1# Rust Module Configuration Rules and Guide 2 3## Introduction 4 5Rust is a static, strongly typed programming language. It has advantages such as secure memory management, high running performance, and native support for multi-thread development. Rust uses Cargo to create projects and compile and build Rust code. 6 7To integrate C/C++ code and improve the build speed, OpenHarmony uses Generate Ninja (GN) and Ninja as its build system. GN has simple and easy-to-use build language, and Ninja provides direct and efficient assembly-level build rules. 8 9To integrate Rust code and maximize the interaction between the C/C++ code used in OpenHarmony and Rust, OpenHarmony uses GN as a unified build tool to build Rust source code files (xxx.rs) and is added with features such as interoperability with C/C++, compile time lints, test, IDL conversion, third-party library integration, and IDE. In addition, the GN framework is extended to support automatic interface conversion, which greatly simplifying development. 10 11### Basic Concepts 12 13| Term | Description | 14| ----- | ------------------------------------------------------------ | 15| Cargo | Cargo is an official build tool used by Rust. It allows Rust projects to declare dependencies and ensures reproducible builds.| 16| crate | Crate is a unit that can be independently compiled. | 17| Lint| Lint is a code analysis tool used to flag programming errors, bugs, stylistic errors, and suspicious constructs. It performs extensive error analysis on programs.| 18 19 20 21## Configuration Rules 22OpenHarmony provides a variety of GN templates for compiling Rust executables, dynamic libraries, and static libraries. The following table describes the templates. 23 24| GN Template | Description | Output | 25| ------------------------ | ----------------- | ----------------------------------------------- | 26| ohos_rust_executable | Rust executable file. | Rust executable file, without the file name extension. | 27| ohos_rust_shared_library | Rust dynamic library. | Rust dylib dynamic library, with the default file name extension **.dylib.so**. | 28| ohos_rust_static_library | Rust static library. | Rust rlib static library, with the default file name extension **.rlib**. | 29| ohos_rust_proc_macro | Rust proc_macro library. | Rust proc_macro library, with the default file name extension **.so**. | 30| ohos_rust_shared_ffi | Rust Foreign Function Interface (FFI) dynamic library. | Rust cdylib dynamic library, which is called by the C/C++ module. The default file name extension is **.so**.| 31| ohos_rust_static_ffi | Rust FFI static library. | Rust staticlib library, which is called by the C/C++ module. The default file name extension is **.a**. | 32| ohos_rust_cargo_crate | Third-party Cargo crate.| Third-party Rust crates, which support rlib, dylib, and bin. | 33| ohos_rust_systemtest | Rust system test cases. | Executable system test cases for Rust, without the file name extension. | 34| ohos_rust_unittest | Rust unit test cases. | Executable unit test cases for Rust, without the file name extension. | 35 36 37 38## Configuration Guide 39The configuration of the Rust module is similar to that of the C/C++ module. For details, see [Module Configuration Rules](subsys-build-module.md). The following provides examples of using different Rust templates. 40### Configuring a Rust Static Library 41The following example shows how to use the **ohos_rust_executable** and **ohos_rust_static_library** templates to build a binary executable and a static rlib library, respectively. The executable depends on the static library. 42 43The procedure is as follows: 44 451. Create **build/rust/tests/test_rlib_crate/src/simple_printer.rs**. 46 47 ```rust 48 //! simple_printer 49 50 /// struct RustLogMessage 51 52 pub struct RustLogMessage { 53 /// i32: id 54 pub id: i32, 55 /// String: msg 56 pub msg: String, 57 } 58 59 /// function rust_log_rlib 60 pub fn rust_log_rlib(msg: RustLogMessage) { 61 println!