1 /*
2 * Copyright (c) 2022 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include <algorithm>
17 #include <cstdlib>
18 #include <new>
19
20 #include "nn_tensor.h"
21 #include "validation.h"
22 #include "transform.h"
23 #include "common/log.h"
24 #include "mindir.h"
25 #include "mindir_types.h"
26
27 namespace OHOS {
28 namespace NeuralNetworkRuntime {
29 const uint32_t SUPPORT_NUM_BIT = 8; // Currently support 8-bit quantization only
30 const uint32_t INVALID_NUM_BIT = 0;
31
DestroyLiteGraphTensor(void * tensor)32 void DestroyLiteGraphTensor(void* tensor)
33 {
34 mindspore::lite::MindIR_Tensor_Destroy(&tensor);
35 }
36
~NNTensor()37 NNTensor::~NNTensor()
38 {
39 if (m_buffer != nullptr) {
40 delete [] reinterpret_cast<char*>(m_buffer);
41 }
42 }
43
NNTensor(NNTensor && tensor)44 NNTensor::NNTensor(NNTensor&& tensor) noexcept
45 {
46 *this = std::move(tensor);
47 }
48
operator =(NNTensor && tensor)49 NNTensor& NNTensor::operator=(NNTensor&& tensor) noexcept
50 {
51 if (this == &tensor) {
52 return *this;
53 }
54
55 m_type = tensor.m_type;
56 m_dataType = tensor.m_dataType;
57 m_format = tensor.m_format;
58 m_name = std::move(tensor.m_name);
59 m_dimensions = std::move(tensor.m_dimensions);
60 m_quantParams = std::move(tensor.m_quantParams);
61 m_elementCount = tensor.m_elementCount;
62 m_isDynamicShape = tensor.m_isDynamicShape;
63 m_isOpParameter = tensor.m_isOpParameter;
64 m_buffer = tensor.m_buffer;
65 m_bufferLength = tensor.m_bufferLength;
66 m_dataLength = tensor.m_dataLength;
67
68 tensor.m_buffer = nullptr;
69 tensor.m_bufferLength = 0;
70 tensor.m_dataLength = 0;
71
72 return *this;
73 }
74
Build(OH_NN_DataType dataType,const std::vector<int32_t> & dimensions,const std::vector<QuantParam> & quantParam,OH_NN_TensorType type)75 OH_NN_ReturnCode NNTensor::Build(OH_NN_DataType dataType,
76 const std::vector<int32_t>& dimensions,
77 const std::vector<QuantParam>& quantParam,
78 OH_NN_TensorType type)
79 {
80 m_type = type;
81
82 if (!Validation::ValidateTensorDataType(dataType)) {
83 LOGE("Build failed, passed invalid data type.");
84 return OH_NN_INVALID_PARAMETER;
85 }
86 m_dataType = dataType;
87
88 OH_NN_ReturnCode ret = ParseDimensions(dimensions);
89 if (ret != OH_NN_SUCCESS) {
90 LOGE("Build failed, passed invalid dimensions.");
91 return ret;
92 }
93
94 ret = ParseQuantParams(quantParam);
95 if (ret != OH_NN_SUCCESS) {
96 LOGE("Build failed, please check quantParam.");
97 return ret;
98 }
99
100 return OH_NN_SUCCESS;
101 }
102
BuildFromOHNNTensor(const OH_NN_Tensor & nnTensor)103 OH_NN_ReturnCode NNTensor::BuildFromOHNNTensor(const OH_NN_Tensor& nnTensor)
104 {
105 m_type = nnTensor.type;
106
107 if (!Validation::ValidateTensorDataType(nnTensor.dataType)) {
108 LOGE("BuildFromOHNNTensor failed, passed invalid data type: %d.", nnTensor.dataType);
