1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/kthread.h>
37 #include <linux/list.h>
38 #include <linux/mempolicy.h>
39 #include <linux/mm.h>
40 #include <linux/memory.h>
41 #include <linux/export.h>
42 #include <linux/mount.h>
43 #include <linux/fs_context.h>
44 #include <linux/namei.h>
45 #include <linux/pagemap.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/sched.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/mm.h>
51 #include <linux/sched/task.h>
52 #include <linux/seq_file.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/stat.h>
57 #include <linux/string.h>
58 #include <linux/time.h>
59 #include <linux/time64.h>
60 #include <linux/backing-dev.h>
61 #include <linux/sort.h>
62 #include <linux/oom.h>
63 #include <linux/sched/isolation.h>
64 #include <linux/uaccess.h>
65 #include <linux/atomic.h>
66 #include <linux/mutex.h>
67 #include <linux/cgroup.h>
68 #include <linux/wait.h>
69
70 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
71 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
72
73 /* See "Frequency meter" comments, below. */
74
75 struct fmeter {
76 int cnt; /* unprocessed events count */
77 int val; /* most recent output value */
78 time64_t time; /* clock (secs) when val computed */
79 spinlock_t lock; /* guards read or write of above */
80 };
81
82 struct cpuset {
83 struct cgroup_subsys_state css;
84
85 unsigned long flags; /* "unsigned long" so bitops work */
86
87 /*
88 * On default hierarchy:
89 *
90 * The user-configured masks can only be changed by writing to
91 * cpuset.cpus and cpuset.mems, and won't be limited by the
92 * parent masks.
93 *
94 * The effective masks is the real masks that apply to the tasks
95 * in the cpuset. They may be changed if the configured masks are
96 * changed or hotplug happens.
97 *
98 * effective_mask == configured_mask & parent's effective_mask,
99 * and if it ends up empty, it will inherit the parent's mask.
100 *
101 *
102 * On legacy hierachy:
103 *
104 * The user-configured masks are always the same with effective masks.
105 */
106
107 /* user-configured CPUs and Memory Nodes allow to tasks */
108 cpumask_var_t cpus_allowed;
109 cpumask_var_t cpus_requested;
110 nodemask_t mems_allowed;
111
112 /* effective CPUs and Memory Nodes allow to tasks */
113 cpumask_var_t effective_cpus;
114 nodemask_t effective_mems;
115
116 /*
117 * CPUs allocated to child sub-partitions (default hierarchy only)
118 * - CPUs granted by the parent = effective_cpus U subparts_cpus
119 * - effective_cpus and subparts_cpus are mutually exclusive.
120 *
121 * effective_cpus contains only onlined CPUs, but subparts_cpus
122 * may have offlined ones.
123 */
124 cpumask_var_t subparts_cpus;
125
126 /*
127 * This is old Memory Nodes tasks took on.
128 *
129 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
130 * - A new cpuset's old_mems_allowed is initialized when some
131 * task is moved into it.
132 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
133 * cpuset.mems_allowed and have tasks' nodemask updated, and
134 * then old_mems_allowed is updated to mems_allowed.
135 */
136 nodemask_t old_mems_allowed;
137
138 struct fmeter fmeter; /* memory_pressure filter */
139
140 /*
141 * Tasks are being attached to this cpuset. Used to prevent
142 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
143 */
144 int attach_in_progress;
145
146 /* partition number for rebuild_sched_domains() */
147 int pn;
148
149 /* for custom sched domain */
150 int relax_domain_level;
151
152 /* number of CPUs in subparts_cpus */
153 int nr_subparts_cpus;
154
155 /* partition root state */
156 int partition_root_state;
157
158 /*
159 * Default hierarchy only:
160 * use_parent_ecpus - set if using parent's effective_cpus
161 * child_ecpus_count - # of children with use_parent_ecpus set
162 */
163 int use_parent_ecpus;
164 int child_ecpus_count;
165
166 /*
167 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we
168 * know when to rebuild associated root domain bandwidth information.
169 */
170 int nr_deadline_tasks;
171 int nr_migrate_dl_tasks;
172 u64 sum_migrate_dl_bw;
173 };
174
175 /*
176 * Partition root states:
177 *
178 * 0 - not a partition root
179 *
180 * 1 - partition root
181 *
182 * -1 - invalid partition root
183 * None of the cpus in cpus_allowed can be put into the parent's
184 * subparts_cpus. In this case, the cpuset is not a real partition
185 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
186 * and the cpuset can be restored back to a partition root if the
187 * parent cpuset can give more CPUs back to this child cpuset.
188 */
189 #define PRS_DISABLED 0
190 #define PRS_ENABLED 1
191 #define PRS_ERROR -1
192
193 /*
194 * Temporary cpumasks for working with partitions that are passed among
195 * functions to avoid memory allocation in inner functions.
196 */
197 struct tmpmasks {
198 cpumask_var_t addmask, delmask; /* For partition root */
199 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
200 };
201
css_cs(struct cgroup_subsys_state * css)202 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
203 {
204 return css ? container_of(css, struct cpuset, css) : NULL;
205 }
206
207 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)208 static inline struct cpuset *task_cs(struct task_struct *task)
209 {
210 return css_cs(task_css(task, cpuset_cgrp_id));
211 }
212
parent_cs(struct cpuset * cs)213 static inline struct cpuset *parent_cs(struct cpuset *cs)
214 {
215 return css_cs(cs->css.parent);
216 }
217
inc_dl_tasks_cs(struct task_struct * p)218 void inc_dl_tasks_cs(struct task_struct *p)
219 {
220 struct cpuset *cs = task_cs(p);
221
222 cs->nr_deadline_tasks++;
223 }
224
dec_dl_tasks_cs(struct task_struct * p)225 void dec_dl_tasks_cs(struct task_struct *p)
226 {
227 struct cpuset *cs = task_cs(p);
228
229 cs->nr_deadline_tasks--;
230 }
231
232 /* bits in struct cpuset flags field */
233 typedef enum {
234 CS_ONLINE,
235 CS_CPU_EXCLUSIVE,
236 CS_MEM_EXCLUSIVE,
237 CS_MEM_HARDWALL,
238 CS_MEMORY_MIGRATE,
239 CS_SCHED_LOAD_BALANCE,
240 CS_SPREAD_PAGE,
241 CS_SPREAD_SLAB,
242 } cpuset_flagbits_t;
243
244 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)245 static inline bool is_cpuset_online(struct cpuset *cs)
246 {
247 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
248 }
249
is_cpu_exclusive(const struct cpuset * cs)250 static inline int is_cpu_exclusive(const struct cpuset *cs)
251 {
252 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
253 }
254
is_mem_exclusive(const struct cpuset * cs)255 static inline int is_mem_exclusive(const struct cpuset *cs)
256 {
257 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
258 }
259
is_mem_hardwall(const struct cpuset * cs)260 static inline int is_mem_hardwall(const struct cpuset *cs)
261 {
262 return test_bit(CS_MEM_HARDWALL, &cs->flags);
263 }
264
is_sched_load_balance(const struct cpuset * cs)265 static inline int is_sched_load_balance(const struct cpuset *cs)
266 {
267 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
268 }
269
is_memory_migrate(const struct cpuset * cs)270 static inline int is_memory_migrate(const struct cpuset *cs)
271 {
272 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
273 }
274
is_spread_page(const struct cpuset * cs)275 static inline int is_spread_page(const struct cpuset *cs)
276 {
277 return test_bit(CS_SPREAD_PAGE, &cs->flags);
278 }
279
is_spread_slab(const struct cpuset * cs)280 static inline int is_spread_slab(const struct cpuset *cs)
281 {
282 return test_bit(CS_SPREAD_SLAB, &cs->flags);
283 }
284
is_partition_root(const struct cpuset * cs)285 static inline int is_partition_root(const struct cpuset *cs)
286 {
287 return cs->partition_root_state > 0;
288 }
289
290 static struct cpuset top_cpuset = {
291 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
292 (1 << CS_MEM_EXCLUSIVE)),
293 .partition_root_state = PRS_ENABLED,
294 };
295
296 /**
297 * cpuset_for_each_child - traverse online children of a cpuset
298 * @child_cs: loop cursor pointing to the current child
299 * @pos_css: used for iteration
300 * @parent_cs: target cpuset to walk children of
301 *
302 * Walk @child_cs through the online children of @parent_cs. Must be used
303 * with RCU read locked.
304 */
305 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
306 css_for_each_child((pos_css), &(parent_cs)->css) \
307 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
308
309 /**
310 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
311 * @des_cs: loop cursor pointing to the current descendant
312 * @pos_css: used for iteration
313 * @root_cs: target cpuset to walk ancestor of
314 *
315 * Walk @des_cs through the online descendants of @root_cs. Must be used
316 * with RCU read locked. The caller may modify @pos_css by calling
317 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
318 * iteration and the first node to be visited.
319 */
320 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
321 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
322 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
323
324 /*
325 * There are two global locks guarding cpuset structures - cpuset_mutex and
326 * callback_lock. We also require taking task_lock() when dereferencing a
327 * task's cpuset pointer. See "The task_lock() exception", at the end of this
328 * comment.
329 *
330 * A task must hold both locks to modify cpusets. If a task holds
331 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
332 * is the only task able to also acquire callback_lock and be able to
333 * modify cpusets. It can perform various checks on the cpuset structure
334 * first, knowing nothing will change. It can also allocate memory while
335 * just holding cpuset_mutex. While it is performing these checks, various
336 * callback routines can briefly acquire callback_lock to query cpusets.
337 * Once it is ready to make the changes, it takes callback_lock, blocking
338 * everyone else.
339 *
340 * Calls to the kernel memory allocator can not be made while holding
341 * callback_lock, as that would risk double tripping on callback_lock
342 * from one of the callbacks into the cpuset code from within
343 * __alloc_pages().
344 *
345 * If a task is only holding callback_lock, then it has read-only
346 * access to cpusets.
347 *
348 * Now, the task_struct fields mems_allowed and mempolicy may be changed
349 * by other task, we use alloc_lock in the task_struct fields to protect
350 * them.
351 *
352 * The cpuset_common_file_read() handlers only hold callback_lock across
353 * small pieces of code, such as when reading out possibly multi-word
354 * cpumasks and nodemasks.
355 *
356 * Accessing a task's cpuset should be done in accordance with the
357 * guidelines for accessing subsystem state in kernel/cgroup.c
358 */
359
360 static DEFINE_MUTEX(cpuset_mutex);
361
cpuset_lock(void)362 void cpuset_lock(void)
363 {
364 mutex_lock(&cpuset_mutex);
365 }
366
cpuset_unlock(void)367 void cpuset_unlock(void)
368 {
369 mutex_unlock(&cpuset_mutex);
370 }
371
372 static DEFINE_SPINLOCK(callback_lock);
373
374 static struct workqueue_struct *cpuset_migrate_mm_wq;
375
376 /*
377 * CPU / memory hotplug is handled asynchronously.
378 */
379 static void cpuset_hotplug_workfn(struct work_struct *work);
380 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
381
382 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
383
384 /*
385 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
386 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
387 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
388 * With v2 behavior, "cpus" and "mems" are always what the users have
389 * requested and won't be changed by hotplug events. Only the effective
390 * cpus or mems will be affected.
391 */
is_in_v2_mode(void)392 static inline bool is_in_v2_mode(void)
393 {
394 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
395 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
396 }
397
398 /*
399 * Return in pmask the portion of a cpusets's cpus_allowed that
400 * are online. If none are online, walk up the cpuset hierarchy
401 * until we find one that does have some online cpus.
402 *
403 * One way or another, we guarantee to return some non-empty subset
404 * of cpu_online_mask.
405 *
406 * Call with callback_lock or cpuset_mutex held.
407 */
guarantee_online_cpus(struct cpuset * cs,struct cpumask * pmask)408 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
409 {
410 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
411 cs = parent_cs(cs);
412 if (unlikely(!cs)) {
413 /*
414 * The top cpuset doesn't have any online cpu as a
415 * consequence of a race between cpuset_hotplug_work
416 * and cpu hotplug notifier. But we know the top
417 * cpuset's effective_cpus is on its way to be
418 * identical to cpu_online_mask.
419 */
420 cpumask_copy(pmask, cpu_online_mask);
421 return;
422 }
423 }
424 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
425 }
426
427 /*
428 * Return in *pmask the portion of a cpusets's mems_allowed that
429 * are online, with memory. If none are online with memory, walk
430 * up the cpuset hierarchy until we find one that does have some
431 * online mems. The top cpuset always has some mems online.
432 *
433 * One way or another, we guarantee to return some non-empty subset
434 * of node_states[N_MEMORY].
435 *
436 * Call with callback_lock or cpuset_mutex held.
437 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)438 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
439 {
440 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
441 cs = parent_cs(cs);
442 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
443 }
444
445 /*
446 * update task's spread flag if cpuset's page/slab spread flag is set
447 *
448 * Call with callback_lock or cpuset_mutex held.
449 */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)450 static void cpuset_update_task_spread_flag(struct cpuset *cs,
451 struct task_struct *tsk)
452 {
453 if (is_spread_page(cs))
454 task_set_spread_page(tsk);
455 else
456 task_clear_spread_page(tsk);
457
458 if (is_spread_slab(cs))
459 task_set_spread_slab(tsk);
460 else
461 task_clear_spread_slab(tsk);
462 }
463
464 /*
465 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
466 *
467 * One cpuset is a subset of another if all its allowed CPUs and
468 * Memory Nodes are a subset of the other, and its exclusive flags
469 * are only set if the other's are set. Call holding cpuset_mutex.
470 */
471
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)472 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
473 {
474 return cpumask_subset(p->cpus_requested, q->cpus_requested) &&
475 nodes_subset(p->mems_allowed, q->mems_allowed) &&
476 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
477 is_mem_exclusive(p) <= is_mem_exclusive(q);
478 }
479
480 /**
481 * alloc_cpumasks - allocate three cpumasks for cpuset
482 * @cs: the cpuset that have cpumasks to be allocated.
483 * @tmp: the tmpmasks structure pointer
484 * Return: 0 if successful, -ENOMEM otherwise.
485 *
486 * Only one of the two input arguments should be non-NULL.
487 */
alloc_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)488 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
489 {
490 cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4;
491
492 if (cs) {
493 pmask1 = &cs->cpus_allowed;
494 pmask2 = &cs->effective_cpus;
495 pmask3 = &cs->subparts_cpus;
496 pmask4 = &cs->cpus_requested;
497 } else {
498 pmask1 = &tmp->new_cpus;
499 pmask2 = &tmp->addmask;
500 pmask3 = &tmp->delmask;
501 }
502
503 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
504 return -ENOMEM;
505
506 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
507 goto free_one;
508
509 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
510 goto free_two;
511
512 if (cs && !zalloc_cpumask_var(pmask4, GFP_KERNEL))
513 goto free_three;
514
515 return 0;
516
517 free_three:
518 free_cpumask_var(*pmask3);
519 free_two:
520 free_cpumask_var(*pmask2);
521 free_one:
522 free_cpumask_var(*pmask1);
523 return -ENOMEM;
524 }
525
526 /**
527 * free_cpumasks - free cpumasks in a tmpmasks structure
528 * @cs: the cpuset that have cpumasks to be free.