("id:{} message:{:?}", msg.id, msg.msg) 62 } 63 ``` 64 652. Create **build/rust/tests/test_rlib_crate/src/main.rs**. 66 67 ```rust 68 //! rlib_crate example for Rust. 69 70 extern crate simple_printer_rlib; 71 72 use simple_printer_rlib::rust_log_rlib; 73 use simple_printer_rlib::RustLogMessage; 74 75 fn main() { 76 let msg: RustLogMessage = RustLogMessage { 77 id: 0, 78 msg: "string in rlib crate".to_string(), 79 }; 80 rust_log_rlib(msg); 81 } 82 ``` 83 843. Configure the GN build script **build/rust/tests/test_rlib_crate/BUILD.gn**. 85 86 ``` 87 import("//build/ohos.gni") 88 89 ohos_rust_executable("test_rlib_crate") { 90 sources = [ "src/main.rs" ] 91 deps = [ ":simple_printer_rlib" ] 92 } 93 94 ohos_rust_static_library("simple_printer_rlib") { 95 sources = [ "src/simple_printer.rs" ] 96 crate_name = "simple_printer_rlib" 97 crate_type = "rlib" 98 features = [ "std" ] 99 } 100 ``` 101 1024. Run the **BUILD.gn** to generate the build targets. 103 104  105 106### Configuring a Third-Party Library 107 108The **BUILD.gn** file of the rust third-party library can be automatically generated using the cargo2gn tool. For details, see [Using Cargo2gn](subsys-build-cargo2gn-guide.md). 109 110The following example shows how to use the **ohos_rust_executable** and **ohos_rust_cargo_crate** templates to compile a third-party static library rlib file that contains a prebuilt file **build.rs**. 111 112The procedure is as follows: 113 1141. Create **build/rust/tests/test_rlib_cargo_crate/crate/src/lib.rs**. 115 116 ```rust 117 include!(concat!(env!("OUT_DIR"), "/generated/generated.rs")); 118 119 pub fn say_hello_from_crate() { 120 assert_eq!(run_some_generated_code(), 45); 121 #[cfg(is_new_rustc)] 122 println!("Is new rustc"); 123 #[cfg(is_old_rustc)] 124 println!("Is old rustc"); 125 #[cfg(is_ohos)] 126 println!("Is ohos"); 127 #[cfg(is_mac)] 128 println!("Is darwin"); 129 #[cfg(has_feature_a)] 130 println!("Has feature_a"); 131 #[cfg(not(has_feature_a))] 132 panic!("Wasn't passed feature_a"); 133 #[cfg(not(has_feature_b))] 134 #[cfg(test_a_and_b)] 135 panic!("feature_b wasn't passed"); 136 #[cfg(has_feature_b)] 137 #[cfg(not(test_a_and_b))] 138 panic!("feature_b was passed"); 139 } 140 141 #[cfg(test)] 142 mod tests { 143 /// Test features are passed through from BUILD.gn correctly. This test is the target configuration. 144 #[test] 145 #[cfg(test_a_and_b)] 146 fn test_features_passed_target1() { 147 #[cfg(not(has_feature_a))] 148 panic!("feature a was not passed"); 149 #[cfg(not(has_feature_b))] 150 panic!("feature b was not passed"); 151 } 152 153 #[test] 154 fn test_generated_code_works() { 155 assert_eq!(crate::run_some_generated_code(), 45); 156 } 157 } 158 ``` 159 1602. Create **build/rust/tests/test_rlib_cargo_crate/crate/src/main.rs**. 161 162 ```rust 163 pub fn main() { 164 test_rlib_crate::say_hello_from_crate(); 165 } 166 ``` 167 1683. Create **build/rust/tests/test_rlib_cargo_crate/crate/build.rs**. 169 170 ```rust 171 use std::env; 172 use std::path::Path; 173 use std::io::Write; 174 use std::process::Command; 175 use std::str::{self, FromStr}; 176 177 fn main() { 178 println!("cargo:rustc-cfg=build_script_ran"); 179 let my_minor = match rustc_minor_version() { 180 Some(my_minor) => my_minor, 181 None => return, 182 }; 183 184 if my_minor >= 34 { 185 println!("cargo:rustc-cfg=is_new_rustc"); 186 } else { 187 println!("cargo:rustc-cfg=is_old_rustc"); 188 } 189 190 let target = env::var("TARGET").unwrap(); 191 192 if target.contains("ohos") { 193 println!("cargo:rustc-cfg=is_ohos"); 194 } 195 if target.contains("darwin") { 196 println!("cargo:rustc-cfg=is_mac"); 197 } 198 199 let feature_a = env::var_os("CARGO_FEATURE_MY_FEATURE_A").is_some(); 200 if feature_a { 201 println!("cargo:rustc-cfg=has_feature_a"); 202 } 203 let feature_b = env::var_os("CARGO_FEATURE_MY_FEATURE_B").is_some(); 204 if feature_b { 205 println!