109 return OH_NN_INVALID_PARAMETER;
110 }
111 m_dataType = nnTensor.dataType;
112
113 if (!Validation::ValidateTensorType(nnTensor.type)) {
114 LOGE("BuildFromOHNNTensor failed, passed invalid nnTensor type: %d.", nnTensor.type);
115 return OH_NN_INVALID_PARAMETER;
116 }
117
118 OH_NN_ReturnCode ret = ParseDimensions(nnTensor.dimensions, nnTensor.dimensionCount);
119 if (ret != OH_NN_SUCCESS) {
120 LOGE("BuildFromOHNNTensor failed, passed invalid nnTensor dimensions.");
121 return ret;
122 }
123
124 ret = ParseQuantParams(nnTensor.quantParam);
125 if (ret != OH_NN_SUCCESS) {
126 LOGE("BuildFromOHNNTensor failed, please check quantParam in nnTensor.");
127 return ret;
128 }
129
130 return OH_NN_SUCCESS;
131 }
132
BuildFromOHNNTensorInfo(const OH_NN_TensorInfo & nnTensorInfo)133 OH_NN_ReturnCode NNTensor::BuildFromOHNNTensorInfo(const OH_NN_TensorInfo& nnTensorInfo)
134 {
135 if (!Validation::ValidateTensorDataType(nnTensorInfo.dataType)) {
136 LOGE("BuildFromOHNNTensorInfo failed, passed invalid data type: %d.", nnTensorInfo.dataType);
137 return OH_NN_INVALID_PARAMETER;
138 }
139 m_dataType = nnTensorInfo.dataType;
140
141 if (!Validation::ValidateTensorFormat(nnTensorInfo.format)) {
142 LOGE("BuildFromOHNNTensorInfo failed, passed invalid nnTensorInfo format: %d.", nnTensorInfo.format);
143 return OH_NN_INVALID_PARAMETER;
144 }
145 m_format = nnTensorInfo.format;
146 m_name = nnTensorInfo.name;
147
148 OH_NN_ReturnCode ret = ParseDimensions(nnTensorInfo.dimensions, nnTensorInfo.dimensionCount);
149 if (ret != OH_NN_SUCCESS) {
150 LOGE("BuildFromOHNNTensorInfo failed, passed invalid nnTensorInfo dimensions.");
151 return ret;
152 }
153
154 return OH_NN_SUCCESS;
155 }
156
ParseDimensions(const std::vector<int32_t> & dimensions)157 OH_NN_ReturnCode NNTensor::ParseDimensions(const std::vector<int32_t>& dimensions)
158 {
159 // Temporary variable to check overflow.
160 uint64_t absoluteDim {0};
161 uint64_t elementCount {1};
162 uint64_t dataLength {static_cast<uint64_t>(GetTypeSize(m_dataType))};
163 m_isDynamicShape = false;
164 for (int32_t dim : dimensions) {
165 if (dim < -1 || dim == 0) {
166 LOGE("ParseDimension failed, dimension of OH_NN_Tensor cannot be 0 or less than -1, receive %d.", dim);
167 return OH_NN_INVALID_PARAMETER;
168 }
169
170 m_isDynamicShape = m_isDynamicShape || (dim == -1);
171 absoluteDim = static_cast<uint64_t>(abs(dim));
172 elementCount *= absoluteDim;
173 dataLength *= absoluteDim;
174
175 if (dataLength > UINT32_MAX) {
176 LOGE("ParseDimension failed, expected data length of tensor exceed limit %u.", UINT32_MAX);
177 return OH_NN_INVALID_PARAMETER;
178 }
179 }
180
181 if (m_isDynamicShape) {
182 // If tensor has dynamic shape, m_elementCount and m_dataLength take 0.