529 * @tmp: the tmpmasks structure pointer
530 */
free_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)531 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
532 {
533 if (cs) {
534 free_cpumask_var(cs->cpus_allowed);
535 free_cpumask_var(cs->cpus_requested);
536 free_cpumask_var(cs->effective_cpus);
537 free_cpumask_var(cs->subparts_cpus);
538 }
539 if (tmp) {
540 free_cpumask_var(tmp->new_cpus);
541 free_cpumask_var(tmp->addmask);
542 free_cpumask_var(tmp->delmask);
543 }
544 }
545
546 /**
547 * alloc_trial_cpuset - allocate a trial cpuset
548 * @cs: the cpuset that the trial cpuset duplicates
549 */
alloc_trial_cpuset(struct cpuset * cs)550 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
551 {
552 struct cpuset *trial;
553
554 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
555 if (!trial)
556 return NULL;
557
558 if (alloc_cpumasks(trial, NULL)) {
559 kfree(trial);
560 return NULL;
561 }
562
563 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
564 cpumask_copy(trial->cpus_requested, cs->cpus_requested);
565 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
566 return trial;
567 }
568
569 /**
570 * free_cpuset - free the cpuset
571 * @cs: the cpuset to be freed
572 */
free_cpuset(struct cpuset * cs)573 static inline void free_cpuset(struct cpuset *cs)
574 {
575 free_cpumasks(cs, NULL);
576 kfree(cs);
577 }
578
579 /*
580 * validate_change() - Used to validate that any proposed cpuset change
581 * follows the structural rules for cpusets.
582 *
583 * If we replaced the flag and mask values of the current cpuset
584 * (cur) with those values in the trial cpuset (trial), would
585 * our various subset and exclusive rules still be valid? Presumes
586 * cpuset_mutex held.
587 *
588 * 'cur' is the address of an actual, in-use cpuset. Operations
589 * such as list traversal that depend on the actual address of the
590 * cpuset in the list must use cur below, not trial.
591 *
592 * 'trial' is the address of bulk structure copy of cur, with
593 * perhaps one or more of the fields cpus_allowed, mems_allowed,
594 * or flags changed to new, trial values.
595 *
596 * Return 0 if valid, -errno if not.
597 */
598
validate_change(struct cpuset * cur,struct cpuset * trial)599 static int validate_change(struct cpuset *cur, struct cpuset *trial)
600 {
601 struct cgroup_subsys_state *css;
602 struct cpuset *c, *par;
603 int ret;
604
605 rcu_read_lock();
606
607 /* Each of our child cpusets must be a subset of us */
608 ret = -EBUSY;
609 cpuset_for_each_child(c, css, cur)
610 if (!is_cpuset_subset(c, trial))
611 goto out;
612
613 /* Remaining checks don't apply to root cpuset */
614 ret = 0;
615 if (cur == &top_cpuset)
616 goto out;
617
618 par = parent_cs(cur);
619
620 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
621 ret = -EACCES;
622 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
623 goto out;
624
625 /*
626 * If either I or some sibling (!= me) is exclusive, we can't
627 * overlap
628 */
629 ret = -EINVAL;
630 cpuset_for_each_child(c, css, par) {
631 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
632 c != cur &&
633 cpumask_intersects(trial->cpus_requested,
634 c->cpus_requested))
635 goto out;
636 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
637 c != cur &&
638 nodes_intersects(trial->mems_allowed, c->mems_allowed))
639 goto out;
640 }
641
642 /*
643 * Cpusets with tasks - existing or newly being attached - can't
644 * be changed to have empty cpus_allowed or mems_allowed.
645 */
646 ret = -ENOSPC;
647 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
648 if (!cpumask_empty(cur->cpus_allowed) &&
649 cpumask_empty(trial->cpus_allowed))
650 goto out;
651 if (!nodes_empty(cur->mems_allowed) &&
652 nodes_empty(trial->mems_allowed))
653 goto out;
654 }
655
656 /*
657 * We can't shrink if we won't have enough room for SCHED_DEADLINE
658 * tasks.
659 */
660 ret = -EBUSY;
661 if (is_cpu_exclusive(cur) &&
662 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
663 trial->cpus_allowed))
664 goto out;
665
666 ret = 0;
667 out:
668 rcu_read_unlock();
669 return ret;
670 }
671
672 #ifdef CONFIG_SMP
673 /*
674 * Helper routine for generate_sched_domains().
675 * Do cpusets a, b have overlapping effective cpus_allowed masks?
676 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)677 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
678 {
679 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
680 }
681
682 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)683 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
684 {
685 if (dattr->relax_domain_level < c->relax_domain_level)
686 dattr->relax_domain_level = c->relax_domain_level;
687 return;
688 }
689
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)690 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
691 struct cpuset *root_cs)
692 {
693 struct cpuset *cp;
694 struct cgroup_subsys_state *pos_css;
695
696 rcu_read_lock();
697 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
698 /* skip the whole subtree if @cp doesn't have any CPU */
699 if (cpumask_empty(cp->cpus_allowed)) {
700 pos_css = css_rightmost_descendant(pos_css);
701 continue;
702 }
703
704 if (is_sched_load_balance(cp))
705 update_domain_attr(dattr, cp);
706 }
707 rcu_read_unlock();
708 }
709
710 /* Must be called with cpuset_mutex held. */
nr_cpusets(void)711 static inline int nr_cpusets(void)
712 {
713 /* jump label reference count + the top-level cpuset */
714 return static_key_count(&cpusets_enabled_key.key) + 1;
715 }
716
717 /*
718 * generate_sched_domains()
719 *
720 * This function builds a partial partition of the systems CPUs
721 * A 'partial partition' is a set of non-overlapping subsets whose
722 * union is a subset of that set.
723 * The output of this function needs to be passed to kernel/sched/core.c
724 * partition_sched_domains() routine, which will rebuild the scheduler's
725 * load balancing domains (sched domains) as specified by that partial
726 * partition.
727 *
728 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
729 * for a background explanation of this.
730 *
731 * Does not return errors, on the theory that the callers of this
732 * routine would rather not worry about failures to rebuild sched
733 * domains when operating in the severe memory shortage situations
734 * that could cause allocation failures below.
735 *
736 * Must be called with cpuset_mutex held.
737 *
738 * The three key local variables below are:
739 * cp - cpuset pointer, used (together with pos_css) to perform a
740 * top-down scan of all cpusets. For our purposes, rebuilding
741 * the schedulers sched domains, we can ignore !is_sched_load_
742 * balance cpusets.
743 * csa - (for CpuSet Array) Array of pointers to all the cpusets
744 * that need to be load balanced, for convenient iterative
745 * access by the subsequent code that finds the best partition,
746 * i.e the set of domains (subsets) of CPUs such that the
747 * cpus_allowed of every cpuset marked is_sched_load_balance
748 * is a subset of one of these domains, while there are as
749 * many such domains as possible, each as small as possible.
750 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
751 * the kernel/sched/core.c routine partition_sched_domains() in a
752 * convenient format, that can be easily compared to the prior
753 * value to determine what partition elements (sched domains)
754 * were changed (added or removed.)
755 *
756 * Finding the best partition (set of domains):
757 * The triple nested loops below over i, j, k scan over the
758 * load balanced cpusets (using the array of cpuset pointers in
759 * csa[]) looking for pairs of cpusets that have overlapping
760 * cpus_allowed, but which don't have the same 'pn' partition
761 * number and gives them in the same partition number. It keeps
762 * looping on the 'restart' label until it can no longer find
763 * any such pairs.
764 *
765 * The union of the cpus_allowed masks from the set of
766 * all cpusets having the same 'pn' value then form the one
767 * element of the partition (one sched domain) to be passed to
768 * partition_sched_domains().
769 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)770 static int generate_sched_domains(cpumask_var_t **domains,
771 struct sched_domain_attr **attributes)
772 {
773 struct cpuset *cp; /* top-down scan of cpusets */
774 struct cpuset **csa; /* array of all cpuset ptrs */
775 int csn; /* how many cpuset ptrs in csa so far */
776 int i, j, k; /* indices for partition finding loops */
777 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
778 struct sched_domain_attr *dattr; /* attributes for custom domains */
779 int ndoms = 0; /* number of sched domains in result */
780 int nslot; /* next empty doms[] struct cpumask slot */
781 struct cgroup_subsys_state *pos_css;
782 bool root_load_balance = is_sched_load_balance(&top_cpuset);
783
784 doms = NULL;
785 dattr = NULL;
786 csa = NULL;
787
788 /* Special case for the 99% of systems with one, full, sched domain */
789 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
790 ndoms = 1;
791 doms = alloc_sched_domains(ndoms);
792 if (!doms)
793 goto done;
794
795 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
796 if (dattr) {
797 *dattr = SD_ATTR_INIT;
798 update_domain_attr_tree(dattr, &top_cpuset);
799 }
800 cpumask_and(doms[0], top_cpuset.effective_cpus,
801 housekeeping_cpumask(HK_FLAG_DOMAIN));
802
803 goto done;
804 }
805
806 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
807 if (!csa)
808 goto done;
809 csn = 0;
810
811 rcu_read_lock();
812 if (root_load_balance)
813 csa[csn++] = &top_cpuset;
814 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
815 if (cp == &top_cpuset)
816 continue;
817 /*
818 * Continue traversing beyond @cp iff @cp has some CPUs and
819 * isn't load balancing. The former is obvious. The
820 * latter: All child cpusets contain a subset of the
821 * parent's cpus, so just skip them, and then we call
822 * update_domain_attr_tree() to calc relax_domain_level of
823 * the corresponding sched domain.
824 *
825 * If root is load-balancing, we can skip @cp if it
826 * is a subset of the root's effective_cpus.
827 */
828 if (!cpumask_empty(cp->cpus_allowed) &&
829 !(is_sched_load_balance(cp) &&
830 cpumask_intersects(cp->cpus_allowed,
831 housekeeping_cpumask(HK_FLAG_DOMAIN))))
832 continue;
833
834 if (root_load_balance &&
835 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
836 continue;
837
838 if (is_sched_load_balance(cp) &&
839 !cpumask_empty(cp->effective_cpus))
840 csa[csn++] = cp;
841
842 /* skip @cp's subtree if not a partition root */
843 if (!is_partition_root(cp))
844 pos_css = css_rightmost_descendant(pos_css);
845 }
846 rcu_read_unlock();
847
848 for (i = 0; i < csn; i++)
849 csa[i]->pn = i;
850 ndoms = csn;
851
852 restart:
853 /* Find the best partition (set of sched domains) */
854 for (i = 0; i < csn; i++) {
855 struct cpuset *a = csa[i];
856 int apn = a->pn;
857
858 for (j = 0; j < csn; j++) {
859 struct cpuset *b = csa[j];
860 int bpn = b->pn;
861
862 if (apn != bpn && cpusets_overlap(a, b)) {
863 for (k = 0; k < csn; k++) {
864 struct cpuset *c = csa[k];
865
866 if (c->pn == bpn)
867 c->pn = apn;
868 }
869 ndoms--; /* one less element */
870 goto restart;
871 }
872 }
873 }
874
875 /*
876 * Now we know how many domains to create.
877 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
878 */
879 doms = alloc_sched_domains(ndoms);
880 if (!doms)
881 goto done;
882
883 /*
884 * The rest of the code, including the scheduler, can deal with
885 * dattr==NULL case. No need to abort if alloc fails.
886 */
887 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
888 GFP_KERNEL);
889
890 for (nslot = 0, i = 0; i < csn; i++) {
891 struct cpuset *a = csa[i];
892 struct cpumask *dp;
893 int apn = a->pn;
894
895 if (apn < 0) {
896 /* Skip completed partitions */
897 continue;
898 }
899
900 dp = doms[nslot];
901
902 if (nslot == ndoms) {
903 static int warnings = 10;
904 if (warnings) {
905 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
906 nslot, ndoms, csn, i, apn);
907 warnings--;
908 }
909 continue;
910 }
911
912 cpumask_clear(dp);
913 if (dattr)
914 *(dattr + nslot) = SD_ATTR_INIT;
915 for (j = i; j < csn; j++) {
916 struct cpuset *b = csa[j];
917
918 if (apn == b->pn) {
919 cpumask_or(dp, dp, b->effective_cpus);
920 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
921 if (dattr)
922 update_domain_attr_tree(dattr + nslot, b);
923
924 /* Done with this partition */
925 b->pn = -1;
926 }
927 }
928 nslot++;
929 }
930 BUG_ON(nslot != ndoms);
931
932 done:
933 kfree(csa);
934
935 /*
936 * Fallback to the default domain if kmalloc() failed.
937 * See comments in partition_sched_domains().
938 */
939 if (doms == NULL)
940 ndoms = 1;
941
942 *domains = doms;
943 *attributes = dattr;
944 return ndoms;
945 }
946
dl_update_tasks_root_domain(struct cpuset * cs)947 static void dl_update_tasks_root_domain(struct cpuset *cs)
948 {
949 struct css_task_iter it;
950 struct task_struct *task;
951
952 if (cs->nr_deadline_tasks == 0)
953 return;
954
955 css_task_iter_start(&cs->css, 0, &it);
956
957 while ((task = css_task_iter_next(&it)))
958 dl_add_task_root_domain(task);
959
960 css_task_iter_end(&it);
961 }
962
dl_rebuild_rd_accounting(void)963 static void dl_rebuild_rd_accounting(void)
964 {
965 struct cpuset *cs = NULL;
966 struct cgroup_subsys_state *pos_css;
967
968 lockdep_assert_held(&cpuset_mutex);
969 lockdep_assert_cpus_held();
970 lockdep_assert_held(&sched_domains_mutex);
971
972 rcu_read_lock();
973
974 /*
975 * Clear default root domain DL accounting, it will be computed again
976 * if a task belongs to it.
977 */
978 dl_clear_root_domain(&def_root_domain);
979
980 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
981
982 if (cpumask_empty(cs->effective_cpus)) {
983 pos_css = css_rightmost_descendant(pos_css);
984 continue;
985 }
986
987 css_get(&cs->css);
988
989 rcu_read_unlock();
990
991 dl_update_tasks_root_domain(cs);
992
993 rcu_read_lock();
994 css_put(&cs->css);
995 }
996 rcu_read_unlock();
997 }
998
999 static void
partition_and_rebuild_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)1000 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1001 struct sched_domain_attr *dattr_new)
1002 {
1003 mutex_lock(&sched_domains_mutex);
1004 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1005 dl_rebuild_rd_accounting();
1006 mutex_unlock(&sched_domains_mutex);
1007 }
1008
1009 /*
1010 * Rebuild scheduler domains.
