init_led_pins(void)521 void board_init_led_pins(void)
522 {
523     board_turnoff_rgb_led();
524     init_led_pins_as_gpio();
525     gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
526     gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
527     gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
528 }
529 
board_led_toggle(void)530 void board_led_toggle(void)
531 {
532     static uint8_t i;
533     if (!invert_led_level) {
534         /* hpm6750 Mini Rev A led configure*/
535         gpio_write_port(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, (7 & ~(1 << i)) << BOARD_G_GPIO_PIN);
536     } else {
537         /* hpm6750 Mini Rev B led configure*/
538         gpio_write_port(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, ((1 << i)) << BOARD_G_GPIO_PIN);
539     }
540     i++;
541     i = i % 3;
542 }
543 
board_led_write(uint8_t state)544 void board_led_write(uint8_t state)
545 {
546     gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
547 }
548 
board_init_cam_pins(void)549 void board_init_cam_pins(void)
550 {
551     init_cam_pins(HPM_CAM0);
552 }
553 
board_init_usb_pins(void)554 void board_init_usb_pins(void)
555 {
556     /* set pull-up for USBx OC pin and ID pin */
557     init_usb_pins(HPM_USB0);
558 
559     /* configure USBx ID pin as input function */
560     gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
561 
562     /* configure USBx OC Flag pin as input function */
563     gpio_set_pin_input(BOARD_USB0_OC_PORT, BOARD_USB0_OC_GPIO_INDEX, BOARD_USB0_OC_GPIO_PIN);
564 }
565 
board_usb_vbus_ctrl(uint8_t usb_index,uint8_t level)566 void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
567 {
568     (void) usb_index;
569     (void) level;
570 }
571 
board_init_pmp(void)572 void board_init_pmp(void)
573 {
574     uint32_t start_addr;
575     uint32_t end_addr;
576     uint32_t length;
577     pmp_entry_t pmp_entry[16];
578     uint8_t index = 0;
579 
580     /* Init noncachable memory */
581     extern uint32_t __noncacheable_start__[];
582     extern uint32_t __noncacheable_end__[];
583     start_addr = (uint32_t) __noncacheable_start__;
584     end_addr = (uint32_t) __noncacheable_end__;
585     length = end_addr - start_addr;
586     if (length > 0) {
587         /* Ensure the address and the length are power of 2 aligned */
588         assert((length & (length - 1U)) == 0U);
589         assert((start_addr & (length - 1U)) == 0U);
590         pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
591         pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
592         pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
593         pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
594         index++;
595     }
596 
597     /* Init share memory */
598     extern uint32_t __share_mem_start__[];
599     extern uint32_t __share_mem_end__[];
600     start_addr = (uint32_t)__share_mem_start__;
601     end_addr = (uint32_t)__share_mem_end__;
602     length = end_addr - start_addr;
603     if (length > 0) {
604         /* Ensure the address and the length are power of 2 aligned */
605         assert((length & (length - 1U)) == 0U);
606         assert((start_addr & (length - 1U)) == 0U);
607         pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
608         pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
609         pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
610         pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
611         index++;
612     }
613 
614     pmp_config(&pmp_entry[0], index);
615 }
616 
board_init_clock(void)617 void board_init_clock(void)
618 {
619     uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
620     if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
621         /* Configure the External OSC ramp-up time: ~9ms */
622         pllctl_xtal_set_rampup_time(HPM_PLLCTL, 32UL * 1000UL * 9U);
623 
624         /* Select clock setting preset1 */
625         sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
626     }
627 
628     /* Add most Clocks to group 0 */
629     /* not open uart clock in this API, uart should configure pin function before opening clock */
630     clock_add_to_group(clock_cpu0, 0);
631     clock_add_to_group(clock_mchtmr0, 0);
632     clock_add_to_group(clock_axi0, 0);
633     clock_add_to_group(clock_axi1, 0);