("cargo:rustc-cfg=has_feature_b"); 206 } 207 208 // Tests used to verify whether Cargo features are enabled. 209 assert!(Path::new("build.rs").exists()); 210 assert!(Path::new(&env::var_os("CARGO_MANIFEST_DIR").unwrap()).join("build.rs").exists()); 211 assert!(Path::new(&env::var_os("OUT_DIR").unwrap()).exists()); 212 213 // Ensure that the following env var is set. 214 env::var_os("CARGO_CFG_TARGET_ARCH").unwrap(); 215 216 generate_some_code().unwrap(); 217 } 218 219 fn generate_some_code() -> std::io::Result<()> { 220 let test_output_dir = Path::new(&env::var_os("OUT_DIR").unwrap()).join("generated"); 221 let _ = std::fs::create_dir_all(&test_output_dir); 222 // Test that environment variables from .gn files are passed to build scripts. 223 let preferred_number = env::var("ENV_VAR_FOR_BUILD_SCRIPT").unwrap(); 224 let mut file = std::fs::File::create(test_output_dir.join("generated.rs"))?; 225 write!(file, "fn run_some_generated_code() -> u32 {{ {} }}", preferred_number)?; 226 Ok(()) 227 } 228 229 fn rustc_minor_version() -> Option<u32> { 230 let rustc_bin = match env::var_os("RUSTC") { 231 Some(rustc_bin) => rustc_bin, 232 None => return None, 233 }; 234 235 let output = match Command::new(rustc_bin).arg("--version").output() { 236 Ok(output) => output, 237 Err(_) => return None, 238 }; 239 240 let rustc_version = match str::from_utf8(&output.stdout) { 241 Ok(rustc_version) => rustc_version, 242 Err(_) => return None, 243 }; 244 245 let mut pieces = rustc_version.split('.'); 246 if pieces.next() != Some("rustc 1") { 247 return None; 248 } 249 250 let next_var = match pieces.next() { 251 Some(next_var) => next_var, 252 None => return None, 253 }; 254 255 u32::from_str(next_var).ok() 256 } 257 ``` 258 2594. Configure the GN build script **build/rust/tests/test_rlib_cargo_crate/BUILD.gn**. 260 261 ``` 262 import("//build/templates/rust/ohos_cargo_crate.gni") 263 264 ohos_cargo_crate("target") { 265 crate_name = "test_rlib_crate" 266 crate_root = "crate/src/lib.rs" 267 sources = [ "crate/src/lib.rs" ] 268 269 #To generate the build_script binary 270 build_root = "crate/build.rs" 271 build_sources = [ "crate/build.rs" ] 272 build_script_outputs = [ "generated/generated.rs" ] 273 274 features = [ 275 "my-feature_a", 276 "my-feature_b", 277 "std", 278 ] 279 rustflags = [ 280 "--cfg", 281 "test_a_and_b", 282 ] 283 rustenv = [ "ENV_VAR_FOR_BUILD_SCRIPT=45" ] 284 } 285 286 # Exists to test the case that a single crate has both a library and a binary 287 ohos_cargo_crate("test_rlib_crate_associated_bin") { 288 crate_root = "crate/src/main.rs" 289 crate_type = "bin" 290 sources = [ "crate/src/main.rs" ] 291 292 #To generate the build_script binary 293 build_root = "crate/build.rs" 294 build_sources = [ "crate/build.rs" ] 295 features = [ 296 "my-feature_a", 297 "my-feature_b", 298 "std", 299 ] 300 rustenv = [ "ENV_VAR_FOR_BUILD_SCRIPT=45" ] 301 deps = [ ":target" ] 302 } 303 ``` 304 3055. Run the **BUILD.gn** to generate the build target. 306 307  308 309### Other Configuration Examples 310You can find the Rust module configuration examples in the **build/rust/tests** directory. 311| Directory | Description | 312| -------------------------------------------- | ------------------------------------------------------------ | 313| build/rust/tests/test_bin_crate | Tests the build of an executable file on the host platform and running of the executable file on the target platform.| 314| build/rust/tests/test_static_link | Tests the static linking of an executable file to a standard library. | 315| build/rust/tests/test_dylib_crate | Tests the build of a dynamic library and dynamic linking. | 316| build/rust/tests/test_rlib_crate | Tests the build of a static library and static linking. | 317| build/rust/tests/test_proc_macro_crate | Tests the build of Rust process macros and the linking function. Test cases are provided for different types of macros.