1011 *
1012 * If the flag 'sched_load_balance' of any cpuset with non-empty
1013 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1014 * which has that flag enabled, or if any cpuset with a non-empty
1015 * 'cpus' is removed, then call this routine to rebuild the
1016 * scheduler's dynamic sched domains.
1017 *
1018 * Call with cpuset_mutex held. Takes get_online_cpus().
1019 */
rebuild_sched_domains_locked(void)1020 static void rebuild_sched_domains_locked(void)
1021 {
1022 struct cgroup_subsys_state *pos_css;
1023 struct sched_domain_attr *attr;
1024 cpumask_var_t *doms;
1025 struct cpuset *cs;
1026 int ndoms;
1027
1028 lockdep_assert_cpus_held();
1029 lockdep_assert_held(&cpuset_mutex);
1030
1031 /*
1032 * If we have raced with CPU hotplug, return early to avoid
1033 * passing doms with offlined cpu to partition_sched_domains().
1034 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1035 *
1036 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1037 * should be the same as the active CPUs, so checking only top_cpuset
1038 * is enough to detect racing CPU offlines.
1039 */
1040 if (!top_cpuset.nr_subparts_cpus &&
1041 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1042 return;
1043
1044 /*
1045 * With subpartition CPUs, however, the effective CPUs of a partition
1046 * root should be only a subset of the active CPUs. Since a CPU in any
1047 * partition root could be offlined, all must be checked.
1048 */
1049 if (top_cpuset.nr_subparts_cpus) {
1050 rcu_read_lock();
1051 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1052 if (!is_partition_root(cs)) {
1053 pos_css = css_rightmost_descendant(pos_css);
1054 continue;
1055 }
1056 if (!cpumask_subset(cs->effective_cpus,
1057 cpu_active_mask)) {
1058 rcu_read_unlock();
1059 return;
1060 }
1061 }
1062 rcu_read_unlock();
1063 }
1064
1065 /* Generate domain masks and attrs */
1066 ndoms = generate_sched_domains(&doms, &attr);
1067
1068 /* Have scheduler rebuild the domains */
1069 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1070 }
1071 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1072 static void rebuild_sched_domains_locked(void)
1073 {
1074 }
1075 #endif /* CONFIG_SMP */
1076
rebuild_sched_domains(void)1077 void rebuild_sched_domains(void)
1078 {
1079 get_online_cpus();
1080 mutex_lock(&cpuset_mutex);
1081 rebuild_sched_domains_locked();
1082 mutex_unlock(&cpuset_mutex);
1083 put_online_cpus();
1084 }
1085
1086 /**
1087 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1088 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1089 *
1090 * Iterate through each task of @cs updating its cpus_allowed to the
1091 * effective cpuset's. As this function is called with cpuset_mutex held,
1092 * cpuset membership stays stable.
1093 */
update_tasks_cpumask(struct cpuset * cs)1094 static void update_tasks_cpumask(struct cpuset *cs)
1095 {
1096 struct css_task_iter it;
1097 struct task_struct *task;
1098 bool top_cs = cs == &top_cpuset;
1099
1100 css_task_iter_start(&cs->css, 0, &it);
1101 while ((task = css_task_iter_next(&it))) {
1102 /*
1103 * Percpu kthreads in top_cpuset are ignored
1104 */
1105 if (top_cs && (task->flags & PF_KTHREAD) &&
1106 kthread_is_per_cpu(task))
1107 continue;
1108 set_cpus_allowed_ptr(task, cs->effective_cpus);
1109 }
1110 css_task_iter_end(&it);
1111 }
1112
1113 /**
1114 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1115 * @new_cpus: the temp variable for the new effective_cpus mask
1116 * @cs: the cpuset the need to recompute the new effective_cpus mask
1117 * @parent: the parent cpuset
1118 *
1119 * If the parent has subpartition CPUs, include them in the list of
1120 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1121 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1122 * to mask those out.
1123 */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1124 static void compute_effective_cpumask(struct cpumask *new_cpus,
1125 struct cpuset *cs, struct cpuset *parent)
1126 {
1127 if (parent->nr_subparts_cpus) {
1128 cpumask_or(new_cpus, parent->effective_cpus,
1129 parent->subparts_cpus);
1130 cpumask_and(new_cpus, new_cpus, cs->cpus_requested);
1131 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1132 } else {
1133 cpumask_and(new_cpus, cs->cpus_requested,
1134 parent->effective_cpus);
1135 }
1136 }
1137
1138 /*
1139 * Commands for update_parent_subparts_cpumask
1140 */
1141 enum subparts_cmd {
1142 partcmd_enable, /* Enable partition root */
1143 partcmd_disable, /* Disable partition root */
1144 partcmd_update, /* Update parent's subparts_cpus */
1145 };
1146
1147 /**
1148 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1149 * @cpuset: The cpuset that requests change in partition root state
1150 * @cmd: Partition root state change command
1151 * @newmask: Optional new cpumask for partcmd_update
1152 * @tmp: Temporary addmask and delmask
1153 * Return: 0, 1 or an error code
1154 *
1155 * For partcmd_enable, the cpuset is being transformed from a non-partition
1156 * root to a partition root. The cpus_allowed mask of the given cpuset will
1157 * be put into parent's subparts_cpus and taken away from parent's
1158 * effective_cpus. The function will return 0 if all the CPUs listed in
1159 * cpus_allowed can be granted or an error code will be returned.
1160 *
1161 * For partcmd_disable, the cpuset is being transofrmed from a partition
1162 * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1163 * parent's subparts_cpus will be taken away from that cpumask and put back
1164 * into parent's effective_cpus. 0 should always be returned.
1165 *
1166 * For partcmd_update, if the optional newmask is specified, the cpu
1167 * list is to be changed from cpus_allowed to newmask. Otherwise,
1168 * cpus_allowed is assumed to remain the same. The cpuset should either
1169 * be a partition root or an invalid partition root. The partition root
1170 * state may change if newmask is NULL and none of the requested CPUs can
1171 * be granted by the parent. The function will return 1 if changes to
1172 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1173 * Error code should only be returned when newmask is non-NULL.
1174 *
1175 * The partcmd_enable and partcmd_disable commands are used by
1176 * update_prstate(). The partcmd_update command is used by
1177 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1178 * newmask set.
1179 *
1180 * The checking is more strict when enabling partition root than the
1181 * other two commands.
1182 *
1183 * Because of the implicit cpu exclusive nature of a partition root,
1184 * cpumask changes that violates the cpu exclusivity rule will not be
1185 * permitted when checked by validate_change(). The validate_change()
1186 * function will also prevent any changes to the cpu list if it is not
1187 * a superset of children's cpu lists.
1188 */
update_parent_subparts_cpumask(struct cpuset * cpuset,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1189 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1190 struct cpumask *newmask,
1191 struct tmpmasks *tmp)
1192 {
1193 struct cpuset *parent = parent_cs(cpuset);
1194 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1195 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1196 int new_prs;
1197 bool part_error = false; /* Partition error? */
1198
1199 lockdep_assert_held(&cpuset_mutex);
1200
1201 /*
1202 * The parent must be a partition root.
1203 * The new cpumask, if present, or the current cpus_allowed must
1204 * not be empty.
1205 */
1206 if (!is_partition_root(parent) ||
1207 (newmask && cpumask_empty(newmask)) ||
1208 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1209 return -EINVAL;
1210
1211 /*
1212 * Enabling/disabling partition root is not allowed if there are
1213 * online children.
1214 */
1215 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1216 return -EBUSY;
1217
1218 /*
1219 * Enabling partition root is not allowed if not all the CPUs
1220 * can be granted from parent's effective_cpus or at least one
1221 * CPU will be left after that.
1222 */
1223 if ((cmd == partcmd_enable) &&
1224 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1225 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1226 return -EINVAL;
1227
1228 /*
1229 * A cpumask update cannot make parent's effective_cpus become empty.
1230 */
1231 adding = deleting = false;
1232 new_prs = cpuset->partition_root_state;
1233 if (cmd == partcmd_enable) {
1234 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1235 adding = true;
1236 } else if (cmd == partcmd_disable) {
1237 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1238 parent->subparts_cpus);
1239 } else if (newmask) {
1240 /*
1241 * partcmd_update with newmask:
1242 *
1243 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1244 * addmask = newmask & parent->effective_cpus
1245 * & ~parent->subparts_cpus
1246 */
1247 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1248 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1249 parent->subparts_cpus);
1250
1251 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1252 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1253 parent->subparts_cpus);
1254 /*
1255 * Return error if the new effective_cpus could become empty.
1256 */
1257 if (adding &&
1258 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1259 if (!deleting)
1260 return -EINVAL;
1261 /*
1262 * As some of the CPUs in subparts_cpus might have
1263 * been offlined, we need to compute the real delmask
1264 * to confirm that.
1265 */
1266 if (!cpumask_and(tmp->addmask, tmp->delmask,
1267 cpu_active_mask))
1268 return -EINVAL;
1269 cpumask_copy(tmp->addmask, parent->effective_cpus);
1270 }
1271 } else {
1272 /*
1273 * partcmd_update w/o newmask:
1274 *
1275 * addmask = cpus_allowed & parent->effective_cpus
1276 *
1277 * Note that parent's subparts_cpus may have been
1278 * pre-shrunk in case there is a change in the cpu list.
1279 * So no deletion is needed.
1280 */
1281 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1282 parent->effective_cpus);
1283 part_error = cpumask_equal(tmp->addmask,
1284 parent->effective_cpus);
1285 }
1286
1287 if (cmd == partcmd_update) {
1288 int prev_prs = cpuset->partition_root_state;
1289
1290 /*
1291 * Check for possible transition between PRS_ENABLED
1292 * and PRS_ERROR.
1293 */
1294 switch (cpuset->partition_root_state) {
1295 case PRS_ENABLED:
1296 if (part_error)
1297 new_prs = PRS_ERROR;
1298 break;
1299 case PRS_ERROR:
1300 if (!part_error)
1301 new_prs = PRS_ENABLED;
1302 break;
1303 }
1304 /*
1305 * Set part_error if previously in invalid state.
1306 */
1307 part_error = (prev_prs == PRS_ERROR);
1308 }
1309
1310 if (!part_error && (new_prs == PRS_ERROR))
1311 return 0; /* Nothing need to be done */
1312
1313 if (new_prs == PRS_ERROR) {
1314 /*
1315 * Remove all its cpus from parent's subparts_cpus.
1316 */
1317 adding = false;
1318 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1319 parent->subparts_cpus);
1320 }
1321
1322 if (!adding && !deleting && (new_prs == cpuset->partition_root_state))
1323 return 0;
1324
1325 /*
1326 * Change the parent's subparts_cpus.
1327 * Newly added CPUs will be removed from effective_cpus and
1328 * newly deleted ones will be added back to effective_cpus.
1329 */
1330 spin_lock_irq(&callback_lock);
1331 if (adding) {
1332 cpumask_or(parent->subparts_cpus,
1333 parent->subparts_cpus, tmp->addmask);
1334 cpumask_andnot(parent->effective_cpus,
1335 parent->effective_cpus, tmp->addmask);
1336 }
1337 if (deleting) {
1338 cpumask_andnot(parent->subparts_cpus,
1339 parent->subparts_cpus, tmp->delmask);
1340 /*
1341 * Some of the CPUs in subparts_cpus might have been offlined.
1342 */
1343 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1344 cpumask_or(parent->effective_cpus,
1345 parent->effective_cpus, tmp->delmask);
1346 }
1347
1348 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1349
1350 if (cpuset->partition_root_state != new_prs)
1351 cpuset->partition_root_state = new_prs;
1352 spin_unlock_irq(&callback_lock);
1353
1354 return cmd == partcmd_update;
1355 }
1356
1357 /*
1358 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1359 * @cs: the cpuset to consider
1360 * @tmp: temp variables for calculating effective_cpus & partition setup
1361 *
1362 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1363 * and all its descendants need to be updated.
1364 *
1365 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1366 *
1367 * Called with cpuset_mutex held
1368 */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp)1369 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1370 {
1371 struct cpuset *cp;
1372 struct cgroup_subsys_state *pos_css;
1373 bool need_rebuild_sched_domains = false;
1374 int new_prs;
1375
1376 rcu_read_lock();
1377 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1378 struct cpuset *parent = parent_cs(cp);
1379
1380 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1381
1382 /*
1383 * If it becomes empty, inherit the effective mask of the
1384 * parent, which is guaranteed to have some CPUs.
1385 */
1386 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1387 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1388 if (!cp->use_parent_ecpus) {
1389 cp->use_parent_ecpus = true;
1390 parent->child_ecpus_count++;
1391 }
1392 } else if (cp->use_parent_ecpus) {
1393 cp->use_parent_ecpus = false;
1394 WARN_ON_ONCE(!parent->child_ecpus_count);
1395 parent->child_ecpus_count--;
1396 }
1397
1398 /*
1399 * Skip the whole subtree if the cpumask remains the same
1400 * and has no partition root state.
1401 */
1402 if (!cp->partition_root_state &&
1403 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1404 pos_css = css_rightmost_descendant(pos_css);
1405 continue;
1406 }
1407
1408 /*
1409 * update_parent_subparts_cpumask() should have been called
1410 * for cs already in update_cpumask(). We should also call
1411 * update_tasks_cpumask() again for tasks in the parent
1412 * cpuset if the parent's subparts_cpus changes.
1413 */
1414 new_prs = cp->partition_root_state;
1415 if ((cp != cs) && new_prs) {
1416 switch (parent->partition_root_state) {
1417 case PRS_DISABLED:
1418 /*
1419 * If parent is not a partition root or an
1420 * invalid partition root, clear its state
1421 * and its CS_CPU_EXCLUSIVE flag.
1422 */
1423 WARN_ON_ONCE(cp->partition_root_state
1424 != PRS_ERROR);
1425 new_prs = PRS_DISABLED;
1426
1427 /*
1428 * clear_bit() is an atomic operation and
1429 * readers aren't interested in the state
1430 * of CS_CPU_EXCLUSIVE anyway. So we can
1431 * just update the flag without holding
1432 * the callback_lock.
1433 */
1434 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1435 break;
1436
1437 case PRS_ENABLED:
1438 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1439 update_tasks_cpumask(parent);
1440 break;
1441
1442 case PRS_ERROR:
1443 /*
1444 * When parent is invalid, it has to be too.