634     clock_add_to_group(clock_axi2, 0);
635     clock_add_to_group(clock_ahb, 0);
636     clock_add_to_group(clock_femc, 0);
637     clock_add_to_group(clock_xpi0, 0);
638     clock_add_to_group(clock_xpi1, 0);
639     clock_add_to_group(clock_gptmr0, 0);
640     clock_add_to_group(clock_gptmr1, 0);
641     clock_add_to_group(clock_gptmr2, 0);
642     clock_add_to_group(clock_gptmr3, 0);
643     clock_add_to_group(clock_gptmr4, 0);
644     clock_add_to_group(clock_gptmr5, 0);
645     clock_add_to_group(clock_gptmr6, 0);
646     clock_add_to_group(clock_gptmr7, 0);
647     clock_add_to_group(clock_i2c0, 0);
648     clock_add_to_group(clock_i2c1, 0);
649     clock_add_to_group(clock_i2c2, 0);
650     clock_add_to_group(clock_i2c3, 0);
651     clock_add_to_group(clock_spi0, 0);
652     clock_add_to_group(clock_spi1, 0);
653     clock_add_to_group(clock_spi2, 0);
654     clock_add_to_group(clock_spi3, 0);
655     clock_add_to_group(clock_can0, 0);
656     clock_add_to_group(clock_can1, 0);
657     clock_add_to_group(clock_can2, 0);
658     clock_add_to_group(clock_can3, 0);
659     clock_add_to_group(clock_display, 0);
660     clock_add_to_group(clock_sdxc0, 0);
661     clock_add_to_group(clock_sdxc1, 0);
662     clock_add_to_group(clock_camera0, 0);
663     clock_add_to_group(clock_camera1, 0);
664     clock_add_to_group(clock_ptpc, 0);
665     clock_add_to_group(clock_ref0, 0);
666     clock_add_to_group(clock_ref1, 0);
667     clock_add_to_group(clock_watchdog0, 0);
668     clock_add_to_group(clock_eth0, 0);
669     clock_add_to_group(clock_eth1, 0);
670     clock_add_to_group(clock_sdp, 0);
671     clock_add_to_group(clock_xdma, 0);
672     clock_add_to_group(clock_ram0, 0);
673     clock_add_to_group(clock_ram1, 0);
674     clock_add_to_group(clock_usb0, 0);
675     clock_add_to_group(clock_usb1, 0);
676     clock_add_to_group(clock_jpeg, 0);
677     clock_add_to_group(clock_pdma, 0);
678     clock_add_to_group(clock_kman, 0);
679     clock_add_to_group(clock_gpio, 0);
680     clock_add_to_group(clock_mbx0, 0);
681     clock_add_to_group(clock_hdma, 0);
682     clock_add_to_group(clock_rng, 0);
683     clock_add_to_group(clock_mot0, 0);
684     clock_add_to_group(clock_mot1, 0);
685     clock_add_to_group(clock_mot2, 0);
686     clock_add_to_group(clock_mot3, 0);
687     clock_add_to_group(clock_acmp, 0);
688     clock_add_to_group(clock_dao, 0);
689     clock_add_to_group(clock_msyn, 0);
690     clock_add_to_group(clock_lmm0, 0);
691     clock_add_to_group(clock_lmm1, 0);
692     clock_add_to_group(clock_pdm, 0);
693 
694     clock_add_to_group(clock_adc0, 0);
695     clock_add_to_group(clock_adc1, 0);
696     clock_add_to_group(clock_adc2, 0);
697     clock_add_to_group(clock_adc3, 0);
698 
699     clock_add_to_group(clock_i2s0, 0);
700     clock_add_to_group(clock_i2s1, 0);
701     clock_add_to_group(clock_i2s2, 0);
702     clock_add_to_group(clock_i2s3, 0);
703     /* Connect Group0 to CPU0 */
704     clock_connect_group_to_cpu(0, 0);
705 
706     /* Add the CPU1 clock to Group1 */
707     clock_add_to_group(clock_mchtmr1, 1);
708     clock_add_to_group(clock_mbx1, 1);
709     /* Connect Group1 to CPU1 */
710     clock_connect_group_to_cpu(1, 1);
711 
712     /* Bump up DCDC voltage to 1200mv */
713     pcfg_dcdc_set_voltage(HPM_PCFG, 1200);
714     pcfg_dcdc_switch_to_dcm_mode(HPM_PCFG);
715 
716     if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
717         printf("Failed to set pll0_clk0 to %ldHz\n", BOARD_CPU_FREQ);
718         while (1) {
719         }
720     }
721 
722     clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
723     clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
724     clock_update_core_clock();
725 
726     clock_set_source_divider(clock_ahb, clk_src_pll1_clk1, 2); /*200m hz*/
727     clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
728     clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
729 }
730 
board_init_cam_clock(CAM_Type * ptr)731 uint32_t board_init_cam_clock(CAM_Type *ptr)
732 {
733     uint32_t freq = 0;
734     if (ptr == HPM_CAM0) {
735         /* Configure camera clock to 24MHz */
736         clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
737         freq = clock_get_frequency(clock_camera0);
738     } else if (ptr == HPM_CAM1) {
739         /* Configure camera clock to 24MHz */