| 318| build/rust/tests/test_cdylib_crate | Tests the generation of Rust FFI bindings to a C/C++ dynamic library. | 319| build/rust/tests/test_staticlib_crate | Tests the generation of Rust FFI bindings to a C/C++ static library. | 320| build/rust/tests/test_rust_ut | Tests the Rust code unit test template. | 321| build/rust/tests/test_rust_st | Tests the Rust code system test template. | 322| build/rust/tests/test_bin_cargo_crate | Tests the build and running of a Rust third-party executable file. The third-party source code contains **build.rs**.| 323| build/rust/tests/test_rlib_cargo_crate | Tests the build of a Rust third-party static library and static linking. The third-party source code contains **build.rs**.| 324| build/rust/tests/test_proc_macro_cargo_crate | Tests the build of Rust third-party process macros and linking. The third-party source code contains **build.rs**. | 325 326## Reference 327 328### Feature Examples 329 330#### Linking a C/C++ library in Rust Source Code 331By default, the dynamic library of the OpenHarmony C/C++ module is in the **.z.so** format. However, when the Rust **-l** command is executed, only the dynamic library in the **.so** format is linked by default. If a C/C++ dynamic library is used as the dependency, you need to add **output_extension = "so"** to the GN build script of the dynamic library to make the generated dynamic library be named with **.so** instead of **.z.so**. 332 333If a dynamic library is directly linked in the Rust source code, the dynamic library must be in **.so** format. In this case, use the dynamic library name without "lib". The following is an example of linking **libhilog.so** in the Rust source code. 334 335```rust 336#[link(name = "hilog")] 337``` 338#### Using externs 339If a module depends on the binary rlib library, you can use the **externs** attribute. 340``` 341executable("foo") { 342 sources = [ "main.rs" ] 343 externs = [{ # Convert it to `--extern bar=path/to/bar.rlib` during the compilation. 344 crate_name = "bar" 345 path = "path/to/bar.rlib" 346 }] 347} 348``` 349### Lint Rules 350The OpenHarmony framework supports two types of lints: rustc lints and Clippy lints. Each type of lint has three levels: openharmony (highest), vendor, and none (lowest). 351 352When configuring the Rust module, you can specify the lint level in **rustc_lints** or **clippy_lints**. 353 354If **rustc_lints** or **clippy_lints** is not configured in the module, the lint level is matched based on the module path. Different restrictions apply to the syntax specifications of Rust code in different directories. Therefore, you need to pay attention to the path of the module when configuring the Rust module to build in OpenHarmony. 355 356#### Levels of rustc Lints and Clippy Lints 357| **Lint Type**| **Module Attribute**| **Lint Level**| **Lint Level Flag**| **Lint Content** | 358| ------------- | ------------ | ------------- | ----------------- | ------------------------------------------------------------ | 359| rustc lints | rustc_lints | openharmony | RustOhosLints | "-A deprecated", "-D missing-docs", "-D warnings" | 360| rustc lints | rustc_lints | vendor | RustcVendorLints | "-A deprecated", "-D warnings" | 361| rustc lints | rustc_lints | none | allowAllLints | "-cap-lints allow" | 362| Clippy lints | clippy_lints | openharmony | ClippyOhosLints | "-A clippy::type-complexity", "-A clippy::unnecessary-wraps", "-A clippy::unusual-byte-groupings", "-A clippy::upper-case-acronyms" | 363| Clippy lints | clippy_lints | vendor | ClippyVendorLints | "-A clippy::complexity", "-A Clippy::perf", "-A clippy::style" | 364| Clippy lints | clippy_lints | none | allowAllLints | "--cap-lints allow" | 365 366#### Mapping Between Code Paths and Lint Levels 367| Path | Lint Level | 368| ---------- | ----------- | 369| thirdparty | none | 370| prebuilts | none | 371| vendor | vendor | 372| device | vendor | 373| others | openharmony | 374 375### [Interactive Tool User Guide](subsys-build-bindgen-cxx-guide.md) 376### [Using Cargo2gn](subsys-build-cargo2gn-guide.md) 377