1445 */
1446 new_prs = PRS_ERROR;
1447 break;
1448 }
1449 }
1450
1451 if (!css_tryget_online(&cp->css))
1452 continue;
1453 rcu_read_unlock();
1454
1455 spin_lock_irq(&callback_lock);
1456
1457 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1458 if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1459 cp->nr_subparts_cpus = 0;
1460 cpumask_clear(cp->subparts_cpus);
1461 } else if (cp->nr_subparts_cpus) {
1462 /*
1463 * Make sure that effective_cpus & subparts_cpus
1464 * are mutually exclusive.
1465 *
1466 * In the unlikely event that effective_cpus
1467 * becomes empty. we clear cp->nr_subparts_cpus and
1468 * let its child partition roots to compete for
1469 * CPUs again.
1470 */
1471 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1472 cp->subparts_cpus);
1473 if (cpumask_empty(cp->effective_cpus)) {
1474 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1475 cpumask_clear(cp->subparts_cpus);
1476 cp->nr_subparts_cpus = 0;
1477 } else if (!cpumask_subset(cp->subparts_cpus,
1478 tmp->new_cpus)) {
1479 cpumask_andnot(cp->subparts_cpus,
1480 cp->subparts_cpus, tmp->new_cpus);
1481 cp->nr_subparts_cpus
1482 = cpumask_weight(cp->subparts_cpus);
1483 }
1484 }
1485
1486 if (new_prs != cp->partition_root_state)
1487 cp->partition_root_state = new_prs;
1488
1489 spin_unlock_irq(&callback_lock);
1490
1491 WARN_ON(!is_in_v2_mode() &&
1492 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1493
1494 update_tasks_cpumask(cp);
1495
1496 /*
1497 * On legacy hierarchy, if the effective cpumask of any non-
1498 * empty cpuset is changed, we need to rebuild sched domains.
1499 * On default hierarchy, the cpuset needs to be a partition
1500 * root as well.
1501 */
1502 if (!cpumask_empty(cp->cpus_allowed) &&
1503 is_sched_load_balance(cp) &&
1504 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1505 is_partition_root(cp)))
1506 need_rebuild_sched_domains = true;
1507
1508 rcu_read_lock();
1509 css_put(&cp->css);
1510 }
1511 rcu_read_unlock();
1512
1513 if (need_rebuild_sched_domains)
1514 rebuild_sched_domains_locked();
1515 }
1516
1517 /**
1518 * update_sibling_cpumasks - Update siblings cpumasks
1519 * @parent: Parent cpuset
1520 * @cs: Current cpuset
1521 * @tmp: Temp variables
1522 */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)1523 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1524 struct tmpmasks *tmp)
1525 {
1526 struct cpuset *sibling;
1527 struct cgroup_subsys_state *pos_css;
1528
1529 lockdep_assert_held(&cpuset_mutex);
1530
1531 /*
1532 * Check all its siblings and call update_cpumasks_hier()
1533 * if their use_parent_ecpus flag is set in order for them
1534 * to use the right effective_cpus value.
1535 *
1536 * The update_cpumasks_hier() function may sleep. So we have to
1537 * release the RCU read lock before calling it.
1538 */
1539 rcu_read_lock();
1540 cpuset_for_each_child(sibling, pos_css, parent) {
1541 if (sibling == cs)
1542 continue;
1543 if (!sibling->use_parent_ecpus)
1544 continue;
1545 if (!css_tryget_online(&sibling->css))
1546 continue;
1547
1548 rcu_read_unlock();
1549 update_cpumasks_hier(sibling, tmp);
1550 rcu_read_lock();
1551 css_put(&sibling->css);
1552 }
1553 rcu_read_unlock();
1554 }
1555
1556 /**
1557 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1558 * @cs: the cpuset to consider
1559 * @trialcs: trial cpuset
1560 * @buf: buffer of cpu numbers written to this cpuset
1561 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1562 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1563 const char *buf)
1564 {
1565 int retval;
1566 struct tmpmasks tmp;
1567
1568 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1569 if (cs == &top_cpuset)
1570 return -EACCES;
1571
1572 /*
1573 * An empty cpus_requested is ok only if the cpuset has no tasks.
1574 * Since cpulist_parse() fails on an empty mask, we special case
1575 * that parsing. The validate_change() call ensures that cpusets
1576 * with tasks have cpus.
1577 */
1578 if (!*buf) {
1579 cpumask_clear(trialcs->cpus_requested);
1580 } else {
1581 retval = cpulist_parse(buf, trialcs->cpus_requested);
1582 if (retval < 0)
1583 return retval;
1584 }
1585
1586 if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
1587 return -EINVAL;
1588
1589 cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested,
1590 cpu_active_mask);
1591
1592 /* Nothing to do if the cpus didn't change */
1593 if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
1594 return 0;
1595
1596 retval = validate_change(cs, trialcs);
1597 if (retval < 0)
1598 return retval;
1599
1600 #ifdef CONFIG_CPUMASK_OFFSTACK
1601 /*
1602 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1603 * to allocated cpumasks.
1604 */
1605 tmp.addmask = trialcs->subparts_cpus;
1606 tmp.delmask = trialcs->effective_cpus;
1607 tmp.new_cpus = trialcs->cpus_allowed;
1608 #endif
1609
1610 if (cs->partition_root_state) {
1611 /* Cpumask of a partition root cannot be empty */
1612 if (cpumask_empty(trialcs->cpus_allowed))
1613 return -EINVAL;
1614 if (update_parent_subparts_cpumask(cs, partcmd_update,
1615 trialcs->cpus_allowed, &tmp) < 0)
1616 return -EINVAL;
1617 }
1618
1619 spin_lock_irq(&callback_lock);
1620 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1621 cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
1622
1623 /*
1624 * Make sure that subparts_cpus is a subset of cpus_allowed.
1625 */
1626 if (cs->nr_subparts_cpus) {
1627 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
1628 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1629 }
1630 spin_unlock_irq(&callback_lock);
1631
1632 update_cpumasks_hier(cs, &tmp);
1633
1634 if (cs->partition_root_state) {
1635 struct cpuset *parent = parent_cs(cs);
1636
1637 /*
1638 * For partition root, update the cpumasks of sibling
1639 * cpusets if they use parent's effective_cpus.
1640 */
1641 if (parent->child_ecpus_count)
1642 update_sibling_cpumasks(parent, cs, &tmp);
1643 }
1644 return 0;
1645 }
1646
1647 /*
1648 * Migrate memory region from one set of nodes to another. This is
1649 * performed asynchronously as it can be called from process migration path
1650 * holding locks involved in process management. All mm migrations are
1651 * performed in the queued order and can be waited for by flushing
1652 * cpuset_migrate_mm_wq.
1653 */
1654
1655 struct cpuset_migrate_mm_work {
1656 struct work_struct work;
1657 struct mm_struct *mm;
1658 nodemask_t from;
1659 nodemask_t to;
1660 };
1661
cpuset_migrate_mm_workfn(struct work_struct * work)1662 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1663 {
1664 struct cpuset_migrate_mm_work *mwork =
1665 container_of(work, struct cpuset_migrate_mm_work, work);
1666
1667 /* on a wq worker, no need to worry about %current's mems_allowed */
1668 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1669 mmput(mwork->mm);
1670 kfree(mwork);
1671 }
1672
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1673 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1674 const nodemask_t *to)
1675 {
1676 struct cpuset_migrate_mm_work *mwork;
1677
1678 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1679 if (mwork) {
1680 mwork->mm = mm;
1681 mwork->from = *from;
1682 mwork->to = *to;
1683 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1684 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1685 } else {
1686 mmput(mm);
1687 }
1688 }
1689
cpuset_post_attach(void)1690 static void cpuset_post_attach(void)
1691 {
1692 flush_workqueue(cpuset_migrate_mm_wq);
1693 }
1694
1695 /*
1696 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1697 * @tsk: the task to change
1698 * @newmems: new nodes that the task will be set
1699 *
1700 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1701 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1702 * parallel, it might temporarily see an empty intersection, which results in
1703 * a seqlock check and retry before OOM or allocation failure.
1704 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1705 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1706 nodemask_t *newmems)
1707 {
1708 task_lock(tsk);
1709
1710 local_irq_disable();
1711 write_seqcount_begin(&tsk->mems_allowed_seq);
1712
1713 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1714 mpol_rebind_task(tsk, newmems);
1715 tsk->mems_allowed = *newmems;
1716
1717 write_seqcount_end(&tsk->mems_allowed_seq);
1718 local_irq_enable();
1719
1720 task_unlock(tsk);
1721 }
1722
1723 static void *cpuset_being_rebound;
1724
1725 /**
1726 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1727 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1728 *
1729 * Iterate through each task of @cs updating its mems_allowed to the
1730 * effective cpuset's. As this function is called with cpuset_mutex held,
1731 * cpuset membership stays stable.
1732 */
update_tasks_nodemask(struct cpuset * cs)1733 static void update_tasks_nodemask(struct cpuset *cs)
1734 {
1735 static nodemask_t newmems; /* protected by cpuset_mutex */
1736 struct css_task_iter it;
1737 struct task_struct *task;
1738
1739 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1740
1741 guarantee_online_mems(cs, &newmems);
1742
1743 /*
1744 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1745 * take while holding tasklist_lock. Forks can happen - the
1746 * mpol_dup() cpuset_being_rebound check will catch such forks,
1747 * and rebind their vma mempolicies too. Because we still hold
1748 * the global cpuset_mutex, we know that no other rebind effort
1749 * will be contending for the global variable cpuset_being_rebound.
1750 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1751 * is idempotent. Also migrate pages in each mm to new nodes.
1752 */
1753 css_task_iter_start(&cs->css, 0, &it);
1754 while ((task = css_task_iter_next(&it))) {
1755 struct mm_struct *mm;
1756 bool migrate;
1757
1758 cpuset_change_task_nodemask(task, &newmems);
1759
1760 mm = get_task_mm(task);
1761 if (!mm)
1762 continue;
1763
1764 migrate = is_memory_migrate(cs);
1765
1766 mpol_rebind_mm(mm, &cs->mems_allowed);
1767 if (migrate)
1768 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1769 else
1770 mmput(mm);
1771 }
1772 css_task_iter_end(&it);
1773
1774 /*
1775 * All the tasks' nodemasks have been updated, update
1776 * cs->old_mems_allowed.
1777 */
1778 cs->old_mems_allowed = newmems;
1779
1780 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1781 cpuset_being_rebound = NULL;
1782 }
1783
1784 /*
1785 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1786 * @cs: the cpuset to consider
1787 * @new_mems: a temp variable for calculating new effective_mems
1788 *
1789 * When configured nodemask is changed, the effective nodemasks of this cpuset
1790 * and all its descendants need to be updated.
1791 *
1792 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1793 *
1794 * Called with cpuset_mutex held
1795 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1796 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1797 {
1798 struct cpuset *cp;
1799 struct cgroup_subsys_state *pos_css;
1800
1801 rcu_read_lock();
1802 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1803 struct cpuset *parent = parent_cs(cp);
1804
1805 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1806
1807 /*
1808 * If it becomes empty, inherit the effective mask of the
1809 * parent, which is guaranteed to have some MEMs.
1810 */
1811 if (is_in_v2_mode() && nodes_empty(*new_mems))
1812 *new_mems = parent->effective_mems;
1813
1814 /* Skip the whole subtree if the nodemask remains the same. */
1815 if (nodes_equal(*new_mems, cp->effective_mems)) {
1816 pos_css = css_rightmost_descendant(pos_css);
1817 continue;
1818 }
1819
1820 if (!css_tryget_online(&cp->css))
1821 continue;
1822 rcu_read_unlock();
1823
1824 spin_lock_irq(&callback_lock);
1825 cp->effective_mems = *new_mems;
1826 spin_unlock_irq(&callback_lock);
1827
1828 WARN_ON(!is_in_v2_mode() &&
1829 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1830
1831 update_tasks_nodemask(cp);
1832
1833 rcu_read_lock();
1834 css_put(&cp->css);
1835 }
1836 rcu_read_unlock();
1837 }
1838
1839 /*
1840 * Handle user request to change the 'mems' memory placement
1841 * of a cpuset. Needs to validate the request, update the
1842 * cpusets mems_allowed, and for each task in the cpuset,
1843 * update mems_allowed and rebind task's mempolicy and any vma
1844 * mempolicies and if the cpuset is marked 'memory_migrate',
1845 * migrate the tasks pages to the new memory.
1846 *
1847 * Call with cpuset_mutex held. May take callback_lock during call.
1848 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1849 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1850 * their mempolicies to the cpusets new mems_allowed.
1851 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1852 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1853 const char *buf)
1854 {
1855 int retval;
1856
1857 /*
1858 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1859 * it's read-only
1860 */
1861 if (cs == &top_cpuset) {
1862 retval = -EACCES;
1863 goto done;
1864 }
1865
1866 /*
1867 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1868 * Since nodelist_parse() fails on an empty mask, we special case
1869 * that parsing. The validate_change() call ensures that cpusets
1870 * with tasks have memory.
1871 */
1872 if (!*buf) {
1873 nodes_clear(trialcs->mems_allowed);
1874 } else {
1875 retval = nodelist_parse(buf, trialcs->mems_allowed);
1876 if (retval < 0)
1877 goto done;
1878
1879 if (!nodes_subset(trialcs->mems_allowed,
1880 top_cpuset.mems_allowed)) {
1881 retval = -EINVAL;
1882 goto done;
1883 }
1884 }
1885
1886 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1887 retval = 0; /* Too easy - nothing to do */
1888 goto done;
1889 }
1890 retval = validate_change(cs, trialcs);
1891 if (retval < 0)
1892 goto done;
1893
1894 spin_lock_irq(&callback_lock);
1895 cs->mems_allowed = trialcs->mems_allowed;
1896 spin_unlock_irq(&callback_lock);
1897
1898 /* use trialcs->mems_allowed as a temp variable */
1899 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1900 done:
1901 return retval;
1902 }
1903
current_cpuset_is_being_rebound(void)1904 bool current_cpuset_is_being_rebound(void)
1905 {
1906 bool ret;
1907
1908 rcu_read_lock();
1909 ret = task_cs(current) == cpuset_being_rebound;
1910 rcu_read_unlock();
1911
1912 return ret;
1913 }
1914
update_relax_domain_level(struct cpuset * cs,s64 val)1915 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1916 {
1917 #ifdef CONFIG_SMP
1918 if (val < -1 || val >= sched_domain_level_max)
1919 return -EINVAL;
1920 #endif
1921
1922 if (val != cs->relax_domain_level) {
1923 cs->relax_domain_level = val;
1924 if (!cpumask_empty(cs->cpus_allowed) &&
1925 is_sched_load_balance(cs))
1926 rebuild_sched_domains_locked();
1927 }
1928
1929 return 0;
1930 }
1931
1932 /**
1933 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1934 * @cs: the cpuset in which each task's spread flags needs to be changed
1935 *
1936 * Iterate through each task of @cs updating its spread flags. As this
1937 * function is called with cpuset_mutex held, cpuset membership stays
1938 * stable.