183 m_elementCount = 0;
184 m_dataLength = 0;
185 } else {
186 m_elementCount = static_cast<uint32_t>(elementCount);
187 m_dataLength = static_cast<size_t>(dataLength);
188 }
189
190 m_dimensions = std::move(dimensions);
191 return OH_NN_SUCCESS;
192 }
193
ParseDimensions(const int32_t * dimensions,uint32_t dimensionCount)194 OH_NN_ReturnCode NNTensor::ParseDimensions(const int32_t* dimensions, uint32_t dimensionCount)
195 {
196 OH_NN_ReturnCode ret = Validation::ValidateArray(dimensions, dimensionCount);
197 if (ret != OH_NN_SUCCESS) {
198 LOGE("BuildFromOHNNTensor failed, please check dimension and dimensionCount in NNTensor.");
199 return ret;
200 }
201 std::vector<int32_t> dimensionsVec = ConstructVectorFromArray(dimensions, dimensionCount);
202
203 ret = ParseDimensions(dimensionsVec);
204 if (ret != OH_NN_SUCCESS) {
205 LOGE("BuildFromOHNNTensor failed, passed invalid dimension info.");
206 return ret;
207 }
208
209 return OH_NN_SUCCESS;
210 }
211
ParseQuantParams(const OH_NN_QuantParam * quantParam)212 OH_NN_ReturnCode NNTensor::ParseQuantParams(const OH_NN_QuantParam* quantParam)
213 {
214 if (quantParam == nullptr) {
215 return OH_NN_SUCCESS;
216 }
217
218 if ((quantParam->numBits == nullptr) || (quantParam->scale == nullptr) || (quantParam->zeroPoint == nullptr)) {
219 LOGE("ParseQuantParams failed, scale or zeroPoint is nullptr.");
220 return OH_NN_INVALID_PARAMETER;
221 }
222
223 std::vector<QuantParam> tmpQuantParam;
224 uint32_t numBits{0};
225 double scale{0.0};
226 int32_t zeroPoint{0};
227 for (uint32_t i = 0; i < quantParam->quantCount; i++) {
228 numBits = quantParam->numBits[i];
229 scale = quantParam->scale[i];
230 zeroPoint = quantParam->zeroPoint[i];
231 tmpQuantParam.emplace_back((QuantParam){numBits, scale, zeroPoint});
232 }
233
234 OH_NN_ReturnCode ret = ParseQuantParams(tmpQuantParam);
235 if (ret != OH_NN_SUCCESS) {
236 LOGE("ParseQuantParams failed, please numBits in NNTensor.");
237 return ret;
238 }
239
240 return OH_NN_SUCCESS;
241 }
242
ParseQuantParams(const std::vector<QuantParam> & quantParams)243 OH_NN_ReturnCode NNTensor::ParseQuantParams(const std::vector<QuantParam>& quantParams)
244 {
245 for (const QuantParam& param : quantParams) {
246 // Only support 8-bit quantization in NNR version 1.0
247 if ((param.numBits != SUPPORT_NUM_BIT) || (param.numBits == INVALID_NUM_BIT)) {
248 LOGE("ParseQuantParams failed, get invalid numBits %d.", param.numBits);
249 return OH_NN_INVALID_PARAMETER;
250 }
251 }
252
253 m_quantParams = quantParams;
254 return OH_NN_SUCCESS;
255 }
256
IdentifyOpParameter()257 void NNTensor::IdentifyOpParameter()
258 {
259 m_isOpParameter = true;
260 }
261
SetName(const std::string & name)262 void NNTensor::SetName(const std::string& name)
263 {
264 m_name = name;
265 }
266
267 // Buffer set inside NNTensor will be released during deconstruction, make sure the buffer won't be released twice.
SetBuffer(const void * buffer,size_t length)268 void NNTensor::SetBuffer(const void* buffer, size_t length)
269 {
270 // copy pointer instead of memory copying
271 m_buffer = const_cast<void*>(buffer);
272 m_bufferLength = length;
273 }
274
SetFormat(const OH_NN_Format & format)275 void NNTensor::SetFormat(const OH_NN_Format& format)
276 {
277 m_format = format;
278 }
279
SetDimensions(const std::vector<int32_t> & dimensions)280 OH_NN_ReturnCode NNTensor::SetDimensions(const std::vector<int32_t>& dimensions)
281 {
282 size_t expectedDimensionCount = m_dimensions.size();
283 size_t dimensionCount = dimensions.size();
284 if (dimensionCount != expectedDimensionCount) {
285 LOGE("Passed dimensions have different dimension counts from NNTensor, expected %zu, but passed %zu.",
286 expectedDimensionCount, dimensionCount);
287 return OH_NN_INVALID_PARAMETER;
288 }
289
290 auto ret = ParseDimensions(dimensions);
291 if (ret != OH_NN_SUCCESS) {
292 LOGE("SetDimemsions failed, passed invalid dimension info.");
293 return ret;
294 }
295
296 m_dimensions = dimensions;
297 return OH_NN_SUCCESS;
298 }
299
GetType() const300 OH_NN_TensorType NNTensor::GetType() const
301 {