740         clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
741         freq = clock_get_frequency(clock_camera1);
742     } else {
743         /* Invalid camera instance */
744     }
745     return freq;
746 }
747 
board_init_lcd_clock(void)748 uint32_t board_init_lcd_clock(void)
749 {
750     uint32_t freq;
751     clock_add_to_group(clock_display, 0);
752     /* Configure LCDC clock to 29.7MHz */
753     clock_set_source_divider(clock_display, clk_src_pll4_clk0, 20U);
754     freq = clock_get_frequency(clock_display);
755     return freq;
756 }
757 
board_init_dao_clock(void)758 uint32_t board_init_dao_clock(void)
759 {
760     clock_add_to_group(clock_dao, 0);
761 
762     sysctl_config_clock(HPM_SYSCTL, clock_node_aud1, clock_source_pll3_clk0, 25);
763     sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud1_clk);
764 
765     return clock_get_frequency(clock_dao);
766 }
767 
board_init_pdm_clock(void)768 uint32_t board_init_pdm_clock(void)
769 {
770     clock_add_to_group(clock_pdm, 0);
771 
772     sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
773     sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
774 
775     return clock_get_frequency(clock_pdm);
776 }
777 
board_set_audio_pll_clock(uint32_t freq)778 hpm_stat_t board_set_audio_pll_clock(uint32_t freq)
779 {
780     return pllctl_init_frac_pll_with_freq(HPM_PLLCTL, 3, freq);    /* pll3clk */
781 }
782 
board_init_i2s_pins(I2S_Type * ptr)783 void board_init_i2s_pins(I2S_Type *ptr)
784 {
785     init_i2s_pins(ptr);
786 }
787 
board_init_i2s_clock(I2S_Type * ptr)788 uint32_t board_init_i2s_clock(I2S_Type *ptr)
789 {
790     uint32_t freq = 0;
791 
792     if (ptr == HPM_I2S0) {
793         clock_add_to_group(clock_i2s0, 0);
794 
795         sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
796         sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
797 
798         freq = clock_get_frequency(clock_i2s0);
799     } else if (ptr == HPM_I2S1) {
800         clock_add_to_group(clock_i2s1, 0);
801 
802         sysctl_config_clock(HPM_SYSCTL, clock_node_aud1, clock_source_pll3_clk0, 25);
803         sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud1_clk);
804 
805         freq = clock_get_frequency(clock_i2s1);
806     } else {
807         ;
808     }
809 
810     return freq;
811 }
812 
813 /* adjust I2S source clock base on sample rate */
board_config_i2s_clock(I2S_Type * ptr,uint32_t sample_rate)814 uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
815 {
816     uint32_t freq = 0;
817 
818     if (ptr == HPM_I2S0) {
819         clock_add_to_group(clock_i2s0, 0);
820         if ((sample_rate % 22050) == 0) {
821             clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
822         } else {
823             clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
824         }
825         clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
826         freq = clock_get_frequency(clock_i2s0);
827     } else if (ptr == HPM_I2S1) {
828         clock_add_to_group(clock_i2s1, 0);
829         if ((sample_rate % 22050) == 0) {
830             clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
831         } else {
832             clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
833         }
834         clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
835         freq = clock_get_frequency(clock_i2s1);
836     } else {
837         ;
838     }
839 
840     return freq;
841 }
842 
board_init_adc12_clock(ADC12_Type * ptr,bool clk_src_ahb)843 uint32_t board_init_adc12_clock(ADC12_Type *ptr, bool clk_src_ahb)
844 {
845     uint32_t freq = 0;
846 
847     if (ptr == HPM_ADC0) {
848         if (clk_src_ahb) {
849             /* Configure the ADC clock from AHB (@200MHz by default)*/
850             clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
851         } else {
852             /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
853             clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
854             clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
855         }
856         freq = clock_get_frequency(clock_adc0);
857     } else if (ptr == HPM_ADC1) {
858         if (clk_src_ahb) {
859             /* Configure the ADC clock from AHB (@200MHz by default)*/
860             clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