1939 */
update_tasks_flags(struct cpuset * cs)1940 static void update_tasks_flags(struct cpuset *cs)
1941 {
1942 struct css_task_iter it;
1943 struct task_struct *task;
1944
1945 css_task_iter_start(&cs->css, 0, &it);
1946 while ((task = css_task_iter_next(&it)))
1947 cpuset_update_task_spread_flag(cs, task);
1948 css_task_iter_end(&it);
1949 }
1950
1951 /*
1952 * update_flag - read a 0 or a 1 in a file and update associated flag
1953 * bit: the bit to update (see cpuset_flagbits_t)
1954 * cs: the cpuset to update
1955 * turning_on: whether the flag is being set or cleared
1956 *
1957 * Call with cpuset_mutex held.
1958 */
1959
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1960 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1961 int turning_on)
1962 {
1963 struct cpuset *trialcs;
1964 int balance_flag_changed;
1965 int spread_flag_changed;
1966 int err;
1967
1968 trialcs = alloc_trial_cpuset(cs);
1969 if (!trialcs)
1970 return -ENOMEM;
1971
1972 if (turning_on)
1973 set_bit(bit, &trialcs->flags);
1974 else
1975 clear_bit(bit, &trialcs->flags);
1976
1977 err = validate_change(cs, trialcs);
1978 if (err < 0)
1979 goto out;
1980
1981 balance_flag_changed = (is_sched_load_balance(cs) !=
1982 is_sched_load_balance(trialcs));
1983
1984 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1985 || (is_spread_page(cs) != is_spread_page(trialcs)));
1986
1987 spin_lock_irq(&callback_lock);
1988 cs->flags = trialcs->flags;
1989 spin_unlock_irq(&callback_lock);
1990
1991 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1992 rebuild_sched_domains_locked();
1993
1994 if (spread_flag_changed)
1995 update_tasks_flags(cs);
1996 out:
1997 free_cpuset(trialcs);
1998 return err;
1999 }
2000
2001 /*
2002 * update_prstate - update partititon_root_state
2003 * cs: the cpuset to update
2004 * new_prs: new partition root state
2005 *
2006 * Call with cpuset_mutex held.
2007 */
update_prstate(struct cpuset * cs,int new_prs)2008 static int update_prstate(struct cpuset *cs, int new_prs)
2009 {
2010 int err, old_prs = cs->partition_root_state;
2011 struct cpuset *parent = parent_cs(cs);
2012 struct tmpmasks tmpmask;
2013
2014 if (old_prs == new_prs)
2015 return 0;
2016
2017 /*
2018 * Cannot force a partial or invalid partition root to a full
2019 * partition root.
2020 */
2021 if (new_prs && (old_prs == PRS_ERROR))
2022 return -EINVAL;
2023
2024 if (alloc_cpumasks(NULL, &tmpmask))
2025 return -ENOMEM;
2026
2027 err = -EINVAL;
2028 if (!old_prs) {
2029 /*
2030 * Turning on partition root requires setting the
2031 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2032 * cannot be NULL.
2033 */
2034 if (cpumask_empty(cs->cpus_allowed))
2035 goto out;
2036
2037 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2038 if (err)
2039 goto out;
2040
2041 err = update_parent_subparts_cpumask(cs, partcmd_enable,
2042 NULL, &tmpmask);
2043 if (err) {
2044 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2045 goto out;
2046 }
2047 } else {
2048 /*
2049 * Turning off partition root will clear the
2050 * CS_CPU_EXCLUSIVE bit.
2051 */
2052 if (old_prs == PRS_ERROR) {
2053 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2054 err = 0;
2055 goto out;
2056 }
2057
2058 err = update_parent_subparts_cpumask(cs, partcmd_disable,
2059 NULL, &tmpmask);
2060 if (err)
2061 goto out;
2062
2063 /* Turning off CS_CPU_EXCLUSIVE will not return error */
2064 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2065 }
2066
2067 update_tasks_cpumask(parent);
2068
2069 if (parent->child_ecpus_count)
2070 update_sibling_cpumasks(parent, cs, &tmpmask);
2071
2072 rebuild_sched_domains_locked();
2073 out:
2074 if (!err) {
2075 spin_lock_irq(&callback_lock);
2076 cs->partition_root_state = new_prs;
2077 spin_unlock_irq(&callback_lock);
2078 }
2079
2080 free_cpumasks(NULL, &tmpmask);
2081 return err;
2082 }
2083
2084 /*
2085 * Frequency meter - How fast is some event occurring?
2086 *
2087 * These routines manage a digitally filtered, constant time based,
2088 * event frequency meter. There are four routines:
2089 * fmeter_init() - initialize a frequency meter.
2090 * fmeter_markevent() - called each time the event happens.
2091 * fmeter_getrate() - returns the recent rate of such events.
2092 * fmeter_update() - internal routine used to update fmeter.
2093 *
2094 * A common data structure is passed to each of these routines,
2095 * which is used to keep track of the state required to manage the
2096 * frequency meter and its digital filter.
2097 *
2098 * The filter works on the number of events marked per unit time.
2099 * The filter is single-pole low-pass recursive (IIR). The time unit
2100 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2101 * simulate 3 decimal digits of precision (multiplied by 1000).
2102 *
2103 * With an FM_COEF of 933, and a time base of 1 second, the filter
2104 * has a half-life of 10 seconds, meaning that if the events quit
2105 * happening, then the rate returned from the fmeter_getrate()
2106 * will be cut in half each 10 seconds, until it converges to zero.
2107 *
2108 * It is not worth doing a real infinitely recursive filter. If more
2109 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2110 * just compute FM_MAXTICKS ticks worth, by which point the level
2111 * will be stable.
2112 *
2113 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2114 * arithmetic overflow in the fmeter_update() routine.
2115 *
2116 * Given the simple 32 bit integer arithmetic used, this meter works
2117 * best for reporting rates between one per millisecond (msec) and
2118 * one per 32 (approx) seconds. At constant rates faster than one
2119 * per msec it maxes out at values just under 1,000,000. At constant
2120 * rates between one per msec, and one per second it will stabilize
2121 * to a value N*1000, where N is the rate of events per second.
2122 * At constant rates between one per second and one per 32 seconds,
2123 * it will be choppy, moving up on the seconds that have an event,
2124 * and then decaying until the next event. At rates slower than
2125 * about one in 32 seconds, it decays all the way back to zero between
2126 * each event.
2127 */
2128
2129 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2130 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2131 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2132 #define FM_SCALE 1000 /* faux fixed point scale */
2133
2134 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)2135 static void fmeter_init(struct fmeter *fmp)
2136 {
2137 fmp->cnt = 0;
2138 fmp->val = 0;
2139 fmp->time = 0;
2140 spin_lock_init(&fmp->lock);
2141 }
2142
2143 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)2144 static void fmeter_update(struct fmeter *fmp)
2145 {
2146 time64_t now;
2147 u32 ticks;
2148
2149 now = ktime_get_seconds();
2150 ticks = now - fmp->time;
2151
2152 if (ticks == 0)
2153 return;
2154
2155 ticks = min(FM_MAXTICKS, ticks);
2156 while (ticks-- > 0)
2157 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2158 fmp->time = now;
2159
2160 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2161 fmp->cnt = 0;
2162 }
2163
2164 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)2165 static void fmeter_markevent(struct fmeter *fmp)
2166 {
2167 spin_lock(&fmp->lock);
2168 fmeter_update(fmp);
2169 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2170 spin_unlock(&fmp->lock);
2171 }
2172
2173 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)2174 static int fmeter_getrate(struct fmeter *fmp)
2175 {
2176 int val;
2177
2178 spin_lock(&fmp->lock);
2179 fmeter_update(fmp);
2180 val = fmp->val;
2181 spin_unlock(&fmp->lock);
2182 return val;
2183 }
2184
2185 static struct cpuset *cpuset_attach_old_cs;
2186
reset_migrate_dl_data(struct cpuset * cs)2187 static void reset_migrate_dl_data(struct cpuset *cs)
2188 {
2189 cs->nr_migrate_dl_tasks = 0;
2190 cs->sum_migrate_dl_bw = 0;
2191 }
2192
2193 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)2194 static int cpuset_can_attach(struct cgroup_taskset *tset)
2195 {
2196 struct cgroup_subsys_state *css;
2197 struct cpuset *cs, *oldcs;
2198 struct task_struct *task;
2199 int ret;
2200
2201 /* used later by cpuset_attach() */
2202 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2203 oldcs = cpuset_attach_old_cs;
2204 cs = css_cs(css);
2205
2206 mutex_lock(&cpuset_mutex);
2207
2208 /* allow moving tasks into an empty cpuset if on default hierarchy */
2209 ret = -ENOSPC;
2210 if (!is_in_v2_mode() &&
2211 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2212 goto out_unlock;
2213
2214 cgroup_taskset_for_each(task, css, tset) {
2215 ret = task_can_attach(task);
2216 if (ret)
2217 goto out_unlock;
2218 ret = security_task_setscheduler(task);
2219 if (ret)
2220 goto out_unlock;
2221
2222 if (dl_task(task)) {
2223 cs->nr_migrate_dl_tasks++;
2224 cs->sum_migrate_dl_bw += task->dl.dl_bw;
2225 }
2226 }
2227
2228 if (!cs->nr_migrate_dl_tasks)
2229 goto out_success;
2230
2231 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
2232 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
2233
2234 if (unlikely(cpu >= nr_cpu_ids)) {
2235 reset_migrate_dl_data(cs);
2236 ret = -EINVAL;
2237 goto out_unlock;
2238 }
2239
2240 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
2241 if (ret) {
2242 reset_migrate_dl_data(cs);
2243 goto out_unlock;
2244 }
2245 }
2246
2247 out_success:
2248 /*
2249 * Mark attach is in progress. This makes validate_change() fail
2250 * changes which zero cpus/mems_allowed.
2251 */
2252 cs->attach_in_progress++;
2253 ret = 0;
2254 out_unlock:
2255 mutex_unlock(&cpuset_mutex);
2256 return ret;
2257 }
2258
cpuset_cancel_attach(struct cgroup_taskset * tset)2259 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2260 {
2261 struct cgroup_subsys_state *css;
2262 struct cpuset *cs;
2263
2264 cgroup_taskset_first(tset, &css);
2265 cs = css_cs(css);
2266
2267 mutex_lock(&cpuset_mutex);
2268 cs->attach_in_progress--;
2269 if (!cs->attach_in_progress)
2270 wake_up(&cpuset_attach_wq);
2271
2272 if (cs->nr_migrate_dl_tasks) {
2273 int cpu = cpumask_any(cs->effective_cpus);
2274
2275 dl_bw_free(cpu, cs->sum_migrate_dl_bw);
2276 reset_migrate_dl_data(cs);
2277 }
2278
2279 mutex_unlock(&cpuset_mutex);
2280 }
2281
2282 /*
2283 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2284 * but we can't allocate it dynamically there. Define it global and
2285 * allocate from cpuset_init().
2286 */
2287 static cpumask_var_t cpus_attach;
2288
cpuset_attach(struct cgroup_taskset * tset)2289 static void cpuset_attach(struct cgroup_taskset *tset)
2290 {
2291 /* static buf protected by cpuset_mutex */
2292 static nodemask_t cpuset_attach_nodemask_to;
2293 struct task_struct *task;
2294 struct task_struct *leader;
2295 struct cgroup_subsys_state *css;
2296 struct cpuset *cs;
2297 struct cpuset *oldcs = cpuset_attach_old_cs;
2298
2299 cgroup_taskset_first(tset, &css);
2300 cs = css_cs(css);
2301
2302 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
2303 mutex_lock(&cpuset_mutex);
2304
2305 /* prepare for attach */
2306 if (cs == &top_cpuset)
2307 cpumask_copy(cpus_attach, cpu_possible_mask);
2308 else
2309 guarantee_online_cpus(cs, cpus_attach);
2310
2311 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2312
2313 cgroup_taskset_for_each(task, css, tset) {
2314 /*
2315 * can_attach beforehand should guarantee that this doesn't
2316 * fail. TODO: have a better way to handle failure here
2317 */
2318 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2319
2320 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2321 cpuset_update_task_spread_flag(cs, task);
2322 }
2323
2324 /*
2325 * Change mm for all threadgroup leaders. This is expensive and may
2326 * sleep and should be moved outside migration path proper.
2327 */
2328 cpuset_attach_nodemask_to = cs->effective_mems;
2329 cgroup_taskset_for_each_leader(leader, css, tset) {
2330 struct mm_struct *mm = get_task_mm(leader);
2331
2332 if (mm) {
2333 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2334
2335 /*
2336 * old_mems_allowed is the same with mems_allowed
2337 * here, except if this task is being moved
2338 * automatically due to hotplug. In that case
2339 * @mems_allowed has been updated and is empty, so
2340 * @old_mems_allowed is the right nodesets that we
2341 * migrate mm from.