302 return m_type;
303 }
304
GetName() const305 std::string NNTensor::GetName() const
306 {
307 return m_name;
308 }
309
GetBuffer() const310 void* NNTensor::GetBuffer() const
311 {
312 return m_buffer;
313 }
314
GetBufferLength() const315 size_t NNTensor::GetBufferLength() const
316 {
317 return m_bufferLength;
318 }
319
GetDataLength() const320 size_t NNTensor::GetDataLength() const
321 {
322 return m_dataLength;
323 }
324
GetDataType() const325 OH_NN_DataType NNTensor::GetDataType() const
326 {
327 return m_dataType;
328 }
329
GetElementCount() const330 uint32_t NNTensor::GetElementCount() const
331 {
332 return m_elementCount;
333 }
334
GetDimensions() const335 std::vector<int32_t> NNTensor::GetDimensions() const
336 {
337 return m_dimensions;
338 }
339
GetFormat() const340 OH_NN_Format NNTensor::GetFormat() const
341 {
342 return m_format;
343 }
344
GetQuantParam() const345 std::vector<QuantParam> NNTensor::GetQuantParam() const
346 {
347 return m_quantParams;
348 }
349
ConvertToLiteGraphTensor() const350 LiteGraphTensorPtr NNTensor::ConvertToLiteGraphTensor() const
351 {
352 mindspore::lite::DataType dataType = NNToMS::TransformDataType(m_dataType);
353 mindspore::lite::Format format = NNToMS::TransformFormat(m_format);
354 const uint8_t* buffer = static_cast<const uint8_t*>(m_buffer);
355 std::vector<uint8_t> data = ConstructVectorFromArray(buffer, m_dataLength);
356
357 std::vector<mindspore::lite::QuantParam> quantParams;
358 mindspore::lite::QuantParam msQuantParam;
359 for (const QuantParam& param : m_quantParams) {
360 msQuantParam = {param.zeroPoint, param.scale, param.numBits};
361 quantParams.emplace_back(std::move(msQuantParam));
362 }
363
364 mindspore::lite::TensorPtr tensor = mindspore::lite::MindIR_Tensor_Create(
365 m_name, dataType, m_dimensions, format, data, quantParams);
366 if (tensor == nullptr) {
367 LOGE("ConvertToLiteGraphTensor failed, please check attributes of NNTensor.");
368 return {nullptr, DestroyLiteGraphTensor};
369 }
370
371 LiteGraphTensorPtr liteGraphTensor(tensor, DestroyLiteGraphTensor);
372 return liteGraphTensor;
373 }
374
ConvertToIOTensor(IOTensor & tensor) const375 void NNTensor::ConvertToIOTensor(IOTensor& tensor) const
376 {
377 tensor.dataType = m_dataType;
378 tensor.format = m_format;
379 tensor.dimensions = m_dimensions;
380 tensor.data = const_cast<void*>(m_buffer);
381 tensor.length = m_bufferLength;
382 }
383
IsDynamicShape() const384 bool NNTensor::IsDynamicShape() const
385 {
386 return m_isDynamicShape;
387 }
388
IsQuantTensor() const389 bool NNTensor::IsQuantTensor() const
390 {
391 return (m_quantParams.size() > 0);
392 }
393
IsScalar() const394 bool NNTensor::IsScalar() const
395 {
396 return (m_dimensions.empty());
397 }
398
IsOpParameter() const399 bool NNTensor::IsOpParameter() const
400 {
401 return m_isOpParameter;
402 }
403
CompareAttribute(const NNTensor & tensor) const404 bool NNTensor::CompareAttribute(const NNTensor& tensor) const
405 {
406 if (m_dataType != tensor.GetDataType()) {
407 LOGI("Tensors have different data type: %d and %d.", m_dataType, tensor.GetDataType());
408 return false;
409 }
410
411 if (m_format != tensor.GetFormat()) {
412 LOGI("Tensors have different format: %d and %d.", m_format, tensor.GetFormat());
413 return false;
414 }
415
416 const std::vector<int32_t> dimensions = tensor.GetDimensions();
417 if (m_dimensions.size() != dimensions.size()) {
418 LOGI("Tensors have differents dimension counts: %zu and %zu.", m_dimensions.size(), dimensions.size());
419 return false;
420 }
421
422 size_t dimensionsSize = dimensions.size();
423 for (size_t i = 0; i < dimensionsSize; i++) {
424 if ((m_dimensions[i] != -1) && (m_dimensions[i] != dimensions[i])) {
425 LOGI("Tensors have different dimension: dimension index: %zu, dimension value: %d and %d.",
426 i, m_dimensions[i], dimensions[i]);
427 return false;
428 }
429 }
430
431 if (m_type != tensor.GetType()) {
432 LOGI("Tensors have different type: %d and %d.", m_type, tensor.GetType());
433 return false;
434 }
435
436 return true;
437 }
438 } // NeuralNetworkRuntime
439 } // OHOS