861         } else {
862             /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
863             clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
864             clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
865         }
866         freq = clock_get_frequency(clock_adc1);
867     } else if (ptr == HPM_ADC2) {
868         if (clk_src_ahb) {
869             /* Configure the ADC clock from AHB (@200MHz by default)*/
870             clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
871         } else {
872             /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
873             clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
874             clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
875         }
876         freq = clock_get_frequency(clock_adc2);
877     }
878 
879     return freq;
880 }
881 
board_init_adc16_clock(ADC16_Type * ptr,bool clk_src_ahb)882 uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb)
883 {
884     uint32_t freq = 0;
885 
886     if (ptr == HPM_ADC3) {
887         if (clk_src_ahb) {
888             /* Configure the ADC clock from AHB (@200MHz by default)*/
889             clock_set_adc_source(clock_adc3, clk_adc_src_ahb0);
890         } else {
891             /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
892             clock_set_adc_source(clock_adc3, clk_adc_src_ana2);
893             clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
894         }
895 
896         freq = clock_get_frequency(clock_adc3);
897     }
898 
899     return freq;
900 }
901 
board_init_can(CAN_Type * ptr)902 void board_init_can(CAN_Type *ptr)
903 {
904     init_can_pins(ptr);
905 }
906 
board_init_can_clock(CAN_Type * ptr)907 uint32_t board_init_can_clock(CAN_Type *ptr)
908 {
909     uint32_t freq = 0;
910     if (ptr == HPM_CAN0) {
911         /* Set the CAN0 peripheral clock to 80MHz */
912         clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
913         freq = clock_get_frequency(clock_can0);
914     } else if (ptr == HPM_CAN1) {
915         /* Set the CAN1 peripheral clock to 80MHz */
916         clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
917         freq = clock_get_frequency(clock_can1);
918     } else if (ptr == HPM_CAN2) {
919         /* Set the CAN2 peripheral clock to 80MHz */
920         clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
921         freq = clock_get_frequency(clock_can2);
922     } else if (ptr == HPM_CAN3) {
923         /* Set the CAN3 peripheral clock to 80MHz */
924         clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
925         freq = clock_get_frequency(clock_can3);
926     } else {
927         /* Invalid CAN instance */
928     }
929     return freq;
930 }
931 
932 #ifdef INIT_EXT_RAM_FOR_DATA
933 /*
934  * this function will be called during startup to initialize external memory for data use
935  */
_init_ext_ram(void)936 void _init_ext_ram(void)
937 {
938     uint32_t femc_clk_in_hz;
939     clock_add_to_group(clock_femc, 0);
940     board_init_sdram_pins();
941     femc_clk_in_hz = board_init_femc_clock();
942 
943     femc_config_t config = {0};
944     femc_sdram_config_t sdram_config = {0};
945 
946     femc_default_config(HPM_FEMC, &config);
947     config.dqs = FEMC_DQS_INTERNAL;
948     femc_init(HPM_FEMC, &config);
949 
950     sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
951     sdram_config.prescaler = 0x3;
952     sdram_config.burst_len_in_byte = 8;
953     sdram_config.auto_refresh_count_in_one_burst = 1;
954     sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
955     sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
956 
957     sdram_config.precharge_to_act_in_ns = 18;   /* Trp */
958     sdram_config.act_to_rw_in_ns = 18;          /* Trcd */
959     sdram_config.refresh_recover_in_ns = 70;     /* Trfc/Trc */
960     sdram_config.write_recover_in_ns = 12;      /* Twr/Tdpl */
961     sdram_config.cke_off_in_ns = 42;             /* Trcd */
962     sdram_config.act_to_precharge_in_ns = 42;   /* Tras */
963 
964     sdram_config.self_refresh_recover_in_ns = 66;   /* Txsr */
965     sdram_config.refresh_to_refresh_in_ns = 66;     /* Trfc/Trc */
966     sdram_config.act_to_act_in_ns = 12;             /* Trrd */
967     sdram_config.idle_timeout_in_ns = 6;
968     sdram_config.cs_mux_pin = FEMC_IO_MUX_NOT_USED;