2342 */
2343 if (is_memory_migrate(cs))
2344 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2345 &cpuset_attach_nodemask_to);
2346 else
2347 mmput(mm);
2348 }
2349 }
2350
2351 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2352
2353 if (cs->nr_migrate_dl_tasks) {
2354 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
2355 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
2356 reset_migrate_dl_data(cs);
2357 }
2358
2359 cs->attach_in_progress--;
2360 if (!cs->attach_in_progress)
2361 wake_up(&cpuset_attach_wq);
2362
2363 mutex_unlock(&cpuset_mutex);
2364 }
2365
2366 /* The various types of files and directories in a cpuset file system */
2367
2368 typedef enum {
2369 FILE_MEMORY_MIGRATE,
2370 FILE_CPULIST,
2371 FILE_MEMLIST,
2372 FILE_EFFECTIVE_CPULIST,
2373 FILE_EFFECTIVE_MEMLIST,
2374 FILE_SUBPARTS_CPULIST,
2375 FILE_CPU_EXCLUSIVE,
2376 FILE_MEM_EXCLUSIVE,
2377 FILE_MEM_HARDWALL,
2378 FILE_SCHED_LOAD_BALANCE,
2379 FILE_PARTITION_ROOT,
2380 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2381 FILE_MEMORY_PRESSURE_ENABLED,
2382 FILE_MEMORY_PRESSURE,
2383 FILE_SPREAD_PAGE,
2384 FILE_SPREAD_SLAB,
2385 } cpuset_filetype_t;
2386
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2387 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2388 u64 val)
2389 {
2390 struct cpuset *cs = css_cs(css);
2391 cpuset_filetype_t type = cft->private;
2392 int retval = 0;
2393
2394 get_online_cpus();
2395 mutex_lock(&cpuset_mutex);
2396 if (!is_cpuset_online(cs)) {
2397 retval = -ENODEV;
2398 goto out_unlock;
2399 }
2400
2401 switch (type) {
2402 case FILE_CPU_EXCLUSIVE:
2403 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2404 break;
2405 case FILE_MEM_EXCLUSIVE:
2406 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2407 break;
2408 case FILE_MEM_HARDWALL:
2409 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2410 break;
2411 case FILE_SCHED_LOAD_BALANCE:
2412 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2413 break;
2414 case FILE_MEMORY_MIGRATE:
2415 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2416 break;
2417 case FILE_MEMORY_PRESSURE_ENABLED:
2418 cpuset_memory_pressure_enabled = !!val;
2419 break;
2420 case FILE_SPREAD_PAGE:
2421 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2422 break;
2423 case FILE_SPREAD_SLAB:
2424 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2425 break;
2426 default:
2427 retval = -EINVAL;
2428 break;
2429 }
2430 out_unlock:
2431 mutex_unlock(&cpuset_mutex);
2432 put_online_cpus();
2433 return retval;
2434 }
2435
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)2436 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2437 s64 val)
2438 {
2439 struct cpuset *cs = css_cs(css);
2440 cpuset_filetype_t type = cft->private;
2441 int retval = -ENODEV;
2442
2443 get_online_cpus();
2444 mutex_lock(&cpuset_mutex);
2445 if (!is_cpuset_online(cs))
2446 goto out_unlock;
2447
2448 switch (type) {
2449 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2450 retval = update_relax_domain_level(cs, val);
2451 break;
2452 default:
2453 retval = -EINVAL;
2454 break;
2455 }
2456 out_unlock:
2457 mutex_unlock(&cpuset_mutex);
2458 put_online_cpus();
2459 return retval;
2460 }
2461
2462 /*
2463 * Common handling for a write to a "cpus" or "mems" file.
2464 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2465 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2466 char *buf, size_t nbytes, loff_t off)
2467 {
2468 struct cpuset *cs = css_cs(of_css(of));
2469 struct cpuset *trialcs;
2470 int retval = -ENODEV;
2471
2472 buf = strstrip(buf);
2473
2474 /*
2475 * CPU or memory hotunplug may leave @cs w/o any execution
2476 * resources, in which case the hotplug code asynchronously updates
2477 * configuration and transfers all tasks to the nearest ancestor
2478 * which can execute.
2479 *
2480 * As writes to "cpus" or "mems" may restore @cs's execution
2481 * resources, wait for the previously scheduled operations before
2482 * proceeding, so that we don't end up keep removing tasks added
2483 * after execution capability is restored.
2484 *
2485 * cpuset_hotplug_work calls back into cgroup core via
2486 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2487 * operation like this one can lead to a deadlock through kernfs
2488 * active_ref protection. Let's break the protection. Losing the
2489 * protection is okay as we check whether @cs is online after
2490 * grabbing cpuset_mutex anyway. This only happens on the legacy
2491 * hierarchies.
2492 */
2493 css_get(&cs->css);
2494 kernfs_break_active_protection(of->kn);
2495 flush_work(&cpuset_hotplug_work);
2496
2497 get_online_cpus();
2498 mutex_lock(&cpuset_mutex);
2499 if (!is_cpuset_online(cs))
2500 goto out_unlock;
2501
2502 trialcs = alloc_trial_cpuset(cs);
2503 if (!trialcs) {
2504 retval = -ENOMEM;
2505 goto out_unlock;
2506 }
2507
2508 switch (of_cft(of)->private) {
2509 case FILE_CPULIST:
2510 retval = update_cpumask(cs, trialcs, buf);
2511 break;
2512 case FILE_MEMLIST:
2513 retval = update_nodemask(cs, trialcs, buf);
2514 break;
2515 default:
2516 retval = -EINVAL;
2517 break;
2518 }
2519
2520 free_cpuset(trialcs);
2521 out_unlock:
2522 mutex_unlock(&cpuset_mutex);
2523 put_online_cpus();
2524 kernfs_unbreak_active_protection(of->kn);
2525 css_put(&cs->css);
2526 flush_workqueue(cpuset_migrate_mm_wq);
2527 return retval ?: nbytes;
2528 }
2529
2530 /*
2531 * These ascii lists should be read in a single call, by using a user
2532 * buffer large enough to hold the entire map. If read in smaller
2533 * chunks, there is no guarantee of atomicity. Since the display format
2534 * used, list of ranges of sequential numbers, is variable length,
2535 * and since these maps can change value dynamically, one could read
2536 * gibberish by doing partial reads while a list was changing.
2537 */
cpuset_common_seq_show(struct seq_file * sf,void * v)2538 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2539 {
2540 struct cpuset *cs = css_cs(seq_css(sf));
2541 cpuset_filetype_t type = seq_cft(sf)->private;
2542 int ret = 0;
2543
2544 spin_lock_irq(&callback_lock);
2545
2546 switch (type) {
2547 case FILE_CPULIST:
2548 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
2549 break;
2550 case FILE_MEMLIST:
2551 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2552 break;
2553 case FILE_EFFECTIVE_CPULIST:
2554 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2555 break;
2556 case FILE_EFFECTIVE_MEMLIST:
2557 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2558 break;
2559 case FILE_SUBPARTS_CPULIST:
2560 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2561 break;
2562 default:
2563 ret = -EINVAL;
2564 }
2565
2566 spin_unlock_irq(&callback_lock);
2567 return ret;
2568 }
2569
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2570 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2571 {
2572 struct cpuset *cs = css_cs(css);
2573 cpuset_filetype_t type = cft->private;
2574 switch (type) {
2575 case FILE_CPU_EXCLUSIVE:
2576 return is_cpu_exclusive(cs);
2577 case FILE_MEM_EXCLUSIVE:
2578 return is_mem_exclusive(cs);
2579 case FILE_MEM_HARDWALL:
2580 return is_mem_hardwall(cs);
2581 case FILE_SCHED_LOAD_BALANCE:
2582 return is_sched_load_balance(cs);
2583 case FILE_MEMORY_MIGRATE:
2584 return is_memory_migrate(cs);
2585 case FILE_MEMORY_PRESSURE_ENABLED:
2586 return cpuset_memory_pressure_enabled;
2587 case FILE_MEMORY_PRESSURE:
2588 return fmeter_getrate(&cs->fmeter);
2589 case FILE_SPREAD_PAGE:
2590 return is_spread_page(cs);
2591 case FILE_SPREAD_SLAB:
2592 return is_spread_slab(cs);
2593 default:
2594 BUG();
2595 }
2596
2597 /* Unreachable but makes gcc happy */
2598 return 0;
2599 }
2600
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)2601 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2602 {
2603 struct cpuset *cs = css_cs(css);
2604 cpuset_filetype_t type = cft->private;
2605 switch (type) {
2606 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2607 return cs->relax_domain_level;
2608 default:
2609 BUG();
2610 }
2611
2612 /* Unrechable but makes gcc happy */
2613 return 0;
2614 }
2615
sched_partition_show(struct seq_file * seq,void * v)2616 static int sched_partition_show(struct seq_file *seq, void *v)
2617 {
2618 struct cpuset *cs = css_cs(seq_css(seq));
2619
2620 switch (cs->partition_root_state) {
2621 case PRS_ENABLED:
2622 seq_puts(seq, "root\n");
2623 break;
2624 case PRS_DISABLED:
2625 seq_puts(seq, "member\n");
2626 break;
2627 case PRS_ERROR:
2628 seq_puts(seq, "root invalid\n");
2629 break;
2630 }
2631 return 0;
2632 }
2633
sched_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2634 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2635 size_t nbytes, loff_t off)
2636 {
2637 struct cpuset *cs = css_cs(of_css(of));
2638 int val;
2639 int retval = -ENODEV;
2640
2641 buf = strstrip(buf);
2642
2643 /*
2644 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2645 */
2646 if (!strcmp(buf, "root"))
2647 val = PRS_ENABLED;
2648 else if (!strcmp(buf, "member"))
2649 val = PRS_DISABLED;
2650 else
2651 return -EINVAL;
2652
2653 css_get(&cs->css);
2654 get_online_cpus();
2655 mutex_lock(&cpuset_mutex);
2656 if (!is_cpuset_online(cs))
2657 goto out_unlock;
2658
2659 retval = update_prstate(cs, val);
2660 out_unlock:
2661 mutex_unlock(&cpuset_mutex);
2662 put_online_cpus();
2663 css_put(&cs->css);
2664 return retval ?: nbytes;
2665 }
2666
2667 /*
2668 * for the common functions, 'private' gives the type of file
2669 */
2670
2671 static struct cftype legacy_files[] = {
2672 {
2673 .name = "cpus",
2674 .seq_show = cpuset_common_seq_show,
2675 .write = cpuset_write_resmask,
2676 .max_write_len = (100U + 6 * NR_CPUS),
2677 .private = FILE_CPULIST,
2678 },
2679
2680 {
2681 .name = "mems",
2682 .seq_show = cpuset_common_seq_show,
2683 .write = cpuset_write_resmask,
2684 .max_write_len = (100U + 6 * MAX_NUMNODES),
2685 .private = FILE_MEMLIST,
2686 },
2687
2688 {
2689 .name = "effective_cpus",
2690 .seq_show = cpuset_common_seq_show,
2691 .private = FILE_EFFECTIVE_CPULIST,
2692 },
2693
2694 {
2695 .name = "effective_mems",
2696 .seq_show = cpuset_common_seq_show,
2697 .private = FILE_EFFECTIVE_MEMLIST,
2698 },
2699
2700 {
2701 .name = "cpu_exclusive",
2702 .read_u64 = cpuset_read_u64,
2703 .write_u64 = cpuset_write_u64,
2704 .private = FILE_CPU_EXCLUSIVE,
2705 },
2706
2707 {
2708 .name = "mem_exclusive",
2709 .read_u64 = cpuset_read_u64,
2710 .write_u64 = cpuset_write_u64,
2711 .private = FILE_MEM_EXCLUSIVE,
2712 },
2713
2714 {
2715 .name = "mem_hardwall",
2716 .read_u64 = cpuset_read_u64,
2717 .write_u64 = cpuset_write_u64,
2718 .private = FILE_MEM_HARDWALL,
2719 },
2720
2721 {
2722 .name = "sched_load_balance",
2723 .read_u64 = cpuset_read_u64,
2724 .write_u64 = cpuset_write_u64,
2725 .private = FILE_SCHED_LOAD_BALANCE,
2726 },
2727
2728 {
2729 .name = "sched_relax_domain_level",
2730 .read_s64 = cpuset_read_s64,
2731 .write_s64 = cpuset_write_s64,
2732 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2733 },
2734
2735 {
2736 .name = "memory_migrate",
2737 .read_u64 = cpuset_read_u64,
2738 .write_u64 = cpuset_write_u64,
2739 .private = FILE_MEMORY_MIGRATE,
2740 },
2741
2742 {
2743 .name = "memory_pressure",
2744 .read_u64 = cpuset_read_u64,
2745 .private = FILE_MEMORY_PRESSURE,
2746 },
2747
2748 {
2749 .name = "memory_spread_page",
2750 .read_u64 = cpuset_read_u64,
2751 .write_u64 = cpuset_write_u64,
2752 .private = FILE_SPREAD_PAGE,
2753 },
2754
2755 {
2756 .name = "memory_spread_slab",
2757 .read_u64 = cpuset_read_u64,
2758 .write_u64 = cpuset_write_u64,
2759 .private = FILE_SPREAD_SLAB,
2760 },
2761
2762 {
2763 .name = "memory_pressure_enabled",
2764 .flags = CFTYPE_ONLY_ON_ROOT,
2765 .read_u64 = cpuset_read_u64,
2766 .write_u64 = cpuset_write_u64,
2767 .private = FILE_MEMORY_PRESSURE_ENABLED,
2768 },
2769
2770 { } /* terminate */
2771 };
2772
2773 /*
2774 * This is currently a minimal set for the default hierarchy. It can be
2775 * expanded later on by migrating more features and control files from v1.
2776 */
2777 static struct cftype dfl_files[] = {
2778 {
2779 .name = "cpus",
2780 .seq_show = cpuset_common_seq_show,
2781 .write = cpuset_write_resmask,
2782 .max_write_len = (100U + 6 * NR_CPUS),
2783 .private = FILE_CPULIST,
2784 .flags = CFTYPE_NOT_ON_ROOT,
2785 },
2786
2787 {
2788 .name = "mems",
2789 .seq_show = cpuset_common_seq_show,
2790 .write = cpuset_write_resmask,
2791 .max_write_len = (100U + 6 * MAX_NUMNODES),
2792 .private = FILE_MEMLIST,
2793 .flags = CFTYPE_NOT_ON_ROOT,
2794 },
2795
2796 {
2797 .name = "cpus.effective",
2798 .seq_show = cpuset_common_seq_show,
2799 .private = FILE_EFFECTIVE_CPULIST,
2800 },
2801
2802 {
2803 .name = "mems.effective",
2804 .seq_show = cpuset_common_seq_show,
2805 .private = FILE_EFFECTIVE_MEMLIST,
2806 },
2807
2808 {
2809 .name = "cpus.partition",
2810 .seq_show = sched_partition_show,
2811 .write = sched_partition_write,
2812 .private = FILE_PARTITION_ROOT,
2813 .flags = CFTYPE_NOT_ON_ROOT,
2814 },
2815
2816 {
2817 .name = "cpus.subpartitions",
2818 .seq_show = cpuset_common_seq_show,
2819 .private = FILE_SUBPARTS_CPULIST,
2820 .flags = CFTYPE_DEBUG,
2821 },
2822
2823 { } /* terminate */
2824 };
2825
2826
2827 /*
2828 * cpuset_css_alloc - allocate a cpuset css
2829 * cgrp: control group that the new cpuset will be part of
2830 */
2831
2832 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)2833 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2834 {
2835 struct cpuset *cs;
2836
2837 if (!parent_css)
2838 return &top_cpuset.css;
2839
2840 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2841 if (!cs)
2842 return ERR_PTR(-ENOMEM);
2843
2844 if (alloc_cpumasks(cs, NULL)) {
2845 kfree(cs);
2846 return ERR_PTR(-ENOMEM);
2847 }
2848
2849 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2850 nodes_clear(cs->mems_allowed);
2851 nodes_clear(cs->effective_mems);
2852 fmeter_init(&cs->fmeter);
2853 cs->relax_domain_level = -1;
2854
2855 return &cs->css;
2856 }
2857
cpuset_css_online(struct cgroup_subsys_state * css)2858 static int cpuset_css_online(struct cgroup_subsys_state *css)
2859 {
2860 struct cpuset *cs = css_cs(css);
2861 struct cpuset *parent = parent_cs(cs);
2862 struct cpuset *tmp_cs;
2863 struct cgroup_subsys_state *pos_css;
2864
2865 if (!parent)
2866 return 0;
2867
2868 get_online_cpus();
2869 mutex_lock(&cpuset_mutex);
2870
2871 set_bit(CS_ONLINE, &cs->flags);
2872 if (is_spread_page(parent))
2873 set_bit(CS_SPREAD_PAGE, &cs->flags);
2874 if (is_spread_slab(parent))
2875 set_bit(CS_SPREAD_SLAB, &cs->flags);
2876
2877 cpuset_inc();
2878
2879 spin_lock_irq(&callback_lock);
2880 if (is_in_v2_mode()) {
2881 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2882 cs->effective_mems = parent->effective_mems;
2883 cs->use_parent_ecpus = true;
2884 parent->child_ecpus_count++;
2885 }
2886 spin_unlock_irq(&callback_lock);
2887
2888 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2889 goto out_unlock;
2890
2891 /*
2892 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2893 * set. This flag handling is implemented in cgroup core for
2894 * histrical reasons - the flag may be specified during mount.
2895 *
2896 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2897 * refuse to clone the configuration - thereby refusing the task to
2898 * be entered, and as a result refusing the sys_unshare() or
2899 * clone() which initiated it. If this becomes a problem for some
2900 * users who wish to allow that scenario, then this could be
2901 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2902 * (and likewise for mems) to the new cgroup.
2903 */
2904 rcu_read_lock();
2905 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2906 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2907 rcu_read_unlock();
2908 goto out_unlock;
2909 }
2910 }
2911 rcu_read_unlock();
2912
2913 spin_lock_irq(&callback_lock);
2914 cs->mems_allowed = parent->mems_allowed;
2915 cs->effective_mems = parent->mems_allowed;
2916 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2917 cpumask_copy(cs->cpus_requested, parent->cpus_requested);
2918 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2919 spin_unlock_irq(&callback_lock);
2920 out_unlock:
2921 mutex_unlock(&cpuset_mutex);
2922 put_online_cpus();
2923 return 0;
2924 }
2925
2926 /*
2927 * If the cpuset being removed has its flag 'sched_load_balance'
2928 * enabled, then simulate turning sched_load_balance off, which
2929 * will call rebuild_sched_domains_locked(). That is not needed
2930 * in the default hierarchy where only changes in partition
2931 * will cause repartitioning.
2932 *
2933 * If the cpuset has the 'sched.partition' flag enabled, simulate
2934 * turning 'sched.partition" off.
2935 */
2936
cpuset_css_offline(struct cgroup_subsys_state * css)2937 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2938 {
2939 struct cpuset *cs = css_cs(css);
2940
2941 get_online_cpus();
2942 mutex_lock(&cpuset_mutex);
2943
2944 if (is_partition_root(cs))
2945 update_prstate(cs, 0);
2946
2947 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2948 is_sched_load_balance(cs))
2949 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2950
2951 if (cs->use_parent_ecpus) {
2952 struct cpuset *parent = parent_cs(cs);
2953
2954 cs->use_parent_ecpus = false;
2955 parent->child_ecpus_count--;
2956 }
2957
2958 cpuset_dec();
2959 clear_bit(CS_ONLINE, &cs->flags);
2960
2961 mutex_unlock(&cpuset_mutex);
2962 put_online_cpus();
2963 }
2964
cpuset_css_free(struct cgroup_subsys_state * css)2965 static void cpuset_css_free(struct cgroup_subsys_state *css)
2966 {
2967 struct cpuset *cs = css_cs(css);
2968
2969 free_cpuset(cs);
2970 }
2971
cpuset_bind(struct cgroup_subsys_state * root_css)2972 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2973 {
2974 mutex_lock(&cpuset_mutex);
2975 spin_lock_irq(&callback_lock);
2976
2977 if (is_in_v2_mode()) {
2978 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2979 top_cpuset.mems_allowed = node_possible_map;
2980 } else {
2981 cpumask_copy(top_cpuset.cpus_allowed,
2982 top_cpuset.effective_cpus);
2983 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2984 }
2985
2986 spin_unlock_irq(&callback_lock);
2987 mutex_unlock(&cpuset_mutex);
2988 }
2989
2990 /*
2991 * Make sure the new task conform to the current state of its parent,
2992 * which could have been changed by cpuset just after it inherits the
2993 * state from the parent and before it sits on the cgroup's task list.
2994 */
cpuset_fork(struct task_struct * task)2995 static void cpuset_fork(struct task_struct *task)
2996 {
2997 if (task_css_is_root(task, cpuset_cgrp_id))
2998 return;
2999
3000 set_cpus_allowed_ptr(task, current->cpus_ptr);
3001 task->mems_allowed = current->mems_allowed;
3002 }
3003
3004 struct cgroup_subsys cpuset_cgrp_subsys = {
3005 .css_alloc = cpuset_css_alloc,
3006 .css_online = cpuset_css_online,
3007 .css_offline = cpuset_css_offline,
3008 .css_free = cpuset_css_free,
3009 .can_attach = cpuset_can_attach,
3010 .cancel_attach = cpuset_cancel_attach,
3011 .attach = cpuset_attach,
3012 .post_attach = cpuset_post_attach,
3013 .bind = cpuset_bind,
3014 .fork = cpuset_fork,
3015 .legacy_cftypes = legacy_files,
3016 .dfl_cftypes = dfl_files,
3017 .early_init = true,
3018 .threaded = true,
3019 };
3020
3021 /**
3022 * cpuset_init - initialize cpusets at system boot
3023 *
3024 * Description: Initialize top_cpuset
3025 **/
3026
cpuset_init(void)3027 int __init cpuset_init(void)
3028 {
3029 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3030 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL));
3031 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3032 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3033
3034 cpumask_setall(top_cpuset.cpus_allowed);
3035 cpumask_setall(top_cpuset.cpus_requested);
3036 nodes_setall(top_cpuset.mems_allowed);
3037 cpumask_setall(top_cpuset.effective_cpus);
3038 nodes_setall(top_cpuset.effective_mems);
3039
3040 fmeter_init(&top_cpuset.fmeter);
3041 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3042 top_cpuset.relax_domain_level = -1;
3043
3044 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3045
3046 return 0;
3047 }
3048
3049 /*
3050 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3051 * or memory nodes, we need to walk over the cpuset hierarchy,
3052 * removing that CPU or node from all cpusets. If this removes the
3053 * last CPU or node from a cpuset, then move the tasks in the empty
3054 * cpuset to its next-highest non-empty parent.
3055 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)3056 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3057 {
3058 struct cpuset *parent;
3059
3060 /*
3061 * Find its next-highest non-empty parent, (top cpuset
3062 * has online cpus, so can't be empty).
3063 */
3064 parent = parent_cs(cs);
3065 while (cpumask_empty(parent->cpus_allowed) ||
3066 nodes_empty(parent->mems_allowed))
3067 parent = parent_cs(parent);
3068
3069 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3070 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3071 pr_cont_cgroup_name(cs->css.cgroup);
3072 pr_cont("\n");
3073 }
3074 }
3075
3076 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3077 hotplug_update_tasks_legacy(struct cpuset *cs,
3078 struct cpumask *new_cpus, nodemask_t *new_mems,
3079 bool cpus_updated, bool mems_updated)
3080 {
3081 bool is_empty;
3082
3083 spin_lock_irq(&callback_lock);
3084 cpumask_copy(cs->cpus_allowed, new_cpus);
3085 cpumask_copy(cs->effective_cpus, new_cpus);
3086 cs->mems_allowed = *new_mems;
3087 cs->effective_mems = *new_mems;
3088 spin_unlock_irq(&callback_lock);
3089
3090 /*
3091 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3092 * as the tasks will be migratecd to an ancestor.
3093 */
3094 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3095 update_tasks_cpumask(cs);
3096 if (mems_updated && !nodes_empty(cs->mems_allowed))
3097 update_tasks_nodemask(cs);
3098
3099 is_empty = cpumask_empty(cs->cpus_allowed) ||
3100 nodes_empty(cs->mems_allowed);
3101
3102 mutex_unlock(&cpuset_mutex);
3103
3104 /*
3105 * Move tasks to the nearest ancestor with execution resources,
3106 * This is full cgroup operation which will also call back into
3107 * cpuset. Should be done outside any lock.
3108 */
3109 if (is_empty)
3110 remove_tasks_in_empty_cpuset(cs);
3111
3112 mutex_lock(&cpuset_mutex);
3113 }
3114
3115 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3116 hotplug_update_tasks(struct cpuset *cs,
3117 struct cpumask *new_cpus, nodemask_t *new_mems,
3118 bool cpus_updated, bool mems_updated)
3119 {
3120 if (cpumask_empty(new_cpus))
3121 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3122 if (nodes_empty(*new_mems))
3123 *new_mems = parent_cs(cs)->effective_mems;
3124
3125 spin_lock_irq(&callback_lock);
3126 cpumask_copy(cs->effective_cpus, new_cpus);
3127 cs->effective_mems = *new_mems;
3128 spin_unlock_irq(&callback_lock);
3129
3130 if (cpus_updated)
3131 update_tasks_cpumask(cs);
3132 if (mems_updated)
3133 update_tasks_nodemask(cs);
3134 }
3135
3136 static bool force_rebuild;
3137
cpuset_force_rebuild(void)3138 void cpuset_force_rebuild(void)
3139 {
3140 force_rebuild = true;
3141 }
3142
3143 /**
3144 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3145 * @cs: cpuset in interest
3146 * @tmp: the tmpmasks structure pointer
3147 *
3148 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3149 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3150 * all its tasks are moved to the nearest ancestor with both resources.
3151 */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3152 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3153 {
3154 static cpumask_t new_cpus;
3155 static nodemask_t new_mems;
3156 bool cpus_updated;
3157 bool mems_updated;
3158 struct cpuset *parent;
3159 retry:
3160 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3161
3162 mutex_lock(&cpuset_mutex);
3163
3164 /*
3165 * We have raced with task attaching. We wait until attaching
3166 * is finished, so we won't attach a task to an empty cpuset.
3167 */
3168 if (cs->attach_in_progress) {
3169 mutex_unlock(&cpuset_mutex);
3170 goto retry;
3171 }
3172
3173 parent = parent_cs(cs);
3174 compute_effective_cpumask(&new_cpus, cs, parent);
3175 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3176
3177 if (cs->nr_subparts_cpus)
3178 /*
3179 * Make sure that CPUs allocated to child partitions
3180 * do not show up in effective_cpus.
3181 */
3182 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3183
3184 if (!tmp || !cs->partition_root_state)
3185 goto update_tasks;
3186
3187 /*
3188 * In the unlikely event that a partition root has empty
3189 * effective_cpus or its parent becomes erroneous, we have to
3190 * transition it to the erroneous state.
3191 */
3192 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3193 (parent->partition_root_state == PRS_ERROR))) {
3194 if (cs->nr_subparts_cpus) {
3195 spin_lock_irq(&callback_lock);
3196 cs->nr_subparts_cpus = 0;
3197 cpumask_clear(cs->subparts_cpus);
3198 spin_unlock_irq(&callback_lock);
3199 compute_effective_cpumask(&new_cpus, cs, parent);
3200 }
3201
3202 /*
3203 * If the effective_cpus is empty because the child
3204 * partitions take away all the CPUs, we can keep
3205 * the current partition and let the child partitions
3206 * fight for available CPUs.
3207 */
3208 if ((parent->partition_root_state == PRS_ERROR) ||
3209 cpumask_empty(&new_cpus)) {
3210 update_parent_subparts_cpumask(cs, partcmd_disable,
3211 NULL, tmp);
3212 spin_lock_irq(&callback_lock);
3213 cs->partition_root_state = PRS_ERROR;
3214 spin_unlock_irq(&callback_lock);
3215 }
3216 cpuset_force_rebuild();
3217 }
3218
3219 /*
3220 * On the other hand, an erroneous partition root may be transitioned
3221 * back to a regular one or a partition root with no CPU allocated
3222 * from the parent may change to erroneous.
3223 */
3224 if (is_partition_root(parent) &&
3225 ((cs->partition_root_state == PRS_ERROR) ||
3226 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3227 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3228 cpuset_force_rebuild();
3229
3230 update_tasks:
3231 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3232 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3233
3234 if (is_in_v2_mode())
3235 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3236 cpus_updated, mems_updated);
3237 else
3238 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3239 cpus_updated, mems_updated);
3240
3241 mutex_unlock(&cpuset_mutex);
3242 }
3243
3244 /**
3245 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3246 *
3247 * This function is called after either CPU or memory configuration has
3248 * changed and updates cpuset accordingly. The top_cpuset is always
3249 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3250 * order to make cpusets transparent (of no affect) on systems that are
3251 * actively using CPU hotplug but making no active use of cpusets.
3252 *
3253 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3254 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3255 * all descendants.
3256 *
3257 * Note that CPU offlining during suspend is ignored. We don't modify
3258 * cpusets across suspend/resume cycles at all.
3259 */
cpuset_hotplug_workfn(struct work_struct * work)3260 static void cpuset_hotplug_workfn(struct work_struct *work)
3261 {
3262 static cpumask_t new_cpus;
3263 static nodemask_t new_mems;
3264 bool cpus_updated, mems_updated;
3265 bool on_dfl = is_in_v2_mode();
3266 struct tmpmasks tmp, *ptmp = NULL;
3267
3268 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3269 ptmp = &tmp;
3270
3271 mutex_lock(&cpuset_mutex);
3272
3273 /* fetch the available cpus/mems and find out which changed how */
3274 cpumask_copy(&new_cpus, cpu_active_mask);
3275 new_mems = node_states[N_MEMORY];
3276
3277 /*
3278 * If subparts_cpus is populated, it is likely that the check below
3279 * will produce a false positive on cpus_updated when the cpu list
3280 * isn't changed. It is extra work, but it is better to be safe.
3281 */
3282 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3283 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3284
3285 /*
3286 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3287 * we assumed that cpus are updated.
3288 */
3289 if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3290 cpus_updated = true;
3291
3292 /* synchronize cpus_allowed to cpu_active_mask */
3293 if (cpus_updated) {
3294 spin_lock_irq(&callback_lock);
3295 if (!on_dfl)
3296 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3297 /*
3298 * Make sure that CPUs allocated to child partitions
3299 * do not show up in effective_cpus. If no CPU is left,
3300 * we clear the subparts_cpus & let the child partitions
3301 * fight for the CPUs again.