969 
970     sdram_config.cs = BOARD_SDRAM_CS;
971     sdram_config.base_address = BOARD_SDRAM_ADDRESS;
972     sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
973     sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
974     sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
975     sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
976     sdram_config.data_width_in_byte = BOARD_SDRAM_DATA_WIDTH_IN_BYTE;
977     sdram_config.delay_cell_value = 29;
978 
979     femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
980 }
981 #endif
982 
board_sd_configure_clock(SDXC_Type * ptr,uint32_t freq,bool need_inverse)983 uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse)
984 {
985     uint32_t actual_freq = 0;
986     do {
987         if (ptr != HPM_SDXC1) {
988             break;
989         }
990         clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
991         sdxc_enable_inverse_clock(ptr, false);
992         sdxc_enable_sd_clock(ptr, false);
993         /* Configure the clock below 400KHz for the identification state */
994         if (freq <= 400000UL) {
995             clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
996         }
997             /* configure the clock to 24MHz for the SDR12/Default speed */
998         else if (freq <= 26000000UL) {
999             clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
1000         }
1001             /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
1002         else if (freq <= 52000000UL) {
1003             clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
1004         }
1005             /* Configure the clock to 100MHz for the SDR50 */
1006         else if (freq <= 100000000UL) {
1007             clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
1008         }
1009             /* Configure the clock to 166MHz for SDR104/HS200/HS400  */
1010         else if (freq <= 208000000UL) {
1011             clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
1012         }
1013             /* For other unsupported clock ranges, configure the clock to 24MHz */
1014         else {
1015             clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
1016         }
1017         if (need_inverse) {
1018             sdxc_enable_inverse_clock(ptr, true);
1019         }
1020         sdxc_enable_sd_clock(ptr, true);
1021         actual_freq = clock_get_frequency(sdxc_clk);
1022     } while (false);
1023 
1024     return actual_freq;
1025 }
1026 
1027 
set_rgb_output_off(PWM_Type * ptr,uint8_t pin,uint8_t cmp_index)1028 static void set_rgb_output_off(PWM_Type *ptr, uint8_t pin, uint8_t cmp_index)
1029 {
1030     pwm_cmp_config_t cmp_config = {0};
1031     pwm_output_channel_t ch_config = {0};
1032 
1033     pwm_stop_counter(ptr);
1034     pwm_get_default_cmp_config(ptr, &cmp_config);
1035     pwm_get_default_output_channel_config(ptr, &ch_config);
1036 
1037     pwm_set_reload(ptr, 0, 0xF);
1038     pwm_set_start_count(ptr, 0, 0);
1039 
1040     cmp_config.mode = pwm_cmp_mode_output_compare;
1041     cmp_config.cmp = 0x10;
1042     cmp_config.update_trigger = pwm_shadow_register_update_on_modify;
1043     pwm_config_cmp(ptr, cmp_index, &cmp_config);
1044 
1045     ch_config.cmp_start_index = cmp_index;
1046     ch_config.cmp_end_index = cmp_index;
1047     ch_config.invert_output = !board_get_led_pwm_off_level();
1048 
1049     pwm_config_output_channel(ptr, pin, &ch_config);
1050 }
1051 
board_init_rgb_pwm_pins(void)1052 void board_init_rgb_pwm_pins(void)
1053 {
1054     board_turnoff_rgb_led();
1055 
1056     set_rgb_output_off(BOARD_RED_PWM, BOARD_RED_PWM_OUT, BOARD_RED_PWM_CMP);
1057     set_rgb_output_off(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT, BOARD_GREEN_PWM_CMP);
1058     set_rgb_output_off(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT, BOARD_BLUE_PWM_CMP);
1059 
1060     init_led_pins_as_pwm();
1061 }
1062 
board_disable_output_rgb_led(uint8_t color)1063 void board_disable_output_rgb_led(uint8_t color)
1064 {
1065     switch (color) {
1066     case BOARD_RGB_RED:
1067         pwm_disable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
1068         break;
1069     case BOARD_RGB_GREEN:
1070         pwm_disable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
1071         break;
1072     case BOARD_RGB_BLUE:
1073         pwm_disable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
1074         break;
1075     default:
1076         while (1) {
1077             ;
1078         }
1079     }
1080 }
1081 
board_enable_output_rgb_led(uint8_t color)1082 void board_enable_output_rgb_led(uint8_t color)
1083 {
1084     switch (color) {
1085     case BOARD_RGB_RED:
1086         pwm_enable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
1087         break;
1088     case BOARD_RGB_GREEN:
1089         pwm_enable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
1090         break;
1091     case BOARD_RGB_BLUE:
1092         pwm_enable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
1093         break;
1094     default:
1095         while (1) {
1096             ;
1097         }
1098     }
1099 }
1100 
board_init_beep_pwm_pins(void)1101 void board_init_beep_pwm_pins(void)
1102 {
1103     init_beep_pwm_pins();
1104 }
1105 
board_init_enet_ptp_clock(ENET_Type * ptr)1106 hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
1107 {
1108     if (ptr == HPM_ENET0) {
1109         clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); /* 100MHz */
1110     } else if (ptr == HPM_ENET1) {
1111         clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); /* 100MHz */
1112     } else {
1113         return status_invalid_argument;
1114     }
1115 
1116     return status_success;
1117 }
1118 
board_init_enet_rmii_reference_clock(ENET_Type * ptr,bool internal)1119 hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
1120 {
1121     /* Configure Enet clock to output reference clock */
1122     if (ptr == HPM_ENET0 || ptr == HPM_ENET1) {
1123         if (internal) {
1124             /* set pll output frequency at 1GHz */
1125             if (pllctl_init_int_pll_with_freq(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1000000000UL) == status_success) {
1126                 /* set pll2_clk1 output frequence at 250MHz from PLL2 divided by 4 */
1127                 pllctl_set_div(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1, 4);
1128                 /* set eth clock frequency at 50MHz for enet0 */
1129                 clock_set_source_divider(ptr == HPM_ENET0 ? clock_eth0 : clock_eth1, clk_src_pll2_clk1, 5);
1130             } else {
1131                 return status_fail;
1132             }
1133         }
1134     } else {
1135         return status_invalid_argument;
1136     }
1137 
1138     enet_rmii_enable_clock(ptr, internal);
1139 
1140     return status_success;
1141 }
1142 
board_init_adc12_pins(void)1143 void board_init_adc12_pins(void)
1144 {
1145     init_adc12_pins();
1146 }
1147 
board_init_adc16_pins(void)1148 void board_init_adc16_pins(void)
1149 {
1150     init_adc16_pins();
1151 }
1152 
board_init_enet_pins(ENET_Type * ptr)1153 hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
1154 {
1155     init_enet_pins(ptr);
1156 
1157     if (ptr == HPM_ENET1) {
1158         gpio_set_pin_output_with_initial(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
1159     } else {
1160         return status_invalid_argument;
1161     }
1162 
1163     return status_success;
1164 }
1165 
board_reset_enet_phy(ENET_Type * ptr)1166 hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
1167 {
1168     if (ptr == HPM_ENET1) {
1169         gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
1170         board_delay_ms(1);
1171         gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 1);
1172     } else {
1173         return status_invalid_argument;
1174     }
1175 
1176     return status_success;
1177 }
1178 
board_get_enet_dma_pbl(ENET_Type * ptr)1179 uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
1180 {
1181     (void) ptr;
1182     return enet_pbl_32;
1183 }
1184 
board_enable_enet_irq(ENET_Type * ptr)1185 hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
1186 {
1187     (void) ptr;
1188     return status_success;
1189 }
1190 
board_disable_enet_irq(ENET_Type * ptr)1191 hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
1192 {
1193     (void) ptr;
1194     return status_success;
1195 }
1196 
board_init_enet_pps_pins(ENET_Type * ptr)1197 void board_init_enet_pps_pins(ENET_Type *ptr)
1198 {
1199     (void) ptr;
1200     init_enet_pps_pins();
1201 }
1202 
board_init_dao_pins(void)1203 void board_init_dao_pins(void)
1204 {
1205     init_dao_pins();
1206 }
1207