3302 */
3303 if (top_cpuset.nr_subparts_cpus) {
3304 if (cpumask_subset(&new_cpus,
3305 top_cpuset.subparts_cpus)) {
3306 top_cpuset.nr_subparts_cpus = 0;
3307 cpumask_clear(top_cpuset.subparts_cpus);
3308 } else {
3309 cpumask_andnot(&new_cpus, &new_cpus,
3310 top_cpuset.subparts_cpus);
3311 }
3312 }
3313 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3314 spin_unlock_irq(&callback_lock);
3315 /* we don't mess with cpumasks of tasks in top_cpuset */
3316 }
3317
3318 /* synchronize mems_allowed to N_MEMORY */
3319 if (mems_updated) {
3320 spin_lock_irq(&callback_lock);
3321 if (!on_dfl)
3322 top_cpuset.mems_allowed = new_mems;
3323 top_cpuset.effective_mems = new_mems;
3324 spin_unlock_irq(&callback_lock);
3325 update_tasks_nodemask(&top_cpuset);
3326 }
3327
3328 mutex_unlock(&cpuset_mutex);
3329
3330 /* if cpus or mems changed, we need to propagate to descendants */
3331 if (cpus_updated || mems_updated) {
3332 struct cpuset *cs;
3333 struct cgroup_subsys_state *pos_css;
3334
3335 rcu_read_lock();
3336 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3337 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3338 continue;
3339 rcu_read_unlock();
3340
3341 cpuset_hotplug_update_tasks(cs, ptmp);
3342
3343 rcu_read_lock();
3344 css_put(&cs->css);
3345 }
3346 rcu_read_unlock();
3347 }
3348
3349 /* rebuild sched domains if cpus_allowed has changed */
3350 if (cpus_updated || force_rebuild) {
3351 force_rebuild = false;
3352 rebuild_sched_domains();
3353 }
3354
3355 free_cpumasks(NULL, ptmp);
3356 }
3357
cpuset_update_active_cpus(void)3358 void cpuset_update_active_cpus(void)
3359 {
3360 /*
3361 * We're inside cpu hotplug critical region which usually nests
3362 * inside cgroup synchronization. Bounce actual hotplug processing
3363 * to a work item to avoid reverse locking order.
3364 */
3365 schedule_work(&cpuset_hotplug_work);
3366 }
3367
cpuset_wait_for_hotplug(void)3368 void cpuset_wait_for_hotplug(void)
3369 {
3370 flush_work(&cpuset_hotplug_work);
3371 }
3372
3373 /*
3374 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3375 * Call this routine anytime after node_states[N_MEMORY] changes.
3376 * See cpuset_update_active_cpus() for CPU hotplug handling.
3377 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)3378 static int cpuset_track_online_nodes(struct notifier_block *self,
3379 unsigned long action, void *arg)
3380 {
3381 schedule_work(&cpuset_hotplug_work);
3382 return NOTIFY_OK;
3383 }
3384
3385 static struct notifier_block cpuset_track_online_nodes_nb = {
3386 .notifier_call = cpuset_track_online_nodes,
3387 .priority = 10, /* ??! */
3388 };
3389
3390 /**
3391 * cpuset_init_smp - initialize cpus_allowed
3392 *
3393 * Description: Finish top cpuset after cpu, node maps are initialized
3394 */
cpuset_init_smp(void)3395 void __init cpuset_init_smp(void)
3396 {
3397 /*
3398 * cpus_allowd/mems_allowed set to v2 values in the initial
3399 * cpuset_bind() call will be reset to v1 values in another
3400 * cpuset_bind() call when v1 cpuset is mounted.
3401 */
3402 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3403
3404 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3405 top_cpuset.effective_mems = node_states[N_MEMORY];
3406
3407 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3408
3409 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3410 BUG_ON(!cpuset_migrate_mm_wq);
3411 }
3412
3413 /**
3414 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3415 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3416 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3417 *
3418 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3419 * attached to the specified @tsk. Guaranteed to return some non-empty
3420 * subset of cpu_online_mask, even if this means going outside the
3421 * tasks cpuset.
3422 **/
3423
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)3424 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3425 {
3426 unsigned long flags;
3427
3428 spin_lock_irqsave(&callback_lock, flags);
3429 rcu_read_lock();
3430 guarantee_online_cpus(task_cs(tsk), pmask);
3431 rcu_read_unlock();
3432 spin_unlock_irqrestore(&callback_lock, flags);
3433 }
3434
3435 /**
3436 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3437 * @tsk: pointer to task_struct with which the scheduler is struggling
3438 *
3439 * Description: In the case that the scheduler cannot find an allowed cpu in
3440 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3441 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3442 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3443 * This is the absolute last resort for the scheduler and it is only used if
3444 * _every_ other avenue has been traveled.
3445 **/
3446
cpuset_cpus_allowed_fallback(struct task_struct * tsk)3447 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3448 {
3449 rcu_read_lock();
3450 do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3451 task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3452 rcu_read_unlock();
3453
3454 /*
3455 * We own tsk->cpus_allowed, nobody can change it under us.
3456 *
3457 * But we used cs && cs->cpus_allowed lockless and thus can
3458 * race with cgroup_attach_task() or update_cpumask() and get
3459 * the wrong tsk->cpus_allowed. However, both cases imply the
3460 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3461 * which takes task_rq_lock().
3462 *
3463 * If we are called after it dropped the lock we must see all
3464 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3465 * set any mask even if it is not right from task_cs() pov,
3466 * the pending set_cpus_allowed_ptr() will fix things.
3467 *
3468 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3469 * if required.
3470 */
3471 }
3472
cpuset_init_current_mems_allowed(void)3473 void __init cpuset_init_current_mems_allowed(void)
3474 {
3475 nodes_setall(current->mems_allowed);
3476 }
3477
3478 /**
3479 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3480 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3481 *
3482 * Description: Returns the nodemask_t mems_allowed of the cpuset
3483 * attached to the specified @tsk. Guaranteed to return some non-empty
3484 * subset of node_states[N_MEMORY], even if this means going outside the
3485 * tasks cpuset.
3486 **/
3487
cpuset_mems_allowed(struct task_struct * tsk)3488 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3489 {
3490 nodemask_t mask;
3491 unsigned long flags;
3492
3493 spin_lock_irqsave(&callback_lock, flags);
3494 rcu_read_lock();
3495 guarantee_online_mems(task_cs(tsk), &mask);
3496 rcu_read_unlock();
3497 spin_unlock_irqrestore(&callback_lock, flags);
3498
3499 return mask;
3500 }
3501
3502 /**
3503 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3504 * @nodemask: the nodemask to be checked
3505 *
3506 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3507 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)3508 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3509 {
3510 return nodes_intersects(*nodemask, current->mems_allowed);
3511 }
3512
3513 /*
3514 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3515 * mem_hardwall ancestor to the specified cpuset. Call holding
3516 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3517 * (an unusual configuration), then returns the root cpuset.
3518 */
nearest_hardwall_ancestor(struct cpuset * cs)3519 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3520 {
3521 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3522 cs = parent_cs(cs);
3523 return cs;
3524 }
3525
3526 /**
3527 * cpuset_node_allowed - Can we allocate on a memory node?
3528 * @node: is this an allowed node?
3529 * @gfp_mask: memory allocation flags
3530 *
3531 * If we're in interrupt, yes, we can always allocate. If @node is set in
3532 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3533 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3534 * yes. If current has access to memory reserves as an oom victim, yes.
3535 * Otherwise, no.
3536 *
3537 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3538 * and do not allow allocations outside the current tasks cpuset
3539 * unless the task has been OOM killed.
3540 * GFP_KERNEL allocations are not so marked, so can escape to the
3541 * nearest enclosing hardwalled ancestor cpuset.
3542 *
3543 * Scanning up parent cpusets requires callback_lock. The
3544 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3545 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3546 * current tasks mems_allowed came up empty on the first pass over
3547 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3548 * cpuset are short of memory, might require taking the callback_lock.
3549 *
3550 * The first call here from mm/page_alloc:get_page_from_freelist()
3551 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3552 * so no allocation on a node outside the cpuset is allowed (unless
3553 * in interrupt, of course).
3554 *
3555 * The second pass through get_page_from_freelist() doesn't even call
3556 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3557 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3558 * in alloc_flags. That logic and the checks below have the combined
3559 * affect that:
3560 * in_interrupt - any node ok (current task context irrelevant)
3561 * GFP_ATOMIC - any node ok
3562 * tsk_is_oom_victim - any node ok
3563 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3564 * GFP_USER - only nodes in current tasks mems allowed ok.
3565 */
__cpuset_node_allowed(int node,gfp_t gfp_mask)3566 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3567 {
3568 struct cpuset *cs; /* current cpuset ancestors */
3569 int allowed; /* is allocation in zone z allowed? */
3570 unsigned long flags;
3571
3572 if (in_interrupt())
3573 return true;
3574 if (node_isset(node, current->mems_allowed))
3575 return true;
3576 /*
3577 * Allow tasks that have access to memory reserves because they have
3578 * been OOM killed to get memory anywhere.
3579 */
3580 if (unlikely(tsk_is_oom_victim(current)))
3581 return true;
3582 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3583 return false;
3584
3585 if (current->flags & PF_EXITING) /* Let dying task have memory */
3586 return true;
3587
3588 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3589 spin_lock_irqsave(&callback_lock, flags);
3590
3591 rcu_read_lock();
3592 cs = nearest_hardwall_ancestor(task_cs(current));
3593 allowed = node_isset(node, cs->mems_allowed);
3594 rcu_read_unlock();
3595
3596 spin_unlock_irqrestore(&callback_lock, flags);
3597 return allowed;
3598 }
3599
3600 /**
3601 * cpuset_mem_spread_node() - On which node to begin search for a file page
3602 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3603 *
3604 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3605 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3606 * and if the memory allocation used cpuset_mem_spread_node()
3607 * to determine on which node to start looking, as it will for
3608 * certain page cache or slab cache pages such as used for file
3609 * system buffers and inode caches, then instead of starting on the
3610 * local node to look for a free page, rather spread the starting
3611 * node around the tasks mems_allowed nodes.
3612 *
3613 * We don't have to worry about the returned node being offline
3614 * because "it can't happen", and even if it did, it would be ok.
3615 *
3616 * The routines calling guarantee_online_mems() are careful to
3617 * only set nodes in task->mems_allowed that are online. So it
3618 * should not be possible for the following code to return an
3619 * offline node. But if it did, that would be ok, as this routine
3620 * is not returning the node where the allocation must be, only
3621 * the node where the search should start. The zonelist passed to
3622 * __alloc_pages() will include all nodes. If the slab allocator
3623 * is passed an offline node, it will fall back to the local node.
3624 * See kmem_cache_alloc_node().
3625 */
3626
cpuset_spread_node(int * rotor)3627 static int cpuset_spread_node(int *rotor)
3628 {
3629 return *rotor = next_node_in(*rotor, current->mems_allowed);
3630 }
3631
cpuset_mem_spread_node(void)3632 int cpuset_mem_spread_node(void)
3633 {
3634 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3635 current->cpuset_mem_spread_rotor =
3636 node_random(¤t->mems_allowed);
3637
3638 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
3639 }
3640
cpuset_slab_spread_node(void)3641 int cpuset_slab_spread_node(void)
3642 {
3643 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3644 current->cpuset_slab_spread_rotor =
3645 node_random(¤t->mems_allowed);
3646
3647 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
3648 }
3649
3650 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3651
3652 /**
3653 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3654 * @tsk1: pointer to task_struct of some task.
3655 * @tsk2: pointer to task_struct of some other task.
3656 *
3657 * Description: Return true if @tsk1's mems_allowed intersects the
3658 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3659 * one of the task's memory usage might impact the memory available
3660 * to the other.
3661 **/
3662
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)3663 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3664 const struct task_struct *tsk2)
3665 {
3666 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3667 }
3668
3669 /**
3670 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3671 *
3672 * Description: Prints current's name, cpuset name, and cached copy of its
3673 * mems_allowed to the kernel log.
3674 */
cpuset_print_current_mems_allowed(void)3675 void cpuset_print_current_mems_allowed(void)
3676 {
3677 struct cgroup *cgrp;
3678
3679 rcu_read_lock();
3680
3681 cgrp = task_cs(current)->css.cgroup;
3682 pr_cont(",cpuset=");
3683 pr_cont_cgroup_name(cgrp);
3684 pr_cont(",mems_allowed=%*pbl",
3685 nodemask_pr_args(¤t->mems_allowed));
3686
3687 rcu_read_unlock();
3688 }
3689
3690 /*
3691 * Collection of memory_pressure is suppressed unless
3692 * this flag is enabled by writing "1" to the special
3693 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3694 */
3695
3696 int cpuset_memory_pressure_enabled __read_mostly;
3697
3698 /**
3699 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3700 *
3701 * Keep a running average of the rate of synchronous (direct)
3702 * page reclaim efforts initiated by tasks in each cpuset.
3703 *
3704 * This represents the rate at which some task in the cpuset
3705 * ran low on memory on all nodes it was allowed to use, and
3706 * had to enter the kernels page reclaim code in an effort to
3707 * create more free memory by tossing clean pages or swapping
3708 * or writing dirty pages.
3709 *
3710 * Display to user space in the per-cpuset read-only file
3711 * "memory_pressure". Value displayed is an integer
3712 * representing the recent rate of entry into the synchronous
3713 * (direct) page reclaim by any task attached to the cpuset.
3714 **/
3715
__cpuset_memory_pressure_bump(void)3716 void __cpuset_memory_pressure_bump(void)
3717 {
3718 rcu_read_lock();
3719 fmeter_markevent(&task_cs(current)->fmeter);
3720 rcu_read_unlock();
3721 }
3722
3723 #ifdef CONFIG_PROC_PID_CPUSET
3724 /*
3725 * proc_cpuset_show()
3726 * - Print tasks cpuset path into seq_file.
3727 * - Used for /proc/<pid>/cpuset.
3728 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3729 * doesn't really matter if tsk->cpuset changes after we read it,
3730 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3731 * anyway.
3732 */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)3733 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3734 struct pid *pid, struct task_struct *tsk)
3735 {
3736 char *buf;
3737 struct cgroup_subsys_state *css;
3738 int retval;
3739
3740 retval = -ENOMEM;
3741 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3742 if (!buf)
3743 goto out;
3744
3745 css = task_get_css(tsk, cpuset_cgrp_id);
3746 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3747 current->nsproxy->cgroup_ns);
3748 css_put(css);
3749 if (retval >= PATH_MAX)
3750 retval = -ENAMETOOLONG;
3751 if (retval < 0)
3752 goto out_free;
3753 seq_puts(m, buf);
3754 seq_putc(m, '\n');
3755 retval = 0;
3756 out_free:
3757 kfree(buf);
3758 out:
3759 return retval;
3760 }
3761 #endif /* CONFIG_PROC_PID_CPUSET */
3762
3763 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)3764 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3765 {
3766 seq_printf(m, "Mems_allowed:\t%*pb\n",
3767 nodemask_pr_args(&task->mems_allowed));
3768 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3769 nodemask_pr_args(&task->mems_allowed));
3770 }
3771